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Model of single-electron decay from a strongly isolated quantum dot
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Recent measurements of electron escape from a nonequilibrium charged quantum dot are interpreted within
a two-dimensiona(2D) separable model. The confining potential is derived from 3D self-consistent Poisson-
Thomas-Fermi calculations. It is found that the sequence of decay lifetimes provides a sensitive test of the
confining potential and its dependence on electron occupation.
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I. INTRODUCTION is a more favorable situation for study of the decay process,
as the question of preforming the electron does not arise.
In a recent experimenta strongly isolated quantum dot Hence, we can more confidently test our knowledge of the
was charged with excess electrons, and their sequential egonfining barriers for electrons, as well as the profile, and
capes were recorded over a one-hour time period. This wa@ependence on occupation number, of the dot potential. We
repeated 150 times to obtain a statistical distribution of decayill analyze these aspects in this work, and show that these
times. The dot is formed in an electron gas located at a deptieasurements of the lifetimes of “radioactive quantum
of 70 nm in a GaAs-AlGa, _,As heterostructure. Its shape is dots” introduce new constraints on our ability to model their
defined by electrostatic confinement using a set of gates, &iructure. _ o
sketched in the inset to Fig. 1. The gate voltages were The present experiment has another significant advantage
ramped up quickly, so that the dot retained a sizable numbe?ver nuclear decays: instead of counting incoherent decays
of excess electrons when it was well isolated from the surfrom a large sample of identical nuclei, here a single dot is
rounding electron gas. The observations correspond to sélvolved, and the correlation between consecutive events can
quential tunneling ofseven electrons from the dot to the be analyzed. In addition, it should be possible to design the
surroundings. The lifetimes extracted from the escape timeghape, density, and excitation energy of the dot within rather
distribution’ are shown in Fig. 1. A striking quasilinear de- Proad margins, so that future experiments on mesoscopic
pendence of the logarithm of the lifetime on electron numbegystems will be much more flexible than those in nuclear
is apparent. systems, where only those nuclei existing in nature, or cre-
Sequential decays have been known and studied for ovated in sufficient numbers, can be studied. Thus, the_study of
a century in the context of nuclear physics. The combinecgléctron decays from a quantum dot has the potential to re-
instances ofx and 8 decays from the heaviest elements areveal new features of the tunneling process. This is a topic of
responsible for most natural radioactivity. The description of 3
a decay in terms of tunneling af particles through a con- P—
fining potential dates back to the 192@amow? and Con- I I I o

don and Gurney). Although the basic nature of the decay as
a barrier penetration is well understood, accurate predictions

for radioactive lifetimes are difficult because the process by
which the escapinga particle is preformed within the
nucleus requires an understanding of four-body correlations.
As a result, it is impossible to deduce accurate information
on the barrier shape. Neverthelessparticle decays have
provided useful information on nuclear radii and the range
and gross features of the nuclear interacfion. .

It has become commonplace to say that a quantum dot is
an artificial atom, but in fact the self-consistent potential 12
confining electrons in a large dot has more in common with 0 1 2 3 4 5 6

. L . . . Electron number

the mean field potential in a heavy nucleus: flat in the inte-
rior, with abrupt walls. An artificial nucleus is a more apt  FIG. 1. Experimental lifetimegin seconds extracted from the
description, as will become clear in this paper. Indeed, thelecay sequences, as reported Ref. 1. The inset shows the gate ar-
detection of sequential decays from an isolated quantum deangement that defines the dot.

Detector ./

Log 10 ( Lifetime )
(M

0163-1829/2001/63)/045325%8)/$15.00 63 045325-1 ©2001 The American Physical Society



MARTORELL, SPRUNG, MACHADO, AND SMITH PHYSICAL REVIEW B63 045325

currently renewed interest: see for example van Dijk and(nm?)
Nogami® The type of simple model developed in this paper
can be of great utility in such future studies. 0.002
In this work we will describe the decay process using L
analytic models that incorporate characteristics of the con- ¢.001
finement potential extracted from realistic numerical simula-
tions. As the dot contains about 300 electrons, Poisson- 0
Thomas-Fermi calculations should be adequate to describ
the electron density and the confining potential of the dot.
With these in hand we have developed accurate analytic ap -200
proximations for the confining potential that allow us to con- 100 y(nm)
struct an envelope approximation wave function for the elec- x (nm) 200
trons in the dot, and to compute the electron lifetimes from a
fully quantal expression for the transmission amplitude
across the barrier.
Previous works that model a quantum dot have been con- : : . .
) . ' . computed using semianalytic expressions based on the work
cerned with the wave functions of confined states in the dot . 1 .
e T " of Davies and co-worker$ ' Added to this arda) the Cou-
the electron density distribution, and the shape of the confin: . .
. ! N lomb potential (direct term) between the electrons, and a
ing potential. For such purposes, only the inside of the bar-_. L "
. . mirror term which imposes the boundary conditions at the
rier matters. It is when one looks at the escape of electrons S o
i . . . Surface, andb) the contribution from the fully ionized donor
from the dot that the barrier height, its width, and shapq . : .
. } . layer and its mirror ternisee Sec. Il A of Ref. 8 for details of
become important; these are the features explored in this”. . X
. similar examplg We neglect exchange and correlation ef-
paper. In Sec. Il we describe the development of our modef: .
o ) ects, which are small.
while in Sec. Il we discuss the results for the sequence o¥

lifetimes and compare them with experiment. Some detalil (3) The connection between the confining potential de-
P . P ' Yined by the conduction-band edge and the electron density is
are relegated to two Appendixes.

completed by using the Thomas-Fermi approximation at zero
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FIG. 2. The two-dimensional PTF density,(x,y), for a dot in
equilibrium with the surrounding 2DEG.

temperature:
Il. MODELING OF ISOLATED DOT DECAYS
A F K 1 [2m* >
- Framewor pell) =53 —5 [Er—eV()] ®
The Poisson-Thomas-Fermi modeling is described in h

more detail elsewher®,” so here we list only the main steps: The PTF iteration is performed starting from the ungated
(1) First, Poisson-Schringer (PS and Poisson-Thomas- heterostructure densities as trial values.

Fermi (PTF simulations as described in Ref. 7 are per-
formed for the ungated heterostructure. Our inputs for the PS
simulation are the thickness and composition of each layer in ] . o
the heterostructure, and the dopant concentration in the do- AS a first step, we examine the dot in its final state after
nor layer. From these we predict the density of the 2D elecall the. excess eIeptrons have escaped. This corresponds to a
tron gas(2DEG). The only adjustable parameter is the donorPTF simulation with the same Fermi levél 4,,=0, for the
ionization energy, which is set to be®;=0.12 eV, in electrons in the dot and in the 2DEG outside the barriers.
order to reproduce the measured 2DEG density, 1he gate voltages are taken from Ref. 1 a&
=2.74< 10" cm™2. For the simpler Poisson-Thomas-Fermi = —0.40 V,V¢;=Vc,=-0.44 V, andv,=—0.7 V. The
scheme we employ a common relative permitivity=12.2  Predicted PTF 3D electron distributione(x,y,z) is more
for all layers of the heterostructure, which, combined withconveniently visualized in terms of a projected 2D density:
the parameters already used for the PS simulation, also re-
produces the experimenta) . After this “fitting” the model ne(X,y):f
has no other free parameters.

(2) For the gated structure we use the gate layout arlgvhere zj is the junction plane. The(x,y) distribution,

voltages of the experiment. To solve the Poisson equation fo§hown in Fig. 2, has an approximately rectangular boundary

the gated heterostructure one has to impose as a boundaé d its maximum value is close to the 2DEG density of the

condition the value of the electrostatic potential on the ex, ngated heterostructure. In this calculation the dot contains
posed surface of the heterostructure and on the gates. V\ge86 electrons

assume Fermi level pinning and choose the energy of the
surface states as the zero of the energy scale. In this conven-
tion, the conduction band edge is see&,=0.67 eV on the
exposed surface. Under each gate the conduction band is setTo study these configurations we set the Fermi level in-
ateVysteVy, whereVy is the gate voltage and the metal side the dotEg 4o, higher than its value outside the barri-
semiconductor contact potentialeV,,, is taken as ers, Er ;peg=0. We can do so because the dot is well
0.81 eV? The electrostatic potential due to the gates is therpinched off from the surrounding electron gas. We ran PTF

B. Equilibrium dot

o

Pe(X,y,2)dz, @

Z

C. Dot with excess electrons
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FIG. 3. Two-dimensional confining potenti&ls1(X,y) for the
dot in Fig. 1.

simulations with equally spaced values f&g 4o, running
from 0 to 17.5 meV in steps of 2.5 meV. The occupat@n
of the dot increases linearly withg 4, at the rate 2.75 elec-
trons per meV, giving occupations 286 < 334.

The simulations also produce the confining potential for

the electrons in the dogV(x,y,z). To reduce this to a two-
dimensional functionJ(x,y), we take a weighted average
over the density profile in the direction:
fZeV(x,y,z)P(z)dz
f;}P(z)dz

Upre(X,y) = ©)

where

P(2)= fﬂpe(x,y,Z)dxdy- (4)

Here the domain of integratiof is a rectangle in thexy
plane, which extends a short distance into the surroundin
electron gas[from (x;,y;)=(—510 nm~-255 nm) to
(X;,¥,)=(510 nm, 255 nm)]. This includes an area out-

side the dot where the 2DEG is still depleted by the gates.

Although the computed/(x,y,z) is not separable, previous
experience with Poisson-Scldiager simulations of wirés2

and circular dots has shown us that the factorization ansatz

leads to very good approximations when gaegree of free-
dom is integrated out as in E). This prescription to con-
struct the 2D potential avoids the typead hocassumptions
often made.

In Fig. 3 we show theJpre(X,y) corresponding to the
equilibrium dot of Fig. 2. As expected from the gate layout
shown in the inset to Fig. 1, it has two very high barriers
running parallel to thex axis, one centered gt=0 and the
other that begins with a steep riseyat 400 nm(and shows
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FIG. 4. Continuous lines: sections 3t=200 nm of the
Upre(X,y) corresponding tcEg 4,,=0.0, 0.005, 0.010 and 0.015
eV. Dashed lines: analytic parametrization &fx) as described in
the text(the latter shown only fok>0 for clarity).

y, the rectangular shape of the potential suggests using a
separable approximation in Cartesian coordinates:

Upte(X,y)=Ug(X,y) =U(x) +W(y). )

We will interpret the experimental decay data using this
separability ansatz. For thé/(y) barriers, which are basi-
cally impenetrable, we use two simple models described be-
low. As a guide to a realistic choice for tlxedependent term
we examine in Fig. 4 the profiles ddp7r(X,y) at a fixed
value ofy=200 nm in the middle of the dot. The profiles
shown cover a range of occupations of up to 40 excess elec-
trons. In this range, the potential at the dot center increases
linearly with Q, according to

Up=0.3470—118.4 meV. (6)

At large distances outside the dbat,,= —18.8 meV is con-
stant. Similarly, the location of the barrier maximum and its
fleight can be parametrized as

Q—286

Xp=238- ~— ¢

nm,

@)
Up=0.11Q—-13.4 meV.

Note thatdU,/dQ~3dU,/dQ reflects the decrease of the
screened Coulomb repulsion away from the center of the dot.
Furthermore, we have found that tlkedependence can be

very well reproducedsee Fig. 4 using the following ana-
lytic model:

U(X)=Up+Upye(x), X>0,

—U(—x), x<0,

clearly the mark of the three-fingered gate layout labeled Clyhere

C2, and PL for plunger in Fig.)1 Tunneling across these

barriers is negligible. In addition there is a symmetric pair of

barriers running parallel to thg axis, with maxima atx
=+238 nm through which the electrom® tunnel. In the

interior, the potential is practically constant. Although these
X barriers have somewhat increasing height with increasing
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This potential form has the great advantage that the transmis- 010
sion coeffi_cient f_orUMF is known analytically®® Uy is an 008 N\
asymmetric barrier that takes one value fB€x, and an-
other value forx>x,: 0.06  \
0.04 |
— >
UMF(Xb)_O' o 0.02 |
Upr()= lim Uye(x) =U e, €) 0
X—e 0.02 |
— _ —2u -0.04
Ump(—%*)= lim Uyp(x)=Uce . 0 100 200 300 400 500 600
X— = y (nm)
The parameterdly, U., u, X,, andw, allow one to fit the FIG. 5. Continuous lines: sections at=0 nm of the

barrier height, the potential floors inside and outside the dotJp1r(x,y) for the sameEr 4o, as in Fig. 3. Dashed lines: analytic
the barrier spacing, and the barrier width. Since the barrierparametrization ofVy,,(y) + U, as described in the text.
are spread quite far apart, in practigg>w,, so Uyge(X

=0)~Upye(—»). In this case, Wiho(y)=0 (flat bottom
_ - 1
Uo=U(0)~U,+Uce %, =013+ Sk/(y-Yo)? (wally. (14
(10)
U= limU(x)=U,+ U.?* with yo=238 nm andk,=7.35<10"° nm 2. As can be
X seen in Fig. 5 this parametrizatidplus the constant term

Uy) reproduces the main features of ttre O sections of the
PTF potentials.
1 (U—U By combining Eqgs(6) to (14) we determine a separable
n( b w), analytic potential model for the dot containing a desired

Then we can solve for

Up—Upg numberQ of electrons. This removes the necessity of repeat-
(11  edly solving the PTF equations for the self-consistent field,
U.=—(Up,—Ug)e®~. while studying the decay process.
To determine the parameters appearing in @j. we take D. Quasibound states of the dot

the values of the PTF potential at the oridif,, well beyond ) o )
the barrier,U.., and the valudJ,_at the barrier maximum We construct the electron wave functions inside the dot in
1 o0y b

the envelope function approximation, using our parametrized

X=Xp, and then plot(x) to find the besw, , which turned potential,U4(x,y). The single electron energies are

out to be 48 nm. This gives a convenient analytic form for
the confmmg. pptenual, .rr_10t|vated by PTF simulations, En n=En+E, (15)
whose transmission coefficient is Xy X y

and the electron wave functions factorize as

(12 \I’n)< ,ny(xny) = ¢nx(x) ‘pny(y)- (16)
The factors satisfy 1D Schdinger equations:

B 2 sinf(wk . )sinh(7k_)
"~ coshr(k, +k_)]+coshmpB)’

where
ﬁZ
\/Zm* 2 = 5y $n, (0 U 6 () =En b (%),
Koje= 7(E_U0/oo)wb= 2 (17)
(13 = o U0, (V) HWY) i (¥) =En o (V)
2m*
B= \/ 5 (2Up—2U.—Uy— Um)wﬁ— 1. The second equation is for a confined wave function, easily
h solved by standard numerical methods. We label the solu-
tions by the number of loopsy,, of the eigenfunction. For
Barrier shape W(y) example, takingN(y) to have hard walls, the energy is
In Fig. 5 we examine a section &fp1(Xx=0,y) through 52 nym 2
the center of the dot. We use two approximate models, the En, = 5o W—) (18
simplest one being an infinite square well, of wi y

~350 nm. The slightly fancier model is a truncated har-For the truncated harmonic oscillator shape there is no simi-
monic oscillator: lar analytic expression, but the dependencenpis similar.
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from the dot. This involves a weighted average of the level
lifetimes, according to the occupancy of each level at the
experimental temperatufe’ =100 mK.

To produce a sequence of decays for comparison to ex-
periment we proceed as follow§) we start with a dot con-
taining a number of electrong,, chosen large enough so

that the lifetime for one electron to escape is smaller than
o those observed in experimefit) We redetermine the barrier

A and dot configuration foQ=Q,— 1 electrons, as described

2 . in the above paragraph and determine again the correspond-

: ing lifetime for escape of one electron. This process is re-

peated to generate a sequence of decays that covers and ex-

. . . . . . . . tends beyond the range of lifetimes measured in experiment.

6 %4 sz %0 28 26 24 22 20 prom that list we choose as the first observed electron decay

that corresponding to th® whose lifetime is the first to be

larger thanty=25 sec.

Log10 ( lifetime )
w

FIG. 6. Calculated lifetimegin seconds whenW(y) is either
the truncated harmonic oscillator, stars; or a square well with
=380 nm, + signs. The dotted line is the prediction of the two

level model, Eq(22). IIl. RESULTS AND DISCUSSION

7. (19

1
Ny— E

En, +En <En  *En 1. (20)

In Fig. 6 we show results from our model, using param-
Thex-dependent equation describes 1D electrons confinegters chosen as described above, for a range of lifetimes
in the dot by the “leaky barriers.” Weakly quasibound state extending over three orders of magnitude. The stars corre-
solutions were computed using methods described in Ref. 1dpond to the truncated harmonic oscillator choice\iy),
However, for levels corresponding to the long tunneling life-whereas thet s are for the square well choidwith a value
times observed in the experiment, the energies and eigemyzggo nm chosen to optimize the agreement with the
functions can be computed well enough by the simpler preother prescription in the range of experimental lifetimes,
scription of setting the electron wave function to zero at thefrom 10 to 1000 sec). One sees that the trends are very simi-
points + X, inside the barriers. Furthermore, if only the ei- |ar. ForQ in the neighborhood of 304, the predicted decay
genvalues and lifetimes are needed, we have checked that tltimes fall in the experimental range.
WKB quantization condition is adequate: As already mentioned in Sec. II, our PTF simulations pre-
dict Q=286 for the dot in equilibrium with the surrounding
X [2m* electron gas. This is also what we find with this separable
fxl 52 [E(n) —U(x)Jdx= model, as the curve of lifetimes shown in Fig. 6 extrapolates
smoothly up toQ=287, for which we predict a lifetime of
In the Appendixes we describe the determination of the lifelog,q7=5.2, or 44 h. After that, the Fermi level of the elec-
times 7, . From here on the energies presented are obtaineiions inside the dot falls below that of the surrounding 2DEG
in the WKB approximation. The differences from the more@nd further decays are blocked. It should take almost two
accurate predictions using the true quasibound state energi€@ys for the dot to reach equilibrium with its surroundings.
can scarcely be seen on the scale of the graphs. For barrier Before attempting a more detailed comparison with the
penetrability we use Eq12). experimental data it is useful to examine the main features in
We “construct” the desired dot configuration with excess OUr predicted sequences. First we focus on the linear behav-
electrons by generatingld(x,y) for the chosen value @, ~ ior for valuesQ<300. (We have found similar behavior in
and filling the levels as follows(a) First we list the Other ranges oQ when we use slightly different sets of
(En,7n,), in order of increasing, (and therefore of increas- parameters. Such a linear dependence occurs when our
ing energy and decreasing lifetim&his list is truncated at model p_roduces a sequence OT decays domlnated by _those
B 2 from a single 1D electron level, i.e., corresponding to a fixed
an n,=n, nax Whose lifetime is less than 0.01 s€b) Next
we form a list of 2D levels ff,,n,) by choosing those for value ofn,. To understand why, suppose that a}t zero tem-
which pera_ature_ and fo@ electrons, the occupied level vv_|th shortest
lifetime is (n,s,ny), and that{n;,n)’,} are occupied levels
with higher energy and longer lifetimghis requires that at
ax Y leastn, <n, s for longer lifetime anchy>n, for higher total
The levels in this list are occupied in order of increasingeénergy. When one forms th&@—1 electron configuration
energy and according to Fermi statistics; see E4S) and  according to the rules explained above, one of {thg,nJ}
(A6). We choose the dot Fermi level so that the number ofevels will be empty, whereas the levei,(s,n,) will again
electrons is the desire@. It is supposed that, for the long be filled. In more physical terms, all the electrons with en-
lifetimes observed in the experiment, the electrons have timergy above that of the level with shortest lifetime will lose
to lose energy by phonon collisions and occupy the quasienergy by phonon collisions and fall into the leaky level,
bound states of lowest energy. Then, as described in Appefirom which they finally escape. Since the lifetime does not
dix A, we determine the lifetime for one electron to escapedepend omy, all the electrons with energy above that of the
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FIG. 8. Slow decays: Calculated lifetime sequences correspond-
ing to variations of the standard barrier width frorB% (right) to
+4% (left) in steps of 1%. Thet signs joined by a continuous
line (to guide the eyecorrespond to the prediction for the standard

_ . set of parameters. Experimental poirtlsft triangleg taken from
state 0, s,ny,=1) will escape through the same leaky 1D Fig. 1 with the origin ofQ shifted arbitrarily.

level, n, 5, which remains the favored decay channel as long
as it is occupied. Therefore the total probability for one elec-

tron to escape from the occupied states with quantum nunthoice forW(y) and our standard set of parameters. In ad-
ber n, , is the probability for a single 1D electron with en- di_tion we show how the Iifetimes_vary when the barrier
ergy E, , multiplied by the numben, _ of electrons in width is changed by amounts ranging fron% to —3%

. . from left to right). As can be seen, the exact value of each
o] ed state th the same quantum nunmyer. ( S . ’ ) .
ceupied states wi S quantum nunmRs:- decay lifetime depends quite strongly on the barrier width, as

FIG. 7. Total occupation of levels with,=13 (black squares
andn,= 14 (open squargs The lines are drawn to guide the eye.
The truncated harmonic oscillator model was usedvify).

7. (Q) expected for a tunneling process. But the number of slow

_ s decays is much more stable: four or five in most of the cases
7(Q) : (21 , L :

anYS(Q) shown, and in several cases their lifetimes, are quite compat-

ible with the experimental points. In particular it is remark-

and when the occupatia, _ of the leaky level is constant, aple that a 2% increase in the standard barrier width pro-
the linear variation of logy(7) reflects that of the lifetime of duces a sequencthird line from lef) in excellent agreement
the leaky level. This is where the 2D nature of the quantunwith experiment (disconnected points shifted to extreme
dot asserts its presence, even though the decay appearsleft).
proceed only in one dimension. There is a clear distinction between the lifetime trends of

In Fig. 7 we show the occupations of the two levels withthe thicker and thinner barrier widths. In the latter one sees
the shortest lifetimes. One sees that wi@@n 300 the occu- very clearly the transition between escape from he 13
pation of then,=13 level stays practically constant and  and then,=14 levels atQ=302. For the thicker barrier
=14 level remains empty. For higher values@both levels  widths, escape is dominated by thg=14 levels that be-
contribute significantly to the escape lifetime. In this situa-come progressively more occupied ab@ye 302.

tion, We have explored the dependence of the model predic-
tions on changes by similar percentages of the barrier

1 heights, potential flool,, and the widthw, of W(y). The
Q)= 0a(Q)/ 72(Q) +qp(Q)/ 7(Q) (22 results are qualitatively similar to those shown above for the

changes in the barrier width, with a number of slow decays

This is shown as the dotted curve in Fig. 6, and it accountsanging from 4 to 6, and in some cases they are very similar
very well for the trend of the lifetimes predicted by the sepa-to the data in Fig. 1. We therefore conclude that our model
rable model. predictions are quite consistent with the experimental trends,

Our separable model favors the appearance of the lineaithough a quantitative comparison with the measured life-
decay sequences because of the degeneracy in lifetime tifnes is hampered by the strong sensitivity of tunneling to
states with the same, s. A nonseparable model would lift any small change in the barrier shape.
that degeneracy and then the lifetime sequences should show Finally we show in Fig. 9 predictions for the fast decays:
a behavior intermediate between the two situations discussetleir number and location in a graph such as that of Fig. 1
above. In particular, the sudden change of slog@aB302in  depends very sensitively on the timg)( beyond which the
Fig. 6 would presumably spread over a wider range of valuesxperiment measures lifetimes. That is, as the dot is isolated
of Q. Not surprisingly, the predicted lifetimes for the ob- there must be a burst of very short-lived escapes, but after
served decays depend sensitively on details of the barrieome seconds one reaches the stage where separate events
shape. Those shown in Fig. 8 correspond to the square wathn be recorded and the lifetimes deduced. The two dashed
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2

APPENDIX A: LIFETIMES

We summarize here the expressions relating the lifetimes
to the probability of transmission across the barrier. We fol-
low the standard treatment and definitions éeparticle de-
cay in nuclear physics, as can be found, for example, in Ref.
4.

Our potentialU4(x,y) is separable, and the electron can
escape only across the barriers in hdirection. Therefore,
we have adapted the expressions derived in Ref. 4 to the 1D
situation.

The lifetime 7=1/\ is the inverse of the “decay con-
stant,” defined as the number of “decays” per second per
Ho a0 s08 307 306 a5 a0 a3  Parent “dot.” For one dot the electron wave function is nor-

Q malized to unity over the volume inside the barriers, and
for a given level is just the outgoing flux at large distance.

When the decay probability is small, one can treat the
electron as confined in the dot. Classically, its trajectory will
horizontal lines in Fig. 9 correspond to values of i85 s)  oscillate between the righk, , and left,x,, turning points,
and logy(35 s). As can be seen, when we explore the sam@ith a period
range of barrier widths as in Fig. 8, the number of fast decays
above that varies from 3 to 4. The overall trend seems to X dx
be consistent with experiment, in particular if the valud pf P= ZL v(x)’
is increased towards the more pessimistic estimate of 35 s. '
wherev (X) is the classical electron velocity at enery:

IV. SUMMARY AND CONCLUSIONS 2
. . v(¥)=\ = [Ex—UX)]. (A2)
Electron escape from a strongly isolated dot with excess m

eIect_rons has_ been S.tUQ'ed in the fr_amework of the Se.IfThe flux\ is then given by the frequency of hits against the
consistent Pmsson-Schdmger and Paisson-Thomas-Fermi barriers, 2P, times the transmission probabilifly across a
approximations. Based on these calculations a reCtanQUI%rzarrier and therefore
separable potential model has been devised that incorporates '
the main features of the self-consistent field. Rearrangement 1 1 (xdx

effects are taken into account by recalculating the confining T=o==| —. (A3)
potentialU(X,y) after each electron escape. ATy v

The use of a separable potential introduces certain correris expression is very convenient because the transmission

lations in the energy spectrum of the single-electron orbitals.fficient Eq.(12) for our parametrized potentiall (x), is

A more realistic confining potential would have a more nqn analytically'® For more general barrier profiles and
rounded shape, which would remove the separability anghe |ong jifetimes of interest, one can use the WKB approach

modify those correlations. In the same vein, the tunneling in, 4 s corresponding connection formulas across the barrier
our simplified model is 1D, whereas the actual process is 2D('see e.g., Appendix D of Ref)4

We find it quite remarkable that despite all these simpli-
fications the predictions turn out to be so satisfactory. The Twke~€2,
model therefore may be reliable for extrapolating to longer
times. For instance, we find that the isolated dot would hold
lectron for as | 44 h. On such a ti | X X [2m
one excess electron for as long as 1. On such a time scale, w:f P dXZJ' U -E,] dx.
one could use well isolated dots containing a few long-lived X X, f

electrons to study their entangled states. This would open an

interesting new approach to the implementation of quantunfi the WKB wave function is used inside the well to deter-
computation in semiconductor devices. mine the period®, the same decay half-life is obtained as in

Eqg. (A3) above.
Since the dot is located inside a crystal at temperatire
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Log10 ( lifetime )

FIG. 9. Same as Fig. 8, but for the fast decays.
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Q= > 2f(E), (A6) R —

i=(ng.ny) T

where the factor of 2 accounts for spin degeneracy. For the g A — N
ensemble of electrons in the dot, the flwwill now be the )
sum of fluxes for each occupied single-particle level,
weighted by the level occupancy:

Log10 ( lifetime )

A= X 2f(ED\, (A7)

i:(nx,ny) [—

and the corresponding half-life is stit=1/\. In particular
this argument applies in th&’' =0 limit, as we implicitly . . . . . . .
assumed in Sec Il to explain the sequence of lifetimes. 307 306 305 304 303 302 301

APPENDIX B: LIFETIME DEPENDENCE ON Q FIG. 10. Dependence of lifetime @ for the occupied levels
with n,=11, + signs; n,=12, X signs; n,=13, stars; and,

For a level of givenn,, the lifetime depends o®@ be- _ .
cause the barrier characteristics change as does the level en—14’ open squares. The dash-dotted lines correspond tBEg.

ergyE, . The latter varies mainly becausky depends o1,

! . ; However, the variation of the barrier shapdU(x)/dQ]
and this affects the transmission probabilityTo good ap-

cannot be neglected. Indeed, E§) gives approximately

proximation
dE du ; X~ Xp
M TT0 B1) dU(x) dUp| 1 2 S'”hz( W,
dQ dQ ——=—| z+3 X<Xp
dQ dQ{ 3 3 _2 X=X, '
Neglecting the dependence of the level lifetime on the period e~ %“coslt W M
P, we can write b
dint  dInT dE 5 sinhz(x Xb)
dQ = dE do’ B2 dux) du,| 1 1 !
. . " dQ do| 3 3 X XX
T.aklng the transmission probabilifyfrom the WKB expres- e2tcosht — i
sion leads to b
(B4)
dint d 2m* : o .
=2 [U(x)—E]dx Using Eq.(B4), the contribution frondU/dQ to the integral
dQ  dQJbarrier ¥V #?2 of Eq. (B3) is obtained with an accuracy better than 2%.
For the standard choice of parameters, @nid the range
B 2m* 1 (dU(x) dE 4 300 to 310 the computed values @fog,yr/dQ turn out to
" Joarrier %2 U(x)—E\ dQ dQ X. be = —0.14 for the levels of interest. In Fig. 10 we plot the

evolution of the level lifetimes witlQ), compared to the ex-
(B3)  pression Qu=303)

Noting Eq. (B1), the second contribution to the integral B
depends linearly on the placement of the potential floor. IogloT“x(Q)_IogloTnx(QO)_0'14(Q_Q0)' (BS)
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