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Model of single-electron decay from a strongly isolated quantum dot
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Recent measurements of electron escape from a nonequilibrium charged quantum dot are interpreted within
a two-dimensional~2D! separable model. The confining potential is derived from 3D self-consistent Poisson-
Thomas-Fermi calculations. It is found that the sequence of decay lifetimes provides a sensitive test of the
confining potential and its dependence on electron occupation.
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I. INTRODUCTION

In a recent experiment,1 a strongly isolated quantum do
was charged with excess electrons, and their sequentia
capes were recorded over a one-hour time period. This
repeated 150 times to obtain a statistical distribution of de
times. The dot is formed in an electron gas located at a de
of 70 nm in a GaAs-AlxGa12xAs heterostructure. Its shape
defined by electrostatic confinement using a set of gates
sketched in the inset to Fig. 1. The gate voltages w
ramped up quickly, so that the dot retained a sizable num
of excess electrons when it was well isolated from the s
rounding electron gas. The observations correspond to
quential tunneling of~seven! electrons from the dot to the
surroundings. The lifetimes extracted from the escape tim
distribution1 are shown in Fig. 1. A striking quasilinear de
pendence of the logarithm of the lifetime on electron num
is apparent.

Sequential decays have been known and studied for
a century in the context of nuclear physics. The combin
instances ofa andb decays from the heaviest elements a
responsible for most natural radioactivity. The description
a decay in terms of tunneling ofa particles through a con
fining potential dates back to the 1920s~Gamow,2 and Con-
don and Gurney3!. Although the basic nature of the decay
a barrier penetration is well understood, accurate predict
for radioactive lifetimes are difficult because the process
which the escapinga particle is preformed within the
nucleus requires an understanding of four-body correlatio
As a result, it is impossible to deduce accurate informat
on the barrier shape. Nevertheless,a-particle decays have
provided useful information on nuclear radii and the ran
and gross features of the nuclear interaction.4

It has become commonplace to say that a quantum d
an artificial atom, but in fact the self-consistent potent
confining electrons in a large dot has more in common w
the mean field potential in a heavy nucleus: flat in the in
rior, with abrupt walls. An artificial nucleus is a more a
description, as will become clear in this paper. Indeed,
detection of sequential decays from an isolated quantum
0163-1829/2001/63~4!/045325~8!/$15.00 63 0453
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is a more favorable situation for study of the decay proce
as the question of preforming the electron does not ar
Hence, we can more confidently test our knowledge of
confining barriers for electrons, as well as the profile, a
dependence on occupation number, of the dot potential.
will analyze these aspects in this work, and show that th
measurements of the lifetimes of ‘‘radioactive quantu
dots’’ introduce new constraints on our ability to model the
structure.

The present experiment has another significant advan
over nuclear decays: instead of counting incoherent dec
from a large sample of identical nuclei, here a single do
involved, and the correlation between consecutive events
be analyzed. In addition, it should be possible to design
shape, density, and excitation energy of the dot within rat
broad margins, so that future experiments on mesosc
systems will be much more flexible than those in nucle
systems, where only those nuclei existing in nature, or c
ated in sufficient numbers, can be studied. Thus, the stud
electron decays from a quantum dot has the potential to
veal new features of the tunneling process. This is a topic

FIG. 1. Experimental lifetimes~in seconds! extracted from the
decay sequences, as reported Ref. 1. The inset shows the ga
rangement that defines the dot.
©2001 The American Physical Society25-1
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currently renewed interest: see for example van Dijk a
Nogami.5 The type of simple model developed in this pap
can be of great utility in such future studies.

In this work we will describe the decay process usi
analytic models that incorporate characteristics of the c
finement potential extracted from realistic numerical simu
tions. As the dot contains about 300 electrons, Poiss
Thomas-Fermi calculations should be adequate to desc
the electron density and the confining potential of the d
With these in hand we have developed accurate analytic
proximations for the confining potential that allow us to co
struct an envelope approximation wave function for the el
trons in the dot, and to compute the electron lifetimes from
fully quantal expression for the transmission amplitu
across the barrier.

Previous works that model a quantum dot have been c
cerned with the wave functions of confined states in the d
the electron density distribution, and the shape of the con
ing potential. For such purposes, only the inside of the b
rier matters. It is when one looks at the escape of electr
from the dot that the barrier height, its width, and sha
become important; these are the features explored in
paper. In Sec. II we describe the development of our mo
while in Sec. III we discuss the results for the sequence
lifetimes and compare them with experiment. Some det
are relegated to two Appendixes.

II. MODELING OF ISOLATED DOT DECAYS

A. Framework

The Poisson-Thomas-Fermi modeling is described
more detail elsewhere,6–8 so here we list only the main step

~1! First, Poisson-Schro¨dinger~PS! and Poisson-Thomas
Fermi ~PTF! simulations as described in Ref. 7 are pe
formed for the ungated heterostructure. Our inputs for the
simulation are the thickness and composition of each laye
the heterostructure, and the dopant concentration in the
nor layer. From these we predict the density of the 2D el
tron gas~2DEG!. The only adjustable parameter is the don
ionization energy, which is set to beeF i50.12 eV, in
order to reproduce the measured 2DEG density,ne
52.7431011 cm22. For the simpler Poisson-Thomas-Ferm
scheme we employ a common relative permitivity« r512.2
for all layers of the heterostructure, which, combined w
the parameters already used for the PS simulation, also
produces the experimentalne . After this ‘‘fitting’’ the model
has no other free parameters.

~2! For the gated structure we use the gate layout
voltages of the experiment. To solve the Poisson equation
the gated heterostructure one has to impose as a boun
condition the value of the electrostatic potential on the
posed surface of the heterostructure and on the gates.
assume Fermi level pinning and choose the energy of
surface states as the zero of the energy scale. In this con
tion, the conduction band edge is set ateVs50.67 eV on the
exposed surface. Under each gate the conduction band
at eVms1eVg , whereVg is the gate voltage and the met
semiconductor contact potential,eVms, is taken as
0.81 eV.9 The electrostatic potential due to the gates is th
04532
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computed using semianalytic expressions based on the w
of Davies and co-workers.10,11Added to this are~a! the Cou-
lomb potential ~direct term! between the electrons, and
mirror term which imposes the boundary conditions at
surface, and~b! the contribution from the fully ionized dono
layer and its mirror term~see Sec. II A of Ref. 8 for details o
a similar example!. We neglect exchange and correlation e
fects, which are small.

~3! The connection between the confining potential d
fined by the conduction-band edge and the electron densi
completed by using the Thomas-Fermi approximation at z
temperature:

re~rW !5
1

3p2 S 2m*

\2
@EF2eV~rW !# D 3/2

. ~1!

The PTF iteration is performed starting from the unga
heterostructure densities as trial values.

B. Equilibrium dot

As a first step, we examine the dot in its final state af
all the excess electrons have escaped. This corresponds
PTF simulation with the same Fermi level,EF,dot50, for the
electrons in the dot and in the 2DEG outside the barrie
The gate voltages are taken from Ref. 1 asVPL
520.40 V, VC15VC2520.44 V, andVH520.7 V. The
predicted PTF 3D electron distributionre(x,y,z) is more
conveniently visualized in terms of a projected 2D densit

ne~x,y!5E
zj

`

re~x,y,z!dz, ~2!

where zj is the junction plane. Thene(x,y) distribution,
shown in Fig. 2, has an approximately rectangular bound
and its maximum value is close to the 2DEG density of
ungated heterostructure. In this calculation the dot conta
286 electrons.

C. Dot with excess electrons

To study these configurations we set the Fermi level
side the dot,EF,dot , higher than its value outside the barr
ers, EF,2DEG50. We can do so because the dot is w
pinched off from the surrounding electron gas. We ran P

FIG. 2. The two-dimensional PTF density,ne(x,y), for a dot in
equilibrium with the surrounding 2DEG.
5-2



-

fo

e

in

t-
te
s

sa

u
rs

C
e
o

s
in

g a

his
-
be-

s
lec-
ses

its

e
dot.
e

5
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simulations with equally spaced values forEF,dot running
from 0 to 17.5 meV in steps of 2.5 meV. The occupationQ
of the dot increases linearly withEF,dot at the rate 2.75 elec
trons per meV, giving occupations 286<Q<334.

The simulations also produce the confining potential
the electrons in the dot,eV(x,y,z). To reduce this to a two-
dimensional function,U(x,y), we take a weighted averag
over the density profile in thez direction:

UPTF~x,y!5
*zj

`eV~x,y,z!P~z!dz

*zj

` P~z!dz
, ~3!

where

P~z!5E
V

re~x,y,z!dxdy. ~4!

Here the domain of integrationV is a rectangle in thexy
plane, which extends a short distance into the surround
electron gas @from (xl ,yl)5(2510 nm,2255 nm) to
(xr ,yr)5(510 nm, 255 nm)]. This includes an area ou
side the dot where the 2DEG is still depleted by the ga
Although the computedV(x,y,z) is not separable, previou
experience with Poisson-Schro¨dinger simulations of wires8,12

and circular dots has shown us that the factorization an
leads to very good approximations when thez degree of free-
dom is integrated out as in Eq.~3!. This prescription to con-
struct the 2D potential avoids the type ofad hocassumptions
often made.

In Fig. 3 we show theUPTF(x,y) corresponding to the
equilibrium dot of Fig. 2. As expected from the gate layo
shown in the inset to Fig. 1, it has two very high barrie
running parallel to thex axis, one centered aty50 and the
other that begins with a steep rise aty.400 nm~and shows
clearly the mark of the three-fingered gate layout labeled
C2, and PL for plunger in Fig. 1!. Tunneling across thes
barriers is negligible. In addition there is a symmetric pair
barriers running parallel to they axis, with maxima atx
.6238 nm through which the electronsdo tunnel. In the
interior, the potential is practically constant. Although the
x barriers have somewhat increasing height with increas

FIG. 3. Two-dimensional confining potential,UPTF(x,y) for the
dot in Fig. 1.
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y, the rectangular shape of the potential suggests usin
separable approximation in Cartesian coordinates:

UPTF~x,y!.Us~x,y!5U~x!1W~y!. ~5!

We will interpret the experimental decay data using t
separability ansatz. For theW(y) barriers, which are basi
cally impenetrable, we use two simple models described
low. As a guide to a realistic choice for thex-dependent term
we examine in Fig. 4 the profiles ofUPTF(x,y) at a fixed
value of y5200 nm in the middle of the dot. The profile
shown cover a range of occupations of up to 40 excess e
trons. In this range, the potential at the dot center increa
linearly with Q, according to

U050.347Q2118.4 meV. ~6!

At large distances outside the dot,U`5218.8 meV is con-
stant. Similarly, the location of the barrier maximum and
height can be parametrized as

xb52382
Q2286

16
nm,

~7!
Ub50.117Q213.4 meV.

Note thatdUb /dQ' 1
3 dU0 /dQ reflects the decrease of th

screened Coulomb repulsion away from the center of the
Furthermore, we have found that thex dependence can b
very well reproduced~see Fig. 4! using the following ana-
lytic model:

U~x!5Ub1UMF~x!, x.0,

5U~2x!, x,0,

where

UMF[Uc

sinh2S x2xb

wb
D

cosh2S x2xb

wb
2m D . ~8!

FIG. 4. Continuous lines: sections aty5200 nm of the
UPTF(x,y) corresponding toEF,dot50.0, 0.005, 0.010 and 0.01
eV. Dashed lines: analytic parametrization forU(x) as described in
the text~the latter shown only forx.0 for clarity!.
5-3
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This potential form has the great advantage that the trans
sion coefficient forUMF is known analytically.13 UMF is an
asymmetric barrier that takes one value forx!xb and an-
other value forx@xb :

UMF~xb!50,

UMF~`![ lim
x→`

UMF~x!5Uce
2m, ~9!

UMF~2`![ lim
x→2`

UMF~x!5Uce
22m.

The parametersUb , Uc , m, xb , andwb allow one to fit the
barrier height, the potential floors inside and outside the
the barrier spacing, and the barrier width. Since the barr
are spread quite far apart, in practicexb@wb , so UMF(x
50)'UMF(2`). In this case,

U0[U~0!'Ub1Uce
22m,

~10!
U`[ lim

x→`

U~x!5Ub1Uce
2m.

Then we can solve for

m5
1

4
lnS Ub2U`

Ub2U0
D ,

~11!
Uc52~Ub2U0!e2m.

To determine the parameters appearing in Eq.~8!, we take
the values of the PTF potential at the origin,U0, well beyond
the barrier,U` , and the valueUxb

at the barrier maximum

x5xb , and then plotU(x) to find the bestwb , which turned
out to be 48 nm. This gives a convenient analytic form
the confining potential, motivated by PTF simulation
whose transmission coefficient is

T5
2 sinh~pk1!sinh~pk2!

cosh@p~k11k2!#1cosh~pb!
, ~12!

where

k2/15A2m*

\2
~E2U0/̀ !wb

2,

~13!

b5A2m*

\2
~2Ub22Uc2U02U`!wb

221.

Barrier shape W(y)

In Fig. 5 we examine a section ofUPTF(x50,y) through
the center of the dot. We use two approximate models,
simplest one being an infinite square well, of widthwy
'350 nm. The slightly fancier model is a truncated h
monic oscillator:
04532
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Wtho~y!50 ~flat bottom!

520.131
1

2
ky~y2y0!2 ~walls!. ~14!

with y05238 nm andky57.3531026 nm22. As can be
seen in Fig. 5 this parametrization~plus the constant term
U0) reproduces the main features of thex50 sections of the
PTF potentials.

By combining Eqs.~6! to ~14! we determine a separabl
analytic potential model for the dot containing a desir
numberQ of electrons. This removes the necessity of repe
edly solving the PTF equations for the self-consistent fie
while studying the decay process.

D. Quasibound states of the dot

We construct the electron wave functions inside the do
the envelope function approximation, using our parametri
potential,Us(x,y). The single electron energies are

Enx ,ny
5Enx

1Eny
~15!

and the electron wave functions factorize as

Cnx ,ny
~x,y!5fnx

~x!cny
~y!. ~16!

The factors satisfy 1D Schro¨dinger equations:

2
\2

2m*
fnx

9 ~x!1U~x!fnx
~x!5Enx

fnx
~x!,

~17!

2
\2

2m*
cny

9 ~y!1W~y!cny
~y!5Eny

cny
~y!.

The second equation is for a confined wave function, ea
solved by standard numerical methods. We label the s
tions by the number of loops,ny , of the eigenfunction. For
example, takingW(y) to have hard walls, the energy is

Eny ,sw5
\2

2m* S nyp

wy
D 2

. ~18!

For the truncated harmonic oscillator shape there is no s
lar analytic expression, but the dependence onny is similar.

FIG. 5. Continuous lines: sections atx50 nm of the
UPTF(x,y) for the sameEF,dot as in Fig. 3. Dashed lines: analyti
parametrization ofWtho(y)1U0 as described in the text.
5-4
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Thex-dependent equation describes 1D electrons confi
in the dot by the ‘‘leaky barriers.’’ Weakly quasibound sta
solutions were computed using methods described in Ref
However, for levels corresponding to the long tunneling li
times observed in the experiment, the energies and ei
functions can be computed well enough by the simpler p
scription of setting the electron wave function to zero at
points 6xb inside the barriers. Furthermore, if only the e
genvalues and lifetimes are needed, we have checked tha
WKB quantization condition is adequate:

E
xl

xrA2m*

\2
@E~nx!2U~x!#dx5S nx2

1

2Dp. ~19!

In the Appendixes we describe the determination of the l
timestnx

. From here on the energies presented are obta
in the WKB approximation. The differences from the mo
accurate predictions using the true quasibound state ene
can scarcely be seen on the scale of the graphs. For ba
penetrability we use Eq.~12!.

We ‘‘construct’’ the desired dot configuration with exce
electrons by generating aUs(x,y) for the chosen value ofQ,
and filling the levels as follows:~a! First we list the
(Enx

,tnx
), in order of increasingnx ~and therefore of increas

ing energy and decreasing lifetime.! This list is truncated at
an nx5nx,max whose lifetime is less than 0.01 sec.~b! Next
we form a list of 2D levels (nx ,ny) by choosing those for
which

Enx
1Eny

<Enx,max
1Eny51 . ~20!

The levels in this list are occupied in order of increasi
energy and according to Fermi statistics; see Eqs.~A5! and
~A6!. We choose the dot Fermi level so that the number
electrons is the desiredQ. It is supposed that, for the lon
lifetimes observed in the experiment, the electrons have t
to lose energy by phonon collisions and occupy the qu
bound states of lowest energy. Then, as described in Ap
dix A, we determine the lifetime for one electron to esca

FIG. 6. Calculated lifetimes~in seconds! when W(y) is either
the truncated harmonic oscillator, stars; or a square well withwy

5380 nm, 1 signs. The dotted line is the prediction of the tw
level model, Eq.~22!.
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from the dot. This involves a weighted average of the le
lifetimes, according to the occupancy of each level at
experimental temperatureT85100 mK.

To produce a sequence of decays for comparison to
periment we proceed as follows:~i! we start with a dot con-
taining a number of electrons,Q0, chosen large enough s
that the lifetime for one electron to escape is smaller th
those observed in experiment.~ii ! We redetermine the barrie
and dot configuration forQ5Q021 electrons, as describe
in the above paragraph and determine again the corresp
ing lifetime for escape of one electron. This process is
peated to generate a sequence of decays that covers an
tends beyond the range of lifetimes measured in experim
From that list we choose as the first observed electron de
that corresponding to theQ whose lifetime is the first to be
larger thant0525 sec.

III. RESULTS AND DISCUSSION

In Fig. 6 we show results from our model, using para
eters chosen as described above, for a range of lifeti
extending over three orders of magnitude. The stars co
spond to the truncated harmonic oscillator choice forW(y),
whereas the1 ’s are for the square well choice~with a value
wy5380 nm chosen to optimize the agreement with
other prescription in the range of experimental lifetime
from 10 to 1000 sec). One sees that the trends are very s
lar. For Q in the neighborhood of 304, the predicted dec
lifetimes fall in the experimental range.

As already mentioned in Sec. II, our PTF simulations p
dict Q5286 for the dot in equilibrium with the surroundin
electron gas. This is also what we find with this separa
model, as the curve of lifetimes shown in Fig. 6 extrapola
smoothly up toQ5287, for which we predict a lifetime of
log10t55.2, or 44 h. After that, the Fermi level of the ele
trons inside the dot falls below that of the surrounding 2DE
and further decays are blocked. It should take almost
days for the dot to reach equilibrium with its surrounding

Before attempting a more detailed comparison with
experimental data it is useful to examine the main feature
our predicted sequences. First we focus on the linear be
ior for valuesQ,300. ~We have found similar behavior in
other ranges ofQ when we use slightly different sets o
parameters.! Such a linear dependence occurs when
model produces a sequence of decays dominated by t
from a single 1D electron level, i.e., corresponding to a fix
value of nx . To understand why, suppose that at zero te
perature and forQ electrons, the occupied level with shorte
lifetime is (nx,s ,ny), and that$nx8 ,ny8% are occupied levels
with higher energy and longer lifetime~this requires that at
leastnx8,nx,s for longer lifetime andny8.ny for higher total
energy!. When one forms theQ21 electron configuration
according to the rules explained above, one of the$nx8 ,ny8%
levels will be empty, whereas the level (nx,s ,ny) will again
be filled. In more physical terms, all the electrons with e
ergy above that of the level with shortest lifetime will los
energy by phonon collisions and fall into the leaky lev
from which they finally escape. Since the lifetime does n
depend onny , all the electrons with energy above that of th
5-5
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state (nx,s ,ny51) will escape through the same leaky 1
level,nx,s , which remains the favored decay channel as lo
as it is occupied. Therefore the total probability for one el
tron to escape from the occupied states with quantum n
ber nx,s is the probability for a single 1D electron with en
ergy Enx,s

, multiplied by the numberqnx,s
of electrons in

occupied states with the same quantum numbernx,s :

t~Q!5
tnx,s

~Q!

qnx,s
~Q!

, ~21!

and when the occupationqnx,s
of the leaky level is constant

the linear variation of log10(t) reflects that of the lifetime of
the leaky level. This is where the 2D nature of the quant
dot asserts its presence, even though the decay appea
proceed only in one dimension.

In Fig. 7 we show the occupations of the two levels w
the shortest lifetimes. One sees that whenQ,300 the occu-
pation of thenx513 level stays practically constant andnx
514 level remains empty. For higher values ofQ both levels
contribute significantly to the escape lifetime. In this situ
tion,

t~Q!5
1

qa~Q!/ta~Q!1qb~Q!/tb~Q!
. ~22!

This is shown as the dotted curve in Fig. 6, and it accou
very well for the trend of the lifetimes predicted by the sep
rable model.

Our separable model favors the appearance of the lin
decay sequences because of the degeneracy in lifetim
states with the samenx,s . A nonseparable model would lif
that degeneracy and then the lifetime sequences should s
a behavior intermediate between the two situations discu
above. In particular, the sudden change of slope atQ5302 in
Fig. 6 would presumably spread over a wider range of val
of Q. Not surprisingly, the predicted lifetimes for the o
served decays depend sensitively on details of the ba
shape. Those shown in Fig. 8 correspond to the square

FIG. 7. Total occupation of levels withnx513 ~black squares!
and nx514 ~open squares!. The lines are drawn to guide the ey
The truncated harmonic oscillator model was used forW(y).
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choice forW(y) and our standard set of parameters. In a
dition we show how the lifetimes vary when the barri
width is changed by amounts ranging from14% to 23%
~from left to right!. As can be seen, the exact value of ea
decay lifetime depends quite strongly on the barrier width
expected for a tunneling process. But the number of s
decays is much more stable: four or five in most of the ca
shown, and in several cases their lifetimes, are quite com
ible with the experimental points. In particular it is remar
able that a 2% increase in the standard barrier width p
duces a sequence~third line from left! in excellent agreemen
with experiment ~disconnected points shifted to extrem
left!.

There is a clear distinction between the lifetime trends
the thicker and thinner barrier widths. In the latter one s
very clearly the transition between escape from thenx513
and thenx514 levels atQ5302. For the thicker barrier
widths, escape is dominated by thenx514 levels that be-
come progressively more occupied aboveQ5302.

We have explored the dependence of the model pre
tions on changes by similar percentages of the bar
heights, potential floorU0, and the widthwy of W(y). The
results are qualitatively similar to those shown above for
changes in the barrier width, with a number of slow deca
ranging from 4 to 6, and in some cases they are very sim
to the data in Fig. 1. We therefore conclude that our mo
predictions are quite consistent with the experimental tren
although a quantitative comparison with the measured l
times is hampered by the strong sensitivity of tunneling
any small change in the barrier shape.

Finally we show in Fig. 9 predictions for the fast decay
their number and location in a graph such as that of Fig
depends very sensitively on the time (t0) beyond which the
experiment measures lifetimes. That is, as the dot is isola
there must be a burst of very short-lived escapes, but a
some seconds one reaches the stage where separate
can be recorded and the lifetimes deduced. The two das

FIG. 8. Slow decays: Calculated lifetime sequences correspo
ing to variations of the standard barrier width from23% ~right! to
14% ~left! in steps of 1%. The1 signs joined by a continuous
line ~to guide the eye! correspond to the prediction for the standa
set of parameters. Experimental points~left triangles! taken from
Fig. 1 with the origin ofQ shifted arbitrarily.
5-6
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horizontal lines in Fig. 9 correspond to values of log10(25 s)
and log10(35 s). As can be seen, when we explore the sa
range of barrier widths as in Fig. 8, the number of fast dec
above thatt0 varies from 3 to 4. The overall trend seems
be consistent with experiment, in particular if the value oft0
is increased towards the more pessimistic estimate of 35

IV. SUMMARY AND CONCLUSIONS

Electron escape from a strongly isolated dot with exc
electrons has been studied in the framework of the s
consistent Poisson-Schro¨dinger and Poisson-Thomas-Ferm
approximations. Based on these calculations a rectang
separable potential model has been devised that incorpo
the main features of the self-consistent field. Rearrangem
effects are taken into account by recalculating the confin
potentialUs(x,y) after each electron escape.

The use of a separable potential introduces certain co
lations in the energy spectrum of the single-electron orbit
A more realistic confining potential would have a mo
rounded shape, which would remove the separability
modify those correlations. In the same vein, the tunneling
our simplified model is 1D, whereas the actual process is

We find it quite remarkable that despite all these simp
fications the predictions turn out to be so satisfactory. T
model therefore may be reliable for extrapolating to long
times. For instance, we find that the isolated dot would h
one excess electron for as long as 44 h. On such a time s
one could use well isolated dots containing a few long-liv
electrons to study their entangled states. This would ope
interesting new approach to the implementation of quan
computation in semiconductor devices.
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FIG. 9. Same as Fig. 8, but for the fast decays.
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APPENDIX A: LIFETIMES

We summarize here the expressions relating the lifetim
to the probability of transmission across the barrier. We f
low the standard treatment and definitions fora-particle de-
cay in nuclear physics, as can be found, for example, in R
4.

Our potentialUs(x,y) is separable, and the electron ca
escape only across the barriers in thex direction. Therefore,
we have adapted the expressions derived in Ref. 4 to the
situation.

The lifetime t51/l is the inverse of the ‘‘decay con
stant,’’ defined as the number of ‘‘decays’’ per second p
parent ‘‘dot.’’ For one dot the electron wave function is no
malized to unity over the volume inside the barriers, andl
for a given level is just the outgoing flux at large distance

When the decay probability is small, one can treat
electron as confined in the dot. Classically, its trajectory w
oscillate between the right,xr , and left,xl , turning points,
with a period

P52E
xr

xl dx

v~x!
, ~A1!

wherev(x) is the classical electron velocity at energyEx :

v~x!5A 2

m* @Ex2U~x!#. ~A2!

The fluxl is then given by the frequency of hits against t
barriers, 2/P, times the transmission probabilityT across a
barrier, and therefore

t5
1

l
5

1

TExl

xr dx

v
. ~A3!

This expression is very convenient because the transmis
coefficient Eq.~12! for our parametrized potential,U(x), is
known analytically.13 For more general barrier profiles an
the long lifetimes of interest, one can use the WKB approa
and its corresponding connection formulas across the ba
~see, e.g., Appendix D of Ref. 4!:

TWKB'e2v,
~A4!

v5E
xr

xt
k dx5E

xr

xtA2m

\2
@U~x!2Ex# dx.

If the WKB wave function is used inside the well to dete
mine the periodP, the same decay half-life is obtained as
Eq. ~A3! above.

Since the dot is located inside a crystal at temperatureT8,
via phonon coupling the electrons in the dot should also b
the same temperature. The level occupationsf (E) are deter-
mined by Fermi statistics:

f ~E!5@11e~E2EF!/kBT8# 21, ~A5!

where these are now 2D energies. The Fermi level is
tained from
5-7
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Q5 (
i 5(nx ,ny)

2 f ~Ei !, ~A6!

where the factor of 2 accounts for spin degeneracy. For
ensemble of electrons in the dot, the fluxl will now be the
sum of fluxes for each occupied single-particle lev
weighted by the level occupancy:

l5 (
i 5(nx ,ny)

2 f ~Ei !l i , ~A7!

and the corresponding half-life is stillt51/l. In particular
this argument applies in theT850 limit, as we implicitly
assumed in Sec II to explain the sequence of lifetimes.

APPENDIX B: LIFETIME DEPENDENCE ON Q

For a level of givennx , the lifetime depends onQ be-
cause the barrier characteristics change as does the leve
ergyEnx

. The latter varies mainly becauseU0 depends onQ,
and this affects the transmission probabilityT. To good ap-
proximation

dEnx

dQ
.

dU0

dQ
. ~B1!

Neglecting the dependence of the level lifetime on the per
P, we can write

d ln t

dQ
.2

d ln T

dE

dE

dQ
. ~B2!

Taking the transmission probabilityT from the WKB expres-
sion leads to

d ln t

dQ
52

d

dQEbarrier
A2m*

\2
@U~x!2E#dx

5E
barrier

A2m*

\2

1

U~x!2ES dU~x!

dQ
2

dE

dQDdx.

~B3!

Noting Eq. ~B1!, the second contribution to the integr
depends linearly on the placement of the potential flo
H.

04532
e

,

en-

d

r.

However, the variation of the barrier shape@dU(x)/dQ#
cannot be neglected. Indeed, Eq.~8! gives approximately

dU~x!

dQ
5

dU0

dQ S 1

3
1

2

3

sinh2S x2xb

wb
D

e22mcosh2S x2xb

wb
2m D D , x,xb

dU~x!

dQ
5

dU0

dQ S 1

3
2

1

3

sinh2S x2xb

wb
D

e2mcosh2S x2xb

wb
2m D D , x.xb .

~B4!

Using Eq.~B4!, the contribution fromdU/dQ to the integral
of Eq. ~B3! is obtained with an accuracy better than 2%.

For the standard choice of parameters, andQ in the range
300 to 310 the computed values ofd log10t/dQ turn out to
be .20.14 for the levels of interest. In Fig. 10 we plot th
evolution of the level lifetimes withQ, compared to the ex-
pression (Q05303)

log10tnx
~Q!5 log10tnx

~Q0!20.14~Q2Q0!. ~B5!

FIG. 10. Dependence of lifetime onQ for the occupied levels
with nx511, 1 signs; nx512, 3 signs; nx513, stars; andnx

514, open squares. The dash-dotted lines correspond to Eq.~B5!.
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