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High-momentum dynamic structure function of liquid 3He-4He mixtures: A microscopic approach
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The high-momentum dynamic structure function of liquid3He-4He mixtures has been studied introducing
final-state effects. Corrections to the impulse approximation have been included using a generalized Gersch-
Rodriguez theory that properly takes into account the Fermi statistics of3He atoms. The microscopic inputs, as
the momentum distributions and the two-body density matrices, correspond to a variational~fermi!-hypernetted
chain calculation. The agreement with experimental data obtained atq523.1 Å21 is not completely satisfac-
tory, the comparison being difficult due to inconsistencies present in the scattering measurements. The signifi-
cant differences between the experimental determinations and the theoretical results for the4He condensate
fraction and the3He kinetic energy still remain unsolved.
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I. INTRODUCTION

Liquid 3He-4He mixtures at low temperature have be
of long-standing interest from both experimental1,2 and
theoretical3–5 viewpoints. From the theoretical side, isotop
3He-4He mixtures manifest fascinating properties intrin
cally related to their quantum nature. The different quant
statistics of4He ~boson! and 3He ~fermion! appear reflected
in the macroscopic properties of the mixture as its very o
existence in the zero-temperature limit. One of the most
evant features that the3He-4He mixture shows is the inter
play between both statistics driven by the correlations. Si
of that are, on the one hand, the influence of3He on the
condensate fraction (n0) and the superfluid fraction (rs /r)
of 4He, and on the other, the change in the momentum
tribution of 3He atoms due to the correlations with4He.
Both theory and experiment show that the4He superfluid
fraction decreases with the3He concentration~x! in the
mixture6,7 whereas the condensate fractionn0 moves on the
opposite direction showing an enhancement withx.8 Con-
cerning the3He momentum distribution in the mixture, m
croscopic calculations9,10 point to a sizable decrease in th
values of n(k50) and Z5n(kF

1)2n(kF
2) with respect to

pure 3He, with a subsequent population at highk. The long
tail of n(k) gives rise to a3He kinetic energy which is ap
preciably larger than in pure3He.

Experimental information on the momentum distributi
n(k) can be drawn from deep inelastic neutron scatter
~DINS!,11,12 as first proposed by Hohenberg and Platzma13

It is nowadays well established that at high-moment
transferq the scattering is completely incoherent and ac
rately described by the impulse approximation~IA !. Assum-
ing IA, the momentum distribution can be directly extract
from experimental data. However, this procedure is
straightforward because of the unavoidable instrume
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resolution effects~IRE! and the non-negligible final-state e
fects ~FSE!. The FSE are corrections to IA that take in
account correlations between the struck atom and the
dium which are completely neglected in the IA. At the typ
cal values of the momentum transfer used in DINS on
lium (q;20 Å21), both IRE and FSE broaden significant
the IA prediction hindering a neat determination ofn(k).
The dominant contributions to the FSE are well accoun
for by the different theoretical methods14–16 used in their
study with an overall agreement forq*16 Å21.17–19 Using
the theoretical prediction for the FSE and the IRE associa
to the precision of the measurements, DINS in superfl
4He points to a condensate fractionn059.261.1 and a
single-particle kinetic energyT/N514.560.5 K.20 Both val-
ues are in a nice agreement with the theoretical values
tained with Green’s function Monte Carlo~GFMC!,21 diffu-
sion Monte Carlo~DMC!,22 and path integral Monte Carlo23

~PIMC! methods.
Normal liquid 3He has also been studied by DINS.24 This

system is more involved from a technical point of view d
to the large neutron absorption cross section of3He atoms
which significantly reduces the signal-to-noise ratio of t
data. Recent measurements ofS(q,v) at high q point to a
single-particle kinetic energy of 1062 K,20,24 a value that is
clearly larger than a previous DINS determination (8
61.7 K!.25 A recent theoretical determination ofT/N using
DMC predicts26 a value 12.2460.03 K in close agreemen
with other microscopic calculations.27,28 Therefore, theory
and experiment have become closer but the agreement is
not so satisfactory as in liquid4He. These discrepancies hav
been generally attributed to high-energy tails inS(q,v), that
are masked by the background noise, or even to inadequa
of the Gaussian models used to extract the momen
distribution.29

In recent years, there have been a few experimental s
ies of liquid 3He-4He mixtures using DINS.8,30 The response
©2001 The American Physical Society21-1
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of the mixture has been measured at two momentaq
523.1 Å21 and q5110 Å21, and different 3He concentra-
tions. By using the methodology employed in the analysis
the response of pure phases, results for the4He condensate
fraction and the kinetic energies of the two species are
tracted as a function ofx. This analysis points to a surprisin
result of n050.18,8 a factor two times larger than in pur
4He. Concerning the kinetic energies, a remarkable dif
ence between4He and3He appears. The4He kinetic energy
decreases linearly withx whereas 3He atoms show an
x-independent kinetic energy that is the same as in the p
3He phase.8,30 Except for the4He kinetic energy, those ex
perimental measurements yield values that are sizably di
ent from the available theoretical calculations. Microsco
approaches to the mixture using both variation
hypernetted-chain theory9 ~HNC! and diffusion Monte
Carlo10 point to a much smaller enhancement ofn0 in the
mixture, and a3He kinetic energy much larger at smallx and
that decrease withx down to the pure3He result.

The theoretical estimation of the FSE in the scattering
of fundamental interest, and also unavoidable in the anal
of the experimental data. In a previous work,17 we recovered
the Gersch-Rodriguez~GR! formalism14 for liquid 4He, and
proved that by using accurate approximations for the tw
body density matrix the FSE correcting function is very clo
to the predictions of other FSE theories.15,16 The generaliza-
tion of this theory to a Fermi system as liquid3He is not
straightforward. The convolutive scheme developed for a
son fluid is now impeded by the zeros present in the Fe
one-body density matrix. Recently, an approximate GR-F
theory that incorporates the leading exchange contribut
without the aforementioned problems has been propose31

That theory is expected to capture the essential contribut
of Fermi statistics, and thereby to be accurate enough
generate the FSE correcting function in dilute3He-4He liq-
uid mixtures. The aim of the present work is to provide m
croscopic results on the FSE effects in3He-4He mixtures.
The inclusion of FSE on top of the impulse approximati
allows for a reliable prediction on the dynamic structu
function at high-momentum transfer that can be compa
with scattering data.

In the next section, the FSE formalism for the mixture
presented. Section III is devoted to the lowest ener
weighted sum rules of the response and the FSE correc
functions. The results and a comparison with available
perimental data are reported in Sec. IV. A brief summary a
the main conclusions comprise Sec. V.

II. FSE IN FERMION-BOSON 3He-4He LIQUID
MIXTURES

The dynamic structure function of the mixtureS(q,v) is
completely incoherent if the momentum transfer is hi
enough. The incoherent total response can be split up
terms of the partial contributionsS(a)(q,v)

S~q,v!5s4~12x!S(4)~q,v!1s3xS(3)~q,v!, ~1!

x5N3 /N being the3He concentration, ands4 , s3 the cross
sections of the individual scattering processes (s355.61 b,
05452
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s451.34 b!. Notice that in this regime the cross ter
S(3,4)(q,v) does not appear because it is fully coherent, a
the incoherent density- and spin-dependent Fermi respo
are identical (s35s3,d1s3,I with s3,d54.42 b ands3,I
51.19 b!. In Eq. ~1!, each single term can be obtained as t
Fourier transform of the corresponding density-density c
relation factor

S(a)~q,t !5
1

Na
(
j 51

Na

^e2 iq•r jeiHteiq•r je2 iHt&, ~2!

wherea53, 4 stands for3He and 4He, respectively. In Eq.
~2!, H is the Hamiltonian of the system (\51),

H52
1

2m4
(
j 51

N4

¹ j
22

1

2m3
(
j 51

N3

¹ j
2

1
1

2 (
a,b53,4

(
i , j 51

N3 ,N4

V(a,b)~r i j !, ~3!

with V(a,b)(r i j ) the pairwise interatomic potentials, that
an isotopic mixture, as the present one, are all identical.

The translation operators act on the HamiltonianH and
transforms Eq.~2! into

S(a)~q,t !5
1

Na
eivq

(a)t(
j 51

Na

^ei (H1L j
(a))te2 iHt&, ~4!

with vq
(a)5q2/(2ma), and L j

(a)5v(a)
•pj being the projec-

tion of the momentum of particlej along the direction of the
recoiling velocityv(a)5q/ma . One can then define an op
eratorC (a)(t),

C (a)~ t ![e2 iHtei (H1L1
(a))te2 iL 1

(a)t ~5!

that contains the FSE corrections to the IA. In terms
C a(t), the density-density correlation factor turns out to b

S(a)~q,t !5eivq
(a)t^C (a)~ t !eitL 1

(a)
&. ~6!

In the high-momentum transfer regime, in which we a
interested,v(a) is large whilet is short, in such a way tha
their products5v(a)t is of order one. In terms of this vari
ables, Eqs.~5! and ~6! become

S(a)~q,s!5eisvq
(a)/v(a)

^C (a)~s!eisv̂(a)
•p1&, ~7!

C (a)~s!5e2 isHeis(H1 v̂(a)
•p1)e2 isv̂(a)

•p1, ~8!

with a HamiltonianH5H/v (a). The operatorsC (a)(s) sat-
isfy the differential equation

d

ds
C (a)~s!5 i @L†~s!HL~s!2H#C (a)~s!, ~9!

with

L†~s![e2 isHeis(H1 v̂(a)
•p1). ~10!

The differential Eq.~9! may be solved by means of
cumulant expansion in powers of 1/v (a).31 In the high-q
1-2
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limit, only the first terms of the resulting series are expec
to significantly contribute. In fact, the IA is recovered wh
only the zero-order term is retained,

S0
(a)~q,s!5eivq

(a)/v(a) 1

ra
r1

(a)~s!, ~11!

r1
(a)(s) being the one-body density matrix. By including th

next-to-leading term, the leading corrections~FSE! to the IA
are taken into account,

S1
(a)~q,s!5eisvq

(a)/v(a)
^ei ~1/v(a)*0

s[H0(s8)2H]ds8eis•p1&,
~12!

with H0(s)5eis•p1He2 is•p1. A Gersch-Rodriguez cumulan
expansion of Eq.~12! for the 4He component in the mixture
leads to a FSE convolutive scheme

S1
(4)~q,s!5SIA

(4)~q,s!R(4)~q,s!, ~13!

with the IA response~11!, and

R(4)~q,s!5expH 2
1

r1
(4)~s!

E dr r2
(4,4)~r ,0;r1s!

3F12expS i

v (4)E0

s

ds8DV~r ,s8!D G
2

1

r1
(4)~s!

E dr r2
(4,3)~r ,0;r1s!

3F12expS i

v (4)E0

s

ds8DV~r ,s8!D G J . ~14!

In the above equation,DV(r i j ,r 8)[V(r i j 1r 8)2V(r i j ).
Apart from r1

(a) , R(4)(q,s) is a function of the~4,4! and
~4,3! components of the semidiagonal two-body density m
trix

r2
(a,b)~r1 ,r 2;r18 ,r2!

5Na~Nb2dab!

3

E drN22C0* ~r1 ,r 2, . . . ,rN!C0~r18 ,r2 , . . . ,rN!

E drNuC~r1 ,r2 , . . . ,rN!u2
.

~15!

The analysis of the3He ~fermion! component is much
more involved. A fully convolutive formalism is now forbid
den because the zero-order cumulant, which is proportio
to the one-body density matrix, has an infinite number
nodes. Nevertheless, it is plausible to assume that at higq
the FSE are dominated by dynamical correlations, and
statistical corrections to a purely FSE scheme can there
be introduced perturbatively. With this hypothesis, the3He
response can be split up in two terms,31

S(3)~q,s![SB
(3)~q,s!1DS(3)~q,s!, ~16!
05452
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using the following identity for then-body density matrix of
the mixture

rN~r1 ,r2 , . . . ,rN ;r18!5r1
(3)~r118!

3F 1

r1
B~r 118!

rN
B~r1 ,r2 , . . . ,rN ;r18!G

1F rN~r1 ,r2 , . . . ,rN ;r18!

2
r1

(3)~r 118!

r1
B~r 118!

rN
B~r1 ,r2 , . . . ,rN ;r18!G .

~17!

The superscript B stands for a boson approximation, i.e
fictitious boson-boson3He-4He mixture. In that factorization
~17!, the first term allows for a description of the3He re-
sponse in which the IA is the exact one while the FSE
introduced in a boson-boson approximation. Statistical c
rections to the FSE are all contained in the second term

In Eq. ~16!, SB
(3)(q,s) is the main part of the response an

can be written as a convolution product

SB
(3)~q,s!5SIA

(3)~q,s!R(3)~q,s!, ~18!

with SIA
(3)(q,s)5eisvq

(3)/v(3)
r1

(3)(s)/r3 the impulse approxi-
mation, and

R(3)~q,s!5expH 2
1

r1
B~s!

E dr r2
(3,3)B~r ,0;r1s!

3F12expS i

v (3)E0

s

ds8DV~r ,s8!D G
2

1

r1
B~s!

E dr r2
(3,4)B~r ,0;r1s!

3F12expS i

v (3)E0

s

ds8DV~r ,s8!D G J ~19!

the bosonlike FSE correcting function.
The additive correctionDS(3)(q,s) in Eq. ~16! takes into

account the statistical exchange contributions in the FSE
is expected to be small. Actually, it is a function of

Dr2
(3,a)~r1 ,r2 ;r18!5r2

(3,a)~r1 ,r2 ;r18!

2
r1

(3)~r 118!

r1
B~r 118!

r2
(3,a)B~r1 ,r2 ;r18!,

~20!

according to the decomposition~17!. The variational frame-
work of the~fermi!-hypernetted chain equations~F!HNC that
is used in this work to calculate the one- and two-body d
sity matrices, provides a diagrammatic expansion to estim
1-3
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Dr2
(3,a) . Following the diagrammatic rules of the FHNC

HNC formalism,Dr2
(3,a) may be written as the sum of tw

terms:

Dr2
(3,a)~r1 ,r2 ;r18!5rar1

(3)~r 118!G
(3,a)~r1 ,r2 ;r18!

2rar1D~r 118!F
(3,a)~r1 ,r2 ;r18!.

~21!

r1
(3)(r ) is the one-body density matrix andr1D(r ) is an aux-

iliary function, which factorizes inr1
(3)(r ), and that sums up

all the diagrams contributing tor1
(3)(r ) except those where

the external points 1 and 18 are statistically linked.32 F (3,a)

and G(3,a) in Eq. ~21! sum up diagrams with the extern
vertices (1,18,2) with and without statistical lines attached
1 and 18, respectively. With this prescription forDr2

(3,a), the
additive termDS(3)(q,s) becomes finally

DS(3)~q,s!5eisvq
(3)/v(3) 1

r3
r1D~s!

3FexpH 2
1

r1D~s!
E dr Dr2

(3,3)~r ,0;r1s!

3F12expS i

v (3)E0

s

ds8DV~r ,s8!D G
2

1

r1D~s!
E dr Dr2

(3,4)~r ,0;r1s!

3F12expS i

v (3)E0

s

ds8DV~r ,s8!D G J 21G .

~22!

Equations~14!, ~19!, and ~22! are the final results of the
present theory for the FSE in3He-4He mixtures. They con-
stitute the generalization of the Gersch-Rodriguez formal
to a mixture with special emphasis in the difficulties arisi
from Fermi statistics. Apart from the interatomic potenti
very well-known in helium, the microscopic inputs that a
required are the one- and two-body density matrices, bot
the boson-boson and the fermion-boson cases.

To conclude this section, we define the Compton profi
of each component in the mixture. Contrarily to what ha
pens in a pure phase, the total response of the mixture
not be written in terms of a single scaling variableY. Each
individual profile is naturally given in its own scaling var
ableYa5mav/q2q/2. Thus,

J(a)~q,Ya!5
1

2pE2`

`

ds e2 iYasS(a)~q,s!, ~23!

which after introducing the explicit expressions forS(a)(q,s)
becomes
05452
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s
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J(a)~q,Ya!5E
2`

`

dYaJ(a)~Ya!R(a)~q,Ya!

1DJ(3)~q,Ya!da3 . ~24!

In this equation,DJ(3) derives fromDS(3) and the IA re-
sponsesJ(a)(Ya) are directly related to the momentum di
tributionsn(a)(k):

J(a)~Ya!5n0d~Y4!da41
na

4p2ra
E

uYau

`

dp pn(a)~p!,

~25!

n0 being the 4He condensate fraction, andna the spin de-
generacy of each component (n352, n451). Notice that the
first term in Eq. ~24! contains the explicit contribution
n0R(4)(q,Ya)da4 arising from the condensate.

III. ENERGY-WEIGHTED SUM RULES AT HIGH-
MOMENTUM TRANSFER

Energy-weighted sum rules provide a useful tool to a
lyze the properties ofS(q,v). In spite of the fact that the
knowledge of a small set of energy moments usually is
enough to completely characterize the response, the me
has proved its usefulness in the analysis of scattering
quantum fluids.33,34 Moreover, from a theoretical viewpoin
the comparison between the sum rules derived from an
proximate theory and the exact ones shed light on the a
racy of that approach. In the high-q limit, the response is
fully incoherent and therefore we discuss only the incoher
sum rules

mn
(a)~q!5E

2`

`

dv vnSinc
(a)~q,v!5

1

i n

dn

dtn
Sinc

(a)~q,t !u t50 .

~26!

Considering

Sinc
(a)~q,t !5^e2 iq•r1

(a)
eiHteiq•r1

(a)
e2 iHt&, ~27!

and applying to the three rightmost operators in Eq.~27! the
Baker-Campbell-Hausdorff formula, one arrives at the f
lowing expansion in terms ofi t :

Sinc
(a)~q,t !511 i t ^e2 iq•r1

(a)
@H,eiq•r1

(a)
#&

1
1

2!
~ i t !2^e2 iq•r1

(a)
@H,@H,eiq•r1

(a)
##&

1
1

3!
~ i t !3^e2 iq•r1

(a)
@H,@H,@H,eiq•r1

(a)
###&1••• .

~28!

From Eqs.~26! and ~28!, one easily identifies the lowest
order sum rules:

m0,inc
(a) ~q!51, ~29!
1-4
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m1,inc
(a) ~q!5^e2 iq•r1

(a)
@H,eiq•r1

(a)
#&5

q2

2ma
, ~30!

m2,inc
(a) ~q!5^e2 iq•r1

(a)
@H,@H,eiq•r1

(a)
##&

5S q2

2ma
D 2

1
4

3

q2

2ma
ta , ~31!

m3,inc
(a) ~q!5^e2 iq•r1

(a)
@H,@H,@H,eiq•r1

(a)
###&

5S q2

2ma
D 3

14S q2

2ma
D 2

ta1
1

2ma
rE dr g(a,a)~r !

3~q•¹!2V~r !. ~32!

All four moments can be readily calculated from the inte
atomic pair potentialV(r ), the kinetic energies per particl
ta , and the two-body radial distribution function betwe
pairs of atoms of the same kindg(a,a)(r ). m1,inc

(a) (q) is iden-
tical to the totalm1

(a)(q), also known as thef-sum rule,
whereas the other three coincide with the leading contri
tion to the total sum rulesmn

(a)(q) at highq.
In the limit q→`, the IA is expected to be the domina

term. This feature may be analyzed using the sum-ru
methodology. Starting from the IA response

SIA
(a)~q,v!5

na

~2p!3ra
E dk n(a)~k!dF ~q1k!2

2ma
2

k2

2ma
2vG ,

~33!

one can calculate the first energy moments from basic p
erties of the momentum distributions. The results are

m0,IA
(a) ~q!51, ~34!

m1,IA
(a) ~q!5

q2

2ma
, ~35!

m2,IA
(a) ~q!5S q2

2ma
D 2

1
4

3

q2

2ma
ta , ~36!

m3,IA
(a) ~q!5S q2

2ma
D 3

14S q2

2ma
D 2

ta . ~37!

When the IA sum rules are compared with the incoher
results ~29!,~30!,~31!,~32!, one realizes that the first thre
moments are exhausted by IA. The leading order termsq
in the m3 sum rule are also reproduced by the IA but t
term with g(a,a)(r ) is not recovered.

The variable that naturally emerges in the 1/q expansion
of the response of the mixture is the West scaling varia
Ya . It is therefore also useful to consider theYa-weighted
sum rules ofJ(a)(q,Ya):

Mn
(a)~q!5E

2`

`

dYaYa
nJ(a)~q,Ya!. ~38!

The firstYa incoherent sum rules are
05452
-
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M0
(a)~q!51, ~39!

M1
(a)~q!50, ~40!

M2
(a)~q!5

2ma

3
ta , ~41!

M3
(a)~q!5

mara

2q E dr g(a,a)~r !~q•¹!2V~r !. ~42!

In the IA, M0
(a) , M1

(a) , andM2
(a) coincide with the incoher-

ent sum rules~39!,~40!,~41! but M3,IA
(a) 50. The latter result is

in fact general for all the oddYa-weighted sum rules in the
IA due to the symmetry of the IA response aroundY450.

In a FSE convolutive theory, such as the Gersc
Rodriguez one, it is easy to extract the first sum rules
R(q,Y). From the total and the IA sum rules, the use of t
algebraic relation

Mk~q!5(
i 50

k S k
i D Mi ,IA~q!Mk2 i ,R~q! ~43!

allows for the extraction ofM j ,R(q):

M0,R~q!51, ~44!

M1,R~q!50, ~45!

M2,R~q!50, ~46!

M3,R~q!5
m

2q3
rE dr g~r !~q•¹!2V~r !. ~47!

It can be proved that in the Gersch-Rodriguez prescripti
the four moments~44!,~45!,~46!,~47! are exactly fulfilled.17 It
is worth noticing thatM3,R(q) is satisfied if and only if a
realistic two-body density matrix is used in the calculation
R(q,Y).

The theory proposed for3He in the mixture~Sec. II! pre-
dicts a response which is a sum of a convolution product p
a correction termDS(3). The functionR(3)(q,Y3) satisfies
M0,R(q), M1,R(q), andM2,R(q) but notM3,R(q) because the
convolutive term relies on a boson-boson approximati
Concerning the additive termDS(3), it is straightforward to
verify that their three first moments are strictly zero where
M3

D(q) contains corrections to the boson-bosong(3,a)(r )
functions assumed inM3,R(q).

IV. RESULTS

The generalization of the Gersch-Rodriguez formalism
the 3He-4He mixture presented in Sec. II requires knowled
of the microscopic ground-state properties of the system
the present work, the necessary input has been obtained
ing the FHNC/HNC theory.35,36 The variational wave func-
tion is written as

C5FF0 , ~48!
1-5
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with F an operator that incorporates the dynamical corre
tions induced by the interatomic potential, andF0 a model
wave function that introduces the right quantum statistics
each component.F0 is considered a constant for bosons a
a Slater determinant for fermions. In the Jastrow approxim
tion, the correlation factorF is given by

F5FJ5 )
a<b

)
i , j

f 2
(a,b)~r i j !. ~49!

A significant improvement in the variational description
helium is achieved when three-body correlations are
cluded in the wave function.28,37 In this case,

F5FJT

5 )
a<b

)
i , j

f 2
(a,b)~r i j ! )

a<b<g
)

i , j ,k
f 3

(a,b,g)~r i j ,r ik ,r jk!.

~50!

The isotopic character of the mixture makes the int
atomic potential between the different pairs of particles
the same. Therefore, the correlation factorsf 2

(a,b) and
f 3

(a,b,g) can be considered to first order as independent of
indexesa, b, g. That approach, known as average corre
tion approximation~ACA!,38 has been assumed througho
this work. DMC calculations of3He-4He mixtures10 have
estimated that the influence of the ACA in the moment
distributions is less than 5%.

The dynamic structure function of the mixture has be
studied at3He concentrationsx50.066 andx50.095 that,
following the experimental isobar1 P50, correspond to the
total densities r50.3582s23 and r50.3554s23 (s
52.556 Å), respectively. Notice the decrease ofr when x
increases; in pure4He, r50.3648s23. In Table I, results
for the 4He condensate fraction and kinetic energies per p
ticle are reported inJ and JT approximations. The conde
sate fraction increases withx whereas the kinetic energiesta
decrease, both effects mainly due to the diminution of
density. Results for pure4He in the JT approximation~the
one used hereafter! compare favorably with DMC data from
Ref. 22 (n050.084,t4514.3 K!, and the decrease ofn0 with
x is in agreement with the change inn0 estimated using
DMC.10

TABLE I. Condensate fraction and kinetic energies as a fu
tion of x. At each 3He concentrationx the first row corresponds to
the J approximation and the second one to the JT one.

x r(s23) n0 t3 ~K! t4 ~K!

0 0.3648 0.091 15.0
0.082 14.5

0.066 0.3582 0.095 19.9 14.6
0.088 18.7 14.1

0.095 0.3554 0.097 19.6 18.5
0.090 18.5 13.9
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A. Impulse approximation

One of the characteristic properties of the IA in a pu
system is itsY scaling. In this approximation, the response
usually written as the Compton profileJ(Y). However, glo-
bal scaling is lost in the mixture due to the different mass
the two helium isotopes. The individual Compton profil
J(a)(Ya) must be written in terms of its ownYa variable.

Results forJ(a)(Ya) at x50.095 are shown in Fig. 1. The
different statistics of4He and 3He are clearly visualized in
their respective momentum distributions, and therefore a
in the Compton profiles. InJ(4)(Y4), a d singularity of
strength n0 located at Y450 ~not shown in the figure!
emerges on top of the background, whereas inJ(3)(Y3) the
Fermi statistics is reflected in the kinks atY356kF pro-
duced by the gap ofn(3)(k) at k5kF . The largeuYau behav-
ior of both responses is more similar and is entirely dom
nated by the tails of the respective momentum distributio

The dynamic structure function of the mixture sugge
the definition of a total generalized Compton profi
J(q,Ya).8 In the IA,

J~q,Ya!5
1

sa@da3x1da4~12x!#

q

ma
SIA~q,v!, ~51!

with

SIA~q,v!5s4~12x!SIA
(4)~q,v!1s3xSIA

(3)~q,v!. ~52!

Notice that the definition~51! is different for eachYa . In
order not to overload the notation, the introduction of a n
labeling in J(q,Ya) has been omitted. In terms ofY4, and
introducing the single Compton profilesJ(a)(Ya),

J~q,Y4!5J(4)~Y4!1
s3x

s4~12x!

m3

m4
J(3)@Y3~Y4!#, ~53!

with

Y3~Y4!5
m3

m4
Y42

q

2 S 12
m3

m4
D . ~54!

Equivalently, one can express the total generalized Comp
profile as a function ofY3,

J~q,Y3!5
s4~12x!

s3x

m4

m3
J(4)@Y4~Y3!#1J(3)~Y3!, ~55!

-

FIG. 1. Compton profiles of4He ~left! and 3He ~right!, both in
JT ~solid line! and J~dashed line! approximations forx50.095.
1-6
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with

Y4~Y3!5
m4

m3
Y32

q

2 S m4

m3
21D . ~56!

The choice of the scaling variableYa undoubtedly deter-
mines some trends of the response. IfY4 is used, the4He
peak is centered atY450 and the 3He peak shifts toY4
5(m4 /m321)q/2;q/6. On the other side, ifY3 is the
choice the3He peak is centered atY350 and the4He one
moves toY35(m3 /m421)q/2;2q/8. In addition, and dis-
regarding cross sections and concentration factors, the3He
peak is reduced by a factorm3 /m4 when the response i
expressed in terms ofY4. By the same token, the4He peak is
enhanced by a factorm4 /m3 when the response is written a
a function ofY3.

In Fig. 2, the IA responses for the mixture at two differe
3He concentrations are shown. They correspond to a
mentum transferq523.1 Å21 and have been obtained from
n(a)(k) calculated at the JT approximation level. The diffe
ences between both curves are due to the concentration
tors rather than to the differences between the momen
distributions involved.

B. Final state effects

The theory of FSE in3He-4He mixtures developed in
Sec. II requires the knowledge of the three correcting fu
tions R(4)(q,s) @Eq. ~14!#, R(3)(q,s) @Eq. ~19!#, and
DS(3)(q,s) @Eq. ~22!# (s5tq/ma). These three functions ar
complex with real and imaginary parts that are, respectiv
even and odd functions under the changes→2s. The latter
is a consequence of the symmetry properties of the two-b
density matrices and of the central character of the in
atomic potential. The Fourier transforms of the real a
imaginary parts generate, respectively, the even and
components ofR(a)(q,Ya) and DS(3)(q,Y3), which are all
real.

In Fig. 3, the real and imaginary parts ofR(a)(q,s) cor-
responding to ax50.095 mixture are shown. In spite of th
fact that R(4)(q,s) is calculated for the real mixture an
R(3)(q,s) for the boson-boson one, the differences betwe
the two functions are rather small. Actually, those diffe
ences are mainly attributable to the low3He density in the

FIG. 2. Generalized Compton profiles in IA atx50.066 ~left!
andx50.095~right!.
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mixture that makes the contributions of the Fermi statist
very small. In fact, the differences shown in Fig. 3 betwe
R(4)(q,s) and R(3)(q,s) are essentially due to the differen
mass of the two isotopes, which factorizes in the integra
the interatomic potentials@see Eqs.~14! and ~19!#.

The real and imaginary parts of the additive ter
DS(3)(q,s) are shown in Fig. 4 at the two3He concentra-
tions studied. The behavior ofDS(3)(q,s) is remarkably dif-
ferent from the behavior of the FSE broadening functio
R(a)(q,s), presenting oscillating tails that slowly fall to zer
with increasingx. The functionDS(3)(q,s) incorporates on
the 3He response all the Fermi corrections which are
contained inR(3)(q,s). In a dilute Fermi liquid, as3He in
the mixture, those contributions are characterized by the
havior of l (kFr ) and l 2(kFr ), l (z)53/z3(sinz2zcosz) be-
ing the Slater function.

R(4)(q,Y4) and R(3)(q,Y3) are compared in Fig. 5 atx
50.095 andq523.1 Å21. The shape of both functions look
very much the same: a dominant central peak and small
cillating tails that vanish withuYau. Figure 5 also shows tha
at a given concentration the central peak ofR(3)(q,Y3) is
slightly higher and narrower than the one ofR(4)(q,Y4), an
effect once again due to the different mass of the two i
topes. Therefore, at a fixed momentum transferq, FSE in
4He are expected to be smaller than in4He. In the scale used
in Fig. 5, theR(a)(q,Ya) functions atx50.066 would be
hardly distinguishable from the ones atx50.095.

The Compton profileDJ(3)(q,Y3), derived from the Fou-
rier transform ofDS(3)(q,s), is shown in Fig. 6 at the twox
values considered.DJ(3)(q,Y3) presents a central peak an

FIG. 3. Real and imaginary parts ofR(3)(q,s) ~solid line! and
R(4)(q,s) ~dashed line! at q523.1 Å21 for the x50.095 mixture.

FIG. 4. DS(3)(q,s) at q523.1 Å21 and for mixtures atx
50.095 andx50.066~solid and dashed lines!.
1-7
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two minima close toY356kF . The absolute value of this
function is small compared to bothR(3)(q,Y3) and the IA
responseJ(3)(Y3) ~25! but manifests a sizable dependen
on the 3He concentration. This feature is patent in Fig.
where one can see how the contribution ofDJ(3)(q,Y3) in-
creases withx. This is an expected result taking into accou
that in the current approximationDJ(3)(q,Y3) incorporates
all the Fermi effects to the3He FSE function.

According to the theory developed in Sec. II, the4He
response in the mixture,J(4)(q,Y4), is the sum of two terms
the noncondensate part of the IA convoluted w
R(4)(q,Y4), andn0R(4)(q,Y4), which is the contribution of
the condensate once broadened by FSE. The different te
contributing to the final response are separately shown
Fig. 7. The correction driven byn0 is by far the largest one
In spite of the small value ofn0, the broadening of the con
densate term, which transforms thed singularity predicted by
the IA into a function of finite height and width, unambigu
ously produces non-negligible FSE in the4He peak.

The obvious lack of a condensate fraction in the3He
component reduces the quantitative relevance of its FSE.
3He FSE correcting functions and the corresponding IA

FIG. 5. Comparison betweenR(4)(q,Y4) and R(3)(q,Y3) at q
523.1 Å21 and forx50.095~solid and dashed lines, respectively!.
Notice that differentYa variables are used to depict each functio

FIG. 6. The3He additive correcting term atq523.1 Å21 for x
50.095 andx50.066 mixtures~solid and dashed lines, respe
tively!.
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sponse, are compared in Fig. 8 atx50.095. The convolution
of the IA with R(3)(q,Y3) produces a slight quenching o
J(3)(q,Y3) around the peak and a complete smoothing of
discontinuity in the derivative ofJ(3)(Y3) at Y356kF . The
contribution of DJ(3)(q,Y3) is rather small but restores t
some extent the change in the derivative aroundkF .

C. Theory vs experiment

Scattering experiments suffer from instrumental reso
tion effects~IRE! that tend to smooth the detailed structu
of the dynamic structure function. Any comparison betwe
theory and experiment have therefore to include in the an
sis the IRE contributions. From the theoretical side, it wou
be desirable to remove the IRE from the data to allow fo
direct comparison. This process would imply a deconvo
tion procedure that is known to be highly unstable. As su
gested by Sokolet al.,39 it is better to convolute the theore
ical prediction with the IRE functionI (a)(q,Ya), and then to
compare the result with the experimental data. The functi
I (a)(q,Ya) provided by Sokol40 are reported in Fig. 9. As

.

FIG. 7. The different contributions to the4He response atx
50.095 and q523.1 Å21. Dotted line: 4He Compton profile.
Dashed line: the same convoluted withR(4)(q,Y4). Long-dashed
line: n0R(4)(q,Y4). Solid line: total 4He response.

FIG. 8. The different contributions to the3He response atx
50.095 and q523.1 Å21. Dotted line: 3He Compton profile.
Dashed line: the same convoluted withR(3)(q,Y4). Dotted-dashed
line: DJ(3)(q,Y3). Solid line: total 3He response.
1-8



e

r
a
.

-
re

l

.

n

e
in

st

a

he
l re-

d a
he
the
e

ion
ob-

t if

our

nifi-

he

ce

icts
C
b-

rth
ce
e

at

tic

se.
e of

,
from
le
of

est
-

-

to
an

HIGH-MOMENTUM DYNAMIC STRUCTURE FUNCTION OF . . . PHYSICAL REVIEW B 63 054521
one can see, atq523.1 Å21 the IRE corrections are of th
same order of the FSE functionsR(a)(q,Ya), and in fact
their magnitude significantly increases withq. The IRE func-
tions for the mixture~Fig. 9! present a small shift of thei
maximum to negativeY values, a feature that makes the pe
of the total response slightly move in the same direction

In Fig. 10, the generalized Compton profileJ(q,Y4) ~in-
cluding both the IRE and FSE! is compared with the scatter
ing data of Wang and Sokol.8 Those measurements we
carried out in ax50.095 mixture atT51.4 K and a momen-
tum transferq523.1 Å21. The analysis of the experimenta
data led the authors to estimate the4He condensate fraction
and the single-particle kinetic energies of both species
Ref. 8, a valuen050.1860.03, and kinetic energiest4513
63 K and t351163 K are reported. That work, and a
independent measurement performed by Azuahet al.,30

agree in the values of the kinetic energies and in their dep
dence with the3He concentration. Both analyses coincide
a decrease int4 with x and a more surprising constancy oft3
along x. Microscopic calculations22 of those quantities only
agree with the experimental result oft4(r). Several indepen-
dent calculations,9,10 including the present one, sugge
smaller values ofn0 (n0.0.10) and larger values oft3 (t3
.18 K!, in clear disagreement with the experimental estim
tions.

FIG. 9. 4He ~left! and 3He ~right! instrumental resolution func
tions atx50.095 andq523.1 Å21.

FIG. 10. Comparison of the theoretical generalized Comp
profile ~solid line! and the experimental measurements of Wang
Sokol ~Ref. 8! of the x50.095 mixture atq523.1 Å21 and T
51.4 K ~points with error bars!.
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Let us turn to Fig. 10 with the comparison between t
theoretical and experimental responses. The theoretica
sult, constructed using Eqs.~53! and ~55!, but replacing the
IA J(a)(Ya) with the final responsesJ(a)(q,Ya), shows siz-
able differences with respect to the experimental data an
lack of strength below the two peaks. In order to clarify t
origin of such a large discrepancy, we have compared
M0 and M1 sum rules obtained by direct integration of th
experimentalJ(q,Y4) with the theoretical results~Sec. III!.
That check has shown that theM0 and M1 values obtained
from the two procedures are not compatible. Our conclus
is that the reported experimental Compton profiles are pr
ably written in a different way than in Eq.~51!. In fact, after
the analysis of different possibilities, we have verified tha
one defines the response in the form

J̃~q,Y4!5J(4)~q,Y4!1
s3x

s4~12x!
J(3)@q,Y3~Y4!# ~57!

or

J̃~q,Y3!5
s4~12x!

s3x
J(4)@q,Y4~Y3!#1J(3)~q,Y3!,

~58!

the agreement in both sum rules is recovered. By moving
results to those modified Compton profilesJ̃(q,Ya), the
agreement between theory and experiment improves sig
cantly but only to what concerns the3He peak. Notice that
the 4He peak is not modified when going fromJ(q,Y4) to
J̃(q,Y4), and that a significant difference in the height of t
peak still remains.

The missing strength of the theoretical4He peak with
respect to the experimental data could justify the differen
between the theoretical and experimental values ofn0. How-
ever, the present variational momentum distribution pred
n0 values that are indistinguishable from a DM
estimation.10 Therefore, this difference should not be attri
uted to inaccuracies of ourn(a)(k) but rather to an intriguing
gap between theory and experiment. At this point, it is wo
considering the difficulties the experimentalists have to fa
to extractn0 and ta from the measured data. On the on
hand, experience in the pure4He response has shown th
different momentum distributions~with different n0’s! can
be accurately fitted to the data. On the other, the kine
energy per particle is derived from theYa

2 sum rule whose
estimation is highly influenced by the tails of the respon
Those tails cannot be accurately resolved due to the nois
the data, and thus the prediction ofta appears relatively un-
certain. That is even more pronounced in the3He peak be-
cause the strong interaction with4He causesn(3)(k) to
present non-negligible occupations up to largek values.

The influence ofn0 andta on the momentum distribution
and hence on the response, can be roughly estimated
the behavior of the one-body density matrix. In a simp
approximation, one can perform a cumulant expansion
r1

(a)(r ) and relate the lowest order cumulants to the low
order sum rules ofn(a)(k). Introducing an expansion param
eterl,

n
d

1-9
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1

r4
r1

(4)~lr !2n0[em01l2m21•••

5~12n0!2l2^~r•p1!2&1•••. ~59!

Taking into account that

^~r•p1!2&5
2m4r 2

3
t4 , ~60!

and consideringl51,

1

r4
r1

(4)~r !5n01~12n0!expF2
2

3

m4r 2

~12n0!
t41•••G .

~61!

Equation~61! can then be used to relater1
(4)(r ) to a new

one-body density matrixr̄1
(4)(r ) with slightly different val-

uesn̄0 and t̄ 4

1

r4
r̄1

(4)~r !5n̄01S 1

r4
r1

(4)~r !2n0D S 12n̄0

12n0
D

3expF2
2m4r 2

3 S t̄ 4

12n̄0

2
t4

12n0
D 1•••G .

~62!

In this way, the perturbedr̄1
(4)(r ) and n̄(4)(k) preserve their

normalization and allow one to go beyond a simplen0 res-
caling. Using this method, we have studied the effect
changingn0 and t4 on the 4He response. In Fig. 11, th
results corresponding to~i! n050.14, t4513.9 K, and~ii !
n050.10, t4513.0 K are shown. As one can see, both slig
changes in the theoretical response lead to a nice agree
with the experimental data. Consequently, such a large v
of n0 (n0

expt50.18) does not seem to be required in order
reproduce the additional strength observed below the4He
peak. The rescaling~62! shows that a small decrease in t
kinetic energy enhances the central peak in the same f
that an increase of the condensate fraction does.

FIG. 11. Thex50.095 experimental data of Wang and Sok
~Ref. 8! compared to the response obtained from an alterna

r̄1
(4)(r ) with n050.14 andt̄ 45t4513.9 K ~solid line!, left panel,

and withn050.10 andt̄ 4513.0 K ~solid line!, right panel.
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V. SUMMARY AND CONCLUSIONS

A generalized Gersch-Rodriguez formalism has been
plied to study the dynamic structure function of the3He-4He
mixture at high-momentum transfer. The Fermi character
3He forbids a straightforward generalization of most FS
theories used in bosonic systems, a problem that has b
overcome in an approximate way. The approximations
sumed are, however, expected to include the leading Fe
contributions to the FSE, at least in the mixture where
3He partial density is very small.

The theoretical response obtained shows significant
ferences with scattering data in both the4He and the3He
peaks. However, a sum-rules analysis of the experime
response has shown some inconsistencies. Redefining th
tal response, it is possible to reach agreement between
theoretical and the numerical values of the first-order s
rules. If the theoretical response is changed in the same w
the agreement is much better. Nevertheless, the4He peak is
not modified by this redefinition~written as a function ofY4)
and an intriguing sizable difference in its strength subsi
From the theoretical side, several arguments may be arg
trying to explain the observed discrepancies. The first unc
tainty could be attributed to the use of a Gersch-Rodrig
theory to account for the FSE. In our opinion, that criticis
has probably no sense because we have verified that, at
lar momentum transfer, the experimental response of p
4He is fully recovered with the GR theory.17 Assuming
therefore that the theoretical framework is able to descr
the high-q response of the mixture, one could be led to arg
that the approximate microscopic inputs of the theory are
accurate enough. That argument was put forward in Ref.
explain the differences inn0 and t3. One of the main criti-
cisms was the use of the ACA, which they claimed could
too restrictive to allow for a reduction oft3 towards a value
closer to the experimental one. However, a DM
calculation41 in which the ACA is not present, has prove
that only a diminution of;0.5 K in t3 is obtained. Concern-
ing the condensate fraction value, our variational theory p
dicts a slight increase ofn0 with x. This increase, which is
mainly due to the decrease of the equilibrium density whex
grows, is nevertheless much smaller then the one that wo
be required to reproduce the experimental prediction. O
results forn0 are again in overall agreement with the nea
exact DMC calculation of Ref. 10.

In summary, we would like to emphasize that there exi
theoretical agreement on the values ofn0 and t3 for mix-
tures, but these values are quite far from the experime
estimations. Additional scattering measurements on
3He-4He mixture are necessary to solve the puzzle.
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