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High-momentum dynamic structure function of liquid 3He-*He mixtures: A microscopic approach
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The high-momentum dynamic structure function of liqdide-*He mixtures has been studied introducing
final-state effects. Corrections to the impulse approximation have been included using a generalized Gersch-
Rodriguez theory that properly takes into account the Fermi statistild@ftoms. The microscopic inputs, as
the momentum distributions and the two-body density matrices, correspond to a variggéomgthypernetted
chain calculation. The agreement with experimental data obtaingeF 8.1 A~ ! is not completely satisfac-
tory, the comparison being difficult due to inconsistencies present in the scattering measurements. The signifi-
cant differences between the experimental determinations and the theoretical results*iée tbendensate
fraction and the®He kinetic energy still remain unsolved.
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[. INTRODUCTION resolution effect§IRE) and the non-negligible final-state ef-
fects (FSE). The FSE are corrections to IA that take into
Liquid *He-*He mixtures at low temperature have beenaccount correlations between the struck atom and the me-
of long-standing interest from both experimefhfaland  dium which are completely neglected in the IA. At the typi-
theoretical > viewpoints. From the theoretical side, isotopic cal values of the momentum transfer used in DINS on he-
3He-*He mixtures manifest fascinating properties intrinsi-lium (q~20A""), both IRE and FSE broaden significantly
cally related to their quantum nature. The different quantunthe IA prediction hindering a neat determination rofk).
statistics ofHe (boson and 3He (fermion) appear reflected 1he dominant contributions to the FSE are well accounted

. . _16 . .
in the macroscopic properties of the mixture as its very owrO" Dy the different theoretical methatds'® used in their

H —117-19 H
existence in the zero-temperature limit. One of the most reI-Srt]uchr/1 with _anlove;all .agrfeemhenthqI;z lGdAh RE Using g
evant features that theHe-*He mixture shows is the inter- toet:]ee%rreetgi:sa}oﬁrifI?ﬁgnm%rats,tierﬁen?; I;Iﬁ Sin asisptg'f?ut%
lay between both statistics driven by the correlations. Sign . S
Pay y g éHe points to a condensate fractio,=9.2+=1.1 and a

H 3

e e iy SnOpatlednetc snerf/N- 14505 K Both vl

4 . . ues are in a nice agreement with the theoretical values ob-
OT I—!e, andaon the other, the change in the_ mome_ntum dISt'ained with Green’s function Monte Carl&FMC),%* diffu-
tribution of °He atoms.due to the correlations wn‘qu sion Monte CarldDMC),? and path integral Monte cafd
Both theory and experiment show that thele superfluid (PIMC) methods.
fraction decreases with théHe concentration(x) in the Normal liquid ®He has also been studied by DIRSThis
mixture”’ whereas the condensate fractisnmoves on the  system is more involved from a technical point of view due
opposite direction showing an enhancement withCon- 0 the large neutron absorption cross sectiorflde atoms
cerning the*He momentum distribution in the mixture, mi- which significantly reduces the signal-to-noise ratio of the
croscopic calculatioffs® point to a sizable decrease in the data. Recent measurementsSif}, ) at highq point to a
values ofn(k=0) and Z=n(k{)—n(kr) with respect to single-particle kinetic energy of #02 K,?°?*a value that is
pure *He, with a subsequent population at highThe long  clearly larger than a previous DINS determination (8.1
tail of n(k) gives rise to a®He kinetic energy which is ap- *1.7 K).%° A recent theoretical determination &N using
preciably larger than in puréHe. DMC predict$® a value 12.240.03 K in close agreement

Experimental information on the momentum distribution with other microscopic calculatiort$:?® Therefore, theory
n(k) can be drawn from deep inelastic neutron scatteringand experiment have become closer but the agreement is still
(DINS), 112 as first proposed by Hohenberg and Platzifan. not so satisfactory as in liquitHe. These discrepancies have
It is nowadays well established that at high-momentumbeen generally attributed to high-energy tailsS{y, ), that
transferq the scattering is completely incoherent and accu-are masked by the background noise, or even to inadequacies
rately described by the impulse approximati®®). Assum-  of the Gaussian models used to extract the momentum
ing IA, the momentum distribution can be directly extracteddistribution?®
from experimental data. However, this procedure is not In recent years, there have been a few experimental stud-
straightforward because of the unavoidable instrumentaks of liquid *He-*He mixtures using DINS:*° The response
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of the mixture has been measured at two momenta, 03=1.34 D. Notice that in this regime the cross term
—23.1A 1 andq=110A"1, and different®He concentra- S**(q,») does not appear because it is fully coherent, and
tions. By using the methodology employed in the analysis othe incoherent density- and spin-dependent Fermi responses
the response of pure phases, results fortHe condensate are identical ¢3=o034+ 03, With 034=4.42 b andog,
fraction and the kinetic energies of the two species are ex=1.19 . In Eq. (1), each single term can be obtained as the
tracted as a function of This analysis points to a surprising Fourier transform of the corresponding density-density cor-
result of no=0.18% a factor two times larger than in pure relation factor

“He. Concerning the kinetic energies, a remarkable differ- . N
ence betweeffHe and®He appears. ThéHe kinetic energy (@) _ N iger AiHEAige T o iHE
decreases linearly withk whereas 3He atoms show an Sa.n= Najzl (e et e, @

x-independent kinetic energy that is the same as in the pure _ 2 4 )
3He phasé:® Except for the*He kinetic energy, those ex- wherea=3, 4 stands forHe and“He, respectively. In Eq.

perimental measurements yield values that are sizably diffef?): H is the Hamiltonian of the systen & 1),

ent from the available theoretical calculations. Microscopic 1 M 1 N

approaches to the mixture using both variational H=e — —— E V2o 2 v2
hypernetted-chain thecoty (HNC) and diffusion Monte 2m, = ) 2mg = !

Carlo'® point to a much smaller enhancementrgf in the N3N

mixture, and a&®He kinetic energy much larger at smaland i l E V@B (1) 3)
that decrease witk down to the pure*He result. 2 023421 e

The theoretical estimation of the FSE in the scattering is . h V(@ h Lo . ials. that i
of fundamental interest, and also unavoidable in the analysi¥'™" ~(rij) the pairwise interatomic potentials, that in
of the experimental data. In a previous wofkye recovered an isotopic mixture, as the present one, are all identical.

the Gersch-RodriguetGR) formalism for liquid “He, and The translation operators act on the Hamiltontrand

proved that by using accurate approximations for the tWO_transforms Eq(2) into

body density matrix the FSE correcting function is very close 1 N,
to the predictions of other FSE theorfes®° The generaliza- S (q,t) = N_eiwg“%z (el (HrL{tg-iHty (4)
tion of this theory to a Fermi system as liquitHe is not a =1

strai?lh'_c;o_rward. 'I_'he cgn:jlotl)uti;/he scheme deveI(t)pe?r:‘orFa bo\'/vith wff‘)zqz/(Zma), and Lj(a):V(a)_pj being the projec-
zﬂg-blcj; d Izgr?s\,,ivt In:npa(atrii Rgcenetl Ze;?lsaprer%iri]m:':te gR_Ie:rggion pf the momentum of particlealong the directjon of the

y density : Y PP > Tecoiling velocityv(®=g/m,. One can then define an op-
theory that incorporates the leading exchange contrlbutlongratorc(a)(t)
without the aforementioned problems has been propdsed. '
That theory is expected to capture the essential contributions C(“)(t)ze‘thei(H“(l"))‘e‘iL(la)t )
of Fermi statistics, and thereby to be accurate enough to
generate the FSE correcting function in dilitde-*He lig-  that contains the FSE corrections to the IA. In terms of
uid mixtures. The aim of the present work is to provide mi-C “(t), the density-density correlation factor turns out to be
croscopic results on the FSE effects hle-*He mixtures. » “
The inclusion of FSE on top of the impulse approximation S9(g,t)=e"“a {C(t)e'tti’). (6)
allows for a reliable prediction on the dynamic structure . ) ) )
function at high-momentum transfer that can be compared [N the high-momentum transfer regime, in which we are

with scattering data. interestedy(®) is large whilet is short, in such a way that

In the next section, the FSE formalism for the mixture istheir products=v{®)t is of order one. In terms of this vari-
presented. Section Ill is devoted to the lowest energyables, Egs.(5) and(6) become
weighted sum rules of the response and the FSE correcting  a -

. . . . (a) _ isel@y(@ (a) |sv(“)»p1

functions. The results and a comparison with available ex- S(q,s)=e""a " (C'"(s)e ), (7
perimental data are reported in Sec. IV. A brief summary and o o) )
the main conclusions comprise Sec. V. C (@ (s) =g 1SHeIsS(HFTVT-pr)g=isVi®-py (8)

with a HamiltonianH=H/v(®). The operatorg (*)(s) sat-

3 a4
Il. FSE IN FERMION-BOSON ~“He-"He LIQUID isfy the differential equation

MIXTURES

The dynamic structure function of the mixtugéq, ») is EC(“)(S)=i[AT(S)HA(S)—H]C(“)(S), (9)
completely incoherent if the momentum transfer is high ds

enough. The incoherent total response can be split up iR/ith

terms of the partial contributior8®(q, w)

—isHgais(H+v(®.p;
S(,0) = 04(1-x)59(q,0) + oxSV(qw), (1) Al(s)=e el (10

x=Nj3/N being the*He concentration, and,, o5 the cross The differential Eq.(9) may be solved by means of a
sections of the individual scattering processes=£5.61 b, cumulant expansion in powers ofuvi#) 3! In the highg
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limit, only the first terms of the resulting series are expectedising the following identity for the-body density matrix of
to significantly contribute. In fact, the IA is recovered whenthe mixture
only the zero-order term is retained,

pn(r1f2, .. arN?ri):P(ls)(rn')
(o) S)_eiw(a)lv(a)i (@)(s) (11)
Sy7(g,8)=¢€"a aPl , 1 5 ,
_ _ _ _ _ PN, M2, . FNsT )
p{¥9(s) being the one-body density matrix. By including the p1(riy)
next-to-leading term, the leading correctidi#SE to the 1A
are taken into account, ] pn(F1iTa oo Fnird)
S(la)(q,s):eiSw((]"‘)/u("‘)<ei(1/v(“)f8[Ho(S’)—H]ds’eis- P1>’ ,

(12) ) oy ey
with Ho(s)=e'SPiHe '$P1. A Gersch-Rodriguez cumulant Bty (N2
expansion of Eq(12) for the *He component in the mixture 1
leads to a FSE convolutive scheme (17

The superscript B stands for a boson approximation, i.e., a
(4) —q4) (4) s . N
$17(6,5)=Six’(9.5)R™(a.9), 13 fictitious boson-bosofHe-*He mixture. In that factorization
with the IA responsél1), and (17), the first term allows for a description of thtHe re-
sponse in which the IA is the exact one while the FSE are
(a0 introduced in a boson-boson approximation. Statistical cor-
J dr p3""(r,0;r+9) rections to the FSE are all contained in the second term.
In Eq. (16), S$)(q,s) is the main part of the response and
can be written as a convolution product

R(4)(q,s)=EXP‘ (4)( S

X 1—exp( (4)f ds’AV(r,s")

S(a,9)=sR(a,9R®(q,s), (18)
f dr p3(r,0;r +9 with §(2)(q,5)=€*4"*”p)(s)/p5 the impulse approx-
(4)( s) mation, and
i 1
1- exp( (4J ds"AV(r, s))H. (14 R(3)(q,s)=exp{ — 3 )J dr p38(r,0:r +5)
pi(S

In the above equatlonAV(rIl I)=V(r+r")=V(ry).
Apart from p{®, R®)(q,s) is a function of the(4,4) and
(4,3 components of the semidiagonal two-body density ma-
trix

X 1—exp< (3)J ds’AV(r,s")

f dr pB98(r,0;r +5)

PSP 1y, 15w, Pl( s)

=Ny (Ng=64p)
X 1—exp< (3)f ds’ AV(rs))H (29

the bosonlike FSE correcting function.
f drM[W(ry,ro, . .rwl? The additive correctiorh S®)(q,s) in Eq. (16) takes into

account the statistical exchange contributions in the FSE and
(15  is expected to be small. Actually, it is a function of

f drN T2 (r g, L ) Wo(P] Ty o )
X

The analysis of the’He (fermion) component is much
more involved. A fully convolutive formalism is now forbid-
den because the zero-order cumulant, which is proportional
to the one-body density matrix, has an infinite humber of
nodes. Nevertheless, it is plausible to assume that atdpigh pl(rll’)
the FSE are dominated by dynamical correlations, and that (20)
statistical corrections to a purely FSE scheme can therefore
be introduced perturbatively. With this hypothesis, fiée  according to the decompositidfi7). The variational frame-

Ap(3“)(rl,rz;ri)zp(23'“)(rl,r2;ri)

e )

response can be split up in two teriis, work of the(fermi)-hypernetted chain equatiofiS)HNC that
@) 3) 3) is used in this work to calculate the one- and two-body den-
S¥(d,5)=Sg"(q,s) +AS(q,s), (16)  sity matrices, provides a diagrammatic expansion to estimate
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ApS9 . Following the diagrammatic rules of the FHNC/ " % » »
HNC formalism,Ap$>®) may be written as the sum of two 3a,Ya) = f_deaJ (Y)R(Q,Ya)
terms:
+A3%)(q,Y,)8,3. (24)
ApS(ry, 121D =papP(r1)GCI(ry,ry5r)) In this equation,AJ®) derives fromAS®) and the IA re-
" sponses)(®)(Y,) are directly related to the momentum dis-
—pap1p(F11)FE(ry,ro5r)). tr[i)butionsn(g‘)(k)): Y
(21
Va o w
p$3)(r) is the one-body density matrix apdp(r) is an aux- I ) =nod(Ys) 5a4+4772p fIY |dp pri“(p),

iliary function, which factorizes ip{¥(r), and that sums up
all the diagrams contributing tp(f‘)(r) except those where
the external points 1 and’lare statistically linked? F(3®)  ng being the“He condensate fraction, ang, the spin de-
and GG in Eq. (21) sum up diagrams with the external generacy of each component( 2, v,=1). Notice that the
vertices (1,1,2) with and without statistical lines attached to first term in Eq. (24) contains the explicit contribution
1 and 1, respectively. With this prescription farp$>®, the noR*(a,Y,,) 8.4 arising from the condensate.

additive termAS®)(q,s) becomes finally

(29

IIl. ENERGY-WEIGHTED SUM RULES AT HIGH-
MOMENTUM TRANSFER

: 1
(3) — isw(®p® . .
AS™(q,5) =€ psplD(S) Energy-weighted sum rules provide a useful tool to ana-

lyze the properties 05(q,w). In spite of the fact that the

1 (3.3) _ knowledge of a small set of energy moments usually is not
x| exp — p1o(S) dr Apy™(r,05r +9) enough to completely characterize the response, the method
has proved its usefulness in the analysis of scattering on
i s quantum fluids>>* Moreover, from a theoretical viewpoint
X|1—ex WJ ds’AV(r,s") the comparison between the sum rules derived from an ap-
vJo proximate theory and the exact ones shed light on the accu-
1 racy of that approach. In the highdimit, the response is
- f dr ApSB(r,0;r+5s) fully incoherent and therefore we discuss only the incoherent
p1p(S) sum rules
fesfissvos -4
X|1l—exp —= | ds’AV(r,s") || —1|. N ” N N
/@ o M@= | doo'S2q0) = 5 o Salo
(22) (26)
Equations(14), (19), and(22) are the final results of the Considering
present theory for the FSE ifHe-*He mixtures. They con- () i@ it i@ it
stitute the generalization of the Gersch-Rodriguez formalism Sic(Q,1)=(e" "1 e e, (27)

to a mixture with special emphasis in the difficulties arising _ ) _
from Fermi statistics. Apart from the interatomic potential, 21d @pplying to the three rightmost operators in &) the
very well-known in helium, the microscopic inputs that are Baker-Campbell-Hausdorff formula, one arrives at the fol-
required are the one- and two-body density matrices, both ifPWing expansion in terms at:
the boson-boson and the fermion-boson cases. (@ (@
To conclude this section, we define the Compton profile§|(,f“c)(q,t)=1+it<e_'q"1 [H,e'9"17])
of each component in the mixture. Contrarily to what hap-
pens in a pure phase, the total response of the mixture can I i(it)2<e7iq<r(l"‘)[H,[H,eiq-r(l"‘)]]>
not be written in terms of a single scaling variabMeEach 2!
individual profile is naturally given in its own scaling vari- "

ableY ,=m,w/q—q/2. Thus, + %(it)%e“q"(la)[H,[H,[H,e‘q"l D+

(28)

1 (= _
I9(q,Y,)= —f ds e Vesl?(q,s), (23 R
27 ) - From Egs.(26) and (28), one easily identifies the lowest-

order sum rules:

which after introducing the explicit expressions 8f(q,s) @
becomes Meind 4) =1, (29)
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m{®(q)=(e @ H e ) ="~ (30)
(a) 7iq-r(“) iq-r(“)
m&D(q)=(e "I [H,[H,e'9 1))
q2 2 4 q2
M () = (e 1L H,[H,[H, a7 ]]])
q2 3 q2 2 1
— (a,a)
2ma> +4(2ma ta+2mapf drg (r)

X(g-V)2V(r). (32

All four moments can be readily calculated from the inter-
atomic pair potentiaM(r), the kinetic energies per particle
t,, and the two-body radial distribution function between
pairs of atoms of the same kirgd*(r). m{%\(q) is iden-
tical to the totalm{®(q), also known as thd-sum rule,
whereas the other three coincide with the leading contribu
tion to the total sum rulem{*)(q) at highq.

In the limit q—oe, the IA is expected to be the dominant

term. This feature may be analyzed using the sum-rules

methodology. Starting from the IA response

k2
2m

(a+k)?
2m,

SR (@)= 55 -

—w|,

(33

5 fdknw(k)a[
27)°pa

a

one can calculate the first energy moments from basic prop-

erties of the momentum distributions. The results are

mgiA(@) =1, (34)
q2

miTh(@) =5, (39

. q2 2 q2
mé,&(q>=(m) 32yt (36)

2\3 2\2

« q q

miih(a)=| 5. —| +4|5- ) e (37)

PHYSICAL REVIEW B 63 054521

M (a) =1, (39
M{?(q)=0, (40
ME @)= 220, @1
Mé“><q>=mé‘—(;“ f dr g (r)(q-V)?V(r). (42
In the 1A, M{, M{®, andM{® coincide with the incoher-

ent sum ruleg39),(40),(41) butM {5 =0. The latter result is

in fact general for all the odd ,-weighted sum rules in the
IA due to the symmetry of the |IA response aroung=0.

In a FSE convolutive theory, such as the Gersch-
Rodriguez one, it is easy to extract the first sum rules of
R(q,Y). From the total and the IA sum rules, the use of the
algebraic relation

k
k
Mk<q>=i20(i

- Miia(Q)M—i r(Q) (43)
allows for the extraction oM; r(q):

Mor(Q)=1, (44)

M r(q)=0, (49

M2 r(0)=0, (46)

M ()= 3pf drg(n(@ V)V, (47

It can be proved that in the Gersch-Rodriguez prescription,
the four moment$44),(45),(46),(47) are exactly fulfilled’ It

is worth noticing thatM3 g(q) is satisfied if and only if a
realistic two-body density matrix is used in the calculation of
R(q,Y).

The theory proposed fotHe in the mixture(Sec. 1) pre-
dicts a response which is a sum of a convolution product plus
a correction termAS®). The functionR®)(q,Y;) satisfies
Mor(d), M1 R(0), andM, g(q) but notM; x(q) because the
convolutive term relies on a boson-boson approximation.
Concerning the additive termS®, it is straightforward to

When the IA sum rules are compared with the inCOherent/erify that their three first moments are strictly zero whereas

results (29),(30),(31),(32), one realizes that the first three
moments are exhausted by IA. The leading order ternts in
in the m; sum rule are also reproduced by the IA but the
term with g(*%(r) is not recovered.

The variable that naturally emerges in the &xpansion

M3(g) contains corrections to the boson-bosgf#¥)(r)
functions assumed iM 3 x(Q).

IV. RESULTS

of the response of the mixture is the West scaling variable The generalization of the Gersch-Rodriguez formalism to

Y, . It is therefore also useful to consider thig-weighted
sum rules ofJ(*)(q,Y,):

vP@= [ avY@ay,). @9

The firstY, incoherent sum rules are

05452

the *He-*He mixture presented in Sec. Il requires knowledge
of the microscopic ground-state properties of the system. In
the present work, the necessary input has been obtained us-
ing the FHNC/HNC theory>=° The variational wave func-
tion is written as

V=Fd,, (49)

1-5
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TABLE |. Condensate fraction and kinetic energies as a func- 07 T T T T T T 0.7
tion of x. At each3He concentrationx the first row corresponds to 06 F 1 N 106
the J approximation and the second one to the JT one. os | 1 1os
X p(a?) No ta (K) ts (K) o4y g T 1042
0 0.3648 0.091 15.0 < T 1%

0.082 14.5 0zr T 702
0.066 0.3582 0.095 19.9 14.6 01} + 401
0.088 18.7 14.1 00 . . . . . . 00
0.095 0.3554 0.097 19.6 18.5 4 -2 v (gfl) 2 42 v (OA") 2 4
0.090 18.5 13.9 : :

FIG. 1. Compton profiles ofHe (left) and 3He (right), both in
JT (solid line) and J(dashed ling approximations fox=0.095.
with F an operator that incorporates the dynamical correla-
tions induced by the interatomic potential, atbg a model A. Impulse approximation
wave function that i_ntroduc_es the right quantum statistics of One of the characteristic properties of the IA in a pure
each componer@o IS conSIde_red a constant for bosons f"mdsystem is itsY scaling. In this approximation, the response is
a Slater determinant for fermions. In the Jastrow approx'maUsuaIIy written as the Compton profilY). However, glo-

tion, the correlation factoF is given by bal scaling is lost in the mixture due to the different mass of
the two helium isotopes. The individual Compton profiles
(@) itten i i i
. (@.B)(y J)(Y ) must be written in terms of its owN , variable.
F=F (11;[[3 LIJ 27y 49 Results ford(“)(Y,) atx=0.095 are shown in Fig. 1. The

different statistics of*He and*He are clearly visualized in
A significant improvement in the variational description of their respective momentum distributions, and therefore also
helium is achieved when three-body correlations are inin the Compton profiles. I™(y,), a & singularity of

cluded in the wave functioff>’ In this case, strength ny located atY,=0 (not shown in the figune
emerges on top of the background, wheread(#(Y,) the
F=F,r Fermi statistics is reflected in the kinks #t= *=kg pro-
duced by the gap ai®(k) atk=kg. The largeY,| behav-

_ 1—[ H f(”"ﬁ)(r--) 1—[ f(”"ﬁ'y)(r-- _—— ior of both responses is more similar and is entirely domi-

2 1 : 3 ijotikt k) nated by the tails of the respective momentum distributions.

asp i<j aspsyi<j<k
The dynamic structure function of the mixture suggests
(50 the definition of a total generalized Compton profile
J(a,Y,) .8 In the 1A,
The isotopic character of the mixture makes the inter-
atomic potential between the different pairs of particles be 1 q
the same. Therefore, the correlation factdig® and (G, Ya)= O o[ SzX+ 8oa(1—X)] m_aS'A(q’w)’ ®D
f{*£7 can be considered to first order as independent of the .
) with
indexesa, B, y. That appsré)ach, known as average correla-
tion approximation(ACA),® has been assumed throughout - —y)S4) 3)
this work. DMC calculations offHe-*He mixtures® have Sia(0,0) = 04(1-x) (0, 0) + 0xS(q,0). (52
estimated that the influence of the ACA in the momentumNotice that the definitior(51) is different for eachY,. In
distributions is less than 5%. order not to overload the notation, the introduction of a new
The dynamic structure function of the mixture has beerlabeling inJ(q,Y,) has been omitted. In terms of,, and
studied at®He concentrations=0.066 andx=0.095 that, introducing the single Compton profiléé®(Y ),
following the experimental isobhiP=0, correspond to the
total densities p=0.35820"° and p=0.35540"°(o 3(9,Y) =ID(Y,) + U—3f %3(3)[\(3(\(4)], (53)
=2.556 A), respectively. Notice the decreasepofvhen x 4(1=x) my
increases; in purédHe, p=0.36480"2. In Table I, results with
for the “He condensate fraction and kinetic energies per par-
ticle are reported i) and JT approximations. The conden- ms q
sate fraction increases withwhereas the kinetic energies Ya(Ya)= —=Ya— 5
decrease, both effects mainly due to the diminution of the 4
density. Results for puréHe in the JT approximatiothe ~ Equivalently, one can express the total generalized Compton
one used hereaftecompare favorably with DMC data from Pprofile as a function ofs,
Ref. 22 (ny=0.084,t,=14.3 K), and the decrease of, with
x is in agreement with the change m, estimated using J(q,Y3)= 4
DMC.1° o3X Mg

ms
- m_4) : (54)

e 20 T sy (v 439 Y), (55
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FIG. 2. Generalized Compton profiles in IA mt0.066 (left) FIG. 3. Real and imaginary parts 8%(q,s) (solid line) and
andx=0.095 (right). R(*)(q,s) (dashed lingat q=23.1 A"* for the x=0.095 mixture.
with mixture that makes the contributions of the Fermi statistics

very small. In fact, the differences shown in Fig. 3 between
R“)(q,s) andR®)(q,s) are essentially due to the different
mass of the two isotopes, which factorizes in the integral of
the interatomic potentialsee Eqs(14) and(19)].

The choice of the scaling variab¥, undoubtedly deter- -(r;)‘e real and imaginary parts of the additive term
mines some trends of the responseYjfis used, the*He A4S 7(0,S) are shown in Fig. 4 at the twdHe concentra-
peak is centered ar,=0 and the3He peak shifts toy,  tions studied. The behavior a&fS®)(q,s) is remarkably dif-
=(m,4/m3—1)q/2~q/6. On the other side, ifY; is the ferent from the behavior of the FSE broadening functions
choice the®He peak is centered at;=0 and theHe one R(¥(q,s), presenting oscillating tails that slowly fall to zero
moves toYs=(m;/m,— 1)g/2~ —g/8. In addition, and dis- With increasingx. The functionAS®)(q,s) incorporates on
regarding cross sections and concentration factors e the *He response all the Fermi corrections which are not
peak is reduced by a factans/m, when the response is Contained inRG)(q,s). In a dilute Fermi liquid, as’He in
expressed in terms of,. By the same token, théHe peak is the mixture, those contributions are characterized by the be-

- 4 . 2 _ 3 .
enhanced by a factan, /m; when the response is written as navior of [(ker) and1%(ker), 1(2) =3/z°(sinz—zcos?) be-
a function ofY. ing trle Slater funct|03n. o

In Fig. 2, the 1A responses for the mixture at two different  R'"(0,Ys) and R i(lans) are compared in Fig. 5 at
3He concentrations are shown. They correspond to a mo="0-095 andy=23.1A - The shape of both functions looks
mentum transfeg=23.1A"! and have been obtained from V€Y much the same: a dominant central peak and small os-
n(@(k) calculated at the JT approximation level. The differ- cillating tails that vanish withY ,|. Figure 5 also) shows that
ences between both curves are due to the concentration fagt @ given concentration the central peakRf(q,Ys) is

tors rather than to the differences between the momenturdlightly higher and narrower than the oneRif(q,Y,), an.
distributions involved. effect once again due to the different mass of the two iso-

topes. Therefore, at a fixed momentum trangfeiFSE in

“He are expected to be smaller tharfide. In the scale used

in Fig. 5, theR(®(q,Y,) functions atx=0.066 would be
The theory of FSE in®He-*He mixtures developed in hardly distinguishable from the onesat 0.095.

Sec. |l requires the knowledge of the three correcting func- The Compton profiledJ®)(q,Y5), derived from the Fou-

tions R®(q,s) [Eq. (14)], R®)(q,s) [Eq. (19], and rier transform ofAS®)(q,s), is shown in Fig. 6 at the twg

AS®)(q,s) [Eq.(22)] (s=tg/m,). These three functions are values considered\J®®)(q,Y5) presents a central peak and

complex with real and imaginary parts that are, respectively,

even and odd functions under the chasge—s. The latter 0.0060 . . . . 0.0010

my q
Ya(Y3)= m_3Y3_ >

my
e 1). (56)

B. Final state effects

is a consequence of the symmetry properties of the two-body

density matrices and of the central character of the inter- — o040 00005 &
atomic potential. The Fourier transforms of the real and?* B
imaginary parts generate, respectively, the even and od(% .0 00000 &
components oR“)(q,Y,) andAS®)(q,Y3), which are all &, LA
real. 2 00000 ~00005_%

In Fig. 3, the real and imaginary parts Bf*)(q,s) cor-
responding to x=0.095 mixture are shown. In spite of the .. s . . s —0.0010
0

fact that R“¥)(q,s) is calculated for the real mixture and 0 0 0 0w 6
R(®)(q,s) for the boson-boson one, the differences between SO SO

the two functions are rather small. Actually, those differ- FIG. 4. AS®)(q,s) at q=23.1A"* and for mixtures atx
ences are mainly attributable to the Io#de density in the =0.095 andx=0.066(solid and dashed lings
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> 0.8 f
06}
% 04t
02}
0.0
0.2

-3 -2 -1 0 1 2 3 3 2 -1 0 1 2 3
Y, (A" Y, A7
FIG. 5. Comparison betweeR“(q,Y,) and R®)(q,Y;) at g FIG. 7. The different contributions to théHe response ax
=23.1 A"* and forx=0.095(solid and dashed lines, respectively =0.095 andq=23.1A 1. Dotted line: “He Compton profile.

Notice that differenty , variables are used to depict each function. pashed line: the same convoluted wi*(q,Y,). Long-dashed
line: ngR™(q,Y,). Solid line: total*He response.

two minima close toY;= *kg. The absolute value of this
function is small compared to botR®)(q,Y3) and the IA
response)®)(Y3) (25) but manifests a sizable dependence
on the ®He concentration. This feature is patent in Fig. 6,
where one can see how the contributionAaf®)(q,Y3) in-
creases with. This is an expected result taking into accoun
that in the current approximationJ®)(q,Y5) incorporates
all the Fermi effects to théHe FSE function. _
According to the theory developed in Sec. II, thele C. Theory vs experiment
response in the mixturd)(q,Y,), is the sum of two terms: Scattering experiments suffer from instrumental resolu-
the noncondensate part of the IA convoluted withtion effects(IRE) that tend to smooth the detailed structure
R™)(q,Y,), andnoR™(q,Y,), which is the contribution of ~ of the dynamic structure function. Any comparison between
the condensate once broadened by FSE. The different termiseory and experiment have therefore to include in the analy-
contributing to the final response are separately shown igis the IRE contributions. From the theoretical side, it would
Fig. 7. The correction driven by is by far the largest one. pe desirable to remove the IRE from the data to allow for a
In spite of the small value afiy, the broadening of the con- direct comparison. This process would imply a deconvolu-
densate term, which transforms thsingularity predicted by tion procedure that is known to be highly unstable. As sug-
the IA into a function of finite height and width, unambigu- gested by Sokoét al,* it is better to convolute the theoret-
ously produces non-negligible FSE in tfiele peak. ical prediction with the IRE functioh(®(q,Y,), and then to
The obvious lack of a condensate fraction in thide  compare the result with the experimental data. The functions
component reduces the quantitative relevance of its FSE. Thé¥)(q,Y,) provided by Sokdf are reported in Fig. 9. As
3He FSE correcting functions and the corresponding IA re-

sponse, are compared in Fig. 8xat 0.095. The convolution

of the 1A with R®)(q,Y5) produces a slight quenching of
J®)(q,Y5) around the peak and a complete smoothing of the
discontinuity in the derivative ad®)(Y3) at Y= *kg. The
tcontribution of AJ®)(q,Y5) is rather small but restores to
some extent the change in the derivative arokpd

0.7
0.015 T T T 0.6
05|
0.010 | _
< 04 |
°<:mo.005 - >c~:0.3 '
€ g 02f
g 0.000
3 01t
—0.005 0.0
-0.1 - ' - ' -
~0.010 . . . -3 -2 -1 0 1 2 3
-2 -1 0 1 2 Y, (A
Y, (A7)
FIG. 8. The different contributions to théHe response ax
FIG. 6. The®He additive correcting term at=23.1 A" forx = =0.095 andq=23.1A 1. Dotted line: 3He Compton profile.
=0.095 andx=0.066 mixtures(solid and dashed lines, respec- Dashed line: the same convoluted wig)(q,Y,). Dotted-dashed
tively). line: AJ®)(q,Y5). Solid line: total*He response.
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25 - - - T T - 25 Let us turn to Fig. 10 with the comparison between the
theoretical and experimental responses. The theoretical re-
20r T 120 sult, constructed using Eq&53) and (55), but replacing the
Pl 1 1= 1A J(Y,) with the final response¥“)(q,Y,,), shows siz-
E, g able differences with respect to the experimental data and a
Fof 1 110 lack of strength below the two peaks. In order to clarify the
e z origin of such a large discrepancy, we have compared the
05 T q05 Mgy and M, sum rules obtained by direct integration of the
experimentall(q,Y,) with the theoretical result&Sec. IlI).
00 =" S o o N 5 00 That check has shown that tivd, and M, values obtained
Y, A" Y. A" from the two procedures are not compatible. Our conclusion

. . . . . is that the reported experimental Compton profiles are prob-
tions atx=0.095 andq=23.1 A"". the analysis of different possibilities, we have verified that if
one defines the response in the form

one can see, aj=23.1A"! the IRE corrections are of the
same order of the FSE functioi®“(q,Y,), and in fact ~ ) 73X 3
. . o ) voak = +—
their magnitude significantly increases withThe IRE func- J(0,Ya)=J7a, ) g4(1—Xx) I7La.Ya(Ya)] (57
tions for the mixture(Fig. 9 present a small shift of their
maximum to negativ& values, a feature that makes the peak®"
of the total response slightly move in the same direction. —x)
In Fig. 10, the generalized Compton profiléq,Y,) (in- J(q,Y3) = ———IW[q,Y4(Y3)]+IC(q,Ys),
cluding both the IRE and FSls compared with the scatter- 03X
ing data of Wang and Sok8IThose measurements were (58)
carried out in a<=0.09751m|xture aff=1.4 Kand amomen- the agreement in both sum rules is recovered. By moving our
tum transferq =23.1 A .The analysis of the expenme_ntal results to those modified Compton profild¢q,Y,), the
data led the author:?‘ to estimate tﬁde_ condensate frac.tlon agreement between theory and experiment improves signifi-
and the single-particle kinetic energies of both species. "?:antly but only to what concerns thiHe peak. Notice that
Ref. 8, a valuen;=0.18+0.03, and kinetic energids=13 4 : . : :
+3 K andtz=11*+3 K are reported. That work, and an the "He peak is not modified when going frod{q,Ya) to
independent measurement performed by Azwethal,* J(q,Y4)_, and th_ataS|gn|f|cantd|fference in the height of the
agree in the values of the kinetic energies and in their depereaK still remains.

dence with the’He concentration. Both analyses coincide in '€ Mmissing strength of the theoreticdHe peak with
a decrease ity with x and a more surprising constancytaf respect to the experimental data could justify the difference

alongx. Microscopic calculatiorfé of those quantities only Petween the theoretical and experimental values,oHow-

agree with the experimental resulttafp). Several indepen- €Ve" the present variational momentum distribution predicts

dent calculationg® including the present one, suggest'o vaI_ueso that are indistinguishable from a DMC
smaller values o, (ng=0.10) and larger values df (ts estimationt® Therefore, this difference should not be attrib-

~18K), in clear disagreement with the experimental estima{it€d to inaccuracies of om'*)(k) but rather to an intriguing
tions. gap between theory and experiment. At this point, it is worth
considering the difficulties the experimentalists have to face
to extractny andt, from the measured data. On the one
hand, experience in the puriHe response has shown that
different momentum distributionéwith different ny’s) can

be accurately fitted to the data. On the other, the kinetic
energy per particle is derived from thei sum rule whose
estimation is highly influenced by the tails of the response.
Those tails cannot be accurately resolved due to the noise of
the data, and thus the predictiontgfappears relatively un-
certain. That is even more pronounced in thée peak be-
cause the strong interaction withHe causesn® (k) to
present non-negligible occupations up to lakgealues.

The influence ohy andt, on the momentum distribution,
and hence on the response, can be roughly estimated from
the behavior of the one-body density matrix. In a simple

FIG. 10. Comparison of the theoretical generalized ComptorRPProximation, one can perform a cumulant expansion of
profile (solid line) and the experimental measurements of Wang anci”(r) and relate the lowest order cumulants to the lowest
Sokol (Ref. 8 of the x=0.095 mixture atq=23.1A"* and T  order sum rules of (¥ (k). Introducing an expansion param-
=1.4 K (points with error bars etera,

. 0'4(1

Y, (AT
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0.6 - : - : : ; : : V. SUMMARY AND CONCLUSIONS

A generalized Gersch-Rodriguez formalism has been ap-

04 plied to study the dynamic structure function of thide-*He
<03 mixture at high-momentum transfer. The Fermi character of
o 3He forbids a straightforward generalization of most FSE
g02 theories used in bosonic systems, a problem that has been

o

overcome in an approximate way. The approximations as-
sumed are, however, expected to include the leading Fermi

0.0 g
. ‘ . ‘ ‘ . ‘ . contributions to the FSE, at least in the mixture where the
T 3He partial density is very small.
Y, A7) Y, A7 The theoretical response obtained shows significant dif-

FIG. 11. Thex=0.095 experimental data of Wang and Sokol ferences with scattering data in both tAele and the®*He
(Ref. 8 compared to the response obtained from an alternativpeaks. However, a sum-rules analysis of the experimental
p{(r) with ny=0.14 andt,=t,=13.9 K (solid line), left panel,  response has shown some inconsistencies. Redefining the to-
and withny=0.10 andt,= 13.0 K (solid line), right panel. tal response, it is possible to reach agreement between the
theoretical and the numerical values of the first-order sum
rules. If the theoretical response is changed in the same way,
the agreement is much better. Nevertheless,*the peak is
not modified by this redefinitiofwritten as a function o¥,)
=(1-ng) —AX(r-pp)*+---. (59  and an intriguing sizable difference in its strength subsists.
From the theoretical side, several arguments may be argued
trying to explain the observed discrepancies. The first uncer-
tainty could be attributed to the use of a Gersch-Rodriguez
theory to account for the FSE. In our opinion, that criticism
has probably no sense because we have verified that, at simi-
lar momentum transfer, the experimental response of pure
“He is fully recovered with the GR theoty. Assuming
therefore that the theoretical framework is able to describe
1 (@) r 2 myr? the highg response of the mixture, one could be led to argue
s Pl (r)=no+(1-nojexp -3 (1—ng) PR that the approximate microscopic inputs of the theory are not
(61)  accurate enough. That argument was put forward in Ref. 8 to
explain the differences iny andt;. One of the main criti-
Equation(61) can then be used to relgté”)(r) to anew  cisms was the use of the ACA, which they claimed could be
one-body density matrig(l“)(r) with slightly different val- ~ too restrictive to allow for a reduction @ towards a value
uesn. andt. closer to the experimental one. However, a DMC
0 4 calculatiof! in which the ACA is not present, has proved
that only a diminution of~0.5 K in t5 is obtained. Concern-

ipg_‘l)()\r) —Ng= eﬂ0+}\2M2+ T
Pa
Taking into account that

2 2
((r-pp?= n;:r ty, (60)

and considering.=1,

1 _
—p{(r)=no+
P4

1 4y, 1-ng ing the condensate fraction value, our variational theory pre-
apl (r)—no 1-—ng dicts a slight increase af, with x. This increase, which is
_ mainly due to the decrease of the equilibrium density when
2mgr? |ty ta grows, is nevertheless much smaller then the one that would
X exg — 3 1-n. - 1-ng tee be required to reproduce the experimental prediction. Our
0 results forny are again in overall agreement with the nearly
(620  exact DMC calculation of Ref. 10.

In this way, the perturbed{")(r) andn™)(k) preserve their thelgrzggrlnggé\évrigguéiIltI;]eeti)/a(Tlrj‘épShr;?Zr(]adt?:tfgr]errnei)((?X|sts

normalization and allow one to go beyond a simpieres- 1,65 pyt these values are quite far from the experimental

caling. Using this method,4we have studied the effect Ofggtimations. Additional scattering measurements on the

changingng andt, on the “He response. In Fig. 11, the 3He-*He mixture are necessary to solve the puzzle.

results corresponding t) ny=0.14, t,=13.9 K, and(ii)

ny=0.10,t,=13.0 K are shown. As one can see, both slight

changes in the theoretical response lead to a nice agreement ACKNOWLEDGMENTS

with the experimental data. Consequently, such a large value

of ny (n§®=0.18) does not seem to be required in order to  This research has been partially supported by DGESIC

reproduce the additional strength observed below 4He  (Spain Grant Nos. PB98-0922 and PB98-1247, and DGR

peak. The rescalings2) shows that a small decrease in the (Catalunya Grant Nos. 1999SGR-00146 and SGR99-0011.

kinetic energy enhances the central peak in the same foriii.M. acknowledges the support from the Austrian Science
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