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A density-functional self-consistent calculation of the ground-state electronic density of quantum dots under
an arbitrary magnetic field is performed. We consider a parabolic lateral confining potential. The addition
energy,E(N+1)—E(N), whereN is the number of electrons, is compared with experimental data and the
different contributions to the energy are analyzed. The Hamiltonian is modeled by a density functional, which
includes the exchange and correlation interactions and the local formation of Landau levels for different
equilibrium spin populations. We obtain an analytical expression for the critical density under which sponta-
neous polarization, induced by the exchange interaction, takes p&@E63-18268)07740-9

I. INTRODUCTION all. We obtain an analytical expression for the critical density
under which the system is spontaneously fully polarized.
Quantum dots represent systems in which the transition As in McEuen’s work, ours is a self-consistent calcula-

from quantum to semiclassical physics can be tested in afon, and benefits from the ability to analyze each contribu-
increasingly controlled way and are suitable for comparingion of the Hamiltonian directly.
different theoretical approaches with experimental data. This paper is organized as follows. In Sec. Il we describe
Here we concentrate on the study of the ground Sigi®) the mode_l used in our (_:alculatipn, the d_ifferent parts of t_he
properties. We examine the formation of compressible andfiamiltonian are described, with special emphasis being
incompressible regions within the dot and their dependencBlaced on the kinetic term and on the way in which the spin
on the applied magnetic field as well as the different Contri_populanon is locally determined. In Sec. lll the numerical

butions to the energy from the different terms of the Hamil-method used in the iterative calculation is described and in
tonian. Finally, we propose an interpretation of the additionsec' IV detailed numerical results for electronic densities and

spectrum in the quantum Hall reaime agiven b Mcheng'S' energies for various magnetic fields are presented. We
eItO al? q 9 9 y propose a possible interpretation of the addition spectra.

In order to develop a managable method for dealing with
a wide range of quantum dots, an alternative model to the
Thomas-Fermi calculation given by McEuenal? or Mar- The total energy of the system is given by the two-
morkos and Beenakk&has been developed. There are twodimensional2D) integral,
main differences between our model and the standard
Thomas-Fermi or semiclassical approaches previously re-
ported in the literaturésee, for example, Refs. 2, 4, 5, and
6):

(1) The kinetic term in the Hamiltonian is given by a local
density functional for each spin population, taking into ac-
count the Landau Leveld L) created by the magnetic field.
In Ref. 2 the kinetic contribution is not given by a local term, the subindexes distinguish the different spin populations and
but instead each LL energy is multiplied by a global density
Pns (within the whole dok assigned to this level, character- fioe L .
ized by thens indexes, and self-consistently calculated. The &= DS tho(S+2)(n—SD), i=12. (3
level densities are treated separately on the assumption that
the coupling between states in distinct LL's is small. OurThe first term is the contribution to the kinetic energy from
treatment produces total charges for each LL that are ndhe fully occupied LL, whereas the second term is the con-
restricted to integer numbers and therefore, compatible witityibution that comes from the last, possible partially occupied
the idea of the formation of “melting states” as discussed byLL. D=B e/hc is the LL degeneracy per unit arda,being
Palacioset al’ the magnetic field strengtle,the electronic charge, arathe

(2) The exchange interaction is taken into account in twdlight velocity in vacuum. Locally, we consider a free system
different ways: as a density functional term in the Hamil- of independent electrons under a magnetic field in a dot of
tonian and as an interaction that determiriesgether with area wR?. The cyclotron frequency is given by,
the kinetic term and spin-magnetic field interacjitime spin =eB/cm*, m* being the effective electron masS, the
populations that locally minimize the energy. In McEuen’slast LL fully (locally) occupied and; the electronic density
paper the exchange interaction is not taken into account aiven by

Il. THE MODEL USED

Eior= j dr[ e+ €contt €gir T €ext Ecort €8], 1)
where in the kinetic term

€= €1t €k (2

0163-1829/98/5@.9)/1297(010)/$15.00 PRB 58 12 970 ©1998 The American Physical Society



PRB 58 GROUND-STATE SELF-CONSISTENT CALCULATION ©. .. 12971

n=3n(1-§ or n,=3zn(1+§), 4 120
where 0= ¢=<1 is the spin asymmetry. 100
S is defined as
n;(r
S= Intege[#} . (5) 80
3
The ¢ parameter is determined by minimizing the energy % 60
against¢ as is explained below. The next term, w
40
€con= 3 M* W3r2n(r), n=ny+n,, (6)
is the contribution that comes from the confining potential, 20
assumed to be parabolisonquadratic terms can be added to © 10%A)
see the effects of nonparaboligity 0 . A .
The next three terms in E@l) come from the Coulomb 0 1 2 . 3 4
interaction. The direct Coulomb term is given by r [10%A]

e FIG. 1. Kinetic contribution to the Euler equation along the dot
EdirZEV(r)nv (7) radius for a dome density. The smooth curve is the Thomas-Fermi
result and the stepped curve the LL type resultNe+ 100 and for
whereV(r) is the potential created by the 2D electronic disk,N=10 in the insetB=1 T has been considered in both cases.
and is given by
us=efi/2mc), and ., is the Wigner approximation calcu-

vine S n(r)dr’ 12e " e[ lated for a 2D syster wherea} =e%2/m* e2.
(N= e IF—r| I el Xn(x) r By minimizing the total energy of the dot with respect to
the density for a fixed number of electrons, an Euler-
de(r X Lagrange equation is obtained,
+——| dxxn’(X)E| =
rejo r
d€rp(N)
e (= r e = = e, (13)
—4—| dxxn' (X)E|{—=|—8r—n(r), (8) an
EJr X &

whereu is the chemical potential ang(n) is the density
functional energy per unit area obtained from the six terms in
Eq. ().
It must be emphasized that each term is calculated within
2\ 3 a local approximation and especially the kinetic term at
8 e“fn . oo
€oy=— —— _( _) [(1—&)%2+(1+£)¥7 (9) r, e(r) is the contrlbutlon.of a 2D .free-electron gas of den-
3Jm el2 sity n(r) under a magnetic field, in the same spirit as the
_ Thomas-Fermi functional is calculated for an infinite homo-
calculated frc_Jm the exchange energy term per electron in Beneous gas. For a large number of electrons, and low mag-
2D system given in Refs. 9 and 10 by netic field, our kinetic functional approaches the 2D Thomas-

whereE is the complete elliptic integral of the second kfhd,
ande is the dielectric constant of the semiconductor.
The exchange term is given by the expression

5 ) Fermi contribution2an(r)/m* as expectedsee Fig. 1L
E X(IZ)=—2ik el 2 (10) The local approximation is expected to be reasonably
e me T kﬁ ' good, due to the partial cancellation between the direct Cou-

o _ lomb term and the confining potential, a cancellation that
once it is averaged and separately considered for each spgtoduces a rather flat effective potential within the dot area,

population. as is verified below.
Finally, the Zeeman splitting and correlation terms in Eq.  The functional variation of each of the six terms in E.
(1) are given by is straightforward, except in the case of the kinetic contribu-
tion where some care must be taken. To complete this sec-
c _9 Bén (11) tion, we will discus the kinetic contribution to the Euler
BT M8 equation and the calculation of tlieparameter in the next
two subsections.
and
e2 n3/2 A. Kinetic contribution
€cor™ _0'977§ 1+7.816&§n1’2) ' (12) If one assumes that the addition of an extra electten

us say in the spin up populatipteaves the number of fully
whereg is the Landefactor appropriate to the semiconduc- occupied LL'’s,(S) unchanged and that only the highest par-
tor, ug is the Bohr magnetoiffor the free electron mass, tially filled level is affected, then the nonvanishing contribu-
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25 a being the difference betweer(r)/D andSand where an
electron inside the greatest spin populati®+(S,) has been
considered, i.e., the derivative is taken with respech4o
keepingn, fixed.

For a system of electrons in the absence of magnetic field,
14 the non-negative functiom(r) that produces a constant
function on the right-hand side of E(L3) is the g.s. density.
However, the presence of a magnetic field localizes the elec-
trons in space and the functions involved in the Euler equa-
tion have to be redefined.
42 To reconcile the definition of the functidd given by Eq.
-— (16), which has abrupt changes alonghat are only partially
compensated by the Coulomb terms, with the presence of a
constant chemical potential on the right-hand side of(E8).
L . o2 one must make a more general treatment. Following Ref. 12,
2 4 s 0 the kinetic contribution to Eq(13) is defined by the set val-
ued function,
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FIG. 2. Left axis labeling: Kinetic contribution to the energy €k .
density as a function of the electronic density. The arrows corre- a_n:{hw°(8+ 12} if  a#0, 17
spond to integer filling factorigtn(i)]. Right axis labeling: Kinetic

contribution to the Euler equatioB=1 T in both cases.

Je
_ — [hw(S-1/2),hw(S+1/2)] if «=0, (18
tion to de, /dn comes from then;-dependent part of the sec- an

ond term on the right-hand side of E@) and is given by ) ]
where {x} denotes a single value and;,x,] is a closed

N interval. The Euler equation can then be written as
ho(S+3). (14
d€(r)

A subtle problem arises from those values of the local VoM +pee ——, (19
electronic density that produce an integer filling factor, due
to the discqntinuities pf the functiofe, /dn at these values \hereV,(r) includes the last five terms of the right-hand
of the den5|t§72 (see Fig. 2 _ . side of Eq.(15) and u. is constant along the radius.

A simple way to solve the uncertainty at the points of  For a fixed number of electrons and magnetic field, E4eb
discontinuity is given by the consideration thiad/dn isthe  has proved that there is a unique non-negative density and a
energy of an electron at the Fermi ley#ie highest possible constantu, that satisfy Eq(19).
single-particle stage From this point of view, the value of its | addition to this explanation, we went ahead with the
energy, once the local density and the degenefacgre  specific realization of the kinetic term given by the fuction
known is clear. The value that one must assigidp/dn at  defined by Eq(16) in order to obtain numerically the mini-
n(i) (see Fig. 2is the one given by the lower edge of the mizer density. We defing = de/an to distinguish it from the
gap (the black dots in Fig. 2 o _ chemical potential.. The solution of Eq(19) is obtained

The final expresion for the Euler equation is then given asyhen the iterative process converges to a density that pro-
duces a constant value @f within the regions wherex

J€tot 1 g #0.
- =Ctrevr)+ m* wgr?+ > 1B Physically this means that even though the energy of the
last one-electron occupied statg is not the same over the
2 12 whole dot, one can define a chemical potential. This is a

e[ n
- ;‘{ﬂ(l“‘ £) consequence of dealing with strongly localized electrons for
which Koopman’s theorem, which identifies tpg constant
3 with the Fermi energy; does not apply.
& §n1’2+ 7.816%%n 9y: PP

—0.9775— , 15
& (1+7.816@%nY?)2 19

B. The & parameter

The ¢ parameter has to be obtained from the minimization
of the total energy againgt However, there are only three
terms that explicitly depend og: the kinetic energy, the
) Coulomb exchange term, and the Zeeman splitting contribu-

0 if a=0 and S=0 tion. Apparently, the spin population obtained from only

c={ ho(S-%) if «=0 and S#0 (16 these three terms would correspond to an extended system
free from any confining potential and therefore uninfluenced
hol(S+3) if a#0, by wg. However, the action of the confining potential on the

whereC is given by
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spin population, which undoubtedly exists, is indirectly in-
cluded via the local density(r) obtained by the solution of 1.0
the whole Hamiltonian.
Therefore, the three terms that have to be minimized are 08k 2
€(§) = €t €ext €5, (20
06}
where ¢, from Eqg. (2) can be written as 3
hw 0.4
= (N[1+S1+S,+ (S, Sy)]
0.2F 1
—D[Si($1+1)+S(S+ D]} (21
and wheree,, andeg are given by Eqs(9) and(11), respec- 0.0 . | ! L
tively. The value of¢ that locally minimizes the enerd¥q. 0.8 1 2 14 16 1.8
(20)] is not calculated from the condition of vanishing of the OIS

first derivative, but is explicitly obtained numerically from _ _

the variation of e(¢). The kinetic contribution increases  FIG- 3. Spin asymmetry parametéras a function of the elec-
monotonically with ¢ (S, are ¢ dependent whereas the tronic density. Curve 1 foB=1 T and curve 2 foB=6 T.
negative exchange contribution decreases also monotoni- . L

cally. The Zeeman splitting term gives a negligible decreasproduce the irregular structure of the kinetic and exchange

; - ; .. contributions to the chemical potential as we show below.

Iﬁnegld(sg.<0) contribution except for extremely high magnetic The spin polarization of the entire dot is obtained from
In the absence of any magnetic field, for high local den- 1

sity, the kinetic term is the dominant part agec0 mini- feff:_J' &(ryn(r)dr, (24

mizes the energgyielding a nonpolarized systemHowever, N

if the density is low(i.e., at the edge of the dahe exchange \ynereN is the total number of electrons.

contribution competes with the kinetic term and may pro-

duce a completely polarized system. The critical density that

determines an abrupt change from fully polarized to nonpo- lll. NUMERICAL CALCULATION

larized systemgwith zero magnetic fieldis given by To solve the Euler-Lagrange equatidgy. (13)] we trans-
form it into a fictitious Schrdinger equation in the following
e(ne,§=1)=€(n,§=0) (22)  way: we add and subtract a Laplacian operator term:
or An AN e
—a—+a—+ = (25
8y2(\2—1)]2 e*mr2 Aposk 2 n n. on
¢ 3 ﬁ482w3:2'44ﬁ432w3 (23 and substitute the last two terms on the left-hand side for

their value at a given starting density, obtaining

(this means about 3 electrons within a dot of a radiuRof
=400 A, or n,=6.82x10'° cm 2=0.078A% 2 for m*
=0.06",, and £=13.6). Spontaneous spin polarization
was previously reported, in the region of the saddle point in _ )
guantum point contacts as the electron density is lowered, This can be written as
using the spin-polarized density-functional theory of
Kohn-Shamt! This effect provided a qualitative explanation hn=un (27
to conduction anomalies observed experiment4ily. where

Turning back to Fig. 1, which shows the Thomas-Fermi
and the Landau-type kinetic contribution considered in Eq. Ang  de
(15), some structures can now be understood. At the center h=—aA+ug, uo=an—+ an
of the dot, the electron at the Fermi level lies at the seventh 0 0
LL and falls into lower levels as the density decreases withand wheren must satisfy the normalization condition
r. An abrupt oscillation is apparent near the edge of the dot,
where the density lies below the critical value. In this region, -
the system is suddenly fully polarized and the density of the f ndr=N.
greatest spin population suffers an abrupt increase promoting
the last electron into higher levels. In this way Eq.(27) becomes an eigenvalue problem. As

The value of¢(n) that minimizes the energy is shown in long as a convergent iterative procedure produces an output
Fig. 3 for two different values of the magnetic field. A non- density equal to the input density coming from the previous
zero magnetic field produces a critical density higher tharstep, the solution of Eq27) will be a solution of Eq(13).
the one given by Eq23). The oscillations of th& parameter Now, we consider the equation

Ano 07€t t
a— +—

—aAn+
Nng dng

n=un. (26)

(28)

(29
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an The appropriate boundary conditions for our problem are
-, = —hn, (300 the cancellation of the first-order derivatives r{tl) and
r(N+1) and, must be implemented in the first and last rows

wherer is a “fake time.”*® For positive eigenvalues, the net of the (N+1)x (N+1) matrix in Eq.(36) on the left-hand
result of the time evolution of a linear combination of eigen-side and in the first and last values of the column on the
functions is to enhance those components that have smalleight-hand side.
eigenvalues. To understand what is going on, let the set of In some cases, the convergence of the numerical process
statex, be the eigenfunctions of the discrete oper&tarith  turns out to be quite sensitive to the initial input density. As
eigenvaluest, . Sinceh is Hermitian operator, the eigenval- a rule of thumb, it is convenient to begin with an electronic
ues are real, the eigenvectors can be chosen to be orthonalensity confined within the classical radigsgiven in the
mal, and an expansion ofon this basis at any time is given next section by Eq(39), and which approximately repro-
by duces the valua(0) given by Eq.(38).

n=2> aln,, (31) IV. RESULTS
v

. o _ Some test calculations will first be discussed. They are of
where time evolution is represented by stepsAaf for j  some interest in their own right, besides providing a check

=0,1,2.... On theother hand, the exact time evolution of on the method and the numerical calculation. We will con-
n is given by centrate on three such tests:

hjar (1) Semiclassical model. An analytical solution of the g.s.

nj=e No (32 density can be obtain&®’ if the Hamiltonian contains only
in such a way that each component of the linear combinatiofV0 terms, the direct Coulomb contribution and the confining
should evolve as potential. The solution is given by a “dome” density, given
by
o) =e sty (33
2
[ r
That is to say, components with larger eigenvalues disap- n(r)=n(0) \/1- =2 (37)

pear more rapidly, leaving the eigenstate of lowest energy as
the dominant contribution for sufficiently long time evolu- where
tion.
As long asA 7 is chosen to be small enough, E§2) can 3N
be written as n(0)= Y=
an

(38

1-(A7/2)h n (34) and where a relation between the three parameigys,R,
1+(A7/2)h © andN must hold:

fter the first stefto ord 2], /
after the first stefjto order A 7)<], or ~ 37Ne? 39
A AT ) wo~ 4em*R%
Ng.

r
1+7h)n1=<1—7h (35

nlz(l_ATh)noz

In Fig. 4 the two terms that enter the Euler equation are
Finally, if the right-hand side is fully calculated at the displayed(as “dir” and “conf”). The Coulomb potential

initial densityng, then we obtain created by the electronic density and the confining potential
cancel each other out, producing a constant chemical poten-

1+ A—Th>n :<1_A_T f9ftot) (36) tial throughout the dot (‘). These two terms are the
2 ! 2 ang) ° main ones in the general case, which includes all the terms of

the Hamiltonian, as is verified below, and as a consequence,

If an iterative calculation is performed, normalizimy  the effective potential seen by an electron inside the dot will
after each step, the convergent process must evolve to theways be quite flat. To see the relative importance of each of
ground-state density of the system. the terms in the full Hamiltonian, in Fig. 4 we also show

The space derivatives are approximated by finite differtheir contributions separately using the dome density as a
ences on a uniform lattice &+ 1 points having spacing first approximation. It must be stressed that the dome density
=1/N, therefore transforming Eq36) into an (N+1)x (N is not a solution of the whole Hamiltonian and that thg ™
+1) system of equations that can be solved by inverting theurve contains only the “dir” and “conf”’ terms.
matrix [1+ (A7/2)h];; ,1,j=1,2,.. N+1. Although the model used has certain similarities with the

Although this numerical procedure is straightforward, it Thomas-Fermi model, particularly in the way the system is
involves a few subtleties. The parameganust be chosen in inspected locally, point by point, there are significant differ-
such a way thatAngy/ng and de,/dng are of the same ences. As in the Thomas-Fermi model, one has to worry
order of magnitude and r must guarantee that the approxi- about the space variations in the fields felt by the electrons.
mations made in the expansions of E84) are valid. More-  The models are justified only in the case where the potentials
over, it is sometimes necessary to average the last two dease flat enough to consider free electrons locally, in such a
sities to generate the next. way that the local effect of the potentials is to change the
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Lor 5
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20+ {conf) ‘g’
_— (k)
m\ 1 F
0
{cor) fex) (8) R
1 1 1 T 0 L R
23 °
r [10°A] () r[10%A)
FIG. 4. Direct Coulomkdir) and confining potentialconf) con-
tributions to the Euler equation along the radius using the dome
density for 10 electrons andR=400 A, g=-0.44, m* 140k

=0.06M,, 7%wy=2.6 meV ande=12.4. 4 being the chemical

potential for this two terms. Contributions to the Euler equation
from the kinetic k), correlation(cor), exchanggex) and Zeeman 120}
splitting (B) terms are also displayed.

100

ulmeVv]

zero of energy. Under this hypothesis, the semiclassical
Thomas-Fermi kinetic energy is calculated assuming a con-
tinuous density of states and full occupation of each level 8or
(the total number of electrons is always an even numiber

contrast, in our model the kinetic contribution is the exact 60;_/,/

guantum contribution from a free system of electrons, in

which the discrete energy levels with finite degeneracy are 40 , IR ,

considered for each spin state. In order to recover the 0 2 4 6 8
Thomas-Fermi result as a limit, one must reduce the energy (0) r [10%A]

gaps to zerddecreasing the magnetic figldnd consider all

levels as being fully occupied. FIG. 5. (a) Succesive iterationssolid lineg generated from a

One consequence of our model is the appearance @emiclassical model Hamiltonigsee text The lower dotted curve
strong variations in the kinetic contribution to the Euler is the starting density, and the upper dotted curve the exact dome
equation within short distancésee Figs. 1 and)4However, ~ Solution.(b) Chemical potentials fon, ( dotted curvg¢and the last
this effect does not violate our initial hypothesis concerningfteration (full curve).
the smoothness of the potentials, which justifies the free

electron assumption. wheren=0,1,2...,1=0,+1,+2,...,
Besides this argument, it is true that the use of wave func-
tions would smooth the abrupt variations of the kinetic term i -
used to generate new densities after each iteration. To see if )\sz W= \/w§+4w§ (41)

it had any effect on the final converged density, we convo-

luted €,(r) within each iteration, using a Gaussian function ) 2
ith a width typical of a single elect function of the 219U=*/(2A%).

with a wi ypical of a singie electron wave function ofthe ;.00 the Laguerre polynomials are well behaved at the

L_aguerre ty%e{Eqd(40)]. HoYéef\_/ e(;, W'tz'.?fthe nhumerical pre- boundaries, we selected these wave functions as a standard
msu;n l;:(_)n5| etre ’twe'tﬁputh ':' n(')lt ierences. lud | way for generating the starting density within the general
(2) If in contrast, within the Hamiltonian we include only iterative procedure.

the kinetic tgrm(including a nonvanishing magqetic figld As a second test, we began with generated by Laguerre
and the confining potential, and as such we define a syste lynomials and looked for the solution of the semiclassical

OT m?epetr)dent_ eklectronts, bthe _analgtlclfll solution Ifor th. model, that is, when only the Coulomb and confining poten-
e:g?—ﬂ‘u&c 10ns 1S khown to be given by Laguerre polynomi~j,| terms are included in the Hamiltonian. Taking the first 50
alstn, wave functions of lowest energy to produce the starting den-

sity ng (normalized toN electrong, the iterative procedure
(r,0)= / n! Ee—ilaullllze—ullell(u) produces the density shown in Figiap The lower dotted
Pni(1 0)= 2m(n+I)! A nA=n curve is the starting density,, the upper dotted curve is the

(40 exact dome density included for comparison, and the con-
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8 within a model that tends to the exact quantum solution for
. N— 00,12 Within this calculation, an unpolarized system with
constantt=0 was considerefthere is no exchange interac-
tion and the magnetic field considered is smalhe starting
density was the same as that used above, generated from 50
Laguerre functions and normalized to 10 electrons.

The chemical potentials are shown in Figb)6 Due to the
WL different treatment of the kinetic term the exact density is not
the solution to our Euler equation, and the iterations con-
verge to a different density, which nevertheless is relatively
close to the exact solution.
2 Our result produces a succession of small steps that fol-
low the semiclassical Thomas-Fermi result displayed by
3 curve 4 and obtained from the replacement of the kinetic
term by the expressioi?wn(r)/m*. The agreement be-
00 é n 5 tween the Thomas-Fermi profile and the exact solution in

r [102A] most of ther range is due to the small influence that the

(a) magnetic field has at this relatively high density.
This result would suggest that the inclusion of the LL type

n{r)(105A2)

100 kinetic term does not produce a great improvement in the
sok results if compared to those obtained from the semiclassical
Thomas-Fermi model. Nonetheless, a qualitatively different
— 6ok result is obtained when an electron-electron interaction is
3 considered including not only the direct Coulomb term but
% sk also the exchange interaction. The formation of plateaus in
the density profile is showicurve 5§ as a consequence of
20F electronic interaction. The width of the plateaus changes as
the magnetic field increases, as is shown below. It must be
0 ! I ! I stressed that the steps of curve 2 are a direct manifestation of
0 L 2 - 3 4 the LL's whereas the plateaus of curve 5 result from the
(b) r[10°A] interplay between kinetic and Coulomb interaction.

Before discussing the addition spectrum calculation, it
proved both useful and instructive to analyze the evolution of
the g.s. electronic density and the g.s. energy with the mag-
Retic field. From now on the parameters used are those of the
gxperiment reported in Ref. 2:g=-0.44, m*

FIG. 6. (a) Electronic density of a 10 electron dot f@
=1 T, e=12.4 andhwy=2.6 meV. For a noninteracting system:
curve 1 is the exact solution, added for comparison, curve 3 is th
starting densityng, curve 2 is the numerical result and curve 4 is
the Thomas-Fermi approximation. Curve 5 is the numerical resul
that includes electrorﬁ)ﬁelectron interactidh) Chemical potentials =0.06Mm,, N=39 (the nl_meer of eIe_ctrom,s hwo
for the first three densities: lower dotted curve is fgy, upper _:1'6 m_eVz ande=13.6. In F'g_' 7 the evolution _Of 'Fhe pro-
dotted curve is for the exact solution, and the full curve is for theflle density is shown as a function of the magnetic figtdm
numerical result. 0410 29T7. o o _

As the magnetic field changes, the periodic formation of
tinuous lines give succesive iterations. However, we werélensity plateaus becomes visible. B&1.1 T two constant
unable to arrive at the exact solution because of the differerflensity regions are produced at around7.5az and atr
boundary conditions @. The exact solution has an infinite =14ag . These disappear for greater valuesBpfappearing
derivative whereas the iterative procedure produces densitiegjain forB=2.1 T at around =9.3a5 .
of vanishing first derivative at the edge of the dot. However, A Lang-Kohn type calculation produces Friedel oscilla-
the last iteration gives a good approximation to the Euletions in the density profiles that mask the plateaus, as is the
equation as shown in Fig.(15). case in Refs. 19 and 20 where moreover, a different density

(3) For the last test, a system of 10 independent electronfinctional for the exchange interaction is used.
was considered. The result obtained is shown in Fig) 6 It is also apparent in Fig. 7 that for very small or very
where the upper dotted curve labeled 1 and included folarge values oB, the density resembles that of the classical
comparison is the exact solution built up from the first fivedome, although the energetic structure of the dots differs
functions [given by Eq.(40)] of the lowest energyeach greatly. For highB the kinetic term tends towards am
level filled with two electrons of spin up and doyand the independent value given by the first LL, while for very low
lower dotted curve labeled 3 is the starting density. The revalues ofB the kinetic term tends to the semiclassical value
sult of the iteration procedure is shown as a solid line labeledrn(r).

2. It must be realized that the probability of finding an elec- The competition between the tendency for the density to
tron atr is given byr n(r). Multiplication by r would di- increase at the center of the dot as the magnetic field in-
minish the differences, enhanced in the representation afreases and for the density to decrease as a result of the
n(r). There is, however, a remarkable coincidence particu€Coulomb repulsion produces roughly the same density at
larly if we consider that it is a system of only 10 electrons =0 for all the values oB.
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The plateaus are related to the formation of incompressrn(r) and not included in the figures, since it has virtually
ible circular regions within the d&t where LL’s are fully the same dependence Bras the confining potential contri-
occupied. This can be seen in FigaB in which the local bution, proportional to the integral of n(r) and displayed
value of the filling factor foB=1.1 T is displayed. Within in Fig. 9b) (as E..n). As the mean radius increases, the
these regions the electrons show no mobility and their effeceonfining potential contribution also increases. In contrast,
tive potential is not fully screened, as can be verified in Figthe expansion of the electronic density diminishes the direct
8(b) where the effective potential, obtained from the left- Coulomb repulsion at a very similar rate. This competition
hand side of Eq(13) by the subtraction of the kinetic term, flattens their contribution to the total energy. Although most
is also shown. In contrast, within the compressible regionspf the total energy comes from the electrostatic tefdisect
the effective potential is constant. Here the metallic characte€oulomb and confining potentjaltheir partial cancelation
screens the fields and there is no net force on the chargesroduces the following effect: the variation of the total en-
Within the incompressible regions, the gradient of the effecergy with B is in fact quite sensitive to the nondominant
tive potential has a nonzero value and the equilibrium iscontributions, the exchange term for weRlkand the kinetic
obtained by discrete changes in the kinetic energy, producingerm for strong magnetic fields. A type of oscillatory behav-
wiggles inw as shown in Fig. @). ior in the mean radius was previously obtained in Ref. 19.

As the magnetic field increases, only one strongly degenThese authors relate the periodic oscillations to changes in
erate LL is occupied, and the full dot acquires a metallicthe angular momentum. With increasing magnetic field, the
character producing a constant functipnthroughout the density moves inward becoming more highly localized
dot. Much stronger fieldéabout 30 7 would produce new around the origin, provided the angular momentum remains
effects related to the fractional quantum Hall regime. constant. This leads to an increase in electrostatic energy,

Figure 9 shows the variation of the total enef@g. (1)] which is suddenly released when the angular momentum
with B. The different contributions to the energy are in- changes its value and the density peak moves outward. This
cluded, at different scales. The Zeeman splitting term is nopattern is repeated every time the orbital angular momentum
included as it is a negligible monotonous decreasing contriincreases.
bution (of order 102 meV). For large values oB, the kinetic term(preportional to

Over all the values oB, partial cancelation between the w.) increases in value determining the variation of the total
direct Coulomb term and the confining potential takes placegnergy withB. The total energy behaves as the energy of an
as was the case in the semiclassical test. To understand thiglependent particle system in a metalliclike regime, where
behavior, it is easier to follow the evolution of the meanonly the kinetic energy is important. In contrast, the Cou-
radius of the density distribution, defined as the integral ofomb interaction has an inert role, having been frozen. This
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w134
is the case for strongly correlated systetfae example, a
high density electron gas in which the electron-electron in- -15.2
teraction is nearly completely screemed .
Figure 10 shows the addition spectrdbiN) —E(N—1) S _153
=u. for different magnetic fields. The spectrum shows a Lel
structure superimposed on the general increase WBith -15.4
which has been interpreted in different ways within the lit- 0 . 1' : é o
erature.
As suggested by the independent electron result, the kink B(T]

of u(B) at about 1.9 T in the experimental data has been
related to filling factorv=2: the first LL is fully occupied
and the spin population is symmetric. From 2 to 3 T, the
small wiggles would be produced by successive jumps o
electrons from inside the dot to the outside as a result of

Coulomb electrostatic repulsion, with a simultaneous spirspin-up(or down depending on the sign of the Larfdeton
flipping induced by the exchange interaction. This processtates to much higher energies, and different LL are closer in
ends when the compact droplet witt+ 1 is formed. energy than different spin states. A higher valuefed,

Our results suggest a different explanation. For the lowwould produce higher densities and the possibility of succes-
value ofiwg=1.6 meV proposed in Ref. 2, the electronic sive variations induced b, as seems to be reflected by the
densityn(r) lies below the critical valug¢see Eq.23)] ex- experimental data. That is to say, we suggest that these ex-
cept atr close to the origin, producing an effective asymme-perimental data could not have been produced by such a low
try parameter very close to orjeee Eq.(24)], i.e., a fully  value offwg.
polarized system for all the values of the magnetic field. In Besides this conclusion, the curve displayed in Fig. 10
other words, the exchange interaction has promoted thean be interpreted for a fully polarized system in the follow-

FIG. 9. (a) Variation of the total energjEq. (1)] as a function
of the magnetic field(b) Different contributions to the total energy
fiisplayed on different scales.
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FIG. 10. Chemical potential as a function of the magnetic field. =2-2 T [see Fig. @a)] are related to the appearance of

Experimental results of the back-gate voltage from Ref. 2 are alsgharked plateaus in the profile density at thgse same values of
displayed. B and also related to(0)=2 and 1, respectively. It must be

stressed, however, that=2 in our result means that the two

ing way: at first, it is necessary to stress that the definition ofirst LL aré occupied by electrons of the same spin state. As
filling factor in the 2D independent system of electrons can/nentioned previously, the contribution of the kinetic term
not be extrapolated directly to a quantum dot of interactingand the exchange interaction determines the final shape of
electrons. As a consequence of the space localization of tH8€ #c/B curve.

electrons in different regionecompressible or incompress-

ible) and the electrpn interacti.on, thg filling factor becomes a ACKNOWLEDGMENTS
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