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CHAPTER 1

Introduction

1.1 Network science

In the sense in which I will use it here, a “network” or “graph” is an abstract math-
ematical entity consisting of points or nodes connected by edges. The structure
of such a network is so simple that it can be used to represent any system with
interacting elements. Examples of such systems can be found all around us and
can have very different natures. Perhaps the most immediately obvious example
are social networks, in which individuals are related by different types of social
interactions: acquaintance, sexual contact, Facebook friendship, twitter follow-
ing [81, 111], etc. There are also technological networks such as the Internet,
in which we have routers, devices that share data through physical wires [146];
or power grids, in which we have generating stations and switching substations
connected by high-voltage lines [170]. There are also biological networks such as
the brain, made of neurons connected by their axon terminals where synapses
occur; or food webs, in which the species that comprise an ecosystem are related
by who eats whom [63].

With all theses systems, considering their network structure as a whole, in-
stead of studying the interactions among the elements independently, can have
a striking effect when it comes to making decisions related to them. For instance,
in the 80’s, there was a dramatic reduction of the north-west Atlantic stock of
cod that resulted in an economic crisis in the Canadian fishing industry. As a
response, the Canadian government financed massive seal culls arguing that a
reduction in the numbers of the major predator of cod would increase the cod
stock. After the slaughter of nearly half a million seals, the cod population con-
tinued to decline. Reconstruction of the north-west Atlantic food web showed
that among the species preyed on by seals, were many other predators of cod.
These indirect relations between cod and seals suggested that the decrease of
the seal population could ultimately have an effect on the cod stock that was the
opposite of initial expectations [75].

In other situations, the unpredictable effect that such complex connectivity
patterns have on network function can be extremely important. For example, on
the night of November 4th 2006, the German electricity company E.ON switched
off an electricity line across the River Ems to allow a cruise ship to pass along
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the river safely. The removal of just that one connection triggered a cascade of
failures that left some 15 million households without electricity across Germany,
France, Italy, Spain and Portugal [113].

Apart from ecological balance and the collapse of power grids, other exam-
ples of phenomena that occur in networks that are still beyond our knowledge
include traffic jams in cities, the spread of infectious diseases, so-called “viral-
ity” within on-line social networks and epilepsy attacks. Such phenomena are
hard to predict not because we do not understand the nature of each element of
the system, but due to emergent properties generated by the complex patterns
of interaction between them. So there is a need for new theories that reveal the
effect that the connectivity of a system has on its behaviour, thereby bridging
the gap between network structure and function. With this purpose in mind,
network science has provided many tools that bring us closer to an accurate un-
derstanding of such phenomena [138].

The foundations of network science were laid in the 18th century. In 1735,
Leonhard Euler tried to find a route that crossed each of the seven bridges of the
city of Königsberg (currently Kaliningrad, Russia) only once. To solve this prob-
lem, Euler created an abstract mathematical structure in which land masses and
bridges were substituted by nodes and edges respectively; constructing what is
known as a graph or a network (see Fig. 1.1). From this perspective, Euler ob-
served that since one must both enter and leave every node within the route
except the first and the last, there can be at most two nodes with an odd num-
ber of connections [68]. However, all the landmasses in the network had an odd
number of bridges. So, Euler not only proved that the bridge problem had no so-
lution, but stated the first theorem of graph theory, which became a new frame-
work for the study of systems in which connectivity between the elements plays
a prominent role in their behaviour.

In the beginning, graph theory only attracted the interest of mathematicians;
they studied the topology of simple graphs such as lattices, trees and random
graphs [66, 163]. In the mid 20th century, sociologists and anthropologist be-
came interested in the idea of social networks and they applied some of the
notions of graph theory to them. For instance, in 1958, Sola Pool and Man-
fred Kochen were interested in questions such as: What is the distribution of
the number of acquaintances that people have? Who are the most influential
people in the network? How far apart are any two people chosen at random?
What is the exact structure of the network? At that time, access to empirical data
on social networks was very limited because it only relied on interviews, which
were expensive, restricted and unreliable. Nevertheless, to address these ques-
tions, sociologists applied random graph theory and made some conjectures.
For instance, they claimed that the world was becoming smaller, so any two in-
dividuals could be connected via a smaller number of social contacts [57].
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Figure 1.1: The city of Königsberg with its seven bridges. In 1735 Euler used a
network representation to prove that there was no route that crossed each of the
seven bridges of the city of Königsberg only once.

Despite the methodological difficulties, much systematic recording and
analysis of social interactions was performed. In 1967, Stanley Milgram de-
vised a rigorous experiment to track chains of acquaintances and reported the
first empirical evidence of the so-called small world property of social net-
works [168]. In his experiment, Milgram selected a set of individuals who had
to deliver a letter to a specific person by passing it to one of their acquaintances
with a high probability of knowing the target individual. Those acquaintances
were asked to do the same. Out of 64 letters that reached their destination, the
average number of stages or “hops” in the social network to reach the target per-
son was 6.2, giving rise to the popular concept of “six degrees of separation”.

At that time, applications of graph theory were restricted to social networks
and still not much was known about their structure. However, the introduction
of electronic databases, the increase in the use and power of computers, and
the propagation of the Internet dramatically increased access to large network
datasets. As a consequence, many different studies analysing the structure of
technological [1, 69], social [130] and biological networks [96] were published.
Those datasets were far larger than the results of traditional sociometry, so it was
much more appropriate to apply to them the statistical tools that physicists and
mathematicians were familiar with. Surprisingly, all the work revealed that the
small world property is not exclusive of social networks, but a common rule in
all interconnected systems. Moreover, other structural features were repeatedly
found within networks that had completely different natures [34, 170]. The simi-
larities among these complex architectures, which are neither purely regular nor
purely random, suggested the presence of common formation mechanisms and
stirred interest in network science among scientists from many different areas.

The most important common feature in many networks is the lack of a typi-
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cal scale of the number of connections per node. This scale free property implies
that a small fraction of the nodes drive the behaviour of the whole system: they
are the hubs. This topological property of real networks was first discovered in
the network of scientific papers by Derek De Solla Price in 1965 [58] and then in
a wide variety of other networks [2, 69, 96]. Subsequent studies found that this
heterogeneity of nodes makes networks more resilient and more navigable; but
at the same time, more prone to spread infectious agents [24].

Another striking topological feature present in many real networks is the
propensity of nodes to cluster together. This tendency of nodes to have many
neighbours in common translates into a high concentration of triangles, known
as high clustering. In social networks, this feature becomes obvious once we ob-
serve that of our friends, many are also friends with each other. In this case, it
does not seem so surprising to us, as our new friends are usually introduced to
us by our existing contacts. In 2002, however, Ron Milo et al. found that the
presence of such short loops was also much higher than could be attributed to
mere random chance in biological and technological networks [123]. Thus, the
surprising constant presence of these regular patterns in all types of networks
makes clustering one of the most important factors in the common formation
mechanisms of real-world networks.

From that point onwards, network science has undergone many advances
and a broad set of tools for analysing and understanding networks have been
developed [135]. Nowadays, a large variety of algorithms are available to mea-
sure how well connected nodes are or to calculate the shortest path between any
pair of nodes; as are a wide range of techniques that group nodes into meaning-
ful communities [72]. There are also network models whose aim is to repro-
duce network evolution, providing much insight into network formation mech-
anisms [32]. There are many models that allow us to make predictions regarding
how robust power grids are when faced with random failures of their constituent
parts or the evolution of a disease within a certain population [13, 165].

The wide applicability of network science has brought together researchers
from many different areas including mathematics, physics, biology, epidemiol-
ogy, computer science and sociology. This fact combined with the huge amounts
of data available nowadays makes network science a very fruitful field with
a large scientific production and a broad range of real applications. Indeed,
ideas from network science have been applied, for instance, to: the analysis
of metabolic and genetic regulatory networks [115, 158]; the design of efficient
communication protocols, to solve serious scaling limitations that the Internet
faces today [28]; the development of vaccination strategies for the control of dis-
eases [145]; and marketing campaigns to increase their success [101].

However, the major contributions to network science have occurred over the
last 20 years; so many challenges still lie ahead. Among those challenges, ques-
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Figure 1.2: A representation of the protein—protein interaction network in Sac-
charomyces cerevisiae, which is based on early yeast two-hybrid screening. The
colour of a node indicates the phenotypic effect of removing the correspond-
ing protein (red = lethal, green = non-lethal, orange = slow growth, yellow = un-
known) [10]

tions concerning clustering stand out from the rest. In contrast to the small
world and scale free properties, the emergence of clustering and its effects on
other topological properties and network processes are not fully understood.
The reason for this is twofold. First, the mere presence of triangles in networks
contradicts assumptions that are commonly used in theoretical approaches of
networks. Second, there is a lack of clustered network models that reproduce
real network topology to study the effects of clustering on network structure and
function. Therefore, clustering is the main factor that hinders the possibility of
accurate predictions in real situations; so it constitutes one of the major chal-
lenges that network science faces.

This thesis aims to contribute to our understanding of the role played by
clustering in the structure and function of complex networks. I show that clus-
tering can have an striking effect on the global structure of networks and that
this changes completely how we understand critical network phenomena. Ap-
plying this new paradigm to real networks, we are able to grasp the weak points
of certain state-of-the-art theories and therefore it contributes to much more
accurate understanding of network processes.
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1.2 Network topology

From any given dataset that contains a list of the interactions between the ele-
ments of a system, we can construct a network. Once we have constructed the
network, there are a variety of useful measures that captures the most important
features of its topology.

1.2.1 Network representation

Networks can be classified depending on how much information we want to en-
code in the edges. In a simple graph there can only be one connection between
any pair of nodes; if there are more, it is a multigraph. In some systems, the in-
teraction between elements is not reciprocal, so the edges that represent those
interactions have a direction, from one vertex to another. Networks with edges of
this kind are directed networks. In some situations it is useful to represent the dif-
ferent degrees of intensity of the interactions by assigning a weight or strength to
every edge. Such networks are called weighted networks. For the sake of simplic-
ity, in this thesis I focus on undirected and unweighted simple graphs. However,
all the results can easily be generalized to all other types of networks.

The simplest way to represent a network structure mathematically is by
means of the adjacency matrix A. This matrix is a square matrix of dimension
equal to the number of nodes, N , in which every component, Ai j , encodes the
interaction between nodes i and j . In my case of interest, simple unweighted
undirected networks, all components are either 1, if they are connected, or 0, if
they are not; andA is symmetric.

The process of converting a real system into its simple network represen-
tation involves its own difficulties and there is much interesting literature on
the subject; but it is beyond the scope of this thesis. Here, I work on network
datasets that are already constructed and do not discuss the nature of the nodes
or their interaction in my analysis. Therefore, I do not focus on any particular
real-world network, but present a set of theoretical studies that apply to any par-
ticular interconnected system. I only use real network datasets to assess whether
my models and theories fit the types of structures that we can find in nature.
However, I want to make it clear that it is important to always have the accurate
definition of node and edge in mind when trying to apply the results obtained
from network theory to a particular real system. Appendix A.1 gives some details
of the empirical networks that I use in this thesis.
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1.2.2 Degree distribution

In graph theory, the degree k of a node is the number of connections or neigh-
bours it has, which in terms of the adjacency matrix can be calculated as: ki =∑

j Ai j . So, if a network has a number of nodes equal to N , and Nk of them have
degree k, the probability that a randomly chosen node has degree k is given by:

P (k) = Nk

N
. (1.1)

The function P (k) is called the degree distribution and it is the most fundamen-
tal statistical characteristic of a network. Degree distributions measured in real-
world networks contrast with those expected from regular lattices or random
networks. Typically, real networks have a scale-free degree distribution which
exhibits a power law behaviour P (k) ∼ k−γ with the exponent γ between 2 and
3 [45]. This type of distribution has a very fat tail and a second moment, 〈k2〉,
that diverges in the thermodynamic limit. In a finite system, this fact leads to a
standard deviation that is much larger than the mean. This heterogeneity im-
plies that nodes that are at the tail of the distribution have many more con-
nections than average: they are the hubs. These few, but significant, very well-
connected nodes play a key role in network structure and function, and drive
the behaviour of the whole system.

1.2.3 Degree correlations

Degree correlation among connected nodes is another important characteristic
of network topology. Degree correlations are encoded in the joint distribution,
P (k,k ′), which gives the probability that an edge chosen at random connects two
nodes of degree k and k ′. Alternatively, one can use the conditional probability
that an edge from a node of degree k connects it to a node of degree k ′: P (k ′|k).
These functions are related by the expression:

P (k ′|k) = P (k ′,k)∑
k ′ P (k ′,k)

= 〈k〉P (k ′,k)

kP (k)
, (1.2)

where we use the fact that the fraction of links emanating from nodes of degree k
is equal to:

∑
k ′ P (k ′,k) = kP (k)/〈k〉. Moreover, the symmetry P (k ′,k) = P (k,k ′)

together with Eq. 1.2 leads to the detailed balance equation:

kP (k)P (k ′|k) = k ′P (k ′)P (k|k). (1.3)

Both P (k,k ′) and P (k ′|k) can be measured in real networks. However, in or-
der to avoid strong fluctuations, there is a much less informative but convenient
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measure: the average nearest neighbour degree of nodes of the same degree.
This is given by:

k̄nn(k) =∑
k ′

k ′P (k ′|k). (1.4)

The function k̄nn(k) relates the degree of a node to the average degree of its
neighbours.

In the absence of correlations, the degree of the node at one end of an edge
does not depend on the degree of the node at the other end. In this situation,
the conditional probability has the form:

P (k ′|k) = k ′P (k ′)
〈k〉 , (1.5)

and the average nearest neighbour degree becomes:

k̄nn(k) = 〈k2〉
〈k〉 , (1.6)

which does not depend on the degree. If k̄nn(k) depends on the degree, then
there are correlations. In this situation, there are two possible cases. On the
one hand, high-degree nodes can have a propensity to be connected to other
high-degree nodes, the so-called assortative mixing, and k̄nn(k) is an increasing
function of the degree. On the other hand, high-degree nodes may preferentially
to be connected to low-degree nodes, leading to disassortative mixing, so k̄nn(k)
decreases with the degree [22].

Real-world networks do have degree correlations. For example, it is well
known that popular people also have popular friends. Measures determined on
empirical datasets from social networks show assortative mixing by degree in
practically all networks, corroborating this perception [52]. In contrast, techno-
logical and biological networks are more prone to disassortative mixing [116].

1.2.4 Clustering

Once correlations among pairs of nodes are described, we can take a step fur-
ther and look at the three-point correlations. Correlations among three nodes
translate into the tendency of nodes to have many common neighbours, creat-
ing triangles. This property is called clustering, and in graph theory is quanti-
fied by the clustering coefficient, c, defined as the probability that two randomly
chosen neighbours of a node are connected. Given a node i with ki neighbours,
this probability is simply the number of edges between the neighbours of node
i , ti , divided by the total number of possible pairs of neighbours, 1

2 ki (ki −1), so:

ci = 2ti

ki (ki −1)
. (1.7)
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If we average this coefficient over all the nodes of the same degree, we get the
clustering spectrum:

c̄(k) = 1

N P (k)

∑
i |ki=k

ci . (1.8)

If we average over all the nodes instead, we obtain the local clustering coeffi-
cient:

c̄ = 1

N

∑
i

ci =
∑
k

P (k)c̄(k). (1.9)

An alternative to the local clustering coefficient is the global clustering co-
efficient, which measures the number of triangles present in the network over
the total number of connected triples [135]; where a connected triple consists
of three nodes connected by any path. The two definitions of the clustering co-
efficient are not equivalent and can give substantially different values. The lo-
cal clustering coefficient measures the probability that two neighbours of a ran-
domly chosen node are connected. The global clustering coefficient measures
the density of triangles. Both measures are commonly used and in some situa-
tions can lead to opposite conclusions as to whether a network has a high or low
degree of clustering.

These discrepancies emerge in networks with highly skewed degree distri-
butions, similar to those present in real networks. On the one hand, the lo-
cal clustering coefficient defined in Eq. 1.9 tends to be dominated by nodes of
low degree, which usually have a higher value of the clustering coefficient [150].
On the other hand, the number of connected triples diverges in the thermody-
namic limit for networks with a power law degree distribution with an exponent
2 < γ< 3, leading to very small values of the global clustering coefficient [62]. In
these circumstances, I prefer not to focus on a single clustering coefficient of the
whole network, but rather I consider the clustering spectrum. Analysing clus-
tering for all nodes of the same degree does away with the discrepancies. Along
these lines, in this thesis I usually consider the whole clustering spectrum; and
when I refer to the clustering coefficient of a network, I am referring to the local
clustering coefficient.

This tendency of nodes to have many common neighbours is clearly one of
the main features of social networks [131]. Moreover, high levels of clustering
have been repeatedly found in networks with completely different natures [123].
Figure 1.3 shows the clustering spectra of three real paradigmatic networks from
different domains: infrastructure, social, technological, and biological. If we
compare the clustering spectra of the networks with a randomized version of
them, with the same degree sequence, we can see that the real networks have
higher degrees of clustering than those expected by chance.

There are other important topological features present in many real net-
works, such as the small world property [168, 170], or the community struc-
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Figure 1.3: Clustering spectra of four real paradigmatic networks from differ-
ent domains (blue) compared with their randomized versions with the same de-
gree sequence (orange). a) The autonomous system (AS) Internet topology for
June 2009. b) The social email network of the Rovira i Virgili University. c) The
metabolic network of the bacterium E. Coli. d) The US air transportation net-
work. See Appendix A.1 for more details of the networks. The method used to
randomize the networks is explained in section 2.6.
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ture [56, 133, 136]. Nonetheless, the main goal of this thesis is to discuss the
origin and effects of clustering on the structure and function of networks, so
those other features are beyond the scope of this work.

1.3 Network models

The description and measurement of real-world network structures has revealed
some very important common features. Indeed, the small world property, broad
degree distributions, degree correlations and high levels of clustering are all re-
peatedly found in networks of completely different origins. However, in order to
understand the emergence of these features and the effect they have on network
structure and function, we need to build network models.

We can use static models that allow us to create networks with some particu-
lar properties of interest and that are random in all other respects. Such models
are very useful to separate a specific topological feature from the others in order
to study its effect on them and also on network processes. However, networks
are not static but evolve: they change over time. This evolution of networks is a
product of dynamical processes that create and remove both nodes and edges,
and which typically is unplanned and decentralized. Mechanisms of network
formation normally depend on interactions between agents that operate at a lo-
cal scale giving rise to a self-organized system. This fact encouraged scientist to
develop growing network models that, based on simple rules, can reproduce the
evolution of real-world network structures.

Moreover, the evolution of networks is not deterministic but stochastic. For
instance, if we could go back to 1969 and repeat the process of formation of the
physical Internet network, with the same initial condition, we would not observe
exactly the same topology. We reckon that, although there would be important
common large-scale features, not all the edges would connect exactly the same
pairs of nodes. The Internet that we observe today is just one possible outcome:
represented by one of a set of possible graphs, or ensemble of graphs, where
each graph has its own given probability of existence. Unfortunately, we do not
have access to the whole ensemble of graphs that real networks could be repre-
sented by, but just one instance. Thus, it is impossible to explore the patterns
that drive network formation only from observational data. Therefore, we need
to develop network models that reproduce the properties of real-world networks
and assume that the mechanisms that define the models are similar to those that
generated the real networks.

Much effort has gone into developing static and growing network models;
and the definition and characterization of random models have constituted one
of the main areas of research in network science.
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1.3.1 Classical random graph

The first and simplest example of a random graph is the Erdős-Rény model which
consists of the ensemble of networks GN ,E , whose members have the same num-
ber of nodes, N , and the same number of edges, E [67, 66]. To generate a ran-
dom network from this ensemble we have to spread our E edges among the
N (N − 1)/2 pairs of nodes at random. Some properties of this ensemble are
straightforward to calculate, e.g., the average degree 〈k〉 = 2E

N . Unfortunately,
other properties that we are interested in, such as the degree distribution or the
clustering coefficient, are not so easy to find analytically.

Fortunately, physicist know that analysis of the canonical ensemble is tech-
nically easier than analysis of the micro-canonical ensemble. Hence, if we con-
sider that edges play the role of energy, the Erdős-Rényi model corresponds
to the micro-canonical ensemble once the number of edges is fixed. In this
scheme, the canonical ensemble would be a model in which, instead of fixing
the exact number of edges, we fixed the average number of them. This would
involve fixing a probability of connection between all the pairs of nodes. This
ensemble of networks, GN ,p , although it is known as the Gilbert model, was first
introduced by Solomonoff and Rapoport [162, 163] and is defined by just two
parameters: the number of nodes N , and the connection probability p. So to
generate a network from this ensemble we have to visit the N (N −1)/2 pairs of
nodes and connect them with the fixed probability p. The average number of
edges in this ensemble is directly the fraction, p, of pairs that we actually con-
nect:

〈E〉 = p
N (N −1)

2
. (1.10)

Using the grand canonical ensemble we can now calculate the probability that a
node has k connections, which comes directly from the binomial distribution:

P (k) =
(

N −1

k

)
pk (1−p)N−1−k . (1.11)

The average degree is then p(N−1), which is the fraction, p, of all the N−1 nodes
that a node can be connected to. When the network is large (N →∞), while 〈k〉
is fixed, the binomial distribution approaches the Poisson distribution:

P (k) = e−〈k〉 〈k〉k

k !
. (1.12)

This grand canonical version of the random graph also allows us to calculate
the clustering coefficient. We first need to recall that the clustering coefficient
is the probability that two neighbours of a node are themselves neighbours too.
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Because all pairs of nodes are connected independently from the rest, the clus-
tering coefficient is equal to p:

c̄ = p = 〈k〉
N −1

. (1.13)

So the clustering coefficient for an infinite sparse classical random graph ap-
proaches zero. That is, clustering in these networks is only a finite-size effect.

Both the fast decay of the degree distribution and the vanishing level of clus-
tering generated by the classical random graph are in contrast with the common
occurrence in empirical data of scale-free degree distributions and high levels
of clustering. This fact implies that the connectivity patterns of real networks,
although they are not as regular as lattices, are not completely random. There-
fore, although the classical random model is very simple, it already reveals that
there are some underlying mechanisms of formation that are the origin of the
particular topological properties of real networks.

1.3.2 Preferential attachment

In the 1970s, Derek de Solla Price addressed the problem of the heavy-tailed de-
gree distributions of real-world networks not reproduced by the classical ran-
dom graph. He presented a novel model based on a very simple idea: a growing
model in which new nodes appear and connect to a fix number of already exist-
ing nodes proportionally to the number of connections of those already existing
nodes [59]. This formation pattern introduces a “rich-get-richer” effect which
increases the number of hubs and leads to a much broader degree distribution
than that of classical random graphs. In 1999, Barabási and Albert published
a similar model in which the mechanism was called preferential attachment,
which has become the accepted name in recent years [9]. In this model, at each
time step, a node appears and creates m new connections with already existing
nodes with a probability proportional to the current degree of those already ex-
isting nodes. In this case, when the network becomes large (t →∞), the degree
distribution can be calculated easily. The result is a stationary power law distri-
bution, P (k) ∼ k−γ, with exponentγ= 3: a scale-free distribution similar to those
observed in many real networks. Of course this particular exponent is obtained
with simple proportionality of the preferential attachment; to achieve arbitrary
exponents, we simply substitute that proportionality for a linear function [107].

Subsequent work, both empirical and analytic, studied other topological
properties of the Barabasi-Albert model. For example [77, 106] show that the
clustering coefficient of these network models vanishes in the thermodynamic
limit, in contrast to the high level of clustering present in empirical networks.

However, the simplest form of the preferential attachment model already re-
veals that the scale-free degree distributions observed in real-world networks
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are just a manifestation of a certain kind of rich-get-richer mechanism in the
formation of their connections.

1.3.3 The configuration model

Once the underlying mechanism of the broad degree distribution is revealed, we
can move forward and study other random network models in which the degree
distribution is a constraint and which are random to all other respects. Along
these lines, by the late 1970s, network scientists developed what is now known
as the configuration model [17, 31]. In this model, a certain number of half edges,
or stubs, are distributed among the nodes, according to a given degree sequence.
Then, pairs of stubs are connected at random, creating edges, until there are no
stubs left. This procedure corresponds to building a maximally random network
with a given degree sequence.

In principle, in this model every possible matching should be given exactly
the same probability. However, during the network formation process a key is-
sue arises: how do we deal with the possibility of creating more than one edge
between nodes, multi-edges, or edges that connect nodes to themselves, self-
edges? On the one hand, if we ignore this issue, we do not obtain exactly the
target degree sequence. On the other hand, rejection of such edges introduces a
bias in the configuration space that leads to non-uniform sampling from the en-
semble. Some prefer to ignore this issue, considering that the number of these
types of edges vanishes in the thermodynamic limit. However, multi-edges are
concentrated between nodes with a high degree, and in the case of very het-
erogeneous networks, they do have an important effect [26]. The restriction
of the tendency of high-degree nodes to have multi-edges creates connections
between high-degree and low-degree nodes instead, inducing negative degree
correlations [142]. Nonetheless, this disassortativity is observed in many tech-
nological and biological networks [116]. Hence, part of the observed tendency
of hubs to be connected to low-degree nodes can arise from a topological con-
straint rather than a specific formation mechanism. In contrast, the positive
degree correlation measured in social networks suggests that a specific pattern
formation mechanisms is responsible for the propensity of popular people to be
connected to other popular people.

The density of triangles generated by the configuration model can be calcu-
lated analytically. Precisely, the local clustering coefficient is given by the expres-
sion:

c̄ = 〈k(k −1)〉2

N〈k〉3
, (1.14)

and therefore vanishes for large systems [21, 135]. However, Eq. 1.14 does not
take into account the existence of multi-edges and self-edges. Thus, for highly
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heterogeneous degree distributions, Eq. 1.14 becomes incorrect, leading to a
non-physical solution (c̄ > 1). Unfortunately, the model in which multi-edges
and self-edges are forbidden does not admit an analytic solution. This problem
can be addressed by using the canonical version of the configuration model in
which it is not the exact degree of each node that is fixed, but the average de-
gree. In chapter 3, I use this scenario to find the correct analytic expression for
the clustering coefficient and, together with numerical simulations, show that
in some particular cases the configuration model can give larger densities of tri-
angles than is commonly believed possible.

Notwithstanding these shortcomings, the configuration model has been of
vital importance because it isolates the degree distribution from the other topo-
logical properties. Therefore, the configuration model is the best framework
for studying the effect of the degree distribution on other topological proper-
ties and on network process. The most important contribution that has arisen
from the study of the configuration model is the discovery of the vanishing epi-
demic and percolation threshold of scale-free networks with a degree exponent
γ ≤ 3 [37, 46, 144]. This implies that, due to the heterogeneity of the number
of connections of nodes, real networks are highly robust against random failure
of their constituents, but at the same time they can propagate any infectious
agents.

1.3.4 Clustered network models

None of the random network models that I have introduced so far generates a
level of clustering comparable to that observed in real networks. Much effort has
been devoted to developing models of clustered networks like the Watts Strogatz
model [170], geometric network models [108, 156] or a set of random modular
graph models [84, 98, 134]. Among them, geometric models have contributed
the most to our understanding of the nature of clustering.

In general terms, geometric network models assume that all network nodes
reside in an underlying hidden metric space in which the distance between two
nodes represents a cost for a connection to exist. This corresponds to assuming
that similarity among nodes is encoded in this metric space, so connections are
more probable between closer, or more similar, nodes. In this framework, clus-
tering arises as a natural consequence of the triangle inequality in the underlying
geometry. Moreover, if the underlying space is hyperbolic, instead of Euclidean,
the resulting networks are also small-world networks and have a scale-free de-
gree distribution [108, 156]. Therefore, the existence of a metric space is the best
candidate formation mechanism behind the high concentration of triangles in
real networks.

However, the geometric scheme is not suited to the study of processes and
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the dynamics of networks. The other models are not very good at reproducing
properties of real networks other than clustering, so they are not appropriate for
the study of the effect of clustering on the structure and function of complex
networks. Therefore, the development of new models of generation of clustered
networks is one of the major challenges that network science faces.

1.4 Processes on networks

The final goal of the study of the structure of complex networks is to understand
their function and how they would behave under any kind of process that may
occur within them. For example, we study the structure of social networks to un-
derstand better how diseases and rumours spread over those networks, in order
to design better vaccinations or marketing strategies. We study the connectiv-
ity patterns of the Internet to design better protocols for routing information
through the network. We are interested in the topology of power grids in order
to be able to construct more robust networks and thereby avoid blackouts. We
study neural networks in order to discover the conditions under which neurons
globally synchronize and trigger an epilepsy attack.

Much research has attempted to make the connection between the structure
and function of networks, and there has been valuable progress in some areas.
Many theories and models have been developed that describe processes and at
the same time represent the role that connectivity patters play in network phe-
nomena. Of all the possible processes, the failure of constituents and epidemic
spreading are the fields of network science that have have received most atten-
tion. Here, I focus on one of the simplest network processes: percolation. It
provides an elegant theory of the robustness of networks to the failure of their
constituents and at the same time it is directly related to the spread of infectious
agents.

1.4.1 Percolation

The main concern in the design of technology and infrastructures is robust-
ness. A robust network requires many alternative paths among nodes, in order
to maintain global connectivity even if some nodes or connections stop func-
tioning for some reason. For instance, within the Internet, a certain proportion
of routers are not functioning at any time and yet data packages are success-
fully rerouted and delivered to their destinations correctly. However, there are
concerns among Internet experts that the existing Internet routing architecture
may become unsuitable to meet the demands placed on within a period as short
as the next decade [120].
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In order to study the robustness of a network, one has to measure how the
failure of nodes and edges affects the largest number of nodes that are connected
by any path (the largest connected component1). If these failures are due to
random breakdowns or attacks, then this phenomenon can be modelled by a
percolation process.

Percolation is a classic problem that has attracted the attention of mathe-
maticians and physicists for many years because it is one of the simplest models
that displays a phase transition. The percolation problem on a network can be
stated as follows: we visit each node (site percolation) or each edge (bond per-
colation); with a probability of p we preserve it and with a probability of 1−p we
remove it. Under this process, complex networks undergo a continuous phase
transition at a critical value, pc , known as the percolation threshold. Below pc ,
the network is made of a myriad of finite disconnected clusters. Above this criti-
cal value, a macroscopic cluster of the order of the size of the system emerges, so
the network becomes globally connected. In practical applications, an accurate
prediction of the percolation threshold is extremely important. In the case of
infrastructure or technology networks, this threshold defines the robustness of
the network to random failures of its constituents. Moreover, in epidemiology, it
represents whether a disease will die out or reach an endemic steady state.

In some cases, such as the 1-dimensional lattice, the 2-dimensional square
lattice or the Bethe lattice, the percolation threshold has been found analyti-
cally [165]. In the case of random networks, one can use the absence of short
loops to find an approximate expression for the percolation threshold in terms
of some topological properties. However, real network do have a high density of
short loops, so the theories that have been developed still do not yield very accu-
rate predictions on real cases [71]. For example, Fig. 1.4 compares bond perco-
lation simulations of the western states of the United States power grid with the
most accurate theory developed so far, in 2014 [99]. As we can clearly see, the
theoretical curve deviates greatly from the numerical simulations. Therefore,
the next step is to include clustering in new theoretical approaches and develop
new clustered network models that enable us to study exactly how the presence
of triangles affects the bond percolation properties of networks.

1In this thesis we refer as a component or a cluster to a subgraph in which every pair of nodes
are connected by at least one path. If a network has two clusters, or components, means that
there are two parts of the networks that are completely disconnected; so there is no path from a
node of one part to any node of the other part.
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Figure 1.4: Bond percolation simulation for the western states of the US power
grid network compared with the theoretical curve developed in [99]. Relative
size of the largest connected component as a function of the bond occupation
probability, p.

1.5 Outline of the thesis

The random graph models that I have introduced were important breakthroughs
in network science because they shed light on both the origin of the degree dis-
tribution and its effects on other topological properties and network processes.
Along the same lines, much other work introduced modifications to those mod-
els to study, both analytically and empirically, the role of the degree correlations
of networks in the topology and dynamics of networks [20, 24, 78, 142, 169].
However, the high level of clustering present in empirical networks still remains
one of their least understood features.

Study of the hidden metric spaces that underlie complex networks has rep-
resented an important step forward in our understanding of the mechanisms
behind the origin of clustering [27, 28, 158]. Nonetheless, little is known about
the effect that the presence of short loops can have on other topological proper-
ties, or how it affects epidemic spreading and the robustness of networks. The
reason for this is twofold. First, the mere presence of triangles in a network
contradicts the assumption that networks are locally tree-like. That assump-
tion is used almost across the board in mathematical tools applied in network
theory. Therefore, the violation of the assumption hinders any possible proper
theoretical framework for clustered networks. Second, there is a lack of realistic
clustered network models that allow the study of the effect of clustering on the
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structure and function of complex networks.
The most immediate example of the need for new insight into the role clus-

tering plays in the properties of networks is the classic and simple, though cru-
cial, bond percolation problem. When we compare current state-of-the-art the-
ories with numerical simulations on real networks, it becomes obvious that we
are still a long way from a precise description of real phenomenon. Since avail-
able theories are highly accurate for locally tree-like networks, it seems obvious
that clustering is a vital missing piece of the puzzle [71]. Much work addresses
this issue, but the difficulty in resolving it becomes clear once we see the large
diversity of opinions [84, 85, 86, 100, 104, 117, 122, 132, 134, 153, 154, 155].

Given this framework, this work aims to contribute to our understanding of
the role played by clustering in the structure and function of complex networks.
In order to do that, in chapter 2, I start by introducing a class of network models,
exponential random graphs, which will form the fundamental framework of my
study. One of the most important applications of exponential random graphs is
the use of maximally random graphs with an expected degree sequence. I dis-
cuss this model and later, in chapter 3, I use it to analyse the clustering generated
in random scale-free networks.

I will also use exponential random graphs to present a new network model
that is capable of representing high levels of clustering and in which triangles
are organized in the most random way. After that, in chapter 4, I compare my
clustered network model with the already existing models and analyse which of
them best reproduce real-world networks.

Then in chapter 6, I use my model to study how clustering affects the posi-
tion of the bond percolation threshold. I reveal that clustering can have a strik-
ing effect on the structure of networks at the macroscopic level that completely
redefines their percolation phase space. More precisely, I show that clustered
networks can undergo not one, but many percolation transitions; this reveals a
new phenomenon in complex networks.

Finally, in chapter 7, I develop a new method to find real networks that un-
dergo multiple percolation phase transitions. This reinterpretation of the most
recent percolation theories offers new insight into the accuracy of the theoretical
values of bond percolation thresholds.

This work contributes to our understanding of the role clustering plays in
network structure and function. In particular, my maximally random clustered
network model is an important breakthrough in network science, since it defines
an appropriate framework within which to study the effect that clustering has on
network topology and network processes. Furthermore, the new multiple perco-
lation transition phenomenon that I reveal completely changes how we should
tackle the percolation problem on complex networks, with major implications
for network robustness and epidemic spreading.





CHAPTER 2

Exponential random graphs

2.1 Ensembles of networks and exponential random
graphs

Network models are generally defined by a network generator mechanism.
These mechanisms are typically stochastic, so a network model can also be de-
fined by what is know as a network ensemble, which is a set of possible graphs
{G} in which each graph has a probability P (G) to be found in a particular realiza-
tion. Once we have a well defined ensemble we can calculate the expected value
of any topological property of a network sampled from this ensemble, x, sim-
ply by 〈x〉 =∑

{G} P (G)x(G). Such observables can be any measurable topological
property of a network, e.g. the number of edges, degree sequence, clustering
coefficient, average path length, etc... Here, we assume that the observables of
a network that belongs to the ensemble are {xi } and their values measured in
the considered real network are {x∗

i }. In our case we are just considering simple
graphs with a certain number of nodes N .

As an example, in the classical random graph, the constrains are just the
number of edges E , so {x∗

i } = E . In the Erdős-Rényi ensemble, GN ,E , there are
only graphs that have N nodes and E edges and all these graphs have exactly
the same probability to exist. Therefore, in this case, the ensemble contains all
the possible networks with exactly the same observables of the real network,
so {xi }(G) = E ∀G ∈ {G}, and P (G) is a constant independent of G . Instead,
in the Gilbert model, we fix the number of nodes and a probability p of con-
nection between nodes. Hence, in this ensemble GN ,p , there are all the possi-
ble graphs with N nodes, and each graph have the probability to exist equal to
P (G) = ∏

i< j p Ai j (1− p)1−Ai j , where Ai j is a component of the adjacency ma-
trix A of the graph G . In such situation, the network ensemble does not fix the
exact number of edges but its expected value, E = x∗

i = 〈xi 〉 = pN (N −1)/2. In
the case of the configuration model, the constrains are now the degree of all
nodes, so {x∗

i } = {k1,k2, ...,kN }. Thus, we give to each node a certain number
of stubs according to the degree sequence {x∗

i }. Therefore, the configuration
model ensemble only contains the graphs that agree with this degree sequence,
so {xi }(G) = {x∗

i } ∀G ∈ {G}, and all have the same probability to exist.
These examples make clear the difference between the micro-canonical and
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the canonical ensembles. On the one hand, in a micro-canonical ensemble
the set of graphs is restricted to those with observables equal to the constrains,
{xi }(G) = {x∗

i } ∀G , and the probabilities of realizations, P (G), are the same for all
of them. On the other hand, a canonical ensemble contains all possible graphs 1

and the probability of each graph to exist is defined in such a way that the ex-
pected value of their observables are equal to the constrains, 〈xi 〉 = x∗

i . Although
the canonical ensemble looks less accurate than the micro-canonical ensemble,
in the thermodynamic limit, and for sparse networks, both ensembles are equiv-
alent [6]. Besides, the canonical ensemble allows for analytic treatment in some
situations that is not possible in the micro-canonical ensemble. Thus, canonical
ensembles are more convenient for theoretical analysis.

Network models are useful for two different purposes. On the one hand,
some network models can reproduce real networks observables beyond the ones
that are fixed by the constrains, {x∗

i }. This type of models are normally growing
models, and we expect that the formation mechanism that defines the model
is of the same nature that the one that drives the real network evolution. This
is the case of the Barabási-Albert model and the preferential attachment mech-
anism, in which just fixing the number of nodes and the number of links it is
able to reproduce the scale-free behaviour of real networks. On the other hand,
there are other models that are not giving insights into the network formation
but are able to generate networks in a very controlled way. This types of models
are very useful when studying the effect of one particular topological property
on processes that occur on top of networks. This is the case of the configuration
model that has given many insights into the effect of the degree distribution on
network robustness and networks processes, like the spread of diseases.

In the second scenario, there are the ensembles of networks that we intro-
duce here, the exponential random graph models (ERG). ERG are canonical en-
sembles of networks characterized by the probability of each graph to exist that
have the form P (G) ∝ eH (G). The function H(G) is the Hamiltonian of each graph
G and is given by H(G) =∑

i αi xi (G), where {xi } are the observables of the graph
G and {αi } are Lagrange multipliers such that the average value of the observ-
ables are equal to the constrains, x∗

i = 〈xi 〉 = ∑
{G} P (G)xi (G). Here we are going

to explain in detail some applications of ERG that are going to be frequently used
throughout this thesis.

1Note that when we refer to all possible graph we are always restricted to simple graphs with
number of nodes equal to N .
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2.2 Maximally random graphs

Once we define a model with given constrains, we expect that all other topo-
logical features are left to randomness. In other words, we want maximally ran-
dom graphs that fulfils a certain set of constrains. Therefore, due to maximum
entropy principle of information theory [53, 160], and from the second law of
thermodynamics in statistical physics [147], the best choice of the probability
distribution P (G) is the one that maximizes the Shannon/Gibbs entropy,

S =−∑
{G}

P (G) lnP (G). (2.1)

As a canonical ensemble, the observables {xi } of the networks should be equal
in average to the observables of the real network we are trying to model. So

x∗
i = 〈xi 〉 =

∑
{G}

P (G)xi (G) ∀i . (2.2)

At the same time P (G) must be normalized

∑
{G}

P (G) = 1. (2.3)

We can introduce these constrains using Lagrange multipliers when maximizing
the entropy

∂

∂P (G)

[
S −γ

(
1−∑

{G}
P (G)

)
−∑

i
αi

(
x∗

i −∑
{G}

P (G)xi (G)

)]
= 0 ∀G ∈ {G}. (2.4)

After the derivative we obtain

− lnP (G)−1+γ+∑
i
αi xi (G) = 0, (2.5)

which implies

P (G) = e−1+γ+∑
i αi xi (G) = e

∑
i αi xi (G)

e1−γ = eH(G)

Z
(2.6)

which have the same form of the ERG so H(G) = ∑
i αi xi (G) is the structural

Hamiltonian of the network and Z = e1−γ is the partition function [3, 4, 80].
Equation 2.6 shows that the exponential random graphs that we introduced are
graphs that fulfil a given set of constrains {x∗

i } and are maximally random to all
other respects.
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2.3 Maximally random graphs with expected degree
sequence

As a first example of an application of the exponential random graph models
(ERG) we consider the canonical version of the configuration model. This case of
interest corresponds to fix the expected degree of each node, so the observables
that the ensemble has to reproduce are {x∗

i } = {k1,k2, ...,kN }. Note that, because
the ensemble is canonical, we are fixing the observables on average. Then, if we
express the degree of a node as a sum, using the adjacency matrix as ki =∑

j Ai j ,
from Eq. 2.6 we can calculate the probability P (G) to find a particular graph G
with a given adjacency matrixA as

P (G) = e
∑

i αi
∑

j Ai j

Z
= ∏

i< j

e(αi+α j )Ai j

1+e(αi+α j )
. (2.7)

Notice that this expression can be re-written as

P (G) = ∏
i< j

r
Ai j

i j (1− ri j )1−Ai j , (2.8)

where

ri j = e(αi+α j )

1+e(αi+α j )
(2.9)

is the probability of the existence of a link between nodes i and j . Notice that
the factorization in Eq. (2.8) implies that a network belonging to this ensemble
can be generated by pairwise connection probabilities given by Eq. (2.9). Finally,
by redefining the Lagrange multipliers as κi = κseαi , we obtain the following
connection probability

r

(
κκ′

κ2
s

)
= κκ′

κ2
s

(
1+ κκ′

κ2
s

)−1

, (2.10)

where κ and κ′ are the transformed Lagrange multipliers associated to each
node, and κs is a parameter that its the same for all nodes and we will give an
interpretation afterwards.

To generate networks from this ensemble we visit each pair of nodes and
connect them with the probability given by Eq. 2.10. However, we must first find
the relation between the Lagrange multipliers, or the hidden variable κ [22], and
the expected degree of a node, that is, the constrain of our model.

Given the connection probability of Eq. 2.10, a node i of hidden variable κi

will have an average number of connections k̄(κi ) equal to

k̄(κi ) =
N∑

j=0
〈Ai j 〉 =

N∑
j=0

ri j =
N∑

j=0

κiκ j

κ2
s

(
1+ κiκ j

κ2
s

)−1

. (2.11)
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Here, we use the ansatz κiκ j << κ2
s so the probability of connections can be

approximated by ri j ∼ κiκ j /κ2
s and the average degree of a node becomes

k̄(κi ) ∼
N∑

j=0

κiκ j

κ2
s

= κi

κ2
s

N∑
j=0

κ j . (2.12)

So if we fix the constant κ2
s =

∑N
j=0κ j , which is the same for all nodes, then the

expected degree of a node is equal to its transformed Lagrange multiplier, k̄(κ) =
κ [22, 142, 159]. This is why the transformed Lagrange multiplier κ its normally
called hidden degree [156].

Then, we can calculate the parameter κs which is

κs =
√√√√ N∑

j=0
κ j =

√√√√ N∑
j=0

k̄ j =
p

2E =
√

N〈k〉. (2.13)

So κs is directly related to the total number of edges of the network E . From
Eq. 2.13 we can now revised the ansatz used to obtain Eq. 2.12 and conclude that
the ansatz is strictly valid only if there is no node with expected degree larger
than

√
N〈k〉. This fact implies that the parameter κs is a structural cut-off defin-

ing the onset of structural correlations, that is, nodes with expected degrees be-
low κs are connected with probability r (κκ

′
κ2

s
) ∼ κκ′

κ2
s

and, therefore, are uncorre-

lated at the level of degrees. This structural cut-off is also present in the micro-
canonical version of the configuration model [39].

This structural cut-off, κs not only have important effects on the degree cor-
relations but also on the higher order correlations like the clustering coefficient.
As we will see in the next chapter, the finite size scaling of the clustering coeffi-
cient of the maximally random graphs with expected degree sequence strongly
depends on the value of the maximum degree of the network kc .

Now that we can calculate the Lagrange multiplier of each node, we can now
sample networks from this ensemble. To do this we just have to fix the hidden
degree of each node equal to its expected degree. Then, we visit each pair of
nodes and connect them with probability ri j given by the Eq. 2.10.

2.4 Monte Carlo sampling from exponential random
graph ensembles

Sampling from the canonical ensemble of the configuration model that we have
just described is quite simple. This is due to the fact that we were able to factorize
the probability of sampling one graph, P (G), as a product of the probability of
links between nodes to exist. However, for many given constrains {x∗

i } we can
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not tackle the problem analytically, so we have to rely on numerical solutions. In
these situations, we can take advantage of Monte Carlo simulations, which are
suited for ERG.

The exponential form of P (G) makes the Markov chain Monte Carlo (MCMC)
method together with the Metropolis-Hastings algorithm the best way for sam-
pling networks from a ERG ensemble [92, 119]. In this algorithm, one has to
define a move in the graph space. Examples of this move, that is able to change
one graph G to another graph G ′ of the ensemble, include removing, changing,
or swapping edges. Then, starting from an initial graph, a move is proposed and
it is always accepted if H(G ′) > H(G) and with probability P (G ′)/P (G) instead.
So the probability to accept a move is

p = min(1,
P (G ′)
P (G)

) = min(1,eH(G ′)−H(G)) = min(1,e∆H ). (2.14)

At the steady state a new graph is sampled from the ERG ensemble defined by
the Hamiltonian H .

This method makes the sampling of maximally random networks with any
desired observable very easy. Let’s choose a certain observable O∗ that a net-
work of the ensemble should reproduce. Then, we define a Hamiltonian that
depends on the difference between the target observable and the observable O
of the current network

H =−β|O∗−O|. (2.15)

This ensemble corresponds to an ERG ensemble in which networks have the
observable O close to the target observable O∗ as a function of the parameter
β, which can be interpreted as an inverse of the temperature. If we are in a hot
regime, the average observable of the networks is going to be far from our target
observable, and in the cold regime we will sample networks with an observable
very similar to the target one.

So to generate maximally random networks that reproduces a real world net-
work property we take the empirical network as the initial graph and we apply
the Metropolis-Hastings algorithm as defined above. However, the moves in the
graph space are very local because involves only the modification of just few
edges. Thus, we need to make use of a simulated annealing procedure in order
to make sure that we are able to visit all the graph space [40, 103]. This implies
that we will start sampling networks from the hot regime and we are going to de-
crease the temperature slowly until we are sampling networks with an expected
value of the observable very close to the target one.
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2.5 Maximally random clustered networks

As we have seen, we can use ERG together with Monte Carlo simulations to gen-
erate maximally random networks with any topological property similar to real
networks. The aim of this thesis is to study the effects of clustering on other
topological properties and on the bond percolation process. Therefore, the pos-
sibility to generate maximally random networks with a precise control on the
level of clustering defines the best framework for such study.

The Monte Carlo step that we decided to use in order to move into the graph
space is the rewiring of edges. We use two different rewiring schemes. In the
first one, two different edges are chosen at random. Let these connect nodes A
with B and C with D. Then, the two edges are swapped so that nodes A and D, on
the one hand, and C and B, on the other, are now connected. We take care that
no self-connections or multiple connections between the same pair of nodes are
induced by this process. This rewiring scheme preserves the degree sequence of
the original network but not degree-degree correlations. In the second rewiring
scheme, we first chose an edge at random and look at the degree of one of its at-
tached nodes, k. Then, a second link attached to a node of the same degree k is
chosen and the two links are swapped as before. Notice that this procedure pre-
serves both the degree of each node and the actual nodes’ degrees at the end of
the two original edges. Therefore, the procedure preserves the full degree-degree
correlation structure encoded in the joint distribution P (k,k ′). Both procedures
are ergodic and satisfy detailed balance [55, 160].

Regardless of the rewiring scheme at use, the process is biased so that gen-
erated graphs belong to an exponential ensemble of graphs G ∈ {G}, where β is
the inverse of the temperature and H(G) is a Hamiltonian that depends on the
current network configuration. In case we are interested in fixing the clustering
coefficient we choose a Hamiltonian that depends on the target local clustering
coefficient c̄ as

H =−β|c̄∗− c̄| (2.16)

where c̄∗ is the target local clustering clustering coefficient and c̄ the current
one. However, if we are not interested on the clustering coefficient but in the
clustering spectrum then the Hamiltonian takes the form

H =−β
kc∑

k=kmi n

|c̄∗(k)− c̄(k)|, (2.17)

where c̄∗(k) is target degree-dependent clustering coefficient and c̄(k) the cur-
rent one. We then use the simulated annealing algorithm based on a standard
Metropolis-Hastings procedure. We first start by rewiring the network 200E
times at β = 0, where E is the total number of edges of the network. Then, we
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Figure 2.1: Comparison of the clustering spectrum of the PGP social Network
(blue), its maximally random version with same degree distribution and clus-
tering spectrum (green), and the starting network of the annealing process after
200E rewires at β= 0 (orange).

start an annealing procedure at β0 = 50, increasing the parameter β by a 10%
after each 200E rewiring events. We keep increasing β until the target clustering
spectrum is reached within a predefined precision or no further improvement
can be achieved.

As an example, Fig. 2.1 shows the comparison of the levels of clustering of
the PGP social network and its maximally random network version where we
fixed the clustering spectrum while preserving the degree sequence during the
rewiring procedure (See the Appendix A.1.2 for a description of the network data
set).

As we can clearly see our maximally random clustered network model re-
produces with a very good accuracy the target clustering spectrum. This good
performance is much better than previous similar models [82]. Besides, the low
level of clustering of the network before starting the annealed process vanish any
possible concern of a lack of ergodicity in our model.

There are some concerns that sampling networks using the rewiring method
fixing the degree sequence or degree correlations is not completely uniform [6,
51, 151]. In these works they propose a modification to guarantee the exact uni-
form sampling. However, we do not use these modification because our edge
swapping sampling is close to uniform in the graphs that we study in this the-
sis, and the effects in real cases between the two types of dynamics are seen to
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be negligible [6, 124]. Moreover, these modifications have a computational cost
that in some situation are not affordable. Nonetheless, we realize that an effi-
cient implementation of these modifications in order to guarantee the unifor-
mity in the graph sampling of our model could be an interesting improvement
that will be studied in the future.

2.6 RandGenNet

In order to promote the used of the ERGs we developed the program RandNet-
Gen that is able to generate maximally random networks with any desired topo-
logical property. This program randomizes an initial undirected and unweighted
network and, using the biased rewiring mechanism described in the previous
sections, can fix some topological properties. These network properties to fix
can be similar to those of the original network or given as a file so they can have
any desired value. The list of possible network properties that the program can
fix are:

• The original joint degree distribution P (k,k ′)

• The average neighbour degree Knn(k)

• The local clustering coefficient c̄

• The number of triangles (global clustering coefficient)

• The clustering spectrum c̄(k)

The code is available on the collaborative code web page Github:
(http://polcolomer.github.io/RandNetGen).

The possibility of fixing a network property to any desired value makes Rand-
NetGen a very useful tool for studying empirically the effect that a certain topo-
logical property has on other topological properties and network processes.
Specifically, in this thesis we used RandNetGen to study the effect of clustering
on the percolation process by generating networks with the same degree distri-
bution and degree correlations but different levels of clustering. Since we con-
ceived clustering as the probability that two random neighbours of a node are
connected, we decided to give the same probability to all nodes. This choice
corresponds to a constant clustering spectrum. This case is not the same as fix-
ing any of the existing two clustering coefficients. In our case we enforce nodes
of any degree to have the same local clustering.

In order to show the difference between fixing any of the existing cluster-
ing measures, in figure 2.2 we compare the resulting clustering spectrum and
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Figure 2.2: Comparison of the clustering spectrum c(k) (left) and the average
neighbour degree Knn(k) (right) as a function of the degree of four Networks.
Blue: A configuration model network with 10000 nodes with a power law de-
gree distribution with an exponent γ = 2.7, Orange: A network in which we
took the random network represented in blue and fixed the clustering coeffi-
cient to c̄ = 0.15 using the RandNetGen. Green: A network in which we took
the random network represented in blue and fixed a flat clustering spectrum
c̄(k) = 0.15 using the RandNetGen. Red: a Network in which we took the ran-
dom network represented in blue and fixed the number of triangles to equal to
the clustered network represented in green, which leads to a global clustering
coefficient C̄ = 0.103.

the average neighbour degree of three networks each one with a different tar-
get clustering measure. In the three cases we start from a configuration model
network with a power law degree distribution with an exponent γ= 2.7, and we
make use of RandNetGen to fix different clustering measures, while preserving
only the degree distribution. In the first case we fix the local clustering coeffi-
cient to c̄ = 0.15; in the second case we fix a flat clustering spectrum c(k) = 0.15,
which gives the same local clustering coefficient as the previous case; in the third
network we fix the number of triangles to be the same to the second case, which
leads to the global clustering coefficient C̄ = 0.103. As we can observe in fig-
ure 2.2 the three networks have a completely different clustering spectrum and
the effect that each type of clustering have on the degree correlations are very
different. This fact recalls the importance of considering the hole clustering
spectrum of a network instead of an average coefficient.

Another interesting application of our program is to randomize a network
preserving different topological properties and observe which long-range fea-
tures of the real network are well reproduced by the randomized version. This
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work was done in [140] for several real networks from different natures and we
concluded that, in most cases, the degree distribution, degree-degree correla-
tion, and clustering spectrum are enough to reproduce most of the mesoscopic
and macroscopic network properties. These results imply that these non-local
properties do not have any specific formation mechanism, so they are just a
product of the randomness, particular degree distributions and, optionally, de-
gree correlations and clustering. This fact is in agreement with the perception
that real complex networks are a product of a self-organized process in which
edges are just a result of local interaction between nodes. Besides, this findings
enhance the approach of this thesis, in which the degree distribution, degree
correlations and clustering are the most fundamental network properties.





CHAPTER 3

Clustering of random scale-free
networks

3.1 The Configuration model

Null models are critical to gauge the effect that randomness may have on the
properties of systems in the presence of noise. It is therefore important to have
the maximum understanding of the null model at hand, something not always
easy to achieve. This is the case of the most used null model of random graphs:
The configuration model (CM) [17, 30, 126, 127]. Given a real network, the con-
figuration model preserves the degree distribution of the real network, P (k),
whereas connections among nodes are realized in the most random way, always
preserving the degree sequence, either the real one or drawn from the distribu-
tion P (k) . In principle, the CM generates graphs without any type of correlations
among nodes. For this reason, it is widely used in network theory to determine
whether the observed topological properties of the real network might be con-
sidered as the product of some non trivial principle shaping the evolution of the
system.

This program is severely hindered when the network contains nodes with
degrees above the structural cut-off ks =

√
〈k〉N [26], where 〈k〉 is the average

degree and N the size of the network. This is the case of scale-free networks with
P (k) ∼ k−γ, γ < 3, and a natural cut-off kc ∼ N 1/(γ−1) most often found in real
complex networks [135]. This apparently simple null model develops all sort of
anomalous behaviours in this case, e. g., the appearance of strong non-trivial
degree correlations among nodes [26, 36, 39, 142], difficulties in the sampling
of the configuration space [105], or the presence of phase transitions between
graphical and non-graphical phases [61], to name just a few.

Clustering –or the presence of triangles in the network– is yet another exam-
ple of anomalous behaviour associated to the CM. The importance of clustering
as a topological property is related to the fact that nearly all known real complex
networks have a very large number of triangles whereas the CM has a vanishingly
small number in the thermodynamic limit. Of course, the absence of triangles
is convenient from a theoretical point of view as it allows us to use generating
functions techniques to solve many interesting problems [135]. However, given
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the empirical observations, it seems to be a quite unrealistic assumption. This
has led to the common understanding that clustering observed in real networks
cannot be explained by the CM and, thus, is the product of some underlying
principle. While we fully agree with this statement, in this chapter we show that
it must be taken with care. Indeed, depending on the heterogeneity of P (k), the
CM can generate, on average, nearly size-independent levels of clustering. Be-
sides, in such cases, sample-to-sample fluctuations do not vanish when N →∞,
meaning that the same degree sequence may generate either very high or very
low levels of clustering, independently of the network size.

As mentioned in section 1.2.4, clustering can be quantified using different
metrics [155]. Here, we use the average clustering coefficient c̄, defined as the
average (over nodes of degree k ≥ 2) of the local clustering coefficient of single
nodes ci = 2ti /ki (ki −1), where ti the number of triangles attached to node i . In
the absence of high degree nodes, the clustering coefficient of a random graph
generated by the CM is given by

c̄ = 〈k(k −1)〉2

N〈k〉3
, (3.1)

and, therefore, vanishes very fast in the large system size [21, 135]. This is the
reason why the tree-like character of networks generated by the CM has always
been taken for granted. However, Eq. (3.1) is clearly incorrect when the de-
gree distribution is scale-free with a natural cut-off kc ∼ N 1/(γ−1) as it predicts
a behaviour c̄ ∼ N (7−3γ)/(γ−1) that diverges for γ < 7/3. Equation (3.1) fails in
this case because its derivation does not account for the structural correlations
among degrees of connected nodes coming from the refusal to multiple and self-
connections. However, the same formula gives the correct scaling if, instead, a
structural cut-off, ks ∼ N 1/2, is imposed on the degree sequence. In this case,
Eq. (3.1) predicts the correct scaling c̄ ∼ N 2−γ[39]. It is then clear that the fi-
nite size scaling of the clustering coefficient in random scale-free graphs must
depend on both the size of the network N and on the particular scaling of the
cut-off kc as a function of N . Here, we derive the correct scaling behaviour of
the clustering coefficient for scale-free random graphs with 2 < γ < 3 and any
cut-off value kc .

3.2 Maximally random graphs with expected degree
sequence

The CM, as originally defined, defines a micro-canonical ensemble, in the sense
that the degree of every single node is given a priori and, once the degree se-
quence is fully known, the network is assembled in the most random way while
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preserving the degree sequence (We refer the reader to reference [60] for a
method to generate such graphs without any sampling bias). However, in the
case of scale-free networks, this approach resists any analytic treatment. In-
stead, here we adopt a different strategy and work with the canonical ensemble
of the CM introduced in the previous chapter in section 2.3. In this ensemble,
each node is given not its actual degree but its expected degree. This relaxes the
topological conditions to close the network and opens the door to an analytic
treatment.

Specifically, the model that generate a networks from the ensemble that we
just defined is as follows

1. Each node is assigned a hidden variable κ drawn from the probability den-
sity ρ(κ) =∝ κ−γ with 1 ≤ κ ≤ κc . The cut-off value κc is, in principle, ar-
bitrary. However, often κc is the so-called natural cut-off, defined as the
expected maximum value out of a sample of N random variables given
from the probability density ρ(κ). In the case of interest of a scale-free
distribution, the natural cut-off scales as κc ∼ N 1/(γ−1).

2. Each pair of nodes is visited once and connected with probability given by

r

(
κκ′

κ2
s

)
= κκ′

κ2
s

(
1+ κκ′

κ2
s

)−1

. (3.2)

Parameterκs is the structural cut-off defining the onset of structural corre-
lations, that is, nodes with expected degrees below κs are connected with
probability r (κκ

′
κ2

s
) ≈ κκ′

κ2
s

and, therefore, are uncorrelated at the level of de-

grees. As a consequence, the global level of correlations present in the sys-
tem is controlled by the cut-offκc . Whenever κc < κs the resulting network
is fully uncorrelated whereas for κc ≥ κs correlations are necessary to close

it. In this case, κs takes the form κs =
√

(γ−1)N (1−κ2−γ
c )

(γ−2)k̄mi n
, where k̄mi n is the ex-

pected minimum degree of the network. In this paper, we are interested in
the range κs ≤ κc ≤ N 1/(γ−1).

As we have seen, the average degree of a node with hidden variable κ is
k̄(κ) ∝ κ. Thus, we can think of κ and ρ(κ) as the degree and degree distribution,
respectively 1.

1The exact form of the degree distribution was first given in [156], showing the asymptotic
behaviour P (k) ∼ k−γ as expected.
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3.3 Clustering in maximally random graphs with ex-
pected degree sequence

Using the formalism developed in [22] (see also [20]), the local clustering coeffi-
cient of a node with hidden variable κ can be written as

c(κ) =
∫ κc

1

∫ κc
1 ρ(κ′)ρ(κ′′)r

(
κκ′
κ2

s

)
r
(
κ′κ′′
κ2

s

)
r
(
κκ′′
κ2

s

)
dκ′dκ′′[∫ κc

1
ρ(k ′)r

(
κκ′

κ2
s

)
dκ′

]2 . (3.3)

If we use the change of variables x = κ′/κs and y = κ′′/κs we obtain

c(κ) =

∫ κc
κs

1
κs

∫ κc
κs

1
κs

1

(x y)γ
r

(
κx

κs

)
r
(
x y

)
r

(
κy

κs

)
dxdy

[∫ κc
κs

1
κs

x−γr

(
κx

κs

)
dx

]2 . (3.4)

The average clustering coefficient is computed from c(κ) as c̄ = ∫ κc
1 ρ(κ)c(κ)dκ 2.

However, c(κ) is a bounded monotonously decreasing function and so its major
contribution to c̄ comes from nodes with small degree, i. e., low κ [39]. There-
fore, to find the correct scaling behaviour it suffices to evaluate c(κ) in the do-
main κ<< κs . In this case, the maximum value within the domain of integration
[1/κs ,κc /κs] of the arguments κx/κs and κy/κs in Eq. (3.4) is of order O (κc /κ2

s ),
which goes to zero in the thermodynamic limit. We can, thus, approximate c(κ)
as

c(κ) ≈ (γ−2)2

κ
2(γ−2)
s (1−κ2−γ

c )2

∫ κc
κs

1
κs

∫ κc
κs

1
κs

(x y)2−γ

1+x y
dxdy, (3.5)

which becomes independent of κ.
To solve this integral we use the transcendent Lerch function Φ(z, a,b) [89].

We use the following identity∫ a

0
d x

∫ b

0
d y

(x y)2−γ

1+x y
= (ab)3−γΦ(−ab,2,3−γ) (3.6)

for 2 < γ< 3 and a,b > 0, which allows us to write Eq. (3.5) as

c(κ) ≈ (γ−2)2

κ
2(γ−2)
s (1−κ2−γ

c )2

[(
κc

κs

)2(3−γ)

Φ

(
−

(
κc

κs

)2

,2,3−γ
)

(3.7)

2Notice that since κ is only the expected degree, a node with, for instance, expected degree
κ= 1 may end up with an actual degree above 1 and vice versa. This implies that all values of κ
contribute to the global clustering of the network and, thus, the domain of integration is [1,κc ]
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−2

(
κc

κ2
s

)3−γ
Φ

(
−κc

κ2
s

,2,3−γ
)
+ 1

κ
6−2γ
s

Φ

(
− 1

κ2
s

,2,3−γ
)]

.

The first argument of the second and third transcendent Lerch functions in this
equation goes to zero in the thermodynamic limit because κc << κ2

s ∼ N . How-
ever, the argument of the first Lerch function diverges unless κc ∼ κs . Unfortu-
nately, there is not known asymptotic behaviour for the Lerch function for di-
verging arguments. To overcome this problem, we use the integral representa-
tion of functionΦ(−z2,2,3−γ),

Φ(−z2,2,3−γ) =
∫ ∞

0

xe−(3−γ)x

1+ z2e−x
d x. (3.8)

The domain of integration in Eq. (3.8) can be separated in the sub-domains
[2,2ln z] and (2ln z,∞) such that function (1+ z2e−x)−1 can be expanded as a
converging Taylor series in each sub-interval. Once this trick is used, it is easy to
derive the following identity

Φ(−z2,2,3−γ) = z−2(3−γ) [2ψ(γ) ln z +θ(γ)
]+ 1

z2
Φ

(
− 1

z2
,2,γ−2

)
. (3.9)

Notice that this expression has a well defined behaviour when z À 1. Plugging
this expression into Eq. (3.7) we obtain

c(κ) ≈ (γ−2)2

κ
2(γ−2)
s (1−κ2−γ

c )2

[
2ψ(γ) ln

(
κc

κs

)
+θ(γ)+

(
κs

κc

)2(γ−2)

Φ

(
−

(
κs

κc

)2

,2,γ−2

)
(3.10)

−2

(
κc

κ2
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)3−γ
Φ

(
−κc

κ2
s

,2,3−γ
)
+ 1

κ
6−2γ
s

Φ

(
− 1

κ2
s

,2,3−γ
)]

where
ψ(γ) =Φ(−1,1,3−γ)+Φ(−1,1,γ−2),

θ(γ) =−π2 cotπγcscπγ.

This expression, although involved at first glance, it is convenient because in the
range κs ≤ κc ¿ κ2

s the arguments of the three transcendent Lerch functions in
it go to 0− in the limit κs →∞, in which case we know thatΦ(−z2, a,b) ∼ b−a for
z → 0. We then find the asymptotic behaviour

c(κ) ∼ (γ−2)2

κ
2(γ−2)
s


θ(γ)+Φ(−1,2,γ−2) κc = κs À 1

2ψ(γ) ln
(
κc
κs

)
κc À κs À 1.

(3.11)

The first line in this equation recovers the result found in [39] for scale-free net-
works without structural correlations –c(κ) ∼ N 2−γ when κs ∼ N 1/2– whereas the
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Figure 3.1: Clustering coefficient as measured in numerical simulations for dif-
ferent values of γ and size N with k̄mi n = 2 and κc = N 1/(γ−1). Each point is an
average over 104 different network realizations. Dashed lines are the numeri-
cal solution of Eq. (3.4) and solid lines are the approximate solution given by
Eq. (3.10). The inset shows an extrapolation up to size N = 108 using Eq. (3.10).

second line predicts c(κ) ∼ N 2−γ ln N when κc ∼ N 1/(γ−1), which corrects the in-
correct scaling behaviour predicted by Eq. (3.1) in this case. Interestingly, this
scaling is different from the one found for a model of growing random scale-free
graphs [12], again making evident the difference between equilibrium and non-
equilibrium models of random graphs [63].

Figure 3.1 shows a comparison between numerical simulations, the numeri-
cal solution of Eq. (3.4), and the approximate solution given by Eq.(3.10), show-
ing a very nice agreement. Interestingly, for γ = 2.1, clustering remains nearly
constant in the range of sizes 103−105 and even increases slightly for small sizes.
This is a consequence of the slow decay of the term κ

2(2−γ)
s combined with the

diverging logarithmic term in the numerator and functionsψ(γ) and θ(γ), which
diverges in the limit γ→ 2. In the inset of Fig. 3.1, we show the extrapolation of
the clustering coefficient for sizes up to 108 evaluated with Eq. (3.10). In the case
of γ = 2.1, this figure makes evident the extremely slow decay –nearly absent–
with the system size. This implies that, in practice, clustering cannot be re-
moved from the network even in very large networks when γ≈ 2. It is, thus, not
clear whether the tree-like approximation, customarily used to solve problems
on random graphs, can be applied in this case. In this situation, one should use
alternative approaches, like the one developed in [159]. These results are par-
ticularly relevant due to the abundance of real networks with values of γ ≈ 2.
It is also interesting to study the behaviour of clustering as a function of γ for
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Figure 3.2: Clustering coefficient as a function of γ for different network sizes.
Curves are evaluated from Eq. (3.10) with k̄mi n = 2 and κc = N 1/(γ−1).

a fixed network size. Figure 3.2 shows this behaviour for different values of N ,
confirming the results found in Fig. 3.1. Clustering increases as γ decreases and
converges to a constant and size independent value at γ= 2.

Up to this point, we have been concerned only with the ensemble average
of the clustering coefficient. However, the CM ensemble shows strong sample-
to-sample fluctuations. Figure 3.3 shows the probability density function of the
clustering coefficient obtained out of a sample of 104 different networks gener-
ated by the canonical version of the CM. As it can be observed, clustering may
take values in the range [0.05,0.25] quite easily. Figure 3.3 also shows the stan-
dard deviation σC as a function of network size and for different values of γ. In
all cases, fluctuations decay as a power law of the system size, σC ∼ N−z , with an
exponent z < 1. Interestingly, for γ= 2.1, the exponent z takes a very small value
(z ≈ 0.1) that, when combined with the behaviour of C as a function of N re-
sults in a coefficient of variation nearly constant. This implies that, in this range
of values of γ, clustering is de facto a size-independent but non self-averaging
property. That is, a single network instance is not a good representative of the
ensemble even for very large network sizes.

3.4 Discussion

The presence of triangles in real networks play an important role in many pro-
cesses taking place on top of them, e. g. , percolation phenomena, epidemic
spreading, synchronization, etc. It is, therefore, important to have full control
over the most simple network ensembles that are used as null models to assess
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the presence of underlying principles shaping the topology of the system.
Here we have found the correct scaling behaviour of the clustering coeffi-

cient of the ensemble of scale-free random graphs with 2 < γ < 3. Interest-
ingly, for values of the exponent γ ≈ 2, clustering remains nearly constant up
to extremely large network sizes. However, in this case, clustering is not self-
averaging. This means that when comparing real networks against the CM, it is
not enough to generate a single instance network, as it may result in either a very
low or high level of clustering even for very large network sizes. These results
are particularly important as the exponent γ ≈ 2 seems to be –for yet unknown
reasons– the rule rather than the exception in real systems.
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Figure 3.3: Sample to sample fluctuations. Plot (a) shows the probability density
function of the clustering coefficient as obtained from 104 network realizations
for k̄mi n = 2, κc = N 1/(γ−1), γ = 2.1, and N = 104. Plot (b) shows the standard
deviation of this pdf for different values of γ as a function of the network size.
Solid lines are power law fits of the form σC ∼ N−z . The exponent z is shown in
the inset.





CHAPTER 4

Global organization of clustering in
complex networks

4.1 How are the triangles organized?

The architecture of real complex systems lies between order and disorder, al-
though its precise location is quite difficult to determine. On the one hand,
disorder in complex networks is manifested by the small-world effect [170]
and a highly heterogeneous degree distribution [9], both properties commonly
present in real complex networks [63, 135]. On the other hand, order is mani-
fested by the presence of triangles –or clustering– representing three point cor-
relations in the system. Indeed, the very concept of order is typically related to
the existence of a metric structure in the system which, from the network per-
spective, is captured by clustering, the smallest network motif able to encode
the triangle inequality. Yet, unlike the small-world effect and the heterogeneity
of nodes’ degrees, clustering is not an emergent property spontaneously gen-
erated by paradigmatic connectivity principles such as preferential attachment.
Besides, the most popular network model, the configuration model, we have
seen that, although it can show high levels of clustering in some situations, its
not enough to reproduce the ones observed in real networks. Therefore, clus-
tering calls for specific mechanisms for explaining its emergence, thus giving
important insights into the nature of network formation and network evolution.

However, the effects of clustering on the structural and dynamical properties
of networks have not yet been conclusively elucidated. In fact, several studies
have reported apparently contradictory results concerning the effects of cluster-
ing on the percolation properties of networks and little is known on its effects on
dynamical processes running on networks [84, 85, 86, 134, 153, 154, 167]. This
is further hindered by the technical difficulties of any analytical treatment. In-
deed, the presence of strong clustering invalidates, in general, the "locally tree-
like" assumption used in random graphs, leaving little room for any theoretical
study.

In an effort to overcome these problems, a new class of clustered network
models has been proposed [83, 84, 85, 86, 98, 122, 134, 167]. These are based
on the idea of introducing clustering in the network by means of cliques of dif-
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ferent sizes. While different models have different rules to match these cliques
to close the network, they are all based on the same principles used in the clas-
sical configuration model to generate random graphs with a given degree se-
quence. In this way, the resulting clustered graph is embedded in another graph
that is locally tree-like, thus allowing for an analytical treatment. With these ap-
proaches, it is possible to generate networks with a given degree distribution
P (k) and degree-dependent clustering coefficient c̄(k), or clustering spectrum.

While this is indeed a fair approach to the problem, triangles generated by
these models are arranged in a very specific way, with strong correlations be-
tween the properties of adjacent edges. In some sense, we can consider this class
of models as generators of maximally ordered clustered graphs. At the other
side of the spectrum, we can define an ensemble of maximally random clustered
graphs such that correlations among adjacent edges are the minimum needed to
conform with the degree-dependent clustering coefficient, but no more. These
two types of models define –in a non-rigorous way– two extremes of the phase
space of possible graphs with given P (k) and c̄(k). A simple question arises then:
where are real networks positioned in this phase space?

To give an answer to this question, we need to go beyond the local proper-
ties of networks and to study their global organization. In this chapter, we study
the global structure of clustering in real networks and compare them with the
global structure of clustering induced by the two types of models with identi-
cal local properties. More specifically, we analyse the organization of real and
model networks into m-cores, defined as maximal sub-graphs with edges par-
ticipating at least in m triangles, that is able to distinguish between hierarchical
and modular architectures. Interestingly enough, real networks tend to be closer
to maximally random clustered graphs, although clear differences are evident.

In this chapter, we analyse three real paradigmatic networks from different
domains: the Internet at the Autonomous System level [28], the web of trust of
the Pretty Good Privacy protocol (PGP) [25], and the metabolic network of the
bacterium E. coli [158]. However, the results obtained here also hold for a wide
spectrum of systems [50] (See the appendix A.1 for an extensive description of
these real networks).

4.2 Clustered network models

One of the best clique-based models to generate maximally ordered clustered
networks is the one introduced by Gleeson in [84]. In this model, nodes be-
long to single cliques and are also given a number of connections outside their
cliques. Then, cliques are considered as super-nodes, each with an effective de-
gree given by the sum of all the external links of the members of the clique, and



4.2. Clustered network models 45

connected using the standard configuration model. The input of the model is
the joint distribution γ(c,k), defined as the probability that a randomly chosen
node has degree k and belongs to a clique of size c. Both the degree distribution
and the degree-dependent clustering coefficient are related to function γ(c,k).
Therefore, by properly choosing its form, it is possible to match the desired de-
gree distribution and clustering. Note, however, that since we start with cliques
and not nodes, the number of nodes and their actual degrees are not fixed a
priori. As a consequence, in finite heterogeneous networks, there may be some
unavoidable discrepancies between real and random versions of the network.
Hereinafter, we denote this model as “clique-based model” (CB).

On the other, we generate maximally random clustered networks as an en-
semble of exponential graphs as introduced in section 2.5 with Hamiltonian

H =β
kc∑

k=kmi n

|c̄∗(k)− c̄(k)|, (4.1)

where kmi n and kc are the minimum and maximum degrees of the network,
c̄∗(k) is the target degree-dependent clustering coefficient, c̄(k) is the one cor-
responding to the current state of the network and β is the Lagrange multiplier.
Therefore, starting from a given real network and after an initial randomization,
this Hamiltonian is minimized by means of simulated annealing coupled to a
Metropolis rewiring scheme until the current clustering is close enough to the
target one. Here we use both rewiring schemes. The one that only preserves
the degrees of nodes and also the one that preserve both the degree distribu-
tion and the joint degree-degree distribution of connected nodes, P (k,k ′), so
that degree-degree correlations are fully preserved. As we have shown in sec-
tion 2.2, this network model generates network with a given constrain, here the
c̄(k), and is maximally random to all other respects. Hereinafter, we denote these
models as “maximally random models” (MR). We would like to stress that, even
though there are many models of exponential random graphs generating clus-
tered graphs [73, 76, 123], none of them reproduces the actual clustering spec-
trum as a function of node degree. In this sense, our maximally random model
gets closer to real networks.

Notice that none of the random models used in this chapter enforces global
connectivity of the network in a single connected component. Therefore, the
number of disconnected components and the size of the giant (or largest) com-
ponent must be considered as predictions of the models, which can be readily
compared to those of real networks. In Table 4.1, we show this comparison with
the networks analysed here. Quite remarkably, in the case of the Internet, MR
models predict the existence of, basically, a single connected component, as it
is also observed in the real network. On the other hand, the CB model generates
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Table 4.1: Statistics of real networks and their random counterparts. N is the
number of nodes, E is the number of edges, c̄ is the average clustering coeffi-
cient averaged only over nodes with degrees k ≥ 2. We also show the number
of disconnected components (clusters) and the relative size of the giant compo-
nent. Error bars are computed as the standard deviation of the corresponding
metric as obtained from a sample of 10 network realizations. Figures without
errors did not show any significant difference between different samples.

N E c̄ # of clusters Giant component

Internet 23752 58416 0.61 3 99.98%
Internet clique-based model 23800±200 50000±10000 0.62±0.01 2200±400 (75±4)%
Internet random c̄(k) 23752 58416 0.61 16±4 (99.84±0.06)%
Internet random c̄(k), P (k,k ′) 23752 58416 0.61 4±1 (99.96±0.02)%

PGP 57243 61837 0.50 16221 18.65%
PGP clique-based model 62000±1000 57200±200 0.506±0.005 13700±200 (37±1) %
PGP random c̄(k) 57243 61837 0.487±0.001 15550±60 (21.3±0.4)%
PGP random c̄(k), P (k,k ′) 57243 61837 0.493±0.001 15810±20 (22.3±0.3)%

E. Coli 1010 3286 0.48 2 99.8%
E. Coli clique-based model 1010±40 3300±700 0.51±0.01 7±3 (97.9±0.6) %
E. Coli random c̄(k) 1010 3286 0.48 2.2±0.9 (99.7±0.3)%
E. Coli random c̄(k), P (k,k ′) 1010 3286 0.48 7±2 (98.2±0.6)%

a very large number of disconnected components and a giant component sig-
nificantly smaller than the real one. Even more surprising are the results for the
PGP web of trust. The real network is fragmented into a large number of small
components whereas its giant component occupies around 18% of the network.
All models generate a similar number of disconnected components. However,
the relative size of the giant component is very well reproduced by MR models,
whereas the CB model predicts a giant component twice as large. In the case of
the metabolic network of the bacterium E. coli, all models predicts the existence
of a single connected component, in good agreement with the real network.

4.3 Revealing network hierarchies: k-cores and m-
cores

Real heterogeneous networks are typically hierarchically organized. One of the
most useful tools to uncover such hierarchies is the k-core decomposition [65].
Given a network, its k-core is defined as the maximal subgraph such that all
nodes in the subgraph have at least k connections with members of the sub-
graph. This defines a hierarchy of nested sub-graphs, where the 1-core contains
the 2-core, which in turn contains the 3-core and so on until the maximum k-
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core is reached. Nodes belonging to the k-core but not to the (k+1)-core are said
to have coreness k. Real networks often show a deep and complex k-core struc-
ture, as made evident by tools such as LaNet-Vi [15]. However, even though clus-
tering has been shown to induce strong k-core hierarchies [154], the k-core per
se does not include any information about clustering and, thus, cannot discrim-
inate well between two networks with different global organization of clustering
but with the same clustering coefficient.

To overcome this problem, the concept of k-core has been remodelled to ac-
count for clustered networks. A key ingredient throughout the paper is the con-
cept of edge multiplicity m, defined as the number of distinct triangles going
through an edge [149, 155, 171]. All edges belonging to a clique of size n have
identical multiplicity n − 2 whereas an edge connecting two cliques has zero
multiplicity. Therefore, strong correlations between the multiplicities of adja-
cent edges indicate that triangles are arranged in a clique-like fashion whereas
a weaker correlation indicate a random distribution of triangles. It is therefore
clear that, in order to uncover the global organization of triangles in a network,
it is necessary to understand the organization of the multiplicities of their edges.
This can be achieved with the m-core, defined as the maximal subgraph such
that all its edges have, at least, multiplicity m within it. This concept was de-
veloped in [91, 152] under the name of k-dense decomposition. The edges in a
k-dense graph have multiplicity m = k −2. Because of this, we prefer the notion
of m-core, which is directly related to the multiplicity: an edge belongs to the
m-core if its multiplicity within the m-core is, at least, m. A node belongs to the
m-core if at least one of its edges belongs to it. A node belonging to the m-core
but not to the (m +1)-core is said to have m-coreness m. As in the case of the
k-core, the m-core defines a set of nested sub-graphs whose properties informs
us about the global organization of triangles in the graph. Figure 4.1 shows an
example of a simple network and its m-core structure.

In the case of the k-core, the internal average degree within each subgraph
grows as k is increased. As a consequence, it is very unlikely that the (k +1)-core
is fragmented in different components if the k-core is connected. Therefore, the
main interest of the k-core decomposition is focused on the size of the giant
k-core and the maximum coreness of the system. The situation is completely
different in the case of the m-core. This is so because of a weaker correlation
between m-coreness of a node and its degree [139]. In fact, the m-core decom-
position is able to distinguish between a strong hierarchical structure –when m-
cores do not fragment into smaller components– from a highly modular archi-
tecture –when m-cores are always fragmented. In this case, the quantities of
interest are, besides the size of the giant m-core and the maximum m-coreness,
the number of components as a function of m.

Figures 4.2, 4.3, and 4.4 show a comparison of the k-core and m-core de-
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Figure 4.1: m-cores decomposition and its visualization. The example network
in a is coloured according to the m-coreness of nodes and edges. Nodes and
edges coloured in blue belong to the m0-core but not to the m1-core. Nodes and
edges coloured in green belong to the m1-core but not to the m2-core, etc. The
same structure is represented in b with the visualization tool described in the
main text. The outermost circle in blue represents the m0-core, with nodes of
m-coreness 0 located in its perimeter. The m1-core –which is contained within
the m0-core– is fragmented in two disconnected components, which are repre-
sented as two non-overlapping circles within the outermost one and with nodes
of m-coreness 1 located in their perimeters. The larger of these two compo-
nents is further fragmented in two disconnected components representing the
m2-core and m3-core. The angular positions of nodes in each circumference
are chosen to minimize the angular separation with their neighbours in differ-
ent layers. Notice that in this representation, each edge is coloured with two
colors, corresponding to the colors of the m-coreness of the nodes at the end of
the edge but in reverse order. In this way, it is possible to visualize easily connec-
tions between different layers. See [15] for further details of the visualization.
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compositions between real networks and their random equivalents. As it can be
observed in the top plots of these figures, all models do a reasonably good job
at reproducing both the k-core structure and the distribution of edge multiplic-
ities, even though MR models are clearly better than the CB one. However, there
are important differences in the m-core decomposition. While both versions
of MR models reproduce well the giant m-core, the maximum m-coreness, and
the number of components as a function of m of all the studied networks, the
CB model overestimates the size and number of components in the case of the
Internet and underestimate the size of giant m-cores in the PGP web of trust. In
the case of the metabolic network, MR models reproduce well its entire m-core
structure. The CB model, on the other hand, does not capture well the m-core
decomposition. Even though the CB network is originally connected, it frag-
ments into a large number of disconnected components already at the m1-core
and keeps fragmenting at each level almost up to the largest m-core, which is
also three times larger than the real one.

4.4 m-core visualization

The m-core decomposition is actually much richer and complex than what
Figs. 4.2, 4.3, and 4.4 show. Certainly, the m-core decomposition can be rep-
resented as a branching process that encodes the fragmentation of m-cores
into disconnected components as m is increased. The tree-like structure of
this process informs us about the global organization –for instance hierarchi-
cal vs. modular– of clustering in networks. To visualize this process we devel-
oped LaNet-vi 3.0, a modified version of LaNet-vi, originally designed to visual-
ize the k-core structure of a network [15], but now extended to include the m-
core decomposition. We have made our code publicly available to the scientific
community on SourceForge [16]. In short, the old LaNet-vi tool evaluates the
coreness of all nodes of the network and arranges them in a plane following the
hierarchy induced by the k-cores, so that nodes with high coreness are placed at
the center of the figure whereas nodes with lower coreness are located around
nodes with higher coreness in an onion-like shape. The major modification in
LaNet-vi 3.0 with respect to the visualization mode in the previous version con-
cerns the representation of disconnected components. If the network forms a
single connected component, nodes with m-coreness 0 are arranged in the out-
ermost circle of the representation. Whenever the m1-core is fragmented into
several components, these are arranged in separate and non-overlapping disks
within the circle of m-coreness 0, with nodes of m-coreness 1 placed at the edge
of their corresponding disk. The process is repeated for each disconnected com-
ponent with the m2-core, m3-core, etc., until the maximum m-coreness present



50 Chapter 4. Global organization of clustering in complex networks

0 10 20 30 40 50 60
k

10−3

10−2

10−1

100

G
ia

nt
k-

co
re

Internet AS
Clique-based model
Random c(k)
Random c(k), P(k,k’)

100 101 102 103 104

m

10−5

10−4

10−3

10−2

10−1

100

P
c
(m

)

0 10 20 30 40 50 60
m

10−3

10−2

10−1

100

G
ia

nt
m

-c
or

e

0 10 20 30 40 50 60
m

100

101

102

103

104

#
co

m
po

ne
nt

s
in

m
-c

or
e

Figure 4.2: Measuring hierarchies in real and random networks. Comparison
of the k-core and m-core decompositions between the real Internet AS network,
the clique based model, and maximally random models. “Random c(k)” stands
for the maximally random model with a fixed degree distribution and clustering
spectrum c(k). “Random c(k), P (k,k ′)” stands for the maximally random model
that preserves also the degree-degree correlation structure of the real network.
The top left plot shows the relative size of the giant k-core as a function of k. Top
right plot shows the complementary cumulative distribution of edge multiplic-
ities. Bottom left plot shows the relative size of the giant m-core as a function
of m. Finally, the bottom right plot shows the number of components in the
m-core as a function of m.
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Figure 4.3: Measuring hierarchies in real and random networks. The same as
in Fig. 4.2 but for the PGP web of trust.
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Figure 4.4: Measuring hierarchies in real and random networks. The same as
in Fig. 4.2 but for the E. Coli metabolic network.
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in the network is reached. The size of each disk is proportional to the logarithm
of the number of nodes in the component. In this way, it is possible to visual-
ize simultaneously all the information encoded in the m-cores so that different
networks can be easily compared (see the right plot in Fig. 4.1 for a simple ex-
ample). When the original network is already fragmented (like in the PGP web
of trust, for instance), we first proceed to arrange disconnected components in
non overlapping disks within the outermost disk, that in this case does not have
any node in its perimeter.

Figures 4.5, 4.6, and 4.7 show the visualization of m-cores of real networks
and their random equivalents (visualizations of MR models are shown only for
P (k) preserving rewiring). In the case of the Internet graph, the m-core visual-
ization reveals a strongly hierarchical structure, where each layer is contained
within the previous layer and where connections are mainly radial, with nodes
with low m-coreness connected to nodes with higher m-coreness and very few
connections between nodes in the same layer. Interestingly, this type of struc-
ture is also revealed in recent embeddings of the Internet graph into the hyper-
bolic plane [28]. This structure is very well reproduced by MR models, as it can
be seen in the left bottom plot of Fig. 4.5, but not by the CB model, which gen-
erates a highly modular and non-hierarchical structure. The case of the web of
trust of PGP is particularly interesting. Figure 4.6 reveals a mixture of a modular
structure, with a strong fragmentation for all values of m –as one would expect
for a social network–, and a hierarchical structure, revealed by the existence of
a persistent giant m-core and a large number of layers. Again, this structure is
very well reproduced by MR models whereas the CB model generates a very flat
modular structure without any hierarchy. Finally, the metabolic network is also
strongly hierarchical, although due to the small network size the number of lay-
ers is relatively small. MR models reproduce very well its structure whereas the
CB model does not generate any hierarchy.

4.5 Discussion

The results presented in this chapter indicate that, in agreement with previous
studies [74, 95], the degree distribution P (k) and clustering spectrum c̄(k) are
the main contributors to the global organization of the majority of real networks,
which are close to maximally random once these properties are fixed. This sup-
ports the idea that most real networks are the result of a self-organized process
based on local optimization rules, in contrast to global optimization principles,
that yield a hierarchical organization that cannot be reproduced by maximally
ordered clustered models. Besides, the strong clustering observed in real net-
works, supports also the idea that such local principles are related to a similarity
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measure among nodes of the network that can be quantified by an underlying
metric structure [27, 28, 108, 141, 156, 158]. On the other hand, global optimiza-
tion principles are necessarily present, for instance, in power grids, where they
induce topologies that are very different from what one would expect at ran-
dom. This is made evident by its m-core decomposition (see Appendix A.1.4). In
this case, even thought the m-core structure is not very deep, it is very different
from any of the random models, which generate highly unstructured m-cores.
Therefore, the m-core decomposition along with its visualization tool can help
us to find the true mechanisms at play in the formation and evolution of real
networks.
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Figure 4.5: Visualizing m-cores. m-core decomposition of the Internet AS net-
work and its random versions. The MR version shown on the bottom left plot
of the figure corresponds to the “Random c(k)” model, that is, with the rewiring
scheme that does not preserves degree-degree correlations. The latter case is al-
ways closer to the real network. The color code is determined by the real network
and kept the same in its random versions. However, layers in random networks
above the maximum m-coreness of the real network are coloured all in red. Max-
imum m-coreness for the MR and CB models are 27 and 58, respectively.
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Figure 4.6: Visualizing m-cores. The same as in Fig. 4.5 for the PGP network and
its random versions. Maximum m-coreness for the MR and CB models are 23
and 36, respectively.
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Figure 4.7: Visualizing m-cores. The same as in Fig. 4.5 for the E. Coli metabolic
network and its random versions. Maximum m-coreness for the MR and CB
models are 9 and 14, respectively.





CHAPTER 5

Bond percolation

So far we have looked at the relation of clustering with other topological prop-
erties and its effect on the global structure of networks. In chapter 3 we studied,
both analytically and empirically, the clustering of random scale-free networks
revealing the relation between the degree distribution and clustering. Then,
in chapter 4, we unveiled the global organization of triangles in real networks
which we showed that is close to maximally random. Therefore, in contrast to
other models in which triangles are distributed in a very specific way, our clus-
tered network model defines the appropriate ensemble to study the effect of
clustering on network structure and function. In this direction, we are going to
exploit our model to study the effect of clustering on one of the simplest network
processes, the bond percolation problem [165].

Percolation theory emerged from the study of the movement of a liquid
through a porous material. The question that scientist were interested in was:
If a liquid is poured on top of some porous material; will the liquid be able to
make its way from hole to hole and reach the bottom? This physical question is
modelled mathematically as a three-dimensional lattice in which a fraction p of
the edges are open (allowing the liquid through) and the rest are closed. There-
fore, for a given value of p, what is the probability that a path exists from the top
to the bottom?

In network theory in particular, the bond percolation problem studies the
remaining structure of a network after a random removal of a fraction of its
edges; providing an elegant theory of network robustness to random failures of
their connections; a key issue for infrastructural and technological network de-
sign. Moreover, the bond percolation process can be mapped to one of the most
popular epidemic spreading models, the Susceptible-Infected-Recovered model
(SIR), so the bond percolation theory can also be used to predict the size of an
outbreak of a given infected agent. Besides, percolation models have been used
as a representation of resistor networks [7], forest fires [93], epidemics [128], bi-
ological evolution [97], and social influence [161].
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5.1 The bond percolation problem

The bond percolation problem on networks can be stated as follows: given a
network, we visit each edge and with probability p we preserve it or, which is
the same, with probability 1−p we removed it. Then a primary question arises:
which is the size of the remaining components as a function of the bond occu-
pation probability p?

Bond Percolation is a classical problem that has attracted the attention of
mathematicians and physicists for many years because it is one of the simplest
models displaying a phase transition. Under this process, a connected system
undergoes a continuous phase transition at a critical value pc , known as the
percolation threshold. Below pc the network is made of a myriad of finite dis-
connected clusters. Above this critical value, a macroscopic cluster of the order
of the size of the system, namely a giant component (GC), emerges, so the net-
work becomes globally connected. Therefore, in practical applications, having
an accurate prediction of the position of the percolation threshold is extremely
important. For example, in infrastructural or technological networks this critical
point separates the global functioning state from total collapse.

There have been many efforts to solve the bond percolation problem. In
some situation an analytical solution is possible, so we can obtain an expres-
sion for the size of the GC as a function of the bond occupation probability p
and the position of the critical point pc . Examples in which we have an exact
expression of pc include the case of lattices of 1 and 2 dimensions and the Bethe
lattice [165]. However, in many other systems we have no other option but to
rely on numerical simulations.

5.2 Numerical simulations

5.2.1 Newman-Ziff algorithm

The most simple way to make numerical simulations to explore the bond per-
colation properties of networks is to directly visit each edge and remove it with
probability 1 − p, and at the end, measure the size of the remaining clusters.
However, this process is very expensive computationally. One would need to
make independent simulations for all the different values of p, and for each
value, make many simulations to get a proper average.

However, there is a much more clever way to do the simulations following
the Newman-Ziff algorithm [137]. In each realization of this method, one starts
from a configuration with no connections. We then sequentially add edges in
random order and monitor the quantities that we are interested in, e.g. the size
of the largest cluster in the network, G . We repeat the entire process to average
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Figure 5.1: A simple example of a bond percolation process for different values of
the bond occupation probability p and the relative size of the largest component
g .

over many independent realizations and estimate the size of the largest compo-
nent as a function of the number of edges added from the initial configuration,
n. Then we can just find the value of G as a function of the bond occupation
probability by convolution with the binomial distribution,

G(p) =∑
n

(
E

n

)
pn(1−p)E−nG(n), (5.1)

where E is the total number of edges of the network. This algorithm can find the
value of a quantity or quantities over the entire range of p in time O(N ), a huge
improvement over the simplest algorithm which performs as O(N 2).

5.2.2 Percolation threshold and critical exponents

The critical point pc determines the moment in which a macroscopic cluster of
the order of the total system’s size emerges, leading to a sudden increase of the
size of the largest component of the network. Simulations are always performed
on finite systems, so we cannot distinguish between a macroscopic cluster from
a large one. Therefore, just from the observation of the size of the largest compo-
nent we cannot determine the exact point in which a GC appears. Fortunately,
continuous phase transitions are characterized by the divergence of the suscep-
tibility of the order parameter at the critical point [165]. In our case the order
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parameter is the size of the largest component so its susceptibility would simply
correspond to its variance with a proper normalization [11, 114],

χst ≡ 〈G2〉−〈G〉2

N
. (5.2)

In finite systems, the susceptibility χ will not diverge but will show a peak,
and its position provides an estimate of the critical point pc . Because the sus-
ceptibility should diverge in the thermodynamic limit, we expect that the height
of the peak of χ should increase with the system size. In particular, according to
the finite size scaling assumption, the susceptibility χst should behave as

χst (N , p) = Nγ/νF (|p −pc |N
1
ν ). (5.3)

where F (x) is scaling function that behaves as x−γ far from the critical point,
x >> 1, and is constant close to the critical point, x << 1 [165]. Therefore, the
height of maximum of the susceptibility should depend on the system’s size as
χst (p) ∝ Nγ/ν. At the same time, the position of the maximum of the suscepti-
bility, pmax , moves towards the theoretical value pc as pmax −pc ∝ N−1/ν.

The same scaling assumption is valid for the size of the largest connected
component. Close to the critical point the GC should depend on the system size
as G ∝ N−β/ν.

The exponents γ, β and ν are critical exponents1. In percolation theory, the
critical exponents are a set of universal parameters that depend on the dimen-
sionality of the network but not on microscopic details of the system. Therefore,
the measurement of the critical exponents characterize a phase transition allow-
ing for a proper classification. For instance, all regular lattices with a higher di-
mension than 6, such as a Cayley tree, have the same mean-field valuesβ= γ= 1
and ν= 3 [165] (See Appendix A.2 for more details). This regular mean-field re-
sult is not always valid, however, for scale-free networks [47] .

In this thesis, in order to measure the critical point we use the susceptibility
of the giant component but with a different normalization,

χ≡ 〈G2〉−〈G〉2

〈G〉 . (5.4)

The advantage of using Eq. (5.4) instead of Eq. (5.2) is mainly numerical for
measuring the critical exponents. For a finite system of size N , the peak of the
standard susceptibility near the critical point behaves as χmax

st ∼ Nγ/ν and our
version of the susceptibility χ diverges as χ∼ Nγ′/ν, where γ′ = γ+β. This means
that γ′ > γ and, thus, it is easier to measure in numerical simulations. This
method is assumed to give the most accurate measure of the bond percolation
threshold [148].

1Do not confuse the critical exponent γ with the γ used in the exponent of the scale-free
degree distributions P (k) ∼ k−γ.
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Figure 5.2: Bond percolation simulations for Erdős-Rényi networks with an av-
erage degree 〈k〉 = 5 and different network sizes. a) Relative size of the largest
connected component g as a function of the bond occupation probability p. c)
Susceptibility χ as a function of the bond occupation probability p. b) Position
pmax minus the theoretical value of the percolation threshold pc = 0.2 as func-
tions of the network size N . d) Height χmax of the peak of χ as functions of the
network size N . The straight lines are power-law fits, and b and d show the mea-
sured values of the critical exponents.
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Figure 5.2 shows bond percolation simulations on Erdős-Rényi networks
with an average degree 〈k〉 = 5 for different system sizes. In figure 5.2 a, we can
observe how the size of the largest connected component suddenly increases at
a value close to p = 0.2. The finite size scaling of the susceptibility in figure 5.2
c shows that the susceptibility of the giant component χ has a peak close to the
critical point that increases and gets closer to the theoretical value pc = 0.2 as we
increase the system size [37]. Figures 5.2 b and d use these phenomena to cal-
culate the critical exponents of the phase transition. The values we obtain agree
with the mean field theoretical values [165](See appendix A.2 for more detailed
explanation of the mean field values).

5.3 Bond percolation on random networks

Although the numerical simulations provide the more accurate prediction of the
size of the largest connected component as a function of the bond occupation
probability p and the position of the critical point, they do not give any informa-
tion on the relation between network structure and its percolation properties.
Therefore, analytic solutions of the bond percolation problem are useful to un-
derstand the role that each topological property has on network robustness to
the random failure of connections.

One example of our interest, in which an analytic solution is possible, is that
of random network with a given degree distribution, the so called configuration
model [37]. In this case, we can solve the problem giving a lot of insights on how
the degree distribution affects the bond percolation properties of networks.

Consider a network generated using the configuration model with degree
distribution P (k) in which only a fraction p of its edges are preserved and the rest
are removed. We define u as the average probability that a node is not connected
to the giant component (GC), via a particular neighbour. Then, the fraction of
nodes that belong to the GC, g , is equal to the probability that a randomly cho-
sen node belongs to the GC, or one minus the probability that a random chosen
node does not belong to the GC, so

g = 1−∑
k

P (k)
k∑
n

(
k

n

)
pn(1−p)k−nun . (5.5)

Note that we used the binomial distribution to calculate the probability that, af-
ter the percolation process on the previous k connections that a node had, n of
them are preserved and k −n are removed. We then expressed the conditional
probability that a node does not belong to the GC as the product of the indepen-
dent probabilities that it does not belong to the GC via each of its n remaining
neighbours, which is u, so we get the term un . This last step assumes that none
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of the neighbours of the node we are considering are connected by any path that
do not go through the node itself, that is only possible in a network that has no
close loops, namely a tree network. The type of random networks we are con-
sidering are not exactly trees but, their small presence of short loops makes this
assumption valid, at least locally.

Applying the binomial theorem to equation 5.5 we get

g = 1−∑
k

P (k)(1−p +pu)k . (5.6)

Here is important to point out that u = 1 gives g = 0 so there is not giant cluster,
and u = 0 means that the giant cluster is the whole network. However, we still
need to calculate an expression for u. The probability that a node i does not
belong to the GC through one of its neighbour is equal to the probability that
this neighbour, with degree k, does not belong to the GC through any of its k −1
other neighbours rather than node i . Using the same technique that we used in
Eq. 5.5 we can express u as

u =∑
k

P (k|k ′)
k−1∑

n

(
k −1

n

)
pn(1−p)k−1−nun . (5.7)

where P (k|k ′) is the probability that the node i of degree k ′ is connected to a
node of degree k which in our case, because the configuration model is uncor-
related in terms of degrees, takes the form kP (k)/〈k〉. Then, Eq. 5.7 leads to

u =∑
k

kP (k)

〈k〉 (1−p +pu)k−1. (5.8)

Equations 5.6 and 5.8 give us a complete solution for the size of the giant
cluster in our network. A numerical solution of these equations would gives us
the theoretical value of the size of the GC as a function of the bond occupation
probability. However, having a theoretical curve given by a numerical solution of
these equations is not giving much more information than one would get from
direct simulations. To get valuable knowledge, we need to solve these equations
in closed form and get an expression of the GC or the percolation threshold as a
function of some properties of the degree distribution.

In practice it is often not possible to solve Eq. 5.8 in a closed form, but there
is an elegant graphical representation of the solution as follows. Because all the
variables of Eq. 5.8 are definite positive, and p and u are smaller than 1, we know
that the functions on both sides of the equality are increasing functions with u.
Besides, we know that both functions cross at the trivial solution u = 1, which
implies there is no GC. Only if there is a non-trivial solution there can be a giant
cluster. Because the right-hand side of Eq. 5.8 is greater than 0 for u = 0, we know
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that in order to have one non trivial solution the derivative of the right hand side
at u = 1 must be larger than the derivative of the left-hand side at the same point,
which is equal to 1. Therefore, the bond percolation threshold pc is given by the
equation [

d

du

∑
k

kP (k)

〈k〉 (1−pc +pc u)k−1

]
u=1

= 1. (5.9)

If we apply the derivative operator we obtain

∑
k

k(k −1)P (k)

〈k〉 pc = 〈k2〉−〈k〉
〈k〉 pc = 1, (5.10)

which leads to the expression for the bond percolation threshold

pc = 〈k〉
〈k2〉−〈k〉 . (5.11)

Equation 5.11 describes the exact impact of the degree distribution on the
percolation threshold. From this expression we see that more heterogeneous
networks have a smaller percolation threshold. Interestingly, the common scale-
free distribution present in many real networks, with a power law behaviour
P (k) ∼ k−γ, with exponent γ < 3, have a infinite second moment, leading to
a vanishing percolation threshold. This fact implies that heterogeneity in the
connectivity of the nodes present in real networks makes them very resilient to
random failure of their connections.

Figure 5.2 a compares the results of bond percolation simulations on an
Erdös-Rényi graph and its theoretical curve given by Eqs. 5.8 and 5.6. As we
can see, both curves fit very well which implies that the Tree-like assumption
that we used in our calculations holds reasonably well on the classical random
graph model. Moreover, the value of the percolation threshold given by Eq. 5.11
is pc = 0.2 which is very close to the position of the maximum of the susceptibil-
ity of the giant component.

5.4 Bond percolation and epidemics

Computer viruses, technological innovation, rumours, beliefs, or viral market-
ing campaigns spread on the population through social contacts the same way
an infectious disease does. Although every process has its own particularity, all
of them can be modelled using epidemiological models, in which infected indi-
viduals have a certain probability to infect their contacts.

Traditional epidemiological models make use of the so called "fully mixed"
approximation in which all individuals are connected among themselves [5, 8,
94]. However, in the real world the potential contacts of individuals are restricted
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to finite number of individuals that can represent acquaintances, neighbours,
co-workers, and so forth. Because not every body has the same number of con-
tacts, the set of potential contacts that each person have can be represented as
a network, whose structure can have a strong effect on the epidemic dynamics.
Therefore, the study of the effect of network topology on different epidemiologi-
cal models has been an important breakthrough on the understanding of disease
dynamics.

One of the most popular epidemiological model is the Susceptible-Infected-
Recovered (SIR) model [90, 125]. This model is one of the most fundamental
epidemic models that can be applied to many common bacterial o viral infec-
tions that confer upon their host a certain immunity to catch the disease again,
or are very deadly. In this model every individual can be in three possible states.
An individual in the susceptible state is someone that does not have the disease
but can be infected if he or she comes in contact with someone who has the
disease. An infected individual is someone that has the disease and can propa-
gate it coming in contact with susceptible individuals. A recovered individual is
someone who either has become immune to the disease or he or she has died.
From a mathematical point of view it does not matter if the recovered individual
is immune or dead, because in both situations this individual cannot become
infected again or infect any other individual.

The dynamics of the SIR model is as follows: within a period δτ, any infected
agent can infect any of its susceptible neighbours with probability λ or recover
with probability β. Because in the SIR model infected individuals remain in-
fected a finite amount of time and then become recovered, it is possible that
they can recover before they have been able to spread the disease. Given an
edge between an infected node and a susceptible one, the probability that the
infected agent does not infect the susceptible node after a period of time τ is
(1−λδτ)τ/δτ, which in the continuous time limit we obtain

lim
δτ→0

(1−λδτ)τ/δτ = e−λτ. (5.12)

Then, the probability P (τ)δτ that the susceptible individual remains healthy this
long and then becomes infected in the interval between τ and τ+δτ is

P (τ)δτ=λe−λτ, (5.13)

Similarly to Eq. 5.12, the probability that an infected agent does not recover after
a period of time τ is equal to e−βτ. Therefore, the probability φ that the disease
is transmitted through one edge before the infected node becomes recovered is
given by

φ=
∫ ∞

0
λe−λτe−βτdτ= λ

λ+β = R

R +1
(5.14)
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where R is the basic reproduction number, the key parameter of a disease given
by the ration between the transmissibility λ and the mortality/latency β param-
eters, R ≡λ/β.

Equation 5.14 implies that every edge, with probability φ, will be able to
transmit the disease if it reaches one of its nodes at the end. Instead, with prob-
ability 1−φ, an edge will never propagate the disease even if a node at the end
becomes infected. Thus, if we are only interested in the late time state of an SIR
disease, we could first remove randomly a fraction 1−φ of the edges and assume
that the remaining edges will always propagate the disease. This procedure is
equivalent to a bond percolation process in which the probability φ given by the
Eq. 5.14 plays the role of the bond occupation probability p and the cluster’s size
of the remaining network in which the outbreak started is the final prevalence of
the disease.

Therefore, the late time state of the SIR model can be mapped to a bond per-
colation problem. Hence, the bond percolation threshold pc corresponds pre-
cisely to the epidemic threshold, Rc , in which the SIR model has a phase tran-
sition that separates the endemics state, in which a macroscopic portion of the
population can become infected, from the healthy state, in which the disease
will die out before becoming pandemic. Actually, using the previous results for
the percolation threshold in Eq. 5.11 combined with Eq. 5.14, we can find an ex-
pression for the epidemic threshold of a network generated by the configuration
model in terms of the degree distribution:

Rc = 〈k〉
〈k2〉−2〈k〉 . (5.15)

However, this mapping between bond percolation and the SIR model is not
completely exact. Using the bond percolation problem we get accurate predic-
tions for the mean outbreak size below the epidemic threshold, the same epi-
demic threshold, and the same final size of an epidemic. However, the bond per-
colation model fails to predict the correct outbreak size distribution and proba-
bility of an epidemic. The contact rate pairs for all edges incident to a susceptible
node are independent. However, transmission events from the same infected
node are marginally dependent, since they depend on the recovery of the same
node, unless the recovery time distribution is a delta function [102, 121]. Nev-
ertheless, the inaccuracies of the bond percolation mapping of the SIR model
can be fixed applying the bond percolation process on a semi-directed random
network of the type introduced in [23].

Nevertheless, the mapping between bond percolation and epidemics is a
powerful fact that allows us to apply many results on the bond percolation prob-
lem to the spread of diseases. Therefore, the direct relation that the bond perco-
lation process has with network structure and robustness, but also with network
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Figure 5.3: Comparison of the relative size of the giant component g (left axis) as
a function of the bond occupation probability p from simulations of the western
union states of US power grid. The theoretical curve is given by equations 5.6
and 5.8. On the right axis we plotted the susceptibility of the giant component
for the real network (red dashed line).

dynamics, makes this classic problem the perfect framework to study the role
that clustering plays on network structure and function.

5.5 Bond percolation on real networks

As in section 5.3, all the analytical results for the bond percolation problem as-
sume that the networks are locally tree-like [33, 37, 46, 99]. However, the high
level of clustering in empirical networks cast doubts on the validity of the Tree-
like assumption in real cases [148]. In some situations these theories still per-
form well [117], but in a large number of real cases the inaccuracies of these
theories are shown to be only caused by the presence of short loops [71]. For
instance, Fig. 5.3 compares bond percolation simulations on the Western union
states of United States power grid with the theoretical curves given by Eqs. 5.6
and 5.8. As we can clearly see, the theoretical curve deviates substantially from
numerical simulations. Since the theories we have at hand are very accurate
for locally tree-like networks, it becomes evident that clustering is an important
missing piece of the puzzle.

In an effort to overcome these problems, a new class of network models
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had been proposed in which the resulting clustered graph is embedded in an-
other graph that is locally tree-like, thus allowing for an analytical treatment.
[83, 84, 85, 86, 98, 122, 134, 167]. However, as we have seen in the previous chap-
ter, triangles generated by these models are arranged in a very specific way, with
strong correlations between the properties of adjacent edges, not present in real
networks. Nevertheless, our maximally random clustered network model de-
fined in section 2.5 does reproduce the global organization of triangles in real
networks. Therefore, we consider that our model defines an appropriate frame-
work to study how clustering affects the bond percolation properties of net-
works.

Because all the mathematical tools to solve the bond percolation problem
at some point rely on the tree-like assumption, the possibility to have analytical
solutions that includes clustering does not look promising. Therefore, in the
next chapter we are going to exploit our clustered network model to make an
empirical study on how clustering effects the position of the bond percolation
threshold.



CHAPTER 6

Bond percolation on clustered
networks

6.1 Bond percolation on clustered networks

Percolation theory has played a prominent role in understanding the anomalous
behaviors observed in complex networks and, in most cases, is the common un-
derlying principle behind these behaviors. Interestingly, the interplay between a
complex network topology and different percolation mechanisms leads to phe-
nomena that have not previously been observed in statistical physics, includ-
ing a lack of percolation thresholds in scale-free networks with a degree distri-
bution of the form P (k) ∼ k−γ for γ < 3 [18, 24, 29, 41, 112, 144], anomalous
infinite-order percolation transitions in non-equilibrium growing random net-
works [38, 64], or cascading processes in interdependent networks [14, 35, 164].
However, these phenomena have already been observed on random graphs with
given degree distributions. Random graphs of this type are locally tree-like, that
is, the number of triangles, and thus the clustering coefficient, can be neglected
in the thermodynamic limit. However, as we have seen, the strong presence of
triangles is, along with the small-world effect and heterogeneity of the degree
distribution, a common and distinctive topological property of many real com-
plex networked systems. While clustering is not a necessary condition for the
emergence of any of these phenomena, the effects of clustering on the percola-
tion properties of a network are unknown.

Percolation in clustered networks has been widely studied [84, 86, 104, 122,
132, 134, 154]. However, previous reports differ concerning the position of
the percolation threshold. Some studies report that clustered networks have
a larger percolation threshold than do unclustered networks due to redun-
dant edges in triangles that cannot be used to connect to the giant component
(GC) [86, 104, 122, 134]. Other studies report that strongly clustered networks
are more resilient due to the existence of a core that is extremely difficult to
break [84, 132, 154]. In fact, as we shall demonstrate, both arguments are cor-
rect.

Here, we show that strong clustering induces a core-periphery organization
in the network [54] that gives rise to a new phenomenon, namely, a “double
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percolation” transition, in which the core and periphery percolate at different
points. This behaviour is in stark contrast to the modern theory of continuous
phase transitions, which forbids the possibility of breaking the same symmetry
at two different values of the control parameter. Multiple percolation transitions
have recently been reported in [19, 42, 43, 129]. However, in each of these cases,
anomalous percolation arises as a consequence of either complex percolation
protocols [42, 43, 129] or the interdependence between different networks [19],
and it is never associated with the same symmetry breaking. Instead, our re-
sults are obtained with the simplest percolation mechanism, bond percolation
with bond occupation probability p, which indicates that this double percola-
tion transition is exclusively induced by a particular organization of the network
topology.

6.2 Random graphs with a given clustering spectrum

To study empirically the effects of varying one network property (e.g. clustering),
one would ideally like to generate multiple networks with all properties identi-
cal, except the property of interest. However this task is not easy to put it in
practice because network properties may constrain each other, or not be inde-
pendent. Here, in order to study the effect of clustering on the bond percolation
properties of networks we will use our maximally random clustered networks to
compare networks with the same degree distribution and degree-degree corre-
lations and different clustering spectrum.

Our results will be only strictly valid for our maximally random networks.
However, in chapter 4 we showed that our maximally random clustered network
model is the one that better reproduced the global organization of real complex
networks. Outperforming previous clustered network models. Besides, a pre-
liminary analysis in Ref. [154] shows that the percolation properties depend on
two network features, the joint degree distribution P (k,k ′), and the shape of the
clustering spectrum c̄(k). Moreover, Ref [140] shows that long-range properties
of real complex networks are very well reproduced by maximally random net-
works with the same degree distribution, degree-degree correlation and cluster-
ing spectrum. Therefore, we expect that our result here can also be applied to
real networks.

To generate scale-free random graphs with a given clustering spectrum c̄(k)
and fixed degree-degree correlations we use the model developed in section 2.5.
Therefore, we first generate a degree sequence according to a desired degree dis-
tribution. Then, from this degree sequence, we generate a random network us-
ing the configuration model. Finally, we add the desired level of clustering using
the rewire Metropolis-Hastings algorithm together with the annealed procedure.
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Our model allows to give any desired clustering spectrum. Since the lo-
cal clustering coefficient of a node is the probability that two random neigh-
bours are connected, we decided to give the same probability to all nodes. This
choice corresponds to a constant or flat clustering spectrum. This case is not the
same as fixing the average clustering coefficient because, in our case, we enforce
nodes of any degree to have the same local clustering (see Fig. 2.2 for a com-
parison). In any case, due to structural constraints, for very strong clustering it
is not possible to keep c̄(k) constant for very large values of k. In this case, the
algorithm generates the maximum possible clustering [155].

For each network, we perform bond percolation 104 times using the
Newman-Ziff algorithm [137] and measure the average relative size of the largest
(giant) connected component, g ≡ 〈G〉/N , and its fluctuations, i.e., the suscep-
tibility χ = [〈G2〉−〈G〉2

]
/〈G〉. These results are then averaged over 100 network

realizations. In finite systems, a peak in the susceptibility χ indicates the pres-
ence of a continuous phase transition, and its position provides an estimate of
the percolation threshold.

6.3 Weakly heterogeneous networks

We first studied the scale-free networks, which have a degree distribution that
follows a power law P (k) ∼ k−γ, in the weakly heterogeneous regime (γ À 3).
Figure 6.1 show the results of the bond percolation properties of networks with
the same degree distribution, for γ= 3.5, and degree-degree correlations but dif-
ferent levels of clustering. All networks have a unique and well defined peak in
the susceptibility χ, and an increase of the clustering moves the peak to higher
values of p. So in this situation, according to [86, 104, 122, 134], triangles are re-
dundant edges that can not be used to connected the GC together. We obtained
the same results for other networks with larger values of γ or with a Poisson de-
gree distribution which are even less heterogeneous than the one just reported.
Hence clustering decreases the GC and increases the percolation threshold of
weakly heterogeneous networks.

6.4 Heterogeneous networks

However, most of real networks are heterogeneous so the most interesting case
corresponds to heterogeneous networks, typically with γ< 3.5. In particular we
focus on the case of γ= 3.1 and a constant clustering spectrum. This value of γ
generates scale-free heterogeneous networks but with a finite second moment,
which allows us to clearly isolate the new phenomenon. The results for γ≤ 3 are
qualitatively similar.



74 Chapter 6. Bond percolation on clustered networks

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

G
ia
n
t
C
o
m
p
o
n
e
n
t

g

aa

c̄(k) = 0.010

c̄(k) = 0.050

c̄(k) = 0.100

c̄(k) = 0.250

0.0 0.2 0.4 0.6 0.8 1.0
p

0

100

200

300

400

500

600

700

S
u
sc
e
p
ti
b
il
it
y

χ

c
100 101 102 103

Degree

10−3

10−2

10−1

100

C
lu
st
e
ri
n
g

b

0.0 0.2 0.4 0.6 0.8 1.0
Percolation Threshold pc

10−3

10−2

10−1

100

C
lu
st
e
ri
n
g

d

Figure 6.1: Bond percolation simulations for networks of 10.000 nodes with a
power law degree distribution with γ = 3.5 and different levels of clustering. a)
Relative size of the largest connected component g as a function of the bond
occupation probability p. b) Degree-dependent clustering coefficient c̄(k). c)
Susceptibility χ as a function of bond occupation probability p. d) Percolation
threshold (pmax) as a function of the level of clustering.
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Figure 6.2: Bond percolation simulations for networks of N = 5×104 nodes with
a power law degree distribution, γ = 3.1, and different levels of clustering. a)
Relative size of the largest connected component g as a function of the bond
occupation probability p. b) Degree-dependent clustering coefficient c̄(k). c)
Susceptibility χ as a function of the bond occupation probability p. d) Percola-
tion threshold (pmax) as a function of the level of clustering.
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Figure 6.3: Bond percolation simulations for networks with a power law degree
distribution with γ = 3.1, target clustering spectrum c̄(k) = 0.25, and different
network sizes. a) Relative size of the largest connected component as a function
of the bond occupation probability p. c) Susceptibility χ as a function of the
bond occupation probability p. b and d: Position pmax and height χmax of the
two peaks of χ as functions of the network size N respectively. The straight lines
are power-law fits and the measured values of the critical exponents are shown.
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Figure 6.2 compares the percolation properties of networks with identical
degree sequence (γ= 3.1) and degree-degree correlations but with different lev-
els of clustering. Plots c and d in Fig. 6.2 show new and surprising results. For
low levels of clustering, there is a unique and well-defined peak inχ, but increas-
ing clustering gives rise to the emergence of a secondary peak at higher values of
p. This result suggests the presence of a double phase transition, in which two
different parts of the network percolate at different times.

To confirm this possibility, we perform finite size scaling on networks with a
target clustering spectrum of c(k) = 0.25 and different system sizes, ranging from
N = 5×103 to N = 5×105. Plot d in Fig. 6.3 shows that the susceptibility exhibits
two peaks whose maxima χmax diverge as power laws, χmax(N ) ∼ Nγ′/ν1. The
position of the first peak also approaches zero as a power law pmax(N ) ∼ N−1/ν,
as shown in Fig. 6.3 b, which suggests that even if the network has bounded fluc-
tuations, 〈k2〉 <∞, it is always percolated in the thermodynamic limit. In con-
trast, the position of the second peak is nearly constant in the range of sizes we
have considered. The divergence of the two peaks in the susceptibility strongly
suggests that we are indeed observing two different continuous phase transi-
tions. The first transition is between non-percolated/percolated phases, and the
second transition is between two percolated phases with very different internal
organizations.

6.5 The clustering m-core decomposition

To understand the effect of clustering on the global structure of networks, we
use the clustering m-core decomposition developed in section 4.3. This pro-
cess is based on the concept of edge multiplicity m, which is defined as the
number of triangles passing through an edge. We further define the m-core
as the maximal subgraph whose edges all have at least multiplicity m within
it. By increasing m from 0 to mmax , we define a set of nested sub-graphs that
we call the m-core decomposition of the network. This decomposition can be
represented as a branching process that encodes the fragmentation of m-cores
into disconnected components as m is increased. The tree-like structure of this
process provides information regarding the global organization of clustering in
networks. To visualize this process, we use the LaNet-vi 3.0 tool developed in
section 4.4. Figure 6.4 shows the m-core decomposition of three networks with
N = 5×104 nodes, the same degree sequence (with γ = 3.1) and degree-degree

1Note that we evaluate the size dependence as a function of the total number of nodes N and
not as the one dimensional length L. This implies that the finite size critical exponent ν that we
use in this paper already includes the dimensionality of the system d , that is, our exponent ν is
equivalent to dν in [165].
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correlations, and different levels of clustering. For low levels of clustering, the
m1-core is very small, and thus, the m-core structure is almost non-existent. As
clustering increases, m-cores begin to develop new layers and mmax increases.
For instance, for c̄(k) = 0.25 (Fig. 6.4 c), after the recursive removal of all links
that do not participate in triangles, we obtain the m1-core, which is composed
of a large connected cluster with a well-developed internal structure – a core in
the center of the figure – and a large number of small disconnected components
– a periphery. This result indicates that even if the network is connected, by it-
eratively removing all edges with multiplicities of zero, we are left with a small
but well-connected subgraph and the reminder of the network is fragmented.
Drastic topological transitions induced by clustering have been also reported in
the Strauss model and its generalizations [73, 143, 166].

In case of weakly heterogeneous networks γ> 3.5. The m-core visualization
of networks shows that there is no well entangled core even for large levels of
clustering. In this case there are no enough hubs to create a robust core.

6.6 Identification of the core

The aforementioned result suggests that the two peaks in the susceptibility of
the GC in heterogeneous networks could be related to this core-periphery orga-
nization. Both parts would percolate at different times, first the core and then
the periphery, and hence have their own percolation thresholds. To test this hy-
pothesis, we have to perform independent bond percolation simulations on the
core and the periphery. In order to identify which nodes belong to the core and
which to the periphery we perform a bond percolation simulation on a network
of 50000 nodes γ = 3.1 and c(k) = 0.25. We first delete all edges and then we
add the edges one by one randomly. Once we added a 20% of the total num-
ber of edges (p = 0.2 that lays between the two percolation thresholds) the giant
component (GC) defines a subgraph that we identify with the core (red nodes
in Fig 6.6), that roughly corresponds to the core observed in Fig. 6.4 c. If, in the
same simulation, we keep adding edges we will observe another phase transition
where the periphery percolates at p = 0.5. However the periphery has percolated
regardless of the core. This can be observe if we subtract the nodes that belong to
the core and see that largest component that remains is still a macroscopic com-
ponent (blue nodes at Fig. 6.6), and only few nodes leave the GC (green nodes in
Fig. 6.6).

Once the core and periphery are isolated, we perform bond percolation on
both components independently and compare the results with the original net-
work. Figure 6.5 shows that the core percolates precisely at the point where the
first peak appears in the original network, whereas the periphery percolates at
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Figure 6.4: a–c: clustering m-core decomposition of three different networks with
N = 5×104, γ = 3.1, and different levels of clustering, c̄(k) = 0.001,0.1,0.25. The color
code of a node represents its m-coreness. For instance, nodes coloured violet belong to
the m0-core but not to the m1-core and are said to have m-coreness of zero. The blue
coloured nodes belong to the m1-core but not to the m2-core and have m-coreness of
1, etc. The visual representation is as follows. The outermost circle and its contents
represent the m0-core and therefore the entire network. If we recursively remove all
edges of multiplicity 0, we obtain the m1-core subgraph, which is contained within the
m0-core. Nodes with no remaining connections do not belong to the m1-core, have m-
coreness of 0, and are located at the perimeter of the outermost circle. If the m1-core
is fragmented into different disconnected components, they are represented as non-
overlapping circles within the outermost one and with nodes of m-coreness of 1 located
in their perimeters (see, for instance, panels b and c). The same process is repeated
for each disconnected m1-core, which will contain a subset of the m2-core, and so on.
Links between nodes are not depicted for clarity. d) The size of the giant m-core as a
function of m for the networks shown in panels a–c.
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Figure 6.5: Bond percolation simulations of the core and periphery of a network with
N = 5×104, γ = 3.1, and target clustering spectrum c̄(k) = 0.25. The bond occupation
probability to separate the core is p = 0.2. The susceptibility curve of the periphery
(dashed blue line) has been divided by 5 for ease of comparison.

the second peak.

6.7 The core-periphery random graph: a simple
model showing a double percolation transition

The modern theory of continuous phase transitions states that, in a connected
system, it is not possible to break the same symmetry at two different values of
the control parameter. In our context, this statement implies that it is not possi-
ble to have two genuine percolation transitions at two different values of p. It is
then unclear whether the second peak observed in our simulations corresponds
to a real percolation transition or to a smeared transition, with the percolated
core acting as an effective external field that provides connectivity among nodes
in the periphery.

Unfortunately, strongly clustered networks cannot be studied analytically.
However, we can devise a system with a core-periphery organization similar to
that induced by strong clustering. Let us consider two interconnected random
graphs a and b with average degrees k̄aa and k̄bb , respectively. The relative size
is r = Na/Nb and the average number of connections of a node in a to nodes in b
(and vice versa) are k̄ab and k̄ba = r k̄ab . Each node has connections to both net-
works and therefore its degree can be represented as a vector~k = (ka ,kb). Hence
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Figure 6.6: A network of 50.000 nodes, with a power law degree distribution with
γ= 3.1 and a clustering spectrum c̄(k) = 0.25. The nodes are distributed accord-
ing to its m-core decomposition. Red nodes (1811) are the core they because be-
long to the Giant component once we perform a bond percolation with p = 0.2
(between the two percolation thresholds). Blue and green nodes are peripheral
nodes that belong to the giant component at p = 0.5 (just after the second perco-
lation threshold). Once we subtract the core, blue nodes (10408) still remain in
the GC meanwhile green nodes (4271) belong to small components. Black nodes
(33510) never belong to the GC.



82 Chapter 6. Bond percolation on clustered networks

Pa(~k) is the probability of a node of the network a to have degree~k and Pab(~k ′|~k)
is the probability that a node of a with degree~k is connected to a node of b with
degree~k ′. The relative size of the giant component of the combined network is

g (p) = r

1+ r
ga(p)+ 1

1+ r
gb(p). (6.1)

Where ga is the probability that a node of a belongs to the giant component, or 1
minus the probability that it belongs to a finite cluster, that is, ga = 1−∑∞

s=0 Qa(s),
where Qa(s) is the probability that a randomly chosen node from network a be-
longs to a cluster of size s.

In heterogeneous networks, the size of the cluster a given node belongs to is
correlated with the degree of the node. Thus, Qa(s) must be evaluated as Qa(s) =∑
~k Pa(~k)Qa(s|~k), where Qa(s|~k) is the probability that a node from network a of

degree~k belongs to a cluster of size s. The latter function satisfies

Qa(s|~k) =∑
na

(
ka

na

)
pna (1−p)ka−na

∑
nb

(
kb

nb

)
pnb (1−p)kb−nb

∑
s1···sna

Gaa(s1|~k) · · ·Gaa(sna |~k)
∑

s′1···s′nb

Gab(s′1|~k) · · ·Gab(s′nb
|~k)

δs,1+s1+···+sna+s′1+···+s′nb
,

(6.2)

where Gaa(s|~k) (Gab(s|~k)) is the probability to reach s other nodes by following
a neighbour in network a (b). The generating function of Qa(s|~k) can be written
as

Q̂a(z|~k) =
∞∑

s=0
Qa(s|~k)zs = z(1−p +pĜaa(z|~k))ka (1−p +pĜab(z|~k))kb . (6.3)

Functions Gaa(s|~k), Gab(s|~k), Gba(s|~k), and Gbb(s|~k) follow similar recurrence
equations. Thus, their generating functions satisfy

Ĝaa(z|~k) = z
∑
~k

Paa(~k ′|~k)(1−p +pĜaa(z|~k))k ′
a−1(1−p +pĜab(z|~k))k ′

b (6.4)

Ĝab(z|~k) = z
∑
~k

Pab(~k ′|~k)(1−p +pĜba(z|~k))k ′
a−1(1−p +pĜbb(z|~k))k ′

b (6.5)

Ĝba(z|~k) = z
∑
~k

Pba(~k ′|~k)(1−p +pĜaa(z|~k))k ′
a (1−p +pĜab(z|~k))k ′

b−1 (6.6)

Ĝbb(z|~k) = z
∑
~k

Pbb(~k ′|~k)(1−p +pĜba(z|~k))k ′
a (1−p +pĜbb(z|~k))k ′

b−1, (6.7)

where Paa(~k ′|~k) is the probability that a randomly chosen neighbour among all
the a neighbours of a node that belongs to network a with degree~k has degree
~k ′, and analogously for the rest of the transition probabilities.
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For networks with no degree-degree correlations, these transition probabili-
ties simplify as

Paa(~k ′|~k) = k ′
aPa(~k ′)

k̄aa
Pbb(~k ′|~k) = k ′

bPb(~k ′)

k̄bb

Pab(~k ′|~k) = k ′
aPb(~k ′)

k̄ba
Pba(~k ′|~k) = k ′

aPa(~k ′)
k̄ab

.

(6.8)

This implies that functions Gaa(z|~k), Gab(z|~k), Gba(z|~k), and Gbb(z|~k) become
independent of ~k. We further assume that the number of neighbours from a
and b of a given node are uncorrelated, that is

Pa(~k) = Pa(ka)Pa(kb) Pb(~k) = Pb(ka)Pb(kb). (6.9)

In the case of two coupled Erdős-Rényi random graphs, the degree distributions
Pa(ka), Pa(kb), Pb(ka), and Pb(kb) are all Poisson distributions of parameter k̄aa ,
k̄ab , k̄ba , and k̄bb , respectively. In this case, it is easy to check that Q̂a(z) = Ĝaa(z),
Q̂b(z) = Ĝbb(z), and

Ĝaa(z) = ze−k̄aa p(1−Ĝaa (z))e−k̄ab p(1−Ĝab (z)) (6.10)

Ĝab(z) = ze−k̄ba p(1−Ĝba (z))e−k̄bb p(1−Ĝbb (z)) (6.11)

Ĝba(z) = ze−k̄ab p(1−Ĝab (z))e−k̄aa p(1−Ĝaa (z)) (6.12)

Ĝbb(z) = ze−k̄bb p(1−Ĝbb (z))e−k̄ba p(1−Ĝba (z)). (6.13)

Then, to calculate the fraction of nodes that belong to the giant component we
use that ga = 1− Q̂a(z = 1) = 1− Ĝaa(z = 1), gb = 1− Q̂b(z = 1) = 1− Ĝbb(z =
1) and we also define gab = 1 − Ĝab(z = 1) and gba = 1 − Ĝba(z = 1). Then if
we want network a to play the role of the core (c), so network b becomes the
periphery (p), we have that k̄aa = k̄c > k̄p = k̄bb . In this new notation, we obtain
the following system of transcendent equations:

gc (p) = 1−e−pk̄c gc (p)−pk̄cp gcp (p)

gcp (p) = 1−e−pk̄pc gpc (p)−pk̄p gp (p)

gpc (p) = 1−e−pk̄cp gcp (p)−pk̄c gc (p)

gp (p) = 1−e−pk̄p gp (p)−pk̄pc gpc (p)

 . (6.14)

From here, it readily follows that gc and gp must be either both different from
zero or equal to zero, implying that there is generally only one percolation tran-
sition, whereas at p ≈ k̄−1

p , there is a crossover effect due to growth of the periph-
ery.
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This result is true if the coupling between the core and periphery is macro-
scopic, that is, the number of connections between the two structures is pro-
portional to the size of the system such that k̄cp and k̄pc are constants in the
thermodynamic limit. Instead, suppose that the number of connections among
nodes in the core and periphery scales sub-linearly with the system size, i. e., as
Nα with 0 <α< 1. In this case, k̄cp and k̄pc are zero in the thermodynamic limit:
thus, gc and gp become decoupled in Eq. (6.14) such that gc can be different
from zero while gp = 0. However, when both the core and periphery have a giant
connected component as isolated networks, the combined network forms a sin-
gle connected component because there is an infinite number of connections
between each part.

The effect of such structure on bond percolation is as follows. When the bond
occupation probability is increased from p = 0, the first phase transition occurs
at p = k̄−1

c , where the core percolates in a giant component Gc ∼ O (N ). In the
range k̄−1

c < p < k̄−1
p , the periphery is composed of a large number of small dis-

connected components. The number of such components directly connected
to Gc and, thus, the number of nodes in the periphery connected through Gc ,
scales as Nα; therefore, its fraction vanishes in the limit N À 1 and the rela-
tive size of the giant component of the combined system is just Gc /N . Once
we reach p = k̄−1

p , a percolating cluster is formed in the periphery that becomes
macroscopic as we increase p by an infinitesimal amount, i. e., Gp ∼ O (N ). At
this moment, and not before, the number of connections between Gc and Gp

become Nα−2GcGp ∼ O (Nα) and, consequently, Gc and Gp are connected with
probability 1. Thus, we have a double percolation transition defined by a regu-
lar transition at p = k̄−1

c and the sudden emergence at p = k̄−1
p of a macroscopic

subgraph in the periphery with two types of connectivity; namely, each pair of
nodes in this subgraph can be connected not only by a path going through the
core but also by a path composed exclusively of nodes outside the core. In turn,
this translates into a double discontinuity of the first (or higher) derivative of the
order parameter g at p = k̄−1

c and p = k̄−1
p , as clearly seen in Fig. 6.7 b.

Figures 6.7 a, b present the simulation results of the relative size of the gi-
ant component for α = 1 and α = 0.5, respectively. In the first case, we observe
a crossover effect at approximately p = k̄−1

p as also observed in [118], whereas
in the second case, we observe a clear discontinuity in the derivative of g (p) at
exactly p = k̄−1

p , which is consistent with the analytical prediction in Eqs. (6.1)

and (6.14) for k̄cp = k̄pc = 0. However, the strongest evidence for the presence
of a genuine double phase transition is provided by analysis of the susceptibil-
ity. In the case of a crossover effect, fluctuations in the percolated phase behave
as 〈G2〉 − 〈G〉2 ∼ 〈G〉; consequently, the quantity χ should diverge at the criti-
cal point and become size-independent after this point has been surpassed. In
contrast, if the second transition in the periphery is a real phase transition, this
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Figure 6.7: Bond percolation simulations for the core-periphery random graph model
with α = 1 (left column) and α = 0.5 (right column). In both cases, the core has an
average degree of k̄c = 10 and the periphery k̄p = 2.5. The core/periphery ratio is r =
0.2. The black dashed line in plot b is the numerical solution of Eqs. (6.1) and (6.14)
with k̄cp = 0. The inset shows the approach to the theoretical prediction at the second
transition point as the size of the system is increased.
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quantity should diverge at both p = k̄−1
c and p = k̄−1

p . This behaviour is clearly
observed in Figs. 6.7 c, d.

In the case of clustered networks, it is difficult to clearly identify the core.
Nevertheless using the giant m1-core as a rough approximation, we find that,
in the case of c̄(k) = 0.25, the average number of connections between a node
not in the giant m1-core and nodes in the giant m1-core is approximately 0.02,
indicating that the core and periphery are in fact very weakly coupled. In any
case, the double divergence of χ shown in Fig. 6.3 c, just as in the core-periphery
random graph model with α < 1, is clear evidence for a genuine double phase
transition.

6.8 Finite size scaling of the core-periphery random
graph model

Let (βc ,γ′c ,νc ) and (βp ,γ′p ,νp ) be the critical exponents of the core and the pe-
riphery when they are isolated from each other. Close to the percolation transi-
tion of the core, the giant component is mainly composed of nodes in the core
and, therefore, we expect the first transition to have the critical properties of
regular percolation in the core subgraph, in particular, the susceptibility near
the first peak diverges with the exponent γ′c /νc . Close to the second transition
point, the giant component is the sum of the giant component in the core, Gc ,
plus the percolating cluster in the periphery, Gp . Since Gc and Gp are statistically
independent, the susceptibility in this region can be evaluated as

χ= 〈Gc〉χc +〈Gp〉χp

〈Gc〉+〈Gp〉
≈χc +

〈Gp〉
〈Gc〉

χp . (6.15)

However, if the second transition point is well separated from the first one,
close to this second transition χc ∼ cte, 〈Gc〉 ∼ N , and 〈Gp〉 ∼ N 1−βp /νp . Then,
we expect that near the second transition the susceptibility behaves as χ ∼
N (γ′p−βp )/νp . The critical exponents in the case of Erdős-Rényi random graphs
are the mean-field ones, that is, β = γ = 1 and ν = 3 [165] (See appendix A.2 for
more detailed explanation of the mean field values) . Therefore, in our simula-
tions, we expect the first peak to diverge as N 2/3, the second peak as N 1/3 and
the approach of the position of the peaks to their respective critical points as
pmax ∼ pc + AN−1/3. This is confirmed in Fig. 6.9.

6.9 Double percolation in real networks

The multiple percolation phase transition phenomenon that we just reported,
its not exclusive of our synthetic networks. We performed an extensive anal-
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Figure 6.8: Bond percolation simulations for the core-periphery random graph
model for α = 1 for different sizes. In both cases the core has an average de-
gree k̄c = 10 and the periphery k̄p = 2.5. The ratio core/periphery is r = 0.2.
a: Relative size of the largest connected component as a function of the bond
occupation probability p. c: Susceptibility χ as a function of bond occupation
probability p. b and d: Position pmax and height χmax of the two peaks of χ as
function of network size N . The straight lines are power-law fits and the mea-
sured values of the critical exponents are shown.
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Figure 6.9: Bond percolation simulations for the core-periphery random graph
model for α = 0.5 for different sizes. In both cases the core has an average de-
gree k̄c = 10 and the periphery k̄p = 2.5. The ratio core/periphery is r = 0.2.
a: Relative size of the largest connected component as a function of the bond
occupation probability p. c: Susceptibility χ as a function of bond occupation
probability p. b and d: Position pmax and height χmax of the two peaks of χ as
function of network size N . The straight lines are power-law fits and the mea-
sured values of the critical exponents are shown.



6.9. Double percolation in real networks 89

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
ia
n
t
C
o
m
p
o
n
e
n
t

g

Largest Component size S

0

1

2

3

4

5

6

7

8

S
u
sc
e
p
ti
b
il
it
y

χ

Susceptibility χ

Figure 6.10: Left: Bond percolation simulations for the human disease network
network. The relative size of the largest connected component g and its sus-
ceptibility χ as a function of the bond occupation probability p. Right:m-core
decomposition

ysis of the bond percolation properties of many real networks and we found
many examples in which a multiple percolation transition may occur. For ex-
ample, figure 6.10 shows the susceptibility of the giant component as a func-
tion of the bond occupation probability of the disease network and its m-core
structure visualization (See appendix A.1.6, A.1.7, A.1.5 for a description of the
network as well as other real examples). As we can observe, the susceptibility
shows two well defined peaks suggesting the presence of a multiple percolation
phase transition. The m-core visualization of the disease network shows a clear
core-periphery structure as observed in our synthetic networks.

However, giving the finite size of real networks and that we do not have ac-
cess to the ensemble they belong, it is not possible to perform a finite size scal-
ing. Therefore, any of the existing empirical methods allows to differentiate be-
tween a real phase transition from a smeared one so we can not know which
of the peaks is a true percolation transition. Besides we can not guarantee that
there are other percolation transitions that have no peak in the susceptibility
due to finite size effects. This fact makes any of the empirical methods a good
indicator of the position of the different percolation threshold of a network. In
the next chapter we are going to address this problem by adapting the state-of-
the-art theories to the new multiple percolation phenomenon.
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6.10 Discussion

As we have demonstrated, clustering has a non-trivial effect on the properties of
complex networks. This effect depends on three main factors: the heterogene-
ity of the degree distribution, the degree-degree correlations, and the shape of
the clustering spectrum c̄(k). If we avoid degree-degree correlations, the combi-
nation of strong clustering and heterogeneity induces the emergence of a small
but macroscopic core surrounded by a large periphery. This organization rede-
fines the percolation phase space of complex networks by inducing a new per-
colated phase in which the core of the network is percolated but the periphery
is not. In this situation, increasing clustering makes the core larger and more
entangled, thereby decreasing the percolation threshold of the first transition,
as suggested in [84, 132, 154]. However, in the remaining part of the network
(the periphery) clustering generates small clique-like structures that are sparsely
interconnected (see Fig. 6.4 c). Thus, the periphery becomes more fragile, and
the percolation threshold of the second phase transition increases, in agreement
with [86, 104, 122, 134]. For weakly heterogeneous networks, the size of the core
is not macroscopic; thus, clustering only makes these networks more suscepti-
ble to the removal of links. This fact reconciles the two dominant interpretations
of the effect of clustering on the percolation properties of complex networks.
Interestingly, this behaviour is also observed in a large sample of real complex
networks, which provides evidence of the generality of this phenomenon.

We have shown that, in contrast to previous theory, it is possible to have
two or more consecutive continuous phase transitions associated with the same
symmetry breaking. Our work opens new lines of research concerning the effect
of this core-periphery architecture on dynamical processes that occur in net-
works. In the case of epidemic spreading, for instance, the core could act as a
reservoir of infectious agents that would be latently active in the core while the
remainder of the network is uninfected.



CHAPTER 7

Local percolation thresholds

7.1 Network of networks

The common conception in complex networks is that there is a single perco-
lation threshold, pc , that depends on the whole structure of the network con-
cerned. It is therefore considered extremely important to have an accurate value
of pc . In the case of infrastructure or technology networks, this critical point de-
fines the threshold between global functioning and total collapse. In epidemiol-
ogy, the epidemic threshold determines whether a disease will die out or reach
an endemic steady state. Hence, much effort has been devoted to develop the-
oretical and numerical methods to find an accurate measure of the percolation
threshold.

However, in the previous chapter we demonstrated that, in contrast to this
common belief, networks can undergo more than one percolation phase transi-
tion. We showed that this phenomenon occurs when different weakly connected
parts of the network percolate independently at their own critical points. This
radically changes the percolation phase space of complex networks but, what is
more important, it redefines how to tackle the percolation problem. In this new
scenario, due to random failure of connections, we can have a finite fraction of
the network that is completely fragmented while the rest of the network remains
perfectly functional. In epidemiology, this implies that a disease can become
pandemic in some areas of the network, while other parts remain healthy. So,
it is no longer in our best interests to try to find the unique percolation thresh-
old of a network, but rather we should look for a set of critical points at which
different parts of the network percolate.

The possibility that a network has different parts, or modules, that are inde-
pendent in terms of network processes, suggests that we could consider each
module as a network itself and the whole system as a network of networks
(NON) [19, 35, 79]. In such a situation, each module can have different struc-
tural organization, while the coupling between different modules/networks de-
termines the global properties of the whole system. Obviously, in the case of
real networks, it is extremely difficult to determine whether a given network can
be cast within this framework of a NON or whether it is better represented by a
more traditional description in terms of communities. In this chapter, we study
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the percolation properties of real networks and based on that study we present
a method that can establish whether a specific network under consideration is a
NON.

7.2 Measure multiple percolation thresholds

The existence of multiple percolation phase transitions has important practical
implications for the numerical methods to measure the percolation threshold.
In real networks, for a given value of the bond occupation probability p, the
percolation process is repeated a large number of times and for each such re-
alization, the size of the largest (or giant) component, G , is measured [137]. The
average of this giant component over different realizations, 〈G〉, and its fluctua-
tions (the susceptibility), χ(p), given by

χ(p) = 〈G2〉−〈G〉2

〈G〉 , (7.1)

encode the critical properties of the percolation transition [165]. In finite sys-
tems, a peak in χ(p) indicates the presence of a continuous phase transition and
its position provides what is believed to be the best estimate of the critical point,
pc [148].

However, as we have seen, in many real networks, the susceptibility shows
two or even more peaks; and in such cases, the information encoded in χ(p) re-
lated to the critical properties of the system is unclear, to say the least. Indeed,
multiple peaks in the susceptibility are present in NONs when the number of
links between the different networks scales sub-linearly with the system size.
In such cases, these multiple peaks indicate the existence of multiple percola-
tion transitions corresponding to the individual percolation transition of each
network [49]. However, one can also find multiple peaks when the coupling be-
tween the different networks is linear. In this latter case, the system is better de-
scribed as a single network, possibly with a marked community structure, and
of all the peaks in χ(p), only one is actually related to the critical percolation
transition.

Ideally, to distinguish the two cases, one should perform finite-size scaling
analysis, where peaks associated with real phase transitions should diverge as
the system size increases, or remain constant otherwise. Unfortunately, this ap-
proach is infeasible in real networks, for which a single fixed-size network is
available. Thus, given a real network with multiple peaks in the susceptibility,
none of the existing numerical methods allows us to discern which of them cor-
responds to a true percolation transition. Even worse, as we show below, even
when the susceptibility exhibits just a single peak, it is not possible to guarantee
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that there are no other phase transitions that may be hidden, due to finite size
effects. Therefore, the possibility that a real network may undergo more than
one percolation transition makes the traditional numerical methods for mea-
suring the percolation threshold obsolete for real networks. Moreover, the lack
of genuinely numerical methods that can identify all the percolation thresholds
leaves us with no mechanism to check the reliability of theoretical values of the
percolation threshold.

Much effort has been devoted to obtaining an accurate analytic expression
for the bond percolation threshold [33, 37, 46, 99]. Systematic analysis using real
networks to quantify the reliability of these analytic expressions has shown that
the inverse of the largest eigenvalue of the non-backtracking matrix (NBTM) rep-
resents the best measure currently available [148]. However, that measure was
found to be less accurate for large values of the true percolation threshold. The
reason for this poor performance was argued to reside in the localization of the
principal eigenvector; the percolation transition in reality involves only a finite
fraction of the nodes in the network and thus does not correspond to the true
percolation transition. An analogous explanation was found for spectral esti-
mators of epidemic thresholds in real networks [88]. However, those authors
were not aware of the multiple percolation transition phenomenon and the lim-
itations of numerical methods to measure the percolation threshold associated
with it. They assumed that there was only one critical point, pc , and that its
best estimate was the value of p, where the susceptibility reaches its maximum,
irrespective of whether there were other local maxima.

Here, we adapt the most recent percolation theory [99] to the multiple per-
colation framework. We show that the localization of the principal eigenvector
of the NBTM can indicate the existence of multiple percolation transitions. In
this situation, all the critical points correspond to the inverse of one eigenvalue,
and the leading eigenvalue only gives us the position of the first phase transi-
tion. This critical point may not coincide with the position of the global maxi-
mum of the susceptibility because the later may correspond to another transi-
tion. Furthermore, we use the theory developed in [99] to classify all nodes by a
new measure that can be interpreted as the percolation threshold of each node
pci . According to this classification, we can now identify the critical points of all
the phase transitions that a network may have, and the nodes involved in each
one of them. This allows us to reveal the internal organization of a network into
a NON. We consider that our work offers new insight into the concept of perco-
lation threshold, which was initially conceived as a macroscopic magnitude and
now becomes a local property, and how this affects the numerical methods to
identify it and the accuracy of the theoretical values.
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7.3 The node percolation threshold

The theory developed in [99] uses a message passing technique to calculate,
from a given adjacency matrix, the probability Hi← j that node i does not be-
longs to the giant component (GC) through the edge that connects it to node j .
Using the tree-like assumption and the generating function approach one can
express the probability Hi← j as:

Hi← j = 1−p +p
∏

k∈N j \i
H j←k , (7.2)

where N j \ i defines the set of nodes in the direct neighbourhood of node j ex-
cluding node i , encoded in the adjacency matrix. The exclusion of node i is to
avoid backtracking messages. Then, the probability gi that node i belongs to the
GC is then:

gi = 1− ∏
j∈Ni

Hi← j , (7.3)

so the fraction of nodes that belong to the giant component, g , can be expressed
as a simple average of gi over all the nodes.

To find the percolation threshold, the stability of the trivial solution Hi← j = 1
is studied. By introducing a small perturbation, εi← j , and linearising Eq. 7.2,
the authors obtain the equation: ε= pBε, where B is the non-backtracking ma-
trix (NBTM). It is a non-symmetric matrix with rows and columns indexed by
directed edges, i ← j , and elements, Bi← j ,k←l = δ j k (1−δi l ). The fixed point is
stable under iteration if and only if p times the leading eigenvalue of B is less
than unity. Hence, they conclude that the critical percolation probability, pc , is
equal to the inverse of the leading eigenvalue of B . Therefore, for a globally con-
nected network, all the nodes have a non-zero probability of belonging to the
GC at p > pc , so the network percolates at pc .

However, this is not the case when we have a bloc diagonal NBTM; which
corresponds to a system composed of two disconnected networks. Edges from
one network will have a zero component in the eigenvectors localized in the
other network. Therefore, such a system undergoes two percolation phase tran-
sitions and their critical points will be at the inverse of the two leading eigenval-
ues of the principal eigenvectors localized in each network. A slightly different
problem arises when the two networks are connected. In this case, depending
on the number of interlinks, they can either percolate at once or percolate in-
dependently. As we show in chapter 6, a double percolation phase transition
is still possible when the inter average degree vanishes in the thermodynamic
limit [49]. A network with such a configuration will have an almost bloc diag-
onal NBTM with eigenvectors localized in each network. Edges from one net-
work will have a very small component in the eigenvectors localized in the other
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network. In fact, these components will vanish in the thermodynamic limit as
soon as their value is proportional to the inter average degree. Therefore, a finite
network generated from this ensemble will have, mathematically speaking, only
one percolation threshold. However, in the thermodynamic limit, so physically
speaking, this ensemble of networks has two phase transitions.

In conclusion, if the principal eigenvector of a real network is localized, this
means that the network may have multiple percolation phase transitions. Thus,
there is not a single true percolation threshold, but a set of them. In this situa-
tion, each critical point corresponds to an eigenvalue of the NBTM. The inverse
of the leading eigenvalue only gives the position of the first percolation transi-
tion. In contrast, the position of the maximum of the susceptibility will give us
any one of the critical points, which may or may not coincide with the smallest
one. However, not all the eigenvectors are associated with a phase transition.
Therefore, simple spectral analysis of the NBTM is not an effective method to
identify how many transitions occur in a real network or to measure their criti-
cal points.

Finding a method that gives the different critical points of multiple phase
transitions and the nodes involved in each one of them is analogous to finding
the percolation threshold of each node, pci . This is possible if pc is not a macro-
scopic property of the network but as a local one. If a network has only one tran-
sition, we expect all the nodes to have exactly the same pci . If the nodes have
different percolation thresholds, this means that parts of the network percolate
at different times.

According to Eq. 7.3, beyond the inverse of the leading eigenvalue, all the
nodes will have a non-zero probability of belonging to the giant component.
Therefore, given a finite system, we cannot use Eq. 7.3 to find the percolation
thresholds of the nodes. Instead, we use the average size of finite clusters that
each node belongs to. This magnitude is calculated in [99] as:

〈S〉i = 1+ ∑
j∈Ni

H ′
i← j

Hi← j
. (7.4)

where H ′
i← j can be expressed as:

H ′
i← j = p

[
1+ ∑

k∈N j \i

H ′
j←k

H j←k

] ∏
k∈N j \i

H j←k . (7.5)

In classical percolation, at the critical point, the average finite cluster size of the
whole system reaches its maximum. Beyond this point, adding more edges does
not increase the size of the finite clusters, but merges the larger clusters with
the percolating (infinite) one, the GC. Therefore, the position of the maximum
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Figure 7.1: Bond percolation simulations for two interconnected networks with
different sizes (NA = 2000 and NB = 10000) and inner average degree (k̄A = 10
and k̄B = 2.5). Left axis: susceptibility of the size of the giant component χ. Right
axis: a histogram of the position of the maximum of the average size of finite
clusters of all the nodes. a: Number of interlinks equal to the total number of
nodes 12000 so there is one phase transition. b: Number of interlinks equal to
the square root of the number of nodes 110. In this case we have two phase
transitions.

of the average finite cluster size is used as an indicator of the percolation thresh-
old [165].

By analogy, this should hold for each node. The position of the maximum of
the average size of the finite clusters that a node belongs to indicates the point at
which the node starts to belong to the GC, which corresponds to its percolation
threshold.

To check the reliability of our measure, we use as a benchmark the simple
model introduced in chapter 6. We create two Erdős-Rényi graphs, A and B , with
different numbers of nodes (NA = 2000 and NB = 10000) and inner average de-
gree (〈k〉A = 10 and 〈k〉B = 2.5). Then we consider two scenarios. In the first, the
number of interlinks is equal to the total number of nodes (12000), so there are
enough interlinks to have only one phase transition and there will be only one
critical point at pc = 1

〈k〉A
= 0.1. In the second scenario, the number of interlinks

is equal to the square root of the number of nodes (110), so the inter average de-
gree of the nodes vanishes in the thermodynamic limit. Thus, networks A and B
will percolate independently from each other at the critical points pc A = 0.1 and
pcB = 0.4.

For both cases, we calculate the percolation threshold of each node, pci , as
the position of p at which their average cluster size shows its maximum. Fig-
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ure 7.1 shows, for both scenarios, the histogram of the percolation threshold
of each node compared with the susceptibility χ of the whole system. In fig-
ure 7.1 a, where there is only one phase transition at pc = 0.1, 95% of the nodes
have exactly the same percolation threshold: pci = pc A = 0.1. In the second sce-
nario, (Fig. 7.1 b), there are 2204 nodes that percolates at the first critical point,
pc A = 0.1. The rest of the nodes percolate exactly at pcB = 0.4, suggesting the
presence of a multiple percolation transition. In this latter situation, the inverse
of the leading eigenvalue of the NBTM is 0.1, although the global maximum of
the susceptibility is 0.419. This does not imply that the theory is inaccurate, but
that it only gives us the position of the first transition.

If we now look at the performance of our method in the classification of the
nodes, we observe that they do not coincide perfectly with the original network
partition. For example, in the first scenario, where all nodes should have the
same percolation threshold, there are few nodes of network B with a percola-
tion threshold equal to pcB . In the system with two phase transitions, there are
204 nodes of network B that percolates at the first critical point, pc A. This dis-
crepancy comes from nodes on the border between the two networks which our
method does not classify properly. However, if the connection between the net-
works is weak enough for them to percolate independently, the fraction of nodes
in network B that belong to the border region will vanish in the thermodynamic
limit; so the error in node classification is just a finite size effect. Nevertheless,
our method can tell whether a given network it is better represented by a more
traditional description in terms of communities or whether it is a NON. In the
later case, despite some finite size effects, our method is able to determine which
network of the NON each nodes belongs to.

7.4 Real networks

Once we have shown that our method works for the benchmark, we now pro-
ceed to analyse some real networks. The first network that we analyse is the
Gnutella peer-to-peer file sharing network [110] (see appendix A.1 for a detailed
description of the real networks used in this section). In Figure 7.2 a, we can see
that the susceptibility of the giant component shows two well-defined peaks at
p1 = 0.045 and p2 = 0.104. However, the histogram of the percolation thresholds
of the nodes shows that 99.4% of the nodes have the same percolation threshold:
pc = 0.038. Hence, our method reveals that there is only one phase transition
and that only the first peak of the susceptibility is a true critical point. Therefore,
the Gnutella network should be considered as a network with a marked commu-
nity structure, rather than a NON.

Furthermore, being able to identify which of the peaks in the susceptibility
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correspond to true critical points allows us to analyse the accuracy of the theo-
retical values of the percolation threshold. In this case, the inverse of the leading
eigenvalue of the NBTM is pc = 0.038; while the real bond percolation threshold
is pc = 0.045.

The second network we analyse is the human disease network in which
nodes represent disorders and two disorders are connected if they share at least
one gene in which mutations are associated with both disorders [87]. Figure 7.2
b shows that the susceptibility of the size of the GC of the disease network has
two well-defined peaks. If we look at the histogram of the percolation thresh-
olds of the nodes, we observe that nodes have different percolation thresholds.
196 out of the 516 nodes in the network (∼ 38%) have the percolation threshold
at p = 0.088, which corresponds to the inverse of the leading eigenvalue. The
rest of the nodes group into very small modules with percolation thresholds that
range from 0.1 to 0.4. This implies that the disease network is undergoing not
one, but many phase transitions; so it is made of weakly connected modules.
Therefore, the disease network would best be treated as a NON, instead of as a
network with a community structure.

To confirm the modular structure of the network, Figure 7.3 a is a plot of the
adjacency matrix with the nodes labelled according to the percolation thresh-
old of each one, in ascending order. Fig 7.3 a shows that the disease network
is indeed made up of a large module that is weakly connected to many smaller
modules. This adjacency matrix is bloc diagonal and therefore so is the NBTM,
which implies that its principal eigenvector is localized in the largest module.

We then isolate the largest module, with the smallest percolation threshold,
pc = 0.088, to perform independent bond percolation simulations and we com-
pare the results with the original network. Figure 7.3 b shows that the largest
module is responsible for the first peak in the susceptibility of the disease net-
work at pc = 0.18. Interestingly, 90% of the of all the disorders related to cancer
populate almost half of this module.

Before considering the multiple percolation transition phenomenon, the
best estimate of the percolation threshold of the disease network was consid-
ered to be: pc = 0.529, which corresponds to the global maximum of the sus-
ceptibility. The theoretical value given by [99] is pc = 0.088, so it was considered
that the theory performed poorly in this case. However, our analysis reveals that
the maximum of the susceptibility does not correspond to the transition related
to the principal eigenvector of the NBTM but to the percolation of all the small
modules connected to it. This fact implies that the theory did not perform poorly
but that we were only considering the principal eigenvector, that is localized in
the large module. Therefore, the theoretical value of pc = 0.088 given by the in-
verse of the principal eigenvector of the NBTM corresponds to the first peak of
the susceptibility at pc = 0.18.
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Figure 7.2: Bond percolation simulations for the Gnutella file sharing network
(a) and the human disease network (b). Left axis: the susceptibility of the size of
the giant component, χ. Right axis: a histogram of the position of the maximum
of the average size of finite clusters of all the nodes.

The third network we analyse is a science collaboration network in which
network scientists are connected by co-authorship of papers [133]. Figure 7.4
a shows that the susceptibility of the giant component of the network has one
well-defined peak at p = 0.406. However, the histogram of the percolation
thresholds of the nodes reveals that there are multiple transitions. Among the
different modules, there is a large module (47%) with a critical point that co-
incides with the inverse of the leading eigenvector (p = 0.11). However, in real
simulations, the different transitions have such similar percolation thresholds
that they all merge into one peak of the susceptibility.

If we plot the adjacency matrix with the node labels ordered according to
the percolation threshold of each node, we can see that the adjacency matrix is
bloc diagonal, in agreement with the necessary condition for multiple percola-
tion transitions (Fig. 7.4 b). Hence, the network science collaboration network
should be cast within the NON framework. In this situation, it is known that
the appearance of coexistent percolating clusters can cause significant error in
the message passing percolating theory [70]. This is an example in which our
method has revealed that a real network has a much more complex percolation
process than expected using traditional percolation analysis.
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Figure 7.3: a) Adjacency matrix of the human disease network, with the node
labels ordered according to the percolation threshold of each node, in ascend-
ing order. b) Independent bond percolation simulations of the human disease
network and the module with nodes with the smallest percolation threshold
pc = 0.088. The susceptibility of the size of the giant component, χ, as a function
of the bond occupation probability.

7.5 Discussion

Networks with more than one percolation transition do not have a true per-
colation threshold, but a set of critical points. The multiple phase transitions
correspond to weakly connected modules that percolate independently of each
other. In this scenario, different parts of the network can be completely frag-
mented while the rest of the network remains functional. This type of percola-
tion process is much more rich and complex than the previous conception of
a single phase transition, and this has important implications for infrastructure
networks and epidemiology.

In this situation, none of the existing numerical methods is capable of prop-
erly identifying the set of critical points that a network has. The susceptibility
of the giant component, χ, can have more than one peak and none of the ex-
isting numerical methods allows us to discern which of them corresponds to a
true percolation transition. Moreover, theoretical effort still focuses on finding a
unique true percolation threshold and has not yet adapted to this new scenario.

In this work, we calculate the percolation threshold of each node by looking
at the maximum of the average cluster size that every node belongs to, using
message passing theory [99]. By classifying all the nodes according to this new
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Figure 7.4: a) Bond percolation simulations of the network collaboration net-
work. Left axis: the susceptibility of the size of the giant component, χ. Right
axis: a histogram of the position of the maximum of the average size of finite
clusters of all the nodes. b) Adjacency matrix of the network with the node la-
bels ordered according to the percolation threshold of each node.

measure we have been able to identify which of the peaks of the susceptibility
are smeared transitions and which are real critical points. We analyse three real
cases in which our method reveals a modular structure, with different effects on
the bond percolation properties in each case. In the disease network case, we
were able to identify which part of the network is responsible for each peak ob-
served in the susceptibility of the giant component. In contrast, in the Gnutella
file sharing network, we were able to detect that the second peak in the suscep-
tibility was a smeared transition and that there was only one true percolation
critical point. In the science collaboration network, we found multiple percola-
tion transitions, although the susceptibility showed only one peak.

Moreover, our measure also reveals the modular structures of networks that
undergo multiple percolation phase transitions. The bloc diagonal adjacency
matrices imply that the principal eigenvector of the NBTM is localized. In such
a situation, the critical point of each module corresponds to an eigenvalue. This,
together with [109], renews interest in spectral analysis of the non-backtracking
matrix.

Our work contributes to establishing whether a given network should be cast
within the NON framework or whether instead it is best represented by a more
traditional description in terms of communities. Furthermore, we consider that
these results have important applications in bond percolation theory, which
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nowadays is still focused on finding the unique and true percolation threshold.



CHAPTER 8

Summary and conclusions

The study of a system from a network perspective focuses on the impact that
connectivity between the elements has on the function of the system. The ob-
servation and measurement of parameters of real-world networks reveals that
these systems have highly complex structures that differ from those of lattices
and random graphs, and which have striking effects on their behaviour. More-
over, some common topological properties shared by networks with completely
different natures have been found. This suggests the existence of common fun-
damental principles that determine the structure and evolution of networks.

One of the most common features of real networks is the high presence of
triangles or strong clustering. However, in contrast to other topological prop-
erties of real networks, little was known about the emergence of clustering and
its effect on network structure and function. The reason for this was twofold.
First of all, the mere presence of triangles in networks contradicts assumptions
that are used almost across the board in mathematical tools that are applied in
network theory, and therefore it hinders any analytical treatment. Second, there
was a lack of appropriate clustered network models that allow empirical study.
Therefore, clustering was the main factor that thwarted the possibility of apply-
ing network theories to real situations and became one of the most important
challenges facing network science.

In this thesis I study the role played by clustering in the structure and func-
tion of complex networks. To that end, I first analyse the clustering generated
by random network models. Then, I study the organization of triangles within
real networks. Finally, I focus on the effect of clustering on the classical bond
percolation problem. My choice was based on the direct relation that this sim-
ple process has with robustness and the epidemics dynamics of networks. In
this way a primary question arose: How does clustering affect the position of the
bond percolation threshold?

Percolation in clustered networks had been widely studied before. However,
previous reports did not agree on the results concerning the position of the per-
colation threshold. Although all the work was correct, much was only valid for a
specific network structure; which I show here not to be similar to the structure
of real networks. Therefore, I develop an appropriate clustered network model
that reproduces the global organization of triangles in real networks better than
previous clustered network models. Finally, I use my new model to study how
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clustering actually affects the position of the bond percolation threshold of net-
works.

Results

In chapter 2 I introduce the exponential random graph models that generate
maximally random networks with a given set of constrains, which are fixed on
average. From this collection of ensembles, I focus on maximally random graphs
with an expected degree sequence. This model is the canonical ensemble of one
of the most popular models in network theory: the configuration model. Fixing
the expected degree of all the nodes instead of the actual degree allows for an
analytical treatment that is not possible in the micro-canonical ensemble.

Within this framework, in chapter 3, I present an analytical study of the clus-
tering generated by random scale-free networks, and amend previous incorrect
results for highly heterogeneous networks. I found the correct scaling behaviour
of the clustering coefficient of the ensemble of scale-free random graphs with
exponent 2 < γ < 3 given by Eq. 3.11. Interestingly, for values of the exponent
γ ≈ 2, clustering remains nearly constant up to extremely large network sizes,
but it is not self-averaging. This implies that highly heterogeneous networks can
have a moderate level of clustering only due to topological constrains given by
the degree distribution. This contradicts the common believe that random net-
works can always be approximated by a tree network and thereby violates a very
common assumption in network theory.

However, the clustering generated in random networks is still not compara-
ble to that observed in many empirical networks. Therefore, there was a need
for clustered network models that could be used to study the effect of clustering
on other topological properties of networks and processes on them. Along these
lines, in section 2.5, I develop a model that generates clustered network models
from an exponential random ensemble via a biased rewiring procedure.

My clustered network model has two important features that make it more
convenient than other models. First, it can give different levels of clustering
while fixing both the degree distribution and degree correlations. This is an im-
portant issue in order to disentangle the effect of clustering from the other two
topological properties. Second, my model is an exponential graph and there-
fore maximizes the entropy of the network, making only minimum assumptions
other than those imposed by the constraints. Therefore, in my model, in contrast
to other clustered network models, the distribution of triangles in the network is
as random as possible.

Furthermore, I released the code RandNetGen [48] that generates networks
using my clustered network ensemble. The program goes beyond my model and
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can generate any network from an exponential random graph ensemble using
the biased rewiring method and taking many different topological properties as
constraints. The program is user friendly and is published in the collaborative
open-source platform Github.

Then, in chapter 4, I consider the distribution of triangles in real networks.
To that end, I study the m-core structure, which is much deeper if triangles are
distributed at random than it is if they are in a modular structure, in which strong
correlation among multiplicity of edges is present. Moreover, I develop a visual-
ization tool, LaNet-Vi 3.0 [16], that provides visual representations of the m-core
structure of a network. My results show that the global organization of cluster-
ing in real networks is much better reproduced by my maximally random model
than by previous clustered network models, in which triangles are ordered in
a very specific way. Therefore, the good performance of my model defines the
proper framework for studying the effect of clustering on bond percolation prop-
erties.

Afterwards, I use my model to study how clustering affects the percolation
properties of networks. To do this, I compared the bond percolation properties
of networks with the same degree sequence and degree correlations but different
levels of clustering.

My results show that the effect of clustering depends strongly on network
heterogeneity. For weakly heterogeneous networks, clustering increases the per-
colation threshold, thereby making the networks more fragile. However, for
more heterogeneous networks (γ ≤ 3.5) an increase in clustering can induce
the emergence of a core–periphery structure. This organization redefines the
percolation phase space of complex networks by inducing a new phenomenon,
namely a double percolation phase transition, in which the core and periphery
percolate independently.

In this situation, increasing clustering decreases the percolation threshold of
the core and increases the percolation threshold of the periphery. For weakly
heterogeneous networks, the size of the core is not macroscopic; thus, cluster-
ing only makes these networks more susceptible to the removal of links. This
reconciles the two dominant interpretations of the effect of clustering on the
percolation properties of complex networks.

Furthermore, this multiple percolation phase transition phenomenon that I
reveal completely redefines our previous understanding of percolation process
on complex networks. In previous theory, it was not possible to have two or more
consecutive continuous phase transitions associated with the same symmetry
breaking. Nevertheless, in section 6.7, I analytically prove that such anomalous
transitions are indeed possible. I show that two weakly connected macroscopic
modules of a network can percolate independently as long as their inter average
degree scales sub-linearly with the system size. Interestingly, this behaviour is
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also observed in many real complex networks; evidence of the generality of this
phenomenon.

Therefore, due to the considerable heterogeneity of real networks, we no
longer have a true percolation threshold but a set of critical points at which dif-
ferent parts of the network percolate. This changes the way we have to tackle the
percolation problem and requires a reinterpretation of all the theoretical effort
to find a single percolation threshold.

The possibility that a network has different parts, or modules, that are inde-
pendent in terms of network processes, suggests that we should consider each
module as a network itself and the whole system as a NON. Along these lines, I
adapt the state-of-the-art bond percolation theory. Once the percolation thresh-
old of a network becomes a local property, we can use the novel message pass-
ing theory to calculate the percolation threshold of each node. Classifying all the
nodes according to this new measure I cam establish whether the network being
studied should be cast within the framework of a NON or whether instead it is
best represented by a more traditional description in terms of communities.

I further analyse real cases in which my method reveals a modular structure
and which agrees with the condition of undergoing multiple percolation phase
transitions. Moreover, I show that this modular structure implies the localization
of the principal eigenvectors of the non-backtracking matrix. In such situations,
the critical point of each module corresponds to an eigenvalue, renewing inter-
est in the study of the spectral properties of the non-backtracking matrix.

Conclusions

From these results, I extract the following general conclusions.

First, I find that, due to topological constrains, considerable heterogeneity
can explain part of the emergence of the high levels of clustering in real net-
works. At the same time, this indicates that the tree-like assumption may intro-
duce major inaccuracies in random strongly heterogeneous networks.

Second, I show that triangles in real networks are distributed in a random
fashion, in agreement with the perception that real complex networks are a
product of a self-organized process in which edges are just a result of local in-
teractions between nodes. This has an impact on the study of clustering in net-
work processes, since it casts doubt on previous results derived from clustered
network models in which triangles were organized in a very specific way.

Third, clustering makes weakly heterogeneous networks more fragile with
respect to random failure of their connections, and less prone to spread infec-
tive agents. However, clustering in strongly heterogeneous networks can induce
core–periphery organization, in which the core and periphery percolate inde-
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pendently. This phenomenon, namely multiple percolation transitions, had not
been observed previously. In this situation, clustering makes the core more ro-
bust and the periphery more fragile.

Furthermore, I analytically prove that such multiple percolation transitions
are possible in networks that are sufficiently weakly connected. This new sce-
nario has very important implications for different aspects of the analysis of the
percolation properties of complex networks. On the one hand, the existence of
multiple critical points changes the way we need to address percolation as a crit-
ical phenomenon. We should not develop theories to find the true and unique
percolation threshold, but to reveal the set of critical points and the nodes in-
volved in each one of them [70].

On the other hand, this new phenomenon implies that previous empirical
methods for finding the percolation threshold are obsolete. The obvious inca-
pacity to perform finite size scaling in a real finite system, together with the ex-
istence of multiple transitions, implies that no existent empirical method can be
used to measure percolation thresholds.

Multiple percolation transitions also have a direct implication for the dy-
namics of epidemics. Previous conceptions assumed that the epidemic thresh-
old depends on macroscopic properties of the network. Now, the epidemic
threshold becomes a local property of the network. Therefore, there is the possi-
bility that a disease may become endemic only in a finite fraction of the network,
while the rest of the network remains healthy. This implies that, in contrast to
previous beliefs, the location of an outbreak can also determine whether a dis-
ease will die out or become endemic. This finding could have important appli-
cations in the fields of vaccination and marketing strategies.
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Appendix

A.1 Real networks data sets

In this section we give a description of the real world networks data sets that we
have used throughout this thesis.

A.1.1 Internet AS

We use the autonomous system (AS) Internet topology of June 2009 extracted
from data collected by the archipelago active measurement infrastructure de-
veloped by the Cooperative Association for Internet Data Analysis [28, 44]. The
AS topology contains 23752 ASs and 58416 AS links, yielding the average AS de-
gree k̄ = 4.92, clustering coefficient c̄ = 0.51 and maximum degree kmax = 2778.

A.1.2 Pretty-Good-Privacy netwok

Pretty-Good-Privacy (PGP) is the most popular encryptor algorithm aimed to
maintain privacy in communication between peers in internet. This algorithm
makes use of a pair of keys, one of them to encrypt the message, and its coun-
terpart to decrypt the message. Both keys are generated in such a way that it is
computationally infeasible to deduce one key from the other. Provided that ev-
eryone can generate a PGP key by himself, if anybody wants to know if a given
key belongs really to the person stated in the key, he has to verify that. Hence ex-
ists a "signing procedure" where a person signs the public key of another, mean-
ing that she trusts that the other person is who she claims to be. This procedure
generates a web of peers that have signed public keys of another based on trust,
and this is the so- called web of trust of PGP [25].
Here, we analyse the web of trust as it was on July 2001, when it comprised
191.548 keys and 286.290 signatures. Since we are mainly interested in the so-
cial character of the web of trust we only consider bidirectional signatures, i.e.,
peers who have mutually signed their keys. This filtering process guarantees
mutual knowledge between connected peers and makes the PGP network a re-
liable proxy of the underlying social network. After the filtering process, we are
left with an undirected network of 57.243 vertices, 61.837 edges, average degree
k̄ = 2.16, clustering coefficient c̄ = 0.50 and maximum degree kmax = 205.
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A.1.3 Escherichia coli’s metabolism network

A simple abstraction of a given metabolism is given by its bipartite network rep-
resentation. This amounts to consider metabolites and reactions as belonging
to different subsets of nodes, with metabolites (irrespectively considered as re-
actants and products) linked to all reactions they take part in, thus avoiding
connections between nodes of the same kind. Our network data set is the on-
mode projection of the metabolism bipartite network of the bacteria Escherichia
coli [158]. So nodes accounts for metabolites that are connected whenever they
participate in the same reaction.
The resulting network has 1.010 nodes, 3.286 edges, average degree k̄ = 6.51,
clustering coefficient c̄ = 0.48 and maximum degree kmax = 54.

A.1.4 Western US power grid network

This power grid dataset corresponds to an undirected, unweighted network rep-
resenting the topology of the Western States Power Grid of the United States of
America [170]. The resulting network has 4941 nodes, 6594 edges, an average
degree of k̄ = 2.67, a clustering coefficient of c̄ = 0.11 and a maximum degree of
kmax = 19. The k-core and m-core decompositions between the real power grid
network, the clique based model, and maximally random models are shown in
Fig. A.1 and the m-core visualizations at Fig. A.2.

A.1.5 US air transportation network

In the US air transportation network the nodes are airports and a link is the ex-
istence of a direct flight between two airports [157]. The network has 583 nodes,
1087s edges, an average degree of k̄ = 3.73, a clustering coefficient of c̄ = 0.43
and a maximum degree kmax = 109.

A.1.6 Human disease network

In the "human disease network" nodes represent disorders, and two disorders
are connected to each other if they share at least one gene in which mutations
are associated with both disorders [87]. The resulting network has 867 nodes,
1527 edges, an average degree of k̄ = 3.52, a clustering coefficient of c̄ = 0.81 and
a maximum degree kmax = 50.

A.1.7 Pokec online social network

Pokec is one of the most popular on-line social network in Slovakia. Pokec has
been provided for more than 10 years and connects more than 1.6 million people
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Figure A.1: Comparison of the k-core and m-core decompositions between the
real power grid network, the clique based model, and maximally random mod-
els.
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Figure A.2: m-core decomposition of the power grid and its random versions.
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Figure A.3: Left: Bond percolation simulations for the US air transportation net-
work. The relative size of the largest connected component g and its susceptibil-
ity χ as a function of the bond occupation probability p. Right:m-core decom-
position
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Figure A.4: Left: Bond percolation simulations for the human disease network
network. The relative size of the largest connected component g and its sus-
ceptibility χ as a function of the bond occupation probability p. Right:m-core
decomposition
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Figure A.5: Left: Bond percolation simulations for the Pokec On-line social net-
work. The relative size of the largest connected component g and its susceptibil-
ity χ as a function of the bond occupation probability p. Right:m-core decom-
position

by 2012. We analyse the undirected network by deleting all non-bidirectional
links. For having a smaller system we only considered nodes that sign up into
the on-line network before 2004. The resulting network has 44285 nodes, 75285
edges, an average degree of k̄ = 3.4, a clustering coefficient of c̄ = 0.09 and a
maximum degree kmax = 58.

A.1.8 Gnutella pear-to-pear network

Gnutella was the first decentralized peer-to-peer file sharing network [110]. This
data set is a snapshot of the Gnutella peer-to-peer file sharing network from Au-
gust 9th in 2002. In this thesis we only consider the largest connected cluster
that have 8104 nodes, 26008 edges, an average degree of k̄ = 6.42, a clustering
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coefficient of c̄ = 0.013 and a maximum degree kmax = 102.

A.2 Mean-field critical exponents

Our exponent ν is the finite size scaling exponent in terms of the total number
of nodes N and not of the one-dimensional scale L, as it is done in the book by
Stauffer and Aharony [165]. This means that our critical exponent is just νour s =
dνst au f f er−ahar ony , where d is the dimension of the system. In the case of mean
field, d must be replaced by the upper critical dimension, that for percolation
is du = 6. This makes our mean field critical exponent νour = 3. Perhaps it is
more clear if we write the usual finite size scaling assumption for the size of the
susceptibility. In terms of L it reads

χ(L, p) = Lγ/νF
[|p −pc |L1/ν]

In terms of the total number of nodes, this is

χ(N , p) = Nγ/dνF
[
|p −pc |N 1/dν

]
In the same book by Stauffer and Aharony it is proved that (Eq. (53), pg. 67)

dν= τ−1

σ

and the mean field values of τ and σ are τ= 5/2 σ= 1/2. This means that, again
dν= 3.

Because we are normalizing the susceptibility according to equation 5.4 we
are measuring the exponent γ′ = γ+β instead of γ. Therefore, if the mean field
exponents are γ=β= 1 and ν= 3, the exponent we are measuring in the scaling
of the maximum of the susceptibility is γ′/ν= 2/3.
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Resum en català

Introducció

L’estudi de sistemes des del punt de vista de les xarxes és útil per concentrar-se
en l’impacte que els patrons de interacció entre elements tenen en la funció de
sistemes. La mesura i observació de xarxes reals revela que aquestes tenen unes
estructures complexes, ni regulars ni totalment atzaroses, amb un efecte molt
important en el seu comportament. A més a més, s’han trobat algunes propi-
etats topològiques comunes entre diverses xarxes de naturalesa completament
diferent. Aquest fet suggereix l’existència de patrons de formació comuns que
determinen l’estructura i evolució de les xarxes.

Una de les propietats més comunes de les xarxes reals és l’alta presència de
triangles o fort clustering. Al contrari que altres propietats topològiques, encara
es desconeix l’origen de l’emergència del clustering i el seu efecte en l’estructura
i funció del sistema. En primer lloc, això és degut a que la simple presència
de triangles contradiu una hipòtesi molt utilitzada en la teoria de xarxes, com-
plicant qualsevol possibilitat d’un tractament analític. En segon lloc, hi ha un
manca de models de xarxes amb clustering apropiats que permetin un estudi
empíric. Per tant, el clustering és un dels factors més importants que dificulta la
possibilitat d’aplicar els resultats de la teoria de xarxes a casos reals.

En aquesta tesi estudiem el paper que juga el clustering en la estructura i
funció de les xarxes complexes. En aquesta direcció, comencem estudiant el
clustering generat pels models de xarxes més populars. Seguidament, mirem
com es distribueixen els triangles en les xarxes reals. Finalment, ens concen-
trem en l’efecte del clustering en el clàssic problema de percolació d’enllaços.
La nostra tria es basa en la relació que aquest procés simple té amb la robustesa
i la dinàmica d’epidèmies en xarxes.

La percolació en xarxes amb clustering ha estat estudiat extensivament en
anterioritat. Tot i això, els estudis anteriors són només vàlids per una estruc-
tura específica la qual mostrem que no reprodueix la organització global dels
triangles present en les xarxes reals. Per tant, per respondre aquesta pregunta
hem hagut primer de desenvolupar un model de xarxa amb clustering que re-
produeixi la organització dels triangles de les xarxes reals. Finalment, hem fet
servir el nostre model per estudiar com el clustering afecta a la posició del llindar
de percolació en xarxes complexes.
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Resultats

En el capítol 2, hem començat introduint els models de xarxa a l’atzar exponen-
cials que generen xarxes al més a l’atzar possible donades unes restriccions, que
són fixades en mitjana. D’aquesta col·lecció de models ens hem concentrat en
les xarxes màxim a l’atzar amb un seqüència de graus esperats. Aquest model
és la col·lecció canònica d’un dels models més popular en la teoria de xarxes, el
model configurational. Fixant la seqüència de graus esperats enlloc dels graus
exactes permet el tractament analític que és impossible en la col·lecció micro-
canònica.

En aquest marc, en el capítol 3 fem un estudi analític del clustering generat
per xarxes a l’atzar sense escala, corregint resultats incorrectes anteriors per a
xarxes molt heterogènies. Hem trobat que l’escalat correcte del coeficient de
clustering de la col·lecció de xarxes a l’atzar sense escala amb exponent 2 < γ< 3
és donat per l’equació. 3.11. Interessantment, per valors de l’exponent γ≈ 2, el
clustering es manté quasi bé constant fins a valors extremadament grans de la
mida de les xarxes però no és auto-promitjable. Aquest fet implica que les xarxes
molt heterogènies poden tenir un nivell moderat de clustering només degut a les
restriccions topològiques donades per la distribució de graus. Aquest fet contra-
diu la creença estesa de que les xarxes a l’atzar poden ser sempre aproximades
com a xarxes d’arbre, violant unes les de les hipòtesis més comunes en la teoria
de xarxes

Tot i això, el clustering generat en xarxes a l’atzar encara no és comparable
a l’observat en moltes xarxes reals. Per tant, hi ha una necessitat de models de
xarxes amb clustering que puguin ser usats per estudiar l’efecte del clustering
en altres propietats topològiques i processos en xarxes. En aquest direcció, en la
secció 2.5 hem desenvolupat un model que genera xarxes amb clustering d’una
col·lecció exponencial a l’atzar via un procés de reconnexió esbiaixada.

El nostre model de xarxes amb clustering té dues característiques molt im-
portants que el fan més convenient que altres models. Primer, és capaç de donar
diferents nivells de clustering fixant a la vegada, la distribució de graus això com
les correlacions de graus. Un fet important per tal de desacoblar els efectes del
clustering d’aquestes dues propietats topològiques. Segon, el nostre model és
un una xarxa exponencial, i per tant, maximitza l’entropia de la xarxa, fent les
mínimes hipòtesis més que aquelles imposades per les restriccions. Per tant,
en el nostre model, en contrast amb altre models de xarxes amb clustering, la
distribució de triangles en la xarxa és la més a l’atzar possible.

A més a més, hem publicat el codi RandNetGen [48] que genera xarxes util-
itzant el nostre model. El programa va més enllà del nostre model i pot generar
qualsevol xarxa com a una xarxa a l’atzar exponencial utilitzant el mètode de re-
connexió esbiaixada, utilitzant diferents propietats topològiques com a restric-
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ció. El programa és agradable per a l’usuari i està publicat a la plataforma de
codi obert colaborativa Github.

Més endavant, en el capítol 4 hem estudiat la distribució dels triangles en
les xarxes reals. Per fer això, hem mirat l’estructura de l’m-core, que és molt
més profunda si els triangles estan distribuïts a l’atzar que en una estructura
modular, on hi ha correlacions en les multiplicitats de les connexions. A més a
més, hem desenvolupat una eina de visualització, el LaNet-Vi 3.0 [16], que gen-
era visualitzacions de l’estructura de l’m-core d’una xarxa. Els nostres resultats
mostren que l’organització global del clustering en xarxes reals està molt més
ben reproduïda per les nostres xarxes amb clustering màxim a l’atzar que per
models de xarxes amb clustering anteriors, en els quals els triangles estan orde-
nats d’una manera molt específica. Per tant, el bon comportament del nostre
model defineix el marc apropiat per estudiar com afecta el clustering en la per-
colació d’enllaços.

Després, hem utilitzat el nostre model per estudiar com afecta el clustering
a les propietats de percolació de les xarxes. Amb aquest objectiu, hem comparat
les propietats de la percolació d’enllaços de xarxes amb la mateixa seqüència de
graus i correlacions de grau però diferents nivells de clustering.

Els nostres resultats mostren que els efectes del clustering depenen forta-
ment de la heterogeneïtat de la xarxa. Per xarxes poc heterogènies el clustering
incrementa el llindar de percolació fent-les més fràgils. Tot i això, per xarxes més
heterogènies (γ≤ 3.5) un increment del clustering pot induir l’emergència d’una
estructura de nucli perifèria. Aquesta organització redefineix l’espai de fases de
la percolació de les xarxes complexes induint un nou fenomen, la doble transició
de fase de percolació, en la qual el nucli i la perifèria percolen independentment
l’una de l’altra.

En aquesta situació, incrementar el clustering fa disminuir el llindar de per-
colació del nucli i incrementa el llindar de percolació de la perifèria. Per xarxes
més heterogènies, la mida del nucli no és macroscòpic, i per tant, el clustering
només fa les xarxes més fràgils davant de la eliminació de connexions. Aquest
fet reconcilia les dues interpretacions dominants de l’efecte del clustering en les
propietats de percolació de les xarxes complexes.

A més a més, aquesta múltiple transició de fase de percolació que hem trobat
redefineix completament la nostra comprensió prèvia del procés de percolació
en xarxes complexes. En la teoria anterior, no era possible tenir dues o més tran-
sicions de fase consecutives associades al mateix trencament de simetria. Tot i
això, en la secció 6.7, hem demostrat analíticament que aquestes transicions
anòmales són en efecte possibles. Mostrem que dos mòduls macroscòpics dè-
bilment connectats poden percolar independentment mentre el seu intra-grau
mitjà escali subliniarment amb la mida del sistema. Interessantment, aquest
comportament també s’observa en una colecció de xarxes reals, una evidència
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de la generalitat del fenomen.

Per tant, degut a la alta heterogeneïtat de les xarxes reals, ja no tenim un
autèntic llindar de percolació, sinó un conjunt de punts crítics en els quals
diferents parts de la xarxa percolen. Aquest fet canvia completament com hem
d’afrontar el problema de la percolació i ens obliga a reinterpretar tots els es-
forços teòrics que intenten trobar un sol llindar de percolació.

La possibilitat de que una xarxa tingui diferents parts, o mòduls, que siguin
independents en termes de processos de xarxes, suggereix la idea de considerar
cada mòdul com a una xarxa i el sistema sencer com a una xarxa de xarxes. En
aquesta direcció, hem readaptat la teoria més moderna de percolació [99]. Un
cop el llindar de percolació d’una xarxa es torna una propietat local, podem util-
itzar el tècnica de passar el missatge per calcular el llindar de percolació de cada
node. Classificant tots els nodes d’acord a aquesta nova mesura hem sigut ca-
paços de discernir si la xarxa sota estudi pot ser definida sota el marc de xarxa
de xarxes, o si per el contrari, és millor representar-la amb la descripció més
tradicional en termes de comunitats.

A més a més, hem analitzat casos reals en els quals el mètode revela una es-
tructura modular que concorda amb la condició necessària per tenir una tran-
sició múltiple de percolació. Altrament, hem mostrat que aquesta estructura
modular implica la localització del vector propi principal de la matriu non-
backtracking. En aquesta situació, el punt crític de cada mòdul correspon a un
valor propi, potenciant l’estudi de les propietats espectrals de la matriu non-
backtracking.

Conclusions

D’aquests resultats que acabem de presentar podem extreure les següents con-
clusions generals.

Primer, hem trobat que, degut a restriccions topològiques, l’alta heterogeneï-
tat pot explicar part de la emergència dels alts nivells de clustering que trobem a
les xarxes reals. Al mateix temps, aquest fet ens afecta a la precisió que la hipòtesi
de tractar les xarxes com a arbres pot tenir en xarxes a l’atzar molt heterogènies.

Segon, hem ensenyat que en les xarxes reals els triangles estan distribuïts
d’una manera atzarosa, d’acord amb la percepció que les xarxes complexes són
un producte d’un procés auto-organitzat en el qual les connexions són resul-
tat d’una interacció local entre nodes. Aquest fet té un impacte important en
l’estudi de processos en xarxes amb clustering ja que posa dubtes sobre resultats
previs derivats de models en els quals els triangles estan organitzats de manera
molt específica.

Tercer, el clustering fa les xarxes poc heterogènies molt fràgils davant la fal-
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lida de connexions a l’atzar i menys propenses a propagar agents infectats. Tot
i això, el clustering en xarxes molt heterogènies poden induir una organització
de nucli-perifèria en el qual el nucli i la perifèria percolen independentment.
Aquest fenomen, una transició de percolació múltiple, no havia estat observat
abans. En aquesta situació, el clustering fa el nucli més robust i la perifèria més
fràgil.

Altrament, hem demostrat analíticament que una transició de percolació
múltiple com aquesta és en efecte possible en xarxes dèbilment connectades.
Aquest nou escenari té unes implicacions molt importants en diferents aspectes
de l’anàlisi de les propietats de percolació de les xarxes complexes. Per una al-
tra banda, l’existència de múltiples punts crítics canvia la manera en la qual hem
d’abordar la percolació com a fenomen crític. Ja no hem de desenvolupar teories
que trobin un verdader i únic llindar de percolació, sinó un conjunt de punt
crítics i els nodes involucrats en cada una de ells [70].

Per altra banda, aquest fenomen fa que els mètodes empírics existents de
trobar el llindar de percolació poc precisos. La òbvia incapacitat de fer una es-
calatge de mida finita en un sistema real finit i la existència de transicions múlti-
ples implica que cap mètode empíric existent no pot ser utilitzat per mesurar el
llindar de percolació.

La transició múltiple de percolació també té una implicació directa en
dinàmica d’epidèmies. Les concepcions prèvies assumien que el llindar
epidèmic depèn únicament en propietats macroscòpiques de la xarxa. Ara, el
llindar epidèmic passar a ser una propietat local de la xarxa. Per tant, hi ha la
possibilitat de que una malaltia infecciosa sigui pandèmica només en una frac-
ció finita de la xarxa, mentre la resta de la xarxa estigui totalment sana. Aquest fet
implica que, en contra de concepcions prèvies, l’origen d’un brot d’una malal-
tia infecciosa sigui determinant alhora de determinar si la malaltia esdevindrà
pandèmica o no, amb importants aplicacions a estratègies de vacunació i de
màrqueting.
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