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1. Introduction




loexanu!
Let’s go!

Yuri Alekseyevich Gagarin



1.1. A paradigm shift in biology

“Computing has changed biology forever; most biologists just
don’t know it yet’. Structural biologist professor Michael Levitt,
one of the pioneers of computational chemistry and recipient of
the 2013 Nobel Prize in Chemistry together with Martin Karplus
and Arieh Warshel for "the development of multiscale models for
complex chemical systems”, made this observation during a
lecture in 1998 at Stanford University (Wooley 2006). Levitt's
statement was consistent with a series of new ideas on a change
of paradigm in the biological sciences. For instance, in 1991
Walter and Gilbert reported that “The new paradigm, now
emerging, is that all the 'genes' will be known (in the sense of
being resident in databases available electronically), and that the
starting point of a biological investigation will be theoretical. An
individual scientist will begin with a theoretical conjecture, only
then turning to experiment to follow or test that hypothesis”
(Gilbert and Walter 1991). The same year, Lander et al. observed
that “Biology is in the middle of a major paradigm shift driven by
computing.” (Lander et al. 1991). Since then, the biological
community is aware of how the new developments in
computational sciences have changed the way research is
performed and interpreted. Actually, biology is just one of the
many scientific disciplines affected by this paradigm shift, such
as astronomy, physics, chemistry or atmospheric sciences also
are (Misa and Thomas 2007).



Computing has experienced a major development in the past
decades. Gordon Moore, co-founder of Intel, observed that

“‘every eighteen months, the number of transistors that can be
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Figure 1. Number of transistors by year and processor model from 1971
to 2011. The tendency follows Moore’s law (From Wgsimo, CC BY-SA 3.0)

placed on a chip doubles”. This so-called Moore's Law is
reflected in an exponential increase in computer performance
during the past two decades (Figure 1). This has delivered
increasingly faster and cheaper computers, which has
transformed society since then. Current research in Biology is
generating a high amount of data with high information content,
and the discipline could be seen as an information science, since
“the life sciences use computing and information technology as a

language and a medium in which to manage the discrete,



asymmetric, largely irreducible, unique nature of biological
systems and observations” (Wooley and Lin 2010). The born of
the computational biology within the life sciences scope opens
the field to new and exciting lines of research, sensitive to new
achievements and developments in computational science.
Nevertheless, the change in biology could be deeper than in the
rest of scientific disciplines, since computational biology might be
as essential for the next quarter century of biology as molecular

biology was for the past quarter century.

In addition to the important need to manage high amount of data
in biology, the description of cell processes at molecular level is
one of the most demanding challenges in life sciences in terms of
computational power. For example, molecular simulations at
atomic scale, even using coarse grained models, depend on rich
computational resources, mainly CPU power and physical
memory. The manipulation in computers for many of these
problems in structural biology were impractical until the last
decades of the past century and currently, many of them would
even require years of computation for fine grain simulations.
Important milestones have been achieved in the field, such as
the design of specific supercomputing architectures using FPGA
(Belletti et al. 2006; Kasap et al. 2012) or custom solutions
(Narumi et al. 2000; Taiji et al. 2004; Shaw et al. 2009; Shaw
2013), but the design of specific computing architectures may be
unworkable in many other problems. In the context of the
mentioned paradigm shift in biology, significant advances will

mostly stem from the efficient description of cell processes at



molecular level, together with the development of new algorithmic
solutions and computational tools optimized for the study of

biological problems.

1.2. Proteins: structure and function

1.21. A brief introduction to the chemistry of the
cell

The chemistry that supports life is extremely sophisticated, more
that we had never imagined before. Accounting for about half of
the total dry mass of cells (Alberts 1998), proteins play a major
role in nature and are often described as the factories of the cell.
These macromolecules are involved in the virtually all important
functions in living organisms, a few examples of which are
oxygen ftransportation (hemoglobin), sugar level regulation
(insulin), signaling (cytokines, cell receptors), immunological
system (antibodies) or biological protein synthesis (ribosome
complex). In addition, nearly every major process in the cell is
carried out by assemblies of biomolecules, which very often can
contain a large number of protein molecules. And, as they carry
out their biological function, these protein assemblies often
interact with other large complexes of proteins (Alberts 1998),
clearly showing the inherent complexity of the biochemical

reactions within the cell processes.



1.2.2. Protein structure

Proteins are large biomolecules formed by 20 different building
blocks called amino acids. Amino acids are small molecules
composed of an amine and a carboxylic group and differ in the
side chain attached to their alpha carbon (Ca) atom. Each amino
acid is capable of polymerizing by forming a peptide bond
between the carboxyl group of one amino acid and the amino
group of another one, with results in the formation of large
polypeptide chains. The 20 standard amino acids that make up
proteins are encoded in the DNA biopolymer and are
incorporated into a polypeptide chain after the transcription into
the RNA biopolymer and the translation process. This was stated
by the pioneer Francis Crick as the “central dogma of molecular
biology: DNA creates RNA, RNA creates protein”, but the overall
process is still under study as many of the mechanisms are not
totally elucidated yet. The primary structure of a protein is the
linear sequence of the amino acids forming the polypeptide
chain. The secondary structure of a protein refers to the local
three-dimensional structures with regular geometry formed by the
polypeptide chain, which are categorized in two main types with
regular geometry: alpha (a-) helixes and beta (B-) sheets. The
secondary structure elements are folded into a compact 3D
structure, mostly stabilized by hydrogen bonds, known as the
tertiary structure of proteins. Different folded polypeptide chains
can assemble into multi-subunit complexes that form the
quaternary structure. It is worth mentioning at this point the

special case of intrinsically disordered proteins (IDP), which lack



a fixed three-dimensional structure. The largely accepted
structure-function paradigm, in which the protein function
depends directly on the structure, clashes with the existence of
these unstructured and extremely flexible proteins and shows the

important role of protein dynamics in function.

1.3. Protein-protein interactions

1.3.1. The interactome and the importance of
protein-protein interactions

In recent years, biomedical interest has changed its focus from
the study of single proteins to the understanding of protein-
protein interactions. Ongoing proteomic projects for many model
species including humans (Rolland et al. 2014) have confirmed
that the majority of proteins mediate their functions by physically
interacting with other biomolecules such as other proteins, lipids,
nucleic acids or small molecules and thus forming intricate, highly
organized and dynamic interaction networks (Rual et al. 2005;
Stelzl et al. 2005). A deep understanding of the structure and
topology of these protein-protein interaction networks would not
only shed light on the cellular processes they regulate, but would
also give insight into evolutionary aspects of the proteins involved
(Jeong et al. 2001; Fraser 2002; Khuri and Wuchty 2015). In
addition, a complete knowledge of protein interactions would be

crucial to understand complex pathological processes such as



cancer development and evolution, as well as to find new
therapeutic treatments (Jonsson and Bates 2006; Sun et al.
2009; Sun and Zhao 2010; Choura and Rebai 2012).

Protein interactions are as diverse as the life they sustain
(Nooren and Thornton 2003). Regarding kinetics, their lifetime
can range from milliseconds (transient) to days (permanent). The
interacting surface between partners can present different
shapes and topologies, with a total surface area of up to several
thousand A, The interaction can involve a varied range of
movements, from a negligible conformational change (rigid-body)
to a partial refolding of the partners (induced fit). Regarding

thermodynamics, protein complexes can show binding affinities

Figure 2. Human interactome constructed from publically available data
and visualized in Cytoscape 2.6. © Andrew Garrow



ranging from 10 to 10™* M.

We know that the complexity of a living organism is not related to
its total number of genes. For example, the number of genes in
human is approximately half the number of genes in rice (Goff et
al. 2002). The complexity of a living organism seems more
related to other dynamic and functional aspects of the genes,
such as their expression and regulation or the interactions
between the different biomolecules. This is reflected, for
instance, in the size of the set of proteins expressed in a cell at a
given time, the expressed proteome, or in the size of the entire
network of protein-protein interactions in an organism, the
interactome (Stumpf et al. 2008). Indeed, the total number of
estimated protein-protein interactions in the human interactome
ranges from 130,000 (Venkatesan et al. 2009) to around 650,000
(Stumpf et al. 2008), depending on the method used to estimate
it. In any case, this number is larger than in other organisms, e.g.
one order of magnitude larger than in Drosophila or three times

larger than in Caenorhabditis Elegans (Stumpf et al. 2008).

The most popular techniques that have been extensively used for
the identification of protein-protein interactions are yeast two-
hybrid (Fields and Song 1989) and tandem affinity purification
coupled to mass spectrometry experimental methods (Rigaut et
al. 1999; Puig et al. 2001). Both techniques have been applied in
a large-scale and high-throughput context, helping to identify
many new interactions in different organisms including human.

The analysis of these new interactions has many biological

10



applications. For instance, the functionality of unidentified
proteins can be predicted on the basis of their interaction with
another protein whose function is already known (Zhang 2008).
On the other side, a deeper understanding on existing
interactions could foster new strategies and methods in protein
engineering and drug discovery projects (Rual et al. 2005).
Finally, new interactions can be directly mapped to disease-
associated proteins (Li and Li 2004; Oti et al. 2006), with clear

applications in the biomedical field.

1.4. Protein-protein complex structural
modeling

1.4.1. Experimental determination of protein-
protein complex structure

As of February 2016, the total number of biomolecules deposited
in the Protein Data Bank (PDB) (Bernstein et al. 1978) is
116,085, where 107,808 account for proteins (92.9%), 2,878 for
nucleic acids (2.5%), 5,373 for protein-nucleic acid complexes
(4.6%) and 26 for other. Concerning protein complexes, X-ray
crystallography is the most represented experimental technique
(96,963, 83.53%) followed by nuclear magnetic resonance
(NMR) spectroscopy (9,896, 8.52%), electron microscopy (695,
0.6%) and HYBRID (84, 0.07%). X-ray crystallography, which

has no limits on the sample size, can be used to describe the

11



atomic 3D structure of a crystallized macromolecule based on the
diffraction pattern produced by an X-ray beam after contacting
the electrons of the sample. Despite being a very popular and
mature experimental technique, it presents problems concerning
its applicability to some protein complexes. More in detail,
systems such as membrane proteins, flexible complexes
(frequently with flexible loops that cannot be solved), transient or
low-affinity complexes, or intrinsically disordered proteins, are
very challenging or directly not suitable for this technique, due to
the problems in the crystallization. In addition, a long debate exist
about whether crystallization conditions may or not represent in
vivo environments or conformations that are biologically relevant
(Ofran and Rost 2003; Bahadur et al. 2004; Bahadur and
Zacharias 2008).

NMR spectroscopy can help to overcome the problems found in
X-ray crystallography and, indeed, it represents the second
experimental method in popularity in the PDB, as above
mentioned. This method can be used either in solution or in solid
state. It is based on the physical phenomenon in which nuclei in
a magnetic field absorb and re-emit electromagnetic radiation at
a specific resonance frequency. This frequency depends on the
strength of the magnetic field and the magnetic properties of the
isotope of the atoms, giving access to details of the electronic
structure of the studied molecule. In recent years, NMR
spectroscopy has incorporated many new technical advances
(Kanelis et al. 2001; Castellani et al. 2002) to deal with proteins

larger than 25 kDa, but this technique can suffer from certain

12



limitations in larger systems. On the other hand, the ability of
sampling proteins in solution allows the researcher to perform the
experiment in environment conditions that are more similar to the
cell context. In this way, the method can efficiently describe the
dynamics of the protein complex and define the 3D structure of
mobile loops or sections of membrane proteins or amyloid
systems (Castellani et al. 2002), but at the expense of a lower

resolution as compared to X-ray crystallography.

Other promising techniques are small-angle scattering, either
using a X-ray (SAXS) or a neutron beam (SANS), and cryo-
electron microscopy (cryo-EM) (Bernad6 2011). These
techniques can be used as complementary to other methods, i.e.
NMR and SAXS (Sibille and Bernadd 2012) or computational
modelling tools (Petoukhov and Svergun 2005; Schneidman-
Duhovny et al. 2013), and provide promising results in the
characterization of the general size and shape of large
macromolecular complexes. Moreover, cryo-EM technique has
experienced in the past years important advances in electron
detection and image processing. The resolution by cryo-EM is
now beginning to rival that of X-ray crystallography (Bai et al.
2015; Doerr and Allison 2015), with very encouraging results at
near-atomic resolution of macromolecules including ribosomes
from human pathogens or mitochondria, ion channels or a key

enzyme in the biogenesis of methane (Kuhlbrandt 2014).

13



Despite the number of deposited protein structures is relatively
high (107,808 as of February 2016), the total number of
structures corresponding to protein-protein complexes is only of
17,184 (Protein Data Bank in Europe,
http://www.ebi.ac.uk/pdbe/entry/search/index?assembly composi
tion:%22protein/protein%20complex%22), a low  number

considering the number or estimated protein-protein interactions

Figure 3. TRPV1 channel, a structure impossible to solve using X-ray
crystallization, at 3.4-A of resolution using cryo-EM. (From Liao et al.
2013)

in human is expected to be one order of magnitude larger than
the number of proteins (Stumpf et al. 2008). Moreover, as of April

14



2016, there are only 4,586 protein-protein interactions in human
with available 3D structure (Interactome3D; Mosca et al. 2013), a
very small number in comparison to the estimated number of
total protein-protein interactions in human, ranging from 130,000
(Venkatesan et al. 2009) to around 650,000 (Stumpf et al. 2008).
This low structural coverage of protein-protein interactions could
be explained by the actual limitations in experimental methods. In
this context, computational methods for protein-protein complex

structure prediction may help to overcome this problem.

1.4.2.  Structural modeling of protein-protein
complexes

From a computational point of view, there are two main
approaches to model the structure of a protein-protein complex:

ab initio docking or template-based modeling.

Ab initio docking aims to predict the binding mode of two
proteins, that are known to interact, starting from the 3D
coordinates of the two interacting partners (Ritchie 2008). This
will be analyzed in deep in the next section. Template-based
modeling aims to model a protein-protein complex based on the
structure of a homologous complex. The popularity of template-
based methods has increased in the past years thanks to the
development and support of many protein-protein interactions
databases that can provide the required templates. However, the

quality of template-based predictions clearly depends on the

15



availability of suitable templates (Vakser 2013; Aloy and Russell
2002; Kundrotas et al. 2012). According to Interactome3D
database, only 4,294 complexes (as of April 2016) could be
directly modelled based on homologous templates (using
sequence alignments or domain-based templates), with around
50% accuracy. By using structural alignments to identify the
templates, the number of complexes that could be modelled
might increase, but at the expense of lower accuracy in the

predictions.

@ | Protein-Protein Docking ‘ Template-Based Modeling |
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Figure 4. Two main protein-protein complex prediction methods. (a)
Protein-protein docking, (b) Template-based modeling. (Szilagyi and
Zhang 2014)
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1.4.3. Protein-protein docking: a computational
method for protein-protein complex
structure prediction

Ab initio protein-protein docking can be used as a general
method to model the structure of a protein-protein complex, not
needed the existence of suitable templates. The objective of
docking is to predict a complex structure from the separately
determined protein structures (unbound docking). For testing and
development purposes, the co-crystallized partners in a known
protein complex structure can be separated and re-docked
(bound docking), but obviously this has no practical value for

biology.

Originally in the decade of the 70’s of the last century, docking
was understood as a technique for the refinement of the binding
site of the two protein partners (Levinthal et al. 1975; Pincus et
al. 1976). At that time, both computational power and the force-
field models were very limited. Later in the 90’'s, the
democratization of computing and a more accurate knowledge of
the nature of the problem, i.e. more structures were resolved and
deposited in the Protein Data Bank, led to remarkable advances
in the field that are still valid (Katchalski-Katzir et al. 1992;
Fischer et al. 1995). Typically, docking methods address the
problem in a two-step process. In the first step, a pool of possible
protein-protein docking poses is generated, usually considering

the proteins as rigid-body or with very limited conformational

17



changes. Then, these generated docking models are scored in
order to identify the correct models. Very often, this second step
includes a flexible refinement, usually on the side-chains. Other
docking methods use flexibility from the first sampling step,
performing conformational sampling and scoring at the same

time that the complex is refined in terms of flexibility.

Sampling

The most common strategy in docking is to neglect the
conformational flexibility upon binding. In this so-called rigid-body
docking approach, the sampling process explores the six-
degrees of freedom of the translational and rotational space of
the two-rigid body systems, and generates a pool of possible
poses. One of the most popular approaches for rigid-body
sampling is based on the use of a discrete grid search (protein
atoms are mapped onto the different grid cells, given a fixed grid
resolution). In this way, the initial search by a correlation function
in the space of N, where N is the length of the side of the cubic
grid, can be accelerated using Fast-Fourier Transform (FFT)
libraries (Katchalski-Katzir et al. 1992). The first docking methods
using this approach were MOLFIT (Katchalski-Katzir et al. 1992),
GRAMM (Vakser 1997) and FTDock (Gabb et al. 1997), which
incorporated an extra grid for taking into account electrostatics
contributions, but other methods have included desolvation
based on atom-contacts as in ZDOCK (Chen et al. 2002) or

pairwise interaction potentials as in PIPER (Kozakov et al. 2006).
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FFT-based methods can be performed in polar coordinates
instead of in Cartesian ones as in Hex (Ritchie and Kemp 2000)
or FRODOCK (Garzon et al. 2009). FFT-based methods can
benefit from graphics processing units (GPU) computing
accelerating the search several orders of magnitude (Sukhwani
et al. 2009; Ritchie and Venkatraman 2010). In addition to FFT-
based methods, geometric hashing is also utilized in the
sampling step. The PatchDock program creates a Connolly-style
representation of the protein restricted to concave, convex and
flat shapes. Surface representations are scanned to find zones of

high complex-complementarity (Duhovny et al. 2002).

A different approach in rigid-body docking comes from non-
exhaustive search methods using either Monte Carlo or other
energy-minimization techniques. This alternative to the FFT grid-
based approaches use an explicit representation of the
interacting proteins, at atomic or coarser-grained level, in search
of the global energy minimum in order to identify the native
orientation. However, the computational cost of conformational
search in atomistic representation is high, so in practice, these
methods are often used to perform a first search in which the
molecules are rigid. Very often, the initial rigid-body docking
search is followed by an additional flexible refinement step, within
the same atomistic framework. The ICM-DISCO docking method
pioneered the application of global energy Monte-Carlo
optimization and side-chain refinement (Fernandez-Recio 2003).
In RosettaDock refinement step, a side-chain minimization using

a rotamer library is performed (Schueler-Furman et al. 2005), but

19



new versions of the software include more refinements. In
HADDOCK approach, several flexible refinement steps are
performed using molecular dynamics, with increasing levels of
flexibility. In order to lower the computational costs, the number
of degrees of freedom of the conformational search is
dramatically reduced by wusing distance restraints from

experimental data (Dominguez et al. 2003).

Explicit flexibility is not possible to be included in FFT-based
methods. Therefore, in some cases, implicit flexibility is
considered by using soft-potentials, or letting the proteins to
intersect in a more laxative way at the surface, but strongly

penalizing interactions with core residues.

Scoring and flexible refinement

After the sampling phase, several docking models (up to
hundreds of thousands) are usually generated. These docking
models are ranked according to the criteria used during the
sampling, but accurate scoring functions cannot be efficiently
used in FFT-based approaches (each scoring term and/or atom
type would need a different grid, which would make the process
impractical). Therefore, a more accurate scoring function in order
to identify the near-native docking models is usually required
after this first rigid-body step. The scoring process has to be
sufficiently robust to include in the top ranked models one or

more near-native solutions that could be sufficiently close to the
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real complex structure in terms of ligand and interface RMSD.
Sampling and scoring functions are typically highly coupled
because scoring functions are generally optimized to deal with
particularities of the sampling phase such as implicit flexibility,

etc.

Some of the most successful scoring methods are based on
biophysical energetic terms, such as pyDock (Cheng et al. 2007),
which takes into account desolvation, electrostatics and van der
Waals energy terms. The ZRANK (Pierce and Weng 2007)
scoring function implemented in the ZDOCK method is
composed of desolvation, based in pairwise atomic contact
energies, short and long range attractive and repulsive

electrostatics and attractive and repulsive van der Waals terms.

Docking scoring functions continue to be the object of active
research (Moal et al. 2013a). Recent developments include
coarse-grain models (Pons et al. 2011; Ravikumar et al. 2012),
potentials derived from decoy structures (Liu and Vakser 2011),
an asymmetric potential designed specifically for antibody—
antigen docking (Brenke et al. 2012), or scores based on
machine learning (Azé et al. 2011). Other approaches have
focused on the inclusion of bioinformatics and experimental
information (Schneidman-Duhovny et al. 2012a), or evolutionary
information beyond sequence conservation (Andreani et al.
2013). Many of them have been compiled and benchmarked in a
recent study to shed some light into the large amount of available

information on scoring functions (Moal et al. 2013a, 2013b).
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In addition to scoring, a flexible refinement process is usually
performed after the first rigid-body sampling, thus aiming to bring
back some of the structural information possibly lost during the
initial sampling phase due to limitations on the resolution of the
method (coarse-grained sampling) or to the paradigm used (rigid-
body). This refinement usually includes explicit treatment of the
backbone and/or the side-chains flexibility. One example is ICM-
DISCO, which performs Monte-Carlo refinement of interface side-
chains using internal coordinate representation, in combination
with flexible minimization (Fernandez-Recio et al. 2003). Another
example is HADDOCK, which uses soft potentials to deal with
clashes during the sampling phase and includes water molecules
in the refinement phase. In RosettaDock, a side-chain
minimization using a rotamer library is performed (Chaudhury et
al. 2007). FireDock (Andrusier et al. 2007) uses a scoring
function based on electrostatics, van der Waals, hydrogen and
disulfide bonds, solvation and the change in internal energy in
order to optimize the conformation of the side-chains based on a
rotamer library. FiberDock (Mashiach et al. 2010) extends the
protocol of FireDock, but performing backbone refinement using

normal mode analysis.

Flexible docking

In flexible docking, the sampling process takes into account the
dynamics of the protein, either globally, or at least at the protein-

protein interface. Usually, the flexible conformational search is
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driven by energy minimization. In ATTRACT docking method
(Zacharias 2003; May and Zacharias 2008), a reduced protein
model (each residue is represented by four beans) and the first
non-trivial normal modes of the anisotropic network model (ANM)
are used starting from a large number of precalculated models.
SwarmDock (Li et al. 2010; Moal and Bates 2010) method is
based in the swarm intelligence particle swarm optimization
(PSO) algorithm, which makes use of normal modes extents to
simultaneously optimize docking poses with an electrostatics and
van der Waals scoring function. Another example of flexible
docking is FlexDock, which includes domain-domain flexibility by

previous identification of hinges (Sandak et al. 1998).

Use of structural and biological available information

Protein-protein docking methods can benefit from the use of
available structural or biological data on a particular system of
interest. This information can be integrated during the sampling
process, as in HADDOCK, can be used to select regions of
interest and to filter false-positive models, as in ClusPro
(Comeau et al. 2004), or can be implemented as post-filtering
restraints, as in pyDockRST (Chelliah et al. 2006). Particularly
interesting is the use of available experimental SAXS data for
protein-protein docking, such as in pyDockSAXS (Pons et al.
2010), FoXS (Schneidman-Duhovny et al. 2012b) and ClusPro
(Xia et al. 2015), or the use of cryo-EM data (de Vries et al.
2016).
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1.4.4. Protein-protein docking benchmarks and
datasets

In order to properly evaluate the performance of the different
protein-protein docking methods in the same conditions, a
common reference benchmark is ideally needed. While several
collections of protein-protein complex structures have been
reported by different groups, the most popular benchmark for
protein-protein docking is the one developed by Weng's group
(Chen et al. 2003). The first version of the benchmark included
57 test cases where the structure of the complex and that of the
unbound partners were known. The benchmark has been
periodically updated (Mintseris et al. 2005; Hwang et al. 2008,
2010), regarding the number and the variability of the different
cases (176 in the version 4.0). The version 5.0 of the protein-
protein docking benchmark includes the second version of the
affinity benchmark (Kastritis et al. 2011), which contains the
dissociation constant for a total number of 179 entries out of 230
non-redundant, high-quality structures of protein—protein

complexes (Vreven et al. 2015).

DOCKGROUND (Douguet et al. 2006, Gao et al. 2007) is
another important resource for the development and optimization
of protein docking methods. This database is formed by protein-
protein complex structures from the PDB, and is regularly
updated. In its first release included a comprehensive collection

of co-crystallized (bound-bound) protein-protein complexes, but
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at this time it offers information about unbound models and decoy

sets too.

Other valuable sets of benchmark data come from false positive
decoys generated by ZDOCK and ClusPro (Liu et al. 2008);
(Douguet et al. 2006; Kirys et al. 2015), flexible docking decoy
sets (Launay and Simonson 2011), low-homology models
(Kundrotas et al. 2011); (Anishchanka et al. 2014) or SKEMPI, a
database containing data on the changes in thermodynamic
parameters and/or kinetic rate constants upon more than 3,000
mutations for protein-protein interactions of which at least one co-
crystallized complex structure has been solved and is available in
the PDB (Moal and Fernandez-Recio 2012).

1.4.5. Validation of protein-protein complex
structure prediction methods: the CAPRI
community experiment

Inspired by the CASP community experiment in protein structure
prediction (Lattman 1995), the Critical Assessment of PRedicted
Interactions (CAPRI) established in 2001, was designed to test
the performance of docking algorithms (Janin 2002; Janin et al.
2003). CAPRI has played an important role in advancing the field
of protein complex modeling, just as CASP fostered the
development of methods for protein structure prediction. The
initial goals of the CAPRI experiment were focused on protein-

protein docking and scoring procedures, but in the most recent
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editions new challenges were added, such as modeling protein-
peptide and protein-nucleic acids interactions (Pallara et al.
2013), estimating the binding affinity of protein-protein complexes
(Lensink and Wodak 2013; Moretti et al. 2013), or predicting the
position of water molecules at protein-protein interfaces (Lensink
et al. 2014).

The CAPRI experiment allows the comparison of different
docking methods on a set of previously chosen targets by the
organizers, which consists on experimentally determined
complex structures that are not yet publicly available. There are
usually two participation modalities for each target: predictors
and scorers. For each CAPRI round, which can have multiple
targets, predictor groups are requested to submit a total of ten
complex models starting from the separately crystallized
structures of the complex components, or from homologous
templates supplied by the CAPRI organizers. In a second step,
the scorer groups are invited to evaluate a common pool of
docking models gathered from the contributions of the uploader
groups, and to submit their ten best ranked selected models from
the uploaders pool. At the end of each round, the ten models
submitted by each of the predictor and scorer groups are
evaluated by the organizers, based on the fraction of native
contacts, ligand and interface RMSD with respect to the real (and
confidential) complex structure (Lensink et al. 2007) and (Lensink
and Wodak 2010). The evaluation criteria have been revisited
and slightly adapted to the assessment of protein-peptide
interactions (Lensink and Wodak 2013).
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Since 2001, five different CAPRI editions have been completed,
corresponding to 35 prediction rounds, with a total of more than
100 targets. During this time, the community has gathered in five
meetings with the sixth one planned to be celebrated in April
2016. The analyses of the docking and prediction results
obtained in all the previous CAPRI editions (Méndez et al. 2003;
Méndez et al. 2005; Lensink et al. 2007; Lensink and Wodak
2010, 2013) offer a useful resource to track the evolution of the
protein docking field and an important tool for anticipating the
future challenges in modeling of protein-protein interactions
(Lensink and Wodak 2014).

Moreover, the CASP and CAPRI communities established
closing ties in the summer of 2014 with the first joint CASP-
CAPRI round with the final goal of better integrating the different
computational approaches for modeling macromolecular

assemblies and their building blocks (Lensink et al. 2016).

1.5. Current limitations of computational
methods for protein-protein complex
prediction

In spite of the advances, structural modeling of protein-protein
complexes by docking is still a very challenging problem. The
overall performance of the different existing docking methods in

the last CAPRI evaluated round (5th edition) corroborates this
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fact (Lensink and Wodak 2013). In total, 64 groups including 12
web-servers participated in at least one of the ten targets. Of
these groups, 38 (including eight servers) submitted a model
ranked acceptable or higher for at least one target (Lensink and
Wodak 2013). Many of the successful groups/servers were
different from those submitting correct predictions in the previous
assessment, which reflects the rapid evolution of the docking
community (Lensink and Wodak 2013). Our group performed
within the top five among a total of 63 participants in both
predictor and scorer categories. Top performing docking methods
were HADDOCK, SwarmDock, GRAMM, ClusPro and pyDock in
descending order, which submitted high-accuracy models only
for 20% of the cases, but medium-accuracy models for 60% of
the cases and acceptable models for 90% of the cases. This
clearly shows that there are still many limitations in current

docking methods that should be addressed.

1.5.1. Conceptual challenges in ab initio docking
Flexibility

The dynamic nature of proteins is undeniable, and can be
described at different structural levels (atomic vibration, local
movements, domain motions, global rearrangements, etc.),
covering an extensive spectrum of amplitudes and energies as
well as a huge time-scale range. In this fashion, from the fastest
to the slowest motions one can find covalent bond vibrations
occurring in the scale of femtoseconds, side chain rotations or

loop flips usually on the pico to nanosecond timescale and large
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domain motions, macromolecular associations or protein folding
that range from milliseconds to seconds and even minutes or

hours.

Capturing this inherent flexibility in computational protein-protein
docking models is still an ongoing and very active field of
research in the discipline. As described in section 1.4.3, the
different docking methods incorporate flexibility at different points
of the simulation, during the sampling or in the refinement steps.
While some methods use soft potentials to model the classic
lock-and-key scenario (Fig 1a), other use flexible refinement or
normal modes analysis to model induced fit (Fig 1b), and others
precomputed ensembles to model conformational selection

mechanism (Fig 1¢, 1d).

Multi-protein complexes

Many important biological processes in cells are mediated by
assemblies of ten or more proteins (Alberts 1998) which makes
multi-protein complexes prediction of vital importance if we want
to fully understand protein-protein interactions. Multimeric
complex prediction is a hard problem due to its combinatorial
complexity nature. Some advances have been made in the
recent years: Multi-LZerD (Esquivel-Rodriguez et al. 2012) takes
into account the pairwise interactions already calculated in order
to estimate the final multimeric complex, CombDock performs the
search in a similar fashion too (Inbar et al. 2005). Some

assumptions can simplify the combinatorial problem when
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complex symmetry or stoichiometry is known in advance:
triangular trimers (Popov et al. 2014) or other types of symmetry
(Schneidman-Duhovny et al. 2005; Pierce et al. 2005). Some
other approaches use available experimental data to restraint the
combinatorial search, as in DockStar (Amir et al. 2015). The
limitations on docking methods for multimeric complex prediction
are still a major drawback, and actually, dealing with biological
real cases still provides very poor predictive results (Lensink et
al. 2016).
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Figure 5. Description of the binding process: (a) the classical lock-and-
key model (b) the classical induced-fit (c) the classical conformational-
selection model (d) the conformational-selection-plus-induce-fit model.
From (Csermely et al., 2010).
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Docking of models

For the majority of complexes for which protein-protein docking
can be applied (Interactome3D, April 2016) the structure of one
or both interacting partners is not available and therefore need to
be modelled. Dealing with modelled structures for one or both
partners in protein-protein docking adds an extra difficulty to the
problem (Kundrotas et al. 2011; Anishchanka et al. 2014). When
suitable templates can be found for the modeled protein, i.e.
close in sequence identity and high coverage, docking results are
similar to those when using x-ray structures. However, when only
remote homologues can be found for the interacting proteins,
results tend to be very poor as the CAPRI experiment has shown
(Lensink et al. 2016).

Low-affinity binding

Transient interactions, which involve protein interactions that are
formed and broken easily, are important in many aspects of
cellular function (Perkins et al. 2010), especially in the regulation
of biochemical pathways and signaling cascades in the cells
(Acuner Ozbabacan et al. 2011). Low-affinity binders suppose a
huge challenge for docking scoring functions. In these scenarios
of encounter complexes or transient complexes, the ability to
capture the correct binding pose decreases dramatically as has
been reported in the literature (Kastritis and Bonvin 2010) as well
as in past CAPRI editions (Lensink and Wodak 2013). External

experimental information such as SAXS, as well as new scoring
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functions that take into account the nature of these interactions
(Joachimiak et al. 2006; Tobi 2010) can be extremely useful in

order to overcome this challenge.

1.56.2. Technical challenges in computational
docking

In addition to the above described conceptual challenges in
docking, there are technical limitations that need to be addressed
before efficient application of docking methods to interactomic

scale.

High-performance computing architectures

Computers are general purpose programmable machines based
on integrated circuits that can perform arithmetic and logical
operations automatically. A computer consists of at least one
processing element, typically a central processing unit (CPU),
and some sort of memory bank to store and retrieve information.
The processing element performs arithmetic and logic operations
and the sequence of operations is defined by the nature of the
instruction and the information stored in memory. Many
techniques can be applied to increase the performance of a
computer, for example using multiple layers of cache memory,
different CPU technology (vector and superscalar processors,

graphical process units, etc.) or even programmable hardware
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(FPGA, etc.). A supercomputer is a computer with a high-level
computational capacity compared to a general-purpose
computers and their performance is measured in floating-point
operations per second (FLOPS) instead of million instructions per
second (MIPS). Commonly, they are highly-sophisticated
systems with large arrays of computing nodes interconnected by
fast multi-level network lines and with access to massive storage
systems. Not only the hardware is sophisticated, but software
and operating systems have to be adapted to the
supercomputing environment. Their architecture has evolved
enormously since the apparition of the Cray-1 in 1976, one of the
first and most successfully commercial supercomputers, with 160
MFLOPS. Nowadays, it is common to have hybrid GPU-CPU
solutions coexisting in the same system, as the currently most
powerful supercomputer in the world, the Tianhe-2 (MilkyWay-2)
located at the National Super Computer Center in the Chinese
city of Guangzhou, which offers a performance of up to 33,862.7
TFLOPS with a total number of cores of 3,120,000
(http://www.top500.org/lists/2015/11/).

Supercomputers are extremely useful tools in research and have
fostered many recent advances in many disciplines, but they
suffer from important drawbacks. First, the energetic
consumption of the power and cooling system is simply
exorbitant: Tianhe-2 has a power consumption of 17,808 KWh.
Initiatives in this context have been proposed to help overcoming
this problem such as the MontBlanc project (Rajovic et al. 2013)

and the creation of a new list of the top 500 green

33



supercomputers (http://www.green500.org/). Second,
supercomputers are complex and very expensive systems that
require a very skilled team to operate them, therefore they are
not publicly accessible. In that sense, many official initiatives to
open HPC infrastructures to researchers have been fostered,
such as the PRACE program in the European Union
(http://www.prace-ri.eu/). Finally, an extensive debate over the
necessity of exascale machines (capable to deliver up to the
exaFLOP) has involved the research community in the past
years. Despite some projects as the Human Brain Project
(Markram and Henry 2012) would benefit from exascale
machines, many people in the community stand up for building
more regular supercomputing facilities instead of defraying the

cost of such a complex system.

Parallelization and optimization to HPC architectures

In computer clusters and supercomputer architectures that are
composed of multiple cores or nodes, parallelization techniques
have to be applied to the software in order to take advantage of
the hardware. Parallelization is the ability of a given program to
perform multiple calculations at the same time. Parallelization
can be implemented at hardware level (multiple instructions
being executed at the same time), but the term is usually applied

to the software context.
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The most basic form of parallelism, embarrassingly parallel, is
usually implemented at process level and does not require of
communication between execution threads. When the different
threads are in need of communication, synchronization and/or
information exchange, there exist two main approaches
depending on how memory can be accessed: shared or
distributed memory. In shared memory, the most popular libraries
are POSIX Threads (Pthreads,
http://pubs.opengroup.org/onlinepubs/9699919799/mindex.html)

and OpenMP (http://openmp.org). In distributed memory, MPI
(Message Passing Interface) is the most popular. Both
techniques can be hybridized, the distributed shared memory

paradigm.

Software can be parallelized at different levels depending on the
characteristics of the different code parts. The best theoretical
speedup is defined by the Amdahl’s law, despite Gustafson’s law
can offer a more realistic approach (McCool et al. 2012) in the
parallel context. In any case, parallelization techniques can not
be applied to any software and its an ongoing and exciting field of

research.

Technical limitations in computational docking

The computational cost of protein-protein docking predictions
varies depending on the paradigm considered. In rigid-body

docking, as mentioned in previous sections, the sampling in the
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six degrees of freedom (position and orientation of the ligand
respecting to the receptor protein) can be performed with
techniques borrowed from other computational problems such as
computer vision or signal processing. New computational
advances on FFT-based and patch recognition techniques have
been widely explored by many docking methods. For instance,
Hex (Ritchie and Venkatraman 2010) and ClusPro (Landaverde
and Herbordt 2014) make use of GPU accelerators, FTDock
(Gabb et al. 1997) has been successfully ported to MPI
(Jiménez-Garcia et al. 2013), FFT-based methods haven been
implemented in FPGA architectures (Varma et al. 2013, 2016),
and in other more exotic architectures such as the Cell BE
processor (Pons et al. 2012). All of these different approaches
are perfect candidates for running in HPC architectures in order
to perform large-scale experiments, for instance to provide
docking models for entire interactomes (Mosca et al. 2009).
However, despite the technical advances in computational
speed, the rigid-body paradigm suffers from several drawbacks,

the most important is the explicit treatment of flexibility.

When flexibility is explicitly considered, the number of degrees of
freedom of the model increases linearly with the number of
atoms, in full-atom representation, or with the number or residues
or beans in other coarse-grained models. Internal coordinates
models may capture the dynamics of the protein in a more
efficient way in terms of computational cost, but the description of
the dynamics in a physically accurate way is still a challenging

task. Ideally, molecular dynamics could describe complex
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dynamics, but it is not feasible with the actual computational
capabilities in a reasonable time, even in the largest HPC
facilities. These limitations encourage new developments in the
treatment of flexibility for large sets of protein complexes, and

their optimization for HPC architectures.
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1.6. Research software quality

Reproducibility, one of the pillars of the scientific method, is the
ability of a researcher of duplicating an existing experiment or a
study initially performed by other researcher. On the other hand,
repeatability is the degree of agreement of tests or
measurements on replications by the same observer in the same
conditions. As the Irish chemist Robert Boyle argued in the 17th
century, by repeating the same experiment over and over again
the certainty of fact will emerge (Hannaway et al. 1988). Although
these important concepts were developed while most of the
scientific research was done experimentally, it is important to
update them and put them in the context of the current digital era
in which a significant part of scientific research relies on

computational experiments.

Computers have proven to be essential tools for scientific
research, and the rise of computational science and the increase
of computer performance has led to impressive developments in
many scientific areas such as chemistry, materials science,
astrophysics, climate modeling or biology (Gilbert and Walter
1991; Aebersold et al. 2000; Misa and Thomas 2007). This fact
represents a paradigm shift in many scientific disciplines where
computers are now considered essential tools for collecting and
managing huge amounts of data that would be impossible to
analyze without them. The acquisition, analysis and management
of data in big international projects such as the Human Genome

Project (Lander et al. 2001) with over 3 billion base pairs, the
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SETI program, with radio signals data collected over decades
and analyzed used distributed grid resources (Anderson et al.
2002), or the Higgs boson discovery in CERN’s Large Hadron
Collider (Aad et al. 2012), 25 petabytes per year, would be simply

impossible without computers.

A computer program can be considered deterministic under
certain circumstances, if: i) it is a sequential program, that is, a
program which is executed sequentially from the beginning to the
end of the computation with no parallel threads and race
conditions, and ii) the program starts always in the same
conditions, that is, it does not use pseudorandom or random
numbers and all the variables are correctly initialized in memory.
In these conditions, we could assure the reproducibility and
repeatability of the results using the same dataset as input of the
program. However, these conditions are difficult to achieve, due
to differences in hardware (different CPU technology, possible
design bugs, etc.), operating system (different OS or even
different releases) or dependencies in the libraries. But those are
not the only drawbacks when dealing with reproducibility in
computing software. Computer programs created in the course of
research can range from single-command line scripts to multi-
gigabyte code repositories. Many scientist-created programs are
ad hoc efforts never intended for distribution or release, but very
relevant pieces of code in terms of reproducibility of the
experiments (Morin et al. 2012). In addition, common software
engineering quality practices such as testing are often ignored

during scientific software production, because they are seen as
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mere prototypes and efforts tend to be focused on more
intellectually challenging problems, or simply because

development time is easy to be underestimated.

Reproducibility in the computational scientific research has been
explored by other authors in the past. In a recent survey,
scientists from different disciplines and positions were asked for
questions such as sharing code and data, licensing the software,
etc., with interesting results from the philosophical and ethical
points of view (Stodden 2010). More recently, it was proposed a
methodology to check for reproducibility in published works with
the final purpose of improving reproducibility and detecting
factors that hinder it (Gonzalez-Barahona and Gregorio 2011). A
technological solution is developed (Hinsen and Konrad 2011)
where data, program code and presentation are stored together
in a single file which can be executed in a cross-platform fashion
thanks to the Java Virtual Machine. Madagascar (Freire et al.
2012) is an interesting resource on the top of the RSF file format
in order to encapsulate the writing process of an article in the
same platform. Other authors reviewed the problem and
proposed some common guidelines to tackle it (Kauppinen and
Espindola 2011) and entire issues have been dedicated to
reproducibility (Fomel et al. 2009). Many principles concerning
reproducibility and repeatability have been compiled and
endorsed by many researches in a manifesto

(http://sciencecodemanifesto.orq).
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Reproducibility and repeatability in the research software
development remains a hot topic as many good practices set as
a standard in the industry are not still being applied in. This gap
between industry and research justifies more work on the

problem

Fortunately, it is possible to find excellent examples of research
software produced by the scientific community. GROMACS
(Berendsen et al. 1995) is a free software package to perform
molecular dynamics. It is used by many research groups around
the world. It is a huge project in terms of lines of written code
(1,735,563 lines as of January 2016) and has many contributors:
32 official ones, with a total of 37 branches and 14,735 commits
(https://github.com/gromacs/gromacs). The project has an
exquisite documentation both for contributing and for final users
of the package, and a huge community supporting it. It is a good
example of the common good practices mentioned in the
previous sections of this article and a successfully case of study

for future projects.

Biopython (Cock et al. 2009) is a more modest project in
comparison to the GROMACS package, but it is still used and
developed by many research scientists in the bioinformatics field.
It has 104 contributors at present time, and a huge number of
commits (10,368). Tests are especially well designed and have a

good code coverage (https://github.com/biopython/biopython/).

There are other examples of excellent projects, as has been

recently reported (Baxter et al. 2006).
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2. Objectives




“Silence, | discover,

is something you can actually hear.”

Haruki Murakami, Kafka on the shore



The main purpose of this thesis is the development of
computational tools for the problem of protein-protein docking
and their optimization for high-performance computing. In the
past years, different computational protein-protein docking tools
have been developed in order to address this important problem
with deep implications in the understanding of crucial cellular
processes. In spite of the advances, there is a strong need for
new developments to address the important conceptual and
technical challenges that the field is facing. Two important
aspects are especially considered during all technical and
conceptual developments in this thesis: the final purpose of high-
performance computing, and having in mind a series of best-
practices guidelines for scientific software development. In this

context, this thesis has the following specific objectives:

1. Optimization of pyDock docking method for high-
performance computing architectures, in order to facilitate

docking at interactome level, and efficient benchmarking.

2. Implementation of web applications for the analysis of
protein-protein interactions: docking prediction,
computational characterization of protein interfaces and
integration of SAXS data.

3. Validation of the developed tools in the CAPRI community
experiment, as well as in a new update of the Protein-

Protein Docking Benchmark.
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4. Compilation of the first worldwide protein-RNA docking
benchmark for the evaluation of protein-RNA docking

methods.

5. Development of a new protein-protein  docking
methodology for efficient inclusion of flexibility and multi-

scale framework.
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3. Articles




“Equipped with his five senses,
man explores the universe around him

and calls the adventure Science.”

Edwin Powell Hubble



3.1 Optimization of complex modeling
tools for HPC architectures and
implementation in web applications

Web applications are especially useful for the biology community.
First, it is the easiest way to encapsulate a workflow formed by
different computational tools and to make it ready for non-expert
users. The research groups that make their computational tools
available to the community have a centralized way to track the
changes on the software and a direct feedback from their users
about the usefulness of their protocols. Second, it allows the
opening of many protocols to the general public, without making
distinction on the software or the resources required to use it,
e.g. many potential users could not have access to HPC
platforms to run a specific software. Finally, many protocols might
be integrated in meta servers or databases which incorporate

knowledge and capabilities of heterogeneous online tools.

Three different works are presented in this section. The first
manuscript, describes a web server for protein-protein complex
prediction using the pyDock (Cheng et al. 2007) protocol
developed in our group. The second manuscript presents the
CCharPPIl web server, an online tool that helps characterizing
protein-protein interfaces by using up to 108 different energetic
descriptors. These descriptors come from the public domain
distributed software or have been be re-implemented in this web
application. They can be applied to characterize experimental
complex structures, but can be also a valuable tool to score

docking models. The third manuscript describes a public web
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server pyDockSAXS to integrate experimental SAXS data into

our protein-protein docking protocol, pyDock (Pons et al. 2010).

Manuscripts presented in this section:

Jiménez-Garcia B., Pons C., and Fernandez-Recio J. (2013)
“pyDockWEB: A Web Server for Rigid-Body Protein-Protein
Docking Using Electrostatics and Desolvation Scoring.”
Bioinformatics 29 (13): 1698-99.

Moal IH., Jiménez-Garcia B., and Fernandez-Recio J. (2015)

“CCharPPl Web Server: Computational Characterization of
Protein-Protein Interactions from Structure.” Bioinformatics
31 (1): 123-25.

Jiménez-Garcia B., Pons C., Svergun DI., Bernadé P., and
Fernandez-Recio J. (2015) “pyDockSAXS: Protein-Protein
Complex Structure by SAXS and Computational Docking.”
Nucleic Acids Research 43 (W1): W356-61.
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3.1.1. pyDockWEB: A Web Server for Rigid-Body
Protein-Protein Docking Using
Electrostatics and Desolvation Scoring

Brian Jiménez-Garcia1, Carles Pons1, and Juan Fernandez-
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ABSTRACT

Summary: pyDockWEB is a web server for the rigid-body docking
prediction of protein-protein complex structures using a new version
of the pyDock scoring algorithm. We use here a new custom parallel
FTDock implementation, with adjusted grid size for optimal FFT cal-
culations, and a new version of pyDock, which dramatically speeds up
calculations while keeping the same predictive accuracy. Given the 3D
coordinates of two interacting proteins, pyDockWEB returns the best
docking orientations as scored mainly by electrostatics and desolva-
tion energy.

Availability and i 1tation: The server does not require regis-
tration by the user and is freely accessible for academics at http:/life.
bsc.es/serviet/pydock
Contact: juanf@bsc.es

y infor : Supplementary data are available at

Bioinformatics online.

Received on January 23, 2013; revised on April 8, 2013; accepted on
May 2, 2013

1 INTRODUCTION

Protein—protein interactions mediate most cellular functions;
thus, a detailed description of the association process at molecu-
lar level is essential to comprehend the fundamental processes
that sustain life. In such line, protein-protein docking tools
aim to identify the native binding mode between two proteins
(Ritchie, 2008). Such predictions are required to complement
experimental techniques that cannot provide structural informa-
tion at a proteomics scale given their current technical limita-
tions. pyDock (Cheng et al., 2007) is a rigid-body docking
method in which sampling is performed by means of FTDock
(Gabb et al., 1997) and scoring implements an efficient empirical
potential, composed of electrostatics and desolvation terms, with
a limited contribution from van der Waals energy. The method
has been successfully tested in CAPRI (Grosdidier ez al., 2007;
Mendez et al., 2003; Pons et al., 2010a). Here, we present
pyDockWEB server, a new fast implementation that allows
easy access to non-expert users to state-of-the-art docking
predictions.

*To whom correspondence should be addressed.

2 pyDockWEB SERVER

pyDockWEB server is a web application for the use of the pro-
tein—protein docking and scoring program pyDock. Users can
easily send pyDock jobs to be executed in a five-step process via
a user-friendly front-end (Fig. 1). In the first step, users have to
introduce a project name and a notification email address. In the
second step, the scoring algorithm is selected. In the third step,
users can either upload their protein coordinate files or indicate
the PDB code, in which case, PDB files will be automatically
downloaded from RCSB Protein Data Bank. In both cases,
PDB files are automatically parsed to select available receptor
and ligand chains. An option to automatically set-up a docking
job with example PDB files is also available. In the fourth step,
users may specify optional distance restraints, which will be com-
puted using pyDockRST (Chelliah e7 al., 2006) module. Finally,
in the fifth step, users will double-check whether data provided
are correct and submit a docking job to the server queues. After
job submission, user is redirected to a web page where project
status is automatically updated and result files can be down-
loaded after computation is finished. In this web page, the top
10 models scored by pyDock are displayed using Jmol (http://
jmol.sourceforge.net/).

pyDockWEB is technically constituted by three different com-
ponents: a web front-end, pydockd, a daemon in charge of mana-
ging pyDock executions and a data storage system. The web
front-end has been implemented using JSF (Java Server Faces,
a Java-based web application framework), Ajax4sf (an open
source framework that adds Ajax capabilities to JSF framework)
and JSP (Java Server Pages) technologies. Data storage system
has been implemented via one of the most popular choices in web
applications databases, MySQL (http://www.mysgl.com). Data
tables have been designed to efficiently store the relevant job
information and to gather a few statistics about usage and com-
putation and queued times. The controller, pydockd, is an appli-
cation written in Python version 2.7, which periodically polls job
requests created from the web front-end and stored in the
MySQL database and submits them as pyDock job instances
to the Slurm batch queuing system (https://computing.llnl.gov/
linux/slurm/slurm.html).

pyDockWEB uses an optimized pyDock version 3, which also
includes a custom parallel version of FTDock, implemented
using the MPI (Message Passing Interface) library MPICH2
(Bouteiller ez al., 2003) to generate docking poses, which is cap-
able to scale to multiple processors/cores. Another optimization
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pyDockWEB

pyDockWeb Workflow

Default

FTDock sampling

«fedock file: best 10,000 conformations
.rot file: FTDock rotations expressed
in Euler angles

pyDock energy scoring

.ene file: Table with the top 10,000
conformations re-scored using pyDock

energy 1
if restraints
|
R P
restraints

Fig. 1. pyDockWEB workflow

has been implemented, as follows. FTDock makes use of the
FFTW 2.1.5 (Frigo and Johnson, 1998) library to perform a
global scan of translational and rotational space having the
two molecules discretized onto orthogonal grids. The size of
the transform in the FFTW scope is proportional to the
FTDock grid size in number of cells, which was automatically
calculated from the single grid unit size and the size of the pro-
teins. However, according to FFTW’s documentation, FFTW
algorithms are optimal for sizes that follow Equation (1),

n=20.3".5.79.11°. 13/ (1)

where e+ fis either 0 or 1, and the other exponents are arbitrary.
Other sizes are calculated by FFTW using slower algorithms.
Therefore, we have adjusted the FTDock grid size, n, to follow
Equation (1). This grid size optimization has been implemented
in the new custom parallel FTDock version. Supplementary
Figure S1 shows the difference of execution times between the
original and the grid optimized FTDock versions, as well as the
stability in terms of time of the parallel version using the grid size
optimization.

The server runs on a multi-user cluster with two nodes. Each
node has 16 cores (4 Intel Xeon E5620 Quad Core) at 2.4 GHz.
Two cores are reserved for MySQL, JBoss and interactive shells.
Physical memory is 65GB, with 11 TB of total available disk
space.

3 BENCHMARKING AND DISCUSSION

The pyDockWEB server provides a user-friendly web front-end
to allow the academic community to use the pyDock rigid-body
docking and scoring method. The user is notified on completion
of the execution and is able to visualize online the top 10 models
of the predicted complex using Jmol. We have evaluated the

performance of pyDockWEB server on the standard protein—
protein docking benchmark 4.0 (Hwang er al., 2010). The quality
of the results in terms of generated near-native solutions (ligand
RMSD within 10A from that in the X-ray complex structure)
has not been affected by the optimization and implementation
procedure, and the top 10 success rate (i.e. number of cases with
near-native solutions within top 10 scored poses) reached 17.0%
(Supplementary Table S1), in line with previous benchmarks
(Cheng et al., 2007; Pons et al., 2010b). This performance
is comparable with other reported servers, as shown on avail-
able protein—protein targets from current CAPRI edition
(Supplementary Table S2). Interestingly, sampling with
FTDock with the new custom parallel and variable grid size
implementation achieved speed-ups of up to 181 (50 as average)
with respect to the default FTDock distribution, whereas the
scoring process based on the new pyDock version 3 achieved
speed-ups of up to 40 (38 as average) with respect to the previ-
ously available version (Cheng ez al., 2007).

Additional pyDock modules and new developments are
planned to be implemented in pyDockWEB in the future:
patch  prediction (pyDockNIP), optimal docking area
(pyDockODA), domain-domain assembly (pyDockTET) and
SIPPER scoring energy (pyDockSIPPER).
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Fig. S.1 - Execution times for the different versions of FTDock.

The execution times for the final version of FTDock used in
pyDockWEB server, which includes the grid optimization and the
parallel implementation, is shown in orange. For comparison, the
original (blue) and grid optimized (green) versions of FTDock are

also shown.

55



Table S.1: Summary of the predictor results for the servers
participating in CAPRI who obtained at least one acceptable
solution for targets 46, 47, 50 or 58. The quality of the predictions
has been calculated in basis to (Mendez et al., 2003). “*
indicates that at least one of the submitted predictions was in the
acceptable range, “**” indicates that at least one of the submitted
predictions was of medium range, “**” indicates that at least one
prediction was of high accuracy (none of the servers predicted a

“w

high accuracy structure), means for not even an acceptable
solution found and “N/A” means for data not available (the server
did not participate on that target). In the case of pyDockWEB, the
predictions were calculated using the public PDB reference and
the number of predictions found in top 10 is also indicated.
“Predictor summary” field indicates the sum of acceptable,
medium and high accuracy. Targets T48, T49, T53 and T54 have
not been considered because PDB reference is not publicly
available. Targets T51, T55, T56 and T57 have not been tested
on pyDockWEB because the server does not offer support for
multi-docking (T51), affinity prediction (T55, T56) nor
polysaccharide structures (T57) at this time. For Target T58,
SAXS experimental data was not used. Provided restraint data

for targets T47 and T58 was used.
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Predictor T46 T47 T50 T58 Predictor

server summary
ClusPro - - o R 171 *
HADDOCK  ~* ** - - 2/1*+
1
SwarmDock N/A N/A N/A ** 1/1*
DOCKI/PIE - - % - 171
pyDockWEB - 1% 3* 1% + 1* 21*1 wx

Table S.2: Protein-Protein Benchmark 4.0 results for
pyDockWEB server. First column indicates the complex, second
column indicates the best ranked solution over 10000
conformations scored by pyDockWEB with L-RMSD < 10.0A and
the third column indicates the computation time in minutes

(running time + queued time).

Complex Best ranked L-RMSD Computation time
<10.0A (min)

1A2K 104 38.9

1ACB 385 21.8

1AHW 3718 78.5
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1AK4 2099 27.2
1AKJ 453 65
1ATN 2806 54.8
1AVX 90 38.6
1AY7 18 13.7
1AZS 33 120
1B6C 2 35.9
1BGX - 136.4
1BJ1 - 59.5
1BKD 498 134.7
1BUH 70 39.9
1BVK 24 314
1BVN 2 44
1CGl 10 19.1
1CLV 4 36.8
1D6R 1348 18.8
1DE4 - 220.8
1DFJ 416 45.9
1DQJ 324 46.2
1E4K 1066 76
1E6E 3 44
1E6J 28 424
1E96 1 333
1EAW 553 205
1EER 1707 80.7
1EFN 230 11.1
TEWY 8 29.6
1EZU 1946 415
1F34 208 38.6
1F51 6 46.6
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1F6M 1537 39.7
1FAK 5333 89.1
1FC2 - 42.9
1FCC 453 45.4
1FFW 68 13.7
1FLE 2 22.7
1FQ1 3939 47.6
1FQJ 316 48.2
1FSK 3 48.7
1GCQ 1222 28.2
1GHQ - 46.2
1GL1 54 23.4
1GLA 49 73.8
1GP2 - 71.4
1GPW 1 39.8
1GRN 830 43.6
1GXD - 111.2
TH1V - 207.8
1HOD 27 243
1HCF 5003 32.5
THEA 4179 35.6
1HES 2858 242.5
THIA 24 18.9
112M - 49.2
114D - 292
119R 1359 109.2
11B1 - 95.8
1IBR - 75.1
11JK 1357 92.2
11QD 10 60.2
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1IRA - 41.9
1J2J 24 221
1JIW 3022 51.3
1JK9 321 29.8
1JMO 5253 87.2
1JPS 550 72.6
1JTG 1 47.3
1JWH - 131.6
1JZD 256 63.1
1K4C - 89.7
1K5D 345 72.8
1K74 12 52.5
1KAC 1564 27.3
1KKL 47 56.9
1KLU 1479 85.4
1KTZ 3483 23.6
TKXP 22 88.1
1KXQ 237 50.5
1LFD 480 23.4
1M10 79 49.6
TMAH 28 48.8
1MLO 108 72.4
1MLC 15 61.2
1TMQ8 - 42.4
1N2C - 333.6
1N8O 63 31.4
1NCA 5 110.9
1NSN 381 47.4
TNW9 13 31.4
10C0 85 33.9
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10FU - 47.5
10PH 19 56.3
10YV 51 28.6
1PPE 3 14.2
1PVH 972 51.1
1PXV 2100 30.3
1QA9 7624 110.2
1QFW 174 46
1ROR 5 22
1R6Q 81 37.3
1R88 - 42.2
1RLB 3188 53.7
1RVG6 1 26.1
181Q 1207 16
1SBB 221 51.4
18YX 629 17
1T6B 30 102.3
1TMQ 1 54.2
1UDI 1 22.8
1US7 1078 28.7
1VFB 30 30
TWDW - 316.3
TWEJ 228 39.6
Twa1 2380 58.5
1XD3 1 19.1
1XQS 14 59.6
1XUA1 12 39.1
1Y64 - 335.6
1YVB 26 46.5
120K 10 18.6
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1Z5Y 19 21.9
1ZHH - 52.7
1ZHI 3 36.5
1ZLI - 53.4
1ZMa4 - 384.9
2A5T 175 49.4
2A9K 323 40.5
2ABZ 5 30.4
2AJF 1737 74.6
2AYO 23 51.7
2B42 2 47.7
2B4J 1622 30.7
2BTF 33 43.9
2C0L 3786 36.3
2CFH 2144 31.9
2FD6 22 72.8
2FJU - 93.7
2G77 13 50.4
2H7V - 58.7
2HLE 13 32
2HMI - 271.2
2HQS 31 43.8
2HRK 17 27.8
2125 44 235
219B 662 37.8
2IDO 101 19.4
2J0T 2534 237
2J7P - 70.4
2JEL 23 575
2MTA 73 50.9
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2NZ8 8 50.1
203B 349 31
208V 26 24.2
200B 110 10.5
200R - 112.8
2073 5 39.2
20UL 1 318
20ZA - 59.3
2PCC 7 44.4
2SIC 12 30.9
2SNI 4 26.3
20UY 4206 19.2
2VBD 3 56.1
2VIS - 234.4
2Z0E - 50
3BP8 499 95.1
3CPH 1012 56.1
3D5S 164 29.6
35GQ 156 14
4CPA 11 26
7CEI 18 15.8
9QFW - 46.3
BOYV - 35.4
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ABSTRACT

Summary: The atomic structures of protein-protein interactions are
central to understanding their role in biological systems, and a wide
variety of biophysical functions and potentials have been developed
for their characterization and the construction of predictive models.
These tools are scattered across a multitude of stand-alone programs,
and are often available only as model parameters requiring reimple-
mentation. This acts as a significant barrier to their widespread adop-
tion. CCharPPI integrates many of these tools into a single web server.
It calculates up to 108 parameters, including models of electrostatics,
desolvation and hydrogen bonding, as well as interface packing and
complementarity scores, empirical potentials at various resolutions,
docking potentials and composite scoring functions.

Availability and implementation: The server does not require regis-
tration by the user and is freely available for non-commercial academic
use at http://life.bsc.es/pid/ccharppi

Contact: juanf@bsc.com

Received on June 5, 2014; revised on August 3, 2014; accepted on
August 28, 2014

1 INTRODUCTION

Protein—protein interactions are involved in most cell processes,
and their structural and functional annotation is essential to
understand biological and pathological phenomena and to de-
velop new therapeutic approaches. The increasing volume of ex-
perimental data on protein—protein interactions at the molecular
level offers many opportunities for functional characterization
and the construction of predictive models based on properties
arising from structure, such as interface geometry, hydrogen
bonding, electrostatics and desolvation energy, which act as an
intermediate layer between structure and function (Chothia and
Janin, 1975; Jones and Thornton, 1997). Indeed, the selection
and combination of structure-based potentials within a learning
framework have been used for many tasks, often beyond their
original development purpose, such as the prediction of binding
affinity (Moal er al., 2011), kinetics (Moal and Bates, 2012),
mutational effects (Agius er al., 2013; Moretti et al., 2013;
Pallara et al., 2013), interface design (Fleishman et al., 2011;
Yu et al., 2012), protein-protein docking (Moal et al., 2013b)
and the detection of hotspots (Lise ez al., 2009; Zhu and Mitchell

*To whom correspondence should be addressed.
"The authors wish it be known that, in their opinion, the first two authors
should be regarded as Joint First Authors.

2011), with many further possibilities remaining to be explored
(Moal ef al., 2013a). Although many tools have been developed
to calculate structural properties, some of which are available
online (Tuncbag er al., 2009), their availability and ease of
use are an impediment, often requiring the installation of
stand-alone programs with different library dependencies, reim-
plementation of models for which only parameters are given and
reformatting of pdb files. Thus, there is a need to consolidate
these methods into a single implementation. Here, we present
CCharPPI, a web server, which gathers together a large
number of these functions, including those on which many of
our previous models were based, into a single easy-to-use
interface.

2 THE WEB SERVER

CCharPPI incorporates many parameter calculation tools into a
single web application, which is freely available for academic
non-commercial use. Up to 108 intermolecular parameters are
calculated for the input protein—protein interface/s, including 43
potential functions, which have been reimplemented (Chuang
et al., 2008; Feng et al., 2010; Lu er al., 2003; Liu and Vakser,
2011; Liu et al, 2004; Mintseris et al., 2007; Moal and
Fernandez-Recio. 2013; Pokarowski er al., 2005; Rajgaria
et al., 2008, 2006; Shen and Sali, 2006; Tobi, 2010; Tobi and
Bahar, 2006), as well as terms calculated with 11 stand-alone
programs (Feliu er al., 2011; Li and Liang, unpublished; Lu
et al., 2008; Mitra and Pal, 2010; Pierce and Weng, 2007, 2008;
Ravikant and Elber, 2010; Viswanath es al., 2013; Yang and
Zhou, 2008a,b; Zhang and Zhang, 2010; Zhou and Skolnick,
2011) and 4 packages: FireDock (Andrusier er al., 2007),
PyRosetta (Chaudhury et al., 2010), SIPPER (Pons et al.,
2011) and PyDock (Cheng ef al., 2007). A detailed list of indi-
vidual parameters is given online (http://life.bsc.es/pid/ccharppi/
info/faq_and_help#descriptors). Users can easily calculate de-
scriptors of interest using a clear workflow. There are three dif-
ferent input sources: a protein databank ID code for automatic
retrieval, an uploaded complex in PDB format, or a compressed
batch job file for analysing multiple interfaces, for instance, those
derived from docking predictions. The web front end acts as user
input source and makes results available for display and down-
load. The back end polls for queued projects and schedules jobs
for parallel execution. The distribution of descriptor values can
be visualized by clicking the descriptor name on the results page.
For comparison, values are shown against a background distri-
bution pre-calculated using a set of diverse non-redundant

© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 123
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complexes of known affinity (Kastritis es al., 2011), with the
relationship between affinity values and the pre-calculated de-
scriptor values indicated by a scatter plot. Two pre-calculated
datasets are available from the website. The first consists of the
structural affinity benchmark (Kastritis ef al., 2011), a set of 144
complexes with experimentally determined affinity. The second
consists of 157 wild-type complexes and 2731 unique mutations
in the SKEMPI database (Moal and Fernandez-Recio, 2012), as
modelled using FoldX (Guerois et al., 2002). Computational
time for calculating all descriptors is typically <5 min and took
<15 min for the largest complex tested (the FAB/influenza haem-
agglutinin, PDBid 2VIS). Calculations are quicker when exe-
cuted in parallel using the batch mode, with the 157 wild-type
and 2731 unique mutants in the SKEMPI set taking 18h to
complete, and the 144 complexes in the structural affinity bench-
mark completing in 1h 20 min. The server has been tested on
major browser for MacOS, Ubuntu 12.4, Windows 7 and
Windows 8.

3 CONCLUSIONS

In conclusion, we have brought together many different methods
for characterizing protein—protein interactions, and provide pre-
calculated descriptors for two datasets, one of which is also used
to provide a visual comparison of uploaded complexes with com-
plexes of known affinity. The ease with which these descriptors
can be calculated can accelerate the prototyping of reproducible
predictive models, allow users to mix and match different func-
tional forms to model physical phenomena, find new terms for
their scoring functions and characterize their complexes of inter-
est. For researchers interested in local execution or incorporation
into their own software, all scripts and code are available on
request. We intent to expand the pre-calculated datasets, as
well as the features as new methods become available.
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ABSTRACT

Structural characterization of protein—protein inter-
actions at molecular level is essential to under-
stand biological processes and identify new ther-
apeutic opportunities. However, atomic resolution
structural techniques cannot keep pace with current
advances in interactomics. Low-resolution structural
techniques, such as small-angle X-ray scattering
(SAXS), can be applied at larger scale, but they miss
atomic details. For efficient application to protein—
protein complexes, low-resolution information can
be combined with theoretical methods that provide
energetic description and atomic details of the in-
teractions. Here we present the pyDockSAXS web
server (http:/life.bsc.es/pid/pydocksaxs) that pro-
vides an automatic pipeline for modeling the struc-
ture of a protein—protein complex from SAXS data.
The method uses FTDOCK to generate rigid-body
docking models that are subsequently evaluated by a
combination of pyDock energy-based scoring func-
tion and their capacity to describe SAXS data. The
only required input files are structural models for the
interacting partners and a SAXS curve. The server
automatically provides a series of structural models
for the complex, sorted by the pyDockSAXS scoring
function. The user can also upload a previously com-
puted set of docking poses, which opens the possi-
bility to filter the docking solutions by potential in-
terface residues or symmetry restraints. The server
is freely available to all users without restriction.

INTRODUCTION

Protein—protein interactions orchestrate the vast majority
of biological processes in cell. The atomic level description
of these interactions, the so-called interactome (1), gives
access to the molecular bases of biological activity and
the eventual rational intervention for medical purposes. At
present, only a tiny fraction of complexes from the esti-
mated number of all possible protein—protein interactions
(2) have an available 3D structure due to the limitations of
high-resolution structural biology methods, such as X-ray
crystallography or nuclear magnetic resonance (NMR) (3).
Fortunately, low-resolution methods, especially small-angle
scattering (SAS), are of more general application and could
be applied in a high-throughput fashion as compared to X-
ray crystallography or NMR techniques (4-5).
Small-angle X-ray scattering (SAXS) is a powerful
methodology for the structural and dynamic characteriza-
tion of biomolecules at low resolution (6-9). Recent ad-
vances in SAXS instrumentation and the development of
software for the comprehensive interpretation of SAXS
data in terms of structure make this technique an optimal
tool to address the structural characterization of the inter-
actome. Methods based on rigid-body modeling of SAXS
data, such as SASREF (10), can generate structural mod-
els for protein—protein complexes by simultaneously fitting
multiple SAXS/SANS data using simulated annealing al-
gorithm. However, given that these methods rely exclusively
on the SAS data, the resulting models display an inher-
ent degeneracy. In addition, these techniques miss the high-
resolution information reporting on the details of inter-
molecular interactions. Therefore, other strategies are nec-
essary to incorporate the interacting surfaces of the partners
to enrich the quality of the resulting models. One such strat-
egy is the use of SAXS data in combination with advanced
computational approaches, such as protein—protein dock-
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ing, to generate meaningful models of biomolecular assem-
blies.

Several docking methods for structural prediction of
protein—protein interactions have been reported. These
methods are mostly based on rigid-body (or semi-flexible)
sampling of the interacting molecules, followed by scor-
ing and/or energy minimization (11-15). Completely auto-
matic docking can provide good models for specific protein—
protein interactions (16-20). However, the recent CAPRI
experiments (http://www.ebi.ac.uk/msd-srv/capri/) (21-25)
have highlighted the limitations of current docking ap-
proaches and the necessity of using experimental informa-
tion to help to identify the correct docking models (20,26).

Computational docking tools can be used to generate a
large number of poses that are subsequently filtered and
scored based on their capacity to describe the experimental
data. This strategy has been applied to specific cases (27—
30) and has been implemented and systematically bench-
marked in a few computational methods that combine
SAXS and docking for the structural modeling of protein—
protein complexes, such as pyDockSAXS (31), FoXSDock
(32) or HADDOCK (33). Among them, we previously re-
ported the first of such methods, pyDockSAXS (31), which
provided a 2-fold increase in the success rate for the pre-
diction of protein complexes as compared to that of the
individual approaches based on energy-based docking or
SAXS data alone (31). Here, a server that makes pydock-
SAXS available is described. This server provides compre-
hensive structural models of biomolecular assemblies using
the experimental SAXS curve and the structure of the in-
teracting partners as the only input. This strategy can be ef-
ficiently used for the high-throughput resolution of protein
complexes at large scale with SAXS data.

MATERIALS AND METHODS

The pyDockSAXS method integrates SAXS data and py-
Dock energy-based scoring (16) to determine the structure
of a protein—protein complex from its components.

This integrative method uses FTDock to generate 10 000
rigid-body docking poses, which are re-scored by a combi-
nation of pyDock energy and the x value defining the good-
ness of fit to the SAXS data computed with CRYSOL 2.8
(34):

pyDockSAXS = Epypock + We - XCRYSOL» (0]

where w, is a parameter that was previously optimized on 62
cases of the protein—protein docking benchmark 2.0, using
synthetic SAXS data obtained from the complex structures
after adding noise.

The structural modeling capabilities of the server have
been validated on 81 complexes of the Protein-Protein
Benchmark 4.0 (35) which were not present in the previ-
ous training of the scoring function, using SAXS data syn-
thetically obtained from the complex structure after adding
noise. We considered only complexes in which the molec-
ular mass did not significantly vary between the unbound
and the complex structures, as previously described (31).
Figure 1 shows the predictive success rates obtained in
this benchmark. The pyDockSAXS server identifies an ac-
ceptable docking model (i.e. with ligand RMSD < 10 A
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from the reference structure after superimposing the recep-
tor molecules) within the top 10 predictions in 25.9% of
the cases (as compared to 13.6% success rate when using
energy-based scoring alone) (Figure 1). This is a similar im-
provement as that previously reported for the stand-alone
version on the benchmark 2.0 (31). SAXS-based scoring is
sensitive to large conformational changes between the un-
bound structures (used in docking) and the bound state
(from which SAXS data are derived). Indeed, in rigid cases,
i.e. those with unbound-bound interface Ca« RMSD < 1.5
A, the pyDockSAXS server improved the top 10 success
rate up to 36.5% (as compared to 15.4% when using docking
alone). This means that in rigid cases, the SAXS-based scor-
ing is more efficient in identifying the correct docking mod-
els. On the other hand, the overall results strongly depend
on the quality of the docking poses generated by FTDock.
When considering only those rigid cases in which FTDock
is able to generate at least a near-native solution with ligand
RMSD < 5 A, the success rate for pyDockSAXS is 47.4%
(as compared to 26.3% for docking alone). This observation
suggests that future improvements in the docking algorithm
used to generate the docking poses will have a strong impact
on the predictive capabilities of the server.

We have also successfully validated the server on exper-
imental systems of interest. As an example, we have ap-
plied pyDockSAXS to rebuild the structure of the Alvinella
pompejana Cu,Zn superoxide dismutase homo-dimer (PDB
3F7L), using the X-ray coordinates of one monomer (chain
A) (36) and the experimental SAXS data deposited in Bio-
sis database (37). This complex presents a spherical shape,
which is challenging for modeling based only on SAXS data
(31). Thus, it represents an excellent case to test the robust-
ness of the method. The server finds a near-native dock-
ing solution as rank 1, and additional acceptable solutions
within the top 10 docking models. Actually, six of the top
10 docking models were within (or slightly above) accep-
tance criteria in CAPRI (Figure 2). However, the other four
docking models (not shown in Figure 2) were significantly
far from the correct orientation, which indicates that dock-
ing results in blind conditions should always be considered
with caution.

As another example, we used the pyDockSAXS server
to model the complex between the redox proteins adreno-
doxin (Adx) and cytochrome ¢ (Cc) which has been iden-
tified as a short-lived encounter complex (38). The authors
stabilized the complex by engineering both proteins in or-
der to cross-link them using two cysteine mutants: L80C
and V28C from Adx and Cec, respectively. The cross-linked
complex was structurally characterized by NMR and SAXS
(38). This is a challenging case involving expectedly weak
interaction forces given its transient nature. In this type of
cases, pyDockSAXS can be easily used to generate mod-
els compatible with the experimental SAXS profile and
energetically accurate. Using the experimental SAXS data
stored in the SASBDB repository (39), and the X-ray struc-
tures of Adx (PDB 1AYF) and Cc (PDB 2YCC), the py-
DockSAXS server generated many different docking ori-
entations. After manually filtering the results from the py-
DockSAXS server to keep only the docking poses with the
residues Adx C80 and Cc C28 within 10-A distance in or-
der to describe the cross-linked complex, a model similar
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Figure 1. Success rate for pyDockSAXS on a set of 81 cases of protein—protein docking benchmark 4.0 which were not used for training, as compared to

that of pyDock alone.

to the NMR structure (PDB 2JQR) was found within the
top 10 pyDockSAXS docking poses. The other nine of the
top 10 docking poses showed large variability in the mutual
orientation between the two molecules. Interestingly, with-
out using the SAXS data, this near-native solution would
not have been identified within the top 10 docking poses.
This example highlights the capacities of integrating SAXS
data with computational docking, and the power that addi-
tional residue-specific information has to enrich final solu-
tions. However, while pyDockSAXS provides a reduced set
of models that typically includes one or several correct solu-
tions, the existence of high-scoring incorrect models could
complicate the identification of the correct assembly.

DESCRIPTION OF THE WEB SERVER
Input

The user is requested to upload the structure files for the
two interacting proteins in the Protein Data Bank (PDB)
format (40). The choice of molecules as receptor or ligand
is arbitrary, although for the sake of efficiency it is recom-
mended to set the receptor as the largest molecule. The user
can specify the exact chains that will be included for model-
ing. Incomplete residues are rebuilt with SCWRL 3.0 (41).
At present, cofactors are not considered in the calculations
but this possibility will be implemented in future versions
of the server. In addition, the server expects a file with the
SAXS experimental curve compatible with CRYSOL soft-
ware. Thus, it should be a plain-text file where the first line
is a title ignored by the software and the following lines are
composed by three columns of numerical data separated
by blanks or commas, which represent momentum trans-
fer, scattering intensity and experimental error, respectively.
If experimental errors are not specified, they are automat-
ically estimated by CRYSOL (2% of intensity values). All
input file formats are described in the help section of the
server.

Users can customize some CRYSOL execution parame-
ters. At present, the available options for CRYSOL calcula-
tions implemented in pyDockSAXS are: (i) the use or not
of constant subtraction and (ii) to specify different angular
units of the SAXS experimental data provided. Other pa-
rameters such as the number of spherical harmonics are set
to their standard values that have been proven to provide
accurate estimation of theoretical SAXS curves.

The option of specifying a rigid-body docking set from
previous pyDockWeb (42) executions has also been imple-
mented for the convenience of advanced users. This option
allows the user to upload pre-filtered rigid-body docking
poses to be evaluated by the server. This could be used to
include residue—residue distance restraints based on bind-
ing site residues, already implemented in the general py-
DockWeb server (26), or to filter manually specific orienta-
tions of the complex by the user. This possibility is relevant
when residue-specific information is available from other
techniques, i.e. NMR, mutagenesis data or bioinformatics
tools.

Output and representation of results

After submitting the job for calculation, the user is redi-
rected to the job information and results page. This page
is unique for the job and its URL is highly recommended
to bookmark, if a contact e-mail address was not provided
by the user. The job information and results page is peri-
odically auto-refreshed to provide the user updated infor-
mation of the status of the submitted job. Once the cal-
culation has finished, the results are shown in this page.
The information displayed is (i) an energy table of the top
100 complex orientations predicted and scored by pyDock-
SAXS (including other relevant energetic terms as pyDock
scoring energy and CRYSOL x? value) and available to
download as a PDF format file (Figure 2), (i) a graphi-
cal representation of the fitting of the top 10 docking mod-
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pyDockSAXS Server Home Help Status Contact  Admin

pyDockSAXS

Protein-protein interactions using SAXS and computational docking

Job (102) information

Created on: 2015-02-04 15:14:14
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Results:

The compressed results file includes the top 100 complex PDB structures predicted by pyDockSAXS and their corresponding CRYSOL fit curves. Please, refer to the help
section for further details

Download (compressed tar.gz file):

Download the table as a PDF file
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Figure 2. Output of the pyDockSAXS server showing the results for rebuilding the dismutase oxidase homo-dimer (PDB 3F7L). Models 1 and 2 represent

near-native solutions (ligand RMSD < 10 A). Model 9 would also be acceptable by CAPRI criteria, since interface RMSD < 4 A. Other models (e.g. 4, 5,
6) have also good interface-RMSD values just above the usual acceptance cutoff.
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els to the experimental SAXS data provided and (iii) a JS-
mol (jsmol.sourceforge.net/) interactive representation of
the top 10 models predicted by the server (Figure 2). The
output of the server is also available for downloading as a
gzip (gzip.org) compressed tar file and includes all the result
files organized by folders. Those folders are (i) ‘input_data’
which include the different input files provided by the user,
(ii) ‘pydock’ with the protein—protein docking information
data generated by pyDock method, (iii) ‘fit_-topl0_SAXS’
contains the fitting files for the top 10 docking orientations
according to CRYSOL x? value and (iv) ‘top100’ folder,
containing the top 100 structures scored by pyDockSAXS
in PDB file format (the CRYSOL fit parameters are in-
cluded in the header of each structure as a ‘REMARK’ sec-
tion for user convenience). The organization and format of
the result files has been carefully optimized following the
feedback provided by community users of the server and it
is well described in the “‘FAQ and Help’ section of the server
as well as in the README.txt’ file included in the com-
pressed results.

Implementation

The implementation of the web server is based on a three-
components architecture: (i) a web front end that acts as
user input source and makes results available to display and
download when job is completed, (ii) a relational database
where the job information is stored and (iii) a back end ap-
plication which periodically polls the database for queued
user projects and schedules jobs for parallel calculation
of pyDockSAXS using the Slurm batch queuing system
(slurm.schedmd.com). The web front end has been imple-
mented using the web2py (www.web2py.com) free and open
source web framework, and has been tested in all major
modern web browsers. In addition, it adapts fluently to mo-
bile devices screens. The back end application has been writ-
ten in Python version 2.7 with the use of external libraries as
numpy and matplotlib. The relational database has been de-
signed and implemented using MySQL (www.mysql.com).
The pyDockSAXS method is part of the pyDock software
version 3 and calls internally CRYSOL software to evalu-
ate the fitness of each of the predicted protein—protein com-
plexes to the SAXS experimental data.

The server runs on a multi-user cluster with access to two
nodes composed of 16 cores (4 Intel Xeon E5620 Quad Core
at 2.4 GHz) and 32 cores (2 AMD Opteron Abu Dhabi 6376
cpus), respectively, with 11 TB of total available disk space
and 256 GB of physical memory.

CONCLUSIONS AND FUTURE DEVELOPMENT

The motivation behind the pyDockSAXS web server was
to provide access to the scientific community to the efficient
pyDockSAXS method, which integrates SAXS experimen-
tal data with pyDock protein—protein scoring energy for im-
proved structural predictions of protein—protein complexes.

The pyDockSAXS web server is an on-going project that
will implement new features according to the future scien-
tific community feedback. In the next upgrade, cofactors,
ions and other non-peptidic molecules will be able to be
considered during calculations. We also plan to implement

a filter by symmetry, for the use on homo-meric complexes,
and an extended input to analyze docking sets from differ-
ent docking methods.
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3.2 Validation and current challenges of
protein-protein docking methods

The growing interest in protein-protein interactions and the
technical advances in the computational field have fostered the
number of in silico tools developed in the past years. With the
aim of modeling protein complexes starting from the isolated
component  structures, testing and comparing these
computational methodologies have become fundamental in order
to assess their performance, identify their limitations, and
encourage new developments in the field. In this context,
community-wide experiments such as CAPRI provide a common
ground for testing the predictive capability of currently available

docking methods.

First, the performance of our pyDock protocol (Cheng et al.,
2007) on the last CAPRI round (Lensink and Wodak, 2013) will
be evaluated and discussed. Second, the participation of our
group in the special CAPRI-CASP experiment will be presented.
Third, a suitable set of protein-RNA complex structures has been
compiled in order to establish a common framework for the
evaluation of different protein-RNA interaction predicting
methods. The last manuscript describes an update of the protein-
protein docking benchmark, including new affinity data, which
has been applied to evaluate the predictive performance of our

docking tools.
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ABSTRACT

hall

In addition to protein-protein docking, this CAPRI edition included new ¢ like p ter and protein-sug;
interactions, or the prediction of binding affinities and AAG changes upon mutatum Regardmg the standard protein—protein
docking cases, our approach, mostly based on the pyDock scheme, submitted correct models as predictors and as scorers for

67% and 57% of the evaluated targets, respectively. In this edition, available information on known mterface residues hardly
made any difference for our predictions. In one of the targets, the inclusion of available experi Il-angle X-ray
scattering (SAXS) data using our pyDockSAXS approach slightly imp: d the predictions. In addition to the standard
protein—protein docking hall were proposed. One of the new problems was predicting the position of
the interface water molecules, for which we submitted models with 20% and 43% of the water-mediated native contacts
predicted as predictors and scorers, respectively. Another new problem was the prediction of protein—carbohydrate binding,
where our submitted model was very close to being acceptable. A set of targets were related to the prediction of binding
affinities, in which our pyDock scheme was able to discriminate between natural and designed complexes with area under the
curve = 83%. It was also proposed to estimate the effect of point mutations on binding affinity. Our approach, based on
machine learning methods, showed high rates of correctly classified mutations for all cases. The overall results were highly
rewarding, and show that the field is ready to move forward and face new interesting challenges in interactomics.

new ¢

Proteins 2013; 81:2192-2200.
© 2013 Wiley Periodicals, Inc.

Key words: complex structure; CAPRI; protein—protein docking; pyDock; protein—carbohydrate interactions.

INTRODUCTION complementary approach to solve the structural interactome.
The field of protein docking has experienced an explosion
in recent years, partially propelled by the CAPRI experi-
ment. Past editions showed an increasing amount of par-

ticipant groups and computational approaches, and a

One of the major challenges in structural biology is to
provide structural data for all complexes formed between
proteins and other macromolecules. Current structural
coverage of protein—protein interactions (i.e., available
experimental structures plus potential models based on

homologous complex structures) is below 4% of the esti-
mated number of possible complexes formed between
human proteins.l’2 The pace of experimental determina-
tion of complex structures is still behind the determina-
tion of individual protein structures. In addition, many
of these interactions will never be determined by X-ray
crystallography because of their transient nature. For these
reasons, computational docking methods aim to become a
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large variety of targets. We have participated in all targets
of this fifth CAPRI edition. In addition to the standard
prediction of protein—protein targets, this edition has
entered into related areas including binding affinity pre-
dictions and free energy changes upon mutation, as well
as prediction of sugar binding and interface water mole-
cules. Our overall experience has been highly rewarding
and we describe here the details of our participation and
the key factors of our success.

MATERIALS AND METHODS

Generation of rigid-body docking poses for
the predicting experiment

In all targets, we used FTDock3 with electrostatics and
0.7 A grid resolution and ZDOCK 2.14 to generate
10,000 and 2000 rigid-body docking poses, respectively,
as previously described.> For the final four targets of this
edition (T53, T54, T57, and T58) we generated an addi-
tional pool of flexible docking poses using SwarmDock.
For these runs, the standard protocol was employed,6_8
with the Dcomplex score used as the objective function,?
but without the final clustering and rescoring phase. In
T46 we generated an additional pool of 10,000 solutions
using FT'Dock without electrostatics and at lower resolu-
tion (1.2 A), as part of an old protocol used with previ-
ous targets, but these conditions were not applied for the
rest of the targets since we saw in the past that this step
was not increasing the chances of correct predictions. In
T46 and T47, we used RotBUS10 to generate 59,112 and
41,021 additional docking poses, respectively, but this
method was not used for the rest of the targets since we
previously checked that this procedure did not improve
the results. In Target T50, given the large size of 1918
HIN1 influenza virus hemagglutinin protein, we gener-
ated a total of 92,432 FTDock docking poses, increasing
the number of translations selected from each rotation
from 3 (default) to 10. Cofactors, water molecules and
solvent ions were not included in our docking
calculations.

Scoring of rigid-body docking poses for both
the predicting and the scoring experiments

We scored the docking models generated by the above
described methods with our pyDock protocol,11 based
on energy terms previously optimized for rigid-body
docking. The binding energy is basically composed of
accessible surface area-based desolvation, Coulombic
electrostatics and van der Waals energy (with a weighting
factor of 0.1 to reduce the noise of the scoring function).
Electrostatics and van der Waals were limited to *1.0
and 1.0 kcal/mol for each interatomic energy value,
respectively, to avoid excessive penalization from possible
clashes in the structures generated by the rigid-body

approach. The same protocol was used in the scoring
experiment to score all the docking models that were
proposed. We did not include van der Waals in the T46
scoring experiment, although this did not affect the
results. Cofactors, water molecules and solvent ions were
not considered for scoring.

Removal of redundant docking poses

After scoring, we eliminated redundant predictions to
increase the variability of the predictions and maximize
the success chances using a simple clustering algorithm
with a distance cutoff of 4.0 A, as previously described.12
In target T47, since the resulting solutions looked correct
[according to the available structure of a highly homolo-
gous complex with protein data bank (PDB) code
2WPT], we reduced this cutoff to 0.5 A.

Minimization of final models

The final 10 selected docking poses were minimized to
improve the quality of the docking models and reduce
the number of interatomic clashes. In the majority of the
targets we used TINKER! as previously described.12:14
In targets T53 and T54 we used CHARMM (50 steps
conjugate gradient, 500 steps adopted-basis Newton—
Raphson and 50 steps steepest decent, with the
CHARMMI19 force field).15 In target T58 we used
AMBERI0 with AMBER parm99 force field.1617 The
minimization protocol consisted of a 500-cycle steepest
descent minimization with harmonic restraints applied at
a force constant of 25 kcal/(mol~A2) to all the backbone
atoms to optimize the side chains, followed by another
500-cycle conjugate gradient minimization without
restraints. This minimization step was performed after
ranking, solely to remove clashes.

Modeling of subunits with no available
structure

For several targets, the structures of the subunits
were not available and needed to be modeled. In most
of the targets, we used Modeler 9v6 with default param-
eters!8 based on the template/s suggested by the organ-
izers or on other homologue proteins found by
BLAST!9 search. The final selected model was that with
the lowest DOPE score.20 For targets T53 and T54 we
used POPULUS (http://bmm.cancerresearchuk.org/~pop-
ulus/) with default template selection and model building
se'c'cings.z1

RESULTS AND DISCUSSION

In this CAPRI edition we submitted predictions for all
the proposed targets. Our results for the standard
protein—protein docking assessment are summarized in
Table 1. In addition, there were new challenges like the
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Table |
Results of Our pyDock Protocol for All Protein-Protein Targets of the Last CAPRI Edition
Predictors Scorers

Target Type Submission rank* Quality” Successful groups® Submission rank® Quality® Successful groups®
T46 HH — — 2 (40) e — 8 (16)
T47 HU 1 e 25 (29) 2 e 13 (14)
T48 uu 3 S 14 (32) No scorers No scorers No scorers
T49 uu 4 * 14 (33) 6 * 7(13)
T50 UH 1 bod 18 (40) 4 = 12 (17)
T51 DHD — — 3 (46) — — 5 (13)
T53 UH 3¢ = 20 (42) 1 = 1 (13)
T54 UH == — 4 (41) — — 0(13)
T58 uu 5 bl 11 (23) No scorers No scorers No scorers

U, unbound; H, homology-based model; D, domain.
“Rank of the best model within our submission to CAPRIL.
Quality of our best model according to CAPRI criteria.

“Number of successful groups for each target; in brackets, total number of participants.

9Model Rank 1 had medium accuracy (**).
“Model Rank 1 had acceptable accuracy (*).

prediction of protein—water and protein—sugar interac-
tions, as well as the estimation of binding affinities and
energy changes upon mutation. Hereinafter, we describe
in detail our submissions for each of the targets.

Standard protein-protein docking

ment: s ful predi =

Target T47 (model/pseudounbound)

Target T47 was the structural prediction of the com-
plex between the DNase domain of colicin E2 and the
immunity protein Im2. The real challenge in this target
was the prediction of interface water molecules, however,
the protein—protein docking predictions were already
assessed, and therefore we have included them in this
section. The colicin E2 was modeled based on the struc-
ture of colicin E9 (85% sequence identitg) in complex
with Im9 immunity protein (PDB 1IEMV). 2 The coordi-
nates of the immunity protein Im2 were extracted from
its structure in complex with colicin E9 (PDB 2WPT).
Given the existence of this homologous colicin E9/Im2
complex structure (PDB 2WPT),23 the binding mode for
target T47 was easy to determine by template-based
docking. However, we performed the template-free dock-
ing calculations to assess the automatic docking protocol.
‘We only applied distance restraints after pyDock protocol
by selecting those docking poses in which two key con-
tacting residues, Im2 Y54 and colicin E2 F85 (equivalent
to colicin E9 F86 in 2WPT),23 were within an arbitrary
distance of 6 A (same distance used in standard restraints
with pyDockRST module.24 We submitted five correct
models (one high accuracy, one medium accuracy, and
three acceptable). Our first submitted model (Rank 1
according to pyDock energy, and generated by ZDOCK),
was a high-quality model (Table I), with 75% native

2194 ProTEINS

contacts, 248 A ligand root mean square deviation
(RMSD), and 0.75 A interface RMSD with respect to the
crystal structure (Fig. 1; PDB 3U43).25 This docking model
had the lowest ligand RMSD with respect to the homolo-
gous colicin E9/Im2 complex (PDB 2WPT) amongst all
solutions (although we did not use this homologous struc-
ture for docking), and even more interestingly, we would
have obtained exactly the same result without applying the
above-mentioned distance restraint filter.

For the scoring experiment, we evaluated the provided
1051 models with our pyDock scoring function, and
applied the same distance filter that we used as predic-
tors (see above). All our submitted predictions resulted
to be successful, consisting of six medium and four high-
quality models. We had a high-accuracy model ranked
second after pyDock scoring and distance filter
(uploaded by Weng), with 77% native contacts, 0.9 A
ligand RMSD, and 0.4 A interface RMSD with respect to
the crystal structure (PDB 3U4325; Table I; Fig. 1). Inter-
estingly, our Rank 5 model was the best model submitted
among all 14 participants, with 79% native contacts,
0.7 A ligand RMSD, and 0.5 A interface RMSD. Two bet-
ter models uploaded by Weng were not found by any of
the participants. Remarkably, as in predictors, our results
would not have changed had we not applied the distance
restraints filter.

Target T48 (unbound /unbound)

Target T48 was the structural prediction of the
complex between the diiron-hydroxylase toluene
4-monooxygenase and the Rieske-type ferredoxin T4moC
protein (PDB 1VM9).26 As suggested by the organizers,
the heterohexameric biological unit of the diiron-
hydroxylase was built by applying crystal symmetry oper-
ations to its trimeric structure in complex with the
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Figure 1

Representation of our best models for targets T47, T48, T49, T50, T53, T57, and T58. For each target, receptors are superimposed and shown in
white. Ligand in our best model as predictors is shown in red, and as scorers in blue. For comparison, the structure of the experimental complex

(if available) is represented in green.

T4moD effector protein (PDB 3DHH).27 We used the
hexameric construct for the generation of docking poses,
which were scored by pyDock. Then, we selected those
docking poses that had any of the diiron-hydroxylase
Fe*" and ferredoxin S,Fe, atoms within 23 A distance to
allow for the electron transfer between these groups2’
(the distance cutoff we used was arbitrary, based on the
expected distance of 16 A in 3DHH plus a margin to

allow the inclusion of some low-energy solutions). For
the submission, we removed chains D, E, and F from the
hexamer as we misinterpreted some of the organizers’
instructions, but this did not affect the quality of the
submitted models. The analysis of the results showed
that we submitted three models of acceptable quality.
Our prediction ranked third after pyDock scoring and
electron transfer distance filtering (generated by FTDock)

rroTEINs 2195
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had 14% native contacts, 8.4 A ligand RMSD, and 3.6 A
interface RMSD with respect to the complex crystal
structure (not yet available). We found another accepta-
ble model (ranked 10th in our submission set) that had
49% native contacts, 6.3 A ligand RMSD, and 2.2 A
interface RMSD with respect to the complex crystal
structure.

Target 49 (unbound/unbound)

Target T49 was the same complex as T48 but with a
different hexameric conformation for diiron-hydroxylase
toluene 4-monooxygenase (unbound coordinates not
released). We applied the same protocol as for target T48
(pyDock scoring and electron transfer distance filtering).
We submitted four acceptable quality models. The model
ranked fourth of our submission set had acceptable qual-
ity, with 26% native contacts, 12.4 A ligand RMSD, and
3.5 A interface RMSD with respect to the complex crystal
structure (not yet available). We also submitted another
model with 11% native contacts, 6.9 A ligand RMSD,
and 2.7 A interface RMSD.

For the scoring experiment, the 1085 solutions were
scored by the same protocol, based on pyDock scoring
and electron transfer distance filtering. In some models,
the monooxygenase was uploaded as a trimer, therefore
we reconstructed the biological hexamer (based on sym-
metry) to calculate the electron transfer distance filter.
Since it was not clear whether in these cases the hexamer
was going to be rebuilt for the assessment, our submis-
sion set was formed by the top five solutions obtained
after rebuilding the hexamer, and by the top five solu-
tions obtained by just considering the structure submit-
ted by uploaders (i.e., without rebuilding the hexamer in
cases of uploaded trimer). Our ranked sixth submission
was an acceptable model (uploaded by Nakamura), with
11% native contacts, 7.9 A ligand RMSD, and 2.9A inter-
face RMSD with respect to the complex crystal structure
(not yet available).

Target 50 (unbound/model]

Target T50 was the structural prediction of the com-
plex between the 1918 HIN1 influenza virus hemaggluti-
nin and the HB36.3 de novo designed protein. The
coordinates of the hemagglutinin were taken from its
structure in complex with an antibody (PDB 3GBN)28
and the biological hexamer was rebuilt by applying sym-
metry operations. We modeled the HB36.3 based on the
crystal structure of the homologous (83% sequence iden-
tity) protein APC36109 from Bacillus stearothermophilus
(PDB 1U84), using the target-template protein alignment
offered by the organizers. Given the size of the system,
we increased the number of rigid-body docking solutions
generated by FTDock (see Materials and Methods sec-
tion). Our submission as predictors contained nine suc-
cessful models (five acceptable and four medium-quality
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solutions). Our Rank 1 submission (generated by
FTDock) was a medium-quality model with 47% native
contacts, 6.1 A ligand RMSD, and 1.8 A interface RMSD
with respect to the complex crystal structure (Fig. 1;
PDB 3R2X).29 Interestingly, our Rank 4 submission,
with 41% native contacts, 3.4 A ligand RMSD, and 1.6 A
interface RMSD, was the best model submitted among
all participants as predictors.

For the scoring experiment, we evaluated the 1451
models in the same conditions as in predictors. We
found five acceptable and one medium-quality solutions.
Our Rank 4 submission was a medium-quality model,
with 44.9% native contacts, 4.71 A ligand RMSD, and
1.93 A interface RMSD with respect to the complex crys-
tal structure (PDB 3R2X29; Fig. 1).

Target T53 (unbound/madel)

Target T53 was a complex between two artificial alpha
helicoidal repeat proteins (alpha-Rep), alpha-rep4 (PDB
3LT7)30 and alpha-rep2, both designed on the basis of
thermostable HEAT-like repeats. The ligand alpha-rep2
was built using as template alpha-rep4 (PDB 3LTJ), with
77% sequence identity. All the docking poses, generated
using Zdock, Ftdock, and SwarmDock, were scored by
pyDock. We submitted four successful predictions (three
acceptable and one medium-quality models). Our Rank
3 submission, a medium accuracy model generated by
SwarmDock, had 44% native contacts, ligand RMSD 4.4
A, and interface RMSD 1.8 A with respect to the crystal
structure (not yet available).

For the scoring experiment, we evaluated 1400 alpha-
rep4/alpha-rep2 complex models applying the same pro-
tocol as in predictors in a completely automated fashion.
We found three acceptable and a medium-quality mod-
els. Our Rank 1 submission, a medium-quality model
(uploaded by Yan Shen), had 62% native contacts, 3.6 A
ligand RMSD, and 1.3 A interface RMSD with respect to
the complex crystal structure (not yet available).

Target T58 (unbound/unbound)

This target was a complex between the unbound
G-Type Lysozyme (PDB 3MGW)3! and the unbound
Escherichia coli Plig lysozyme inhibitor (PDB 4DY3).32
There was available small-angle X-ray scattering (SAXS)
data for this complex, which we used for scoring with
our module pyDockSAXS, previously developed to com-
bine pyDock scoring and fitting to SAXS data33 In
addition, there was some available information indicating
a central role of the G-type lysozyme E73, D86, and D97
residues and the E. coli Plig lysozyme inhibitor R119 and
Y47 residues. 34 Based on these residues, we imposed
ambiguous distance restraints with module
pyDockRST.35 We submitted one medium-accuracy and
two acceptable models. Our Rank 5 model, generated by
SwarmDock, was a medium-quality model, and resulted
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to be the fourth best model submitted among all the 23
participants, with 43% native contacts, 4.9 A ligand
RMSD, and 1.8 A interface RMSD with respect to the
complex crystal structure (PDB 4G95).36 Interestingly,
although the distance restraints proved to be essential for
this target, we would have obtained only slightly worse
results without using the SAXS data (Rank 10 medium
accuracy model). This is probably due to the shape of
the complex, classified as spherical according to the ani-
sotropy value (1.4) computed from the ratio between the
size of the largest axis and the smallest ones. Indeed, we
previously showed that SAXS data does not frovide
much beneficial information in this type of cases.>>

Protein-protein docking: unsuccessful cases

In three of the protein—protein cases (T46, T51, and
T54) we were not able to submit any correct model,
either as predictors or as scorers. These cases seemed to
be highly difficult for the majority of participants, since
in all of them there were no more than three successful
groups as predictors or as scorers or both (Table I). In
target T46 (model/model), the interacting subunits Mtq2
and Trm112 were modeled based on the homologue tem-
plates with low sequence identity (Mtq2 was based on
template with PDB code 1T43, 28% sequence identity;
Trml12 was based on template with PDB code 2J6A,
36% sequence identity). The inaccuracies in the model-
ing added too much error and the docking was not suc-
cessful. Target T51 (bound/model/unbound) was a
difficult case of a multidomain protein, with interactions
between GH5-CBM6/CBM13/Fn3 domains. This could
be divided in two different docking cases both involving
CBM13 domain, which needed to be modeled based on
template with PDB code 1KNL (38% sequence identity).
Again, a model based on a template with that level of
homology can deteriorate docking results. Target 54
(unbound/model) was in principle easy, involving the
modeling of Repl6 based on the template with PDB
code 3LTJ (88% sequence identity), but the submitted
solutions were incorrect for us as well as for the majority
of participants. Indeed, despite the scoring set contained
several acceptable models, no group was able to identify
them (Table I).

Prediction of protein-water interactions

Target T47 was the prediction of a protein—protein
complex structure, as described in above sections, but
the real challenge was to predict the location of water
molecules. After generating the protein-protein docking
poses as above described, we predicted the water posi-
tions in each docking model using DOWSER37 with
default parameters (with a probe radius of 0.2A and the
default atoms dictionary). Our Rank 1 submitted model
(generated by ZDOCK) had 20% of water native

contacts, and was classified as fair (+). If we consider
only the prediction of the buried water molecules, our
success rates do not significantly change.

For the scoring experiment, we just applied our stand-
ard pyDock scoring function, plus distance restraints as
described in above sections. The water molecules pro-
posed in the different docking poses were not included
in the scoring. Our Rank 8 submitted model (uploaded
by Bates) had 43% of water native contacts and was clas-
sified as good (++). More details can be found in an
upcoming publication.

Prediction of protein-carbohydrate complex
structure

Target 57 (unbound/model) was a challenging target
consisting in the prediction of the interaction between
BT4661 protein and heparin. The structure of heparin in
the complex was not known, so we modeled it using
molecular dynamics starting with the provided confor-
mation. We ran 10 ns using the force field AMBER
parm99 of the Amberl0 package16’17 and extracted
1000 representative snapshots. Since our pyDock proto-
col was not intended for protein—sugar interactions, we
had to devise a new ad hoc docking procedure. For that,
we used FTDock to dock each of the 1000 heparin con-
formations to BT4661 protein. We selected the top
10,000 docking poses as scored by FTDock (no electro-
statics). Then we applied different scoring functions to
this set of docking poses: (i) PScore without minimiza-
tion; (ii) PScore with minimization; and (iii) AMBER
after minimization. We selected the 1000 best-scoring
solutions from each method and finally we removed
redundant solutions within 6.5 A ligand RMSD. No cor-
rect submission was submitted. However, our Rank 4
submission was almost acceptable, with 65% native con-
tacts, 11.2 A ligand RMSD, and 4.3 A interface RMSD
with respect to the complex crystal structure (PDB
4AK2; Fig. 1). We checked a posteriori that there were
several correct models within our docking sets, but our
scoring approach failed to place them in the lowest scor-
ing positions.

Other challenges: binding affinity and AAG
predictions

This CAPRI edition also involved the challenging
problem of predicting binding affinities and energy
changes upon mutations. Round 21 was the discrimina-
tion between 87 designed protein—protein interactions
involving three proteins of interest (Spanish influenza
HA; Mt ACP-2; Fc region of human IgG1) and 120 natu-
rally occurring complexes. The pyDock function,
although initially developed for the scoring of docking
poses, was previously shown to have some correlation
with the binding affinity data collected by Kastritis and
Bonvin.33 This was later confirmed on a subset of
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complexes with high-confidence affinity data, where
pyDock ranked among the best performing scoring func-
tions with a correlation of 0.63.39 For round 21 predic-
tions, we evaluated the correlation of each of the
different pyDock individual terms with the binding affin-
ities on the provided set of 120 naturally occurring com-
plexes. We found that desolvation correlation with
binding affinity data was not clear, showing even negative
correlation with data obtained by ITC experiments. It
seems that, although desolvation is essential for rigid-
body docking (perhaps to compensate inaccurate calcula-
tion of electrostatics and van der Waals), it is not the
most important factor for binding affinity predictions
from the complex structure (in which electrostatics can
be more accurately calculated). Based on these results,
we devised a binding affinity descriptor (pyDockAFF =
electrostatics —1.0 X desolvation), with confidence
thresholds for the discrimination of complexes according
to their binding affinities. Our predictions had area
under the curve 83%, with good discrimination between
designed and native interfaces. More details can be found
in a recent publication.40 It remains to be seen whether
the pyDockAFF binding affinity predictor is suitable only
for the cases in this CAPRI round, or it has more general
applicability (further details in an upcoming publication).

Targets T55-56 aimed to predict the binding affinity
changes upon mutations on two designed influenza
hemagglutinin protein binders. We applied a multipara-
metric predictive model with 85 descriptors using an
ensemble of models which were combined to produce
consensus predictions. The models were trained upon a
data set of 930 changes in affinity upon mutation which
were taken from the literature. Due to the fairly low
cases to descriptors ratio (10.9), we preferentially
employed models with inherent overfitting avoidance
bias, such as prepruning or feature selection using the
Akaike information criterion, methods which construct
multiple models using subsets of the descriptors and the
training data, and by rejecting learners that performed
poorly using leave-complex-out cross-validation.#! To
further avoid overfitting, we did not combine the
selected learners together using stacking, instead opting
for the unweighted mean for our consensus predictions.
This approach provided an excellent ability to predict
the effect of mutation, more details of which can be
found in a recent pub]jcation.42 We have since expanded
this data set to form the SKEMPI database, which now
includes 3047 AAG values, as well as kinetic and thermo-
dynamic data,43 and have used the data to derive contact
potentials that can circumvent some of the approxima-
tions associated with statistical potentials.44

CONCLUSIONS

We have continued our participation in CAPRI with
pyDock, submitting models for all the predicting, scoring,
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and binding affinity prediction experiments. For the gener-
ation of docking poses, the better grid resolution used for
FTDock and the use of flexible SwarmDock for the last
targets were key for the success. This produced docking
poses of sufficient quality to be identified by the
pyDockSER  scoring scheme. In selected targets, distance
restraints were introduced by pyDockRST, but in most
cases this did not make a difference. In one target, SAXS
data was used for complementary scoring with pyDock-
SAXS, which slightly improved the scoring. We obtained
consistently good models for all nondifficult cases,
although they were far from being trivial, since their subu-
nits were unbound or needed to be modeled based on
homology templates. In all cases but one our successful
models were ranked within our first five submitted solu-
tions, being ranked first in several cases. In this CAPRI
edition we learned that our automated protocol is useful
to provide correct models in easy-to-medium difficulty
protein—protein docking cases, but we need further meth-
odological development for difficult cases, especially when
subunits need to be modeled based on homologues with
low sequence identity. On the other side, interface water
placement and sugar-binding proved to be highly challeng-
ing for our protein—protein methodology, but the results
have encouraged us to develop new methods for these
problems. Finally, prediction of binding affinity based on
the pyDockSER scoring, and energy changes upon muta-
tion based on multiparametric regression models showed
excellent results. The overall experience has been highly
rewarding and has shown once again the importance of
community-wide assessment of prediction methods.
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ABSTRACT

We present here an extended protein—-RNA docking benchmark composed of 71 test cases in which the coordinates of the
interacting protein and RNA molecules are available from experimental structures, plus an additional set of 35 cases in
which at least one of the interacting subunits is deled by I logy. All cases in the experimental set have available
unbound protein structure, and include five cases with available unbound RNA structure, four cases with a pseudo-unbound
RNA structure, and 62 cases with the bound RNA form. The additional set of modeling cases comprises five unbound-model,
eight model-unbound, 19 model-bound, and three model-model protein-RNA cases. The benchmark covers all major func-
tional categories and contains cases with different degrees of difficulty for docking, as far as protein and RNA flexibility is
concerned. The main objective of this benchmark is to foster the development of protein~RNA docking algorithms and to
contribute to the better understanding and prediction of protein—RNA interactions. The benchmark is freely available at

http://life.bsc.es/pid/protein—rna-benchmark.

Proteins 2012; 80:1872-1882.
© 2012 Wiley Periodicals, Inc.

Key words: protein—-RNA interactions; structural prediction; computational docking; docking benchmark; protein and RNA

flexibility.

INTRODUCTION

Protein interactions are essential in life processes, and
theoretical and computational approaches can comple-
ment existing experimental data and contribute to their
study and understanding. Certainly, the field of protein—
protein interactions has benefited from the recent devel-
opments in docking techniques!=4 and blind tests like
Critical Assessment of PRediction of Interactions
(CAPRI; http://www.ebi.ac.uk/msd-srv/capri), an interna-
tional blind prediction experiment to evaluate the per-
formances of protein—protein computational docking
methods.5—8

The interactions of proteins with other biomolecules,
such as nucleic acids, are also becoming the focus of
structural and computational studies to understand
essential biological processes. In recent years, the growing
awareness for the importance of protein—-RNA interac-
tions, together with the publication of the 50S and 30S
ribosome subunits,g’10 have increased the volume of
data on protein~RNA complexes. As a consequence, a
number of studies have used available structural data of
real protein-RNA interfaces to understand this type of
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interaction and extract better parameters for predic-
tions.1! Indeed, characterizing the molecular mechanism
of protein-RNA recognition to understand and predict
protein—-RNA complexes from their separate components
is one of the grand challenges in structural biology.
However, there are still very few reported methods for
protein—-RNA docking and scor]‘ng,lz_l5 and practically
inexistent systematic benchmarks on large data sets in
comparison with that of other biomolecules. In this con-
text, the above-mentioned CAPRI experiment recently
encouraged modeling groups to adapt existing protein—
protein docking methods or develop new ones for the

Additional Supporting Information may be found in the online version of
this article.
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protein—-RNA docking problem. The experiment (round
15, targets 33 and 34) nicely showed how some docking
methods can be adapted to predict the tridimensional
structure of a protein—-RNA complex. Indeed, Rosetta-
Dock16:17 submitted a medium quality model to the
predictors section, with ligand RMSD of 1.7A when com-
pared with the complex crystal structure. 18 In the scorers
section, MDockPP identified the best model among all
participants, 19 an acceptable model with ligand RMSD
of 3.1A. In addition, a variation of the pyDock docking
and scoring protocol,20 which achieved successful results
for protein—protein docking in past CAPRI tests,2! also
found an acceptable model that was the second best one
among all participants in the scorers section, with re-
markable ligand RMSD of 3.8A with respect to the X-ray
structure of the complex.22 However, this experiment
pointed out also the limitations of current methods, as
all successful models were generated using the bound
RNA structure, while no success was achieved using a
model of the unbound RNA molecule. In this context,
the main challenge is the high degree of conformational
movement in RNA molecules,23 for which a better treat-
ment of flexibility is required. In addition, better physics-
based or empirical scoring parameters need to be specifi-
cally adapted for protein-RNA binding.

To help to these purposes, we have compiled here an
extended protein-RNA benchmark set composed of 106
docking test cases in a similar manner that has been pre-
viously reported for protein—protein and protein-DNA
docking.2 25 1t represents a realistic test set that covers
major functional categories of RNA,20 containing cases
with different degrees of difficulty. The aim of the bench-
mark is to facilitate and foster the development of pro-
tein—RNA docking algorithms.

MATERIALS AND METHODS
Structural set compilation

We based our benchmark on our previously reported
set of 315 protein-RNA complex structures, which
included cases with nonredundant proteins (up to 70%
sequence identity), as well as cases with redundant pro-
teins that were bound to different RNA molecules to
achieve more variety in protein—RNA interfaces.2” We
also included nonredundant cases from the PRIDB
(http://pridb.gdcb.iastate.edu/).28 Then, we screened the
PDB29 in search of structures for the unbound protein
and RNA partners. For each protein and RNA molecule
in the complex data set, we obtained a list of related
structures using the PDB Advanced Sequence search
(with the Blast option). We considered as unbound
structures those ones free from other molecules with
sequence identity higher than 95% and E-value smaller
than 0.003 with respect to the reference complex struc-
ture, and containing >70% of the interface residues. Sup-

porting Information Table S1 shows the percentage of
interface residues contained in the unbound protein or
RNA structures, since this can be important to be con-
sidered in docking. In the case of RNA molecules, given
the scarcity of fully free structures, we also included
pseudo-unbound RNA structures, that is, those bound to
a protein that had less than 35% sequence identity with
respect to that in the reference complex structure. We
extended the set to cases without available structure for
the unbound protein or RNA, for which a reasonable
model could be built (see next section). For that, we
searched for homologous unbound template structures
with sequence identity >35% for proteins and >70% for
RNA. We also considered cases in which the template
was bound to other protein or RNA molecule, as long as
the latter showed <70% of sequence identity with respect
to the partner molecule in the complex structure. Finally,
we also included cases with no available unbound or
homologue RNA structure for which the bound RNA
coordinates can be used, since they can be also useful for
developing and testing docking tools. All considered X-
ray structures showed resolution better than 3.5 A. In the
case of nuclear magnetic resonance (NMR) ensemble
structures, we selected the first model. We discarded one
unbound-unbound case (1A1T complex PDB) in which
the NMR unbound protein structure (IMFS PDB) is
mostly disordered. Residue numbering correspondence
between unbound molecules and target complexes is pro-
vided for each case on the downloaded version of the
benchmark.

Model building

For protein or RNA cases with no available unbound
structure, we built models provided we could find a rea-
sonable template (see below). The input sequences for
the modeling procedure were extracted from the complex
PDB structures, and the chain IDs of the models were
inherited from the template PDB structures.

The protein models were built with MODELLER 8v1,30
based on homologous template structures with more than
35% sequence identity. For each case, we produced 10 dif-
ferent models and selected the one with the best DOPE
score. We used for all cases the MODELLER 8vl align-
ment, except for one case (PDB code 1HQI) in which
we changed the default alignment to the one provided
by BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi)3!  to
achieve a GA341 score proximal to 1.0 (a MODELLER
score which indicates the reliability of the model).

The RNA models were built with the standalone ver-
sion of the ModeRNA v1.6.0 program,32 which produced
models based on the provided alignments. It has to be
noted that the method does not extensively optimize van
der Waals interactions, which might imply an additional
difficulty for protein-RNA docking methods. However,
given that the RNA models in current benchmark are
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based on highly homologous templates (>70% sequence
identity; cutoff based on data from the ModeRNA
authors)32 and hence have very few insertion/deletions,
we relied on the default ModeRNA modeling procedure.
The program uses a fragment-based approach for model-
ing indels, selecting optimal conformations from the 50
best-scoring fragment candidates, and remodeling imper-
fect backbone conformations by optimizing interatomic
clashes and acceptable bond lengths, bond angles, and
torsion angles. We actually checked that the final mod-
eled structures had very few clashes. For all cases, we
used the global alignment provided by LALIGN server
(http://www.ch.embnet.org/software/LALIGN_form.html).
In cases with unusual or post-transcriptionally modified
nucleotides in the templates, they were included in the
alignment with the specific nomenclature in the MODO-
MICS database (http://modomics.genesilico.pl/modifica-
tions/) to be processed by the modeling procedure. We
checked that these residues were mostly conserved
between the experimental unbound and bound RNA
structures, so they will be probably important for dock-
ing. Some modified nucleotides in the complex were not
found in the template and therefore were not modelled,
but this is within the expected noise in a realistic sce-
nario of docking predictions.

Structural analysis

We analyzed the variability, the size of the interaction
interface between protein and RNA, and the conformational
changes between the bound and the unbound forms:

1. We classified each docking case according to the SCOR
1.2 functional classification of the RNAZ0 as tRNA,
rRNA, ribozyme, snRNA, SRP RNA, genetic control ele-
ments, VRNA, SELEX RNA, synthetic RNA, and “other”

2. The size of the protein—-RNA interface is expressed in
terms of BSA. We calculated both the protein and the
RNA BSA as the difference between the accessible
surface area (ASA) of the dissociated and bound states
[Eq. (1)], using the ICM software (http://www.
molsoft.com).

BSApound= ASAdissoc —ASAbound (1)

3. We analyzed the conformational changes due to the
RNA backbone flexibility and protein domain reorien-
tations based on the RMSD of their phosphorus or
Ca atoms, respectively, after superimposing these
atoms in the protein or the RNA unbound structures
onto the corresponding ones in the reference struc-
ture. This is consistent with the recently reported pro-
tein—-DNA benchmark in which they used the P atom
to compute RMSD values for DNA.25 Nevertheless,
we checked that using the RNA C4’ atom instead
would not significantly change the global RMSD val-
ues. To check the effect of conformational changes in
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the protein-RNA interfaces, we also calculated the
interface RMSD, considering only Ca and phosphorus
atoms located at 10 A distance from any other atom
of the partner molecule.

RESULTS
Composition of the protein-RNA benchmark

We have compiled an extended set of protein—-RNA
complexes that can be used to develop and test protein—
RNA docking methods. Currently, the protein—-RNA dock-
ing benchmark is composed of 106 test cases, with 71
cases in which the coordinates for the interacting subunits
were taken from crystallography or NMR experimental
structures (Table I), and 35 cases in which at least one of
the interacting subunits was built by homology-based
modeling (Table II). All cases in the experimental set have
available unbound protein structure, and include five cases
with available unbound RNA structure, four cases with a
pseudo-unbound RNA structure, and 62 cases with the
bound RNA form (Table I). The additional set of model-
ing cases comprises five unbound-model, eight model-
unbound, 19 model-bound, and three model-model pro-
tein—RNA cases (Table II). The models generated for the
unbound protein or RNA molecules were similarly close
to the bound structures in terms of RMSD as the tem-
plates used to build them, except some cases in which the
models were closer to the bound structures than their
templates (Supporting Information Table S2). The set of
homology modeling cases is an addition to the benchmark
to extend the number of cases that could be used for
docking development. We provided here specific models
to help automatic calculations and comparisons, but the
ones included here are not by any means the only possible
models. Besides, docking developers should be aware that
using models for docking will increase uncertainty. But on
the other side, they represent a real challenge that need to
be solved, perhaps by developing new strategies to treat
ensembles of modeled conformers, or by improving the
treatment of flexibility to overcome possible inaccuracies
of the models. The benchmark covers all major functional
categories of RNA.26 Of the 25 cases with available
unbound, pseudo-unbound or modeled RNA structure,
the majority are of protein-transfer RNA type (15 cases).
However, among the 81 cases in which only the bound
RNA structure is available, a significant number of cases
are genetic regulatory elements (21 cases) or synthetic
RNA ligands (20 cases), usually formed by ssRNAs with
no defined structure in free solution.

Conformational changes in protein-RNA
docking test cases

Regarding protein and RNA flexibility, we can classify
the cases into those with small, medium, and large con-
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Figure 1

Examples of easy (interface RMSD < 2.5A), intermediate (2.5 < interface RMSD > 5A) and difficult cases (interface RMSD > 5A). Complex
structures are colored in orange while unbound (or modeled) protein or RNA structures are shown in blue. (A,D) An easy case: the modeled
protein and unbound RNA structures, superimposed onto a specific synthetic FAB bound to P4-P6 RNA ribozyme domain (PDB code 2R8S)
(interface RMSD 2.2A). (B,E) An intermediate case: the modeled protein and unbound RNA structures, superimposed onto the Mus musculus NF-
KB(P50)2 bound to a high-affinity RNA aptamer (PDB code 100A) (interface RMSD 4.7A). (C,F) A difficult case: the unbound protein and RNA
structures, superimposed onto E. Coli elongation factor EF-TU bound to Phe-tRNA (PDB code 10B2) (interface RMSD 10.6A).

formational changes upon binding (interface RMSD
below 2.5 A, between 2.5 and 5.0 A, and above 5.0 A,
respectively). These cases could be defined as easy, inter-
mediate and difficult cases for docking predictions,
respectively, following the definition used for protein—
DNA complexes in a previous study.25 From the point of
view of RNA flexibility, the 25 cases with available
unbound, pseudo-unbound or modeled RNA structure
form a quite realistic docking test set, with six easy, 13
intermediate, and six difficult cases. The 81 cases in
which only the bound structure for RNA is available rep-
resent a less challenging, albeit useful, docking test set,
with 58 easy, 11 intermediate, and 12 difficult cases.

It is interesting to note that the typically most flexible
regions in RNAs, such as the unpaired 5" or 3’ ends or
the RNA loops, are not involved in the interface in cases
with small conformational changes [Fig. 1(A,D)].

In contrast, in cases with medium conformational
rearrangement upon complex formation [Fig. 1(B,E)],
these typically flexible regions are mostly located at inter-
faces, adopting an optimal conformation for the specific
interaction. Furthermore, in some cases general RNA
backbone flexibility is also significant when unbound and

bound structures are compared. On the protein side,
these cases are often proteins with flexible loops or link-
ers that generate protein motif or domain reorientations.

Finally, in protein—RNA docking test cases with large
conformational changes upon binding, protein domain
rearrangement due to interdomain linker or backbone
flexibility critically affects protein-RNA interfaces [see
Fig. 1(C,F)]. As a consequence, these are highly challeng-
ing cases for protein—-RNA docking.

Other important challenges for protein-RNA
docking

In addition to protein and RNA flexibility, the bench-
mark shows other key issues for docking prediction. One
important difficulty is related to the complex size, which
represents a bottleneck for docking sampling and scoring.
In many cases, the RNA-binding protein is a large cata-
Iytic machine (with >600 residues). Some examples are
tRNA synthetases (cases with PDB code 1ASY, 1EIY,
1F7U, 2DLC, 2DU3, 1HA4S, 1SER, 2AZX, and 2BTE),
RNases and endonucleases (cases with PDB code 2C0B,
2FK6, 21X1, and 2GJW), as well as other types of RNA-
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binding proteins (cases with PDB code 1J2B, 1HVU,
2GIC, 2R7R, 3CIY, 1C9S, 2D6F, and 2IPY). On the other
hand, in most of these cases, proteins do not have a
globular-like shape, which can also affect sampling. Addi-
tional difficulties are found in cases in which the RNA
binds to a deep protein cavity (cases with PDB code
3BSO, 2IX1, 2R7R, and 2GIC), which may also represents
a challenge for docking predictions.

Post-transcriptionally modified nucleotides may repre-
sent another important challenge for protein-RNA dock-
ing. In some cases, these nucleotides are located at the
interface, which may significantly affect the predictions.
Docking methods should consider this as an additional
variable in the quest for successful procedures.

DISCUSSION

The benchmark that we present here, composed of all
possible test cases that can be found from unbound and
complex structures deposited in the PDB,29 is to our
knowledge the largest collection of protein-RNA docking
cases reported so far. Despite the small number of cur-
rently available test cases with available or modeled
unbound RNA structure (25 of 106), this set represents a
useful benchmark for developing and testing protein-RNA
docking algorithms, and more importantly, it provides
guidelines to further extend and analyze this dataset.
Comparing this protein—RNA test set with respect to other
protein—protein and protein-DNA benchmarks, 2425 the
difficulties of the protein-RNA docking field are more
apparent. In general, while the mean interface RMSD
between the unbound and bound forms in protein—pro-
tein benchmark 4.0 is 1.41 A,24 the difficulty of the pro-
tein-DNAZ5 and protein-RNA benchmarks is higher, with
mean interface RMSD of 3.49 and 4.51 ;\, respectively.
Thus, the commonly used rigid-body docking approaches
for protein—protein interactions seem of limited use for
the modeling of protein-nucleic acid interactions, and
therefore more efforts should focus onto the development
of sampling methods capable of facing the flexibility prob-
lem, as well as new scoring functions for protein—-RNA
interaction. While benchmark cases without available
unbound RNA structure do not represent a truly realistic
benchmark for the development of sampling methods,
they could still be useful to optimize scoring functions,
since they include some protein-RNA complex types that
could not have been considered otherwise. Other large
data sets of protein-RNA complexes have been reported
with the purpose of developing tools for predicting RNA-
contacting residues, 33 which could be useful for develop-
ment of new protein-RNA docking and scoring methods.

In summary, we believe this extended protein-RNA
benchmark presented here can contribute to the develop-
ment and optimization of protein-RNA docking
methods, including approaches for exploring the confor-

mational flexibility of RNA in the context of protein—
RNA interactions. The benchmark is available on the
website http://life.bsc.es/pid/protein-rna-benchmark.
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Table S1. Percentage of interface residues and nucleotides contained in the unbound protein
and RNA structures

Complex }anound Bound Inte.rface Unbound Bound Interfa'ce
e Behe e e e e Bew
1ASY 188 188 100.0 42 45 933
1B23 125 128 97.7 23 25 92.0
1B7F 98 102 96.1 12 12 100.0
1C0A 200 200 100.0 45 47 95.7
1C98 359 359 100.0 55 55 100.0
1DDL 51 57 89.5 # 7 100.0
IDFU 52 52 100.0 27 29 100.0
1DK1 73 73 100.0 42 42 100.0
1E7K 52 52 100.0 15 15 100.0
1E80 40 40 100.0 13 13 100.0
LEC6 44 57 772 17 17 100.0
1EFW 107 107 100.0 30 33 90.9
IETY 204 262 71.9 57 57 100.0
1EKZ 38 41 92.7 16 16 100.0
1IF7U 255 255 100.0 59 59 100.0
1FEU 66 66 100.0 26 29 89.7
1FXL 99 99 100.0 9 9 100.0
1G1X 34 34 100.0 13 13 100.0
IH3E 117 124 94.4 38 38 100.0
1H4S 101 101 100.0 30 30 100.0
1HCS8 57 57 100.0 22 22 100.0
1HQ1 41 41 100.0 19 19 100.0
1HVU 140 140 100.0 23 23 100.0
1o 110 120 91.7 34 34 100.0
1J2B 292 292 100.0 60 60 100.0
1JBR 72 i 100.0 17 17 100.0
IK1G 89 89 100.0 11 11 100.0
1K8W 100 125 80.0 18 18 100.0
1KOG 71 71 100.0 24 24 100.0
1KQ2 134 134 100.0 7 7 100.0
ILNG 58 58 100.0 35 35 100.0
IM50 56 57 98.2 19 19 100.0
1IM8V 28 35 80.0 6 6 100.0
1IM8W 113 113 100.0 8 8 100.0
IMFQ 40 40 100.0 18 18 100.0
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IMII
IMMS
IN78
10B2
100A
1Q2R
1QF6
1QTQ
IR3E
IRKJ
IRLG
1503
I1SER
1TOK
IT4AL
1UOB
1U63
IVFG
IWNE
1WPU
1WSU
1YVP
2AD9
2ADB
2ADC
2ASB
2AZ0
2AZX
2B3J
2BGG
2BH2
2BTE
2BU1
2C0B
2CIK
208X
2071
2D6F
2DB3

48
81
207
128
73
120
205
212
124
93
49
63
120

143
52
127
107
113
56
63
80

48
81
207
131
73
129
205
217
124
94
49
63
120
45
57
216
85
66
166
56
43
83
57
56
74
90
74
127
102
103
188
179
52
127
110
113
66
66
84

100.0
100.0
100.0
973
100.0
93.0
100.0
97.7
100.0
98.9
100.0
100.0
100.0
100.0
98.2
77.3
100.0
100.0
100.0
100.0
100.0
91.6
91.2
98.2
100.0
100.0
100.0
95.3
100.0
95.1
100.0
79.9
100.0
100.0
97.3
100.0
84.8
95.5
95.2

100

100.0
100.0
100.0
96.0

100.0
100.0
95.5

98.0

87.5

100.0
100.0
100.0
97.6

100.0
100.0
89.8

100.0
100.0
100.0
100.0
100.0
94.7

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0



2DER
2DLC
2DRA
2DU3
2ERR
2F8K
2FK6
2FMT
2FY1
2GIC
2GJE
2GIW
2HGH
2HWS
2182
2191
2IPY
2IX1
2JpPP
2NUG
2PY9
2QUX
2R7R
2R8S
2V3C
27ZKO
3BO2
3BSB
3BSO
3BSX
3BX2
3CIY

118
111
152
156
54
30
93
100
62
1136
104
154
64
80
112
144
167
233
61
112
41
89
122
91
124
72
56
124
182
125
120
99

118
111
152
156
54
31
120
106
64
1136
105
154
65
84
112
149
167
233
61
112
41
89
123
91
124
74
59
124
182
125
121
102

100.0
100.0
100.0
100.0
100.0
96.8
77.5
94.3
96.9
100.0
99.0
100.0
98.5
95.2
100.0
96.6
100.0
100.0
100.0
100.0
100.0
100.0
99.2
100.0
100.0
97.3
94.9
100.0
100.0
100.0
99.2
97

* Number of covered interface residues or nucleotides in the unbound protein or RNA structures.

" Number of interface residues or nucleotides in the complex structure.

¢ Percentage of covered interface residues or nucleotides in the unbound protein or RNA structures.

101

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0



Table S2. Homology modeling of protein and RNA molecules with no available unbound

coordinates
Target Template® seque.ncbe RIYISD N RMSD RMSD i
identity target I model model-target
Protein

1FEU_a INJP_t 32% 4.1 1.6 44
1HQ1 a 2FFH_a 44% 2.8 1.5 12
1LNG_a 1KVV_a 35% 4.1 0.9 4.1
100A _a 3DO7 b 55% 6.4 1.6 6.4
IRKJ_a:b* 2KRR a 79% 10.1 0.9 10.1
2R8S_Lh 2FJF_Lh 93% 1.9 0.3 1.9
1QF6_a INYQ_ a 43% 3.0 21 4.1
1VFG_a 3H38_a 36% 6.0 5.1 4.0
2DU3_ab,.c,d  2DU7 ab,c,d 53% 3.8 32 45
lDDL_a,b,c# 1AUY_a,b,c 41% 0.9 0.7 1.1
1E80_a,b 1914_a 79% 14 2.8 1.8
IFXL_a 3SXL_a 48% 6.9 25 7.4
1K1G_a* 2BL5 a 36% 11.3 3.9 10.7
IMJI_a 11Q4_a 60% 3.0 0.4 32
IRLG a 1XBI a 53% 1.6 2.6 24
1S03_h 1SEI a 50% 1.7 0.8 1.6
2B3J ab IWWR_a,b 46% 1.4 2.1 25
2CJK _a* 1L3K a 40% 12.7 0.9 12.8
2CSX_ a 2DSB_a 44% 29 23 22
2D6F_a,b,c,d 1ZQ1_ab,c,d 49% 38 1.4 29
2DB3_a* 2141 a 45% 18.7 2.6 15.8
2DER_a 2HMA a 56% 24 1.5 2.8
2DLC ab IN3L_ab 49% 3.6 4.5 6.1
2FY1 a 1X5S a 43% 6.4 2.5 5.5
2182 a 1XPI_a 35% 44 33 49
2IPY a* 2B3Y a 94% 11.7 0.1 11.8
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2JPP_ab
2NUG_a*
2V3C_c*
2ZKO ab:c,d
RNA
1COA_b
IEFW ¢
1J1U_b
1J2B_¢
2DRA b
1QF6_b
1VFG ¢

2DU3 e

1Y00 ab
100W_a
3DM5_a

270A ab

IEFW ¢
1C04_b

2XUY v

2ZUF b

IVFG d
3FOZ ¢
1EIY ¢

272N d

57%

35%

56%

91%

100%

100%

70%

72%

91%

70%

83%

72%

4.9

14.4

12.8

0.8

2.8

10.9

3.0

38

32

3.1

0.9

24

2.6

0.6

0.0

0.0

0.3

0.5

0.0

0.4

0.0

49

142

13.0

24

22

104

3.0

39

3.1

31

* PDB code of the protein or RNA template use to build the model. Cases with pseudo-unbound template, i.e. bound to

a different protein or RNA molecule (see main text) are shown in italics.

" Sequence identity from the global alignments used for modeling (it might differ from the sequence identity based on

BLAST used for the selection of templates).
‘RMSD (A) considering Ca atoms (for proteins) or phosphorous atoms (for RNA).
* Protein targets with flexible inter-domain linkers, especially difficult for modeling.
# The 24 Nt residues have not been considered for the RMSD calculation as they are swapped between target and

template structures and give high RMSDs that do not reflect the true overall quality.
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Abstract

We present an updated and integrated version of our widely used protein—protein docking and binding affinity
benchmarks. The benchmarks consist of non-redundant, high-quality structures of protein—protein complexes
along with the unbound structures of their components. Fifty-five new complexes were added to the docking
benchmark, 35 of which have experimentally measured binding affinities. These updated docking and affinity
benchmarks now contain 230 and 179 entries, respectively. In particular, the number of antibody—antigen
complexes has increased significantly, by 67% and 74% in the docking and affinity benchmarks, respectively.
We tested previously developed docking and affinity prediction algorithms on the new cases. Considering only
the top 10 docking predictions per benchmark case, a prediction accuracy of 38% is achieved on all 55 cases
and up to 50% for the 32 rigid-body cases only. Predicted affinity scores are found to correlate with

experimental binding energies up to r = 0.52 overall and r = 0.72 for the rigid complexes.

© 2015 Elsevier Ltd. All rights reserved.

Introduction

Protein—protein interactions are among the most
important processes in biology, playing fundamental
roles in the immune system, signaling pathways, and
enzyme inhibition. Proteome-wide studies have re-
vealed that most proteins interact with other proteins
[1]. The experimental characterization of the structure
of a protein—protein complex is, however, difficult and
not always successful. To complement experimental
approaches, we have developed computational tech-
niques for the prediction of protein complexes over the
years, stimulated by the CAPRI (Critical Assessment
of PRedicted Interactions) experiment [2]. Computa-
tional approaches for modeling protein—protein com-

0022-2836/© 2015 Elsevier Ltd. All rights reserved.

plex structures include ab initiodocking methods [3,4],
homology-based methods based on the experimental
structures of similar complexes [5-11], and integra-
tive, information-driven methods [12], These ap-
proaches typically attempt to predict the most likely
structure of a complex but are not designed to predict
how strongly the proteins bind or whether they bind at
all. Thus, a more complete computational description
of protein—protein interaction also requires algorithms
that can predict binding affinities. Although energy
functions for affinity prediction and the ranking of
docking poses are related, they are often developed
specifically for their respective purposes and so far
have shown varying and rather limited performance
[13]. Example areas where scoring functions can be

J Mol Biol (2015) 427, 3031-3041
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improved are entropic contributions [14], solvent
effects [15], and the optimal combination of terms [16].

Essential for the development of computational
algorithms are training and test sets that are reliable
and sufficiently large. It is computationally daunting
to sift the Protein Data Bank (PDB) for structures of
protein—protein complexes; the experimental condi-
tions and accuracies of these structures vary widely
and are not always straightforward to assess, and
neither is the definition of the biological unit.
Recognizing this, various benchmarks that attempt
to collect a reliable and well-understood set of data
were developed. Our docking benchmark, which
after its initial development [17] has seen three
updates [18—-20], is widely used for developing and
assessing docking methods. Key features are the
availability of both the complex structure and the
unbound structures of the component proteins,
non-redundancy, and reliability of the data. Other
benchmarks include DOCKGROUND [21], which
also focuses on protein—protein interactions, and
benchmarks that contain complexes of proteins with
nucleic acids [22,23].

More recently, we used our protein—protein dock-
ing benchmark as a starting point for developing a
structure-based affinity benchmark [24,25], which
includes the entries from our docking benchmark for
which experimental binding affinities were available.
The affinity benchmark has been used for the
development of algorithms for predicting protein—
protein binding free energies, with a typical correla-
tion coefficient of r= 0.6 with experimentally mea-
sured binding free energies [26—28].

In this paper, we present updates to our docking
and affinity benchmarks, of which the development
is tightly integrated. We added 55 new protein—
protein complexes to the docking benchmark, for 35
of which experimental affinities could be found that
were added to the affinity benchmark. These new
additions to both benchmarks were then used, as an
independent test set, to assess the performance of
four docking algorithms and a large panel of affinity

prediction algorithms that had been previously
developed without seeing any of the new cases.
This allowed us to assess the performance of
docking and affinity predictions, both of which
remained limited due to conformational changes,
with an indication that low-affinity complexes were
also more challenging to dock.

Results and Discussion

Composition

We added 55 cases to the docking benchmark
(Table 1). PDB entries 3AAD and 3P57 show two
and three distinct binding modes, respectively. As in
the previous versions of the benchmark, the com-
plexes that display multiple binding modes were split
into different cases. This represents an increase of
31% over the previous 175 cases. We could find
binding affinity data for 35 of the cases, which
brought the total number of cases in the affinity
benchmark to 179, a 24% increase. In Table 2, we
show the composition of the updated benchmarks
compared with the previous versions. The most
noticeable increase is for antibody—antigen com-
plexes: from 24 cases to 40 cases in the docking
benchmark and from 19 cases to 33 cases in the
affinity benchmark, which reflects a surging interest
in antibody-based therapeutics.

In the previous versions of the benchmarks, some
categories are underrepresented, most notably the
antibody-antigen cases (14%) and difficult cases
(15%), while rigid-body cases are overrepresented
(68%). Although there still is overrepresentation and
underrepresentation in the updated benchmark, the
newly added cases do not worsen the representation of
any category and achieve a more balanced composi-
tion for most categories. We examined the new cases
on various properties related to size and flexibility of
the component proteins, but we only found the total
solvent-accessible surface area of the component

Table 2. Composition of the updated docking and affinity benchmarks (in parentheses are values for the previous versions

of the benchmarks, docking version 4 and affinity version 1).

Docking Affinity
N % N %

Al 230 (175) 179 (144)

Enzyme containing 88 (71) 38% (41%) 69 (61) 39% (42%)
Antibody-antigen 40 (24) 17% (14%) 33 (19) 18% (13%)
Others 102 (80) 45% (45%) 77 (64) 43% (45%)
Rigid body® 151 (119) 65% (68%)

Medium?® 45 (29) 20% (17%)

Difficult® 34 (27) 15% (15%)

Rigid (I-RMSD < 1.0 A)2 93 (75) 52% (52%)
Flexible (I-RMSD > 1.0 A)? 86 (69) 48% (48%)

2 See the materials and methods section for definition.
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proteins to be significantly smaller in docking bench-
mark 4 than the 55 new cases (p = 0.05; Kolmogorov—
Smirnov test), with average total surface areas of
~24,000 A% and ~29,000 A2, respectively. It is not
clear, however, to what extent this difference reflects
changes in the content of the PDB. Finally, the cases in
the docking benchmark that involve nuclear magnetic
resonance (NMR) structures increased from 16 cases
(9%) in version 4 to 32 cases (14%) in version 5.

Performance of docking algorithms

We applied four docking algorithms (see Materials
and Methods) to the new cases and their results are
shown in Fig. 1a. SwarmDock [29,30], pyDock [31],
and ZDOCK [32,33] are ab initio methods, whereas
HADDOCK (High Ambiguity Driven DOCKing) uses
bioinformatics predictions to drive the docking [34];
in this particular case, it uses CPORT to predict
interface residues [35] and Paratome [36] to identify
complementarity-determining region loops of anti-

(@) protein-Protein Docking
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bodies (see the materials and methods section).
Overall the success rates (at least one acceptable
prediction for a benchmark case) ranged between 5%
and 16% for the top prediction, 20-38% for the top
10 predictions, and 40-67% for the top 100 predic-
tions, comparable to the success rates on version 4 of
the docking benchmark using SwarmDock and
ZDOCK [37,38]. As expected, the success rate was
much higher for the rigid-body category, with the
success rates for the top 10 predictions at 31-50%,
compared to 4-22% for the medium and difficult
cases. The success rates also varied according to
biological category, highest for enzyme containing
complexes (29-41%) followed by the antibody/antigen
complexes (13-38%) and finally the other complexes
(5-36%).

We observed that the performances of the different
docking algorithms were correlated; for 25% of the
rigid-body cases, not a single acceptable solution was
found in the top 10 predictions by any of the algorithms,
and for 22% cases, all four methods succeeded. These

(b) Affinity Prediction
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Fig. 1. (a) Performance of four docking algorithms on the new cases in the benchmarks, showing whether acceptable/
medium/high-quality structures evaluated using the CAPRI criteria were present in the top 1/5/10/50/100 predictions for
each case (denoted by T1, T5, T10, T50, and T100, respectively). Also shown are the overall success rates (bottom),
complex type (left), and binding energy where available (far left). The complexes are ordered first by the difficulty category,
then by I-RMSD. (b) Evaluation of affinity prediction methods. Complexes are ordered by increasing experimental
affinities, to which the predicted affinities were fitted using linear regression in order to compare the performance of various
prediction methods. The performances are grouped using a weighted average linkage agglomerative clustering algorithm
(bottom). Correlations against the experimental data are shown at the top, for all the new benchmark cases and for the
flexible complexes (I-RMSD > 1.0 A) only or for the rigid complexes (I-RMSD < 1.0 A) only. Also shown are the I-RMSD
values (right), complex type (left), and the docking success rate at top 10 predictions (far left).
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figures are much higher than would be expected if the
complexes with correct predictions were randomly
distributed among the rigid-body cases (16% and 2%,
respectively). Some insight into why some interactions
were inherently easier to dock than others, even within
the rigid-body category, can be gleaned by focusing on
the cases for which affinities are available. When all the
docking algorithms failed to find an acceptable solution
in the top 10 predictions, the affinity predictors also
predicted weak binding energies (3EOA, 3BIW, 4M76,
3RVW, 4GXU, and 3H2V). This is either because the
complexes are indeed of low affinity or due to
deficiencies in the energy functions used in both
docking and affinity prediction. The success rates
were higher for enzyme containing and antibody—
antigen complexes than for other complexes, as the
latter tend to form weaker interactions.

We searched for features indicative of a success-
ful docking outcome. We define a successful run as
a benchmark case for which at least three out of
four docking algorithms yielded an acceptable or
better prediction in the top 100 predictions, while
an unsuccessful docking run had at most one
algorithm with an acceptable prediction in the top 100
predictions. We asked which features could separate
the cases with successful docking runs from the cases
with unsuccessful docking runs. Because a major
driving force in many protein—protein docking algo-
rithms is the desolvation of the protein components
[28], we computed the buried interface area (AASA)
upon complex formation, which is a good measure
for desolvation. We further hypothesized that strong
binders were easier to dock than weak binders.
Indeed, AASA and experimentally measured binding
free energy achieved a good separation of the two sets
of cases with successful and unsuccessful docking
runs (Fig. 2). Note that the correlation between AASA

AG (experimental, kcal/mol)
| ) &
o

L4
. @
S0 % 2GAF
124 ®7 °
- o .
S L3
141,48 o =
16 - - . . .
1000 1500 000 2500, 3000 3500

2
Interface area (AASA, A?)

Fig. 2. Interface area versus experimental binding
energy of the benchmark cases with successful docking
runs (green; at least three docking protocols yielding
acceptable predictions in the top 100) or unsuccessful
docking runs (red; at most one docking protocol yielding
acceptable predictions in the top 100).

and the experimental binding energy is low, as
reported in Fig. 1b and discussed below. These two
features were individually mildly predictive of docking
success (e.g., the seven strongest binders all resulted
in successful docking runs), the combination of them
could almost cleanly separate the successful and
unsuccessful docking runs. Below the separating line,
79% docking runs were successful, and above the line,
the docking performance drops to 31%. The outlier
2GAF [39] has the largest interface area of all the
cases and a binding energy stronger than any of the
other cases with unsuccessful docking runs. Below,
we discuss this complex in more detail.

Performance of affinity prediction algorithms

The change in buried surface area, AASA, does
not correlate well with binding energy (r= -0.16),
even for the rigid complexes [interface root-mean-
square deviation (I-RMSD) < 1.0 A, r= -0.28], due
to complexes with large AASA but low affinity, such
as the snpA protease/inhibitor complex (4HX3), as
well as high-affinity complexes with low surface area
such as the C836 (3L5W) and carlumab (4DN4)
antibodies, which are highly optimized for cytokine
binding. Similarly, the binding energy does not
correlate highly with I-RMSD (r = —-0.24), and only
a small improvement is found using a minimal linear
model combining AASA and I-RMSD (r = 0.31) [40].
We further evaluated a number of prediction methods
that include the specific geometry and composition of
the interaction (Fig. 1b). This yielded overall correla-
tions of up to r = 0.53, with a predictive power much
higher for rigid complexes, up to r = 0.75, than for the
flexible cases, up to r=0.53. The best performing
methods were trained either using the first version of
the affinity benchmark [25] or using changes in affinity
upon mutation [41], yet these functions yielded lower
correlations on the new benchmark cases than the
best correlation of r=0.63 previously reported for
the original affinity benchmark [26,27,42]. The corre-
lations were lower for the statistical potentials and
docking scores.

For some of the complexes, the predictions were
consistently poor across all methods. All methods
underestimated the affinities for the antibody/
hemagglutinin complex (4GXU), which features a
glycosylated asparagine at the periphery of the
interface; the C3D/integrin a-M complex (4M76), for
which the interaction is mediated via a Ca®* ion at
the core of the interface; and the efalizumab/integrin
a-L complex (3EOA), which is the most rigid interac-
tion in the benchmark update (I-RMSD = 0.39 A). On
the other hand, all methods overestimated the
affinities for the actin/twinfilin (3DAW), AL-57/integrin
a-L (3HI6), TolA/G3P (2X9A), and HIF2/ARNT (3F1P)
complexes, all of which have high flexibility, for which
the energy penalty of conformational rearrangement
may not be well estimated.
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Highlighted case: Poly(A) polymerase VP55/
vaccinia protein VP39 (2GAF)

Figure 2 shows that the combination of experi-
mentally measured binding energy and buried
surface area forms a good indicator for a successful
docking run. The complex of poly(A) polymerase
VP55 and vaccinia protein VP39 (2GAF) [39],
however, is a striking outlier. Only a single docking
protocol was successful despite 2GAF having the
largest buried surface area of all complexes and
stronger binding than any of the other complexes
that had at most one successful docking run.
Furthermore, this complex belongs to the rigid-body
category, with an I-RMSD of 0.69 A, and we did not
find co-factors or other aspects that might complicate
the docking. We studied 2GAF in more detail to
understand the poor docking performance. Inspection
of the structure (Fig. 3) suggests that the difficulty may
be related to the deep cavity of the receptor being
completely filled by the ligand. To quantify this, we
calculated the degree of encapsulation of a protein by
its binding partner using C® atoms and performed the
same calculation for all the benchmark cases in Fig. 2.
We found that 39 residues of the vaccinia protein
VP39 are within the cavity of the poly(A) polymerase
VP55 (indicated in blue in Fig. 3). This is the highest
number observed in the set of proteins considered
for Fig. 2; 4FQI and 3BX7 have 25 and 12 residues

Fig. 3. Crystal structure (2GAF) of the complex of
poly(A) polymerase (orange) VP55 and vaccinia protein
VP39 (blue and cyan). Vaccinia protein VP39 residues that
are within the poly(A) polymerase cavity are colored blue,
while the residues outside the cavity are colored cyan.
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encapsulated, respectively, while all other proteins
have fewer than 10 residues within the cavities (39
proteins show zero resides). Presumably, the tight fit
seen in 2GAF renders the mouth of the energy funnel
narrow, which may impact the ability of docking
algorithms to find and enter the energy funnel. In
addition, the tight fit may cause difficulty for grid-based
methods (ZDOCK and pyDock) because even small
deviations from the ideal position, resulting from the
discreet rigid-body conformational parameters, may
cause clashes that prevent favorable scores. Indeed,
for a run with a finer rotational sampling (6° versus the
default of 15°), ZDOCK found a high-accuracy
prediction at rank 23. SwarmDock was able to find a
solution in the top 5. Small conformational changes
allowed by SwarmDock, which may have alleviated
steric clashes at the funnel entrance, could have
facilitated a smoother entry to the binding funnel.
Indeed, the lowest-frequency normal mode corre-
sponds to the opening of the binding cavity, allowing
ligand insertion. In the case of HADDOCK, it was the
low quality of the bioinformatics predictions for the
ligand binding site (recall of 7%) that prevented the
sampling of near-native solutions. Docking with center
of mass or random ambiguous interaction restraints
(two ab initio docking modes of HADDOCK) does
generate acceptable solutions in the top 50 (data not
shown). In general, it appears that the poor perfor-
mance of the docking algorithms for 2GAF is caused
by the inability to correctly sample or find the native
orientation of the ligand within the receptor cavity. This
makes 2GAF an exception to the general consensus
in the field that failures of docking protocols are
caused either by inaccuracies of the scoring functions
(including explicit solvation and entropy effects) or by
the difficulty of modeling protein conformational
changes [43,44].

Conclusions

We have presented updated versions to our widely
used protein—protein docking and affinity bench-
marks with 55 and 35 new entries, respectively. This
represents relative increases of 31% and 24%,
respectively, compared with the previous versions.
The updated benchmarks have slightly improved
the balance with respect to both complex types and
the range of conformational changes between bound
and unbound forms complete.

We analyzed the performance of four different
docking methods and a comprehensive set of
state-of-the-art protein—protein complex affinity pre-
diction methods. We found that the newly added
complexes provide a challenging test set for both
docking and affinity prediction algorithms: Structure
prediction success rates and correlations with
experimentally obtained affinites are lower than
reported using previous versions of the benchmark.
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These updated benchmarks will aid the community
in improving these algorithms and increasing our
understanding of biomolecular interactions.

Materials and Methods

Benchmark construction

We collected new structures for our benchmarks from the
PDB [45] using a semiautomatic pipeline. We first used the
BLAST sequence homology search tool [46] to find protein—
protein complexes for which the experimental structures of
both the complex and the unbound component proteins
were available. We also used the SACS resource [47] to
collect a candidate list of antibody—antigen complexes.
These complexes were then filtered using various quality
criteria: (1) the complex structure needed to be determined
by X-ray crystallography, the unbound structures by either
X-ray crystallography or NMR; (2) the sequence identity
between bound and unbound chains needed to be at least
96% with an alignment coverage larger than 80%; (3) the
X-ray resolution needed to be 3.25 A or better; and (4)
chains needed to consist of at least 30 residues.

While constructing the previous versions of our docking
benchmark [17-20], we deemed two complexes redundant
when the pairs of interacting domains were the same at the
SCOP [48] family level. Antibody—antigen complexes were
considered redundant only when the SCOP families of the
antigens were identical, and at least 80% of the antigen
interface residues were shared between the two complexes.
We used SCOPe 2.03 [49] (previously named SCOP 1.75C),
which represented a limited update with respect to the 1.75
release used for the first four versions of the docking
benchmark. To further compensate for the lack of SCOP
coverage for the most recently solved PDB structures, we
inferred their SCOP family-level assignments using the older
PDB entries with identical sequences and known SCOP IDs.

We manually investigated the candidate complexes
extensively, consulting the literature associated with the
PDB entries. We checked whether any residues were
missing or mutated in the interface (allowing such residues
only if binding would not be affected) and whether
co-factors that affect binding were present or compatible
in both bound and unbound forms. The starting point for
the manual step was the first biological assembly listed in
the PDB, although in a number of cases, these were not
accurate and an alternative assembly had to be used.
When multiple entries were available for a complex or a
component protein, we chose the entry that had the best
overall structure quality. This was to some extent a
subjective criterion, as we had to balance all the aforemen-
tioned features in the decision. For component proteins with
NMR structures, we chose the model that had the lowest
I-RMSD from the bound structure. Finally, we prepared
structure files that included the fewest protein chains that
correctly reflected the binding process, aligned the bound
and unbound structures, and retained only those HETATM
fields that we deemed biologically relevant.

We evaluated several properties from the structure files.
The change in solvent-accessible surface area (AASA)
upon complex formation was calculated using the NAC-
CESS algorithm [50]. The I-RMSD was calculated by
superposing the unbound component proteins onto their

bound forms, using the C® atoms for residues that had any
atom within 10 A of any atom of the binding partner. We
also assessed the expected difficulty of a benchmark entry
for protein—protein docking algorithms [17-20]. Complexes
with I-RMSD > 2.2 A were considered difficult, and com-
plexes with I-RMSD < 1.5 A were considered rigid body if
their fionnat [51] were <0.40. All other complexes were
considered to be of medium docking difficulty.

We then used the set of complexes as a starting point for
extending the structural affinity benchmark. For many
entries, affinities were reported multiple times either by
different groups or by using different techniques. These
measurements were mostly in mutual accordance with one
another, typically within 1 order of magnitude in terms of
equilibrium constant. When selecting the value to include
in the benchmark, priority was given to affinities reported
for samples matching the sequences of the reported
structures of the complexes. When this criterion could not
be met or still resulted in multiple values, preference was
based on sequence similarity and the measurement
method. As in the first version of the affinity benchmark,
most affinities were measured using surface plasmon
resonance, isothermal titration calorimetry, or spectro-
scopic methods. The affinities of four new cases were
measured using the more recent thermophoresis and
bio-layer interferometry technologies. We also collected
experimental conditions and additional thermodynamic
and kinetic data whenever available. Affinities were
measured at a pH in the 7-8 range, typically within the
20-25 °C temperature range and with an ionic strength
of around 150 mM. In the context of affinity prediction,
we consider complexes with I-RMSD < 1.0 A as rigid body
and the remaining complexes as flexible.

Docking algorithms

ZDOCK is an FFT-based rigid-body docking algorithm
that performs a grid-based exhaustive search with a 15° or
6° rotational sampling in three-dimensional (3D) rotational
space and a 1.2 A sampling in the 3D translational space
[32,33,38,52]. For each combination of the three rotational
angles, the best scoring prediction in the translational
space is retained, yielding 3600 or 54,000 predictions for
the 15° and the 6° sampling, respectively. Here we report
results obtained using the 15° sampling. We used ZDOCK
version 3.0.2 that uses the IFACE [53] scoring function and
the advanced 3D convolution library [54].

SwarmDock is a flexible docking method employing a
population-based memetic algorithm that combines a
modified particle swarm optimization global search with
an adaptive random local search [29,30]. Elastic network
normal mode analysis is used to model flexibility, and
the algorithm simultaneously optimizes translational,
quaternion, and normal coordinates, using the DComplex
statistical potential as objective function [55]. The algo-
rithm was run at the SwarmDock server [37]; swarms are
initialized around ca 120 points surrounding the receptor
and the algorithm was run four times from each starting
point for 600 iterations. The lowest energy solutions found
in each run were ranked using the centroid potential of
Tobi [56] and clustered, retaining only the lowest energy
member of each cluster.

pyDock [31] is a protein—protein docking protocol built
upon FTDock [57], an FFT-based method that searches for
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geometrically complementary rigid-body poses in the
translational and rotational space. FTDock predicts 10,000
poses that are then scored using an empirical potential
composed of electrostatic interaction (coulombic energy
with a distance-dependent dielectric constant € = 4.0r and
charges specified by the AMBER94 force field [58],
truncated to be in between 1.0 and -1.0 kcal/mol),
desolvation (based on atomic solvation parameters opti-
mized for rigid-body docking), and a limited (10%) contribu-
tion from the van der Waals energy (6—12 Lennard-Jones
potential with atomic parameters from the AMBER94 force
field, truncated to be below 1.0 kcal/mol).

HADDOCK [34] is a semiflexible docking protocol that uses
bioinformatics predictions and biochemical/biophysical inter-
action data to drive the docking process. It uses CNS
(Crystallography and NMR System) [59] as its structure
calculation engine. The protocol consists of three steps:
(i) randomization of orientation and rigid-body docking via
energy minimization driven by interaction restraints (it0),
(i) semiflexible refinement in the torsional angle space
in which side-chain and backbone atoms of the interface
residues are allowed to move (it1), and (i) Cartesian
dynamics refinement in explicit solvent, typically water.
The final structures are clustered using the pairwise backbone
ligand interface RMSD and the resulting clusters ranked
according to the HADDOCK score (weighted sum of the
restraint energy, the van der Waals and electrostatic energies
based on OPLS parameters [60], and a desolvation energy
term [61]). Note that, in the docking performance analysis
presented here, no clustering was performed and individual
models were selected based on their HADDOCK score.

We used the HADDOCK Web server [62], outputting
10,000/400/400 models for the three stages of the
protocol. Restraints to drive the docking were derived
from bioinformatics predictions by CPORT [35], except for
the antibody—antigen complexes for which complementar-
ity-determining regions identified with Paratome [36] were
defined as active, and all solvent-accessible residues of
the antigen were used as passive residues to define
ambiguous interaction restraints to drive the docking. The
predicted interfaces (and their recall and precision) used
for docking are available at the SBGRid Data Bank, along
with all docking decoys and HADDOCK input files from the
deposited HADDOCK docking set [63].

Affinity prediction algorithms

ZAPP predicts protein—protein binding free energies
using a linear combination of nine energy terms and a
constant [26]. Only one term uses the unbound structures
in addition to the complex structures, while the other eight
terms only require the complex structure.

ConsBind is an affinity prediction method based on
machine learning in which the predicted affinity is a
consensus of four learners [42]: multivariate adaptive
regression splines, random forest regression, radial basis
function interpolation, and an M5’ regression tree. The
learners were trained using 143 of the 144 affinities in the
previous affinity benchmark [25] with all 108 features
extracted from the bound structures using the CCharPPI
Web server [64]. Information from the unbound structures
was not used. The final consensus score is the arithmetic
mean of the four learners.

SolveBind is a binding affinity prediction method based
on the global surface model of Kastritis et al. [27],
combining the number of atoms in the interface (NatomsinT)
and the percentages of charged and polar residues in the

non-interacting surface (%AANS, and %AANY):

—logKg = a - %AAG"S + B+ %AAc%a ™ + ¥ - Naomsint + &

with a =0.0857, B =-0.0685, y=0.0262, and & =
3.0125 (obtained after 4-fold cross-validation based on
the rigid-body complexes of the previous affinity bench-
mark [25]). Properties of the non-interacting surface
were found to correlate with affinity [13,27] and may
regulate solvation and electrostatic contributions to
binding affinity [27,65].

Besides the aforementioned binding affinity prediction
methods developed in our groups, we also assessed the
minimal affinity model of Janin (AASA/RMSD) [40], buried
surface area (AASA), the DOPE [66] and DComplex [55]
statistical potentials, the pyDock [31], SIPPER [67],
ZDOCK [68], and FireDock [69] docking scores, as well
as contact potentials (AAG_AW, AAG_AU, AAG_CW, and
AAG_CU) [41] and a surface energy model (AAG V) [70]
derived from mutation data.

Appendix A. Supplementary data

Supplementary data (CDR definition used for dock-
ing antibody-antigen complexes with HADDOCK,
predicted affinities listed by benchmark entry, exper-
imental conditions of the affinities measurements, and
the full references to the experimentally measured
affinities) to this article can be found online at http://dx.
doi.org/10.1016/j.jmb.2015.07.016.

The complete docking benchmark is hosted at
http://zlab.umassmed.edu/benchmark, and the
complete affinity benchmark at http://bmm.
cancerresearchuk.org/~bmmadmin/Affinity.
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3.3 New methods for structural protein-
protein complex prediction

The aim of protein-protein docking methods is to predict the
complex structure starting from the structure of the unbound
partners. The nature of this problem is very complex and
intractable by more physically accurate methods such as
molecular dynamics. From the late 70s of the past century,
several docking methods have been proposed, with very
promising results. But community-wide experiments such as the
CAPRI international contest have demonstrated the limitations of
the current methods. In order to overcome many of the limitations
of the current protein-protein docking methods, a new method
called LightDock is proposed in this thesis. LightDock has been
developed with the purpose in mind of being an experimenting
platform where current and future developments could easily be
prototyped. LightDock is a scoring function-agnostic framework,
i.e. users can incorporate their own function, which is written in
Python and can make use of normal mode analysis,
precomputed ensembles and local non-gradient minimization, in

order to model the protein flexibility.

Manuscripts presented in this section:

Brian Jiménez-Garcia, Jorge Roel-Touris, Miquel Vidal and Juan

Fernandez-Recio (2016, Manuscript) “LightDock: A framework

for multi-scoring function flexible protein-protein docking”

122



LightDock: A framework for multi-scoring
function flexible protein-protein docking

Brian Jiménez-Garcia' <bjimenez@bsc.es>, Jorge Roel-Touris'

<jroeltou@bsc.es>, Miquel Vidal <miquel.vidal@bsc.es>', Juan

Fernandez-Recio' <juanf@bsc.es>

'Joint BSC-CRG-IRB Research Program in Computational
Biology, Barcelona Supercomputing Center, 08034 Barcelona,

Spain.

Abstract

Here we present LightDock, a novel protein-protein docking
framework based on the Glowworm Swarm Optimization (GSO)
algorithm. The framework is written in the Python programming
language and allows the users to incorporate their own scoring
function. By using the swarm information provided by the
different agents during the simulation, the algorithm tries to
converge to the multiple energetic minima. A key point is that the
user scoring function is encoded in the fitness function that
describes the search space to be optimized by the algorithm. The
framework can use either full-atom or coarse-grained
representation, and includes the use of normal mode analysis to
introduce backbone flexibility in the interacting molecules.
Simulations using the framework can be chained using different

force-fields at each independent simulation. We have tested the
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usability and the performance of the framework using two
different scoring functions, DFIRE and pyDock. The results of
LightDock in the Protein-protein Benchmark 5.0 using these two
scoring functions, and a posteriori rescoring step using pyDock
scoring energy in order to combine both DFIRE and pyDock,
show similar results compared with other state-of-the-art docking
algorithms. The LightDock framework is highly versatile, with
many options that can be further developed and optimized by the
users: It can accept any user-defined scoring function, can use
local gradient-free minimization, the simulation can be restrained
from the beginning to focus on user-assigned interacting regions,
and it has support for the use of pre-calculated conformers for
both receptor and ligand. LightDock source code can be freely

downloaded from http://life.bsc.es/pid/lightdock.

1. Introduction

Protein-protein interactions are fundamental to virtually every
cellular process, such as protein expression regulation, cell-cycle
control, or immune response, among others (Eisenberg et al.
2000). With the avalanche of genomic sequences and data on
messenger RNA expression that scientists are dealing with in the
post-genomic era, situating protein-protein interactions in their
functional network context is of vital importance to understand

the physiological processes performed within the cell context.
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According to the most recent data in Interactome3D
(http://interactome3d.irbbarcelona.org), there is  available
structural data at atomic resolution (experimentally determined or
based on a close homologous complex) for only a small portion
(between 1 and 7%) of the estimated number of protein-protein
complexes in human (Stumpf et al. 2008; Venkatesan et al.
2009). This is mostly due to current technical limitations in the
structural determination of protein-protein complexes by X-ray
crystallography or Nuclear Magnetic Resonance (NMR).
Although new advances in low-resolution structural techniques,
such as as cryo-electron microscopy (cryo-EM) or SAXS, are
very promising (Doerr and Allison 2015; Bai et al. 2015, Spilotros
and Svergun 2014), it is unlikely that this huge gap between the
number of estimated protein-protein interactions and the number
of complexes deposited in the Protein Data Bank can be
overcome based only on experimental methods. In recent years,
many efforts have focused on the development of computational
tools for protein-protein complex structure prediction that can
complement experimental methods. This is the so-called docking

problem.

From a technical point of view, the docking problem presents two
main challenges: the efficient sampling of the conformational and
orientation space in search of near-native structures (sampling),
and the identification of such near-native structures among the
many models generated (scoring) (Moal and Bates 2010). In
many cases, the applicability of a given scoring function is

strongly dependent on the sampling approaches used. The
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widely used Fast-Fourier Transform (FFT) based methods can
efficiently generate geometrically complementary rigid-body
docking poses, and their appearance gave rise to a significant
development in the protein-protein docking field. Pioneer
methods were MOLFIT (Katchalski-Katzir et al. 1992) and
FTDock (Gabb et al. 1997), which incorporated an extra grid for
taking into account electrostatics contributions, but other
methods have included desolvation based on atom-contacts as in
ZDOCK (Chen and Weng 2002) or pairwise interaction potentials
as in PIPER (Kozakov et al. 2006). The main advantage of FFT-
based methods is their high computer speed, which can be even
further accelerated by using graphics processing units (GPU)
(Ritchie and Venkatraman 2010; Ritchie et al. 2010). However,
one of the major limitations of this approach is the difficulty in the
inclusion of new scoring schemes within the FFT approach, since
any extra atomic pairwise scoring function needs to be defined as
one or more additional 3D grids, which usually comes at the
expense of a high computational cost. Thus very often, new
developed scoring functions are more efficiently used as part of
an additional scoring step outside the FFT framework. This is the
case of pyDock scoring function, with ASA-based desolvation
optimized for protein-protein association, van der Waals
potential, and Coulombic electrostatics (Cheng et al. 2007).
Another major limitation of the FFT grid-based methods is that
they cannot explicitly consider conformational flexibility. Thus,
soft-potentials have to be used instead due to the restrictions of
the rigid-body docking paradigm. Other types of docking
methods, like PatchDock (Duhovny et al. 2002), use surface
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representation of the molecules and geometric hashing to find
geometric complementarity, in a rigid-body docking framework. In
any of these cases, the use of new scoring functions is strongly
limited by the sampling method, and an explicit conformational

flexibility search can only be applied as an additional step.

The alternative to the FFT grid-based approaches is the use of
explicit representation of the interacting proteins, at atomic or
coarser-grained level, in search of the global energy minimum in
order to identify the native orientation. The explicit representation
of the molecules facilitates the use of a larger variety of scoring
functions, which can represent better the energy of the
association process. However, the computational cost of
conformational search in atomistic representation is high, so in
practice, these methods are often used to perform a first search
in which the molecules are rigid. Very often, the initial rigid-body
docking search is followed by an additional flexible refinement
step, within the same atomistic framework. The ICM-DISCO
docking method pioneered the application of global energy
Monte-Carlo optimization and side-chain refinement (Fernandez-
Recio 2003). In RosettaDock refinement step, a side-chain
minimization using a rotamer library is performed (Schueler-
Furman et al. 2005), but new versions of the software include
more refinements. In HADDOCK approach, several flexible
refinement steps are performed using molecular dynamics, with
increasing levels of flexibility. In order to lower the computational
costs, the number of degrees of freedom of the conformational

search is dramatically reduced by using distance restraints from
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experimental data (Dominguez et al. 2003). These types of
docking methods can also include flexibility during the entire
search phase, wusually by applying a coarser-grained
representation of the interacting proteins. In ATTRACT docking
method (Zacharias 2003; May and Zacharias 2008), a reduced
protein model and the first non-trivial normal modes of the
anisotropic network model (ANM) are used. SwarmDock (Li et al.
2010; Moal and Bates 2010) method is based in the particle
swarm optimization (PSO) algorithm, which makes use of normal
modes to simultaneously optimize docking poses with an

electrostatics and van der Waals scoring function.

On the scoring side, the development of new functions that can
be independently applied to different sets of docking models
generated by a variety of docking methods is an active area of
research (Moal, Moretti, et al. 2013). Recently reported
approaches include an asymmetric potential designed specifically
for antibody—antigen docking (Brenke et al. 2012) or the
integration of bioinformatics and experimental information
(Schneidman-Duhovny et al. 2012). A large benchmark of more
than a hundred scoring functions on their capabilities of rescoring
docking poses generated by the SwarmDock method was
recently reported (Moal et al. 2013). However, as above shown,
the use of new scoring functions in docking has been traditionally
limited by the type of sampling method. On the one hand, grid-
based docking search methods have difficulties in efficiently
including energy-based scoring functions. On the other hand,

molecular dynamics, minimization or Monte-Carlo sampling
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methods usually are linked to a specific force-field and cannot
easily accept new scoring schemes. It is thus necessary the
development of new sampling schemes in docking that can use
multi-scale representation of the proteins, accept flexibility at
different degrees, and accommodate a large variety of new

scoring functions.

In this context, Swarm intelligence (Sl) is a family of the artificial
intelligence algorithms inspired by emergent systems in nature,
which can perform a more efficient search in a complex space,
quite independently on the scoring function to optimize. Basically,
those algorithms make use of simple agents that interact locally
in a decentralized way, and whose interactions lead to complex
emergent patterns or systems in nature, e.g. fish schooling or
termite mounds. Sl algorithms have many interesting properties:
heuristics are generally simpler because there is no need of
central control, they are inspired by nature metaphors which
makes their parameters easy to understand by humans and,
finally, they tend to be easily scalable as more agents can be
added at any time. Sl algorithms, such as PSO and some
variants have been applied to protein-ligand docking, e.g. Tribe-
PSO as implemented in AutoDock 3.05 (Chen et al. 2006) and
PSO@AutoDock (Namasivayam and Gulnther 2007), as well as
to protein-protein docking, e.g. SwarmDock (Li et al. 2010). A
related algorithm is Glowworm Swarm Optimization (GSO)
(Krishnanand and Ghose 2008), a bio-inspired algorithm from the
Sl family, which is based in the concept that in nature,

glowworms are being attracted by other mates depending on the
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quantity of emitted light. This metaphor is used by the GSO
algorithm for simultaneously capturing multiple local optima in
multimodal functions. Each agent in the algorithm, a glowworm,
carries out a quantity of /uciferin which encodes the actual fithess
of the position of the agent in the explored search space. The
algorithm has been applied to many different problems
(Krishnanand and Ghose 2009; Liao et al. 2011; Huang and
Zhou 2011), but not explicitly to the protein-protein docking. Here
in this work we demonstrate that GSO is a good candidate as a
global optimization mechanism for capturing the multiple local
and global energetic minima of the docking energetic landscape,
independently from the force-field used. GSO has some
advantages over PSO (Krishnanand and Ghose 2008). First,
GSO was initially designed for capturing multimodal local and
global minima or maxima, while PSO was only intended for
capturing global maxima or minima. This property is especially
relevant when exploring the protein-protein docking energetic
landscape, which tends to be very noisy. Moreover, in GSO the
number of captured minima or maxima is proportional to the
number of defined agents, while this is not true in PSO, which
poses a major drawback in systems which are required to scale.
On the contrary, the major drawback of GSO over PSO is the
computation time, which tends to be one order of magnitude

higher.

The development of a new protein-protein docking method based
on the GSO algorithm is justified by its robust performance in

very noisy environments, as well as by its scalability (an
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interesting property in high-performance computing
architectures). The new method has been devised as a protein-
protein docking framework for fast-prototyping and testing of new

scoring functions.

2. Theory: a new framework for protein-
protein docking

2.1. LightDock: GSO algorithm applied to protein-protein
docking

The agents in the GSO algorithm are defined as glowworms
which carry a luminescent quantity called /uciferin. At each step
of the simulation, the quantity of luciferin | depends on the
evaluation of the complex energy by the user-defined scoring S
function in the actual search space x and the previous value of
the luciferin based on the trajectory of the given glowworm
(equation 1). Decay of the quantity of luciferin is controlled by the
p variable, and y represents the enhancement constant, i.e. how
much affects the actual evaluation of the energy in the luciferin

gquantity.
LE+D=Q0-p) - L(®) +y S(xt+1)) (1)

In LightDock, these parameters are defined by default as: p =
0.4, y = 0.6, initial luciferin I(t=0) = 5.0. Each glowworm g;
initially represents a specific position in the translational and

rotational space of the ligand (equation 2), where ¢t,, t, and t,
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are the components of the vector v,,gin—iigand enrer @9 Gwr s
qy and q, are the components of the quaternion that represents
the ligand rotation in the four-dimensional quaternions space.
The use of quaternions in the framework is justified by their
smaller physical memory footprint compared to three-dimensional
rotation matrices (4 float variables instead of 9, 3x3), and by the
absence of the known gimbal lock of sampling based on Euler
angles or polar coordinates, and renormalization problems
(Shoemake 1985).

gl = [txl ty, tzt qwl qxl Qy: qz] (2)

In addition, the framework has the capability of using the
anisotropic network model (ANM) (Atilgan et al. 2001; Doruker et
al. 2000) to introduce a certain degree of backbone flexibility
during the protein-protein binding process. In this case, each
glowworm agent represents, in addition to a translation/rotation
ligand position, the extent of deformation along each normal
mode for both receptor, nr, and the ligand, nl, in the optimization
vector (3). The number or non-trivial normal modes is

customizable for the receptor, R, and the ligand, L.

gi = [tx' ty' Lz Qus Gy Qy' 4z, N1 R, nll..L] (3)

ANM is implemented in the LightDock framework via the ProDy
Python library (Bakan et al. 2011). The ANM model is calculated
on the Ca atoms of the backbone of both receptor and ligand and

then extended to the rest of atoms for each residue. By default,
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we considered the first ten non-trivial normal modes (R =L = 10)
because of the good compromise between the percentage of
recovery in the interface as seen in (Moal and Bates 2010a)
(55% in ten normal modes versus 44% for the first five non-trivial

normal modes) and the computation time required.

2.2. Initial receptor/ligand models (glowworms)

Each independent simulation in a LightDock run will contain a
fixed number of receptor/ligand models (glowworm group) in
which the randomly defined ligand positions will cover a given
region around the receptor. The initial ligand positions can show
a certain overlapping between some of the glowworm groups so
that taking all together they will cover all regions around the
receptor. The use of independent simulations from different
glowworm groups has important advantages. First, only the
glowworms within the same group can see each other. In this
way, the agents can only sample a localized region of the
receptor and thus can maximize the acquired information by the
swarm in this specific region of the search space. Second, it
makes the algorithm to be embarrassingly parallel, with no need
of communication between parallel executions and facilitates the
optimal execution of the algorithm in high-performance
computing architectures or small clusters. Finally, it offers the
opportunity to the users to avoid regions that are known in

advance not to be likely involved in binding, i.e. transmembrane
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domains, as opposed to many FFT-based methods where this

filtering has to be performed a posteriori.

In order to guarantee reproducibility of the results, the random
number generator used in LightDock always saves the initial
seed. This seed can also be given to the framework as an
argument. The initial conditions of the algorithm, receptor/ligand
starting models and the position of the glowworm groups over the
receptor surface, are calculated on basis of the random number

generator seed.

The setup of the initial glowworm groups is as follows. Initially, a
fixed number of initial group centers Ny (by default 400) are
defined around the receptor, by using the spiral method
(Rakhmanov et al. 1994), and are projected using a ray-tracing
technique to find the closest atom from the receptor at a distance
of the maximum radius of the ligand. Fig. 1 shows the initial
disposition of the 400 initial group centers in the 1VFB complex

(only receptor is shown).

For each initial group center, glowworms are defined by randomly
positioning the ligands (by default 300) so that their center of
coordinates are placed within a 10 A sphere from the given group
center. If NMA representation is considered, deformational
extents for receptor and ligand are randomly generated from a

Gaussian distribution with ¢ = 4.0 and ¢ = 3.0.

The number of initial glowworm group centers N; is given as an

input of the application. To guarantee a correct sampling over the
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surface, a certain density of these centers is needed. Our
research shows that, ideally, this number should be higher than
1.5 when the radius of the sphere used to randomly position the
ligands is 10 A. The framework calculates the density
automatically and if the density is not met, warns the user about

the possible under-sampling.

Figure 1. The Fv fragment of the anti-hen egg white lysozyme
antibody D1.3 in its free and antigen-bound forms (PDB code
1VFB). The receptor (in blue) is surrounded by 400 initial

glowworm group centers.
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LightDock framework can also support the use of pre-calculated
ligand poses generated by FTDock (Gabb et al. 1997). Each
docking pose is represented in FTDock by a translation vector
and three Euler angles. The top N FTDock solutions are
classified based on their translation and rotation values into one
(or more) LightDock glowworm group. If the number of solutions
N provided by FTDock is not sufficient to populate the different
LightDock glowworm groups, new starting positions are randomly
generated within the selected glowworm group. However, in our
tests the use of pre-calculated FTDock poses had a lower
performance (data not shown), when compared to completely
random poses. This lower performance could be explained by the
bias introduced in the population of glowworm poses, which
perhaps makes that many energetic wells are not correctly

explored.

Regarding the ANM representation, the initial distribution of the
normal modes for each glowworm agent is based on a Gaussian
distribution (1 = 4.0 and ¢ = 3.0) to assure an acceptable internal
bonded geometry. To minimize over-itting, these values were
tested against a small set of only four complexes of the Protein-
Protein Benchmark 3.0 (Hwang et al. 2008) that were classified
as rigid in the mentioned benchmark. Intuitively, a relatively large
value of ¢ is required to ensure some variability, but u centered in
0.0 does not seem to be a good choice according to our tests
(data not shown), since the range of the normal mode extents
generated is not sufficient to recover unbound-bound

conformational changes. Other methods as ATTRACT (de Vries
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and Zacharias 2013) and SwarmDock (Moal and Bates 2010a)

reported similar values for the deformational extents.

Figure 2. The Adrenoxin Reductase-Adrenoxin Complex (PDB
code 1E6E). Receptor is shown in blue, 300 ligand positions for a
given glowworm group are represented using a three-axis arrows
model (red, yellow and blue represent the x, y and z orthogonal

axis), showing their initial translation and rotation.

2.3. GSO sampling

As above described, sets of initial receptor/ligand putative
models (glowworms) are defined for their use in independent

simulations. Each of these glowworms will move towards the
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best-scoring (luciferin) neighbor glowworm based on the
probability calculated as described in Equation 4 (Krishnanand
and Ghose 2008),

L(0)-1i(t)
Xken;(e) le(©O-1;()

pi;(t) = (4)
where neighbor glowworms of glowworm g; (N;) are defined by
the variables called maximum number of neighbors (by default 5)
and vision range (by default 5.0 A distance). The distance in the
search space between two receptor/ligand models (glowworms)
used to update this list of neighbors (N;) is computed as that
between the centers of the minimum ellipsoids of the ligands
(translation and rotation of the receptors does not vary). We also
tried a different definition of the distance between two ligands as
the root mean squared distance (RMSD) computed for the seven
representative points of each pose (using the six poles and the
center of the minimum volume ellipsoid that contains a given
ligand pose by its g; position vector). However, this metric had a
higher computational cost and was too sensitive to the pose
rotation due to the RMSD calculation, and as a consequence,
agents very far in the translational space were erroneously seen
as neighbors. The neighborhood of each glowworm as well as
the vision range are dynamically updated at each step depending
on some constants as described elsewhere (Krishnanand and
Ghose 2008), so that the vision range can vary up to a maximum
vision range (by default 20.0). The parameter 8, which limits the
association of neighbors in the GSO algorithm, is set by default
to 0.16.
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The evolution from one ligand pose (initial glowworm g¢) towards
another one (target glowworm g,) is composed of two different
movements: a translation in the translational space and a rotation
in the space of the quaternions. Within the translational space, a
new pose p, will be built from the initial pose p, by applying a
number in the interval (0, 1) as defined in the translation step
variable (by default 0.5) to the translation vector t, between g,
and g,. As for the rotational movement, the movement in
quaternion space is calculated using the spherical linear
interpolation (SLERP) (Morrison and Jack 1992) between the
quaternion components of g; and g, with a default step of 0.5. In
the case of using the ANM representation, a simple interpolation
in Euclidean space with a step of 0.5 will be included in the ligand

movement. All of these step values can be changed by the users.

2.4. Scoring functions

The movement of the different agents though the search space is
driven by the fitness of the function S of the quantity of luciferin.
The GSO algorithm is able to optimize the function as long as the
agents are uniformly distributed along the search space. In that
sense, the optimization method is independent from the search
space and makes the strategy valid for any scoring function
used. LightDock framework offers the possibility to add new
scoring functions abstracting the way of how molecules are
considered. Thanks to a piece of software called adapter, the

users can specify their own protein models (full atoms or coarse
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grained). In the movement step, the model will be rotated and
translated and there will be a new class coded by the user, the
evaluation module, the one in charge of evaluating the fitness of
the scoring function. To demonstrate the possibilities of the
framework regarding further extension, two scoring functions
have been implemented and tested: DFIRE (Liu et al. 2004) and
a faster version of the pyDock scoring function (Cheng et al.
2007), which uses contact solvation from unbound precomputed

ASA values (upcoming publication).

2.5. Clustering of final docking poses

The resulting models from each independent simulation (by
default 300) are merged and clustered. Clustering plays an
essential role in the final success rate independently of the
scoring function applied, since it removes redundant models.
Here we are presenting two different clustering approaches,
which results in a huge decrease of the final number of solutions,

while preserving the overall hits/solutions ratio.

The first approach consists in a hierarchical clustering (Ward
1963) based on the implementation of the algorithm in the SciPy
library (Jones et al. 2001). After a sufficient number of steps, the
algorithm converges to a set of clusters which clearly represent
energetic minima (see Figure 3). But the degree of convergence
varies from complex to complex, and isolated predicted poses

can often appear. Moreover, for each of the identified minima, we
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are only interested in the most energetically favorable
receptor/ligand models (in Figure 3, the glowworms with more
negative scoring for each of the groups). In this hierarchical
clustering, only the groups of receptor/ligand models with more
population (i.e. with a higher convergence degree) are selected.
Then, for each of the identified clustered groups, the top Z
ranked solutions by energy are selected where Z is proportional

to the number of glowworms in the group found.
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Figure 3. Ligand RMSD with respect to the reference vs.
pyDock energy scoring of the different glowworms for a given
cluster at step 100 of the simulation. Within the square are the

poses that will be removed using the hierarchical clustering
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approach because their group has no relevant population or they

represent noisy receptor/ligand models.

We also applied a simple clustering procedure based on the
Basic Sequential Algorithmic Scheme (BSAS) algorithm
(Theodoridis and Koutroumbas 1999), which is devised to be
able to discard redundant poses with a ligand RMSD below 4 A.
First, the best docking pose, in terms of energy, is identified
establishing the first sub-cluster. Then, and sequentially, the rest
of receptor-ligand complexes are structurally evaluated against
the poses already clustered. If they are 4 A below than any of the
cluster representatives in terms of ligand RMSD, they will be

included in that cluster, otherwise they will establish a new one.

After testing both procedures on the Protein-Protein Docking
Benchmark version 5.0, the BSAS-based clustering method was
established as the default clustering strategy due to a better ratio

of near native solutions versus the number of total predictions.

2.6. Re-scoring and the use of multiple scoring functions

Simulations on the same complex using different scoring
functions could be combined in order to capture different near-
native predictions. One direct way of combining the results from
any two or more different simulations is to merge the resulting
models and score them by using the same function, in order to

normalize the models. With this purpose, before evaluating the

142



combined results, we tested the predictive success of LightDock
when the models (obtained either with pyDock or DFIRE scoring
functions) were re-scored by pyDock scoring function. The main
rationale behind this rescoring process is that pyDock is one of
the top performing scoring functions, as found in the scorers
round of the CAPRI community-wide experiment (Pallara et al.
2013; Lensink et al. 2016), and it is sufficiently fast to not become

an overhead in the total computation time of LightDock.

2.7. Benchmarking and evaluation of results

The performance of the LightDock protocol was evaluated on the
Protein-Protein Docking Benchmark 5.0 (Vreven et al. 2015) with
a total of 230 cases. The predictive success rate was defined as
the percentage of cases in which at least one near-native
solution was found within the top N solutions (N = 10, 100), as
ranked according to the corresponding scoring function. Near-
native solutions were defined as those ones with a ligand RMSD
< 10 A with respect to the ligand position in the reference

structure (when receptor molecules are superimposed).
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3. Evaluation of LightDock performance
3.1. Overall predictive performance of LightDock

The predictive performance of LightDock was tested on the
recently reported Protein-Protein Docking Benchmark 5.0,
composed of a total of 230 complexes. LightDock was run using
default parameters (see Theory section), and two scoring
functions (DFIRE and pyDock) were independently tested. For
each docking case, LightDock generated a total of 120,000
poses, which were clustered as described in the Theory section.
The final number of docking models ranged between 600 (PDB
1CLV) and 6,387 (PDB 1DE4) when using pyDock scoring
function, and between 748 (PDB 1CLV) and 6,713 (PDB 1AKJ),
when using DFIRE.

As can be seen in Figure 4, the use of pyDock scoring function
within LightDock showed better success rates for the top 10
docking solutions than when using the DFIRE scoring function.
The performance of LightDock with pyDock scoring function is
only slightly worse than that of pyDock applied on FTDock
docking models, as in pyDock server (Jiménez-Garcia et al.
2013). For the top 100 success rates, this difference in
performance between pyDock and DFIRE scoring functions is
higher, and interestingly, LightDock with pyDock is even slightly
better than standard FTDock+pyDock (suppl. Figure S1).
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Figure 4 Predictive success rates for LightDock on the Protein-
Protein Docking Benchmark 5.0, n = 230. Success rates for the
top 10 docking models are shown for: LightDock with pyDock
scoring function (blue), LightDock with DFIRE scoring function
(orange), LightDock-pyDock after rescoring by pyDock (grey),
LightDock-DFIRE after rescoring by pyDock (yellow), final
combination of LightDock-pyDock and LightDock-DFIRE after
rescoring with pyDock (purple). For comparison, the performance
of the standard FTDock/pyDock protein-protein docking protocol

is shown (green).

3.2. Combination of results from different scoring functions

Given that LightDock framework supports the use of a variety of
scoring functions, we have evaluated the advantages of

combining the results obtained by different scoring functions.
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Figure 5A,B shows the number of successful cases obtained by
LightDock on the protein-protein benchmark 5.0 when using
independently either the pyDock or DFIRE scoring functions
considering the top 10 or top 100 docking models, and how many
cases were predicted by both scoring functions. As Figure 5
shows, a significant number of cases were only successful with
one of the scoring functions but not the other. This important
degree of complementarity in the results suggested the possibility
of combining the models from the two LightDock simulations as a
way to increase the number of successful cases. Interestingly,
the number of successful cases after pyDock rescoring increased
for both methods. The improvement was more evident for
LightDock/DFIRE models, which after re-scoring with pyDock,
achieved success rates similar to LightDock/pyDock. This shows
that the differences in the success rates when using pyDock or
DFIRE as scoring function during the search mainly depended on
the scoring of the resulting models, and not on the search
algorithm itself, given that sampling, even with DFIRE, was able
to provide good models that were later identified by pyDock re-

scoring.
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Figure 5. Venn diagrams showing the number of successful
cases for LightDock with pyDock (green) or DFIRE2 (blue)
scoring functions. A. Successful cases when considering the top
10 docking models. B. Successful cases when considering the
top 100 docking models. C. Top 10 successful cases after
rescoring with pyDock. D. Top 100 successful cases after

rescoring with pyDock.

When combining the docking models obtained from the two

LightDock versions, and subsequent re-scoring by pyDock,
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global success rates (19.1% for top 10; 44.0% for top 100)
slightly improved with respect to the individual simulations, and
were even better than those of standard pyDock on FTDock
models (Figure 4). However, we should note that this small
improvement comes at the expense of doubling the
computational cost, since two independent simulations are

needed.

4. Discussion

4.1. The use of ANM significantly improves LightDock
predictive success

The use of ANM-based flexibility is expected to provide better
predicted models. To evaluate this, we tested a version of
LightDock that did not use the ANM model, being thus completely
rigid-body sampling, on a heterogeneous set of 30 complexes (6
rigid, 17 low-flexible, 5 medium-flexible and 2 flexible) from the
Protein-Protein Benchmark 5.0. The success rates were much
worse (10.0% for top 10; 20.0% for top 100; as compared to
16.7% and 26.7%, respectively, when using ANM). Interestingly,
the analysis by category of flexibility shows that there is no
difference between the use of ANM in the rigid-body class
(16.7% for top 10 and top 100, using or not ANM), but the
difference of success rate comes from an improvement in the

low-flexible and medium-flexible categories for both top 10 and
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top 100 results. This improvement provided by ANM is similar as
that reported for other state of the art methods that use normal

mode analysis.

4.2. LightDock is more efficient in flexible cases

It is interesting to analyze whether the performance of LightDock
(with different scoring functions) depends on the flexibility of the
interacting proteins. For that, we have classified the cases,
according to the I-RMSDCa between the unbound and bound
states (as defined in the Protein-Protein Docking Benchmark
5.0), in the following categories: rigid (I-RMSDCa < 0.5 A), low-
flexible (0.5 A < I-RMSDCa < 1.0 A), medium-flexible (1.0 A < I-
RMSDCa < 2.0 A), flexible (2.0 A < I-RMSDCa < 3.0 A) and
highly-flexible (I-RMSDCa > 3.0 A). LightDock with pyDock
performs better in the low-flexible cases (Figure 6), while the
standard FTDock+pyDock protocol was more successful in the

rigid cases. The introduction of the ANM representation is
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Figure 6. Predictive success rates for LightDock on Protein-
Protein Docking Benchmark 5.0, n = 230, according to unbound-
to-bound mobility. Top 10 success rates are shown for each
LightDock strategy, in comparison to FTDock/pyDock standard

protein-protein docking protocol.

probably improving the predictions in the more flexible cases, but
at the expense of worsening the results in the rigid cases (due to
the introduction of some noise in the already good geometries).
Strikingly, LightDock with DFIRE showed its best results in the
rigid cases, as in rigid-body FTDock+pyDock. It seems that the
DFIRE scoring function cannot take advantage of the ANM model
in the more flexible cases, perhaps due to the more coarse-

grained character of the potentials. When both approaches are
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rescored with pyDock, these tendencies remain, which suggests
that the scoring function imposed some differences in the ANM-
based conformational search. Results for top 100 show a similar

fashion compared to top 10 (suppl. Figure S2).

4.3. Extending the framework

Four additional scoring functions have been implemented in the
framework as a demonstration of the capabilities of LightDock for
being extended with new scoring functions: MJ3h (Miyazawa and
Jernigan 1999), PISA (Viswanath et al. 2013), TOBI (Tobi and
Bahar 2006), and a faster version of the DFIRE scoring function
used in this work, but implemented using the Python C
extensions system. Implementation of user custom scoring
function only requires the codification of two Python pieces of
software: The Adapter and the Scorer classes. The Adapter is
the piece of code in charge of translating the atomic structural
information stored in PDB format into the model used in the
Scorer class. For example, this model can be a set of atoms or a
coarse-grained model, depending on the model that the custom
scoring function needs. The Scorer class is the piece of code
where the scoring function is implemented. The Scorer class
receives a model from the Adapter class and uses the structural
information into the coded scoring function. LightDock framework
is agnostic to the model used as it will move into new
receptor/ligand models independently from the structural

representation used.
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Several other options are supported by the framework. For
instance, local energy optimization using a non-gradient
algorithm has been implemented. For each glowworm groups
and each step, the best glowworm in terms of scoring energy is
minimized using this non-gradient algorithm. This strategy should

help the algorithm to converge in fewer steps (data not shown).

On the other hand, the LightDock framework includes the option
of using pre-calculated conformational ensembles, in which case
each structure for receptor and ligand is identified by a unique id
that is added to the optimization vector. For the future, a clearer
strategy to define the distance between two conformers is
needed so that it can be more efficiently used when one of the
glowworms is moving towards the other one. The search could
be optimized by maintaining a global list of the most successful
or used conformers for receptor and ligand, and then use it to

define a probability for selecting a given conformer.

Multi-scale or chained simulations are currently supported by the
framework. One possible strategy is to perform a first run of the
LightDock protocol using a given scoring function and then, after
identifying the best energy wells, the predictions could be
expanded by a new LightDock run, using the same scoring
function or a different one, with finer sampling parameters for
instance. In this way, a first quick run could be performed with a
coarse-grained force-field, which can be followed by a more

accurate refinement using a full-atom scoring function.
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Finally, the framework includes more than 200 unit tests and
more than 10 regression tests from point to point to guarantee a
good testing coverage of the code, and additional usage

examples to users who aim to extend the framework.

4.4. Computational cost

At the moment, one of the major drawbacks of the LightDock
implementation is the computational cost compared to other
protein-protein docking methods, especially compared to FFT-
based methods. The average computation time for all the 230
complexes in the Protein-Protein Docking Benchmark 5.0 using
DFIRE scoring function and 400 CPU cores is of 4.6 hours while
for pyDock scoring function is of 7.0 hours in the same
conditions. Our method is notably slower, although optimizations
at the level of the scoring function (the most time-consuming
part) could be performed, as shown with the faster version of the
DFIRE scoring function using the Python C extensions
mechanism. The speedup achieved with this faster
implementation of the DFIRE scoring function is higher than 5x
compared to the native Python implementation (Vidal 2015). In
addition, LightDock is implemented using multicore and MPI
Python libraries, and the algorithm is embarrassingly parallel
which means that can ideally scale proportional to the number of
CPU cores used. Native Python extension and Cython

(www.cython.org) implementations, together with further
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parallelization, open a promising way to optimize the LightDock

framework in the future.

5. Conclusions

We have presented here a new protein-protein docking protocol
called LightDock, which is based on GSO algorithm for sampling
the translational and rotational space of protein-protein docking,
and ANM representation for the inclusion of flexibility. LightDock
aims to be a publicly available framework for testing and
developing new scoring strategies for protein-protein docking.
The use of pyDock scoring function during the search provides
comparable success rates to state-of-the-art protocols, and the
combination with additional functions, like DFIRE, can further
improve the predictions. The docking framework has capabilities
for the use of many different scoring functions and the inclusion

of flexibility at different levels.
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Suppl. Figure $1. Predictive success rates for LightDock on the
Protein-Protein Docking Benchmark 5.0, n = 230. Success rates
for the top 100 docking models are shown for: LightDock with
pyDock scoring function (blue), LightDock with DFIRE scoring
function (orange), LightDock-pyDock after rescoring by pyDock
(grey), LightDock-DFIRE after rescoring by pyDock (yellow), final
combination of LightDock-pyDock and LightDock-DFIRE after
rescoring with pyDock (purple). For comparison, the performance
of the standard FTDock/pyDock protein-protein docking protocol

is shown (green).
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standard protein-protein docking protocol.
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4. Results summary




“Nobody expects the Spanish Inquisition!”

Monty Python



4.1 Optimization of complex modeling
tools for HPC architectures and
implementation in web applications

Web applications are especially useful for the biology community.
First, it is the easiest way to encapsulate a workflow formed by
different computational tools and to make it ready for non-expert
users. The research group that make their computational tools
available to the community their computational tools have a
centralized way to track the changes on the software and a direct
feedback from their users about the usefulness of their protocols.
Second, it allows the opening of many protocols to the general
public, without making distinction on the software or the
resources required to use it, e.g. many potential users could not
have access to HPC platforms to run a specific software. Finally,
many protocols might be integrated in meta servers or databases
which incorporate knowledge and capabilities of heterogeneous

online tools.

Three different works are presented in this section. The first
manuscript, describes a web server for protein-protein complex
prediction using the pyDock (Cheng et al. 2007) protocol
developed in our group. The second manuscript presents the
CCharPPI web server, an online tool which helps characterizing
protein-protein interfaces using up to 108 different energetic
descriptors. These descriptors come from the public domain

distributed software or have been be re-implemented in this web
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application. This can be applied to characterize experimental
complex structures, but can be also a valuable tool to score
docking models. Finally, the last manuscript demonstrates how
our protein-protein docking protocol, pyDock, can be extended
using experimental SAXS data to better filter and classify
predictions on basis to this extra information (Pons et al. 2010)

on a public web server.

411 pyDockWEB: A Web Server for Rigid-Body
Protein-Protein Docking Using
Electrostatics and Desolvation Scoring

Despite its excellent predictive capabilities, the original pyDock
protocol (Cheng et al., 2007) suffered from severe computing
performance flaws, e.g. the protocol required single-CPU
execution, and it was not available as a web server that could be
used by external researchers. To overcome those problems,
during this thesis the pyDock protocol was rewritten to avoid old
library dependencies, the framework was parallelized, and a web

application was developed.

The rewriting process made the source code of pyDock, written
in Python, more robust to changes (more than 100 unit tests and
regression tests were coded). After a few iterations of
development, a version 3 of pyDock was internally released, only
requiring Numpy (www.numpy.org) and Scipy (www.scipy.org)

packages as external library dependencies. PyDock framework is
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organized in different modules, for which the overall speedup

was between 2 to 3 times faster in terms of computation time.

Parallelization process took two main aspects: sampling, by
means of FTDock (Gabb et al., 1997), and scoring of the pool of
generated poses (pyDockSER). Parallelization of the scoring
step was almost trivial due to the embarrassingly parallel nature
of the code. In the other hand, parallelizing FTDock protocol
required a partial re-implementation using the distributed memory
MPI library. Moreover, performance was dramatically increased
thanks to the re-dimension of the grid to take advantage of
better-performing convolution functions from the FFTW

(www.fftw.org) library (see Equation 1).

Thanks to the technical improvements in the pyDock framework,
a web application exposing many features and modules of the
protocol was developed. The web server had an excellent
reception by the community, with more than 4,600 jobs served at
the time of writing this thesis, and with many regular users that
produce actual scientific research and cited the article 28 times

since its publication in 2013.
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4.1.2 CCharPPl Web Server: Computational
Characterization of Protein-Protein
Interactions from Structure

A wide variety of biophysical functions and energy potentials
have been developed by the community in an effort to
characterize protein—protein interactions at atomic level, which is
key to understand their role in biological systems. These tools
are scattered through many publications and web servers, and
are as diverse as the number of research groups that have
developed them. Moreover, many of these predictive methods
are only available at the literature and no specific implementation
was reported. Within this context, we developed an online tool
called CCharPPI for collecting or re-implementing many of these
methods in an easy-to-use web tool. CCharPPI is able to
calculate up to 108 different energetic descriptors for a given
protein-protein complex structural model, and has demonstrated
to be a useful tool for developing new methods based on
machine-learning techniques (Moal et. al. “Web-search based
integration of biophysical models for protein assembly selection’,

in preparation).

CCharPPI is a popular service with more than 1,950 served jobs
at the time of the writing of this thesis. These jobs can represent
a single protein-protein complex prediction or a batch job of up to

100 protein-protein complexes.
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41.3 pyDockSAXS: Protein-Protein Complex
Structure by SAXS and Computational
Docking

Many high-resolution experimental techniques have strong
technical limitations for determining transmembrane protein
complexes or describing the dynamic nature of protein-protein
interactions. On the contrary, SAXS and other low-resolution
techniques can be applied in a high-throughput context, but with
resolution limitations. Previous work in the group showed that the
combination of SAXS data and the protein docking protocol
pyDock doubled the predictive success rates of docking. In this
thesis, pyDockSAXS has been made it available to the

experimental community as a web server.

The web tool accepts receptor and ligand PDB structures, and
CRYSOL SAXS data as input. For advanced, there exists the
option to use previous docking pyDockWEB results as a starting
point. At the time of publication of the article, there was only
another web application with similar capabilities. Despite its
recent publication, pyDockSAXS tool has served more than 280

jobs to external users.
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4.2 Validation and current challenges in
protein-protein docking methods

The growing interest in protein-protein interactions and the
technical advances in the computational field have fostered the
number of in silico tools developed in the past years. With the
aim of modeling protein complexes starting from the isolated
component  structures, testing and comparing these
computational methodologies have become fundamental in order
to assess their performance, identify their limitations, and
encourage new developments in the field. In this context,
community-wide experiments such as CAPRI provide a common
ground for testing the predictive capability of currently available

docking methods.

First, the performance of our pyDock protocol (Cheng et al.,
2007) on the last CAPRI round (Lensink and Wodak, 2013) will
be evaluated and discussed. Second, a suitable set of protein-
RNA complex structures has been compiled in order to establish
a common framework for the evaluation of different protein-RNA
interaction predicting methods. The last manuscript describes an
update of the protein-protein benchmark, which integrates the
affinity and protein-protein benchmarks and where our group has
participated in the evaluation of the new complexes included and

the success rate of our protocol has been updated.
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421 Expanding the Frontiers of Protein-Protein
Modeling: From Docking and Scoring to
Binding Affinity Predictions and Other
Challenges

The fifth CAPRI edition (2010-2012) (Lensink and Wodak, 2013)
was formed by a total of 15 targets, including special targets
consisting in the prediction of binding affinity values and free
energy changes upon mutation (Moretti et al., 2013), as well as in
the prediction of sugar binding and interface water molecules
(Lensink et al., 2014). Our group participated in all the proposed
targets with high success: our predictions were globally placed
among the top 5 ranked groups out of more than 60 participants
(Lensink and Wodak, 2013) (Fig 1 from section 3.1.2 and Table
S$11A from Lensink and Wodak, 2013).

Compared to previous participations, our increase in
performance was due to the generation of docking poses with
FTDock (Gabb et al., 1997) at a grid resolution of 0.7 A (instead
of 1.2 A as in the past), as well as with SwarmDock program
(Moal and Bates, 2010) for part of the targets. In selected targets
(T47, T48 and T58), external biological information was applied
in form of distance restraints, although this hardly made any
difference. In target T58, SAXS data were used for
complementary scoring by applying our pyDockSAXS protocol
(Pons et al., 2010). The predictive performance did not improve
at all due to the globular shape of the complex, a difficult situation
for the SAXS technique. In general, our pyDock protocol

submitted consistently good models for all non-difficult cases.
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These represented realistic conditions in which subunits were in
the unbound conformation or needed to be modeled based on
homologous templates. In all cases but one, pyDock successful
models were ranked within the first five submitted solutions,

being ranked as first in two out of six successful cases.

In the non-standard targets, T47, T55, T56 and T57, new ad hoc
protocols had to be developed. T47 was an easy target regarding
protein-protein complex prediction, but the real challenge was the
prediction of the water molecules within the complex interface.
We based our predictions in the DOWSER ab initio optimization
procedure (Hermans et al. 1996), with reasonable results.
However, the top performing methods were based in deriving
initial water positions from interfaces of similar complexes
followed by an energetic minimization (Lensink et al., 2014). In
T55 and T56 targets, the goal was to predict the binding affinity
changes upon mutations on two designed influenza
hemagglutinin protein binders. Our approach was based on a
machine learning protocol using 85 different energy descriptors.
Our protocol was one of the most successful ones, placed within
the top 3 out of 22 groups (Moretti et al., 2013). Target T57
involved the prediction of a protein-sugar interaction. In this case,
we developed a new protocol based on a combination of different

scoring functions, but no correct models were submitted.

In general, for the standard protein-protein docking cases, the
different docking methods showed robustness in the delivered

results, but there were two especially difficult targets: T46 and
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T51. In the case of T46, the main difficulty came from the need of
modelling the partners from remote homologues, which
constitutes one of the main challenges in protein-protein docking
as pointed in section 1.5.1. Moreover, in target T51 the main
difficulty was the big RMSD difference between the bound and
unbound conformations of the interacting partners, which shows
the importance of addressing conformational flexibility in future
docking developments. This is actually related to one of the main
objectives of this thesis, which focus on the development of a
new docking framework to permit the inclusion of flexibility in the

docking model.

4.2.2 A Protein-RNA Docking Benchmark (ll):
Extended Set from Experimental and
Homology Modeling Data

The first protein-RNA docking benchmark was compiled,
comprised a total of 106 protein-RNA complexes. In 71 of them,
the unbound coordinates were available for at least one of the
molecules, and in the remaining 35 cases, at least one of the
molecules needed to be built by homology modelling. Due to the
scarcity of available structures in the PDB at the time of the
compilation of the benchmark, the benchmark was extended by
increasing the criterion of non-redundancy up to 70% of
sequence identity, and by including homology models as well as
pseudo-unbound and bound structures in the case of the RNA

molecules. This dataset of protein-RNA complexes can be used
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to test new and current protein-RNA docking methods, and is
expected to foster methodology development in the field of
protein-RNA structural modeling. The benchmark was updated to
its version 1.1 in September 2015 to fix some errors in
renumbering, and it has been used by many groups for testing

their new methods.

4.2.3 Updates to the Integrated Protein-Protein
Interaction Benchmarks: Docking
Benchmark Version 5 and Affinity
Benchmark Version 2

An updated version of the protein-protein docking benchmark
(Hwang et al. 2010) is reported in this work. This work includes
also an updated version of the binding affinity benchmark (Moretti
et al.,, 2013), which has been updated too. The benchmarks
consist of non-redundant, high-quality structures of protein—
protein complexes along with the unbound structures of their
components. This version 5.0 of the docking benchmark contains
fifty-five new complexes, 35 of which have experimentally
measured binding affinities. These updated docking and affinity
benchmarks now contain 230 and 179 entries, respectively. The
antibody—antigen complexes is the category which has increased
more in number, with an increment of 67% and 74% in the
docking and affinity benchmarks, respectively. This probably
reflects the growing interest in antibody-based therapeutics. This

update also includes complexes with multiple binding modes,
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which have been split into multiple cases. The composition of this
benchmark still favors the number of easy-cases (rigid-body) as
compared to the difficult ones, but the difference is more

balanced than in previous versions of the benchmark.

Several previously developed docking and affinity prediction
algorithms have been tested on the new cases. Regarding the
docking predictions, and considering only the top 10 models, an
overall prediction success rate of 38% is achieved on the new 55
cases. If only rigid-body cases are considered (32), the top 10
success rate increases up to 50%. Regarding the affinity
prediction algorithms, predicted scores show significant
correlation with the experimental values (r=0.52). If only rigid-
body cases are considered, the correlation coefficient largely

increases (r=0.72).

The docking success rates and the affinity predictive results were
lower as compared to previous versions of the benchmarks.
These new challenging cases included in these updated versions
of the benchmarks show that new developments are needed in
the structural and energetic modeling of protein-protein

interactions.
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4.3 New methods for structural protein-
protein complex prediction

The aim of protein-protein docking methods is to predict the
complex structure starting from the structure of the unbound
partners. The nature of this problem is very complex and
intractable by more physically accurate methods such as
molecular dynamics. From the late 70s of the past century,
several docking methods have been proposed, with very
promising results. But community-wide experiments such as the
CAPRI international contest have demonstrated the limitations of
the current methods. In order to overcome many of the limitations
of the current protein-protein docking methods, a new method
called LightDock is proposed in this thesis. LightDock has been
developed with the purpose in mind of being an experimenting
platform where current and future developments could easily be
prototyped. LightDock is a scoring function agnostic framework,
in terms that the users can incorporate their own one to the
framework, written in Python with capabilities of incorporating
normal mode analysis, precomputed ensembles and local non-

gradient minimization, in order to model the protein flexibility.

4.3.1 LightDock: a framework for multi-scoring
function flexible protein-protein docking

The LightDock method is tested in the last version of the Protein-

Protein Docking Benchmark (Vreven et al. 2015). The
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configuration of the framework used is i) number of non-trivial
normal modes for receptor and ligand equal to 10, ii) number of
clusters for each complex in the benchmark is of 400, iii) number
of glowworm agents per cluster is 300 and iv) the scoring
functions tested are a more coarse-grained version of pyDock
(Romero-Durana et al. in preparation), but still more physically
accurate and not based in propensities as the second one used,
DFIRE (Liu et al. 2004).

The use of the two different scoring functions demonstrates that
the framework is capable of successfully minimizing in different
force-fields thus the success rate will depend on the goodness of
the chosen scoring function. Moreover, the results show how
combining the ranking from the use of the two different scoring
functions prior to the rescoring of them using pyDock (Cheng et
al. 2007) energy function improves notably compared to the

default pyDock protocol.

The analysis performed shows that the use of normal modes in
the rigid-body cases of the Protein-protein benchmark
deteriorates the results compared to protein-protein docking rigid-
body methods as pyDock, but helps in the medium and high-

flexible categories.

In summary, the combination of pyDock and DFIRE scoring
functions in the LightDock framework outperforms the success
rate of the pyDock rigid-body protocol: 19.11% versus 16.45% in
the top 10 and 44% vs 38.96% in the top 100 respectively.
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5. Discussion




And following our will and wind

we may just go where no one's been.
We'll ride the spiral to the end

and may just go where no one's been.

Spiral out. Keep going...

Lateralus, Tool



In these days, in which sequencing the entire genome of many
organisms is a relatively cheap and easy task, the so-called post-
genomics era (Kenyon et al. 2002), the next big challenge in life
sciences is the unraveling of the complex protein-protein
interaction networks, with the ultimate goal of understanding life
processes at molecular level. High-throughput experimental
techniques combined with computational methods have
contributed to partially describe the interactomes of several
organisms, but a complete understanding of the mechanisms
underlying these protein-protein interactions requires a complete
vision at atomic detail of all protein complexes. Despite the
success of some experimental techniques like X-ray
crystallography, NMR, SAXS or the more promising cryo-EM,
there is still a huge gap between the number of estimated
protein-protein interactions and the actual number of structures
solved and available. Computational methods such as protein-
protein docking could shed some light on reducing that gap,
complementing experimental techniques by providing structural
and energetic large-scale modeling of protein interactions.
Nevertheless, computational models are limited too in many
aspects. In the protein-protein docking problem, conformational
flexibility remains one of the main challenges due to its inherent
and computational complexity. As a consequence, an important
concern is the general poor success rate of current docking
methods and their high computational cost, which limits their

possible application to large-scale projects.
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The work in this thesis has produced new developments and
optimizations of our docking protocol pyDock, with emphasis in
its computational performance, to facilitate its application to
large-scale systems and its implantation in web-based tools.
Moreover, a novel strategy for sampling and new methods for
including conformational flexibility have been developed. During
all the methodology development in this thesis, we always had in
mind a series of proposed good practices in developing scientific
software, which are important for the reproducibility of the

research and the usefulness to the community.

PyDock optimizations for HPC architectures

As pointed in section 4.1, our pyDock protocol had several flaws
in terms of computational performance. After the rewriting of the
scoring function module and the parallelization of the sampling
with FTDock, pyDock was able to perform protein docking
predictions in terms of minutes, and not of hours or even days as

before, without losing any predictive accuracy.

One of the main advantages of the docking sampling in discrete
steps is its inherent embarrassingly parallel nature. New poses in
FFT-based methods as FTDock are generated by a simple angle
increment in the FFT space. This increment is independent from
previous calculations so it makes the protocol a perfect candidate
for parallelization. However, after the parallelization of the
sampling process, the computation time was not dependent of

the size of the protein partners. After some research, it was clear
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that the problem was due to the use of different functions
internally in the FFTW library that depended on specific values of
the total number of grid cells used (Jiménez-Garcia et al. 2013,
Equation 1). The solution came when the number of grid cells
was increased to match Equation 1, reducing the computation
time and, finally, making it dependent only on the size of the

protein complex.

Further optimizations could be made in the sampling
process, e.g. using GPU-based architectures. Other FFT-based
protocols such as Hex (Ritchie and Venkatraman 2010) or
ClusPro (Landaverde and Herbordt 2014) have explored this
possibility with notable speedups. In our case, this possibility was
discarded due to the limited access to GPU-capable hardware at
the time these optimizations were developed. It could be a good
exercise in the future to rewrite the FTDock application to use

GPU accelerators.

In terms of overall speedup, the new and optimized version of the
pyDock protocol outperformed previous iterations. In the version
used in the pyDockWEB server (Jiménez-Garcia et al. 2013), the
use of 14 CPU cores made the total computation time two orders
of magnitude faster (Figure S.1. Jiménez-Garcia et al. 2013). As
a consequence, the protocol was fast enough to finish in a few
hours, and thus, to be implemented in a web server to make it
available to the scientific community. In addition to the
development of the web server, the increase in performance

allowed its application to large-scale docking experiments. With
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previous versions of the slower protocol, the limitation in
computational resources was an important drawback and only
partial interactome experiments were able to be performed
(Mosca et al., 2009). On the contrary, the fastest version of
pyDock has been used in larger experiments for hot-spot
predictions in diseasomes such as HIGM5, LHON, CRC, MCI,

HIV-1 or CMH (Barradas and Fernandez-Recio, in preparation).

Development of web tools for the scientific community

Web server and web-based tools are powerful resources for the
scientific community. They allow different researchers to use
published protocols and workflows without caring about
computational resources or maintaining or installing complex
pieces of software. These advantages have contributed without a

doubt to the popularization of these services in the past years.

Although there is no specific study about the real contribution of
web-based tools to published research, two main aspects point to
the real utility of these tools: 1) special issues in important
journals are published every year only comprising web servers
and online tools, and 2) if we trust the number of citations as a
metric of utility, many of the most cited articles in the life sciences
domain are describing web tools (mainly within the genomics

scope).

During this thesis, five web-based tools were developed, and one

more is still under development: pyDockWEB (Jiménez-Garcia et
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al. 2013), CCharPPI (Moal et al. 2015), pyDockSAXS server
(Jiménez-Garcia et al. 2015), OPRA server
(http://life.bsc.es/pid/opra, manuscript in preparation),
PyDockRescoring server (http://life.bsc.es/pid/pydockrescoring,
manuscript in preparation) and TailBuilder
(http://life.bsc.es/pid/tailbuilder, under development). All of these
tools make intensive use of HPC resources, an aspect that
makes specially complicated their development and
maintenance. Despite the lack of specific frameworks to develop
scientific online tools, the development of the first tool, the
pyDockWEB server, helped us to fully understand the
requirements and problems concerning the development of a
web server. The other tools have a similar architecture based on
a web2py (http://lwww.web2py.com/) front-end, a Python server
side in charge of scheduling jobs in our private cluster and a
relational database which stores all the information and glues the
other two layers. This structure is sufficiently flexible to be
adapted for the development of new tools and it can be easily

deployed.

As pointed in section 4, these web tools have successfully
computed and served many jobs since their availability. In
addition to their popularity, two other important aspects can be
remarked. First, pyDockWEB server scored in the second
position out of many other participants of the server category in
the last CAPRI meeting (6" edition). Second, CCharPPI server
will be incorporated to the CAPRI-EBI analysis pipeline to

calculate energetic and structural features on participant’s
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decoys in the near future. These two points are especially
relevant in order to encourage future developments and updates
on the published web tools, which development abandonment is

an important issue in many published web servers.

New methods of sampling and energy optimization

Protein-protein docking energetic landscape is described by a
high number of dimensions and degrees of freedom, so energetic
optimization on such a huge search space is still a hard

computational problem.

Karl Pearson introduced in 1905 the problem of the random walk.
In his own words “the most probable place to find a drunken man
who is at all capable of keeping on his feet is somewhere near
his starting point!” (Pearson 1905). A random walk is a
mathematical formalization of a path that consists of a
succession of random steps. Typically, an ensemble of these
walkers are used, starting from random initial points in the search
dominium, to integrate or to sample the value of the objective
function in multi-dimensional spaces. The next step of the walker
or sampler will look for a reasonably high contribution towards
the total integral. This technique is known as random walk Monte
Carlo (RWMC) and molecular energy optimization has been
typically described using this method. The strategy for refusing
some of the proposed random walks can vary, but important

methods are Gibbs sampling, multiple-try Metropolis and slice
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sampling among others. While RWMC methods are very useful
for describing the protein-protein docking energetic landscape,
they suffer from important drawbacks. First, it seems not so
obvious how many random walks are required for substantially
describing a given landscape. Second, further strategies are
required if the information gathered from previous random walks
is going to be reused for subsequent random walks, e.g. direction
tensors with an associated probability. Finally, more strategies
are required to differentiate exploration from exploitation phases
in order to not get trapped in local minima or maxima. In
summary, all of these limitations justify more developments in

methods for sampling and energetic optimization.

Swarm intelligence (SI) is a family of artificial intelligence
algorithms inspired by emergent systems in nature. Basically,
these algorithms make use of agents which follow very simple
rules to interact locally with other agents in a decentralized way.
In nature, these interactions lead to complex emergent patterns
or systems, e.g. fish schooling and bird flocking, ants forage for
food, wasp nest building or termite mounds. SlI algorithms have
many interesting properties: heuristics are generally simpler
because there is no need of central control, they are inspired by
nature metaphors, which makes their parameters easy to choose
and to understand by humans and, finally, they tend to be easily
scalable as more agents can be added at any time. S| algorithms
have been applied to many different problems, from numerical
optimization to multi-robot coordination and navigation. In the life

sciences context, S| algorithms have been applied to some
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specific problems as data classification for disease diagnosis
(Assarzadeh and Naghsh-Nilchi 2015; Zyout et al. 2015), protein-
ligand docking (Chen et al. 2007; Namasivayam and Ginther
2007; Ng et al. 2015; Liu et al. 2013) or protein-protein docking
(Moal and Bates 2010).

In this thesis, | have developed LightDock, a new method for the
sampling and energetic description of the protein-protein docking
landscape. LightDock makes use of the GSO from the Sl family
of algorithms for predicting complexes given the initial unbound
structures of the partners. GSO implementation in LightDock has
very interesting properties, such as multiple capturing different
local and global energetic minima in the same run, and it has
mechanisms to avoid the leap-frog problem in comparison to
traditional RWMC approaches. Moreover, all the parameters from
the GSO are nicely described by the bio-inspired metaphor that
represents the glowworms attraction mechanism, which makes
the algorithm easily understandable for humans and simplifies

the process of choosing the parameter values.

The evaluation of LightDock on the Protein-Protein Benchmark
5.0 showed promising results. In addition, LightDock has novel
capabilities compared to other protein-protein docking methods,
such as the possibility of being extended with other scoring
functions. However, there is room for improvement. In this
context, several approaches can be explored in the future. First,
the use of conformational ensembles could improve the overall

success rate in low and medium flexible categories (Pallara et al.
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submitted). The support for conformational ensembles has been
included in the LightDock framework, but we need to explore
more exhaustively different strategies of how the agents in the
algorithm exchange conformer information. Second, local
energetic minimization could help the algorithm to converge to
the most favorable energetic values when the near-native energy
well has been correctly identified. This could also improve the
ratio true/false positives, since better energy is expected from
true positive predictions. While we have included in the
framework support for optimizing the best glowworm in terms of
energy at each step, this strategy needs to be more exhaustively
explored. Finally, while some certain degree of flexibility in the
backbone is included thanks to the use of the ANM, a more
efficient side-chain conformation prediction could dramatically
improve the overall performance. One possible strategy could be
to estimate the value of backbone deformation on the unbound
proteins by using a fixed number of non-trivial normal modes,
and then try to discretize the orientation of the side-chains using
a rotamer library. Once all of the side-chains are discretized, they
could be included in the optimization vector of the GSO
algorithm, so that the probability of moving from one orientation
to another would be given by the value in the rotamer library for
that side-chain. This strategy presents a combinatorial problem
due to the huge number of dimensions to be optimized, although
performance could improve if the optimization on the side-chains
were only computed at the protein-protein interface. This strategy
opens all sorts of interesting questions from both technical and

theoretical points of view. In addition, the use of ANM opens a
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new problem of how estimating the degree of flexibility of a
complex to make use or not of ANM to avoid sampling noise. All
of these considerations have not been exhaustively studied in
this thesis due to time limitations, but are important points for

future developments.

On the performance of the first joint CASP-CAPRI
experiment

The first joint CASP-CAPRI experiment consisted in the structural
modeling of homo- and hetero-dimers, and homo-tetramers, with
25 targets from the CASP11 2014 round. PyDock submitted at
least one acceptable model in 11 out of 12 easy homo-dimer
targets, either as predictors or as scorers. In addition, it
successfully identified two out of the six difficult homo-dimer
targets as scorers, and one out of the two hetero-complex
targets. On the other hand, pyDock did not submit any successful
model for any of the five tetramer targets. The main difficulties of
these targets were the inaccuracy of the homology-built subunit
models (and the cumulative error for each considered subunit),
and the smaller pair-wise interfaces. Compared to other docking
methods, pyDock predictions were placed within the top 10
ranked groups out of a total of 25 predictor groups, and within the
top 5 ranked groups out of a total of 12 scorers participating in
Round 30 (Table 4 from Lensink et al. 20186).

The overall performance of the different methods was

encouraging. The results showed that the prediction of homo-
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dimer assemblies by a combination of homology modeling and
docking can be successful for targets with subunits featuring
large enough interfaces to represent stable associations. On the
contrary, the inaccurate estimation of the oligomeric state added
a confounding factor for the predictions. On tetrameric targets,
the performance was really disappointing for all the methods,
with the same problems that pyDock suffered. Interestingly, the
analysis shows that in the structural prediction of homo-
oligomers, docking procedures tend to perform better than
standard homology modeling techniques, and that highly
accurate models of the protein components are not always
required to identify their association modes with acceptable

accuracy (Lensink et al. 2016).

Building quality into scientific software

Software quality is a problem which has been historically only
addressed in the industry. From the monetary point of view, it is
clear that a buggy software would affect economic balances at
the end of the year if the software is an essential piece of the
business, although a buggy software could have dramatic
consequences in other areas, e.g. the software which controls
braking assistance on a car or the software for early detection of
attacking missiles. May the software that research scientists
develop not be as critical as the previous examples, but it can
lead to wrong results and conclusions if its quality is not carefully

considered.
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There is still room for raising awareness on the problem within
the scientific community, but reasonable efforts have been made
in that direction. Important journals in different fields are
becoming aware of the problem, especially concerning
reproducibility and repeatability issues, asking for the source
code of the software used for research and to analyze produced
data. But this is still not sufficient as the peer review process
rarely includes a quality assessment of the software nor other

techniques as testing are not usually taken into account.

Here are detailed some good practices that could help tackling
the problems of reproducibility and repeatability in scientific
software development. They are organized in hardware
abstraction, operating system and software management,

software development, and research data management sections.

Hardware abstraction

There is no such thing as a standard hardware platform. This is a
consequence of the expansion and popularity of the open PC
platform at the eighties, so the actual situation is that there are
many available options, from technological architecture to
manufacturer quality, when we consider physical devices, such
as the CPU or the RAM memory. Although at a given moment
there are always some architectures that can be considered
more popular than the others, there is no general framework of
reference regarding the reproducibility of the output from
computer programs, given that the instruction set varies: a small

difference in the order of execution of one instruction could affect
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the value of a floating point operation, and this difference would
be propagated to the following operations leading to a problem of

numerical instability.

Hardware is neither free of design nor of execution bugs. There
are many famous examples in computing history, such as the
Pentium FDIV bug reported in 1994. There was an error in the
Intel P5 floating point unit due to missing entries in the lookup
table used by the floating-point division circuitry (Price 1995).
This error lead to inconsistencies in some floating point
operations such as the decimal division of 4195835.0 by
3145727.0 which was calculated in the flawed Pentium as
1.333739 when the correct value is 1.333820 (Cipra 1995). In a
long-term  molecular dynamics simulation (Karplus and
McCammon 2002), this difference in the fourth significant figure

could imply a complete disaster in the prediction.

In the past decade, hardware virtualization has experienced an
explosion in development and usage, and nowadays it could be
considered a mature technology, widely used in cloud and grid
facilities. Hardware virtualization hides the physical attributes of
computing platforms and offers the users a new abstraction layer
that represents a different hardware platform. If the new
abstraction layer can be packed, exported and executed over the
same hardware virtualization software (virtual machine monitor)
in a sufficient amount of different hardware platforms, then we
have a good opportunity to avoid hardware peculiarities and to

assure reproducibility of our software independently from the
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actual hardware where it is executed. There are several
virtualization software solutions available, but probably the most
popular projects out now are VirtualBox (www.virtualbox.org),
VMware (www.vmware.com) and QEMU (www.gemu.org).
VirtualBox, now formerly Oracle VM VirtualBox, was initially
released as free and open source software in January 2007 with
GNU GPL2 license. It is a mature project with support for
Windows, OS X, Linux and Solaris operating systems among
others and now is part of the Oracle company. VMware desktop
software is another mature option, VMware was one of the first
companies to successfully virtualize the x86 platform, and runs in
Linux, Windows and OS X platforms. Their basic solution is free,
but the most advanced features require a license. QEMU is a
virtualization tool only available for Linux machines, but it does
not require administrator privileges to run, since it is built on the
top of the Kernel-based Virtual Machine system available in the
Linux kernel. This property makes it a perfect candidate for small
virtual machines that will be run on Linux hosts. Packaging and
developing the research activity in a virtual machine has many
advantages: stable hardware, frozen versions of operating
system and library dependencies, capability of taking snapshots
of different stages of a given virtual machine, and a way of easily
deploying clone copies of the virtual machine. But there are a few
drawbacks of using this technology too: the loss of performance
(an extra layer of abstraction between hardware and software is
being used), or the size of the virtual machine at the time of

distributing it. In any case, we strongly believe that the
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advantages of having a controlled and distributable environment

clearly compensates the drawbacks of size and performance.

Operating system abstraction and software management

Operating systems are living entities: they are periodically
updated in order to fix security or software bugs, or to improve
the performance of existing libraries, for example. Thus, at the
time of reproducing a given research, it is not sufficient to only
mention the version of the operating system, because we would
be losing information on the libraries and software versions. In
GNU/Linux distributions, software management is usually
performed using package tools like apt-get in Debian and Ubuntu
flavours, rpm in Red Hat flavours, etc. These tools always store
the actual version of all the different software installed and the
sources where the software has been downloaded, so it is
possible to reproduce the actual version of the operating system
and its software if those lists are shared. But in other operating
systems such as OS X or Windows, this problem could not be
solved in an easy way. Another important issue is that the
software we would like to execute could have some library
dependencies which are in conflict with the ones that are actually
installed in our operating system, or maybe there is no available
information on the version of the library at all. In the previous
section, we recommended to use a virtual machine to freeze the

actual version of the software and the operating system, but if it
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is not possible to use virtualization tools, there are alternative

solutions as follows.

Docker tool (www.docker.com) allows the creation of software
containers in Linux in a more lightweight way that using virtual
machines. Docker makes use of the characteristics of the Linux
kernel of separating execution namespaces and encapsulating
resources via cgroups to pack any given software with its
dependencies in a distributable container. Theoretically, It is
enough to have Docker installed to use any third-party container.
Moreover, in OS X operating system, software can be installed or
removed in a Linux-way using homebrew (brew.sh) or macports
(www.macports.org) for example. In other cases, there are some
packages that encapsulate the most commonly used libraries.
That is the case of scientific libraries in Python, where the cross-
platform  Anaconda project (www.continuum.io) provides
compilations of libraries with a specific version that makes
distributing Python scripts an easy task: sharing the Python
source code and the version of the Anaconda package used
should be enough to reproduce the software execution

conditions.

Software development

Developing software is a complex process which involves tasks
as writing, testing, debugging and maintaining the source code.

Interestingly, 38% of scientists spend at least one fifth of their
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time developing software, but only 47% of them have a good
understanding of software testing, and only the 34% of them
consider that formal training in developing software is important
(Merali 2010). Scientific and research software can range from
small command-line scripts to huge pieces of software that can
be considered as final products. The requirements for every
piece of software will clearly vary, and not a single development
methodology will fit all the different needs, but there are some
common guidelines to be followed in order to improve the quality

of the software.

In terms of reproducibility and repeatability, we are
interested in having a reference framework based on known
results. That reference, the so-called golden data, will help us to
identify bugs or possible issues at any time we are introducing
changes in our code. The process of comparing known results,
golden data, with the actual output of our code is called testing.
Without testing, we cannot guarantee that our code is doing what
it is claiming to. There are different ways of testing and it will
depend on the amount and complexity of the code that we need
to test: from unit tests of small pieces of code such as functions,
to regression or point-to-point tests where the code is tested
against other pieces of software it has to interact with. There are
many testing frameworks that can help in this task, and choosing
one or another will depend on the technology, availability,
programming language, etc., but there is a testing methodology
that can help in the process of designing new software: TDD

(Test-Driven Development) (Janzen and Saiedian 2005). In TDD,
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the philosophy of writing software differs from the typical point of
view of writing code and then writing some testing code that will
test the original code. In TDD, the test is written before writing the
code that will fulfill the requirements. This methodology can be a
good option for scientific software (Mugridge 2003) because we
can build and write our software starting from known examples
we would like to reproduce, and then it can be expanded to deal
with new features or cases. Previous research in this field
demonstrates that TDD helps improving the overall software

quality (George et al. 2004).

Dealing with simulations, especially if they start from some
random initial conditions, can be a hard problem in terms of
reproducibility. There are two approaches to test the performance
of our code in that situation: i) guarantee that the initial conditions
are always the same, or ii) check at the end of the process for the
correctness of the results. This second approach can be a hard
problem depending on the complexity of the interpretation of the
results, and usually some human action will be required.
However, the option of guaranteeing the initial conditions can be
easily performed if we make use of simulation seeds with the
random number generators of the code. Storing these seeds and
using them in unit or regression tests can help to automatize the

whole reproduction process.

Source code is dynamic in its nature and it mutates depending on
the changes in the requirements as new features are included or

problems are fixed. Keeping the changes made to the source
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code is a major concern in software development, and tools such
as version control systems are accepted as a standard in
industry. With open source tools such as subversion
(https://subversion.apache.org), git (https://git-scm.com/) or
mercurial (https://www.mercurial-scm.org/), and online spaces to
share and managing code as GitHub (github.com) or Atlassian
Bitbucket (bitbucket.org), the changes are tracked and it is easy
to recover old versions, sharing the code with others and
fostering collaboration between developers. These tools support
not only source code, but other types of documents that require

version control.

Another important point we cannot forget is documenting the
code. Researchers tend to produce prototypes that are poorly
documented and difficult to interpret, which makes the process of
reproducing the results in the future a hard task. Inline
documentation has to be considered as an essential part of the
source code if we want our code to be understandable and

maintainable and readable for our users.

Finally, there is an important issue concerning code writing by
scientists: they often do not consider their code sufficiently good
for being published. We agree with previous authors (Barnes
2010) in that if the code is good enough to do the job for which it
was written, it is sufficiently good to be released as open source.
Openness can help to improve both the code used by the

scientists in many projects and the ability of the public to engage
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with it (Barnes 2010). This opinion is also supported by many

other authors (Ince et al. 2012).

Research data management

Managing research data is another important and very
challenging topic. There are several issues to consider. One of
them is to keep the data alive. That means that when using a
specific data format for the output of our research, we should
assure that there is going to be a piece of software capable of
reading and managing our type of data in the present. That not
only applies to the format of the data, but the physical support
where data is stored. Several problems should be considered
here: physical devices could become obsolete in a few years with
no hardware available to read them, the support could be
corrupted in time, lifespan of CD support can be shorter than
expected (as compared with other technologies), etc. Nowadays,
scientists usually publish their research data on the Internet,
usually as a support data of a published article, or as a piece of
code in popular sites such as github.com or pastebin.com. In
order to follow the scientific research method, it is important to
have available all the relevant information and data, and in the
correct order. Plain-text format such as TSV (tab-separated
values) could help to improve readability and can be easily
imported by many applications and online services. In addition to
output data, the slides, posters and all the different material

generated during the research process could be susceptible of
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publication and reference, but at the moment there is no

consensus or a standard way to do it.

Final remarks

In this thesis we worked on the identification of the different
problems regarding reproducibility and repeatability in scientific
software development in order to tackle the problem. Finally, we
gave a set of good practices to follow based on successful
histories of software development. This set of good practices is a
good starting point, but more effort is required. Scientific
community is still not concerned about the dimension of the
problem and the issue is likely to get worse as many researchers
consider research software a distraction. This discussion will
remain opened for many time in the near future, but here are
some points that could mitigate the problem: i) more training at
the academic and research levels on software development, ii)
mixed research groups where software engineering knowledge is
present, iii) journals making research and analysis software
mandatory, iv) congresses on scientific and research software

quality and v) development of testing and publication tools.
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6. Conclusions




“Bob: | don't want to leave.

Charlotte: So don't. Stay here with me. We'll start a jazz band.”

Lost in Translation



Technical improvements in the pyDock computational
performance have facilitated the development of the
pyDockWEB protein-protein docking web server. This
web server has shown an excellent predictive
performance by ranking 2" out of 14 automatic web

servers in the CAPRI 6" evaluation meeting.

The CCharPPl web server has been built to bring
together many different descriptors for characterizing
protein-protein interfaces, which can be applied to fast

prototyping new predictive models.

A new pyDockSAXS web server has been built to
efficiently combine experimental data from small
scattering X-ray (SAXS) and protein-protein docking

predictions.

pyDock showed excellent performance in the last two
editions of the blind community CAPRI experiment, by
ranking within the top 5 predictors out of more than 60

participants.

We have designed and compiled the Protein-Protein
(version 5.0) and Protein-RNA (version 1.0) docking
benchmarks, which are important resources for the
community to test and to develop new methods against a

reference set of curated cases.
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6. A new protein-protein docking framework, LightDock, has
been developed, aiming to be a versatile tool for the use
of different scoring functions within a flexible-backbone
model. Moreover, the framework can be easily extended
to other interesting docking problems such as protein-

DNA, protein-RNA and protein-peptide.

7. A set of good practices to try to tackle common problems
regarding the development of scientific software have

been proposed.
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