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Abstract
Schizophrenia (SZ) and bipolar disorder (BD) share clinical features, genetic risk factors

and neuroimaging abnormalities. There is evidence of disrupted connectivity in resting state

networks in patients with SZ and BD and their unaffected relatives. Resting state networks

are known to undergo reorganization during youth coinciding with the period of increased

incidence for both disorders. We therefore focused on characterizing resting state network

connectivity in youth at familial risk for SZ or BD to identify alterations arising during this

period. We measured resting-state functional connectivity in a sample of 106 youth, aged

7–19 years, comprising offspring of patients with SZ (N = 27), offspring of patients with BD

(N = 39) and offspring of community control parents (N = 40). We used Independent Com-

ponent Analysis to assess functional connectivity within the default mode, executive control,

salience and basal ganglia networks and define their relationship to grey matter volume,

clinical and cognitive measures. There was no difference in connectivity within any of the

networks examined between offspring of patients with BD and offspring of community con-

trols. In contrast, offspring of patients with SZ showed reduced connectivity within the left

basal ganglia network compared to control offspring, and they showed a positive correlation

between connectivity in this network and grey matter volume in the left caudate. Our find-

ings suggest that dysconnectivity in the basal ganglia network is a robust correlate of famil-

ial risk for SZ and can be detected during childhood and adolescence.
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Introduction
Schizophrenia (SZ) and bipolar disorder (BD) share genetic risk factors [1, 2], clinical symp-
toms [3], cognitive deficits [4], and brain structural and functional alterations [1, 5–7].

Resting-state functional magnetic resonance imaging (rs-fMRI) has enabled the study of the
brain’s intrinsic functional architecture [8]. In the present study we focus on resting-state net-
works (RSN) that are reliably identified across samples and are also implicated in both disor-
ders [9–12, 7].

The default mode network (DMN) comprises the medial prefrontal cortex, posterior cingu-
late/precuneus, lateral temporal cortex and inferior parietal lobule [13], and is deactivated dur-
ing cognitive processes requiring externally oriented attention [14]. Aberrant connectivity
within the DMN has been observed in adult [15] and adolescent SZ patients [16]. Studies in
adult BD have reported conflicting results with either no abnormalities [17] or hypo-connec-
tivity in the DMN [18]. The executive control network (ECN), which includes the dorsolateral
prefrontal and posterior parietal cortices [19], is implicated in planning, decision making and
sustained attention [20]. Reduced ECN connectivity has been observed in adult SZ patients
[21], while hyperconnectivity has been reported in paediatric BD [22]. The salience network
(SN) includes the fronto-insular cortex and the dorsal anterior cingulate, and has a role in emo-
tional processing [19]. Studies in adult SZ have shown hypoconnectivity within this network
[15], while it may be increased in BD [17]. In the basal ganglia network (BGN), which includes
the striatum, inferior frontal gyri and thalami, similarly reduced connectivity has been reported
in both SZ and BD [23, 24].

Connectivity within the DMN has been found to be increased in adult unaffected SZ rela-
tives [25–27] and decreased in BD relatives [28]. For the ECN, a recent report found reduced
connectivity within the right inferior frontal gyrus in young adult offspring of patients with a
psychotic spectrum disorder [29] while the only study in young offspring of BD patients so far
revealed increased connectivity in the ventrolateral prefrontal cortex [30]. A recent study in
adult relatives of patients with first episode psychosis has also reported hypoconnectivity
within the BGN [31]. To our knowledge the Bipolar and Schizophrenia Network on Intermedi-
ate Phenotypes study is the only study to date to compare RSN between adult relatives of SZ or
BD comparatively [28, 11, 24], and has reported reduced connectivity within the frontal/tha-
lamic/basal ganglia network in relatives of SZ or BD probands, with a more prominent decrease
in striatal connectivity for SZ relatives.

The evidence summarized above indicates that abnormal functional connectivity in SZ and
BD may be related to familial risk. RSN undergo substantial reorganization throughout child-
hood and adolescence [32], during which there is a shift in the balance between prefrontal and
subcortical connectivity [33]. The engagement of the prefrontal cortex approaches adult levels
early in adolescence [34] while striatal networks experience significant maturation throughout
adolescence and into adulthood [35]. Studies employing neuropsychological measures have
revealed that child and adolescent offspring of patients with SZ (SzO) or BD (BpO) share diffi-
culties in verbal and visual episodic memory, executive function and intelligence [36, 37],
although group specific impairment has also been described [37]. However, no study so far has
examined intrinsic connectivity of resting state networks implicated in cognition in young off-
spring of patients with SZ or BD.

In this context, we set out to test whether intrinsic functional connectivity of cortical and
cortico-subcortical networks occurring during childhood and adolescence are disrupted by
familial risk of SZ or BD. We hypothesized that young offspring of SZ or BD patients would
show abnormal intrinsic connectivity in regions where dysconnectivity has been reported in
adult patients or relatives of SZ and BD, namely frontal and frontostriatal areas. To address
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this hypothesis we used Independent Component Analysis (ICA) to identify the DMN, ECN,
SN and BGN in a sample of child and adolescent offspring. Our further aim was to examine
the relationship between resting state connectivity differences and grey matter volume, cogni-
tive and clinical measures.

Materials and Methods
This study has been approved by the Comitè Ètic d'Investigció Clínica (CEIC), Hospital Clínic,
Barcelona, Spain. For participants aged under 18, parents provided written informed consent
and participants older than 12 provided assent. Participants aged 18 and over gave written
informed consent. Families received compensation for their time and travel expenses.

Subjects
This study was undertaken at the Child and Adolescent Psychiatry and Psychology Depart-
ment of the Hospital Clinic of Barcelona, Spain.

Psychiatrists of adult inpatient and outpatient units were asked to identify BD and SZ
patients who had children aged 7 to 19 years. Exclusion criteria for index parents were: intellec-
tual disability, and drug or medically-induced psychosis or mania. 58 families (31 BD and 27
SZ) were assessed. Community control parents were recruited through advertisements posted
in the community within the same geographical area as patients. Exclusion criteria for commu-
nity control parents were: intellectual disability, severe neurological conditions, and personal
or 1st degree family history of SZ or BD spectrum disorders. In order to reduce selection bias,
parents who stated to be specifically motivated to participate due to concerns about school per-
formance or emotional or behavioural problems in their offspring were also excluded. 32 con-
trol families met inclusion criteria.

Exclusion criteria for all offspring included: intellectual disability according to the Diagnos-
tic and Statistical Manual of Mental Disorders, Fourth Edition (American Psychiatric Associa-
tion, APA, 1994, [38]) criteria (IQ below 70 and impaired functioning), history of head injury
with loss of consciousness or severe neurological conditions. Additionally, CC-offspring had
no personal, 1st or 2nd degree family history of SZ or BD spectrum disorders. Thirty-three SZ-
offspring, 47 BD-offspring and 46 offspring of community control parents (CC-offspring) were
recruited. Further information on the recruitment of the sample is provided in Sánchez-Gistau
and colleagues [39].

Clinical/cognitive assessments
Clinical and cognitive assessments were carried out by experienced psychiatrists and psycholo-
gists at the Child and Adolescent Outpatient Department of the hospital. Parental and off-
spring interviews were conducted by different team members, each blind to the others’
assessment. Parental socioeconomic status (SES) was estimated using the Hollingshead Scale
[40]; considering the highest SES among both parents. Clinical diagnoses were based on the
Spanish version of the Structured Interview for DSM-IV disorders (SCID) [41] for parents and
offspring aged 18 years or older. Offspring under 18 were assessed by child and adolescent psy-
chiatrists using the Spanish version of The Schedule for Affective Disorders and Schizophrenia
for School-Age Children—Present and Lifetime version (K-SADS–PL) [42] administered sepa-
rately to parents and children. Details on past or current psychopharmacological treatments
were also registered.

Symptoms were evaluated with the Scale of Prodromal Symptoms (SOPS) within the Struc-
tured Interview for Prodromal Symptoms [43], the Young Mania Rating Scale [44] and the
Hamilton Depression Rating Scale [45]. Overall clinical severity was assessed with the Clinical
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Global Impression index [46] and functionality with the Global Assessment of Functioning
scale from DSM-IV-TR. A measure of general cognitive capacity was estimated using the
Vocabulary, Similarities, Block Design and Matrix Reasoning subtests of the Wechsler Intelli-
gence Scale for Children (WISC-III) [47] or the Wechsler Adult Intelligence Scale (WAIS-III)
[48], for participants aged sixteen and over. A more thorough neuropsychological assessment
was also carried out to assess executive function (Wisconsin Card Sorting Test), attention
(Continuous Performance Test; Digit Span, WAIS/WISC-III) and memory (Test of Memory
and Learning: immediate and delayed recall).

Imaging data acquisition
Scans were obtained on a 3 Tesla Siemens Magnetom Trio Tim (Siemens Medical Systems,
Germany) magnetic resonance scanner at the Centre for Image Diagnosis, Hospital Clínic, Bar-
celona. Participants were instructed to remain as still as possible for the duration of the scan-
ning session. Soft pads were placed at the sides of their heads in order to help avoid further
movement. A high-resolution T1-weighted 3-dimensional (3D) magnetization-prepared rapid
sequence was acquired with the following parameters: 240 sagital slices; TR = 2300 ms;
TE = 3.01 ms; slice thickness = 1 mm; inversion time (TI) = 900; FOV = 394x240; matrix
size = 256×256; and flip angle = 9°. An 8-minute rs-fMRI sequence was also acquired, prior to
which participants were instructed to keep their eyes closed and not fall asleep. Acquisition
parameters were as follows: 240 volumes, TR = 2000 ms; TE = 29 ms; matrix size = 480x480;
slice thickness = 4 mm, acquisition matrix = 80x80 mm, 32 slices, voxel size 3x3x4 mm3.

Following acquisition, images were inspected to exclude participants with macroscopic
abnormalities. One BD-offspring was excluded due to ventriculomegalia. rs-fMRI Images were
also inspected for excessive head motion during pre-processing, defined as 1.5 mm translation
and 1.5 degrees rotation in any of the x, y or z directions. This led to exclusion of 19 partici-
pants (6 SZ-offspring, 7 BD-offspring, 6 CC-offspring). The total sample analysed consisted of
27 SZ-offspring, 39 BD-offspring and 40 CC-offspring.

Statistical analysis
Demographic, clinical and cognitive data were analysed with the Statistical Package for Social
Sciences (SPSS v.20) employing repeated measures analyses of variance and chi-square tests.
Non-parametric testing and log-transformation of variables were undertaken when assump-
tion of normality was not met (Kolmogorov-Smirnov). Age correlated with performance on
immediate and delayed memory tasks as well as with digit span, therefore cognitive measures
were regressed for age prior to performing between-group comparisons.

Image processing and analysis
rs-fMRI data was preprocessed with the Statistical Parametric Mapping software (SPM8), run-
ning in Matlab (R2013a), as follows: reorientation of 3D and fMRI images along the anterior
and posterior commissural line; realignment with motion correction and inspection of outputs;
corregistration of anatomical to functional data; normalization into standard Montreal Neuro-
logical Institute (MNI) space [49] and smoothing with an 8 mm FWHM kernel. Images were
then subjected to a single spatial ICA, employing the Group ICA fMRI Toolbox (GIFT v3.0a),
performed in 3 stages: First, principal component analyses (PCA) was conducted twice: the
dataset was first reduced to 30 components, and then was further reduced to 20 components.
The first PCA reduction step is at the subject level and the second one at the group level. Sub-
ject-level PCA allows preservation of differences between subjects at the same time that it
emphasizes the similarities between subjects by projecting data into a common space. This
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point enables acquisition of mean data for the subjects and is required to make the data compu-
tationally tractable. On the other hand, by conducting group-level PCA, data is further reduced
into a set number of components and independent group spatial maps [50]. Second, the Info-
max algorithm was used to decompose the reduced dataset into maximally independent com-
ponent images; and finally, back-reconstruction of components using the Group ICA tool.
Components were sorted by spatial correlation with a template of the DMN provided by the
GIFT software, as well as with templates for the ECN, BGN, and anterior SN available at http://
findlab.stanford.edu/functional_ROIs.html [51]. Components showing the greatest correlation
with the templates were exported to SPM8, where one sample t-tests were carried out to deter-
mine anatomical regions within each network. Then, ANCOVA was conducted to test the
effect of group membership on within network connectivity, with age and gender as covariates.
A grey matter mask was obtained from the smoothed, modulated and normalised grey matter
images for the whole sample, which was used as an inclusive mask for all second-level analyses.
Significant main effects of group were followed-up with pairwise comparisons. Results were
interpreted at a voxel-wise threshold of p<0.001 uncorrected and a cluster-wise threshold of
p<0.05 FWE corrected. Connectivity signal values from clusters showing significant group dif-
ferences were extracted using a volume-of-interest (VOI) approach in order to examine the
relationship between magnitude of connectivity and clinical, cognitive and grey matter volume
(GMV) measures.

Computation of GMV within the clusters identified in the above comparisons was under-
taken with a customised script running in Matlab. T1 images underwent a unified segmenta-
tion followed by smoothing with an 8mm FWHM kernel. In order to adjust for head size, a
grey matter ratio was obtained for each subject (GMV of the cluster was divided by the subject’s
total intracranial volume (TIV), [52]). TIV was computed using the Freesurfer pipeline [53].
ANCOVA was used to determine the effect of group on GMV within clusters identified in the
above comparisons, with age and gender as covariates. The relationship between rs-fMRI signal
(within the cluster showing between group differences) and clinical, cognitive and volumetric
data was assessed using partial correlations controlling for age and gender.

Finally, analyses were repeated excluding offspring with a history of any axis I DSM-IV
diagnosis. Confirmatory analyses were also performed to take into account the effect of having
a sibling in the sample (5 SZ, 9 BD, and 8 CC families contributed more than one offspring to
the study): mixed models were conducted with SPSS, where the mean connectivity values were
included as dependent variable, ‘sibship’ as random effects, and age and gender as fixed effects.

Results
Out of the final 22 SZ families, 18 parents had a diagnosis of SZ (DSM-IV codes 295.10–90),
while 3 parents had a diagnosis of schizoaffective disorder (DSM-IV codes 295.40). Out of the
28 BD families, 18 parents had BD-I (DSM-IV codes 296.40–70), and 7 had BD-II (DSM-IV
codes 296.89). All other current and lifetime psychiatric diagnoses of parents (proband parents,
co-parents and community control parents) are shown in Table 1. No significant differences in
terms of rates of lifetime or current axis I diagnoses were observed between the three groups of
parents (SZ, BP, CC; χ² = 1.263, p = 0.532).

Demographic, clinical, cognitive and neuroimaging data of the offspring are depicted in
Table 2. There was no significant effect of group on age, sex or TIV. SZ-offspring had lower
parental SES relative to the other groups. SZ had greater lifetime prevalence of attention deficit
hyperactivity disorder (ADHD) than CC-offspring. There were no other clinical differences,
except for SZ and BD-offspring showing higher SOPS negative scores than CC-offspring. Six
participants (5 SZ-offspring and 1 BD-offspring) were receiving treatment with
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psychostimulants for treatment of ADHD at the time of scanning; no other participant had
received any other form of psychiatric medication. CC-offspring had higher IQ relative to SZ-
offspring. No significant differences were seen in any other cognitive domain. No differences
in peak translation or rotation motion parameters were observed between groups.

Independent component analysis
Spatial maps for each network are described in Table 3.

An effect of group membership was detected for the BGN (F = 13.07, pFWE = 0.019, k = 55,
MNI coordinates x,y,z [−9,23,−2]). Pairwise analyses showed that this finding was driven by
the SZ-offspring versus CC-offspring comparison: SZ-offspring showed reduced connectivity
in the left caudate nucleus and anterior cingulate, extending to the left olfactory cortex
(t = 4.45, pFWE = 0.012, k = 80, MNI [[−9,23,−2]). This pairwise comparison survived Bonfer-
roni correction (p-value threshold 0.05/3 = 0.017). There were no differences between BD-off-
spring and CC-offspring, or between SZ-offspring and BD-offspring. Fig 1A illustrates the
effect of group on connectivity within the BGN, including mean signal intensity at the left cau-
date (Fig 1B). When IQ was entered in the model, results remained unchanged (group effect,
F = 10.97, pFWE = 0.022, k = 53, MNI [[−9,23,1]; pairwise comparison SZ-offspring< CC-off-
spring t = 4.21, pFWE = 0.004, k = 100, MNI [–3,17,1], left olfactory cortex extending to the cau-
date nuclei). A group effect was also detected in the right ECN, albeit at an uncorrected
threshold (F = 10.96, puncorrected = 0.026, k = 23, MNI [36,–79,31]); this was driven by increased

Table 1. Clinical characteristics of parents.

Schizophrenia proband
parents (N = 19)

Schizophrenia co-
parents (N = 17)

Bipolar Disorder
proband parents

(N = 30)

Bipolar Disorder
co-parents
(N = 23)

Community Control
parents (N = 53)

Mean (standard deviation) / N (%)

Age 41.69 (6.16) 46.61 (9.75) 45.14 (5.52) 45.87 (5.51) 45.09 (5.41)

Total lifetime axis I
disorders*

7 (36.84%) 10 (58.82%) 11 (36.67%) 9 (39.13%) 19 (35.86%)

Lifetime attention deficit
hyperactivity disorders

0 0 1 (3.33%) 0 0

Lifetime mood disorders 2 (10.53%) 4 (23.53%) 5 (16.67%) 2 (8.70%) 3 (5.66%)

Lifetime anxiety disoders 1 (5.26%) 0 3 (10%) 0 3 (5.66%)

Lifetime adjustment
disorders

2 (10.53%) 6 (35.29%) 2 (6.67%) 4 (17.39%) 11 (20.75%)

Lifetime substance-
related disorders

1 (5.26%) 0 0 2 (8.70%) 0

Lifetime eating disorders 1 (5.26%) 0 0 1 (4.35%) 2 (3.77%)

Total current axis I
disorders*

0 6 (35.29%) 6 (20%) 7 (30.43) 9 (16.98%)

Current attention deficit
hyperactivity disorders

0 0 2 (6.67%) 0 0

Current mood disorders 0 3 (17.65%) 0 0 0

Current anxiety disoders 0 2 (11.76%) 2 (6.67%) 4 (17.39%) 3 (5.66%)

Current adjustment
disorders

0 1 (5.88%) 1 (3.33%) 2 (8.70%) 6 (11.32%)

Current substance-
related disorders

0 0 1 (3.33%) 1 (4.35%) 0

* All axis I-related disorders other than schizophrenia and bipolar disorder are considered.

doi:10.1371/journal.pone.0148045.t001
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Table 2. Socio-demographic, clinical and cognitive characteristics of the sample.

Schizophrenia
Offspring (N = 27)

Bipolar Disorder
Offspring (N = 39)

Community Control
Offspring (N = 40)

Mean (standard deviation) / N (%)
Statistic P

value
Significant pair-wise comparisons,

Bonferroni corrected p (0.05/
3 = 0.017)

Age 11.96 (3.41) 13.87 (3.49) 13.45 (3.76) 4.21a 0.122

Sex (female) 13 (48.15%) 22 (56.41%) 24 (60%) 0.932b 0.628

Socio-economic status1 38.56 (12.17) 47.05 (13.11) 50.23 (10.86) 12.05a 0.002 CC-offspring>SZ-offspring p<0.0001 BP-
offspring>SZ-offspring p = 0.014

Lifetime attention deficit
hyperactivity disorders

9 (33.33%) 6 (15.38%) 1 (2.5%) 11.962b 0.003 SZ-offspring > CC-offspring (p<0.0001);

Lifetime mood disorders2 2 (7.41%) 1 (2.56%) 2 (5%) 0.844b 0.656

Lifetime anxiety disorders3 2 (7.41%) 5 (12.82%) 0 5.30b 0.071

Lifetime disruptive
behaviour disorders4

1 (3.70%) 1 (2.56%) 1 (2.5%) 0.101b 0.951

YMRS5 2.08 (3.43) 1.32 (1.85) 0.94 (1.72) 1.555a 0.459

HDRS6 0.8 (1.22) 2.23 (4.33) 0.50 (1.25) 3.422a 0.181

SOPS-P7 1.36 (2.18) 1.10 (2.60) 0.61 (1.57) 2.824a 0.244

SOPS-N8 1.00 (1.57) 1.61 (3.40) 0.31 (1.06) 8.185a 0.017 BD-offspring > CC-offspring (p = 0.016);
SZ-offspring > CC-offspring (p = 0.006)

Maximum translation
movement (mm)

0.62 (0.38) 0.61 (0.38) 0.53 (0.27) 0.779a 0.678

Maximum rotation
movement (degrees)

0.57 (0.44) 0.50 (0.36) 0.45 (0.34) 1.097a 0.578

Total intracranial volume
(cc)

1501.03 (153.79) 1541.12 (143.64) 1529.49 (168.45) 2.176a 0.337

Total Grey matter volume
(cc)

715.14 (69.50) 713.39 (58.19) 718.43 (72.02) 0.057c 0.944

General Cognitive
Capacity9

101.30 (14.77) 108.26 (11.80) 110.60 (12.32) 4.40c 0.015 CC-offspring > SZ-offspring (p = 0.013)

WCST10-correct answers 70.14 (7.61) 68.38 (9.77) 71.67 (9.13) 0.863c 0.426

WCST-complete categories 5.33 (1.68) 5.96 (0.20) 5.84 (0.50) 2.724c 0.072

TOMAL11-immediate recall 76.09 (8.78) 81.85 (8.66) 80.67 (8.24) 0.7c 0.5

TOMAL-delayed recall 9.86 (2.01) 10.61 (1.50) 10.59 (1.46) 0.623c 0.539

CPT12-reaction time 51.23 (9.66) 51.57 (11.65) 46.41 (9.20) 2.566c 0.083

Digit span 14.05 (2.73) 16.46 (3.31) 16.03 (2.80) 2.186 c 0.119

1Hollingshead Index.
2Mood disorders: dysthymia and adjustment disorder with depressed mood.
3Anxiety disorders: simple phobia, generalized anxiety disorder and obsessive-compulsive disorder.
4Disruptive behaviour disorders: oppositional defiant and conduct disorder.
5Young Mania Rating Scale;
6Hamilton Depression Rating Scale;
7Scale of Prodromal Symptoms: positive symptoms;
8Scale of Prodromal Symptoms: negative symptoms;
9Wechsler Intelligence Scale for Children-III/Wechsler Adult Intelligence Scale-III
10Wisconsin Card Sorting test,
11Test of Memory And Learning,
12Continuous Performance Test.
aKruskal-Wallis;
bChi-square;
cANOVA. Pairwise comparisons were corrected for Bonferroni, setting the p value threshold at 0.017 (alpha value divided into three main comparisons).

doi:10.1371/journal.pone.0148045.t002
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connectivity in BD-offspring relative to the other groups, particularly SZ-offspring (t = 4.68,
pFWE = 0.035, k = 61, MNI [36,–79,31]). No significant group differences were seen for the
DMN or SN.

Given that volumetric reduction of the caudate nucleus has been associated with ADHD
[54] and that treatment with psychostimulants may modulate caudate activity [55], we con-
ducted a second-level analysis excluding 9 SZ-offspring, 6 BD-offspring and 1 CC-offspring
with ADHD, among which were the six subjects receiving psychotropic medications at the
time of scanning. Results remained near significant for the same cluster (t = 4.60, pFWE = 0.05,
k = 54, MNI [–9,26,–5]). Analyses excluding subjects with lifetime history of axis I disorders
did not yield any significant changes to the group differences within the BGN, albeit at an

Table 3. Resting-state components.

Resting State
Networks

Correlation (r) with spatial
template for the whole

sample

Correlation (r) with spatial template
for offspring without a history of

psychiatric disorders

Main anatomical locations

Default Mode
Network

0.59351 0.52258 Left: Precentral and paracentral lobule, superior frontal,
inferior occipital cortices, inferior parietal lobe and posterior
cingulate. Right: Middle/inferior/superior frontal cortex,
precuneus, middle occipital, inferior/superior parietal and
middle temporal cortices.

Basal Ganglia
Network

0.4039 0.41902 Pallidum, anterior cingulate, thalami, putamen, caudate,
right posterior cingulate, right superior frontal and right
middle temporal cortices.

Left Executive
Control Network

0.42065 0.48866 Left: orbitofrontal, superior/inferior/middle/medial frontal,
inferior parietal and inferior temporal cortices. Right:
supramarginal gyrus and middle/superior occipital cortex.

Right Executive
Control Network

0.4239 0.42226 Left: precuneus, paracentral lobule and posterior cingulate.
Right: superior/middle/inferior/medial frontal, precentral,
inferior parietal and middle temporal cortices, fusiform
gyrus, precuneus, and insula.

Anterior Salience
Network

0.56265 0.39225 Left: precentral cortex, amygdala, anterior/middle cingulate,
paracentral lobule, medial/superior/middle orbital frontal
cortex, and globus pallidum. Right: superior/middle/inferior
frontal cortices, cerebellum, inferior temporal cortex and
inferior parietal lobe.

doi:10.1371/journal.pone.0148045.t003

Fig 1. A. Cluster showing group differences within the Basal Ganglia Network overlaid on a normalised 3D image. B. Mean signal intensity for each group
within the global maxima in the BGN. Error bars represent the 95% confidence interval.

doi:10.1371/journal.pone.0148045.g001
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uncorrected statistical threshold (SZ-offspring<CC-offspring: t = 4.82, punc = 0.012, k = 43,
MNI [–9,26,–5]). Analyses taking into account the effect of sibship in this same region within
the BGN confirmed the abovementioned results (F = 11.87, p<0.0001; Bonferroni correction).

Relationship between RSN and brain structural, clinical and cognitive
variables
GMV of the cluster showing significant between group differences in the BGN was measured
for each participant. No differences in GMV/TIV ratio were seen between groups (F = 0.36,
p = 0.699). Correlation analyses were also conducted applying Bonferroni correction (p = 0.05
divided by the number of structural, clinical and cognitive variables (12), yielded a threshold of
statistical significance at p< 0.004). There was a positive correlation between rs-fMRI signal
and regional GMV in SZ-offspring only (R2 = 0.598, p = 0.032, unstandardized coefficient ß =
37.54, standard error = 16.47, see Fig 2). No significant associations were observed between the
rs-fMRI signal and clinical/cognitive variables.

Discussion
This is, to the best of our knowledge, the first study to directly compare rs-fMRI in child and
adolescent offspring of patients with SZ and BD. We found reduced left BGN connectivity in
SZ-offspring relative to CC-offspring that correlated with GMV in the left caudate, and no dif-
ferences in connectivity between BD-offspring and CC-offspring.

Hypoconnectivity in the left BGN in SZ-offspring involved the left caudate nucleus, the
anterior cingulate and ventromedial prefrontal cortex. These findings remained, at an uncor-
rected threshold, after excluding offspring with pre-existing lifetime psychiatric diagnoses.
Decreased resting-state corticostriatal connectivity has been previously reported in siblings and
parents of patients with psychotic disorders [31, 11]. The present study expands these findings
and demonstrates that BGN hypo-connectivity may be a robust correlate of familial risk for SZ,
regardless of age. Unlike Fornito and colleagues, we did not confirm an association between
BGN connectivity and clinical and cognitive symptoms. These authors found a correlation
between fronto-striatal connectivity and positive and negative symptoms in patients with first-
episode psychosis [31], but they failed to assess this relationship in their group of first degree

Fig 2. Partial regression plot depicting correlation between VOI signal values and grey matter volume
in the left caudate (SZ-offspring).

doi:10.1371/journal.pone.0148045.g002
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relatives. Our sample involved young offspring of BD and SZ, none of whom had a diagnosis of
psychosis; hence why we decided to focus on prodromal symptoms. The correlation between
intrinsic connectivity and symptomatology may thus emerge as the sample grows older and
approaches the peak age of onset of the disease; the association between neural signal and clini-
cal symptoms being too subtle to be detected at this early stage. On the other hand, we observed
a positive correlation between BGN connectivity signal and GMV in the left caudate, restricted
to SZ-offspring, indicating that lower connectivity is associated with smaller GMV in this
region in SZ-offspring, despite the absence of case-control differences in volume. In a sample
of adolescent SZ-offspring, Tandon and colleagues observed reductions in N-acetyl aspartate
in the caudate, thalamus and anterior cingulate gyrus and increases in glutamate + glutamine
in the caudate and thalamus, which correlated with respective GMV [56]. The authors postu-
lated that these findings could reflect abnormal glutamatergic–dopaminergic interactions in
these regions, linking with the large body of research supporting abnormal striatal dopamine
transmission in unaffected adult relatives of patients with SZ [57] and adults at clinical high
risk for psychosis [58].

We did not observe differences in BGN connectivity between BD-offspring and CC-off-
spring. Khadka and colleagues, in an adult sample, also demonstrated that decreased striatal
connectivity was specific to relatives of SZ, although they observed disruption in connectivity
of the thalamus in both SZ and BD relatives [11]. Longitudinal follow-up of our sample will
allow to confirm whether such abnormalities emerge with increasing age, or whether they
remain unrelated to familial risk.

We also found evidence indicative of greater connectivity in BD-offspring in the right ECN,
which was more prominent in their comparison to SZ-offspring. The ECN network overlaps
with regions frequently activated during executive function tasks such as working memory
[59]. A study in young SZ-offspring [60] found reduced fronto-parietal activation during a
working memory task, which suggests that abnormalities in the ECNmay be more reliably
present when the network is actively involved in a task. However, this finding may also be
reflective of compensatory network connectivity in BD-offspring. This interpretation has also
been suggested by Singh and colleagues who observed increased ECN connectivity in child and
adolescent BD-offspring [30]. Nevertheless, given that these results were uncorrected for multi-
ple comparisons conclusions remain tentative.

Contrary to previous studies [27], we found no differences of connectivity in the DMN. Of
note, our DMN component did not include the medial prefrontal cortex, which we hypothesize
may be due to the young age of the sample. The age-related re-organization of the DMN
involves increased functional connectivity, particularly in the medial prefrontal cortex [61].
Abnormalities related to risk of SZ and BD in this network may thus emerge as this sample
grows into adulthood.

The SN did not yield significant results in any of the contrasts studied. Some functional
alterations have been previously reported in patients with SZ [15], and abnormal structural
covariance within this network has been reported in prodromal subjects who later transitioned
to psychosis [62]. It is therefore possible that such dysfunction may be specific to those individ-
uals who will later develop psychosis, and therefore not detectable at the group level. Further-
more, some studies have considered subcortical structures as a part of this network [15, 62],
while in our study we have differentiated between cortico-subcortical and a fronto-insular net-
work, which may have contributed to the lack of results in our salience component.

This study has a number of limitations. Given its cross-sectional design, we are unable to
comment on the development of RSN in high-risk offspring. We included offspring receiving
psychotropic medication or with different diagnoses in order to capture the clinical complexity
of high-risk samples [63], although this did not influence the results. The main strength of our
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study is the direct comparison of SZ-offspring and BD-offspring during youth, which coincides
with the age at which the incidence of both disorders begins to rise [64]. It has been suggested
that research focused on adult samples may be missing important ethiopathogenic processes
which take place earlier during development [65].

In conclusion, our findings point to a measurable pattern of brain dysconnectivity across
RSN in child and adolescent offspring of SZ, while no functional connectivity differences were
observed in BD-offspring relative to CC-offspring. Follow-up of the current sample will allow
tracking whether the current changes are predictive of transition to psychosis.
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