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Continuum bound states as surface states of a finite periodic system
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We discuss the relation between continuum bound states~CBSs! localized on a defect, and surface states of
a finite periodic system. We model an experiment of Capassoet al. @F. Capasso, C. Sirtori, J. Faist, D. L. Sivco,
S-N. G. Chu, and A. Y. Cho, Nature~London! 358, 565~1992!# using the transfer-matrix method. We compute
the rate for intrasubband transitions from the ground state to the CBS and derive a sum rule. Finally we show
how to improve the confinement of a CBS while keeping the energy fixed.
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I. INTRODUCTION

In 1992, an experiment of Capassoet al. demonstrated1

the existence of a well-localized continuum bound st
~CBS! in a semiconductor superlattice consisting of o
thick quantum well surrounded on both sides by seve
GaInAs-AlInAs well/barrier layers constructed to act asl/4
Bragg reflectors. As suggested by Lenz and Salzman,2 the
central well was made double the width of the lattice we
to act as al/2 Fabry-Perot resonator. Subsequently, Web3

studied the existence of such states using the transfer-m
method. Among other things, he showed that the Bragg c
dition need not be very well satisfied for a confined state
exist. Sunget al.4 have also studied above-threshold co
fined states, in a different material system, GaAs/AlGa
Indjin et al.5 made an exhaustive study of CBSs in syste
where the unit cell is piecewise constant, with two laye
Finally, Wanget al.6 have discussed the parity sequence
subthreshold bound states localized on a defect, and the
sition rates between them.

In this paper we provide further insight into the pheno
enon of CBSs by relating them to surface states, whose p
erties were explained by Shockley in a famous paper.7 An
infinite periodic system, illustrated in Fig. 1~c!, allows Bloch
states with the periodicity of the lattice. If the system
truncated on one side, or on both sides,@Fig. 1~b!# then one
can discuss scattering states with energies above thres
and bound states below threshold. The transfer-ma
method is well adapted to discuss such a periodic syst
For convenience we will use the notation of our previo
papers.8,9

Among the bound states of a finite periodic array a
Bloch-like states whose amplitude is spread more or
uniformly over the lattice, and the surface states whose d
sities are concentrated at the ends. The former usually o
in the allowed energy bands of the infinite lattice, while t
surface states necessarily occur in the forbidden bands. T
wave functions decay exponentially outside the array
like 6e2u from cell to cell inside, whereu is the imaginary
part of the Bloch phase.

Another way to truncate an infinite lattice is to cut it in th
middle and pull the two halves apart. This introduces a
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fect @Fig. 1~d!# which may be either a well or a barrier. A
emphasized by Weber,3 the condition for a state localized o
a defect of an infinite lattice is that the wave function at t
edge of the defect matches to a decaying Bloch eigensta
the unit cell, that is, the wave function will decay by6e2u

from cell to cell. There are also antibound states, where
match is to the growing eigenstate. In either case, the Bl
phase must be complex, so such states exist only in the
bidden zones, in common with surface states.

In Sec. II, we briefly introduce the transfer matrix for
system with position-dependent effective mass. In Sec.
we apply it to the Capasso experiment. We determine
width of the central well to provide a CBS at a desired e
ergy. In Sec. IV we discuss the relation between these st
and states in a box, illustrated in Figs. 1~a! and 1~f!. In Sec.
V we compute the transition rate from the ground state
continuum states in the neighborhood of the CBS, and de

FIG. 1. Schematic drawing of~c! an infinite array, truncated to
~b! a finite array, and enclosed in~a! walls; or with~d! a defect, also
~e! truncated, and~f! enclosed.
©2003 The American Physical Society18-1
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SPRUNG, JAGIELLO, SIGETICH, AND MARTORELL PHYSICAL REVIEW B67, 085318 ~2003!
a sum rule showing that the total strength depends very l
on the number of cells involved. Finally, in Sec. VI we di
cuss how to improve the confinement of a CBS of fix
energy, proposing an experimental arrangement to test t

II. TRANSFER MATRIX

In the envelope function approximation, an electron in
conduction band is described by solutions of the Schro¨dinger
equation with a variable effective mass

2
\2

2

d

dx F 1

m~x!

d

dx
cG1~V~x!2E!c50. ~1!

For convenience we will discuss the situation where the
tire system has reflection symmetry, such as in the spe
examples discussed by Weber, Capasso, Indjin, Wanget
al.3,1,5,6Then it is sufficient to consider onlyx.0 and reflect
the solutions in the origin.

We factorizem(x)5mem* (x) into the bare massme and
the dimensionlessm* , and use\2/2me53.81 eV Å2 in all
calculations. In Weber’s model both the potential and
effective mass are piecewise constant functions, but
method is valid even ifV(x) and m* (x) vary continuously
within the potential cell.

The transfer matrix for the unit cell of widthd of the
lattice is constructed out of two independent solutions:v(x),
which has value 1, slope 0 at the left edge of the unit c
andw(x), which has value 0 and slopem* (0) there. It is

W~d!5S v w

v8/m* w8/m* D
and satisfies

S c

c8/m* D U
d

5W~d!S c

c8/m* D U
0

. ~2!

Here the solutionsv,w without argument are evaluated at th
right edge,x5d20, and c is an arbitrary solution. In a
periodic system,W(d) depends only on the length of th
cell, not its position. Sincec and c8/m* are continuous a
interfaces, to move one interval further to the right, one s
ply multiplies again by the appropriate transfer matrix. A
discontinuity in the derivative is automatically taken into a
count.

The determinant ofW(d) is the Wronskian of two inde-
pendent solutionsv(x), w(x) and is a constant. Eigenvalue
of the transfer matrix satisfy

l222 cosfl1150,

where

2 cosf[Tr W5v1w8/m* , ~3!

and when the Bloch phasef is a real angle, they arel
5e6 if. Raising the energy from the potential minimum, o
is in a forbidden band whereucosfu.1. In this region of
energy,f5 iu is imaginary. Following this, the first allowe
band occurs within whichf increases from zero top. Then
08531
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in the next forbidden band, with cosf,21, f5p1 iu be-
comes complex. In thepth forbidden band,f5pp1 iu and
the eigenvalues arel5(2)pe6u.

A. Surface states

Because we have assumed reflection symmetry, state
the whole system will have either even or odd parity. Su
pose that the infinite array is truncated so that there arN
cells to right of the origin as in Fig. 1~b!. Then the condition
for a bound state is that the wave function at the right edge
the array matches to a decaying solution outside~here we
suppose constant potential outside, but that can be cha
trivially !:

S c

c8/m* D U
Nd

5WNS c

c8/m* D U
0

. ~4!

For an even bound state,c5v(x), on the right-hand side
WN acts on (1,0) while for an odd state,w(x), it acts on
(0,1). This gives the log derivative

c8

m* ~d!c
U

Nd

5
~WN!2s

~WN!1s

5
2k

mout*
, ~5!

wheres51 (2) for even~odd! states,m* (d) is the effective
mass inside the edge of the last cell, whilemout* is the value
outside, andE5Vout2\2k2/(2mmout* ). By construction, the
W matrix is real, so the energyE must lie below the externa
potentialVout . On the other hand, a surface state can e
only whenE is in a forbidden zone, with complexf5pp
1 iu. In such a zone,8

W~Nd!5WN~d!

5~2 !(N21)pFsinhNu

sinhu
W2~2 !p

sinh~N21!u

sinhu G .
~6!

Equations~5! and~6! allow one to search for energies whe
surface states occur.

B. Continuum bound states

Suppose that the infinite periodic array is cut at the ori
and an extra well of width 2c is placed between the two
sections, as in Fig. 1~d!. Let T(c) be the transfer matrix@as
in Eq. ~2!# that takes the wave function from the origin toc.
Its columns are the even- and odd-parity solutions within
central well. In order for a CBS to exist, the first~or second!
column ofT(c) must match to a decaying eigenstate of t
unit cell of the semi-infinite array to the right. In othe
words, one of the columns ofT(c) must satisfy the eigen
value equations forW(d):3

~W~d!2lI !F c~c!

c8~c!/m* G50, ~7!
8-2
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CONTINUUM BOUND STATES AS SURFACE STATES OF . . . PHYSICAL REVIEW B 67, 085318 ~2003!
c8~c!

m* ~c!c~c!
5

l2W11~d!

W12~d!
5

W21~d!

l2W22~d!
. ~8!

Either of these equations can be used to search for CBS
they are satisfied with reall being the smallerl2 ~larger
l1) eigenvalue, then a CBS@or an antibound state~ABS!#
exists at that energy. The only difference between them
surface states is the numerical value of the boundary co
tion that has to be satisfied where the lattice meets the de
or the surface.

III. CAPASSO-WEBER EXAMPLE

The array constructed by Capasso can be modeled
sequence of potential wells of widthw516 Å, depthVw
50, and barriers of widthb539 Å and height Vb
5500 meV. The energy-dependent effective mass in e
layer is given by10,11

mw* 50.043@11~E2Vw!/Ew#,

mb* 50.073@11~E2Vb!/Eb#, ~9!

whereEw50.88 eV, andEb51.49 eV are the effective band
gaps of InGaAs well and AlInAs barrier materials.

FIG. 2. A unit cell of the lattice for~a! Weber’s model, and~b!
the split-well configuration of Sec. VI.
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In this example, the potential is piecewise constant, so
transfer matrix can be constructed from factors of the typ

T~c!5F cosckc ~mc* /kc!sinckc

2~kc /mc* !sinckc cosckc
G , ~10!

where kc
252memc* (E2Vc)/\

2 is the wave number inside
the layer andmc* is the effective mass there.

We follow Weber in taking the unit cell to be a well fol
lowed by a barrier, as illustrated in Fig. 2~a!. Then

W~d5w1b!5T~b!T~w!. ~11!

The situation of a central defect being a double width we
corresponds toc50. Indjin et al.5 have written out the forms
in all detail.

The transfer matrix from the origin toc1Nd is
WN(d)T(c). For anyc.2w/2 the central well constitutes
defect in the superlattice. IfN→`, the argument of Sec. II B
applies, and the wave function will only be localized near t
origin when one of the columns ofT(c) is an eigenvector of
W(d) with the decaying eigenvalue6e2u. The left-hand
side of Eq.~8! @cf. Eq.~10!# is either2kwtankwc/mw* ~for an
even state! or kwcotkwc/mw* ~odd state!. But the identity
cot(x1p/2)52tan(x) means that the solutions for od
states can be found simply by addingp/2 to the value ofkwc
of an even state solution. Given any solution, another o
which differs only by the number of nodes in the cent

FIG. 3. Wave functions of~a! a CBS and~b! a surface state
compared.
8-3
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FIG. 4. States in a box, forc58 Å, also showing~a! the CBS at 563 meV,~b! the ABS at 577 meV,~c! the CBS at 891 meV, and~d!
the ABS at 946 meV. At right,a labels the first allowed band from 307→387 meV,b the second allowed band from 641→881 meV,g the
third allowed band from 960→1357 meV, andd the fourth allowed band from 1357 meV. Dotted lines show the potential cells, in eV; w
functions are dimensionless and are drawn with base lines at the energy eigenvalue.
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well, can be obtained by addingp/kw to c. Hence, it is the
differencesin width of the central well that go by half wave
lengths, not the whole width.

To illustrate the close relationship between CBS and s
face states, in Fig. 3 we show in the upper panel the r
side of a six-cell lattice with the central well of width 2w,
having the CBS at 563 meV. In the lower part we show
three-cell lattice with a surface state at the left edge deca
into the potential barrier, chosen so the slope is exactly
same for both wave functions. The only difference is that o
state passes through zero at the origin to make an odd-p
wave function, while the other decays exponentially; with
the lattice they are identical.

Weber3 noted that a well-confined CBS was obtained ev
when the widthsw andb of the well and barrier were rathe
far from the optimal values. Indjinet al.5 made an exhaustive
study of the location of the CBS asw, b, andc were varied,
so we will only make one comment. If bothw and b are
varied while keeping the energy of the CBS fixed, the mi
mum value of ul2u is obtained with bothwkw and bkb
5p/2. This should be expected, because once we fix
energy of the state, the effective masses are also fixed. T
the optimization ofwkw andbkb proceeds exactly as for a
energy-independent Kronig-Penney potential, for which
Bragg condition is optimal, as one can easily show anal
cally.
08531
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IV. RELATION TO STATES IN A BOX

Kalotas and Lee12 considered the states obtained by e
closing a finite number of cells between infinite walls.@See
Figs. 1~a! and 1~f! for illustrations.# This discretizes the con
tinuum, so all states become discrete. Well-localized sta
that decay quickly enough will be scarcely affected by t
walls. States spread over the whole lattice will become
discrete set maintaining similar character. An ABS who
magnitude grows away from the origin will be squeez
against the walls of the box.

Figure 4 shows an example where we have takenN511
cells on each side of the origin. Figure 4~a! can be compared
with the CBS atE5563 meV of thec50 example of Ca-
passo and Weber. Even with just three cells on either s
the state is hardly shifted from its position in the infini
array. Figure 4~c! shows the second CBS at 891 meV, in t
next higher forbidden miniband. An ABS occurs betwe
each pair of CBSs; two examples are shown in Figs. 4~b! and
4~d!. If the box walls were taken away the ABS wave fun
tions would grow without limit, so they are not normalizab
states and are of only theoretical interest.

In Fig. 5 we show the spectrum of box states as a funct
of N, again for thec50 central well case. The energies
the single-cell states change little as more cells are ad
The new states that appear fill up the allowed bands.
8-4
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CONTINUUM BOUND STATES AS SURFACE STATES OF . . . PHYSICAL REVIEW B 67, 085318 ~2003!
understand this, it is convenient to consider a system wi
hard wall at the origin, thenN identical cells, followed by a
hard wall at the right. The allowed wave functions are tho
that vanish at the origin~odd-parity states of the symmetr
system!, and the hard-wall boundary condition at the rig
edge isc(x5Nd)50. In view of Eq.~4!, this requires that
the element (WN)1250. Since in an allowed band

WN~d!5
sinNf

sinf
W~d!2

sin~N21!f

sinf
I , ~12!

this can be written

~WN!12505
sinNf

sinf
W12~d!. ~13!

This shows that bound states can occur in either of two wa
First, they can occur as single-cell bound states, where
second factor vanishes. These states haveN nodes, and the
wave function vanishes at every cell boundary. Alternative
the combinatorial factor sinNf/sinf may vanish, and in an
allowed band there areN21 such states withNf5mp, m
51,2, . . . ,N21. The single-cell state may occur in a forbi
den zone, but the others can only occur for realf, in an

FIG. 5. Even~crosses! and odd~circles! state energies~in a box!
versus numberN of cells to the right of the central defect.~a! is for
a central well, and~b! for a central barrier. Bands are labeled as
Fig. 4.
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allowed band. For nonzeroc one has to multiplyWN(d)
from the right by the additional transfer matrixT(c) for the
central well, and then the simple factorization won’t be e
act. In practice the states remain in the allowed band all
same.

Figure 5 provides another example of the similarity
CBSs and surface states. In Fig. 5~a!, the CBS lies in the
middle of the first forbidden zone, while in the lower pan
there are two such states, one derived from the allowed b
a and the other from bandb.

Incidentally, Fig. 5 provides an explanation for the conu
drum of Wanget al.6 They were concerned as to what ha
pens to bound states which exist in some potential, when
cladded on each side by an infinite superlattice. As is cl
from Fig. 5~a!, these states continue to exist at the sa
energy. The third state, in bandb, alternates in parity de-
pending on its order in the ladder of states as additio
potential wells are added on each side, but the ene
scarcely changes. Each of these states is a linear combin
of the original state and the new ones from the side cells
lie close in energy. The same situation holds for the fi
state, in bandg. Of course, as the lattice becomes wider t
states in an allowed band will spread out over the en
width. The difficulty of Wanget al. was that they jumped
from no lattice to the entire system, and examined only sta
in the forbidden bands.

V. TRANSITION RATES

Introducing the vector potential into the Hamiltonian, E
~1!, leads to the excitation operator

eA

2c Fp
1

m~x!
1

1

m~x!
pG[ 2 i\eA

2mec
S ~14!

with dimensions of energy. In defining the operatorS ~di-
mensions of inverse length!, we have factored out the bar
electron mass, leaving only the dimensionless effective m
(m* ;0.06) inside. The vector potentialA is assumed to be a
function ofx, so it commutes with the mass. By invoking th
Coulomb gauge we make it commute with the momentum
well.

According to the Golden rule, the transition rate is

wi f 5
2p

\ S eA\

2mec
D 2

u^C f uSuC i&u2r~Ef !, ~15!

wherer(Ef) is the density of final states. The factors befo
the matrix element have dimensions of length squared tim
energy per second, and these are omitted from our calc
tions. The matrix element squared times the density of st
is therefore~energy length-squared! 21, and this is what we
plot in Figs. 6 and 9. After integrating over energy, we u
units of Å22 for the total strength.

In the Capasso experiment, the ground state has even
ity, so its derivative is odd, and transitions are allowed o
to odd-parity excited states. Also the lattice is finite rath
than infinite, so the transitions are to states in the continu
In the neighborhood of the CBS, the continuum wave fun
8-5
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tion has a large normalization inside the central well, and
causes the transition rate to peak at or near this energy.

We again consider the case of a central well of half wid
c surrounded byN additional cells on each side. The od
parity excited state with Dirac delta-function normalizati
has wave function

C f~x!5B0 sin~kwx!, uxu,c

5
1

Ap
sin~kbx1d!, x.c1Nd, ~16!

where E2Vb5\2kb
2/(2mmb* ) measures the energy abov

the top of the barrier in the asymptotic zone, andkw
2

52mmw* E/\2 is the wave number inside the central we
Using the transfer matrixW(d) to crossN cells gives

1

Ap
S sin@kb~c1Nd!1d#

nb cos@kb~c1Nd!1d#
D 5B0W(N)S sinkwc

nw coskwcD ,

~17!

wherenw5kw /mw* , nb5kb /mb , andW(N)5WN(d), so that

1

nb
tan@kb~c1Nd!1d#5

W11
(N) sinkwc1W12

(N)nw coskwc

W21
(N) sinkwc1W22

(N)nw coskwc
~18!

determinesd, and

1

Ap
sin@kb~c1Nd!1d#

5B0@W11
(N) sinkwc1W12

(N)nw coskwc# ~19!

gives the normalizationB0. Note that the matrix elements o
W(N) can be easily computed from those ofW(d) using Eq.
~6! @or Eq. ~12! when the Bloch phasef is real#. One need
not solve explicitly for the phase shiftd(E) because only
uB0u2 is required to compute the transition rate, and the id
tity sin2z5tan2z/(11tan2z) can be used in Eq.~19!.

With the above equations we can construct the wave fu
tion C f(x) as follows. Wave functionsv(x), w(x) in a unit
cell of the lattice are defined in Eq.~2!. Within the r th cell
following x5c, (r 51,2, . . . ) thewave functionC f(x) is
written as

C r~x!5Arv~x2c2rd1d!1Brw~x2c2rd1d!
~20!

and from the matching atx5c we haveA15B0 sinkwc, B1
5B0nw /nb coskwc. In general,

S Ar 11

Br 11 /m* D 5W~d!S Ar

Br /m* D , r 51, . . . ,~N21!.

~21!

Knowing C r(x) in each cell allows the calculation of th
matrix element in Eq.~15!.

The ground-state wave function is computed in a sim
manner. Inside the central well it is
08531
is
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C0~x!5N0 cos~kwx!, uxu,c ~22!

and atx5c1Nd it must match to a decaying exponential,
in Eq. ~5!. If the state is well bound it is a good approxim
tion to use the Kalotas state which vanishes at the edge o
lattice or the Weber state that, in principle, extends to infi
ity. The normalization constantN0 must be computed by
summing the normalization integrals from every cell as w
as from the central well. If one integrates^vuv&,^vuw&, and
^wuw& over the unit cell, then it is just a matter of multiply
ing these integrals by the coefficients in ther th cell and
summing.

Because the effective mass depends both on position
energy~and therefore momentum!, it is not obvious how to
evaluate the matrix elements of the transition operatorS. It is
reasonable, in the termp/m* , to letp act on the excited state
cE and interpret the effective mass as being at that ene
Conversely, in the (1/m* )p term, wherep acts on the initial
state, we use the ground-state effective massm0* . Then,

^cEuSuc0&5E cE

1

m* ~E0!

dc0

dx
dx2E dcE

dx

1

m* ~E!
c0dx.

~23!

Sincec8/m* is continuous at interfaces between wells a
barriers, the integrand is continuous, despite the jumps
m* . When the effective massm* is piecewise constant, we
can evaluate the integral over a series of intervals of cons
m* @here interpreted asm* (x,E)].

The squared matrix element, including the density-
states factor, is plotted as a function of energy in Fig.
which is to be compared with Fig. 2 of Capassoet al.1 ~How-
ever, their figure has normalized the peak height to unity
each case, obscuring the fact that the integrated streng
constant.! As the number of side wells increases, the co
puted excitation function rapidly becomes very narrow.
shows that even a small number of cells is sufficient to g
a well-confined state. We also find increasing strength in
second allowed band near 700 meV as cells are added.

FIG. 6. The transition strength times the density of states~units
eV21 Å22) for ~a! a central well of width 32 Å, and~b! a central
well surrounded by one cell,~c! two cells, and~d! three cells on
each side.
8-6



sponding

CONTINUUM BOUND STATES AS SURFACE STATES OF . . . PHYSICAL REVIEW B 67, 085318 ~2003!
FIG. 7. Four representative continuum wave functions, forc58 Å, at energies~a! E5521 meV,~b! 545 meV,~c! 565 meV, and~d! 573
meV. Dotted lines show the potential cells, in eV; wave functions are dimensionless and are drawn with base lines at the corre
energy.
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integrated strength under the main peak~from 500 to 640
meV! varies by only a few percent.

To illustrate how the continuum wave functions evolve
the region of the CBS, we show in Fig. 7 four cases spann
the energy range. We match the wave function afterN53
cells; see Eq.~17!. It can be seen that as one passes over
CBS energy at 563 meV, an additional node appears in
wave function on each side of the origin. Away from th
resonance,@Figs. 7~a! and 7~b!# the wave function consist
mainly of the growing solution in the lattice, so the amp
tude is largest at the outside edge@where it is fixed, accord-
ing to Eq.~16!#. Close to the CBS@Fig. 7~c!#, there is a large
component of the decaying solution, making the amplitude
the central well large. Increasing the energy again@Fig. 7~d!#
brings back more of the growing solution. At 577 meV, t
position of the ABS, only the growing solution would con
tribute. If we had more thanN53 cells, the effects would be
even more pronounced.

While the peak in the transition strength becomes v
narrow as the number of lattice cellsN increases from zero to
3, the integrated strength is almost constant. This can
understood from the sum rule which follows from Eq.~15!,
and is discussed in Appendix A. The total strength,M2, is
defined in Eq.~A2!. In addition to the integral over the con
tinuum, when there areN Bragg reflectors on either side o
the central defect, there will beN discrete odd-parity bound
states, which must also be included in the sum. Typica
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these account for something like 6% of the total streng
These odd bound states are shown in Fig. 8, for the casN
52. In this figure, the wave functions are remarkably simi
inside the region where the ground state is large, so t
contribute almost equally to the sum rule.

Turning now to the results, one has to distinguish betwe

FIG. 8. The derivative of the~a! ground-state wave function
~over m* ) and ~b! and ~c! the first and second odd-parity excite
wave functions, for a five well potential~two identical cells on each
side of a central well!, enclosed in a box, illustrating the simila
overlap near the origin.
8-7



,

ve

te
he
ea

nd
th

t
hi

di

to

in
n

n-

s.

-
tia

g
he
q

ay
c

of

ll as
-
,

t

f
a
e
s

to

e
ary

To

pos-
can
rrier
ge

,

a
e

yed

Ku-

r lo-

ro-

,

SPRUNG, JAGIELLO, SIGETICH, AND MARTORELL PHYSICAL REVIEW B67, 085318 ~2003!
the no-reflector case and theN-reflector case. In the former
the integrated transition strength~ITS!, M2, is about
1.4 Å22. The strength is very broadly distributed abo
threshold; see Fig. 6~a!. We have looked atN51 –5 cells on
each side. For these cases, the ITS is around 1.35 Å22, of
which about 0.09 comes from the bound odd-parity exci
states. AsN increases, the ITS fluctuates only a little. T
strength remains highly concentrated into the CBS p
~about 80%!, the remainder being spread quite widely~6% in
the bound states and 14% in the continuum!. Because the
CBS peak becomes so narrow, we estimate the integral u
it by assuming a Breit-Wigner shape, and deducing
height and width from the calculations.

The sum rule, calculated according to Eq.~A3!, is always
about 6% to 10% higher than the ITS, if we~arbitrarily! set
the doorway state massmE to be atE5ECBS5563 meV.
The main term in Eq.~A3! is proportional to (1/m0
11/mE)2, so we can easily adjust the doorway energy
ensure that the sum rule will agree with the ITS. We call t
the effective doorway energyED . With no reflectorsED is
about 740 meV~535 above the ground-state energy!. This is
reasonable since the excitation strength is very broadly
tributed above threshold. With one reflector~on each side!,
ED drops to 660 meV, but then it slowly rises, at least up
N55, where it reaches 670 meV.

VI. OPTIMAL CBS CONFINEMENT

In this section we discuss general principles for design
a CBS with a narrow distribution of transition strength. Co
sider a general unit cell of widthd, within which the poten-
tial and the effective mass are arbitrary functions ofx. ~Since
we will fix the CBS energy, this allows for energy depe
dence of the effective mass.! Now let us arbitrarily divide the
cell into two parts so that widthsa andb add tod, and we
denote byWa, Wb the transfer matrices of the two part
When a is on the left, we haveWd5WbWa. If the whole
array is symmetric about the origin, there will be two typea
portions together at the origin, and the sequence of poten
is . . .baba . . . bauab . . . abab . . . . ~This is a special
case corresponding toc50.! When we look for odd-parity
confined states of such an array, it is equivalent to puttin
hard wall at the origin, and solving only the right side. T
wave function at the edge of the first cell will be, using E
~2!,

S c

c8/m* D U
d

5S W12
d

W22
d D 5lS 0

1D . ~24!

The second equality holds if we imagine an infinite arr
and demand an eigenstate with the wave function in each
differing only by a factorl. This wave function will vanish
at both x50 and d, and in the second cell, the value
c8/m* will differ by a factorl from the first. The condition
that must be satisfied isW12

d 50, and thenl5W22
d . One can

then show~see Appendix B! that the eigenvalue is
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l52
W12

a

W12
b

52
wa~a!

wb~b!
. ~25!

What this tells us is that to make the eigenvalue as sma
possible, we must make thewa(x) solution as small as pos
sible at the right edge of thea part cell, and conversely
wb(x) as large as possible at the right edge of theb part cell.

The above is true forany division of the cell into two
parts. In the system studied by Capassoet al., the logical
division is into the two layers of GaInAs and AlInAs. In tha
situation, the off-diagonal elements have the formW1,2

c 5

2sinkcc/nc , wherenc5kc /mc* (c5a, b) is the velocity. If
the Bragg reflection condition holds, then sinkcc561, and
l52nb /na is just the ratio of velocities in the two parts o
the cell. @This is analogous to the problem of waves on
string, with one part thin and the other thick. At the join, th
displacementy(x) is continuous, and the ratio of the slope
y8(L)/y8(R) is the ratio of the velocities squared.# One sees
that in the a cell, the solutionwa(x) rises to the value
wa(a)51/na , while starting fromd and moving backwards
through the barrier region, the corresponding solution falls
the valuewb(2b)52wb(b)521/nb . Normalizing theb
solution to ensure continuity atx5a requires the factorl.

The result, Eq.~25!, is quite surprising because in th
general situation where the potential and effective mass v
arbitrarily, the dividing line can be placed anywhere.
make the eigenvalue small, one must makew(x) as large as
possible throughout the second part cell and as small as
sible in the first. As observed by Weber, the first aspect
be achieved by choosing an energy just above the ba
~small kb). To meet the Bragg condition, this forces a lar
b, and the linear variation ofwb(x) over the barrier leads to
a large wave function atx5b. That is why lowering the
energy of the CBS in general improves confinement.

However, our aim is to improve confinement whilekeep-
ing the energyof the CBSfixed. We split thea part cell into
two sections,a1 , a2, making the left side more attractive
and the right side less so (Vw1,Vw,Vw2). This is illus-
trated in Fig. 2~b!. The greater curvature ofwa(x) near the
origin, balanced by less curvature to the right, will lead to
smaller value ofwa(a), even if the average attraction is th
same. We leave theb cell fixed, but a similar strategy with
less repulsion on the right side can obviously be emplo
there. A very complete study of surface states~but not CBSs!
generated by a three-layer unit cell has been made by
charczyk* r et al.14 Of relevance here, their Fig. 4~a! shows
that the strategy we developed above yields much bette
calization than an alternative one shown in their Fig. 4~b!.

To illustrate our method, we have selected a set of hete
structures based on quaternary alloys GaxIn12xAsyP12y , lat-
tice matched to InP (x50.468y). We took information from
Figs. 1.17~for band gaps! and 1.20~for effective masses! of
Swaminathan and Macrander.15 For the band offsets
Adachi16 gives

DEc5268y13y2,

DEv5502y2152y2. ~26!
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TABLE I. Optimized three-layer potentials indicating the changes in the widthsa1 , a2 , w(a), andna

5ka /ma* , and eigenvaluel. In all cases b544.285 145 0 Å, wb(b)52.145 093 5, and ECBS

5563.0 meV.

Case a1 a2 w(a) na l

(Q,Q) 7.9109 7.9109 0.8636 1.1579 20.4026
(0,H)1 9.3535 9.3535 0.8495 0.9092 20.3960
(0,H)2 10.4995 7.9109 0.8031 0.9092 20.3744
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The band alignments are also discussed on p. 87 of Davi17

Putting together this information, we arrived at the followin
set of parameters:

y51.0, m0* 50.043, Ēg50.880 eV,

y50.5, m0* 50.061, Ēg51.080 eV,

y50.0, m0* 50.081, Ēg51.360 eV, ~27!

whereĒg are effective band gaps in the sense of Nelsonet
al.10

In this way we can have conduction-band potential st
of 125 meV @from Ga.47In.53As to Ga.23In.77As.5P.5 or 250
meV to InP (y50)]. These are a quarter~denotedQ) or a
half ~denoted H) step up to the 500-meV barrier o
Al .48In.52As.

As our baseline@denoted (Q,Q) below#, we take thea
well to consist entirely ofQ (y50.5) material, so the poten
tial floor at 125 meV is 375-meV below the barrier. Th
barrier width was fixed at 44.3 Å, which satisfies the Bra
condition. For a widtha515.82 Å, the CBS is at 63 meV
above the top of the barrier, as in the original experime
The eigenvaluel520.4026 is not as favorable as in th
original work because the well is not so deep.~Capassoet al.
evidently selected the materials to have the greatest pos
well-barrier potential difference.! The potential properties ar
summarized in Table I, top line.

Next we divide thea well into two parts, one of GaInAs
(y51) and the other of InP. We adjusted the widthsa1 and
a2 to keepECBS fixed. In the second line of Table I, denote
(0,H)1 , a15a259.353 Å, and the eigenvalue isl5
20.396. In the third line, denoted (0,H)2, the deeper well
has width a1510.50 Å, and the shallower parta2
57.911 Å, givingl520.374. This may seem a small gai
but we shall see that the improvement is significant.
08531
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We then compute the CBS properties for a finite arr
based on the above materials, with results shown in Table
and III and Fig. 9, whereN is the number of Bragg reflector
placed on each side of the central defect. The transi
strength is significantly narrower and more strongly peak
for the split-well examples. The strength to the bound sta
in the split-well cases is only 25%–30% of that of the~Q,Q!
reference case, and the strength to the continuum stat
much larger.

The differences in the total strength are reflected in
portion concentrated in the CBS peak. The decay cons
strongly influences both the sharpness of, and the area u
the peak. Although the eigenvaluel ~last column of Table I!
differs by only a few percent among the three cases, ther
a dramatic increase in peak height and decrease in p
width shown in the first six columns of Table III. This show
that the decay constant by itself is not a direct indicator
the concentration of transition strength.

Reducing the decay constant even a little has a signific
effect on both the total strength, and its continuum a
bound-state contributions individually. A lower value of th
decay constant~in magnitude! results in better confinemen
of the CBS as is evidenced by the width of the peak in
transition strength curve. We conclude that the split-w
strategy can produce much better confinement of the CBS
should be feasible to confirm this method of improving t
confinement of CBSs, experimentally.

VII. CONCLUSION

We have shown that continuum bound states are clo
related to surface states, because both arise as a resu
perturbing an infinite periodic system. The results of Web3

concerning the experiment of Capassoet al.were verified. In
addition, by enclosing a finite array in a box, we have trac
the evolution of the Bloch states in the allowed bands as
number of Bragg layers is increased.

The experimental measure of confinement is not the
6
7
3

TABLE II. Evolution of the transition strength (Å22) with increasing number of Bragg reflectors,N.

Bound Continuum Total strength
N (Q,Q) (0,H)1 (0,H)2 (Q,Q) (0,H)1 (0,H)2 (Q,Q) (0,H)1 (0,H)2

0 0 0 0 0.912 1.279 1.324 0.912 1.279 1.324
1 0.108 0.0267 0.0319 0.762 1.188 1.234 0.870 1.215 1.26
2 0.117 0.0281 0.0334 0.759 1.188 1.233 0.876 1.216 1.26
3 0.118 0.0282 0.0335 0.754 1.183 1.229 0.872 1.211 1.26
8-9
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TABLE III. Total strength under the CBS peak: dependence on number of Bragg reflectors,N.

Peak height (eV21 Å22) Width G ~eV! Peak/total strength~%!

N (Q,Q) (0,H)1 (0,H)2 (Q,Q) (0,H)1 (0,H)2 (Q,Q) (0,H)1 (0,H)2

1 27.5 38.2 45.6 1.7331022 1.4931022 1.3331022 85.8 73.7 75.5
2 165 247 328 2.4231023 2.0731023 1.6831023 71.6 66.1 68.4
3 1026 1609 2383 3.8131024 3.1631024 2.3331024 70.5 66.0 69.1
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genvalue but rather the transition strength to the CBS.
have systematically examined the strength in the peak re
where about 70% is concentrated, and have derived a
rule, within the conduction-band-only model, that expla
the integrated transition strength from the ground state to
continuum. Finally, we have identified the factors that allo
one to improve the confinement of a continuum bound st
and proposed a way of testing this.
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FIG. 9. Transition strength to continuum~units eV21 Å22) for
~a! the case (Q,Q), ~b! (0,H)1, and~c! (0,H)2, showing the evo-
lution of the CBS peak. Note change of scale between the u
panel for theN51 reflector and the lower panel forN52.
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APPENDIX A: SUM RULE FOR INTRASUBBAND
TRANSITIONS

Sirtori et al.13 discussed the sum rule for excitations to t
CBS within a two-band Kane model. Here we limit our di
cussion to what can be done within a conduction-band-o
model, Eq.~1!. The difficulty which arises in this context i
that having an energy-dependent effective mass means
the Hamiltonian does not have a complete orthonormal se
excited states, so the sum rule can only be approximate

We take the operator to be

2 i\S5S p
1

mE
1

1

m0
pD ~A1!

@cf. Eq. ~14!. For brevity we drop the* on the effective
masses in this Appendix.# Then the sum rule is

\2M25\2^0uS†Su0&

5^0uS p
1

m0
1

1

mE
pD S p

1

mE
1

1

m0
pD u0&

5^0up
1

m0

1

m0
pu0&1^0up

1

m0

1

mE
pu0&

2 i\^0up
1

m0
S 1

mE
D 8

u0&1^0up
1

mE

1

m0
pu0&

1 i\^0uS 1

mE
D 8 1

m0
pu0&1^0up

1

mE

1

mE
pu0&

1 i\^0uS 1

mE
D 8 1

mE
pu0&2 i\^0up

1

mE
S 1

mE
D 8

u0&

1\2^0uS 1

mE
D 8S 1

mE
D 8

u0&, ~A2!

M25E uc08u
2S 1

m0
1

1

mE
D 2

dx1^0uS 1

mE
D 8S 1

mE
D 8

u0&

12E c0c08S 1

m0
1

1

mE
D S 1

mE
D 8

dx. ~A3!

To obtain this expression we moved thep operators until
they act on the ground-state wave function directly. In t
case of a constant effective mass,m05mE51, only the first
integral survives. In this case the sum rule must be exact,
we found close agreement between the sum-rule expres
and direct integration:

er
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M25E ^c0uS†ucE&
dk

dE
^cEuSuc0&dE,

where

dk

dE
5

1

2k

2m

\2
m0bF11

2~E2Vb!

Eb
G , ~A4!

which includes nonparabolicity. The wave numberk is de-
fined by the energy above the barrier. At high energy
density of states tends to a constant, rather than goin
zero, as it would for constant mass. The case without ene
dependence can be recovered ifEb→`.

When we introducex dependence to the effective mas
the terms involving the derivative of (1/mE* ) contribute.
When the mass is piecewise constant, the derivative
Dirac delta function times the discontinuity in (1/mE* ). The
integral in the last line of Eq.~A3! is then a sum of values
evaluated at the layer edges.

When we introduce energy dependence as well, both h
and in the first integral, factors such asc08/mE are discon-
tinuous, because the massmE is taken at one energy and th
ground-state wave function at another. To resolve this am
guity we took the average of the two values on either side
the discontinuity. For these materials, the well and bar
masses are similar, so it is not a large uncertainty. This is
stage at which the sum rule can only be approximate. Mo
over, we need a prescription for the energyE at which we
.Y

pl

n

J
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evaluatemE . Thinking in terms of the doorway state ap
proximation, initially we took the CBS energy. Then we d
fined an effective doorway energy.

The second term in Eq.~A3! involves the square of a
Dirac delta function, and is undefined. We simply omit th
contribution.

APPENDIX B: EQUATION „25…

The stated conditions lead to

W12
d 5W11

b W12
a 1W12

b W22
a 50

or
W11

b

W12
b

52
W22

a

W12
a

,

W22
d 5W21

b W12
a 1W22

b W22
a 5l5S W21

b 1W22
b

W22
a

W12
a D W12

a

5S W21
b 2W22

b
W11

b

W12
b D W12

a 5~W21
b W12

b 2W22
b W11

b !
W12

a

W12
b

,

l52
W12

a

W12
b

52
wa~a!

wb~b!
. ~B1!

In the last step we have used the form ofW as in Eq.~2!.
,
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14R. Kucharczyk*r, M. Steślicka, A. Akjouj, B. Djafari-Rouhani, L.

Dobrzynski, and E.H. Boudouti, Phys. Rev. B58, 4589~1998!.
15V. Swaminathan and A.T. Macrander,Materials Aspects of GaAs

and InP Based Structures~Prentice-Hall, Englewood Cliffs, NJ
1991!, pp. 1–42.

16S. Adachi, Physical Properties of III-V Semiconductor Com
pounds~Wiley Interscience, New York, 1992!, pp. 96–99.

17John H. Davies,Physics of Low-dimensional Semiconducto
~Cambridge University, Cambridge, England, 1998!.
8-11


