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Hysteresis and avalanches in the random anisotropy Ising model
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The behavior of the random anisotropy Ising modeTl &0 under local relaxation dynamics is studied. The
model includes a dominant short-range ferromagnetic interaction and assumes an infinite anisotropy at each
site along local anisotropy axes which are randomly aligned. As a consequence, some of the effective inter-
actions become antiferromagneticlike and frustration appears. Two different random distributions of anisotropy
axes have been studied. Both are characterized by a parameter that allows control of the degree of disorder in
the system. By using numerical simulations we analyze the hysteresis loop properties and characterize the
statistical distribution of avalanches occurring during the metastable evolution of the system driven by an
external field. A disorder-induced critical point is found in which the hysteresis loop changes from displaying
a typical ferromagnetic magnetization juriprge avalanche spanning a macroscopic fraction of the system
a rather smooth loop exhibiting only tiny avalanches. The critical point is characterized by a set of critical
exponents, which are consistent with the universal values proposed from the study of other simpler models.
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[. INTRODUCTION when sweeping the field at very low temperature. It is also
found that the system becomes magnetically softer when the
Hysteresis occurs in field-driven systems showing historyamount of disorder is increased. This is characterized by a
dependence of the corresponding respdnBesorder is ac- change of the hysteresis loops from sharp to smooth. At the
knowledged to be a crucial ingredient in determining hystersame time, the distribution of sizes and durations of
esis properties, especially in the so-called rate-independeBarkhausen signals is also modifié@he striking feature is
limit. In this case, system properties do no exhibit explicitthe existence of a specific amount of disorder at which these
time dependence. For this to occur, two conditions must belistributions become criticalpower-law behavigr There-
satisfied;(i) thermal fluctuations need to be irrelevaather-  fore, the change from sharp to smooth hysteresis loops can
mal character and (ii) field-driving rates must be small be interpreted as a disorder-induced phase transition, as has
enough. Ideally, this corresponds to the zero-temperatureecently been found experimentally from the study of Co/
quasistatic limit. Within this framework, disordered systemsCoO films!! The possible relationship of this phase transi-
can be viewed as described by a multidimensional energgion (involving metastable stateswith a change of the
landscape containing many local metastable states separatgund statéequilibrium) of the system is still an open ques-
by large energy barriers. If thermal fluctuations are not option. A number of recent results point, however, in this
erative, these energy barriers can only be overcome by modirection12
fying the external field which tilts the energy landscape. The In magnetic materials, a physically relevant source of dis-
system evolution thus proceeds through jumps from onerder arises from the randomness of the magnetocrystalline
metastable state to another metastable state and therefore, @sotropy. This paper is aimed at analyzing the intrinsic
field-response shows a discontinuous and apparent stochastiero-temperature hysteresis and avalanche properties in sys-
character. In magnetic systems, this jerky magnetization retems with such disorder. Actually, the random uniaxial
sponse corresponds to the so-called Barkhausen foisesingle-site anisotropy Heisenberg model has been considered
Moreover, similar behavior has been reported in many difto be a suitable model to describe magnetic properties of
ferent systems, including martensitic systeisypercon- amorphous alloy$® At mesoscales, this model can also be
ducting films? and capillary condensation systeh@mmong used, as a reasonable approximation, to describe granular
others. All these systems exhibit, as a common feature, materials, alloys with precipitates, polycrystalline systems,
field-driven first-order phase transition influenced by disor-etc . .., where grains form single magnetic domains, and
der. Actually, hysteresis has its origin in this first-order tran-changes of magnetization can take place only by rotation of
sition and the characteristics of the hysteresis loops deperttie local magnetization vector. The model was studied in the
on both the kind and amount of disordawith these ideas in mean-field approximation by Harrist al'* Further investi-
mind, different versions of lattice spin models with disordergations suggested that ind3 the stable low-temperature
have been proposed as simple models incorporating the eghase is a spin glass phase, even in the limit of strong an-
sential physics of these systems. This includes, among othésotropy. In this limit, the spins are forced to be aligned
more complicated models, the random fiRFIM)’ the ran-  along the anisotropy axis and therefore, the model reduces to
dom bond(RBIM).® and the site-dilutedSDIM)®>*° Ising  a random anisotropy Ising modéRAIM).*> This is the
models. Such models, with appropriate dynamics, show ratenodel that will be considered in the present study.
independent hysteresis and associated Barkhausen noiseTo our knowledge, the RAIM has not been studied very
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much within the above metastable evolution framework, al- | the infinite anisotropy limit P>1), the spinsS are
though it is a good candidate to display a disorder induce
phase transitioh® Moreover, it has been argued from sym-
metry grounds that it should belong to the same universality 5 A

class as the RFINMY’ An interesting feature of this model S=NS, )
regards the fact that comparison with experiments may b

considered as being more realistic than for other more ideal-
ized models such as the RFIM or the RBIM. However, modi-
fication, in a controlled way, of the amount of disorder in
real systems is not always easy to do. For polycrystalline 212N N

alloys changing the distribution of anisotropy axes is, in 'H:—JE Sﬁsjﬁiﬁj—z $ﬁiI:I—DN—K
(i)

Q:onstrained to lie on tha; directions and therefore satisfy:

here S, is now an Ising spin variable taking valuesl.
nder such conditions the Hamiltonian of the system can be
written as:

principle, possible by impressing an orientation texture by i

application of a severe cold work process or by means of a

heat treatmentrecrystallization.'® In the case of magneto- N 3(nyr) (i) — (Riy)
strictive amorphous ribbons, anisotropy can be controlled by X E SS 3 . (4)
an external applied stre$$:?! The effect of such external ] i

ij
stress is to decrease the amount of disorder by inducing a ) . . .
longitudinal anisotropy. The dipolar term represents, in lattice models, a convenient

The paper is organized as follows. In the next section we&VaY to describe the magnetostatic energy of the system. Note
introduce the model and the details of the numerical simulaiEhat it c_hangeg from being pure ferromagn_eUc for a pair of
tion procedure. In Sec. Il we present the results, which indinteracting spins witt;=n;=r;; to pure antiferromagnetic

clude the description of the hysteresis loops, the Barkhausemhen n;=n;Lr;;. The exact treatment of this term in nu-
avalanches, and critical phenomena. Finally in Sec. IV weamerical simulations is difficult since the introduction of a

discuss the results and draw conclusions. cut-off in the interaction range can induce nonphysical
effects?® This term has been recently considered within the
II. MODELLING context of athermal hysteresis studies in the case of perfectly

aligned anisotropy ax€s:2*Its main effect on the hysteresis
loop is to produce a rather large nucleation jump at the be-
We consider a 8 cubic lattice with spinsS. and local ginning of the demagnetization process. As_ re_gards its _influ-
anisotropy axes, defined at each sitei €1 N=L3) ence on the properties of t_he avalanche dlstr_lbutlons, it has
i SN ) o ; been argued that its effect is to cause mean-field behavior.
Each unitary vecton; is determined by a pair of spherical \ost of the results in the present work correspond to a situ-
polar coordinatesd; , ¢;). Note that since such unitary vec- ation with rather large randomness. Such randomness and
tors define a direction in space, the angles are limited to thg,jependence of the orientation of the anisotropy axes at two
ranges 6< ;<27 and 0<6;<w/2. The axis directions are jtferent sites andj is expected to weaken the importance of
random and independently distributed according to a generighe dipolar term. Therefore, we have not considered it in the

density probability distributiorf(6, ) which is normalized, present work. The Hamiltonian witk=0 reads:
e.:

A. Hamiltonian

z/2N

N
Jz”d¢f”'2f<e,¢>sineda=1. D == 389-H2 s, (5)
0 0 i i

The general Hamiltonian of the system can be written as: \yhere the first term is a random bond term Wiﬁﬁ‘:\]ﬁiﬁj
219N N N and the second term describes the random coupling to the
_ a& _ Te ~ 22 external magnetic fieldrandomg factor) with g;= cosé,.

" <|EJ> 1SS, .21 HS Di; (niS) The constant ternDN in Eq. (4) has been omitted, since it
represents only a shift in the energy of the system. Moreover,
without loss of generality we will takd=1 as the unit of

3 (2) energy.
4 In the present work we will consider that the external field
where the first term witli>0 accounts for the ferromagnetic § keeps its direction fixed along theaxis so that only its

exchange energy, which is short range and is assumed ffagnitudeH can change. Thus thg are constant once the
extend only to nearest-neighbor paizs=6 is the coordina- jnitial distribution of anisotropy axis has been quenctreat

tion number of the CUbi.C Iatti()e_The ;econd termZeeman_ tice that rotation ofH with fixed modulus could also be
energy stands for the interaction with an external appl'edconsidereﬁi

field H. The third term is the anisotropy energy. Finally, the  Finally, it should be remarked that the second term in Eq.
last term corresponds to the long-range dipolar interactiongs) acts, for each value dfl, as a random-field term. This

that extend to all pairs,j of the lattice. The vectuﬂj isthe  equivalence, nevertheless, only applies for equilibrium stud-
vector joining sites andj. ies. The metastable evolutighysteresis loops and sequence

N(Nfl) - - - - - -
SrinSri)  SS
3 SEICIMEECY

r r
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of avalanchesof such a randong-factor model cannota model A
priori, be expected to be equivalent to that of a RFIM.

0.03 T T T

B. Modelling of disorder 0.02 |

As mentioned in the introduction, in real systems such as 001 1

polycrystalline alloys, the distribution of anisotropy axis is
very much dependent on details of the sample preparation.
Here we are interested in controlling the amount of disorder
in the system by controlling the distribution of angles
f(0,¢). We have considered two simplified models, which
represent perturbations of the two extreme cases of a fully
aligned anisotropy axis and a completely random distribu-
tion.
Model A.Uniform density within a cone € 6<<6y:

f(0.¢)= )h[ﬂo—ﬂ], (6)

2(1— cosé,
whereh[x] is the Heaviside step function. Note that ey FIG. 1. Examples of the anisotropy axis distributions of mdklel
=0 the axes are fU”}’ allgngd in thEC_jIVECtlon, while for  for different values of the paramete. The first column corre-
o= /2 the axes are isotropically distributed. The amount ofsponds to the polar representation described in the text and the

disorder in the system increases with increasipg second column to the distributions of random bofigsarbitrary
Model B.First-order correction to the isotropic distribu- units).
tion:
1 3 corresponds to the dynamics of an interface or domain-wall
f(0,4)=(1—€) — + e~—co< 6. (7) propaga;ing. in a disorde_red medfe’ Actu_ally, domain—
2w 2w wall motion is the predominant magnetization process in the

approximately constant permeability region of the hysteresis
loops?® and therefore such dynamics is adequate for studies

plays a peak af= 0, which flattens ag goes to zero. Thus of the linear region of the magnetization curve. The second

in this case, the amount of disorder increases with decreasir%DproaCh is the so-called field-driven nucleation proposed by

€. For e=0 this distribution is uniform and reduces to model ethna and coworkefsln this case nucleation and growth
' . are treated simultaneously. While in the former case only

A with = /2. Whene<0 the distribution shows a maxi- : S SO
mum at 9= /2, which corresponds to a tendency for the spins located at the propagating interface can flip, in the

anisotropy axes to lie isotropically on a flat disk perpendicu-

lar to the external applied field. Thus, strictly speaking when model B

e decreases in the<0 region the anisotropy axes orders 0.02

again, but perpendicular to the external field. This increases

both frustration and competing interactions. €=0.8
Figures 1 and 2 show a number of examples of the anisot-

ropy axis distribution corresponding to modéisandB, re-

spectively. The polar plot in the first column corresponds to

a particular sample of 1000 anisotropy axes numerically gen-

erated according té(6,¢). The polar angle in these plots e=0.0

representg while the radius represents sinNote that, with

this representation, a uniform distribution of anisotropy axes

corresponds to a uniform distribution of points on the circle

of unit radius. For each example we show the corresponding

distribution of exchange interactiods = ﬁiﬁj . Moreover, if
the anisotropy axes are restrictedéte /4, the correspond-
ing exchange interactions are all ferromagnelic>0. In
contrast, if6> /4 in the case of some anisotropy axes then
the systems contains a fraction of antiferromagnetic bonds.

In this case the parameter ranges within—3<e<1 to
ensure that (0, ¢) is positive. Fore>0 the distribution dis-

e=-0.5

FIG. 2. Examples of the anisotropy axis distributions of mdglel
for different values of the parameter The first column corre-
sponds to the polar representation described in the text and the
Regarding the dynamics of the system, two different situ-second column to the corresponding distributions of random bonds
ations have been discussed in the literatdr@The first case (in arbitrary units.

C. Dynamics
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latter, any spin of the system can turn when such a flip be- model A
comes energetically favorable. This second approach seems 1000 ————
more convenient for the study of the full hysteresis loops, in
particular in systems with strong local anisotropy and a lack
of well-defined domain structure.

500
0,=1.0 £ 0

The details of the dynamics used for the numerical simu- -500
lations are the following; under slow changes of the external 1000
magnetic field, the system follows deterministic dynamics 1000
corresponding to local energy relaxation. Due to this local 500
character, the evolution of the system will, in general, not
follow an equilibrium path, but rather will evolve through 8,=1.3 = 0
metastable states. Actually, different configurations of spins -500
may correspond to the same value of the external field. Such 1000
different configurations are found depending on history con- 1000
ditions. 500

When studying the full hysteresis loop, the starting point
is H=2 (or H=—) which corresponds to the stable con- 0,=n/2 E 0
figuration with allS§;=1 (or S;=—1). We proceed by de- -500
creasing(or increasing the field and compute, from E¢), 1000 o
the change of energy\(*); associated with the independent -10 -5 0 5 10
reversal of any spits, . This change can be written as H

FIG. 3. Examples of hysteresis loops of modefor different
(AH)=2FS, (8)  values of the parametet,. Data correspond to a numerical simu-

lation of a system with.=10.
where the local field=; acting on lattice sité is given by;
Avalanches are characterized by their duration and size. The
durationt of the avalanche corresponds to the number of
avalanche steps in the algorithm described above. The ava-
lanche size can be quantified in two different wagi:The

The metastable states correspond to those configurations #tal change of magnetizatioAM between the origin and
spins for whichA,>0 Vi. When for a certain value di  the end of the avalanche;

one of the spins become unstapl@\+);=0], we keepH

constant and flip that spin. This can unstabilize some neigh- _ A
boring spins[for which (A7¢);<0] which will be simulta- AM=2 S cosf
neously flippedsynchronous dynamigsThis is the origin of

an avalanche. Due to the fact that &s0, when decreasing Note that the size of the avalanches, measured in such a way,
(increasing the field, the first spin that triggers an avalancheis bounded by twice the saturation magnetization of the sys-
can never yield an increas@ecrease of magnetization. temMga=3{L; cosé. (i) The total number of spins flipped
However, such inverse magnetization reversals, may occuuring the avalanche. We will denote such a magnitude. by
during the avalanche. The procedure continues Witbon-  In this case, as opposed to the above definitions, the ava-
stant until all the spins become stable again. This is the entinche sizesis not bounded by the system sizé due to the

of the avalanche. The external field is then decredged possibility of inverse spin flips.

creasegluntil a spin becomes unstable again. Notice that the

fact that the field remains constant during the avalanche is

the crucial condition for rate-independent hysterédisis lIl. RESULTS

worth noting that in our numerical simulations we have not

observed neverending avalanches which may, in general, oc- In this section we present the main results of the numeri-
cur when using this dynamics in systems with antiferromag<al simulations. We have studied 3ystems with periodic
netic bonds. Although we cannot provide a rigorous proofooundary conditions and sizés=6, 10, 20, 30, and 40.

for their absence, we suspect that such pathological situa-

tions only occur for very special values of the random fields A. Hysteresis loops

and bonds which have vanishingly small probability when )

the angles are distributed continuously. The hysteresis loops F19ures 3 and 4 show examples of the hysteresis loops

are obtained by measuring, as a functiotHothe total mag-  corresponding to models andB (system sizé. = 10), with
netizationM in the z direction defined as: different amounts of disorddicontrolled by the parameters

0y and € as indicated First of all, it should be mentioned
N that the loops are symmetrical with respect to chariges
_ —H and M— — M. This property comes directly from the
M= cos#; . 10 o
21 S ! (10 symmetry of the Hamiltoniai5).

FiZE J|JSJ+H COS@i. (9)
n.n.

> S cosé, (11

end

origin
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model B model A model B
disorder «—disorder
1 . . . .
e=0.8 E »\.\—‘\Hﬂ\.\. ;./.*.,.,/t/‘/’/i
~;05 | 10t .
1] L
E - 4
0 1 1 1 1
1 L - L 4
S0t < 'FR\“\"\\\Q\0\0\0~0 7
505 | ] ;44».»0/0’/"//./’/.’/j
€=0.0 E o 1 s J
500 ] 0 — : :
-1000 : F 1 F .
1000 ; ) e
500 | ] T 1.6 | \‘\0\.\‘_. 7 A;\‘w‘/./././-‘
12 1 1 1 1
e=-0.5 E 0 f : : : :
61 1t .
! ] < 4 i\‘\’\k’\’\“ 1 M
-1 I I 1
000-10 5 0 5 10 e 2 S .
H 0 I I L L
1 1.2 1.4 -0.5 0 0.5
FIG. 4. Examples of hysteresis loops of mo@efor different 6, €
values of the parameter Data correspond to a numerical simula-
tion of a system with. =10. FIG. 5. Evolution of different morphological properties of hys-

teresis loops for model& (first column andB (second columnas

o . a function of disorder: saturation magnetizatial ((;), remanent
For both models the qualitative morphological changes Ofnagnetization M,err), coercive field H.,0 and dissipation \().

the loops when disorder increases are very similar. Figure Bata corresponds to averages over 100 hysteresis loops of a system
shows the dependence of the saturation magnetizbtigfy, = with L=10, except for the open triangles that correspond.to
the remnant magnetizatioM .,, the coercive fieldH.,e = =20. In the two top figures, correspondinghty,;, the continuous
and the total dissipatiofarea within the loop W on the lines show the exact analytical calculations, givingZd@ig)/(2(1
parameter ¢, or €) controlling the amount of disorder. In — cos@)] and 1/2+ €/4 for modelsA and B, respectively. In all
both casesMq.;, M,em, and W decrease with increasing €ases error bars are smaller than symbol sizes.
disorder. Notice thaMs, can be obtained exactly by inte-  pyjor 14 the analysis of such avalanches it is interesting to
gration off(6,¢$)cod() over all the spatial directions. The cqnsjder another feature of the hysteresis loops. The analysis
most remarkable difference concerns the behaviddgle.  of partial cycles enables study of the existence of the so-
In model A it exhibits a monotonous decrease with increas-cg|led return point memor§RPM) property. The mathemati-
ing disorder. In modeB after the initial decrease dficoe  cal conditions for such a property to occur have been dis-
with increasing disorder, a minimum is reached; for negative,yssed for the RFIM the RBIM2 and the SDIMY The two
values ofe, Hc. increases. From these averaged morphopaIM models (A andB) studied in this work do not exhibit
logical magnitudes apparently no signs of singular behaviogych a property, except for those situations in which no ef-
as a function of the amount of disorder is found. The detectective antiferromagnetic interactions occur. Figure 7 shows
tion of a possible disorder-induced critical point needs a deany example of internal loops revealing the failure of the
tailed study of avalanches which will be presented in therpm property. This is due to the existence of reverse spin
next subsection. flips during the avalanches, and even reverse avalanches that
It is illustrative to show a sequence of snapshots of the,ccuyr for large enough amounts of disorder. It is worth men-
system configuration during a demagnetization processjoning that such reverse flips represent a small fraction of
These are shown in Fig. 6 which corresponds to matlel he total number of flips. For instance, close to the critical

with L =20 andf,=1.3. Black indicates the lattice sites with amount of disorderdefined below it represents less than
reversed spin§;= — 1. The simulation starts from saturation 5oy

(all the S =1) with a very large applied field. The different

configurations correspond to the same pléofethe 3d sys- H=-0.10  -1.10 -L.44 -1.48 -1.49
tem) for decreasing values of the external fi¢tid= —0.10, . -
—1.10,-1.44-1.48-1.49. During the first stages of the Py B | fe, & ."-

demagnetizing process the main dynamical mechanismis the =™ "y f ™ 4 ol |

nucleation of the reverse magnetization phase by flipping * Sl :
isolated spins. In contrast, in the middle of the hysteresis F|G. 6. Sequence of snapshots of the system configuration cor-
loop the evolution takes place by growdtepinning of such  responding to a numerical simulation of modeith L =20 and

domains. This occurs by means of large avalanches which,=1.3. The picture shows the same section perpendicular to the
produce reversals of large fractions of the system. [001] direction of the 3D system for different values Idf

Fre el

]
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0.3

model B

0.2
0.1
0.0

Z

2 _0-1

probability

02 r
-0.3

—04 [

.
3

10

.
2

10

-0.5 . . . . 3
-3 -2 -1 0 1 2 10 10

H S

FIG. 7. Example of a hysteresis loop of mod&khowing the FIG. 9. Probability distribution of avalanche sizes in the hyster-
failure of the return point memory property after partial cycling. €SiS loop of modeB. Data corresponds to an average of 100 runs

Data corresponds to a simulation of a system with— 0.2 andL for a system withL=30 and different values o€ as indicated.
=10. Except for the bottom curve, the curves have been vertically shifted

(three decadesn order to clarify the picture.

0

B. Barkhausen avalanches

. . oy S
The statistical analysis of the avalanches is performed b i intermediate valudis(L =30)=1.44+0.01, the distribu

P : : : f avalanches becomes a power létgritical” ) char-
measuring its size and duratiort, in a half hysteresis loop. lon © - .
Figure 8 shows the probabilitp(s) of occurrence of an acterized by an exponent =2.06+0.05. The details of the

avalanche of size for model A and increasing values of the exponent fittjng progedurg together with the ;tudy of the de-
amount of disorderd,. Data, represented in log-log plots pendence with the finite size of the system will be presented

correspond to the analysis of 300 different half-loops With't:1 ';he next SfeCt'On' dFI|g§re| 9 tshhows the ax_alaln(t:)hi size disri-
different realizations of the disorder. For small valueggf ution p(s) for model B. In this case critical behavior is

C — —~ i ~ !
the cycles contain a very large avalanche giving a peak ongnfofé%éL_So) 0.2 with a power-law exponent
the right-hand side of the plot and a certain fraction of small™ Ii S t ting t ider the following tw K
avalanches, on the left. This behavior is called “supercriti- IS Interesting 1o consider the Tollowing two remarks
cal.” On the other hand, for large values 6§ the system concerning such avalanche size distributions. On the one
behaves “subcritically” showing only small avalanches. Forhand' thg avalanche analy3|§ could galso be perf_ormed by
characterizing the avalanche sizebl!, instead ok. Figure

10 shows a comparison of the two histogratmsmber of

model A avalanches versus sjz&l(s) and N(AM) in the case of
model A
10 .
10°
=) i
<] &
a 5
3
5
ot | ! 2
[ ‘ ‘ L
10° 10"  10®° 10°  10*  10°
s 1 10 100 1000 10000
AM, s

FIG. 8. Probability distributiorp(s) of avalanche sizes in the
hysteresis loop of mode\. Data corresponds to an average of 300 FIG. 10. Comparison of the histogramé(s) (circles and
runs for a system with. =30 and different values of, as indi- N(AM) (continuous line with black triangles indicating the center
cated. Except for the bottom curve, the curves have been verticallgf the logarithmic bin corresponding to modél with a system size
shifted (three decades eacim order to clarify the picture. Continu- L=20 and with #,=1.39. Data correspond to averages over 300
ous lines correspond to examples of the fits of B). different realizations.
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model A this reason such transitions related to the change of proper-
10° ' o i ties of the hysteresis loop and of the Barkhausen noise dis-
. [ - mon-spanming e ncRes 1 tribution when disorder is increased are called disorder-

2 10 s 1 induced critical points. They share many similarities with the

<§ 102 classical critical points, but one should never forget that a

s 10° number of features are different; firstly we are dealing with a

@ history-dependent metastable evolution of the system, i.e., an

5 107 out-of-equilibrium problem, thus many thermodynamical

é 107 equations relating critical exponents, may not be vAlit.

2 o T oot At this point it should be mentioned that for the RFIM, for
L ] which the exact equilibrium trajectories can be obtained, it
10 | %990, 4000 8000 | has been found numerically that a transition point exists for

] m 100 1000 16000 the same amounts of disorder in equilibridfA second

remark concerns the fact that we are dealing with a deter-
ministic phenomenon a =0 and thus fluctuationén the

FIG. 11. Distribution of avalanches for mod&with L=20 and  standard sengedo not exist. By studying systems with dif-
fo=1.39. Data corresponds to averages over 1000 different coryarent realizations of the disorder corresponding to the same
figurations of disorder. The bottom histogram corresponds to th%robability distributionf (6, ¢), one can define average val-

analysis of all avalanches. The top histogréshifted 6 decadgs . .
corresponds to the spanning avalanches and the middlésbifted ues of any ggnerlf properythzit we \ZNIH der;ote agz). We
gan also define “fluctuations” agz®)—(z)*, but the ex-

3 decadesto the nonspanning avalanches. The inset shows th

histogram of spanning avalanches on a linear scale. Data in the insE@Polation of these averages to the thermodynamic limit
has been smoothed in order to clarify the picture. may hide some mathematical inconsistencies.

) . The consequences arising from the two remarks above are
model A with L=20, #,=1.39 and averages over 300 dif- stjl| not totally understood. For instance, for such disorder-
_ferent realizations. 'I_'he agreement between _bO'[h hlStogra”?ﬁduced critical points it is not clear what the order parameter
is very good. Eygn in the small avalanchel size region boths  one choice is the system magnetization per(suéLg’).
h:c?togramls e>c<jh|b|t k?lmos_t the Sa”f“? behawpr indicating thl?Nevertheless, the fact that the system displays hysteresis for
effects related to the existence of inverse jumps are totally B< 65 and 6, 65 implies that(M/L?) does not go to

negligible. Therefore, from now on, we will only consider " :
S . . . zero at the critical point. For the RFIM, Dahmen and Sethna
p(s) distributions. [Note that in Fig. 10 the histogram use(M/L3)— (M. /L3) (whereM, is the value of the mag-

N(AM) has been constructed by taking bins of six# AT /. ) . g
=8. This is not necessary fax(s) sinces is a discrete netization at the critical point Besides the fact that this

variable. Thus, for the sake of comparison, the histogranfit@ntity does not remain equal to zero above the critical
N(AM) must be displayed after being divided by a factor 8].POINt, it adds to the problem of determinig.. A second

On the other hand, it should be mentioned that the larg&€hoice, which was originally used for the study of the
avalanches occurring in the supercritical case span the fulRBIM,® is to measure the siZ@,,,) of the largest avalanche
simulated system at least in one direction. This is illustratedn the hysteresis loop. Clearly this is a quantity that for a
in Fig. 11 which corresponds to the avalanche distribution ofinite system is not a suitable order parameter since it never
model A with sizeL =20 and#,=1.39. For this amount of goes to zero. However, for the infinite Syste,,,/L>) will
disorder the system still behaves slightly supercritically. Thebe zero for any degree of disorder except for those for which
three histograms correspond to the distribution of all the avaan avalanche spanning a macroscopic portion of the system
lanches(bottom), the nonspanning avalanchésiddle) and  occurs. This leads to the existence of a discontinuity in the
the spanning one&op). The inset shows the histogram of hysteresis loop. Thus, in the present paper, we have chosen
spanning avalanches on a linear scale, revealing the exighis quantity as the order parameter.
tence of a characteristic size, which increases when disorder Figure 12 displays the behavior (&,./L>) as a function
decreases and system size increases. Actually, in the thermof 60, for different system sizes. Data corresponds to aver-
dynamic limit such spanning avalanches will be infinite, in-ages over 50,200,300,500, and 300 different realizations of
volving a macroscopic fraction of the system and giving risethe disorder forL =40,30,20,10, and 6, respectively. The
to magnetization discontinuities in the hysteresis loop. It is(pseud® phase transition for the finite system will corre-
worth noting that in previous studies of the same problem irspond to the inflection point of such curves. The exact loca-
the RFIM (Ref. 6 such spanning avalanches were subtractedion of HS(L) can be obtained, for instance, by means of a
from the histograms for the analysis of the critical behavior.4th-order polynomial fitting of the inflection point or, after a
In the present work we have decided to keep them since, asumerical derivative, a 2nd-order polynomial fitting of the
will be seen, their occurrence provides a criteria for locatingmaximum. This gives two slightly different estimations of
the critical point. the critical point. An independent way of locating the phase

o transition is to measure the duratitp,, of the longest ava-
C. Criticality lanche in the half hysteresis loop. The average of such a

The power-law behavior of the avalanche size distribu-quantity(t.,,/L) is also shown in Fig. 12 as a function é§

tions reveals the existence of criticality in the system. Forfor different system sizes {4 is normalized byL since this

]
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model A tribution of Figs. 8 and 9. These distributions correspond to
the statistical analysis of all the avalanches occurring in full
half-loops for many realizations of disorder. In general they
are well fitted by an exponentially corrected power-law prob-
1 ability distribution?®

<
o

Smax/L3

20 O ©

’ 1 —7' ,—\s
p(s;r,h)=zs e " (12

whereA is not an extra free parameter but the normalization
factor. As mentioned before the avalanche sizakes dis-

: crete values and, strictly speaking, is not bounded from
above due to the possibility of inverse flips. For the compu-
tation of the normalization factgk we have chosen the larg-

7 est values,,5, Of each set of data, which in all cases has been
i found to be lower thah 3. ThusA (which is a function ofr’
and\) is given by:

ta/L
o kO ® OO MR

o
(o)
L
-
no
Y
IS
-
»

Smax

9, AT N)=2, s Te s, (13)
s=1

FIG. 12. Average sizéa) and duration(b) of the largest ava- . . o
lanche in the full hysteresis loop as a function of the amount of! N€ fits are performed by the maximum likelihood method,

disorder, for model A. Data correspond to different system sizesWhich is independent of any binning process or representa-
as indicated by the legend and to averages over many differedton. Examples of the fits are also shown in Fig. 8. As a
configurations of disorder. general comment, it should be mentioned that the fits are
very good for the subcritical, critical and slightly superecriti-
8al distributions. For the deep supercritical distributions they
are not that good due to two different problenig;the ex-
istence of large avalanches which span an important fraction
of the system makes it difficult to have enough statistics, and
(i) the fact that the proposed modélq. (12)] is not well
suited to describe the occurrence of the péasith a certain
Tharacteristic sizein the larges regions.

For modelA the values obtained of and 7’ as a function

is the minimum number of steps needed in order to cover th
full system). This quantity displays a maximum a(L)
which is also fitted by using a 2nd-order polynomial. Figure
13 shows equivalent data to that of Fig. 12 for moBeln
this case only systems up to=30 have been studied. The
simulation of larger systems in this case is much more tim
consuming than for modei due to the wider distribution of

anisotropy axes. P . :

A fourth method for the location of the critical point re- gflgozgre syg\évn I|:n Fig. ﬁ4 for d|fferfe(;1.t Syastel’T;CSIZGS (
sults from the quantitative analysis of the avalanche size dis- = =" an )- orcsma amounts of disor @K » one
getsA<0. For 6,>6,, one getsh\>0. The estimation of
85(L) can be obtained by interpolating the value @f for
which \(6p)=0. This, nevertheless, shows large uncertain-
A AL=10 ; ties that increase for increasing valued.offhe same kind of
08 o—<L=20 § analysis can be performed with the corresponding similar
o5 | G—aL=30 i results for modeB. They are shown in Fig. 15.

The four estimations above @f(L) are shown in Fig. 16
as a function of. 71, The results exhibit a strong dependence
0.2t . on the size_ of the simulated system, as occurs in numerical
0 simulation of standard critical phenomena. As can be seen
8 : the four estimations o decrease with increasirlg Except
for the data obtained from the analysis of the distribution of
avalanches which shows large error bars, the linear extrapo-
lation to L—oo indicates a compatible common value for
O5(L—0).

The exact treatment of the dependence of the measured
quantities withL must be performed within the framework of
finite-size scaling*

model B

0.4 -

SmadL’

/L

D. Finite-size scalin
FIG. 13. Average sizéa) and duration(b) of the largest ava- 9

lanche in the full hysteresis loop as a function of the amount of According to the standard finite-size scaling hypothesis,
disordere for modelB. as a function of system sidg s,,,, andt,,,, behave as:
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model A model A
1.60
1.50 ¢
5 L
< 140 ‘
1.30 ¢ 1
0.00 0.05 0.10 0.15 0.20
-1
1.8 : : ' L
1.2 1.3 1.4 1.5 1.6 _ o
90 FIG. 16. Dependence of different estimationségfL) on L~?

for modelA. Circles correspond to the estimations from the position
FIG. 14. Fitted parametens and 7’ to the avalanche size dis- Of the maximum int,,,( 6o), diamonds to the position of the inflec-
tributions as defined in Eq12) for model A. Data correspond to  tion point inspa( 6p), squares to the position of the minimum in the
different system sizes as indicated by the legend and to averag@imerical derivativeds,( 6o)/d6p, and triangles to the disorder

over many different configurations of disorder. values for which the paramet&rvanishes. Continuous lines corre-
spond to linear fits used for the extrapolatiori_te-c. The dashed
Smax(xal-)/l—g” L~ B/VFS(XL:L/V) (14) line is a guide to the eye. The arrow indicates the valye 1.33.
zlv 1/v . .
tmax(X,L) ~LZ"F(XL™"), (19 There are different ways to fit the four exponegts =, z

wherex is the reduced amount of disorder. For the case ofind v and determingg(). Since the behavior ofig(L) is
model A, x=[ 6,— 65(L)]/65(L). The functionsFg and F, quite linear withL in Fig. 16, this suggests that to a first
are scaling functions angd, z and v are critical exponents. approximation it is reasonable to take-1. This justifies the
The different estimations of the critical amounts of disorderlinear fits shown in Fig. 16. A value consistent with all the
g5(L) for the finite system should also scale withas: extrapolations isf§(«) = 1.33+0.03 (indicated by an arrow
on the vertical axis With this estimation ofgg() we can

—1lv
05(L) — 05() ~ L. (16) refine the value of by performing a linear fit to the log-log
plot of [ 5(L) — 65()] vs L. The obtained value is=1.0
model B +0.1

Oncedg(») andv are determined, the exponemtsandz
can be obtained by analyzing the change wWithf the height
and slope at the inflection point in the cursig,( 6o,L) and
the height and curvature at the maximum tip,{6o,L).
From linear fits to log-log plots the following estimations are
obtained: B=0.06+0.05, —pB+1/»=0.8+0.1, z=1.6
+0.02, andz+2/v=3.3£0.2. Such values are consistent
with a final estimation of3=0.1+0.1 andz=1.6=0.1. The
goodness of the final set of exponents can be finally tested by
plotting the scaling functions,; andF, which are shown in
Fig. 17. Within a rather good approximation data collapses
onto a single curve, which demonstrates the assumed scaling
hypothesis.

A similar analysis has been performed for modkelin
this case, instead of fitting a different set of exponents we
have tried to scale the data in Fig. 13 with the set of expo-
nents obtained above for modé&l The resulting scaling

FIG. 15. Fitted parameteps and 7' to the avalanche size dis- functions are shown in Fig. 18. Again a good data collapse is
tributions as defined in Eq12) for model B. Data correspond to Obtained, demonstrating the validity of the scaling hypoth-
different system sizes as indicated by the legend and to averag&sis for modeB with the same set of critical exponents.
over many different configurations of disorder. A summary of the exponents found are given in Table I.
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model B
; 15 . .
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FIG. 18. Scaling of the largest avalanche s&g,(e,L) and
duration of the longest avalanchg,(e,L) for modelB. The values
v=1, =0.1, andz=1.6 have been used.

FIG. 17. Scaling of the largest avalanche sigg,(6,,L) and
duration of the longest avalanchg,( 6,,L) for modelA. The val-
uesv=1, 8=0.1, andz=1.6 have been used.

around the indicated values of the external applied field dur-
Values corresponding to othed3nodels and mean-field cal- ing the demagnetizing process. The critical distribution oc-
culations are also presented for comparison. This point wilturs for a field ajH®(L =20)|~ —1.5. For values ofl sig-
be discussed in Sec. IV. nificantly larger and smaller, the distributions exhibits an
evident exponential damping. In principle, a more quantita-
tive treatment is possible, which consists of fitting the data

T_he avalanche size distributions analyzed in the previouggzuﬁ?se fglritg?]lét;\ogrgl\giréx% qu(:lé) ér()ep;l;’;tc;r;g;ctil:g;&
sections, corresponds to t_he stqdy of the whole hyStereS"?he figure reveals the existence of a critical region with
cycle. Neverthe!egs, the S|mu|at|ons of the RF(‘WG“-.” . ~0 andr~1.5. It is worth noting that outside this critical
suggested that it is convenient to analyze such d|str|but|on§egion the fit of Eq(12) renders values of well below the
at different points of the hysteresis loop. Strictly, criticality is criticall value. This method of determining® is very ap-
expgcteq to occur only at a certain valqe pf t_he fietd proximate, since the need for large enough statistics requires
(critical f'.eld)'.m this case the power-law d|str|b'ut|on of ava- a large field window that introduces considerable bias.
lanche sizes is characterized by an exponewhich for the Finally, it is interesting to comparld .., with the value of

RFIM takes a valuer=1.6-0.06 and is related tor the field Hs _ at which the largest avalanche,,) for a

through a certain scaling relatidh. Sm - _
The study ofp(s) at H, is quite difficult since to obtain démagnetizing procedsrom positiveH to negativeH) oc-
curs. Experimentally, in the region of large disordey

sufficiently accurate statistics for a given value-bfequires
a large number of realizations of disorder. Fig. 19 present§an be determined by locating the field for which the mac-
such an analysis for modé| in the case of a system with roscopic hysteresis loop exhibits maximum slope, i.e., maxi-
L=20, 6,=1.39[~ #5(L=20)] and averages over 300 re- mum susceptibility. Figure 21 comparel  andH.as a
alizations. The distributions have been computed by analyzfunction of 8, for three different system sizés=10, 20, and

ing the avalanches occurring in windows of sixél=0.5  30. Data corresponds to averages over 1000, 300, and 300

E. Critical field

TABLE I. Critical exponents from numerical simulations in this work and in the literature. The values
with an asterisk {) have been obtained from model A data and were checked for scaling the data of model

B.

Model B 7 r z v
3d-RAIM (model A 0.1+0.1 2.06£0.05 1.50:0.15 1.6:0.1 1.0:0.1
3d-RAIM (model B 0.1* 2.10+0.05 1.6 1.0¢
3d-RFIM (Ref. 19 0.035+0.028 2.020.03 1.6-0.06 1.410.17
3d-RBIM (Ref. 33 0.0+0.1 2.0£0.2 1.6-0.1 1.06-0.1
3d-SDIM (Ref. 34 1.9+0.2
Mean Field(Ref. 17 1/2 2 3/2 1/2
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model A 8,
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FIG. 19. Avalanche size distribution corresponding to different

values of the applied external field for model A with size L FIG. 21. Comparison of the dependence of the coercive field
=20 andg,=1.39. Histograms have been performed by counting(Hcoe and the field for which the largest avalanche ocqids )
the avalanches within a window &fH=0.5 centred on different as a function of the amount of disordép for model A with L
values of the field. From bottom to top such fields vary from 0.0 to= 10, 20, and 30. The inset shows the actual distribution of the two
—2.25 with steps of 0.25. Moreover, averages over 1000 realizaguantities (H.,¢ with an empty histogram anstma) with a

tions of disorder have been performed. Histograms have beelined histogramfor L= 10 at four values of the amount of disorder
shifted two decades each in order to clarify the picture. as indicated.

realizations of disorder, respectively. As expected, for lowH, andH,,. over different realizations of disorder ahd

values of disorder bothis Smax andHgoe coincide; the largest  _ inO Note that both distributions are quite Gaussian and that
avalanche associated with the magnetization reversal Crossgs large disorder are split in such a way that the distribution
the lineM =0 and, thus, determinédg,e. In contrast, for — of H,, remains rather sharp while the distributiontdf

large amounts of disorder the largest avalanche in the hysbroadens Whether or not the coincidencéHgf,, andH,

teresis loop occurs for a value of the field more negative than d h | field h b d
Hcoe- The inset in Fig. 21 shows the actual distribution of etermines the critical field is a question that cannot be de-
finitively answered from our results.

model A
0.8 T T
+ IV. DISCUSSION
0.6 ==
== In this section we compare our results with those corre-
<2 0.4 - - 1 sponding to other models and experiments reported in the
02 | ] literature. o _
- N In the present RAIM, hysteresis arises from energy barri-
(111 CECERE D S - ers separating metastable states which have their origin in the
effective coupling between spins. This effective coupling is
-0.2 ' ’ modified by changes in the distribution of anisotropy axes,
1.6 . — = but even in the absence of disordérprresponding to the
T 5 zero-temperature standard Ising modslsteresis occurs. In
1.4 - - 1 magnetism, hysteresis can be interpreted within the frame-
o 12| = 1 work of the Stoner-Wohlfarth modéBWM).> This model
== - 3 gives an essentially different description of hysteresis than
1L J that proposed in this paper. For the SWM, independent
single magnetic domains with continuously orientable mag-
0.8 : ' : ' : . : netic moments are considered. These single domains can be
=23 =2 k3 H = =05 identified with the spins in the present model. Hysteresis, in

the SWM, arises from energy barriers originating from the
FIG. 20. Parameteis and r as a function of the external field ~ completion between uniaxial anisotropy and Zeeman energy.
fitted from the histograms in Fig. 19, corresponding to a systemActually, no hysteresis occurs in the SW model in the infinite
with sizeL =20 andf,=1.39. anisotropy limit.
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TABLE Il. Experimental values of the critical exponentsand 7.

Material Heat treatments 7’ T Observ. Ref.
81%Ni-Fe Th at 240°C 1.73 35
1lh at 460°C 2.1
VITROVAC 6025-X 1.77 small internal loops 36
(metal-glasp
Metglass 2605S-2 as cast 1.85 7' calculated from

scaling relations 37
and other measured

exponents
annealed at 400°C
and field cooled 2.0

(25°C/min, 120 Og
Perminvar AnnealedH, 1000°C 133 38
30%Fe 45%Ni 25%Co M450°C '
Fe-Si 7.8 wt% Annealed 950°C
Fe-Si 6.5 wt% Annealed 1200 °C 19.05 Polycrystalline 39

Annealed 1050°C
Fe&y Cogy Bis as cast 1.970.03 Amorphous 39
Fess Coy; Bis under stress

The morphological properties of the hysteresis loops deeur modelsA or B, which show simply a monotonous in-
pend, as expected, on the specific characteristics of the disrease when the system becomes more and more ordered.
order. It is interesting to compare the results given in Fig. 5This disagreement could be due to the fact that in the mod-
for coercivity and dissipated energy with available experi-els, M,; depends on the degree of disorder, as a conse-
mental results. Experiments carried out on ribbons of highqguence of the strong anisotropy assumption. Experimentally
magnetostrictive amorphous alloys under st®&sare espe-  this is not the case andll,, is almost constant for a given
cially interesting. They reveal that the applied stress favorsample composition and thus one expects WatH ..
global (long-range uniaxial anisotropy which manifests it- As regards the critical point our results are totally com-
self by a change of the magnetic domain patfér@onse- patible with the universality that has been proposed for simi-
quently, this leads to a change of the shape of the hysterediar a thermal models. Table | compares the values obtained
loops. At low external stress, a complicated pattern constiin the present work for model& and B with those reported
tuted by maze domains results from the effect of quenched-iin the literature for the 8 random field Ising model, @
stresses. As the external stress is increased, a simpler domaéndom bond Ising model andd3site-diluted Ising model.
pattern appears with few parallel domains in the direction offhe agreement is very satisfactory confirming
the external stress. Therefore, it seems reasonable to assungversality®3 Table | also includes the values of the expo-
that the effect of the stress is to reduce the randomness of thrents corresponding to mean-field calculations. Clearly,
local anisotropy axes, or in other words to reduce disorderwhen considering the full set of all the critical exponents,
The main experimental resdtis that with increasing exter- one concludes that the mean-field model does not belong to
nal stressH.,. initially exhibits a fast decrease down to a the same universality class. This is not surprising since the
certain minimum value, followed by a roughly linear in- mean-field approximation assumes long-range interactions
crease at high stresses. Actually, this effect is reproduced byhile the other models are strictly short-range. The mean-
our modelB as can be seen in Fig. 5. This could be explainedield exponent values are expected to be found in systems
by taking the competition phenomena arising in #1€0 including dipolar interactiorfs. Nevertheless it should be re-
region for modelB mentioned in Sec. Il B into account. marked that the exponentsandr’ seem to have, within the
More quantitative comparisons, nevertheless, are not poirors, comparable values for the two universality classes.
sible since the actual anisotropy axis distribution in ribbonsTherefore, the analysis of the models suggests that the sta-
is difficult to compare with our 8 system. As regard8V, tistical distribution of avalanches shows very close critical
experimentally it is found that it shows a behavior similar toexponents, irrespective of the inclusion or not of the dipolar
that of H.,e, 2" that is, it exhibits a minimum for a certain forces.
value of the applied stress. This is not reproduced either by It is, perhaps, more interesting to compare such theoreti-
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cal exponents with those found experimentally. The directritical value, a deviation in the tuning of the external field
comparison of the numerical values should always be takewould lead to lower values of compared to those expected
carefully since, in experiments, avalanche sizes are deteat H=H¢®, as can be seen in Fig. 20. This may provide an
mined in different ways depending on the specific measureexplanation for some of the low values of reported
ment technique used. Table Il summarizes the most signifirecently®®
cant values of the exponents reported from the experimental
study of Barkhausen noise in magnetic systéms’ We
have separated the exponents corresponding to measure- V. SUMMARY AND CONCLUSION
ments of noise around a certain value of the external field
from the 7’ exponents corresponding to the analysis of the In this paper we have studied rate-independent hysteresis
signal sequence during the full hysteresis lgophalf loop.  properties of a Random Anisotropy reticular model. We have
In both cases, the numerical procedure for obtaining suckonsidered the infinite uniaxial anisotropy limit and we have
experimental exponents is similar to that followed for theneglected any effects of dipolar interactions. In this limit the
analysis of the model simulations; it is based on fitting anmodel reduces to the random anisotropy Ising model which
expression like Eq(12) to the recorded histograms of ava- can be viewed as a combination of a Random Bond Ising
lanche sizes. model with random couplingsg( factor to the external

A first remark is that the overall situation Concerning thEmagnetiC field. This model seems rather appropriate to real-
possibility for universality in experiments is not as clear as itistically describe amorphous and polycrystalline magnetic
is for the theoretical models. In our opinion the main prob-materials. Disorder is introduced in the system through the
lem is to determine whether the analyzed data corresponds 9y41ia| random distribution of anisotropy axis. Two different

a critical system or not. A second remark is that the valuegsyrinytions, in which disorder is controlled by a single pa-
reported in Table Il seem to show a certain dependence o meter ¢ ande), have been considered. Extensive numeri-

heat treatments anq other effects |nﬂu¢ncmg thg degree | simulations of the model have been performed by means
qguenched disorder in the system. For instance, in Refs. 3

and 37 it is found that the’ exponent increases towards a IOfc:I ?;g;;g';? naiﬁggh?hzorr;sésrtlﬂglgni(?al:l SB:SCZ:EZ(S)U;
value close to 2.0 when the degree of order in the sample i y ’ P 9 prop

increased by annealing and/or magnetic field cooling. Furtn® hysteresis loops have been obtained. They depend on the

thermore the distribution of avalanche sizes in Fe-Co-B a|_specific distribution of disorder but do not show any singular

loys [characterized by an exponent 1.27 (Ref. 39] were bghavior when_¢90 or e are varied. Qualitative agreement
found to change from subcritical towards criti¢tde cutoff, with some available t_experlme;ntal data has been f.ound.. We
equivalent to oun "1, increaseswhen the applied tensile €xpect that by choosing a suitable phenomenological distri-
stress is increaséd.In agreement with these results, the ~ bution of disorder such morphological properties could be
exponents in our simulations show a clear increase when theetter reproduced.

degree of disorder is decreased as can be seen in Figs. 14 andBesides, we have focused on the analysis of the
15. Moreover, our results also suggest that provided that thBarkhausen avalanches generated during the metastable evo-
measurements are performed in the subcritical region, thkition. The statistical distribution of such avalanches shows a
estimated value of’ will remain close to the critical value. critical behavior for a certain amount of disordef&1.33
This could explain why the values of in Table Il are quite  +0.03 ande®~0.2). From a finite-size scaling analysis of
similar to those found for the models. Actually, the possibledifferent simulated properties we have obtained the critical
existence of a large critical region has also been suggestegponents characterizing the disorder-induced critical point.
for the RFIM (Ref. § and for the site diluted random field The most important conclusion is that the present model falls
Ising model(RFIM with vacancies™ For this last model it i, the same universality class of the athermdl RFIM.

has even been proposed that true criticality extends over a \ye have also analyzed the different available experimen-

broad region of parameters contr_ollmg disorder. tal values of such critical exponents characterizing the distri-

o , . oo %ution of Barkhausen signals. Data is scarce and refer to
estimation ofr and7’. For instance, for the determination of

. S . . different exponents{ andr’). Although there are some dis-
7', in some cases saturation is not reached in the studie . . o .

: ; I crepancies, the comparison indicates that the experimental
hysteresis loops. This means that the distributions corre-

spond, in fact, to an internal loop. True saturation requiresSyStemS may fall into the same universality class. However,

very high fields which can be not experimentally accessible.reSUItS suggest that it is necessary to tune the disorder in the

At present, it is not clear what the consequences on the me3YStéms with adequate thermomechanical treatments so that
sured ' exponent will be. For the determination of the the system behaves_crltlcally. AIthou_gh a systemqtlc control
experiments are carried out with an external field constraine@f the amount of disorder is experimentally difficult, the
around the coercive field. Our simulations suggest that thi@nalysis of our model indicates the best conditions for such
may introduce a bias in the estimated exponents. First, if thé'easurements and data analysig;disregarding additional
amount of disorder is greater than the critical amount of dis€xperimental problen®, it is more reliable to measure’
order, the field at which the largest avalanche takes place arfull hysteresis loop analysisnstead ofr in order to avoid

the coercive field do not coincide, as can be seen in Fig. 2lproblems related to the determination of the critical fidld
Moreover, even in the case that the disorder is close to th@i) although the samples exhibit an exponentially damped
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