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Hysteresis and avalanches in the random anisotropy Ising model

Eduard Vives and Antoni Planes
Departament d’Estructura i Constituents de la Mate`ria, Facultat de Fı´sica, Universitat de Barcelona,

Diagonal 647, E-08028 Barcelona, Catalonia, Spain
~Received 3 May 2000; revised manuscript received 27 September 2000; published 15 March 2001!

The behavior of the random anisotropy Ising model atT50 under local relaxation dynamics is studied. The
model includes a dominant short-range ferromagnetic interaction and assumes an infinite anisotropy at each
site along local anisotropy axes which are randomly aligned. As a consequence, some of the effective inter-
actions become antiferromagneticlike and frustration appears. Two different random distributions of anisotropy
axes have been studied. Both are characterized by a parameter that allows control of the degree of disorder in
the system. By using numerical simulations we analyze the hysteresis loop properties and characterize the
statistical distribution of avalanches occurring during the metastable evolution of the system driven by an
external field. A disorder-induced critical point is found in which the hysteresis loop changes from displaying
a typical ferromagnetic magnetization jump~large avalanche spanning a macroscopic fraction of the system! to
a rather smooth loop exhibiting only tiny avalanches. The critical point is characterized by a set of critical
exponents, which are consistent with the universal values proposed from the study of other simpler models.
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I. INTRODUCTION

Hysteresis occurs in field-driven systems showing hist
dependence of the corresponding response.1 Disorder is ac-
knowledged to be a crucial ingredient in determining hyst
esis properties, especially in the so-called rate-indepen
limit. In this case, system properties do no exhibit expli
time dependence. For this to occur, two conditions must
satisfied;~i! thermal fluctuations need to be irrelevant~ather-
mal character! and ~ii ! field-driving rates must be sma
enough. Ideally, this corresponds to the zero-tempera
quasistatic limit. Within this framework, disordered syste
can be viewed as described by a multidimensional ene
landscape containing many local metastable states sepa
by large energy barriers. If thermal fluctuations are not
erative, these energy barriers can only be overcome by m
fying the external field which tilts the energy landscape. T
system evolution thus proceeds through jumps from
metastable state to another metastable state and therefor
field-response shows a discontinuous and apparent stoch
character. In magnetic systems, this jerky magnetization
sponse corresponds to the so-called Barkhausen no2

Moreover, similar behavior has been reported in many
ferent systems, including martensitic systems,3 supercon-
ducting films,4 and capillary condensation systems5 among
others. All these systems exhibit, as a common featur
field-driven first-order phase transition influenced by dis
der. Actually, hysteresis has its origin in this first-order tra
sition and the characteristics of the hysteresis loops dep
on both the kind and amount of disorder.6 With these ideas in
mind, different versions of lattice spin models with disord
have been proposed as simple models incorporating the
sential physics of these systems. This includes, among o
more complicated models, the random field~RFIM!7 the ran-
dom bond ~RBIM!,8 and the site-diluted~SDIM!9,10 Ising
models. Such models, with appropriate dynamics, show r
independent hysteresis and associated Barkhausen
0163-1829/2001/63~13!/134431~14!/$20.00 63 1344
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when sweeping the field at very low temperature. It is a
found that the system becomes magnetically softer when
amount of disorder is increased. This is characterized b
change of the hysteresis loops from sharp to smooth. At
same time, the distribution of sizes and durations
Barkhausen signals is also modified.8 The striking feature is
the existence of a specific amount of disorder at which th
distributions become critical~power-law behavior!. There-
fore, the change from sharp to smooth hysteresis loops
be interpreted as a disorder-induced phase transition, as
recently been found experimentally from the study of C
CoO films.11 The possible relationship of this phase tran
tion ~involving metastable states! with a change of the
ground state~equilibrium! of the system is still an open ques
tion. A number of recent results point, however, in th
direction.10,12

In magnetic materials, a physically relevant source of d
order arises from the randomness of the magnetocrysta
anisotropy. This paper is aimed at analyzing the intrin
zero-temperature hysteresis and avalanche properties in
tems with such disorder. Actually, the random uniax
single-site anisotropy Heisenberg model has been consid
to be a suitable model to describe magnetic properties
amorphous alloys.13 At mesoscales, this model can also
used, as a reasonable approximation, to describe gran
materials, alloys with precipitates, polycrystalline system
etc . . . , where grains form single magnetic domains, a
changes of magnetization can take place only by rotation
the local magnetization vector. The model was studied in
mean-field approximation by Harriset al.14 Further investi-
gations suggested that in 3d, the stable low-temperatur
phase is a spin glass phase, even in the limit of strong
isotropy. In this limit, the spins are forced to be align
along the anisotropy axis and therefore, the model reduce
a random anisotropy Ising model~RAIM !.15 This is the
model that will be considered in the present study.

To our knowledge, the RAIM has not been studied ve
©2001 The American Physical Society31-1
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EDUARD VIVES AND ANTONI PLANES PHYSICAL REVIEW B63 134431
much within the above metastable evolution framework,
though it is a good candidate to display a disorder indu
phase transition.16 Moreover, it has been argued from sym
metry grounds that it should belong to the same universa
class as the RFIM.6,17 An interesting feature of this mode
regards the fact that comparison with experiments may
considered as being more realistic than for other more id
ized models such as the RFIM or the RBIM. However, mo
fication, in a controlled way, of the amount of disorder
real systems is not always easy to do. For polycrystal
alloys changing the distribution of anisotropy axes is,
principle, possible by impressing an orientation texture
application of a severe cold work process or by means o
heat treatment~recrystallization!.18 In the case of magneto
strictive amorphous ribbons, anisotropy can be controlled
an external applied stress.19–21 The effect of such externa
stress is to decrease the amount of disorder by inducin
longitudinal anisotropy.

The paper is organized as follows. In the next section
introduce the model and the details of the numerical simu
tion procedure. In Sec. III we present the results, which
clude the description of the hysteresis loops, the Barkhau
avalanches, and critical phenomena. Finally in Sec. IV
discuss the results and draw conclusions.

II. MODELLING

A. Hamiltonian

We consider a 3d cubic lattice with spinsSW i and local
anisotropy axesn̂i defined at each site (i 51, . . . ,N5L3).
Each unitary vectorn̂i is determined by a pair of spherica
polar coordinates (u i ,f i). Note that since such unitary vec
tors define a direction in space, the angles are limited to
ranges 0,f i,2p and 0,u i,p/2. The axis directions are
random and independently distributed according to a gen
density probability distributionf (u,f) which is normalized,
i.e.:

E
0

2p

dfE
0

p/2

f ~u,f!sinudu51. ~1!

The general Hamiltonian of the system can be written as

H52 (̂
i j &

z/2N

JSW iSW j2(
i 51

N

HW SW i2D(
i 51

N

~ n̂iSW i !
2

2K (
i j

N(N21)

3
~SW j rW i j !~SW i rW i j !

r i j
5

2
SW iSW j

r i j
3

, ~2!

where the first term withJ.0 accounts for the ferromagnet
exchange energy, which is short range and is assume
extend only to nearest-neighbor pairs (z56 is the coordina-
tion number of the cubic lattice!. The second term~Zeeman
energy! stands for the interaction with an external appli
field HW . The third term is the anisotropy energy. Finally, t
last term corresponds to the long-range dipolar interacti
that extend to all pairsi , j of the lattice. The vectorrW i j is the
vector joining sitesi and j.
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In the infinite anisotropy limit (D@1), the spinsSW i are
constrained to lie on then̂i directions and therefore satisfy

SW i5n̂iSi , ~3!

where Si is now an Ising spin variable taking values61.
Under such conditions the Hamiltonian of the system can
written as:

H52J (̂
i j &

z/2N

SiSj n̂i n̂ j2(
i

N

Si n̂iHW 2DN2K

3 (
i j

N(N21)

SiSj

3~ n̂ j r̂ i j !~ n̂i r̂ i j !2~ n̂i n̂ j !

r i j
3

. ~4!

The dipolar term represents, in lattice models, a conven
way to describe the magnetostatic energy of the system. N
that it changes from being pure ferromagnetic for a pair
interacting spins withn̂i5n̂ j5 r̂ i j to pure antiferromagnetic
when n̂i5n̂ j' r̂ i j . The exact treatment of this term in nu
merical simulations is difficult since the introduction of
cut-off in the interaction range can induce nonphysi
effects.22 This term has been recently considered within t
context of athermal hysteresis studies in the case of perfe
aligned anisotropy axes.23,24 Its main effect on the hysteresi
loop is to produce a rather large nucleation jump at the
ginning of the demagnetization process. As regards its in
ence on the properties of the avalanche distributions, it
been argued25 that its effect is to cause mean-field behavio
Most of the results in the present work correspond to a s
ation with rather large randomness. Such randomness
independence of the orientation of the anisotropy axes at
different sitesi andj is expected to weaken the importance
the dipolar term. Therefore, we have not considered it in
present work. The Hamiltonian withK50 reads:

H52 (̂
i j &

z/2N

Ji j SiSj2H(
i

N

giSi , ~5!

where the first term is a random bond term withJi j 5Jn̂i n̂ j
and the second term describes the random coupling to
external magnetic field~randomg factor! with gi5 cosui .
The constant termDN in Eq. ~4! has been omitted, since
represents only a shift in the energy of the system. Moreo
without loss of generality we will takeJ51 as the unit of
energy.

In the present work we will consider that the external fie
HW keeps its direction fixed along thez axis so that only its
magnitudeH can change. Thus thegi are constant once th
initial distribution of anisotropy axis has been quenched~no-
tice that rotation ofHW with fixed modulus could also be
considered!.

Finally, it should be remarked that the second term in E
~5! acts, for each value ofH, as a random-field term. Thi
equivalence, nevertheless, only applies for equilibrium st
ies. The metastable evolution~hysteresis loops and sequen
1-2
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HYSTERESIS AND AVALANCHES IN THE RANDOM . . . PHYSICAL REVIEW B63 134431
of avalanches! of such a randomg-factor model cannot,a
priori , be expected to be equivalent to that of a RFIM.

B. Modelling of disorder

As mentioned in the introduction, in real systems such
polycrystalline alloys, the distribution of anisotropy axis
very much dependent on details of the sample prepara
Here we are interested in controlling the amount of disor
in the system by controlling the distribution of angl
f (u,f). We have considered two simplified models, whi
represent perturbations of the two extreme cases of a f
aligned anisotropy axis and a completely random distri
tion.

Model A.Uniform density within a cone 0,u,u0:

f ~u,f!5
1

2p~12 cosu0!
h@u02u#, ~6!

whereh@x# is the Heaviside step function. Note that foru0
50 the axes are fully aligned in thez direction, while for
u05p/2 the axes are isotropically distributed. The amoun
disorder in the system increases with increasingu0.

Model B. First-order correction to the isotropic distribu
tion:

f ~u,f!5~12e!
1

2p
1e

3

2p
cos2 u. ~7!

In this case the parametere ranges within2 1
2 <e<1 to

ensure thatf (u,f) is positive. Fore.0 the distribution dis-
plays a peak atu50, which flattens ase goes to zero. Thus
in this case, the amount of disorder increases with decrea
e. Fore50 this distribution is uniform and reduces to mod
A with u05p/2. Whene,0 the distribution shows a maxi
mum at u5p/2, which corresponds to a tendency for t
anisotropy axes to lie isotropically on a flat disk perpendi
lar to the external applied field. Thus, strictly speaking wh
e decreases in thee,0 region the anisotropy axes orde
again, but perpendicular to the external field. This increa
both frustration and competing interactions.

Figures 1 and 2 show a number of examples of the ani
ropy axis distribution corresponding to modelsA andB, re-
spectively. The polar plot in the first column corresponds
a particular sample of 1000 anisotropy axes numerically g
erated according tof (u,f). The polar angle in these plot
representsf while the radius represents sinu. Note that, with
this representation, a uniform distribution of anisotropy ax
corresponds to a uniform distribution of points on the cir
of unit radius. For each example we show the correspond
distribution of exchange interactionsJi j 5n̂i n̂ j . Moreover, if
the anisotropy axes are restricted tou,p/4, the correspond-
ing exchange interactions are all ferromagneticJi j .0. In
contrast, ifu.p/4 in the case of some anisotropy axes th
the systems contains a fraction of antiferromagnetic bon

C. Dynamics

Regarding the dynamics of the system, two different s
ations have been discussed in the literature.25,26The first case
13443
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corresponds to the dynamics of an interface or domain-w
propagating in a disordered media.26,27 Actually, domain-
wall motion is the predominant magnetization process in
approximately constant permeability region of the hystere
loops,28 and therefore such dynamics is adequate for stud
of the linear region of the magnetization curve. The seco
approach is the so-called field-driven nucleation proposed
Sethna and coworkers.7 In this case nucleation and growt
are treated simultaneously. While in the former case o
spins located at the propagating interface can flip, in

FIG. 1. Examples of the anisotropy axis distributions of modeA
for different values of the parameteru0. The first column corre-
sponds to the polar representation described in the text and
second column to the distributions of random bonds~in arbitrary
units!.

FIG. 2. Examples of the anisotropy axis distributions of modeB
for different values of the parametere. The first column corre-
sponds to the polar representation described in the text and
second column to the corresponding distributions of random bo
~in arbitrary units!.
1-3
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EDUARD VIVES AND ANTONI PLANES PHYSICAL REVIEW B63 134431
latter, any spin of the system can turn when such a flip
comes energetically favorable. This second approach se
more convenient for the study of the full hysteresis loops
particular in systems with strong local anisotropy and a la
of well-defined domain structure.

The details of the dynamics used for the numerical sim
lations are the following; under slow changes of the exter
magnetic field, the system follows deterministic dynam
corresponding to local energy relaxation. Due to this lo
character, the evolution of the system will, in general, n
follow an equilibrium path, but rather will evolve throug
metastable states. Actually, different configurations of sp
may correspond to the same value of the external field. S
different configurations are found depending on history c
ditions.

When studying the full hysteresis loop, the starting po
is H5` ~or H52`) which corresponds to the stable co
figuration with all Si51 ~or Si521). We proceed by de
creasing~or increasing! the field and compute, from Eq.~5!,
the change of energy (DH) i associated with the independe
reversal of any spinSi . This change can be written as

~DH! i52FiSi , ~8!

where the local fieldFi acting on lattice sitei is given by;

Fi5(
n.n.

Ji j Sj1H cosu i . ~9!

The metastable states correspond to those configuration
spins for whichDHi.0 ; i . When for a certain value ofH
one of the spins become unstable@(DH) i50#, we keepH
constant and flip that spin. This can unstabilize some ne
boring spins@for which (DH) i,0] which will be simulta-
neously flipped~synchronous dynamics!. This is the origin of
an avalanche. Due to the fact that cosui.0, when decreasing
~increasing! the field, the first spin that triggers an avalanc
can never yield an increase~decrease! of magnetization.
However, such inverse magnetization reversals, may o
during the avalanche. The procedure continues withH con-
stant until all the spins become stable again. This is the
of the avalanche. The external field is then decreased~in-
creased! until a spin becomes unstable again. Notice that
fact that the field remains constant during the avalanch
the crucial condition for rate-independent hysteresis.1 It is
worth noting that in our numerical simulations we have n
observed neverending avalanches which may, in general
cur when using this dynamics in systems with antiferrom
netic bonds. Although we cannot provide a rigorous pro
for their absence, we suspect that such pathological si
tions only occur for very special values of the random fie
and bonds which have vanishingly small probability wh
the angles are distributed continuously. The hysteresis lo
are obtained by measuring, as a function ofH, the total mag-
netizationM in the z direction defined as;

M5(
i 51

N

Si cosu i . ~10!
13443
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Avalanches are characterized by their duration and size.
duration t of the avalanche corresponds to the number
avalanche steps in the algorithm described above. The
lanche size can be quantified in two different ways:~i! The
total change of magnetizationDM between the origin and
the end of the avalanche;

DM5( Si cosu iU
end

2( Si cosu iU
origin

. ~11!

Note that the size of the avalanches, measured in such a
is bounded by twice the saturation magnetization of the s
temMsat5( i 51

N cosui . ~ii ! The total number of spins flipped
during the avalanche. We will denote such a magnitude bs.
In this case, as opposed to the above definitions, the
lanche sizes is not bounded by the system sizeL3 due to the
possibility of inverse spin flips.

III. RESULTS

In this section we present the main results of the num
cal simulations. We have studied 3d systems with periodic
boundary conditions and sizesL56, 10, 20, 30, and 40.

A. Hysteresis loops

Figures 3 and 4 show examples of the hysteresis lo
corresponding to modelsA andB ~system sizeL510), with
different amounts of disorder~controlled by the parameter
u0 and e as indicated!. First of all, it should be mentioned
that the loops are symmetrical with respect to changesH→
2H and M→2M . This property comes directly from th
symmetry of the Hamiltonian~5!.

FIG. 3. Examples of hysteresis loops of modelA for different
values of the parameteru0. Data correspond to a numerical simu
lation of a system withL510.
1-4
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HYSTERESIS AND AVALANCHES IN THE RANDOM . . . PHYSICAL REVIEW B63 134431
For both models the qualitative morphological changes
the loops when disorder increases are very similar. Figu
shows the dependence of the saturation magnetizationMsat ,
the remnant magnetizationMrem , the coercive fieldHcoe

and the total dissipation~area within the loop! W on the
parameter (u0 or e) controlling the amount of disorder. In
both casesMsat , Mrem , and W decrease with increasin
disorder. Notice thatMsat can be obtained exactly by inte
gration of f (u,f)cos(u) over all the spatial directions. Th
most remarkable difference concerns the behavior ofHcoe.
In modelA it exhibits a monotonous decrease with incre
ing disorder. In modelB after the initial decrease ofHcoe
with increasing disorder, a minimum is reached; for negat
values ofe, Hcoe increases. From these averaged morp
logical magnitudes apparently no signs of singular beha
as a function of the amount of disorder is found. The det
tion of a possible disorder-induced critical point needs a
tailed study of avalanches which will be presented in
next subsection.

It is illustrative to show a sequence of snapshots of
system configuration during a demagnetization proce
These are shown in Fig. 6 which corresponds to modeA
with L520 andu051.3. Black indicates the lattice sites wit
reversed spinsSi521. The simulation starts from saturatio
~all the Si51) with a very large applied field. The differen
configurations correspond to the same plane~of the 3d sys-
tem! for decreasing values of the external fieldH520.10,
21.10,21.44,21.48,21.49. During the first stages of th
demagnetizing process the main dynamical mechanism is
nucleation of the reverse magnetization phase by flipp
isolated spins. In contrast, in the middle of the hystere
loop the evolution takes place by growth~depinning! of such
domains. This occurs by means of large avalanches w
produce reversals of large fractions of the system.

FIG. 4. Examples of hysteresis loops of modelB for different
values of the parametere. Data correspond to a numerical simul
tion of a system withL510.
13443
f
5

-

e
-
r
-
-

e

e
s.

he
g
is

ch

Prior to the analysis of such avalanches it is interesting
consider another feature of the hysteresis loops. The ana
of partial cycles enables study of the existence of the
called return point memory~RPM! property. The mathemati
cal conditions for such a property to occur have been d
cussed for the RFIM,7 the RBIM,3 and the SDIM.10 The two
RAIM models (A andB) studied in this work do not exhibi
such a property, except for those situations in which no
fective antiferromagnetic interactions occur. Figure 7 sho
an example of internal loops revealing the failure of t
RPM property. This is due to the existence of reverse s
flips during the avalanches, and even reverse avalanches
occur for large enough amounts of disorder. It is worth me
tioning that such reverse flips represent a small fraction
the total number of flips. For instance, close to the criti
amount of disorder~defined below! it represents less tha
5%.

FIG. 5. Evolution of different morphological properties of hy
teresis loops for modelsA ~first column! andB ~second column! as
a function of disorder: saturation magnetization (Msat), remanent
magnetization (Mrem), coercive field (Hcoe) and dissipation (W).
Data corresponds to averages over 100 hysteresis loops of a sy
with L510, except for the open triangles that correspond toL
520. In the two top figures, corresponding toMsat , the continuous
lines show the exact analytical calculations, giving sin2@u0)/(2(1
2 cos(u0)# and 1/21e/4 for modelsA and B, respectively. In all
cases, error bars are smaller than symbol sizes.

FIG. 6. Sequence of snapshots of the system configuration
responding to a numerical simulation of modelA with L520 and
u051.3. The picture shows the same section perpendicular to
@001# direction of the 3D system for different values ofH.
1-5
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EDUARD VIVES AND ANTONI PLANES PHYSICAL REVIEW B63 134431
B. Barkhausen avalanches

The statistical analysis of the avalanches is performed
measuring its sizes and durationt, in a half hysteresis loop
Figure 8 shows the probabilityp(s) of occurrence of an
avalanche of sizes for modelA and increasing values of th
amount of disorderu0. Data, represented in log-log plo
correspond to the analysis of 300 different half-loops w
different realizations of the disorder. For small values ofu0,
the cycles contain a very large avalanche giving a peak
the right-hand side of the plot and a certain fraction of sm
avalanches, on the left. This behavior is called ‘‘supercr
cal.’’ On the other hand, for large values ofu0 the system
behaves ‘‘subcritically’’ showing only small avalanches. F

FIG. 7. Example of a hysteresis loop of modelB showing the
failure of the return point memory property after partial cyclin
Data corresponds to a simulation of a system withe520.2 andL
510.

FIG. 8. Probability distributionp(s) of avalanche sizes in the
hysteresis loop of modelA. Data corresponds to an average of 3
runs for a system withL530 and different values ofu0 as indi-
cated. Except for the bottom curve, the curves have been vertic
shifted~three decades each! in order to clarify the picture. Continu
ous lines correspond to examples of the fits of Eq.~12!.
13443
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an intermediate valueu0
c(L530)51.4460.01, the distribu-

tion of avalanches becomes a power law~‘‘critical’’ ! char-
acterized by an exponentt852.0660.05. The details of the
exponent fitting procedure together with the study of the
pendence with the finite size of the system will be presen
in the next section. Figure 9 shows the avalanche size di
bution p(s) for model B. In this case critical behavior is
found at ec(L530);0.2 with a power-law exponentt8
52.1060.05

It is interesting to consider the following two remark
concerning such avalanche size distributions. On the
hand, the avalanche analysis could also be performed
characterizing the avalanche size byDM , instead ofs. Figure
10 shows a comparison of the two histograms~number of
avalanches versus size! N(s) and N(DM ) in the case of

lly

FIG. 9. Probability distribution of avalanche sizes in the hyst
esis loop of modelB. Data corresponds to an average of 100 ru
for a system withL530 and different values ofe as indicated.
Except for the bottom curve, the curves have been vertically shi
~three decades! in order to clarify the picture.

FIG. 10. Comparison of the histogramsN(s) ~circles! and
N(DM ) ~continuous line with black triangles indicating the cent
of the logarithmic bin! corresponding to modelA with a system size
L520 and withu051.39. Data correspond to averages over 3
different realizations.
1-6
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HYSTERESIS AND AVALANCHES IN THE RANDOM . . . PHYSICAL REVIEW B63 134431
model A with L520, u051.39 and averages over 300 di
ferent realizations. The agreement between both histogr
is very good. Even in the small avalanche size region b
histograms exhibit almost the same behavior indicating
effects related to the existence of inverse jumps are tot
negligible. Therefore, from now on, we will only conside
p(s) distributions. @Note that in Fig. 10 the histogram
N(DM ) has been constructed by taking bins of sizeDM
58. This is not necessary forN(s) since s is a discrete
variable. Thus, for the sake of comparison, the histogr
N(DM ) must be displayed after being divided by a factor 8

On the other hand, it should be mentioned that the la
avalanches occurring in the supercritical case span the
simulated system at least in one direction. This is illustra
in Fig. 11 which corresponds to the avalanche distribution
modelA with sizeL520 andu051.39. For this amount o
disorder the system still behaves slightly supercritically. T
three histograms correspond to the distribution of all the a
lanches~bottom!, the nonspanning avalanches~middle! and
the spanning ones~top!. The inset shows the histogram o
spanning avalanches on a linear scale, revealing the e
tence of a characteristic size, which increases when diso
decreases and system size increases. Actually, in the the
dynamic limit such spanning avalanches will be infinite,
volving a macroscopic fraction of the system and giving r
to magnetization discontinuities in the hysteresis loop. I
worth noting that in previous studies of the same problem
the RFIM ~Ref. 6! such spanning avalanches were subtrac
from the histograms for the analysis of the critical behavi
In the present work we have decided to keep them since
will be seen, their occurrence provides a criteria for locat
the critical point.

C. Criticality

The power-law behavior of the avalanche size distrib
tions reveals the existence of criticality in the system. F

FIG. 11. Distribution of avalanches for modelA with L520 and
u051.39. Data corresponds to averages over 1000 different
figurations of disorder. The bottom histogram corresponds to
analysis of all avalanches. The top histogram~shifted 6 decades!
corresponds to the spanning avalanches and the middle one~shifted
3 decades! to the nonspanning avalanches. The inset shows
histogram of spanning avalanches on a linear scale. Data in the
has been smoothed in order to clarify the picture.
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this reason such transitions related to the change of pro
ties of the hysteresis loop and of the Barkhausen noise
tribution when disorder is increased are called disord
induced critical points. They share many similarities with t
classical critical points, but one should never forget tha
number of features are different; firstly we are dealing with
history-dependent metastable evolution of the system, i.e
out-of-equilibrium problem, thus many thermodynamic
equations relating critical exponents, may not be valid.29,30

At this point it should be mentioned that for the RFIM, fo
which the exact equilibrium trajectories can be obtained
has been found numerically that a transition point exists
the same amounts of disorder in equilibrium.30 A second
remark concerns the fact that we are dealing with a de
ministic phenomenon atT50 and thus fluctuations~in the
standard sense!, do not exist. By studying systems with di
ferent realizations of the disorder corresponding to the sa
probability distributionf (u,f), one can define average va
ues of any generic propertyz that we will denote aŝz&. We
can also define ‘‘fluctuations’’ aŝz2&2^z&2, but the ex-
trapolation of these averages to the thermodynamic li
may hide some mathematical inconsistencies.

The consequences arising from the two remarks above
still not totally understood. For instance, for such disord
induced critical points it is not clear what the order parame
is. One choice is the system magnetization per site^M /L3&.
Nevertheless, the fact that the system displays hysteresi
both u0,u0

c andu0.u0
c implies that^M /L3& does not go to

zero at the critical point. For the RFIM, Dahmen and Seth6

use^M /L3&2^Mc /L3& ~whereMc is the value of the mag-
netization at the critical point!. Besides the fact that this
quantity does not remain equal to zero above the crit
point, it adds to the problem of determiningMc . A second
choice, which was originally used for the study of th
RBIM,8 is to measure the sizêsmax& of the largest avalanche
in the hysteresis loop. Clearly this is a quantity that for
finite system is not a suitable order parameter since it ne
goes to zero. However, for the infinite system,^smax/L

3& will
be zero for any degree of disorder except for those for wh
an avalanche spanning a macroscopic portion of the sys
occurs. This leads to the existence of a discontinuity in
hysteresis loop. Thus, in the present paper, we have ch
this quantity as the order parameter.

Figure 12 displays the behavior of^smax/L
3& as a function

of u0 for different system sizes. Data corresponds to av
ages over 50,200,300,500, and 300 different realization
the disorder forL540,30,20,10, and 6, respectively. Th
~pseudo! phase transition for the finite system will corre
spond to the inflection point of such curves. The exact lo
tion of u0

c(L) can be obtained, for instance, by means o
4th-order polynomial fitting of the inflection point or, after
numerical derivative, a 2nd-order polynomial fitting of th
maximum. This gives two slightly different estimations
the critical point. An independent way of locating the pha
transition is to measure the durationtmax of the longest ava-
lanche in the half hysteresis loop. The average of suc
quantity^tmax/L& is also shown in Fig. 12 as a function ofu0
for different system sizes (tmax is normalized byL since this

n-
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EDUARD VIVES AND ANTONI PLANES PHYSICAL REVIEW B63 134431
is the minimum number of steps needed in order to cover
full system!. This quantity displays a maximum atu0

c(L)
which is also fitted by using a 2nd-order polynomial. Figu
13 shows equivalent data to that of Fig. 12 for modelB. In
this case only systems up toL530 have been studied. Th
simulation of larger systems in this case is much more t
consuming than for modelA due to the wider distribution o
anisotropy axes.

A fourth method for the location of the critical point re
sults from the quantitative analysis of the avalanche size

FIG. 12. Average size~a! and duration~b! of the largest ava-
lanche in the full hysteresis loop as a function of the amount
disorderu0 for model A. Data correspond to different system siz
as indicated by the legend and to averages over many diffe
configurations of disorder.

FIG. 13. Average size~a! and duration~b! of the largest ava-
lanche in the full hysteresis loop as a function of the amount
disordere for modelB.
13443
e
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tribution of Figs. 8 and 9. These distributions correspond
the statistical analysis of all the avalanches occurring in
half-loops for many realizations of disorder. In general th
are well fitted by an exponentially corrected power-law pro
ability distribution;16

p~s;t8,l!5
1

A
s2t8e2ls, ~12!

whereA is not an extra free parameter but the normalizat
factor. As mentioned before the avalanche sizes takes dis-
crete values and, strictly speaking, is not bounded fr
above due to the possibility of inverse flips. For the comp
tation of the normalization factorA we have chosen the larg
est valuesmax of each set of data, which in all cases has be
found to be lower thanL3. ThusA ~which is a function oft8
andl) is given by:

A~t8,l!5(
s51

smax

s2t8e2ls. ~13!

The fits are performed by the maximum likelihood metho
which is independent of any binning process or represe
tion. Examples of the fits are also shown in Fig. 8. As
general comment, it should be mentioned that the fits
very good for the subcritical, critical and slightly supercri
cal distributions. For the deep supercritical distributions th
are not that good due to two different problems;~i! the ex-
istence of large avalanches which span an important frac
of the system makes it difficult to have enough statistics, a
~ii ! the fact that the proposed model@Eq. ~12!# is not well
suited to describe the occurrence of the peak~with a certain
characteristic size! in the larges regions.

For modelA the values obtained ofl andt8 as a function
of u0 are shown in Fig. 14 for different system sizesL
510,20, and 30). For small amounts of disorderu0,u0

c , one
gets l,0. For u0.u0

c , one getsl.0. The estimation of
u0

c(L) can be obtained by interpolating the value ofu0 for
which l(u0)50. This, nevertheless, shows large uncerta
ties that increase for increasing values ofL. The same kind of
analysis can be performed with the corresponding sim
results for modelB. They are shown in Fig. 15.

The four estimations above ofu0
c(L) are shown in Fig. 16

as a function ofL21. The results exhibit a strong dependen
on the sizeL of the simulated system, as occurs in numeri
simulation of standard critical phenomena. As can be s
the four estimations ofu0

c decrease with increasingL. Except
for the data obtained from the analysis of the distribution
avalanches which shows large error bars, the linear extra
lation to L→` indicates a compatible common value f
u0

c(L→`).
The exact treatment of the dependence of the meas

quantities withL must be performed within the framework o
finite-size scaling.31

D. Finite-size scaling

According to the standard finite-size scaling hypothes
as a function of system sizeL, smax and tmax behave as:

f

nt

f
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HYSTERESIS AND AVALANCHES IN THE RANDOM . . . PHYSICAL REVIEW B63 134431
smax~x,L !/L3;L2 b/nFs~xL1/n! ~14!

tmax~x,L !;Lz/nFt~xL1/n!, ~15!

wherex is the reduced amount of disorder. For the case
model A, x5@u02u0

c(L)#/u0
c(L). The functionsFs and Ft

are scaling functions andb, z, andn are critical exponents
The different estimations of the critical amounts of disord
u0

c(L) for the finite system should also scale withL as:

u0
c~L !2u0

c~`!;L21/n. ~16!

FIG. 14. Fitted parametersl and t8 to the avalanche size dis
tributions as defined in Eq.~12! for model A. Data correspond to
different system sizes as indicated by the legend and to aver
over many different configurations of disorder.

FIG. 15. Fitted parametersl and t8 to the avalanche size dis
tributions as defined in Eq.~12! for model B. Data correspond to
different system sizes as indicated by the legend and to aver
over many different configurations of disorder.
13443
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There are different ways to fit the four exponentsb, t8, z
andn and determineu0

c(`). Since the behavior ofu0
c(L) is

quite linear withL in Fig. 16, this suggests that to a fir
approximation it is reasonable to taken;1. This justifies the
linear fits shown in Fig. 16. A value consistent with all th
extrapolations isu0

c(`)51.3360.03 ~indicated by an arrow
on the vertical axis!. With this estimation ofu0

c(`) we can
refine the value ofn by performing a linear fit to the log-log
plot of @u0

c(L)2u0
c(`)# vs L. The obtained value isn51.0

60.1
Onceu0

c(`) andn are determined, the exponentsb andz
can be obtained by analyzing the change withL of the height
and slope at the inflection point in the curvesmax(u0 ,L) and
the height and curvature at the maximum intmax(u0 ,L).
From linear fits to log-log plots the following estimations a
obtained: b50.0660.05, 2b11/n50.860.1, z51.6
60.02, andz12/n53.360.2. Such values are consiste
with a final estimation ofb50.160.1 andz51.660.1. The
goodness of the final set of exponents can be finally teste
plotting the scaling functionsFt andFs , which are shown in
Fig. 17. Within a rather good approximation data collaps
onto a single curve, which demonstrates the assumed sc
hypothesis.

A similar analysis has been performed for modelB. In
this case, instead of fitting a different set of exponents
have tried to scale the data in Fig. 13 with the set of ex
nents obtained above for modelA. The resulting scaling
functions are shown in Fig. 18. Again a good data collaps
obtained, demonstrating the validity of the scaling hypo
esis for modelB with the same set of critical exponents.

A summary of the exponents found are given in Table

es

es

FIG. 16. Dependence of different estimations ofu0
c(L) on L21

for modelA. Circles correspond to the estimations from the posit
of the maximum intmax(u0), diamonds to the position of the inflec
tion point insmax(u0), squares to the position of the minimum in th
numerical derivativedsmax(u0)/du0, and triangles to the disorde
values for which the parameterl vanishes. Continuous lines corre
spond to linear fits used for the extrapolation toL→`. The dashed
line is a guide to the eye. The arrow indicates the valueuc51.33.
1-9
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EDUARD VIVES AND ANTONI PLANES PHYSICAL REVIEW B63 134431
Values corresponding to other 3d models and mean-field ca
culations are also presented for comparison. This point
be discussed in Sec. IV.

E. Critical field

The avalanche size distributions analyzed in the previ
sections, corresponds to the study of the whole hyster
cycle. Nevertheless, the simulations of the RFIM~Ref. 7!
suggested that it is convenient to analyze such distribut
at different points of the hysteresis loop. Strictly, criticality
expected to occur only at a certain value of the fieldHc

~critical field!. In this case the power-law distribution of av
lanche sizes is characterized by an exponentt which for the
RFIM takes a valuet51.660.06 and is related tot8
through a certain scaling relation.17

The study ofp(s) at Hc is quite difficult since to obtain
sufficiently accurate statistics for a given value ofH requires
a large number of realizations of disorder. Fig. 19 prese
such an analysis for modelA in the case of a system wit
L520, u051.39 @;u0

c(L520)# and averages over 300 re
alizations. The distributions have been computed by ana
ing the avalanches occurring in windows of sizeDH50.5

FIG. 17. Scaling of the largest avalanche sizesmax(u0 ,L) and
duration of the longest avalanchetmax(u0 ,L) for modelA. The val-
uesn51, b50.1, andz51.6 have been used.
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around the indicated values of the external applied field d
ing the demagnetizing process. The critical distribution o
curs for a field atuHc(L520)u;21.5. For values ofH sig-
nificantly larger and smaller, the distributions exhibits
evident exponential damping. In principle, a more quant
tive treatment is possible, which consists of fitting the d
with the distribution given by Eq.~12! ~replacingt8 by t).
Results fort andl are shown in Fig. 20 as a function ofH.
The figure reveals the existence of a critical region withl
;0 andt;1.5. It is worth noting that outside this critica
region, the fit of Eq.~12! renders values oft well below the
critical value. This method of determiningHc is very ap-
proximate, since the need for large enough statistics requ
a large field window that introduces considerable bias.

Finally, it is interesting to compareHcoe with the value of
the field Hsmax

at which the largest avalanche (smax) for a

demagnetizing process~from positiveH to negativeH) oc-
curs. Experimentally, in the region of large disorderHsmax

can be determined by locating the field for which the ma
roscopic hysteresis loop exhibits maximum slope, i.e., ma
mum susceptibility. Figure 21 comparesHsmax

andHcoe as a

function ofu0 for three different system sizesL510, 20, and
30. Data corresponds to averages over 1000, 300, and

FIG. 18. Scaling of the largest avalanche sizesmax(e,L) and
duration of the longest avalanchetmax(e,L) for modelB. The values
n51, b50.1, andz51.6 have been used.
lues
model
TABLE I. Critical exponents from numerical simulations in this work and in the literature. The va
with an asterisk (* ) have been obtained from model A data and were checked for scaling the data of
B.

Model b t8 t z n

3d-RAIM ~model A! 0.160.1 2.0660.05 1.5060.15 1.660.1 1.060.1
3d-RAIM ~model B! 0.1* 2.1060.05 1.6* 1.0*
3d-RFIM ~Ref. 17! 0.03560.028 2.0360.03 1.660.06 1.4160.17
3d-RBIM ~Ref. 33! 0.060.1 2.060.2 1.660.1 1.0660.1
3d-SDIM ~Ref. 34! 1.960.2
Mean Field~Ref. 17! 1/2 2 3/2 1/2
1-10
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HYSTERESIS AND AVALANCHES IN THE RANDOM . . . PHYSICAL REVIEW B63 134431
realizations of disorder, respectively. As expected, for l
values of disorder bothHsmax

andHcoe coincide; the larges
avalanche associated with the magnetization reversal cro
the line M50 and, thus, determinesHcoe. In contrast, for
large amounts of disorder the largest avalanche in the
teresis loop occurs for a value of the field more negative t
Hcoe. The inset in Fig. 21 shows the actual distribution

FIG. 19. Avalanche size distribution corresponding to differe
values of the applied external fieldH for model A with size L
520 andu051.39. Histograms have been performed by count
the avalanches within a window ofDH50.5 centred on different
values of the field. From bottom to top such fields vary from 0.0
22.25 with steps of 0.25. Moreover, averages over 1000 rea
tions of disorder have been performed. Histograms have b
shifted two decades each in order to clarify the picture.

FIG. 20. Parametersl andt as a function of the external fieldH
fitted from the histograms in Fig. 19, corresponding to a sys
with sizeL520 andu051.39.
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Hsmax
andHcoe over different realizations of disorder andL

510. Note that both distributions are quite Gaussian and
for large disorder are split in such a way that the distribut
of Hcoe remains rather sharp while the distribution ofHsmax

broadens. Whether or not the coincidence ofHcoe andHsmax

determines the critical field is a question that cannot be
finitively answered from our results.

IV. DISCUSSION

In this section we compare our results with those cor
sponding to other models and experiments reported in
literature.

In the present RAIM, hysteresis arises from energy ba
ers separating metastable states which have their origin in
effective coupling between spins. This effective coupling
modified by changes in the distribution of anisotropy ax
but even in the absence of disorder,~corresponding to the
zero-temperature standard Ising model! hysteresis occurs. In
magnetism, hysteresis can be interpreted within the fra
work of the Stoner-Wohlfarth model~SWM!.32 This model
gives an essentially different description of hysteresis th
that proposed in this paper. For the SWM, independ
single magnetic domains with continuously orientable m
netic moments are considered. These single domains ca
identified with the spins in the present model. Hysteresis
the SWM, arises from energy barriers originating from t
completion between uniaxial anisotropy and Zeeman ene
Actually, no hysteresis occurs in the SW model in the infin
anisotropy limit.

t

g

a-
en

FIG. 21. Comparison of the dependence of the coercive fi
^Hcoe& and the field for which the largest avalanche occurs^Hsmax

&
as a function of the amount of disorderu0 for model A with L
510, 20, and 30. The inset shows the actual distribution of the
quantities (̂Hcoe& with an empty histogram and̂Hsmax

& with a
lined histogram! for L510 at four values of the amount of disorde
as indicated.
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TABLE II. Experimental values of the critical exponentst andt8.

Material Heat treatments t8 t Observ. Ref.

81%Ni-Fe 1h at 240 °C 1.73 35

1h at 460 °C 2.1

VITROVAC 6025-X 1.77 small internal loops 36
~metal-glass!

Metglass 2605S-2 as cast 1.85 t8 calculated from
scaling relations 37

and other measured
exponents

annealed at 400 °C
and field cooled 2.0

(25 °C/min, 120 Oe!

Perminvar Annealed 1h, 1000 °C
1.33

38
30%Fe 45%Ni 25%Co 24h 450 °C

Fe-Si 7.8 wt% Annealed 950 °C

Fe-Si 6.5 wt% Annealed 1200 °C 1.560.05 Polycrystalline 39

Annealed 1050 °C

Fe21 Co64 B15 Amorphous 39
Fe64 Co21 B15

as cast 1.2760.03
under stress
de
d
.
ri
ig

o
-

re
st
d-
m
o

su
f t
e

-
a
-

d
e

t.
po
n

to
n
r b

-
ered.
od-
se-
ally

m-
mi-
ned

g
o-
rly,
ts,
g to
the

ions
an-
ems
-

es.
sta-
al
lar

eti-
The morphological properties of the hysteresis loops
pend, as expected, on the specific characteristics of the
order. It is interesting to compare the results given in Fig
for coercivity and dissipated energy with available expe
mental results. Experiments carried out on ribbons of h
magnetostrictive amorphous alloys under stress20,21are espe-
cially interesting. They reveal that the applied stress fav
global ~long-range! uniaxial anisotropy which manifests it
self by a change of the magnetic domain pattern.19 Conse-
quently, this leads to a change of the shape of the hyste
loops. At low external stress, a complicated pattern con
tuted by maze domains results from the effect of quenche
stresses. As the external stress is increased, a simpler do
pattern appears with few parallel domains in the direction
the external stress. Therefore, it seems reasonable to as
that the effect of the stress is to reduce the randomness o
local anisotropy axes, or in other words to reduce disord
The main experimental result,21 is that with increasing exter
nal stress,Hcoe initially exhibits a fast decrease down to
certain minimum value, followed by a roughly linear in
crease at high stresses. Actually, this effect is reproduce
our modelB as can be seen in Fig. 5. This could be explain
by taking the competition phenomena arising in thee,0
region for modelB mentioned in Sec. II B into accoun
More quantitative comparisons, nevertheless, are not
sible since the actual anisotropy axis distribution in ribbo
is difficult to compare with our 3d system. As regardsW,
experimentally it is found that it shows a behavior similar
that of Hcoe,20 that is, it exhibits a minimum for a certai
value of the applied stress. This is not reproduced eithe
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our modelsA or B, which show simply a monotonous in
crease when the system becomes more and more ord
This disagreement could be due to the fact that in the m
els, Msat depends on the degree of disorder, as a con
quence of the strong anisotropy assumption. Experiment
this is not the case andMsat is almost constant for a given
sample composition and thus one expects thatW}Hcoe.

As regards the critical point our results are totally co
patible with the universality that has been proposed for si
lar a thermal models. Table I compares the values obtai
in the present work for modelsA andB with those reported
in the literature for the 3d random field Ising model, 3d
random bond Ising model and 3d site-diluted Ising model.
The agreement is very satisfactory confirmin
universality.6,33 Table I also includes the values of the exp
nents corresponding to mean-field calculations. Clea
when considering the full set of all the critical exponen
one concludes that the mean-field model does not belon
the same universality class. This is not surprising since
mean-field approximation assumes long-range interact
while the other models are strictly short-range. The me
field exponent values are expected to be found in syst
including dipolar interactions25. Nevertheless it should be re
marked that the exponentst andt8 seem to have, within the
errors, comparable values for the two universality class
Therefore, the analysis of the models suggests that the
tistical distribution of avalanches shows very close critic
exponents, irrespective of the inclusion or not of the dipo
forces.

It is, perhaps, more interesting to compare such theor
1-12



ec
ke
te
r

ni
n

re
e
th

uc
he
a

a-

he
s i
b
s

ue

e
.
a

le
u
a

t
4
th
th

.

ble
st
d

er

th
f

di
rr
re
le
e

ne
th
th
is
a
2
th

ld
d
an

esis
ve
ve
he
ich
ing

eal-
tic
the
nt
a-
ri-
ans
us
of

n the
lar
t
We
tri-
be

the
evo-
s a

of
cal
int.
alls

en-
tri-
r to
-
ntal
er,
the
that

trol
e

uch
l

ed

HYSTERESIS AND AVALANCHES IN THE RANDOM . . . PHYSICAL REVIEW B63 134431
cal exponents with those found experimentally. The dir
comparison of the numerical values should always be ta
carefully since, in experiments, avalanche sizes are de
mined in different ways depending on the specific measu
ment technique used. Table II summarizes the most sig
cant values of the exponents reported from the experime
study of Barkhausen noise in magnetic systems.35–39 We
have separated thet exponents corresponding to measu
ments of noise around a certain value of the external fi
from the t8 exponents corresponding to the analysis of
signal sequence during the full hysteresis loop~or half loop!.
In both cases, the numerical procedure for obtaining s
experimental exponents is similar to that followed for t
analysis of the model simulations; it is based on fitting
expression like Eq.~12! to the recorded histograms of av
lanche sizes.

A first remark is that the overall situation concerning t
possibility for universality in experiments is not as clear a
is for the theoretical models. In our opinion the main pro
lem is to determine whether the analyzed data correspond
a critical system or not. A second remark is that the val
reported in Table II seem to show a certain dependence
heat treatments and other effects influencing the degre
quenched disorder in the system. For instance, in Refs
and 37 it is found that thet8 exponent increases towards
value close to 2.0 when the degree of order in the samp
increased by annealing and/or magnetic field cooling. F
thermore the distribution of avalanche sizes in Fe-Co-B
loys @characterized by an exponentt51.27 ~Ref. 39!# were
found to change from subcritical towards critical~the cutoff,
equivalent to ourl21, increases! when the applied tensile
stress is increased.21 In agreement with these results, thet8
exponents in our simulations show a clear increase when
degree of disorder is decreased as can be seen in Figs. 1
15. Moreover, our results also suggest that provided that
measurements are performed in the subcritical region,
estimated value oft8 will remain close to the critical value
This could explain why the values oft8 in Table II are quite
similar to those found for the models. Actually, the possi
existence of a large critical region has also been sugge
for the RFIM ~Ref. 6! and for the site diluted random fiel
Ising model~RFIM with vacancies!.9 For this last model it
has even been proposed that true criticality extends ov
broad region of parameters controlling disorder.

A third remark concerns certain procedures used for
estimation oft andt8. For instance, for the determination o
t8, in some cases saturation is not reached in the stu
hysteresis loops. This means that the distributions co
spond, in fact, to an internal loop. True saturation requi
very high fields which can be not experimentally accessib
At present, it is not clear what the consequences on the m
suredt8 exponent will be. For the determination oft, the
experiments are carried out with an external field constrai
around the coercive field. Our simulations suggest that
may introduce a bias in the estimated exponents. First, if
amount of disorder is greater than the critical amount of d
order, the field at which the largest avalanche takes place
the coercive field do not coincide, as can be seen in Fig.
Moreover, even in the case that the disorder is close to
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critical value, a deviation in the tuning of the external fie
would lead to lower values oft compared to those expecte
at H5Hc, as can be seen in Fig. 20. This may provide
explanation for some of the low values oft reported
recently.39

V. SUMMARY AND CONCLUSION

In this paper we have studied rate-independent hyster
properties of a Random Anisotropy reticular model. We ha
considered the infinite uniaxial anisotropy limit and we ha
neglected any effects of dipolar interactions. In this limit t
model reduces to the random anisotropy Ising model wh
can be viewed as a combination of a Random Bond Is
model with random couplings (g factors! to the external
magnetic field. This model seems rather appropriate to r
istically describe amorphous and polycrystalline magne
materials. Disorder is introduced in the system through
spatial random distribution of anisotropy axis. Two differe
distributions, in which disorder is controlled by a single p
rameter (u0 ande), have been considered. Extensive nume
cal simulations of the model have been performed by me
of a deterministic algorithm consisting in of synchrono
local relaxation dynamics. The morphological properties
the hysteresis loops have been obtained. They depend o
specific distribution of disorder but do not show any singu
behavior whenu0 or e are varied. Qualitative agreemen
with some available experimental data has been found.
expect that by choosing a suitable phenomenological dis
bution of disorder such morphological properties could
better reproduced.

Besides, we have focused on the analysis of
Barkhausen avalanches generated during the metastable
lution. The statistical distribution of such avalanches show
critical behavior for a certain amount of disorder (u0

c.1.33
60.03 andec;0.2). From a finite-size scaling analysis
different simulated properties we have obtained the criti
exponents characterizing the disorder-induced critical po
The most important conclusion is that the present model f
in the same universality class of the athermal 3d RFIM.

We have also analyzed the different available experim
tal values of such critical exponents characterizing the dis
bution of Barkhausen signals. Data is scarce and refe
different exponents (t andt8). Although there are some dis
crepancies, the comparison indicates that the experime
systems may fall into the same universality class. Howev
results suggest that it is necessary to tune the disorder in
systems with adequate thermomechanical treatments so
the system behaves critically. Although a systematic con
of the amount of disorder is experimentally difficult, th
analysis of our model indicates the best conditions for s
measurements and data analysis;~i! disregarding additiona
experimental problems,40 it is more reliable to measuret8
~full hysteresis loop analysis! instead oft in order to avoid
problems related to the determination of the critical fieldHc ;
~ii ! although the samples exhibit an exponentially damp
1-13
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power-law distribution~subcritical!, the t8 exponents ob-
tained by fitting Eq.~12! render good estimations of the e
ponents at criticality. Therefore, measurements in the s
critical region are preferable to measurements in
supercritical region.
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