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Finite-size scaling analysis of the avalanches in the three-dimensional Gaussian random-field Isin
model with metastable dynamics

F. J. Pe´rez-Reche* and Eduard Vives†
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08028 Barcelona, Catalonia, Spain
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A numerical study is presented of the third-dimensional Gaussian random-field Ising model atT50 driven
by an external field. Standard synchronous relaxation dynamics is employed to obtain the magnetization versus
field hysteresis loops. The focus is on the analysis of the number and size distribution of the magnetization
avalanches. They are classified as being nonspanning, one-dimensional-spanning, two-dimensional-spanning,
or three-dimensional-spanning depending on whether or not they span the whole lattice in different space
directions. Moreover, finite-size scaling analysis enables identification of two different types of nonspanning
avalanches~critical and noncritical! and two different types of three-dimensional-spanning avalanches~critical
and subcritical!, whose numbers increase withL as a power law with different exponents. We conclude by
giving a scenario for avalanche behavior in the thermodynamic limit.

DOI: 10.1103/PhysRevB.67.134421 PACS number~s!: 75.60.Ej, 05.70.Jk, 75.40.Mg, 75.50.Lk
is
g
e

em
ys
t
d
u
th
e
a
n

tio
e

rs
s

m

e
si

n
-
t

io
b

-
b

no

t

arge

-
pro-

r-

:

er-

ent

the
still

he
the
-

ion
ous.
ical
za-
ng
nd
the
e
va-
n-

icu-
I. INTRODUCTION

Systems with first-order phase transitions exhibit a d
continuous change of their properties when driven throu
the transition point. Sometimes, due to the existence of
ergy barriers larger than thermal fluctuations, such syst
evolve following a path of metastable states and exhibit h
teresis. Metastable phenomena develop more often in
case of systems at low temperature and with quenched
order. In many cases the first-order phase transition occ
instead of at a certain transition point, in a broad range of
driving parameter, and the discontinuity is split into a s
quence of jumps or avalanches between metastable st
Moreover, under certain conditions such avalanches do
show any characteristic spatial or time scale: the distribu
of their size and duration becomes a power law. This fram
work, which has sometimes been called fluctuationless fi
order phase transitions,1,2 is one of the basic mechanism
responsible for power laws in nature.3 Experimental ex-
amples have been found in a broad set of physical syste
magnetic transitions,4 adsorption,5 superconductivity,6 mar-
tensitic transformations,7 etc.

A paradigmatic model for such fluctuationless first-ord
phase transitions in disordered systems is the Gaus
random-field Ising model~GRFIM! at T50 driven by an
external fieldH. The amount of quenched disorder is co
trolled by the standard deviations of the Gaussian distribu
tion of independent random fields acting on each spin. Me
stable evolution is obtained with appropriate local relaxat
dynamics, which assumes a separation of time scales
tween the driving field ratedH/dt and the avalanche dura
tion. The response of the system to the driving field can
followed by measuring the total magnetizationm(H). The
response exhibits the above-mentioned metastable phe
ena: hysteresis and avalanches.

Since the model was introduced some years ago,8,9 differ-
ent studies~numerical and analytical! have been carried ou
in order to characterize the hysteresis loopsm(H) and the
0163-1829/2003/67~13!/134421~16!/$20.00 67 1344
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magnetization avalanches.10–15Two of the most well-studied
properties are the number of avalanchesN(s) and the distri-
bution D(s;s) of avalanche sizess along half a hysteresis
loop. For large amounts of disorder (s.sc) the loops look
smooth and continuous. They consist of a sequence of a l
number of tiny avalanches whose size distributionD(s;s
.sc) decays exponentially withs. On the other hand, for
small amounts of disorder (s,sc), besides a certain num
ber of small avalanches, one or several large avalanches
duce a discontinuityDm in the hysteresis loop. For an inte
mediate critical valuesc the distribution D(s,sc) of
avalanche sizess can be approximated by a power law
D(s;sc);s2t.

Many of the properties of the GRFIM have been und
stood by assuming the existence of aT50 critical point
(sc ,Hc) on the metastable phase diagram. The more rec
estimation13 renders sc52.1660.03 and Hc51.435
60.004. Although partial agreement on the values of
critical exponents has been reached, other features are
controversial.

One of the fundamental problems is the definition of t
order parameter. From a thermodynamic point of view
discontinuity of the hysteresis loopDm seems to be an ap
propriate order parameter ifDm.0 for s,sc and Dm50
for s.sc . Nevertheless, in theT50 numerical simulations,
due to the finite size of the system and for a given realizat
of disorder, all the magnetization changes are discontinu
Note that this does not occur for standard thermal numer
simulations in which, due to thermal averaging, magneti
tion is continuous for finite systems. Only finite-size scali
analysis will reveal which are the large avalanches a
whether or not avalanches become vanishingly small in
thermodynamic limit. It is thus very important to study th
properties of the ‘‘spanning’’ avalanches. These are a
lanches that, for a finite system with periodic boundary co
ditions, cross the system from one side to another. In part
lar it would be interesting to measure the numberNs(s) of
spanning avalanches and their size distributionDs(s;s).
©2003 The American Physical Society21-1
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A second unsolved question, related to the previous o
is the spatial structure of the avalanches. It has been
gested that they are not compact.10,16 A fractal dimension
(df51/0.34,3) has been estimated from the avalanche s
distribution.11 It would be interesting to understand how su
a fractal behavior may, in the thermodynamic limit, repres
a magnetization discontinuity.

A third problem is the definition of the scaling variables
order to characterize the critical properties close to the c
cal point (sc ,Hc). When focusing on the study of avalanch
properties, it should be pointed out that the scaling anal
is performed by using quantities@N(s) and D(s,s)] mea-
sured recording all the avalanches along half a hyster
loop. The measurement of nonintegrated distributions,
around a certain value ofH, will require large amounts com
puting effort in order to reach good statistics for lar
enough systems. Therefore, the dependence on the fieldH is
integrated out and the distance to the critical pointsc is
measured by a single scaling variableu(s). Although in
pioneering papers8,9 the most usual scaling variableu15(s
2sc)/sc was used in order to scale the avalanche size
tribution, forthcoming studies10,11,13changed the definition to
u35(s2sc)/s. Apparently both definitions are equiva
lently close to the critical point, but it can be checked that
‘‘phenomenological’’ scaling of the distributionsD(s;s) us-
ing u3 ~with u3.0.04) as suggested in the inset of Fig. 1
Ref. 10 is not possible when usingu1.

Finite-size scaling analysis has been carried out13,16 for
the number of spanning avalanchesNs(s;L). Nevertheless,
such finite-size scaling has neither been presented for
avalanche size distributionsD(s;s,L) nor for the number of
nonspanning avalanchesNns(s;L). Most of the studies10,13

have proposed collapses by neglecting the fact that simul
systems are finite. There is an exception12,17 for which the
scaling of the avalanche distributions withL has been stud
ied. In this case, nevertheless, the dependence on the dis
to the critical point has been neglected, and conseque
parameter-dependent exponents have been obtained. In
opinion, scaling of the avalanche distribution must be stud
on a two-dimensional plane, including a scaling variable t
accounts for the finite-sizeL and another that accounts fo
the distance to the critical point.

Previous studies have provided simulations of very la
system sizes~up toL51000).14 This has been advantageo
for the study of self-averaging quantities. Nevertheless,
properties of the spanning avalanches are non-self-avera
This is because, as will be shown, the number of spann
avalanches per loop does not grow asL3. This means that, in
order to obtain better accuracy, it is more important to p
form averages over different disorder configurations~which
will be indicated by^•&) than to simulate very large syste
sizes.

In this paper we present intensive numerical studies of
metastable three-dimensional~3D! GRFIM and focus on
analysis of the spanning avalanches. In Sec. II the model
definition of a spanning avalanche and the details of the
merical simulations are presented. In Sec. III raw numer
results are given. In Sec. IV some of the renormalizat
group~RG! ideas will be reviewed, which will be taken int
13442
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account for the analysis of the critical point. A finite-siz
scaling analysis of the avalanche numbers is presente
Sec. V. The same analysis for size distributions and thek
moments are presented in Secs. VI and VII, respectiv
Section VIII presents a discussion on the behavior of m
netization. A discussion of the results in relation to previo
works is presented in Sec. IX. Finally in Sec. X a full sum-
mary and conclusions are given.

II. MODEL

The 3D GRFIM is defined on a cubic lattice of sizeL
3L3L. On each lattice site (i 51, . . . ,L3) there is a spin
variableSi taking values61. The Hamiltonian is:

H52(
i , j

NN

SiSj2(
i 51

L3

hiSi2H(
i 51

L3

Si , ~1!

where the first sum extends over all nearest-neighbor~NN!
pairs, H is the external applied field, andhi are quenched
random fields, which are independent and are distributed
cording to a Gaussian probability density

dP~hi !5
1

A2ps
e2hi

2/2s2
dhi , ~2!

where the standard deviations is the parameter that control
the amount of disorder in the system. Note that^hi&50 and
^hi

2&5s2.
The system is driven atT50 by the external fieldH. For

H51` the state of the system that minimizesH is the state

with maximum magnetizationm5( i 51
L3

Si /L351. When the
external fieldH is decreased, the system evolves followi
local relaxation dynamics. The spins flip according to t
sign of the local field,

hi1H1(
j 51

6

Sj , ~3!

where the sum extends over the six nearest-neighbo
spins ofsi . Avalanches occur when a spin flip changes t
sign of the local field of some of the neighbors. This m
start a sequence of spin flips that occur at a fixed value of
external fieldH, until a new stable situation is reached.H is
then decreased again. This ‘‘adiabatic’’ evolution corr
sponds to the limit for which avalanches are much faster t
the decreasing field rate. Note that, once the local rand
fields are fixed, the metastable evolution is completely de
ministic, no inverse avalanches may occur, and the hyster
loops exhibit the return point memory property.8

The size of the avalanches corresponds to the number o
spins flipped until a new stable situation is reached. Note
the corresponding magnetization change isDm52s/L3.

For a certain realization of the random fields, correspo
ing to a given value ofs, we have recorded the sequence
avalanche sizes during half a hysteresis loop, i.e., decrea
H from 1` to 2`. The two main quantities~see Table I!
that are measured after averaging over different realizat
1-2
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of disorder are the total number of avalanches per lo
N(s,L) and the distribution of avalanche sizesD(s;s,L),
normalized so that

(
s51

L3

D~s;s,L !51. ~4!

Note that given this normalization condition and the fact t
s is a natural number, thenD(s;s,L)<1.

The numerical algorithm we have used is the so-ca
brute force algorithm propagating one avalanche at a tim14

We have studied system sizes ranging fromL55 (L3

5125) to L548 (L35110 592). The measured properti
are always averaged over a large number of realization
the random-field configuration for each value ofs. Typical
averages are performed over a number of configurations
ranges between 105 for L<16 and 2000 forL548.

We have used periodic boundary conditions: the num
cal simulations correspond, in fact, to a periodic infinite s
tem. Therefore, strictly speaking, all avalanches are infin
Nevertheless, we need to identify which avalanches will
come important in the thermodynamic limit. The definitio
that best matches this idea is the concept of spanning
lanches: those avalanches that, at least in one of thex, y, or z
directions, extend over the lengthL. This definition is very
easy to implement numerically in the brute force algorith
Spanning avalanches are detected by using three (x,y,z)

TABLE I. Notation of the studied quantities in this work. All th
quantities refer to the analysis of half a hysteresis loop and
obtained after averaging over many different realizations of dis
der.

Averaged number Notation

Avalanches N(s,L)
Spanning avalanches Ns(s,L)
Nonspanning avalanches Nns(s,L)
Critical nonspanning avalanches Nnsc(s,L)
Noncritical nonspanning avalanches Nns0(s,L)
1D-spanning avalanches N1(s,L)
2D-spanning avalanches N2(s,L)
3D-spanning avalanches N3(s,L)
Critical 3D-spanning avalanches N3c(s,L)
Subcritical 3D-spanning avalanches N32(s,L)

Normalized size distribution Notation

Avalanches D(s;s,L)
Spanning avalanches Ds(s;s,L)
Nonspanning avalanches Dns(s;s,L)
Critical nonspanning avalanches Dnsc(s;s,L)
Noncritical nonspanning avalanches Dns0(s;s,L)
1D-spanning avalanches D1(s;s,L)
2D-spanning avalanches D2(s;s,L)
3D-spanning avalanches D3(s;s,L)
Critical 3D-spanning avalanches D3c(s;s,L)
Subcritical 3D-spanning avalanches D32(s;s,L)
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mask vectors of sizeL whose elements are set to 0 at t
beginning of each avalanche. During the evolution of t
avalanche the mask vectors record the shade of the flip
spins along the three perpendicular directions~by changing
the 0’s to 1’s!. When the avalanche finishes, it can be clas
fied as being nonspanning, 1D-spanning, 2D-spanning
3D-spanning, depending on the number of such mask vec
that have been totally converted to 1. The number and
distribution of 1D-, 2D-, and 3D-spanning avalanches
also studied and averaged over different realizations of
order. Table I shows the definitions of avalanche numb
and distributions that will be used throughout the paper.
Table II a list of mathematical relations between the a
lanche numbers and distributions is given. We will use
subscripta to indicate any of the avalanche numbers or d
tributions in Table I.

It should be mentioned that, although the definition
spanning avalanches used in this paper is equivalent to
definition in previous works,13,14,16 the average number o
spanning avalanchesNs , in some cases, does not coincid
with the previous estimations. We guess that the reaso
because, in previous works, the method used to count s
ning avalanches was averaging twice the 2D-spanning a
lanches and was averaging three times the 3D-spanning
lanches. Therefore, in order to compare, for instance, w
Ref. 13, one should take into account that their number
spanning avalanchesN is not equal to the presentNs but
satisfiesN5(N112N213N3)/3. Moreover, we should poin
out the following remark before presenting the data. As
consequence of the numerical analysis, several ‘‘kinds’’
avalanches will be identified~see Table I!. Such a separation
in different kinds will, in some cases, be justified by th
measurement of different physical properties~such as
whether the avalanche spans the lattice or not! but, in other
cases, will be ana priori phenomenological hypothesis t
reach a good description of the data. Although some auth
will prefer to identify such new ‘‘kinds’’ of avalanches a
‘‘corrections to scaling,’’ it will turn out that after the finite
size scaling analysis we will be able to identify which diffe
ent physical properties characterize each kind of avalanc

re
r-

TABLE II. Main mathematical relationships among the quan
ties defined in Table I. The dependence ons, L, and s has been
suppressed in order to clarify the table. The subscripta stands for
all the possible subindices in Table I.

Closure relations N5Ns1Nns

Nns5Nnsc1Nns0

Ns5N11N21N3

N35N3c1N32

Normalization condition

(
s51

L3

Da~s;s,L!51

Distribution relations ND5NsDs1NnsDns

NnsDns5NnscDnsc1Nns0Dns0

NsDs5N1D11N2D21N3D3

N3D35N3cD3c1N32D32
1-3
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III. NUMERICAL RESULTS

Figure 1 shows an example of the distribution of av
lanchesD(s;s,L) on a log-log scale for three values ofs
corresponding to a system with sizeL524. The qualitative
behavior ofD(s;s,L) is that already described in the Intro
duction: Whens is decreased, the distribution changes fro
being approximately exponentially damped (s.sc) to a dis-
tribution exhibiting a peak for large values ofs (s,sc).
Therefore, one can suggest that at the critical valuesc the
distribution exhibits power-law behavior. Nevertheless, it
also evident from Fig. 1 that the finite size of the syste
masks this excessively simplistic description. Only after c
venient finite-size scaling analysis shall we discover wh
features remain in the thermodynamic limit.

The peak occurring fors,sc is basically caused by th
existence of spanning avalanches. This is shown in Fig
where the peak inD(s;s,L) @Fig. 2~a!# is compared with the
two contributionsDns(s;s,L) andDs(s;s,L) @Fig. 2~b!#.

As can be seen, the distribution of spanning avalanc
Ds(s;s,L) is far from simple. It exhibits a multipeak struc
ture caused by the contributions fromD1(s;s,L),
D2(s;s,L), and D3(s;s,L) shown in Fig. 2~c!. Moreover,
D3(s;s,L) itself also exhibits two peaks, suggesting that t
3D-spanning avalanches may be of two different kinds.
shall denote critical 3D-spanning avalanches~indicated by
the subscript 3c) as those corresponding to the peak on
left and subcritical 3D-spanning avalanches~indicated by the
subscript 32) as those corresponding to the peak on
right. As will be explained below, the 1D-spanning av
lanches, the 2D-spanning avalanches, and the critical

FIG. 1. Avalanche size distribution corresponding to~a! s
51.7, ~b! s52.21, and~c! s52.6. Data have been obtained fro
a system with sizeL524 after averaging over 105 realizations of
the disorder.
13442
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spanning avalanches do not exist in the thermodynamic l
except whens5sc . This is the reason for having chosen th
word ‘‘critical’’ for this kind of 3D-spanning avalanche. I
will also be shown that, in the thermodynamic limit, subcri
cal 3D-spanning avalanches only exist fors<sc . As re-

FIG. 2. Analysis of the different contributions toD(s;s,L) for
s52.317 andL516. Data correspond to an average of 23105

realizations.~a! Full distribution; ~b! distribution of spanning ava-
lanchesDs(s;s,L) and nonspanning avalanchesDns(s;s,L); ~c!
distributionsD1(s;s,L), D2(s;s,L), andD3(s;s,L).

FIG. 3. Analysis of the dependence ofD1(s;s,L) ~top!,
D2(s;s,L) ~middle!, andD3(s;s,L) ~bottom! with s. Data corre-
spond to averages of 23105 realizations of aL510 system with~a!
s51.9, ~b! s52.2, ~c! s52.5, and~d! s52.8.
1-4
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gards the nonspanning avalanches, they will also be cla
fied into two types at the end of this section, although t
separation cannot be deduced from the behavior in Fig. 2~b!.

Figure 3 shows the evolution ofD1(s;s,L), D2(s;s,L),
andD3(s;s,L) whens is increased. Note that the right-han
peak ofD3(s;s,L) shifts to smaller values ofs and becomes
flat, indicating that the mean size of these subcritical 3
spanning avalanches decreases. Moreover, abovesc @Fig.
3~d!# this right-hand peak disappears and a peak on the
emerges. Besides the normalized distributions, it is also
teresting to analyze the actual average numbers of span
avalanchesN1(s,L), N2(s,L), and N3(s,L), which also
exhibit singular behavior atsc as shown in Fig. 4.

From the direct extrapolation of the data corresponding
different system sizes toL→`, we can make the following
assumptions: In the thermodynamic limitN1(s) andN2(s)
will display a d-function discontinuity atsc . N3(s) will
display steplike behavior: fors,sc there is only one 3D-
spanning avalanche, fors.sc there are no 3D-spannin
avalanches, and ats5sc the data supports the assumpti
that N3 will also display ad-function singularity at the edge
of the step function. This reinforces the suggestion that th
are two different types of 3D-spanning avalanches: As w
be shown, in the thermodynamic limit, the number of su
critical 3D-spanning avalanchesN32 behaves as a step func
tion, whereas the number of critical avalanchesN3c exhibits
divergence atsc .

The total number of spanning avalanchesNs(s,L) and
nonspanning avalanchesNns(s,L), are displayed in Figs
5~a! and 5~b!, respectively.Ns(s,L) shows, as a result of th
divergence ofN3c , N1, andN2, a d-function singularity at
sc whenL→`, suggesting that the critical point is chara

FIG. 4. The number of spanning avalanches in~a! one dimen-
sion, ~b! two dimensions, and~c! three dimensions as a function o
s. The different curves correspond toL55, 8, 10, 12, 16, 24, 32
and 48 as indicated by the legend. Lines are a guide to the ey
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terized by the existence of̀ spanning avalanches. We wou
like to point out that previous studies have not clarified t
result for the 3D GRFIM.13

The analysis ofNns is more intricate. Figure 5~b! shows
that Nns(s,L) grows with s and L. For large amounts of
disorder (s→`) one expects that the hysteresis loop co
sists of a sequence of nonspanning avalanches of siz
Therefore, their number will equalL3. To reveal this behav-
ior Fig. 6 shows the dependence ofNns(s,L)/L3 as a func-

FIG. 5. ~a! Total number of spanning avalanchesNs(s,L) and
~b! nonspanning avalanches as a function ofs for different system
sizesL as indicated by the legend. Lines are a guide to the eye

FIG. 6. Number of nonspanning avalanchesNns(s,L) divided
by L3 as a function ofs and different system sizes, as indicated
the legend. The inset shows the behavior of the same quantity
function ofL for different values ofs. The dashed line indicates th
valueNns/L

350.028 and the continuous line is a fit of the behav
proposed in Eq.~26!.
1-5
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tion of s. One expects that these lines tend to 1 whens
→`. Moreover, a closer look reveals that atsc.2.21, there
is a contribution toNns(s,L)/L3 which decreases with sys
tem size. For low values ofs one expects that nonspannin
avalanches always exist, except ats50. This last statemen
can easily be understood by noticing that an approxim
lower bound to the number of nonspanning avalanches
be computed by analyzing how many of the spinsSi will flip
by themselves, independently of their neighbors, due to
fact that the local fieldhi is either larger than 6 or smalle
than 26. This analysis rendersNns/L

3.Ferr(6/s) where
Ferr is the error function.

From these considerations, we expect that forL→` the
curves in Fig. 6 tend to a certain limiting behavior whic
increases smoothly from 0 to 1. This can also be appreci
in the inset in Fig. 6, which shows the behavior
Nns(s,L)/L3 as a function ofL for four different values of
the amount of disorder:s51.7, s52.21.sc , s52.5, and
s52.7. The four curves exhibit a tendency to extrapolate
a plateau whenL→`. For the case ofs.sc an estimation
of the extrapolated value isNns(sc ,L)/L3→0.028.

Consequently, it is necessary to consider the existenc
at least two kinds of nonspanning avalanches. Those wh
numberNns0 increases asL3 will be denoted as noncritica
nonspanning avalanches~with the subscript ns0!, and those
whose numberNnsc increases withL with a smaller exponen
will be called critical nonspanning avalanches~with the sub-
script nsc). In fact, a log-log plot ofNns(sc ,L)/L320.028
versus L provides an estimation for this expone
Nnsc(sc ,L);0.085L2.02.

All the assumptions that have been presented, corresp
ing to behavior in the thermodynamic limit, will be con
firmed by the finite-size scaling analysis presented in
following sections.

IV. RENORMALIZATION GROUP AND SCALING
VARIABLES

The basic hypothesis for the analysis of the above res
using RG techniques is the existence of a fixed point in
multidimensional space of Hamiltonian parameters. T
fixed point sits on a critical surface which extends along
the irrelevant directions. By changing the two tunable para
eters s and H, the critical surface can be crossed at t
critical point (sc ,Hc). As has been explained in the Intro
duction concerning the analysis of the avalanche number
size distributions, the dependence along the external fi
direction H has been integrated out. One expects that s
integration may distort some of the exponents and the sh
of scaling functions, but not the possibility of an RG ana
sis. This is because the integration range crosses the cr
surface where the divergences occur.

For aL→` system we assume a unique scaling varia
u(s) which measures the distance tosc . The dependence o
u on s should be smooth, but its proper form is unknown18

We will discuss three different possibilities:
~1! The standard choice is to use a dimensionless

approximation by expandingu(s) as
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u15
s2sc

sc
. ~5!

Nevertheless, in general, the correct scaling variables m
have a different dependence ons. For instance, this may be
due to the existence of other relevant parameters, such a
external field, which has been integrated out.

~2! A second choice is to extend the expansion ofu(s) to
second order by including a fitting amplitudeA:

u25
s2sc

sc
1AS s2sc

sc
D 2

. ~6!

~3! A third choice, which has been used in previous ana
ses and may be ‘‘phenomenologically’’ justified, is

u35
s2sc

s
. ~7!

Note that the Taylor expansion of this function is

u35
s2sc

sc
2S s2sc

sc
D 2

1S s2sc

sc
D 3

1•••. ~8!

Figure 7 shows the behavior of the three scaling variab
u1(s), u2(s), andu3(s). For the representation ofu2 we
have chosenA520.2, which is the result that we will fit in
the following sections. The three choices are equivalen
close enough to the critical point. Nevertheless, the am
tude of the critical zone, where the scaling relations are va
may be quite different. SinceA,0, the variableu2 cannot
be used fors@sc since u2(s) shows a maximum ats
57.73553.5sc . A similar problem occurs withu3 since,
due to its asymptotic behavior (u3→1 for s→`), systems
with a large value ofs cannot be distinguished one from
another.

For the finite system, the magnitudes presented in Tab
depend ons, L, and, in the case of the size distributions,
s. In order to identify the scaling variables, let us conside
renormalization step of a factorb close to the critical
point19,20 such that lengths behave as

Lb5b21L. ~9!

FIG. 7. Comparison of the behavior of the three choices for
scaling variableu, discussed in the text. We have usedsc52.21.
1-6
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~The variables with theb subscript correspond to the reno
malized system.! We expect that after rescaling the variab
u, measuring the distance betweens andsc changes as

ub5b1/nu, ~10!

which is the standard definition of the exponentn, which
characterizes the divergence of the correlation length w
s→sc . Under the same renormalization step we assu
that

sb5b2das. ~11!

This latter equation introduces an exponentda ~which has
been called 1/ns by other authors8! and can be interpreted a
the fractal dimension of the avalanches. As mentioned in
preceding section, we expect to find different types of a
lanches. As will be shown numerically from the scaling plo
in the following sections, it is possible to assume that
different types of avalanches behave with the same fra
dimensionda5df , except for subcritical 3D-spanning ava
lanches~for which d32Þdf) and noncritical nonspannin
avalanches.

Close to the critical point the system exhibits invarian
under rescaling. Therefore, in order to propose a scaling
pothesis of the numbers of avalanchesNa and the avalanche
size distributionsDa , it is important to construct combina
tions of the variablesu, L, and s, which remain invariant
after renormalization. We find

Lb
1/nub5L1/nu, ~12!

Lb
2dasb5L2das, ~13!

sb
1/ndaub5s1/ndau. ~14!

Note that these three invariant quantities are not indepen
since Eq.~12! corresponds to Eq.~14! multiplied by Eq.~13!
to the power of21/nda .

V. SCALING OF THE NUMBERS OF AVALANCHES
Na„s,L …

The discussion in the preceding section enables us to
pose the following scaling hypothesis:

Na~s,L !5LuaÑa~uL1/n!. ~15!

The exponentua characterizes the divergence of the av
lanche numbers at the critical point whenL→`. Note that
this definition of ua ~which is the same used in previou
works13! is not consistent with the standard finite-size scal
criterion for which the magnitudes grow with exponents
vided byn.19–21

As will be shown, the behavior of the number of 1D
spanning avalanches, 2D-spanning avalanches, and cr
3D-spanning avalanches can be described with the s
value ofu15u25u3c5u, so that

N1~s,L !5LuÑ1~uL1/n!, ~16!
13442
n
e

e
-

e
al

y-

nt

o-

-

g
-

cal
e

N2~s,L !5LuÑ2~uL1/n!, ~17!

N3c~s,L !5LuÑ3c~uL1/n!. ~18!

We have tried, without success, to scale the number of c
cal nonspanning avalanches with the same exponentu. We
therefore need to define a different exponentunsc , so that

Nnsc~s,L !5LunscÑnsc~uL1/n!. ~19!

As regards the number ofN32 avalanches, which is differen
from zero away from the critical point in the thermodynam
limit, we propose a scaling hypothesis that is compati
with the limiting behavior ats50 ands5`. This leads us
to the following assumption:

N32~s,L !5Ñ32~uL1/n!, ~20!

since in the absence of disorder we expect that the hyste
loop displays a single avalanche of sizeL3, and, conse-
quently, the number of avalanches must beN3251, inde-
pendent of the value ofL.

As regardsNns0 it has already been discussed that su
avalanches will exist in the thermodynamic limit for all va
ues ofs. Moreover, they are probably not related to critic
phenomena atsc . For this reason we propose the followin
non-critical dependence:

Nns0~s,L !5L3Ñns0~s!. ~21!

In particular, as already mentioned, for large values of dis
der (s→1`) these avalanches will be of sizes51, and
their number will beNns0(`)5L3.

It should also be mentioned that the scaling equations~15!
admit alternate expressions by extracting the variableuL21/n

with the appropriate power so that it cancels out the dep
dence onL:

Na~s,L !5uuu2nuaÑ̃a~uL1/n!. ~22!

Nevertheless, such expressions are not very useful for
scaling analysis close tosc since they will display a large
statistical error due to the fact thatu→0 whens→sc .

Figures 8 and 9 show the best collapses correspondin
Eqs. ~16! and ~17! with the three different choices for th
variable u, explained in Sec. IV. Data corresponding toL
55, 8, 10, 12, 16, 24, 32, and 48 have been used.
quality of the collapses close tosc is quite good in the three
cases. The values of the free parameters that optimize
collapse are indicated on the plots. By visual comparison
can see thatu2 is the best choice since it allows the small
sizes to collapse, too. Of course, this is because the colla
in this case have an extra free parameterA. As regards the
quality of the overlaps, no remarkable differences are
served between the choicesu1 andu3. In the following col-
lapses we will useu2 with A520.2. Thus, the best estima
tions of the free parameters aresc52.2160.02, n51.2
60.1, andu50.1060.02.

The procedure for improving the collapse of the data c
responding to different system sizes, which will be us
many times throughout this paper, renders what we will c
1-7
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‘‘the best values’’ of the free parameters. Error bars repres
the estimated range of values for which the collapses
satisfactory. We would like to note that the obtained value
sc ~for the three choices of the variableu) is slightly higher
than the valuesc52.1660.03 proposed in Ref. 13.

It is interesting to note that the scaling functionsÑ1 and
Ñ2 can be very well approximated with Gaussian functio
The fits, shown in Figs. 8~b! and 9~b!, have three free param
eters: the amplitudea, the peak positionx, and the widthw.
The best numerical estimations area150.94660.004, x1
52.69160.008, w151.29360.008, a250.49760.002, x2
52.22760.007, andw251.08660.007.

From the fact that the scaling functions in Figs. 8~b! and
9~b! are bounded and go exponentially to zero foru2L21/n

→6` ~as can also be checked from a log-linear plot! one
can deduce that, in the thermodynamic limit, 1D-spann

FIG. 8. ~a! Scaling plot of the number of 1D-spanning av
lanches according to Eq.~16! usingu1 as the scaling variable. The
values of the free parameters for the best collapses are indicate
the legend. Symbols correspond to the sizes indicated in the leg
of Fig. 4. ~b! Same plot, but using the scaling variableu2. Note that
in this case there is an extra free parameter.~c! Same plot but using
u3. The continuous line in~b! shows a fit of a Gaussian function.
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avalanches and 2D-spanning avalanches only exist as
5sc . Their numbers increase asL0.10 with amplitudes
Ñ1(0)50.1260.01 andÑ2(0)50.0760.01. Moreover, the
peaks of the scaling functionsÑ1 and Ñ2 that are displaced
from u250 account for the fact that for a finite system th
maximum number of 1D- and 2D-spanning avalanches
curs for a certainsc(L) which shifts towardssc from above.

As regards the 3D-spanning avalanches, according to
previous discussions one must consider the contributi
from N3c andN32 . From the scaling assumptions~18! and
~20! and the last closure relation in Table II one can write

N3~s,L !5LuÑ3c~uL1/n!1Ñ32~uL1/n!. ~23!

This equation indicates thatN3(s,L) cannot be collapsed in
a straightforward way. We propose here a method to sepa

by
nd

FIG. 9. ~a! Scaling plot of the number of 2D-spanning ava
lanches according to Eq.~17! usingu1 as the scaling variable. The
values of the free parameters for the best collapses are indicate
the legend. Symbols correspond to the sizes indicated in the leg
of Fig. 4. ~b! Same plot, but using the scaling variableu2. Note that
in this case there is an extra free parameter.~c! Same plot but using
u3. The continuous line in~b! shows a fit of a Gaussian function.
1-8
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FINITE-SIZE SCALING ANALYSIS OF THE . . . PHYSICAL REVIEW B 67, 134421 ~2003!
the two contributions in Eq.~23!. This method, which we
will call double finite-size scaling~DFSS!, will be used sev-
eral times throughout the paper for the analysis of sim
equations. By choosing two systems with sizesL1 and L2

and amounts of disorderss1 and s2 so that u(s1)L1
1/n

5u(s2)L2
1/n , one can write

Ñ32„u~s1!L1
1/n
…5Ñ32„u~s2!L2

1/n
…

5
L1

2uN3~s1 ,L1!2L2
2uN3~s2 ,L2!

L1
2u2L2

2u
,

~24!

Ñ3c„u~s1!L1
1/n
…5Ñ3c„u~s2!L2

1/n
…

5
N3~s1 ,L1!2N3~s2 ,L2!

L1
u2L2

u
. ~25!

Thus, we can check for the collapse of data correspondin
different pairs of (L1 ,L2). From the numerical point of view
the DFSS method works quite well. An analysis of err
propagation reveals that the scaling function correspond
to the contribution with a smaller exponent will display mo
statistical errors.

Figure 10 shows the results of the DFSS analysis ofN3

FIG. 10. ~a! Numerical estimation ofÑ32(u2L1/n) and ~b! of

Ñ3c(u2L1/n). Data have been obtained according to Eqs.~24! and
~25!. Symbols, according to the legend, indicate the values ofL1

andL2 used for obtaining each data set. The continuous line in~b!
is a fit of a Gaussian function.
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according to Eq.~23!. The different symbols, in this case
indicate the values ofL1 and L2 used for each set of data

Figure 10~a! corresponds toÑ32(u2L1/n) and Fig. 10~b! cor-
responds toÑ3c(u2L1/n). It should be emphasised that suc
collapses are obtained without any free parameter. The
ues ofu, sc , n, andA are taken from the previous collapse
of N1 andN2.

Again, from the shape of the scaling functions we c
deduce the behavior in the thermodynamic limit: From t
crossing points of the scaling functions with theu250 axis,
we find that N3c(sc ,L)5(0.1660.02)L0.10 and
N32(sc ,L)50.7960.02. As occurred previously with the
number of 2D- and 1D-spanning avalanches,Ñ3c can also be
very well approximated with a Gaussian function with am
plitude a3c50.70660.005, peak position x3c51.244
60.007, and width w3c50.80260.009. The fact that
Ñ3c(u2L1/n) vanishes exponentially foru2L1/n→6` con-

FIG. 11. ~a! Analysis of the consistency of Eq.~27!. The points
correspond to numerical data and the line is the best fit~with two
free parameters! by fixing the value ofunsc11/n to the previous

estimations.~b! Scaling plot revealing the behavior ofÑns0(s). The
continuous line shows the behavior of the approximate lower bo
Ferr(6/s) estimated from the spins that flip independently of the

neighbors. The inset shows the Gaussian functionÑnsc(u2L1/n) used
for the separation of the two contributions toNns.
1-9
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firms that, in the thermodynamic limit, such avalanches o
exist at the critical point. Furthermore, from the fact th
Ñ32 tends to 1 and to 0 exponentially fast whenu2L1/n

→6` we deduce that one subcritical 3D-spanning a
lanche will exist fors,sc and there will be none above th
value.

To end with the analysis of the number of avalanches,
will separate the two contributions toNns:

Nns~s,L !5LunscÑnsc~uL1/n!1L3Ñns0~s!. ~26!

In this case the DFSS method cannot be applied sinceÑnsc

and Ñns0 depend on different variables. A first check of th
validity of this hypothesis has already been presented in S
III. The fit of Eq. ~26! to the data corresponding tos5sc
(u50), shown in the inset of Fig. 6, gives estimations
unsc.2.02, Ñns0(sc)50.028, andÑnsc(0)50.085. Further-
more, we can also check that the derivative with respect ts
behaves as

1

L3

]Nns~s,L !

]s U
sc

5Lunsc11/n23S Ñnsc8 ~0!

sc
D 1Ñns08 ~sc!.

~27!

Figure 11~a! demonstrates that the data~estimated using a
two-point derivative formula! are compatible with this be
havior. The line shows the best fit@with two free parameters
Ñnsc8 (0) and Ñns08 (sc)] of the function ~27! with unsc11/n

23520.15. One obtainsÑnsc8 (0)520.13660.011 and

Ñns08 (sc)50.10260.003. The good agreement is a test of t
dependence with the variablesuL1/n ands of the functions
Ñnsc andÑns0, respectively. To go further into the analysis
Nns, one must provide some extra hypothesis on the shap
the scaling functions. Given the fact that we have found
most a perfect Gaussian dependence of the scaling func
Ñ1 , Ñ2, and Ñ3c one can guess thatÑnsc will also have a
Gaussian dependence. By forcing the Gaussian functio
satisfy Ñnsc(0)50.085 and the fact that Ñnsc8 (0)
520.136~from previous estimations! we end up with a trial
function with a single free parameter that should be eno
to satisfactorily scale the data from Fig. 6.

The best collapse is shown in Fig. 11~b!, which corre-
sponds toÑns0(s). The functionÑnsc used for the collapse is
shown in the inset and corresponds to a Gaussian func
with amplitudeansc50.085, peak positionxnsc520.6, and
width wnsc51.485. It is interesting to note that the pe
position of this scaling function occurs at a valueu2L1/n

5xnsc,0 as opposed to the case of the previous sca
functionsÑ1 , Ñ2, andÑ3c for which the peak position wa
at u2L1/n.0. This indicates that the properties of the 1
2D, and 3D critical avalanches have opposite shifts with
nite sizeL compared to the nsc critical avalanches.

To end with the analysis of the number of nonspann
avalanches it is interesting to compare the functionÑns0(s)
with the approximate lower bound@Ferr(6/s)# discussed in
Sec. III, which is represented by a continuous line in F
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11~b!. The difference between the two curves, which b
comes bigger whens increases, is due to the existence
clusters of several spins~not considered in the extremel
facile analysis presented here! that flip independently of their
neighbors, contributing to the number of noncritical no
spanning avalanches.

VI. SCALING OF THE DISTRIBUTIONS OF SIZES
Da„S; s,L …

Close to the critical point there are different ways to e
press the invariance of the size distributions correspondin
different choices of a pair of invariants among the three
variants proposed in Eqs.~12!, ~13!, and ~14!. For any ge-
neric distributionDa(s;s,L) one can write the following
nine generic expressions:

Da~s;s,L !5L2tadaD̃a~sL2da,uL1/n!, ~28!

Da~s;s,L !5L2tadaD̄a~s1/ndau,uL1/n!, ~29!

Da~s;s,L !5L2tadaD̂a~s1/ndau,sL2da!, ~30!

Da~s;s,L !5s2taD̃̃a~sL2da,uL1/n!, ~31!

Da~s;s,L !5s2taD̄̄a~s1/ndau,uL1/n!, ~32!

Da~s;s,L !5s2taD̂̂a~s1/ndau,sL2da!, ~33!

Da~s;s,L !5uuutandaD̃̃̃a~sL2da,uL1/n!, ~34!

Da~s;s,L !5uuutandaD̄̄̄a~s1/ndau,uL1/n!, ~35!

Da~s;s,L !5uuutandaD̂̂̂a~s1/ndau,sL2da!. ~36!

Although we have used the generic indexa, it is evident that
such assumptions can only be proposed for the distribut
of avalanches of a single kind, i.e.,D1 , D2 , D3c , D32 , and
Dnsc . For the composite distributionsD3 , Ds , Dns, andD,
one expects mixed behavior, and concerningDns0 we cannot
expect a dependence onuL1/n. The exponentsta could also
be different for the different kinds of avalanches, but as w
be discussed in the following paragraphs, in all casesta
51 except fortnsc , which will take a larger value.

As argued before, when scaling the numbers of a
lanches, the last three expressions~34!, ~35!, and~36! are not
very useful for the numerical collapses because they in
duce large statistical errors. Moreover, when trying to che
the collapses expressed by Eqs.~29! and~32!, the two inde-
pendent variables of the scaling function converge to z
when the critical point is approached. Thus, such a colla
cannot be checked foru50. Therefore, the interesting sca
ing equations are Eqs.~28!, ~30!, ~31!, and~33!.

The behavior of the scaling functions is, in some cas
restricted by the normalization conditions. If scaling hol
for the whole range ofs51, . . . ,L3, from Eq.~28!, one can
write
1-10
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(
s51

L3

L2tadaD̃a~sL2da,uL1/n!51. ~37!

If 0 ,da,3, by defining a new variablex5sL2da, for large
L, the above expression is transformed into the follow
integral:

L2(ta21)daE
0

`

dxD̃a~x,uL1/n!51. ~38!

For those distributions for which the integral converges, i
necessary thatta51. We expect that this condition can b
applied to the cases ofD1 , D2 , D3c , andD32 . In these four
cases, as can be seen in Fig. 2~c!, the distributions show a
marked decay in the two limits ofs→0 ands→L3. ~Note
that the plots have logarithmic scales and thatD3c andD32

correspond to the left-hand and right-hand peaks inD3 re-
spectively.! For the distributionDnsc the exponenttnsc can be
larger than 1 since this distribution may extend into the sm
s region and convergence of the integral in Eq.~38! cannot
be ensured.

Figure 12 shows a 3D view of the collapses correspo
ing to D̃1(sL2df ,u2L1/n). The lines show three cuts of th
scaling surface corresponding tou2L1/n51.21, u2L1/n50,
andu2L1/n520.56. The collapses of the curves correspo
ing to the different sizes are satisfactory within statisti
error. The only free parameter in this case isdf . The best
estimation renders a fractal dimensiondf52.7860.05 for
such 1D-spanning avalanches. Similar behavior is obtai
for D̃2(sL2df ,u2L1/n). Although, in principle, we have con
sidereddf as a free parameter, the best collapses are obta
with the same valuedf52.78 as that obtained for the 1D
spanning avalanches.

FIG. 12. Collapses corresponding toD̃1(sL2df,u2L1/n). The
three cuts of the scaling surface are taken atu2L1/n51.21, u2L1/n

50, andu2L1/n520.56. Note that on each cut we have plotted
lines ~with different shades of gray! corresponding toL58, 10, 12,
16, and 24. Symbols on the horizontal plane show the behavio
the first moment of the distribution according to the legend in F
4. The line is a guide to the eye.
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The analysis ofD3c andD32 is more difficult. According
to the corresponding distribution relation~see Table II!, and
assuming the scaling hypothesis~18!, ~20!, and~28!, one can
write

N3D3~s;s,L !5Lu2dfÑ3c~uL1/n!D̃3c~sL2df ,uL1/n!

1L2d32Ñ32~uL1/n!D̃32~sL2d32,uL1/n!,

~39!

where we have taken into account the fact that for the s
critical 3D-spanning avalanchest3251 and they have a
fractal dimensiond32 . Although it is possible to conceive
DFSS treatment to separate the two contributions in Eq.~39!,
the hard numerical effort needed as well as the associ
statistical uncertainties make it very difficult. In the next se
tion we will show that it is enough to analyze the behavior
the k moments of the distributions to obtain the critical e
ponents.

VII. SCALING OF THE k MOMENTS
OF THE DISTRIBUTIONS

Besides the scaling of the entire distributionsDa(s;s,L)
that exhibit large statistical errors, it is also useful to analy
the behavior of theirk moments. For those distributions fo
which the integral in Eq.~38! converges~and, therefore,ta
51), we can check the corresponding scaling functions.
using a similar argument as that used for deriving Eq.~38!,
we get

of
.

FIG. 13. Collapses corresponding to~a! N1(s,L)^s&1(s,L) and
~b! N2(s,L)^s&2(s,L). Symbols indicate the system sizes acco
ing to the legend.
1-11
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F. J. PÉREZ-RECHE AND EDUARD VIVES PHYSICAL REVIEW B67, 134421 ~2003!
^sk&a~s,L !5(
s51

L3

skDa~s;s,L !5LkdaCa
k ~uL1/n!. ~40!

As an example of such collapses, we have indicated the
havior of the scaled first moment of the distributio
D1(s;s,L) on the horizontal plane of Fig. 12. In this case t
collapses are obtained without any free parameter.

As will be seen later, it is more convenient to analyze t
scaling behavior of the productsNa^sk&a . By using Eqs.
~15! and ~40!, one gets

Na~s,L !^sk&a~s,L !5Lu1kdaÑa~uL1/n!Ca
k ~uL1/n!.

~41!

Figure 13 shows the collapses corresponding to the first
ment ~average size! of D1 and D2. No free parameters are

FIG. 14. Collapses corresponding to ~a!

Ñ32(uL1/n)C32
1 (u2L1/n) and ~b! Ñ3c(u2L1/n)C3c

1 (u2L1/n). Sym-
bols indicate the values ofL1 and L2 used for the DFSS analysi
according to the legend in Fig. 10. The inset in~a! reveals the

power-law behaviorÑ32C32
1 ;(uu2uL1/n)b32 with b3250.024.
13442
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used in this case. Similar scaling plots can be obtained fr
the analysis of the second moments with the same se
scaling exponents.

As regards the scaling ofN3^s&3, multiplying expression
~39! by s, summing over the wholes range, and imposing
condition ~37!, one obtains

N3^s&35Lu1dfÑ3c~uL1/n!C3c
1 ~uL1/n!

1Ld32Ñ32~uL1/n!C32
1 ~uL1/n!. ~42!

This equation can be separated by a DFSS analysis. Fig
14~a! and 14~b! show the collapses corresponding toÑ3cC3c

1

and Ñ32C32
1 , respectively. The only free parameter in th

scaling plot is the fractal dimension of the subcritical 3
spanning avalanches. The best value isd3252.9860.02.
Note that the shape of the scaling function in Fig. 14~b!
indicates that, in the thermodynamic limit, the critical 3D
spanning avalanches only contribute to the first-moment
s5sc .

On the other hand, the shape of the scaling function
Fig. 14~a! indicates that, in the thermodynamic limit, th
subcritical 3D-spanning avalanches may contribute to
first moment in the wholeu2,0 range. Note that, as re
vealed by the inset in Fig. 14~a!, the behavior in the region o
negative values ofu2L1/n is Ñ32C32

1 ;(uu2uL1/n)b32 with
b3250.02460.012. This numerical value is compatib
with the equation

b325n~32d32!. ~43!

FIG. 15. ~a! Behavior ofNns(sc ,L)^sk&ns(sc ,L) as a function
of L for k51 andk52 in log-log scale.~b! Behavior of the deriva-
tive with respect tos of the same two magnitudes. In both case
the lines show the best fits of Eq.~44! and its derivative ats
5sc .
1-12
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This hyperscaling relation, when introduced into Eq.~42!,
results in a second term that grows withL3. As will be ana-

FIG. 16. ~a! Behavior of the total contribution of the spannin
avalanches to the magnetization jump as a function ofs. ~b! Scal-
ing of Dms by considering the 1D-, 2D-, and the critical 3D
spanning avalanches. Note the lack of collapse for the reg
u2L1/n&0. ~c! Scaling ofDms by considering the subcritical 3D
spanning avalanches. Note the lack of collapse for the reg
u2L1/n;0. Symbols indicate the system sizes according to the
end.
13442
lyzed in the next section, such a term will be responsible
the order parameter behavior in the thermodynamic limit

The analysis of the moments of the nonspanning a
lanches presents extra difficulties, as occurred in the ana
of their number. The expected behavior is

Nns~s,L !^sk&ns~s,L !

5Lunsc1(11k2tnsc)dnscÑnsc~uL1/n!Cnsc
k ~uL1/n!

1L3Ñns0~s!Cns0
k ~s!. ~44!

As explained previously, the DFSS cannot be appli
given the different dependence onuL1/n and s of the two
terms in Eq.~44!. The possibility of using a trial function is
now more difficult since we cannot make a straighforwa
hypothesis on the shape ofCnsc

k . In order to fit the value of
tnsc anddnsc we can analyze the dependence of thek moment
~for k52 andk53) and its derivatives with respect tos at
s5sc (u50). Data are shown in Figs. 15~a! and 15~b! with
log-log scales. The almost perfect power-law behavior
different values ofk and for the derivatives indicates that th
second term in Eq.~44! plays no role insc . This is because
the exponent of the first term is much larger than 3. Inde
the best fits are obtained withdnsc5df52.7860.05 and
tnsc51.6560.02 which render large values of the expone
of the first term (.5.8). Similar fits can be obtained from
higher moments with the same values of the exponentsdnsc
andtnsc .

VIII. MAGNETIZATION DISCONTINUITY

In this section we discuss the behavior of the disconti
ity Dm in the magnetization of the hysteresis loop. We wou
like it to behave as an order parameter. For large system
is clear that only spanning avalanches may produce a dis
tinuity in the magnetization. We can evaluate the total av
age magnetization jumpDms due to the contribution of all
the spanning avalanches~1D, 2D, 3c, and 32):

Dms5
2

L3
Ns^s&s . ~45!

Figure 16~a! shows the behavior ofDms versuss for differ-

n

n
-

TABLE III. Summary of the values of the exponents obtain
from the simulations in this work. We have indicated the names
the exponents from Ref. 13, whose definition does not exactly
respond to our nomenclature between parentheses.

Exponent Best value Values in Ref. 13

n 1.260.1 1.4160.17
u 0.1060.02 0.1560.15
unsc 2.0260.04
df 2.7860.05 2.9860.43 (51/sn)
d32 2.9860.02
tnsc 1.6560.02
bc 0.1560.08
b32 0.02460.012 0.03560.032 (5b)
1-13
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ent system sizes. According to the scaling analysis in
previous section,Dms will behave as

Dms~s,L !52$Lu1df23@Ñ1~uL1/n!C1~uL1/n!1Ñ2~uL1/n!

3C2~uL1/n!1Ñ3c~uL1/n!C3c~uL1/n!#

1Ld3223Ñ32~uL1/n!C32~uL1/n!%. ~46!

This equation tells us thatDms will display a mixed scal-
ing behavior. The first term in Eq.~46! accounts for the con
tributions of the 1D-spanning, 2D-spanning, and critical 3
spanning avalanches. We can define an exponentbc so that

bc

n
[2~u1df23!. ~47!

This relation is the same relation that other authors h
called ‘‘violation of hyperscaling.’’11,13,22From our best es-
timations ofu, n anddf , we obtainbc50.1560.08.

At this point, it is interesting to compare Eqs.~43! and
~47!. We would like to note that we could also have intr
duced an exponentu8 that would transform Eq.~43! into an
equation similar to Eq.~47!. Nevertheless, the quality of th
scalings of the numbers of 3D-spanning avalanches in
10 shows that such an exponentu8 is either zero or very
small. Moreover, an analysis of the behavior ofÑ32 for
uL1/n→2` reveals an exponential drift versusÑ3251,
which reinforces the idea that there is no need for an hyp
scaling exponentu8. Note that a valueu8.0 implies that the
number of subcritical 3D-spanning avalanches (32) will be
infinite in the thermodynamic limit. On the other hand, o
assumption thatu850 indicates thatN32 behaves as a ste
function in the thermodynamic limit.

By inserting Eqs.~43! and ~47! into Eq. ~46! one can
easily read the mixed scaling behavior ofDms :

Dms~s,L !}L2bc /nF~uL1/n!1L2b32 /nF8~uL1/n!, ~48!

wherebc /n50.12 andb32 /n50.02. F is a scaling func-
tion with a peaked shape@it corresponds to twice the sum o
the scaling functions in Figs. 13~a!, 13~b!, and 14~b!# andF8
is twice the scaling function in Fig. 14~a!. Consequently, in
the thermodynamic limit, only the second term associa
with the subcritical 3D-spanning avalanches will contribu
to the magnetization jump~order parameter!. For finite sys-
tems, the first term may affect the scaling of the data clos
sc given the peaked shape ofF.

This behavior can be observed in Figs. 16~b! and 16~c!,
where the two possible scalings show the breakdown of
collapse foru2L1/n,0 when using the exponentbc /n and
the breakdown of the collapse foru2L1/n.0 when using the
exponentb32 /n. The larger the system, the better will b
the data collapse in Fig. 16~c! and the worse will be the
collapse in Fig. 16~b!.

IX. DISCUSSION

Table III shows a summary of the exponents that char
terize the avalanche numbers and distributions obtained f
our numerical simulations. We would like to point out th
13442
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such exponents are independent ofs and L in a very large
region around the critical point both fors.sc and s,sc
simultaneously. Such an achievement has not been pos
in previous analyses, even with larger system sizes. The
son is that some of the contributions we have identifi
~namely 32 and ns0!, which reduce finite size effects, wer
previously neglected.

In Table III we also indicate previous estimations of t
exponents found in the literature.13 The comparison is quite
satisfactory. Let us analyze the eight exponents:

~1! Although the value ofn does not fall within the error
bars in Ref. 13, we have already argued that the exact d
nition of the scaling variableu used for the collapses ma
introduce some deviations in this value. By usingu1 we
obtainn51.14 and usingu3 we obtainn51.4.

~2! As regardsu our value is in agreement with the valu
previously reported13 ~we would like to note that in Ref. 13
the authors also report a value of 0.01560.015 probably due
to a misprint!. The fact that this exponent is nonzero impli
that there are infinite spanning avalanches at the critical p
in the thermodynamic limit.

~3! As regardsunsc , to our knowledge there are no prev
ous finite-size scaling analyses of the number of n
spanning avalanches.

~4! Concerningdf andd32 , the numerical values are con
sistent with the valuedf52.9860.43 estimated previously.10

We shall note that this previous estimation was obtain
from the analysis of the distributions of nonspanning a
lanches. It should therefore correspond to ourdf and not to
our d32 ~which corresponds to the subcritical 3D-spanni
avalanches!. Note also that the difference betweendf and
d32 suggests that there might be real physical differen
between such two kinds of avalanches. The possibility
distinguishing them in the numerical simulation will be stu
ied in a future work.

~5! The exponenttnsc , according to our definitions, de
scribes the scaling behavior of the distribution of critic
nonspanning avalanches. Previous measurements of a si
exponent have analyzedNns without distinguishing between
critical (nsc) and noncritical~ns0! nonspanning avalanche
and have not considered the fact that the system is finite.
can estimate what the value of an effective exponentteff will
be for the distribution of nonspanning avalanches for v
large systems. From Eq.~44!, taking k.1 and large values
of L, only the first term in the sum survives, so that

Nns~s!^sk&ns~s!5Lunsc1(11k2tnsc)dfÑnsc~uL1/n!

3Cnsc
k ~uL1/n!. ~49!

On the other hand, in the same limit, the analysis of Eq.~26!
renders

Nns~s!5L3Ñns0~s!. ~50!

Combining the last two equations, we get an estimation
the pseudoscaling behavior of thek moment of the nonspan
ning avalanches:
1-14
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^sk&ns~s!5Lunsc1(11k2tnsc)df23
Ñnsc~uL1/n!

Ñns0~s!
Cnsc

k ~uL1/n!.

~51!

If one approximatesÑns0(s) by Ñns0(sc) and imposes
^sk&ns;L2(teff2k21)dfS k(uL1/n) it is possible to deduce tha
the effective exponent isteff5tnsc1(32unsc)/df . From our
numerical estimations of the different exponents in Table
one obtainsteff52.0060.06. This value is in very good
agreement with the value teff52.0360.03 found
previously.13 Nevertheless, we would like to point out th
according to our analysis, such an exponent is not a
critical exponent and, therefore, will depend ons for finite
systems as has been found previously.16

~6! As regards the values ofbc andb32 we would like to
note that previous analyses have not identified the two c
tributions toDms . It is therefore not strange that differen
values have been obtained previously: 0.1760.07,8 0.0
60.43,11 0.03560.028.13 The larger the system, the clos
the effective exponent becomes tob32 .

Finally, it is interesting to compare the behavior of spa
ning avalanches, with the problem of percolation.23 In per-
colation, the number of percolating clusters behaves as a
function, in the thermodynamic limit ford,6, exactly as
N32 . The order parameter is, in this case, the probability
a site to belong to the percolating cluster. However, this
precisely what we are evaluating by the functi
N32^s&32 /L3 which is the second term in~46! and is the
only relevant term in the thermodynamic limit. As occurs
percolation, the hyperscaling relation~43! amongb32 , n,
andd32 is fulfilled since only one infinite avalanche contrib
utes to the order parameter fors→sc from below. More-
over, in the percolation problem ford.6,24 the number of
percolating clusters exhibits, besides the step function,
extra d-function singularity at the percolation threshold.
our case~3D GRFIM! we also have such a contribution
s5sc , which we have identified as 1D-, 2D-, and critic
3D-spanning avalanches@the first term in Eq.~46!#. The ex-
istence of such an infinite number of avalanches exactl
sc ~the number of which grows asLu) implies the break-
down of the hyperscaling relationbc5n@32(u1df)#.

X. SUMMARY AND CONCLUSIONS

In this paper we have presented finite-size scaling anal
of the avalanche numbers and avalanche distributions in
3D-GRFIM with metastable dynamics. After proposing
number of plausible scaling hypotheses, we have confirm
them by obtaining very good collapses of the numerical d
corresponding to systems with sizes up toL548.

The first result is that, in order to obtain a good descr
tion of the numerical data, one needs to distinguish betw
different kinds of avalanches that behave differently wh

*Electronic address: jperez@ecm.ub.es
†Electronic address: eduard@ecm.ub.es
1E. Vives and A. Planes, Phys. Rev. B50, 3839~1994!.
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the system size is increased. Avalanches are classified a
ing nonspanning, 1D-spanning, 2D-spanning, or 3
spanning. Furthermore, we have shown that the 3D-span
avalanches must be separated into two classes: subcr
3D-spanning avalanches with fractal dimensiond3252.98
and critical 3D-spanning avalanches with fractal dimens
df52.78, as the 1D- and 2D-spanning avalanches. Nonsp
ning avalanches occur for the whole range ofs. We have
also proposed a separation between critical nonspanning
lanches and noncritical nonspanning avalanches in orde
obtain good finite-size scaling collapses. The noncritical n
spanning avalanches are those whose size is independe
the system size and whose number scales asL3. The critical
nonspanning avalanches also have a fractal dimensiondf
52.78.

The second important result is the scenario for the beh
ior in the thermodynamic limit: Below the critical point
there is only one subcritical 3D-spanning avalanche, whic
responsible for the discontinuity of the hysteresis loop. F
thermore, at the critical point there are an infinite number
1D-, 2D-, and 3D-critical spanning avalanches.

For finite systems, the six different kinds of avalanch
can exist above, exactly at and belowsc . The finite-size
scaling analysis we have performed has also enabled u
compare different scaling variablesu, which measure the dis
tance between the amount of disorder in the systems and
the critical amount of disordersc . The best collapses ar
obtained using the variableu25(s2sc)/sc1A@(s2sc)/
sc#

2 with A520.2.
So far the analysis presented in this paper is restricte

the analysis of the numbers and distributions of avalanc
integrated along half a hysteresis loop. Our analysis of
average magnetization discontinuityDm starts from the hy-
pothesis that only spanning avalanches may contribute
such a discontinuity. However, as a future study, we sugg
that the measurement of correlations in the sequence of
lanches and the analysis of non-integrated distributions m
reveal details of the singular behavior at the critical fieldHc .
For instance, nonspanning avalanches could show a tend
to accumulate inHc in the thermodynamic limit. This could
change some of the conclusions reached in this work.

As a final general conclusion we have shown that it is
necessary to simulate very large system sizes to estimate
critical exponents for this model. In order to identify th
different kinds of avalanches it may even be better to anal
small systems with larger statistics.
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10O. Perković, K. A. Dahmen, and J.P. Sethna, Phys. Rev. Lett.75,
4528 ~1995!.

11K. A. Dahmen and J.P. Sethna, Phys. Rev. B53, 14872~1996!.
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