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Finite-size scaling analysis of the avalanches in the three-dimensional Gaussian random-field Ising
model with metastable dynamics
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A numerical study is presented of the third-dimensional Gaussian random-field Ising mddeDatriven
by an external field. Standard synchronous relaxation dynamics is employed to obtain the magnetization versus
field hysteresis loops. The focus is on the analysis of the number and size distribution of the magnetization
avalanches. They are classified as being nonspanning, one-dimensional-spanning, two-dimensional-spanning,
or three-dimensional-spanning depending on whether or not they span the whole lattice in different space
directions. Moreover, finite-size scaling analysis enables identification of two different types of nonspanning
avalanchescritical and noncriticgland two different types of three-dimensional-spanning avalanchigsal
and subcritical whose numbers increase withas a power law with different exponents. We conclude by
giving a scenario for avalanche behavior in the thermodynamic limit.
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. INTRODUCTION magnetization avalanch&%:**Two of the most well-studied
properties are the number of avalanch&gs’) and the distri-
Systems with first-order phase transitions exhibit a disbution D(s;o) of avalanche sizes along half a hysteresis
continuous change of their properties when driven throughoop. For large amounts of disordes ¢ o) the loops look
the transition point. Sometimes, due to the existence of emlsmooth and continuous. They consist of a sequence of a large
ergy barriers larger than thermal fluctuations, such systemsumber of tiny avalanches whose size distributid(s; o
evolve following a path of metastable states and exhibit hys=>¢_) decays exponentially witls. On the other hand, for
teresis. Metastable phenomena develop more often in themall amounts of disordefos(< o), besides a certain num-
case of systems at low temperature and with quenched diger of small avalanches, one or several large avalanches pro-
order. In many cases the first-order phase transition occurguce a discontinuithm in the hysteresis loop. For an inter-
instead of at a certain transition point, in a broad range of thenediate critical valueo. the distribution D(s,o.) of
driving parameter, and the discontinuity is split into a se-avalanche sizes can be approximated by a power law:
quence of jumps or avalanches between metastable statgs(s;o.)~s .
Moreover, under certain conditions such avalanches do not Many of the properties of the GRFIM have been under-
show any characteristic spatial or time scale: the distributiortood by assuming the existence ofTa0 critical point
of their size and duration becomes a power law. This frame(gc ch) on the metastable phase diagram. The more recent
work, which has sometimes been called fluctuationless firstestimatiot® renders ¢,=2.16+0.03 and H.=1.435
order phase transitiors, is one of the basic mechanisms +0.004. Although partial agreement on the values of the
responsible for power laws in natuteExperimental ex- critical exponents has been reached, other features are still
amples have been found in a broad set of physical systemsontroversial.
magnetic transition$,adsorptior?, superconductivity, mar- One of the fundamental problems is the definition of the
tensitic transformation$gtc. order parameter. From a thermodynamic point of view the
A paradigmatic model for such fluctuationless first-orderdiscontinuity of the hysteresis loapm seems to be an ap-
phase transitions in disordered systems is the Gaussigaropriate order parameter ¥m>0 for c<o. and Am=0
random-field Ising mode(GRFIM) at T=0 driven by an for o>0o.. Nevertheless, in th€=0 numerical simulations,
external fieldH. The amount of quenched disorder is con-due to the finite size of the system and for a given realization
trolled by the standard deviatian of the Gaussian distribu- of disorder, all the magnetization changes are discontinuous.
tion of independent random fields acting on each spin. MetaNote that this does not occur for standard thermal numerical
stable evolution is obtained with appropriate local relaxatiorsimulations in which, due to thermal averaging, magnetiza-
dynamics, which assumes a separation of time scales béen is continuous for finite systems. Only finite-size scaling
tween the driving field ratelH/dt and the avalanche dura- analysis will reveal which are the large avalanches and
tion. The response of the system to the driving field can bevhether or not avalanches become vanishingly small in the
followed by measuring the total magnetization(H). The  thermodynamic limit. It is thus very important to study the
response exhibits the above-mentioned metastable phenomproperties of the “spanning” avalanches. These are ava-
ena: hysteresis and avalanches. lanches that, for a finite system with periodic boundary con-
Since the model was introduced some years®iffer-  ditions, cross the system from one side to another. In particu-
ent studiegnumerical and analyticahave been carried out lar it would be interesting to measure the numbi(o) of
in order to characterize the hysteresis loop@) and the spanning avalanches and their size distribufings; o).
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A second unsolved question, related to the previous onegccount for the analysis of the critical point. A finite-size
is the spatial structure of the avalanches. It has been sugcaling analysis of the avalanche numbers is presented in
gested that they are not comp&tt® A fractal dimension Sec. V. The same analysis for size distributions and tkeir
(d;=1/0.34<3) has been estimated from the avalanche sizénoments are presented in Secs. VI and VII, respectively.
distribution® It would be interesting to understand how such Section VIII presents a discussion on the behavior of mag-
a fractal behavior may, in the thermodynamic limit, represennetization. A discussion of the results in relation to previous
a magnetization discontinuity. works is presented in Sec. IX. Finally in Se€ a full sum-

Athird problem is the definition of the scaling variables in mary and conclusions are given.
order to characterize the critical properties close to the criti-

cal point (o;,H.). When focusing on the study of avalanche Il. MODEL

properties, it should be pointed out that the scaling analysis ] . . ] ]

is performed by using quantitigdN(o) and D(s,o)] mea- The 3D GRFIM |s_def|r_1e§i on a cubic Iattlce_ of size
sured recording all the avalanches along half a hysteresi§ L X L. On each lattice sitei&1, ... L%) there is a spin

loop. The measurement of nonintegrated distributions, i.evariableS; taking valuest1. The Hamiltonian is:

around a certain value &, will require large amounts com- 5 5

puting effort in order to reach good statistics for large n . .

enough systems. Therefore, the dependence on theHfiald H=—2 Sisj_Z hiS — HZ Si, (1)
integrated out and the distance to the critical paint is " = =

measured by a single scaling variabi¢s). Although in where the first sum extends over all nearest-neiglhioi)
pioneering papefs the most usual scaling variabig = (o pairs, H is the external applied field, argj are quenched
— o)/ o, was used in order to scale the avalanche size disrandom fields, which are independent and are distributed ac-
tribution, forthcoming studié8***3changed the definition to cording to a Gaussian probability density

uz=(o—a)lo. Apparently both definitions are equiva-

lently close to the critical point, but it can be checked that the 1 2 o
“phenomenological” scaling of the distributior3(s; o) us- dP(h;)= ——e ""2"dh;, (2
ing uz (with uz>0.04) as suggested in the inset of Fig. 1 in V2mo

Ref. 10 is not possible when using. where the standard deviatienis the parameter that controls

Finite-size scaling_analysis has been carried fitfor the amount of disorder in the system. Note t{tap=0 and
the number of spanning avalanchég o;L). Nevertheless, <eh_2>=02
i .

such finite-size scaling has neither been presented for th R _ '
avalanche size distributioi3(s; o,L) nor for the number of The system is driven at=0 by the external fieldd. For

nonspanning avalanches,{o;L). Most of the studie§*3 H_: e the state of thg sy.stem thrﬁ minin;iZELsis the state
have proposed collapses by neglecting the fact that simulateffith maximum magnetizatiom=x_,S/L*=1. When the
systems are finite. There is an exceptforf for which the  external f|eIQH is decre_ased, the system evolves. following
scaling of the avalanche distributions withhas been stud- local relaxation dynamics. The spins flip according to the
ied. In this case, nevertheless, the dependence on the distarkign of the local field,
to the critical point has been neglected, and consequently,
parameter-dependent exponents have been obtained. In our
opinion, scaling of the avalanche distribution must be studied
on a two-dimensional plane, including a scaling variable that
accounts for the finite-size and another that accounts for where the sum extends over the six nearest-neighboring
the distance to the critical point. spins ofs;. Avalanches occur when a spin flip changes the

Previous studies have provided simulations of very largesign of the local field of some of the neighbors. This may
system sizesup toL =1000) }* This has been advantageous start a sequence of spin flips that occur at a fixed value of the
for the study of self-averaging quantities. Nevertheless, thexternal fieldH, until a new stable situation is reachedlis
properties of the spanning avalanches are non-self-averagintpen decreased again. This “adiabatic” evolution corre-
This is because, as will be shown, the number of spanningponds to the limit for which avalanches are much faster than
avalanches per loop does not growlds This means that, in the decreasing field rate. Note that, once the local random
order to obtain better accuracy, it is more important to perfields are fixed, the metastable evolution is completely deter-
form averages over different disorder configuratigwkich ~ ministic, no inverse avalanches may occur, and the hysteresis
will be indicated by(-)) than to simulate very large system loops exhibit the return point memory propeftty.
sizes. The size of the avalanchecorresponds to the number of

In this paper we present intensive numerical studies of thepins flipped until a new stable situation is reached. Note that
metastable three-dimension&D) GRFIM and focus on the corresponding magnetization changd ia=2s/L>.
analysis of the spanning avalanches. In Sec. Il the model, the For a certain realization of the random fields, correspond-
definition of a spanning avalanche and the details of the nuing to a given value otr, we have recorded the sequence of
merical simulations are presented. In Sec. Il raw numericahvalanche sizes during half a hysteresis loop, i.e., decreasing
results are given. In Sec. IV some of the renormalizatiorH from +« to —«. The two main quantitiegsee Table)l
group(RG) ideas will be reviewed, which will be taken into that are measured after averaging over different realizations

6
h+H+> S, 3
=1

134421-2



FINITE-SIZE SCALING ANALYSIS OF THE . .. PHYSICAL REVIEW B 67, 134421 (2003

TABLE I. Notation of the studied quantities in this work. All the TABLE Il. Main mathematical relationships among the quanti-
quantities refer to the analysis of half a hysteresis loop and arées defined in Table I. The dependence @nL, ands has been
obtained after averaging over many different realizations of disorsuppressed in order to clarify the table. The subserigtands for

der. all the possible subindices in Table I.
Averaged number Notation Closure relations N=Ng+ N

Avalanches N(o,L) NNE;\INTJ Trﬁo
Spanning avalanches Ng(o,L) ’3 =li| +2N 3
Nonspanning avalanches Np(o,L) 8 8e’ 8
Critical nonspanning avalanches Nn(o,L) Normalization condition 3
Noncritical nonspanning avalanches Npsd o, L) 2 D soL)=1
1D-spanning avalanches Ny(o,L) s=1
2D-spann?ng avalanches N(o,L) Distribution relations ND=ND+NDps
3Q-§pann|ng aval'anches N3(o,L) No D = NreD e N neo
Crltlcgl.?,D-spannlng .avalanches N3c(o,L) ND<=N;D;+N,D,+NsDj
Subcritical 3D-spanning avalanches N;_(o,L) N3D3=Nj.Dsc+Ns_ Dy

Normalized size distribution Notation
Avalanches D(s;o,L) mask vectors of sizé& whose elements are set to 0 at the
Spanning avalanches D¢(s;o,L) beginning of each avalanche. During the evolution of the
Nonspanning avalanches DJs;oL) avalanche the mask vectors record the shade of the flipping
Critical nonspanning avalanches DS L) spins along the three perpendicular Qirecticjpgz changing
Noncritical nonspanning avalanches D,edS; L) t_he O’s to 1_’5). When the a_lvalanche flnlshes, it can be (_:Ia35|-
1D-spanning avalanches Dy(sio,L) fied as b(_amg nonspanning, 1D-spanning, 2D-spanning, or
2D-spanning avalanches Dy(s;oL) 3D-spanning, depending on the number of such mask vect_ors
3D-spanning avalanches Dy(s:0,L) that have been totally converted to 1. The number and size

. ) s distribution of 1D-, 2D-, and 3D-spanning avalanches are
Critical 3D-spanning avalanches Dj.(s;0,L) . . o .

o ) i also studied and averaged over different realizations of dis-

Subcritical 3D-spanning avalanches D; (s;o,L)

order. Table | shows the definitions of avalanche numbers
and distributions that will be used throughout the paper. In

of disorder are the total number of avalanches per Ioo;%rable Il a list of mathematical relations between the ava-

N(c,L) and the distribution of avalanche sizBgs;o,L), anche_ numbgrs_and distributions is given. We will use t_he
normalized so that subscripta to indicate any of the avalanche numbers or dis-

tributions in Table I.

It should be mentioned that, although the definition of
spanning avalanches used in this paper is equivalent to the
definition in previous work$>'*1®the average number of
spanning avalancheddg, in some cases, does not coincide
Note that given this normalization condition and the fact thatwith the previous estimations. We guess that the reason is
sis a natural number, thed(s;o,L)<1. because, in previous works, the method used to count span-

The numerical algorithm we have used is the so-calleching avalanches was averaging twice the 2D-spanning ava-
brute force algorithm propagating one avalanche at a tfme. lanches and was averaging three times the 3D-spanning ava-
We have studied system sizes ranging frdm=5 (L3 lanches. Therefore, in order to compare, for instance, with
=125) to L=48 (L*=110592). The measured properties Ref. 13, one should take into account that their number of
are always averaged over a large number of realizations afpanning avalanche is not equal to the presem but
the random-field configuration for each valueaf Typical  satisfiesN=(N;+2N,+3N)/3. Moreover, we should point
averages are performed over a number of configurations thaut the following remark before presenting the data. As a
ranges between $Gor L=<16 and 2000 fol. =48. consequence of the numerical analysis, several “kinds” of

We have used periodic boundary conditions: the numeriavalanches will be identifiesee Table)l Such a separation
cal simulations correspond, in fact, to a periodic infinite sys-in different kinds will, in some cases, be justified by the
tem. Therefore, strictly speaking, all avalanches are infinitemeasurement of different physical propertiésuch as
Nevertheless, we need to identify which avalanches will bewhether the avalanche spans the lattice oy bat, in other
come important in the thermodynamic limit. The definition cases, will be ara priori phenomenological hypothesis to
that best matches this idea is the concept of spanning avaeach a good description of the data. Although some authors
lanches: those avalanches that, at least in one of,theorz  will prefer to identify such new “kinds” of avalanches as
directions, extend over the length This definition is very  “corrections to scaling,” it will turn out that after the finite-
easy to implement numerically in the brute force algorithm.size scaling analysis we will be able to identify which differ-
Spanning avalanches are detected by using threg,2) ent physical properties characterize each kind of avalanche.

L3
21 D(s;o,L)=1. (%)
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FIG. 1. Avalanche size distribution corresponding (@ o FIG. 2. Analysis of the different contributions @(s;o,L) for

=1.7,(b) =2.21, and(c) o= 2.6. Data have been obtained from ¢=2.317 andL=16. Data correspond to an average of 20°
a system with sizé =24 after averaging over ¥Qealizations of realizations.(a) Full distribution; (b) distribution of spanning ava-
the disorder. lanchesDg(s;o,L) and nonspanning avalanchBsqs;o,L); (c)
distributionsD4(s;,L), Dy(s;o,L), andDs(s;o,L).

IIl. NUMERICAL RESULTS
spanning avalanches do not exist in the thermodynamic limit
except wherr=g. This is the reason for having chosen the
word “critical” for this kind of 3D-spanning avalanche. It
will also be shown that, in the thermodynamic limit, subcriti-
cal 3D-spanning avalanches only exist fe<o.. As re-

Figure 1 shows an example of the distribution of ava-
lanchesD(s;o,L) on a log-log scale for three values of
corresponding to a system with sikte=24. The qualitative
behavior ofD(s;o,L) is that already described in the Intro-
duction: Wheno is decreased, the distribution changes from
being approximately exponentially dampeg o) to a dis-
tribution exhibiting a peak for large values ef(oc<oy).
Therefore, one can suggest that at the critical valyehe
distribution exhibits power-law behavior. Nevertheless, it is
also evident from Fig. 1 that the finite size of the systems gy102}
masks this excessively simplistic description. Only after con-
venient finite-size scaling analysis shall we discover whick
features remain in the thermodynamic limit.

The peak occurring for<o is basically caused by the 0.0
existence of spanning avalanches. This is shown in Fig. :
where the peak iD (s;o,L) [Fig. 2(@)] is compared with the
two contributionsD ,(s;o,L) andDg(s;o,L) [Fig. 2b)].

As can be seen, the distribution of spanning avalanche
Dy(s;o,L) is far from simple. It exhibits a multipeak struc- { gy102|
ture caused by the contributions fronD(s;o,L),
D,(s;o,L), andDjy(s;o,L) shown in Fig. Zc). Moreover,
Ds(s;0,L) itself also exhibits two peaks, suggesting that the 0.0} 0.0}
3D-spanning avalanches may be of two different kinds. We 00 05 10 00 05
shall denote critical 3D-spanning avalanchewlicated by ) S/'Ls ) ' s/L3
the subscript 8) as those corresponding to the peak on the
left and subcritical 3D-spanning avalanchieglicated by the FIG. 3. Analysis of the dependence @,(s;o,L) (top),
subscript 3-) as those corresponding to the peak on theD,(s;o,L) (middle), andDs(s;o,L) (bottom) with o. Data corre-
right. As will be explained below, the 1D-spanning ava- spond to averages ob210° realizations of 4= 10 system witH{a)
lanches, the 2D-spanning avalanches, and the critical 3Ds=1.9, (b) 0=2.2, (c) 0=2.5, and(d) o=2.8.
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FIG. 5. (a) Total number of spanning avalancheg(o,L) and
(b) nonspanning avalanches as a functionrdbr different system
sizesL as indicated by the legend. Lines are a guide to the eye.

FIG. 4. The number of spanning avalancheganone dimen-
sion, (b) two dimensions, an¢c) three dimensions as a function of
o. The different curves correspond te=5, 8, 10, 12, 16, 24, 32,
and 48 as indicated by the legend. Lines are a guide to the eye.

terized by the existence of spanning avalanches. We would
ike to point out that previous studies have not clarified this

ds th i lanches, they will also be class)
garas € nonspanning avalanches ey will also be clas esult for the 3D GRF”Vf‘.s

fied into two types at the end of this section, although this" ; X o ,
separation cannot be deduced from the behavior in Fty. 2 1€ analysis oNy is more intricate. Figure 6) shows

Figure 3 shows the evolution @, (s;c,L), D(s;a,L), that N,.{o,L) grows with o and L. For large amounts of
andDs(s; or,L) wheno is increased. Note that the right-hand diSOrder @—c) one expects that the hysteresis loop con-
peak ofD(s; or,L) shifts to smaller values afand becomes sists of a sequence of npnspanr;mg avalanch(_as of size 1.
flat, indicating that the mean size of these subcritical 3D-1nerefore, their number will equal®. To reveal this behav-
spanning avalanches decreases. Moreover, abqugFig. 'O Fig. 6 shows the dependenceMf{o,L)/L" as a func-
3(d)] this right-hand peak disappears and a peak on the left

emerges. Besides the normalized distributions, it is also in &
teresting to analyze the actual average numbers of spannir 0.06 i
avalancheNy(o,L), Ny(o,L), and N3(o,L), which also ) g
exhibit singular behavior at. as shown in Fig. 4. go
From the direct extrapolation of the data corresponding tc 0o
different system sizes tb—o, we can make the following _  0.04 35 .
assumptions: In the thermodynamic linNt (o) and N, (o) ~ *
will display a é-function discontinuity ato,. Ng(o) will )
display steplike behavior: foor<o there is only one 3D- 2? 0.02 o =% |
spanning avalanche, for>o there are no 3D-spanning : o =10
avalanches, and at= o, the data supports the assumption =~ o L=12 |
that N3 will also display as-function singularity at the edge : iéﬁ
of the step function. This reinforces the suggestion that ther 0.00 o I=3-
are two different types of 3D-spanning avalanches: As will O L=48
be shown, in the thermodynamic limit, the number of sub- 05 . 1'0 : 1'5 : 2'0 : 2'5

critical 3D-spanning avalanchég;_ behaves as a step func-
tion, whereas the number of critical avalancigg exhibits o

divergence atr. _ FIG. 6. Number of nonspanning avalanchés(o,L) divided

The total number of spanning avalanchégo,L) and  py | 3 a5 a function ofr and different system sizes, as indicated by
nonspanning avalanches,{o,L), are displayed in Figs. the legend. The inset shows the behavior of the same quantity as a
5(a) and 8b), respectivelyNy(o,L) shows, as a result of the function ofL for different values ofr. The dashed line indicates the
divergence ofN3., N;, andN,, a §-function singularity at  valueN,J/L%=0.028 and the continuous line is a fit of the behavior
o. whenL—o0, suggesting that the critical point is charac- proposed in Eq(26).
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tion of o. One expects that these lines tend to 1 wlsen
—o0. Moreover, a closer look reveals thatgt=2.21, there
is a contribution toN,{ o-,L)/L® which decreases with sys-
tem size. For low values af one expects that nonspanning | 377 2T e
avalanches always exist, exceptoat 0. This last statement
can easily be understood by noticing that an approximate
lower bound to the number of nonspanning avalanches can
be computed by analyzing how many of the spBasvill flip

by themselves, independently of their neighbors, due to the
fact that the local fieldh; is either larger than 6 or smaller ;
than —6. This analysis renderdl,o/L3>®(6/c) where “o 2 4 6 8 10
d,, is the error function. )

From these considerations, we expect thatlios o the FIG. 7. Comparison of the behavior of the three choices for the

F:urves in Fig. 6 tend to a certain .“mmng behavior Wh'.Ch sd:aling variabley, discussed in the text. We have useg=2.21.
increases smoothly from 0 to 1. This can also be appreciate

in the inset in Fig. 6, which shows the behavior of
N,{o,L)/L% as a function ofL for four different values of u =
the amount of disordewr=1.7, 0=2.21=0., 0=2.5, and Oc
o=2.7. The four curves exhibit a tendency to extrapolate t
a plateau whe. — . For the case ofr=o¢, an estimation

N

o— 0o

©)

cNevertheless, in general, the correct scaling variables may
have a different dependence on For instance, this may be

3
of tChSn?s):riFe)cr)nlt?teﬁ ivsalnueecssq;(a(:c ,tla)élan;)o(l)e.?%ﬁé existence c()jfue to the existence of other relevant parameters, such as the
q Y, y external field, which has been integrated out.

at least two kinds of nonspanning avalanches. Those whosé Lo .
numberN,s increases a&> will be denoted as noncritical (2),3\segondb chmi:edl_s o e?tend the ?_xp;gsmrmoi) 0
nonspanning avalanchéwith the subscript n90 and those second order by including a fitting amplitu
whose numbeN,.o. increases with. with a smaller exponent o—o o— o\ 2
will be called critical nonspanning avalanch@sth the sub- U,= ) +A( C) . (6)
script ng). In fact, a log-log plot ofN (o ,L)/L®—0.028 Oc
versus L provides an estimation for this exponent
Npg(o¢,L)~0.089.202

All the assumptions that have been presented, correspon
ing to behavior in the thermodynamic limit, will be con-

(3) Arthird choice, which has been used in previous analy-
ges and may be “phenomenologically” justified, is

firmed by the finite-size scaling analysis presented in the USZU_UC (7)
following sections. o
Note that the Taylor expansion of this function is
IV. RENORMALIZATION GROUP AND SCALING o—0, [0—0\2 [o—0c)\3
VARIABLES Us= - + +o (8)
O¢ Oc O¢

The basic hypothesis for the analysis of the above results
using RG techniques is the existence of a fixed point in the Figure 7 shows the behavior of the three scaling variables
multidimensional space of Hamiltonian parameters. Thisu;(o), uy(o), andus(o). For the representation af, we
fixed point sits on a critical surface which extends along allhave chosei= —0.2, which is the result that we will fit in
the irrelevant directions. By changing the two tunable paramthe following sections. The three choices are equivalently
eterso and H, the critical surface can be crossed at theclose enough to the critical point. Nevertheless, the ampli-
critical point (o¢,H.). As has been explained in the Intro- tude of the critical zone, where the scaling relations are valid,
duction concerning the analysis of the avalanche number anglay be quite different. SincA<0, the variableu, cannot
size distributions, the dependence along the external fielde used foro> o, since u,(o) shows a maximum atr
directionH has been integrated out. One expects that suck-7.735=3.50.. A similar problem occurs withu; since,
integration may distort some of the exponents and the shapgue to its asymptotic behaviou{—1 for c— =), systems
of scaling functions, but not the possibility of an RG analy-with a large value ofc cannot be distinguished one from
sis. This is because the integration range crosses the criticahother.
surface where the divergences occur. For the finite system, the magnitudes presented in Table |
For aL—o system we assume a unique scaling variabledepend orv, L, and, in the case of the size distributions, on
u(o) which measures the distancedp. The dependence of s. In order to identify the scaling variables, let us consider a
u on o should be smooth, but its proper form is unknot®n. renormalization step of a factob close to the critical

We will discuss three different possibilities: pointt®?° such that lengths behave as
(1) The standard choice is to use a dimensionless first
approximation by expanding(o) as L,=b~1L. 9
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(The variables with thé subscript correspond to the renor- No(or,L)=LN,(uL) (17)

malized system.We expect that after rescaling the variable ’ ’

u, measuring the distance betweerand o, changes as Nag( ;L) = LN (uLY). (18)
up=b*"u, (100  We have tried, without success, to scale the number of criti-

hich is the standard definiti f th twhich cal nonspanning avalanches with the same expofeite
which 1S the standard definition ot the exponentwhic therefore need to define a different exponént, so that
characterizes the divergence of the correlation length when

fh;t%' Under the same renormalization step we assume Noo(o,L)=Lo%N, (uLY). (19)
As regards the number df;_ avalanches, which is different
Sp,=b"das, (1)  from zero away from the critical point in the thermodynamic

. . ) limit, we propose a scaling hypothesis that is compatible
This latter equation introduces an exponelgt (which has ' the limiting behavior atr=0 ando=c. This leads us
been called /o by other authof§ and can be interpreted as to the following assumption:

the fractal dimension of the avalanches. As mentioned in the

preceding sec_tion, we expect to_find different types of ava- Ns_ (o, L)=Ns_(uL¥), (20)

lanches. As will be shown numerically from the scaling plots

in the following sections, it is possible to assume that thesince in the absence of disorder we expect that the hysteresis

different types of avalanches behave with the same fractdpop displays a single avalanche of siké, and, conse-

dimensiond,,=d;, except for subcritical 3D-spanning ava- duently, the number of avalanches mustMg =1, inde-

lanches(for which d;_#d;) and noncritical nonspanning Pendent of the value df.

avalanches. As regardsN,q it has already been discussed that such
Close to the critical point the system exhibits invariance@valanches will exist in the thermodynamic limit for all val-

under rescaling. Therefore, in order to propose a scaling hydes ofa. Moreover, they are probably not related to critical

pothesis of the numbers of avalanciésand the avalanche Phenomena atr.. For this reason we propose the following

size distributionsD,, it is important to construct combina- non-critical dependence:

tions of the variables), L, ands, which remain invariant ~

after renormalization. We find Npsd o, L) = L3Npsd 0). (21)

In particular, as already mentioned, for large values of disor-

Ly up=L""1, (12 der (¢— +) these avalanches will be of size=1, and
» y their number will beN, o) =L2.
L, “sp=L "es, (13 It should also be mentioned that the scaling equatitBs
admit alternate expressions by extracting the variahle'”
si’ydaub:sllvdau_ (14) with the appropriate power so that it cancels out the depen-
dence orL:
Note that these three invariant quantities are not independent
since Eq(12) corresponds to Eq14) multiplied by Eq.(13) N,(o,L)= |u|fv0aﬁa(u|_1IV)_ (22)

to the power of-1/vd,, . )
Nevertheless, such expressions are not very useful for the

scaling analysis close to, since they will display a large

V. SCALING OF THE NUMBERS OF AVALANCHES -
statistical error due to the fact that-0 wheno—o..

Nalor.L) Figures 8 and 9 show the best collapses corresponding to
The discussion in the preceding section enables us to prdzgs. (16) and (17) with the three different choices for the
pose the following scaling hypothesis: variable u, explained in Sec. IV. Data corresponding lto
=5, 8, 10, 12, 16, 24, 32, and 48 have been used. The
N,(o,L)=L%N_(uL). (15) quality of the collapses close g, is quite good in the three

cases. The values of the free parameters that optimize each

The exponentd,, characterizes the divergence of the ava-collapse are indicated on the plots. By visual comparison one
lanche numbers at the critical point wher-=. Note that  can see tham, is the best choice since it allows the smaller
this definition of 6, (which is the same used in previous sizes to collapse, too. Of course, this is because the collapses
WOI‘kSB) is not consistent with the standard finite-size scalingin this case have an extra free parame¥eAs regards the
criterion for which the magnitudes grow with exponents di-quality of the overlaps, no remarkable differences are ob-
vided by 1972 served between the choicas andus. In the following col-

As will be shown, the behavior of the number of 1D- |apses we will usei, with A= —0.2. Thus, the best estima-

spanning avalanches, 2D-spanning avalanches, and criticgbns of the free parameters are.=2.21+0.02, v=1.2
3D-spanning avalanches can be described with the same( 1, andg=0.10+0.02.

value of 1= 6,= 63.= 6, so that The procedure for improving the collapse of the data cor-
5 responding to different system sizes, which will be used
N;(o,L)=LNy(uL¥), (16 many times throughout this paper, renders what we will call
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FIG. 8. (& Scaling plot of the number of 1D-spanning ava- FIG. 9. (a) Scaling plot of the number of 2D-spanning ava-

Iﬁczgsoffﬁgrf?égg tgraErgtfzeri,s;?)?tjhleat?etshteczﬁ:lIggsv::zpr:z:cz?: d l!)anches according to E@17) usingu, as the scaling variable. The
vaiu P P indi lues of the free parameters for the best collapses are indicated by

the I_egend. Symbols correqund to the sizes |no!|cated in the Iegeq e legend. Symbols correspond to the sizes indicated in the legend
of Fig. 4.(b) Same plot, but using the scaling variablg Note that of Fig. 4.(b) Same plot, but using the scaling variable Note that

Iun th_ll_shgisoenirnirgl;z ﬁ:eeixmtg? ;e(fwza;afrirt] %t?arsgnafszligtnbfttnﬁg? in this case there is an extra free paramétgrSame plot but using
s " ug. The continuous line irtb) shows a fit of a Gaussian function.

“the best values” of the free parameters. Error bars represerdvalanches and 2D-spanning avalanches only existr at
the estimated range of values for which the collapses are-¢.. Their numbers increase as®'® with amplitudes
satisfactory. We would like to note that the obtained value of\|, (0)=0.12+0.01 andN,(0)=0.07+0.01. Moreover, the

o (for the three choices of the variahlg is slightly higher . L~ N :
= . peaks of the scaling functio$; andN, that are displaced

than _th(_a vaIueTC—2.16i 0.03 proposed.ln Ref. 1_3; from u,=0 account for the fact that for a finite system the
~ It is interesting to note that the scaling functioNs and 1 aximum number of 1D- and 2D-spanning avalanches oc-
N, can be very well approximated with Gaussian functionscurs for a certainr (L) which shifts towardsr. from above.
The fits, shown in Figs.(®) and 9b), have three free param- As regards the 3D-spanning avalanches, according to the
eters: the amplitude, the peak positiorx, and the widthw. previous discussions one must consider the contributions
The best numerical estimations asg=0.946+0.004, X, from N5, andN5_ . From the scaling assumptiofis8) and
=2.691+0.008, w,;=1.293+0.008, a,=0.497+0.002, X,  (20) and the last closure relation in Table Il one can write
=2.227+0.007, andwv,=1.086+0.007.

From the fact that the scaling functions in Fig¢b)3and Na(o,L) = LN (uLY") +Nj_(uL). (23)
9(b) are bounded and go exponentially to zero figt. ~/*
— oo (as can also be checked from a log-linear plmte  This equation indicates th&t;(o,L) cannot be collapsed in
can deduce that, in the thermodynamic limit, 1D-spanninga straightforward way. We propose here a method to separate
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FIG. 10. (a) Numerical estimation oN_(u,L*”) and (b) of
Nac(u,LY"). Data have been obtained according to H@4) and
(25). Symbols, according to the legend, indicate the valuek;of
andL, used for obtaining each data set. The continuous lind®)in
is a fit of a Gaussian function.

the two contributions in Eq(23). This method, which we
will call double finite-size scalingDFSS, will be used sev-

PHYSICAL REVIEW B 67, 134421 (2003
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FIG. 11. (a) Analysis of the consistency of E€R7). The points
correspond to numerical data and the line is the begwiih two
free parametejsby fixing the value off,+1/v to the previous

eral times throughout the paper for the analysis of similarestimations(b) Scaling plot revealing the behavior Nf{ o). The

equations. By choosing two systems with sizesand L,
and amounts of disorders; and o, so thatu(o)L}”
=u(o,)L3", one can write

N (u(op)L)=N3_(u(o)L3")

Ly Ng(o,Ly)—L; Na(oz,Lp)

Ly %Ly’ ’
(24)
Na(u(o)L1")=Nae(u(o2)L3")
:N3(01:|—1)_N3(02:|—2). (25)

Li-L?

Thus, we can check for the collapse of data corresponding t €
different pairs of {,,L,). From the numerical point of view,

continuous line shows the behavior of the approximate lower bound
d..(6/0) estimated from the spins that flip independently of their
neighbors. The inset shows the Gaussian funcﬁlp@(ule’V) used

for the separation of the two contributions .

according to Eq(23). The different symbols, in this case,
indicate the values of ; andL, used for each set of data.
Figure 1@a) corresponds t®5_(u,L ") and Fig. 10b) cor-
responds tdNs.(u,L"). It should be emphasised that such
collapses are obtained without any free parameter. The val-
ues of@, o, v, andA are taken from the previous collapses
of N; andNo,.

Again, from the shape of the scaling functions we can
deduce the behavior in the thermodynamic limit: From the
crossing points of the scaling functions with the=0 axis,
find that Nj.(o.,L)=(0.16-0.02)L.°° and
3_(0¢,L)=0.79+0.02. As occurred previously with the

the DFSS method works quite well. An analysis of errornumber of 2D- and 1D-spanning avalanchids, can also be
propagation reveals that the scaling function correspondinyery well approximated with a Gaussian function with am-

to the contribution with a smaller exponent will display more Plitude a3,=0.706+0.005,

statistical errors.
Figure 10 shows the results of the DFSS analysid gf

peak position x3.=1.244
+0.007, and width wg.=0.802£0.009. The fact that

N3 (u,L¥) vanishes exponentially fon,L*”— + con-
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firms that, in the thermodynamic limit, such avalanches onlyl1(b). The difference between the two curves, which be-
exist at the critical point. Furthermore, from the fact thatcomes bigger whewr increases, is due to the existence of
N,_ tends to 1 and to O exponentially fast wheplLY”  clusters of several spingot considered in the extremely
—+x we deduce that one subcritical 3D-spanning avafacile analysis presented hetaat flip independently of their
lanche will exist foro< o, and there will be none above this Nneighbors, contributing to the number of noncritical non-

value. spanning avalanches.
To end with the analysis of the number of avalanches, we
will separate the two contributions t8,: VI. SCALING OF THE DISTRIBUTIONS OF SIZES
D.(S;o,L)

— 1 OheN 1l 3N
Npdo,L) =L =N (UL™) + L Npsd o). (26) Close to the critical point there are different ways to ex-

. : = press the invariance of the size distributions corresponding to
In th~|s case the DFSS_ method c_annot be f':\pplled shiee different choices of a pair of invariants among the three in-
and Nyso depend on different variables. A first check of the | 51iants proposed in Eqé12), (13), and (14). For any ge-
validity of this hypothesis has already been presented in Seqqric distributionD (s:0,L) one can write the following

[ll. The fit of Eq. (26) to the data corresponding ®= o nine generic expregsions:

(u=0), shown in the inset of Fig. 6, gives estimations of

Onee=2.02, N 0c) =0.028, andN,.(0)=0.085. Further- D, (s;o,L)=L" %D (sL % uL™), (28)
more, we can also check that the derivative with respeat to
behaves as D,(s;o,L)=L""a%D (s'/"ay,uL), (29)
LN D) i s MO Du(sio,L)=L"7e%D (s %eu,sL %), (30
L3 aa. " UC ns c/
27) D.(s;o,L)=s"TaD (sL™%,uL), (3D
Figure 11a) demonstrates that the datestimated using a _ = 1 1
two-point derivative formulpare compatible with this be- Da(sio,L)=s "D y(s eu,ul™), (32
havior. The line shows the best fiivith two free parameters, N ‘
N/(0) andN/{o.)] of the function (27) with 6.+ 1/v D,(s;0,L)=s""aD (s""u,sL™ %), (33
—3=-0.15. One obtainsN/(0)=—0.136+0.011 and L= . /
N/ {o¢)=0.102+0.003. The good agreement is a test of the Du(s;o,L)=|u|7e"D o(sL™%,uL?), (34)
dependence with the variables.'” and o of the functions _
Nphe andN,«o, respectively. To go further into the analysis of D,(s;0,L)=|u|7a%D ,(s'/*day,ul?), (35)
N,s, One must provide some extra hypothesis on the shape of
the scaling functions. Given the fact that we have found al- D, (s;0,L) =|u| "D ,(s¥dau,sL~%). (36)

most a perfect Gaussian dependence of the scaling functions

N;, N,, and Nsc one can guess th&ns: will also have a Although we have used the generic indexit is evident that
Gaussian dependence. By forcing the Gaussian function tguch assumptions can only be proposed for the distributions
satisfy N,g(0)=0.085 and the fact thatN/_(0) of avalanches ofasmgle k.md', |.(§),1, D,, Dg., D;_, and

— —0.136(from previous estimationsve end up with a trial DPnsx- FOr the composite distributiori8, Ds, Dps, andD,

function with a single free parameter that should be enougRN® €XPects mixed behavlljjr, and concerring, we cannot
to satisfactorily scale the data from Fig. 6. expect a dependence ol.~"”. The exponents, could also

The best collapse is shown in Fig. (b which corre- be different for the different kinds of avalanches, but as will

~ Y . be discussed in the following paragraphs, in all casgs
sponds tdN,s{ o). The functionN,¢. used for the collapse is _ 1 except forr,, which will take a larger value.

shown in .the inset and Corresponds.t.o a Gaussian function As argued before, when scaling the numbers of ava-
W!th ampI|tudean$—O.98§, peak. position,s;= — 0.6, and lanches, the last three expressiog4), (35), and(36) are not
W'dt.h. W= 1'.485' IF IS mtergstmg to note that the l/eeak very useful for the numerical collapses because they intro-
position of this scaling function occurs at a V"."IUQL ._duce large statistical errors. Moreover, when trying to check
:X“$<0~a5 (N)pposed~ to the case of the previous scaling,, collapses expressed by E(&9) and(32), the two inde-
functionsN;, Nj, andNjz. for which the peak position was pendent variables of the scaling function converge to zero
at u,L"">0. This indicates that the properties of the 1D, when the critical point is approached. Thus, such a collapse
2D, and 3D critical avalanches have Opposite shifts with ﬁ'Cannot be Checked fm:O Therefore, the interesting Sca|_
nite sizeL compared to the mscritical avalanches. ing equations are Eq$29), (30), (31), and(33).

To end with the analysis of the number of nonspanning The behavior of the scaling functions is, in some cases,
avalanches it is interesting to compare the functigp{ o) restricted by the normalization conditions. If scaling holds
with the approximate lower bouridP.,(6/c)] discussed in  for the whole range o§=1, ... L3, from Eq.(28), one can
Sec. lll, which is represented by a continuous line in Fig.write
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ing to the legend.

If 0<d,<3, by defining a new variabbe=sL %, for large ' _ - _
L, the above expression is transformed into the following The analysis 0D3; andD3_ is more difficult. According
integral: to the corresponding distribution relatiésee Table I, and

assuming the scaling hypothesis), (20), and(28), one can
write

L’(Ta’l)daf dxD,(x,uLl*)=1. (38) ~ ~
0 N3D3(s; o, L) =L 9N, (uLY")Dge(sL™ %, uL?)

—d3_\ I\ —dg_ v
For those distributions for which the integral converges, it is +L % Ng_(uL™)D3_(sL™%-,uL™),
necessary that,=1. We expect that this condition can be (39
applied to the cases @f;, D,, D3, andD3_ . In these four

cases, as can be seen in Figc)2the distributions show a \yhere we have taken into account the fact that for the sub-

marked decay in the two limits —0 ands—L% (Note  yitical 3D-spanning avalanches, =1 and they have a

that the plots have logarithmic scales and gt andDs—  fractal dimensiord,_ . Although it is possible to conceive a

correspond to the left-hand and right-hand peak®inre-  pEss treatment to separate the two contributions in(88),

spectively) For the distributiorD . the exponent,s. canbe  the hard numerical effort needed as well as the associated

larger than 1 since this distribution may extend into the smalktatistical uncertainties make it very difficult. In the next sec-

s region and convergence of the integral in E88) cannot  tjon we will show that it is enough to analyze the behavior of

be ensured. the k moments of the distributions to obtain the critical ex-
Figure 12 shows a 3D view of the collapses correspondponents_

ing to D;(sL™%,u,LY). The lines show three cuts of the

scaling surface corresponding tplL'"=1.21, u,LY"=0,

andu,L*"=—0.56. The collapses of the curves correspond- VII. SCALING OF THE Kk MOMENTS

ing to the different sizes are satisfactory within statistical OF THE DISTRIBUTIONS

error. The only free parameter in this casedis The best Besides the scaling of the entire distributiddg(s;o,L)

estimation renders a fractal dimensidp=2.78-0.05 for  that exhibit large statistical errors, it is also useful to analyze

such 1D-spanning avalanches. Similar behavior is obtaineghe pehavior of theik moments. For those distributions for

for D,(sL™9,u,LY"). Although, in principle, we have con- which the integral in Eq(38) convergegand, thereforer,

sideredd; as a free parameter, the best collapses are obtaine€1), we can check the corresponding scaling functions. By

with the same valuel;=2.78 as that obtained for the 1D- using a similar argument as that used for deriving &),

spanning avalanches. we get
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L3

(Sk>a(a,L)=;1 SD(s;0,L) =LKWk (uLY), (40)
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the lines show the best fits of E¢§44) and its derivative air
=0c.

used in this case. Similar scaling plots can be obtained from
the analysis of the second moments with the same set of
scaling exponents.

As regards the scaling ®f5(s)3;, multiplying expression
(39 by s, summing over the whole range, and imposing
condition (37), one obtains

Na(s)a=L " 9Na(uL) W3 (uL?”)
+L%-Ng_(uL*¥™)¥i_(uL'). (42

This equation can be separated by a DFSS analysis. Figures
14(a) and 14b) show the collapses corresponding\g, W 3.
andN;_W3_, respectively. The only free parameter in this
scaling plot is the fractal dimension of the subcritical 3D-

spanning avalanches. The best valuedis =2.98+0.02.
Note that the shape of the scaling function in Fig(l4

As an example of such collapses, we have indicated the bdnadicates that, in the thermodynamic limit, the critical 3D-
havior of the scaled first moment of the distribution Spanning avalanches only contribute to the first-moment for
D,(s;o,L) on the horizontal plane of Fig. 12. In this case theo=o0.

collapses are obtained without any free parameter.

On the other hand, the shape of the scaling function in

As will be seen later, it is more convenient to analyze theFig. 14@ indicates that, in the thermodynamic limit, the

scaling behavior of the productd,(s),. By using Egs.
(15) and(40), one gets

N (0, L)(s5) (o, L) = LO*N _(uLY) Wk (uL).
(41)

subcritical 3D-spanning avalanches may contribute to the
first moment in the wholai,<0 range. Note that, as re-
vealed by the inset in Fig. 14), the behavior in the region of
negative values ofi,L*" is Ng_W3i_~(|u,y|LY")Ps~ with
B3-=0.024+0.012. This numerical value is compatible
with the equation

Figure 13 shows the collapses corresponding to the first mo-

ment (average sizeof D; andD,. No free parameters are

Bz-=v(3—d3_). (43
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T TABLE Ill. Summary of the values of the exponents obtained
2.0 - from the simulations in this work. We have indicated the names of
L 4 the exponents from Ref. 13, whose definition does not exactly cor-
15} _ respond to our nomenclature between parentheses.
G 10 [ A Exponent Best value Values in Ref. 13
L ] v 1.2+0.1 1.41£0.17
S"’ 05 F i 0 0.10+0.02 0.15-0.15
< Tl | - 2.02+0.04
0.0 d¢ 2.78+0.05 2.98:0.43 (=1lov)
Vo ' | | | | ds_ 2.98+0.02
) ' ' ' ' ' 7 1.65+0.02
1.0 15 2.0 25 3.0 3.5 4.0 g 0.15:0.08
O Bs- 0.024£0.012 0.035:0.032 =)

lyzed in the next section, such a term will be responsible for
the order parameter behavior in the thermodynamic limit.

The analysis of the moments of the nonspanning ava-
lanches presents extra difficulties, as occurred in the analysis
of their number. The expected behavior is

Npd o, L)($)nd o, L)

— L0n$+(l+ k— T”$)dn$Nn$(u Ll/v)q,ﬁg:(u Ll/v)

N

L Am (o,L)

+ L3N ped o) K 0). (44)

As explained previously, the DFSS cannot be applied,
given the different dependence oY’ and o of the two
terms in Eq.(44). The possibility of using a trial function is
now more difficult since we cannot make a straighforward
hypothesis on the shape ®#_.. In order to fit the value of
Tne @Ndd,. We can analyze the dependence ofkimoment
(for k=2 andk=3) and its derivatives with respect to at
o=o0. (u=0). Data are shown in Figs. (& and 15b) with
log-log scales. The almost perfect power-law behavior for
different values ok and for the derivatives indicates that the
second term in Eq44) plays no role ino. This is because
the exponent of the first term is much larger than 3. Indeed,
the best fits are obtained witl,.=d;=2.78+0.05 and
The= 1.6520.02 which render large values of the exponent
of the first term &5.8). Similar fits can be obtained from
higher moments with the same values of the exponeépts
and 7. .

L*Am (o,L)

LI/V VIIl. MAGNETIZATION DISCONTINUITY

2
FIG. 16. (a) Behavior of the total contribution of the spanning
avalanches to the magnetization jump as a functionr.ofb) Scal-
ing of Amg by considering the 1D-, 2D-, and the critical 3D-

In this section we discuss the behavior of the discontinu-
ity Am in the magnetization of the hysteresis loop. We would
like it to behave as an order parameter. For large systems, it
. ~_is clear that only spanning avalanches may produce a discon-
spanning avalanches. Note the lack of collapse for the regioy, iv in the magnetization. We can evaluate the total aver-
u,L¥"<0. (c) Scaling of Amg by considering the subcritical 3D- AT -

. ._age magnetization jumAmg due to the contribution of all
spanning avalanches. Note the lack of collapse for the reglor,gh nnin lanchésD, 2D, 2, and 3-):
u,L¥~0. Symbols indicate the system sizes according to the leg- € Spanning avalanc ’ , L, a ):
end.

2
Ams:ENs<S>s- (45)
This hyperscaling relation, when introduced into E4_2),
results in a second term that grows with. As will be ana- Figure 1&a) shows the behavior af m versuso for differ-
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ent system sizes. According to the scaling analysis in th@uch exponents are independentsofindL in a very large

previous sectionAms will behave as region around the critical point both far> o, and <o
oy 0+d—3rR Uy Yo |~ " simultaneously. Such an achievement has not been possible
Amg(o,L)=2{L [N2 (L)W (UL™") + Na(uL™) in previous analyses, even with larger system sizes. The rea-

son is that some of the contributions we have identified
(namely 3- and nsQ, which reduce finite size effects, were
d3_ 3] v v previously neglected.
L Ns- (ULTWs- (UL} (46) In Table Il we also indicate previous estimations of the
This equation tells us thatm will display a mixed scal- exponents found in the literatut® The comparison is quite
ing behavior. The first term in Eq46) accounts for the con- satisfactory. Let us analyze the eight exponents:
tributions of the 1D-spanning, 2D-spanning, and critical 3D- (1) Although the value o does not fall within the error

spanning avalanches. We can define an expofgiso that  bars in Ref. 13, we have already argued that the exact defi-
nition of the scaling variablel used for the collapses may

Be _ introduce some deviations in this value. By using we
v (6+di=3). 47 obtainy=1.14 and usingi; we obtainv=1.4.

This relation is the same relation that other authors have (2)AS regardsy our value is in agreement with the value
called “violation of hyperscaling.**322From our best es- previously reportetf (we would like to note that in Ref. 13,
timations of@, v andd;, we obtaing,=0.15+0.08. the authors also report a value of 0.818.015 probably due

At this point, it is interesting to compare Eq@l3) and 0@ misprini. The fact that this exponent is nonzero implies
(47). We would like to note that we could also have intro- that there are infinite spanning avalanches at the critical point
duced an exponert’ that would transform Eq43) into an i the thermodynamic limit. .
equation similar to Eq(47). Nevertheless, the quality of the  (3) AS regardstg, to our knowledge there are no previ-
scalings of the numbers of 3D-spanning avalanches in FigPus finite-size scaling analyses of the number of non-

10 shows that such an exponefilt is either zero or very SPanning avalanches. .
small. Moreover, an analysis of the behavior "nbg for (4) Concerningds andds_, the numerical values are con-
' ’ - sistent with the valuel;=2.98+ 0.43 estimated previoust.

1lv : : I _
uL™——c reveals an exponential drift versu;_=1, \yo ghall note that this previous estimation was obtained
which reinforces the idea that there is no need for an hypefrom the analysis of the distributions of nonspanning ava-
scaling exponeng”. Note that a valu@’ >0 implies that the  |anches. It should therefore correspond to dynd not to
number of subcritical 3D-spanning avalanches-Q3will be o1 4. (which corresponds to the subcritical 3D-spanning
infinite in the thermodynamic limit. On the other hand, OUr avalanches Note also that the difference between and
assumption thap’ =0 indicates thaN;_ behaves as a step . gyggests that there might be real physical differences

XWH(ULY) + Nao(uL™) W5 (uLt™)]

function in the thermodynamic limit. between such two kinds of avalanches. The possibility of
By inserting Eqgs.(43) and (47) into Eq. (46) one can istinguishing them in the numerical simulation will be stud-
easily read the mixed scaling behavioroing: ied in a future work.
Amg(a, L)L =B/ "D (uLY) + L= Fa- 1"’ (uLY"), (48) (5) The exponentr,s., according to our definitions, de-

scribes the scaling behavior of the distribution of critical
where 8./v=0.12 andB;_/v=0.02. ® is a scaling func- nonspanning avalanches. Previous measurements of a similar
tion with a peaked shagé corresponds to twice the sum of exponent have analyze, without distinguishing between
the scaling functions in Figs. 18, 13(b), and 14b)] and®' critical (nx) and noncritical(nsO nonspanning avalanches
is twice the scaling function in Fig. 1d). Consequently, in and have not considered the fact that the system is finite. We
the thermodynamic limit, only the second term associate¢an estimate what the value of an effective expongptwill
with the subcritical 3D-spanning avalanches will contributebe for the distribution of nonspanning avalanches for very
to the magnetization jumforder parametgr For finite sys- large systems. From E@44), takingk>1 and large values
tems, the first term may affect the scaling of the data close tof L, only the first term in the sum survives, so that
o given the peaked shape @.

This behavior can be observed in Figs(d6and 16c),
where the two possible scalings show the breakdown of the
collapse foru,LY*<0 when using the exponeit,/» and X WK _(uLy. (49)
the breakdown of the collapse fasLY*=0 when using the e
exponentBs_/v. The larger the system, the better will be on the other hand, in the same limit, the analysis of [26)
the data collapse in Fig. 1§ and the worse will be the renders
collapse in Fig. 1@).

an( O-)<Sk>ns( 0—) = L0n$+(1+kf TnS)dinSﬁ(u Ll/V)

_1 3%
IX. DISCUSSION Npg(0) =L Npsd o). (50)

Table Il shows a summary of the exponents that charac€ombining the last two equations, we get an estimation for
terize the avalanche numbers and distributions obtained frorthe pseudoscaling behavior of thkenoment of the nonspan-
our numerical simulations. We would like to point out that ning avalanches:
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N L1 the system size is increased. Avalanches are classified as be-

k Ot (1+k—7ng)ds—3 nec(U ) k v i i i i

(s o)=L nse) Af - WUy, ing nonspanning, 1D-spanning, 2D-spanning, or 3D-
Npsd o) spanning. Furthermore, we have shown that the 3D-spanning

(51)  avalanches must be separated into two classes: subcritical
3D-spanning avalanches with fractal dimensiby =2.98
and critical 3D-spanning avalanches with fractal dimension
d;=2.78, as the 1D- and 2D-spanning avalanches. Nonspan-
ning avalanches occur for the whole rangecof We have
'also proposed a separation between critical nonspanning ava-
lanches and noncritical nonspanning avalanches in order to
obtain good finite-size scaling collapses. The noncritical non-
panning avalanches are those whose size is independent of
e system size and whose number scalds®aghe critical
nonspanning avalanches also have a fractal dimendjon
=2.78.
The second important result is the scenario for the behav-
in the thermodynamic limit: Below the critical point,
there is only one subcritical 3D-spanning avalanche, which is
responsible for the discontinuity of the hysteresis loop. Fur-
thermore, at the critical point there are an infinite number of
) L . . 1D-, 2D-, and 3D-critical spanning avalanches.

Finally, it is interesting to compare the behavior of span-— £ finite systems, the six different kinds of avalanches
ning avalanches, with the problem of percolatfdrin per- can exist above exéctly at and belawy. The finite-size
coIatipn, t_he number of percolgting c_Iusters behaves as a St%%aling analysis ,We have performed has also enabled us to
function, in the thermodynamic limit fod<6, exactly as  .,mnare different scaling variablaswhich measure the dis-
Ns_ . The order parameter is, in this case, the probability fqrtance between the amount of disorder in the systemnd

a site to belong to the percolating cluster. However, this igne critical amount of disorder,. The best collapses are
precisely what we are evaluating by the function . . -4 using the variable,= (o — o)/oo+ Al (o — )/

Nz_(s)3_ /L which is the second term it6) and is the o2 with A=—0.2.

only reIeyant term in the thermody_namm limit. As occurs in " o1 the analysis presented in this paper is restricted to
percolation, the hyperscaling relatigd3) amongBs—, v, e analysis of the numbers and distributions of avalanches
andds_ is fulfilled since only one infinite avalanche contrib- integrated along half a hysteresis loop. Our analysis of the
utes to the order parameter for— o from below. More- 501306 magnetization discontinuityn starts from the hy-
over, in the percolation problem faf>6,™ the number of  ,yiaqjs that only spanning avalanches may contribute to
percolating clusters exhibits, besides the step function, ag,. 5 discontinuity. However, as a future study, we suggest
extra 5-function singularity at the percolation threshold. In 5 the measurement of correlations in the sequence of ava-
our case(3D GRFIM) we also have such a contribution at |5ches and the analysis of non-integrated distributions may
o=o¢, which we have identified as 1D-, 2D-, and critical o\04| details of the singular behavior at the critical field

3D-spanning avalanchgthe first term in Eq(46)]. The ex-  £qrjnstance, nonspanning avalanches could show a tendency
istence of such an infinite number of avalanches exactly accumulate irH., in the thermodynamic limit. This could
c .

o¢ (the number of which grows as”) implies the break- change some of the conclusions reached in this work.
down of the hyperscaling relatiofi.= »[3—(6+dy)]. As a final general conclusion we have shown that it is not
necessary to simulate very large system sizes to estimate the
X. SUMMARY AND CONCLUSIONS critical exponents for this model. In order to identify the
I@if‘ferent kinds of avalanches it may even be better to analyze
all systems with larger statistics.

If one approximatesN o) by N,o.) and imposes
(sK) e~ L~ (et k= 1digk(y L1 it is possible to deduce that
the effective exponent is.g= 7h+ (3— 6,)/d; . From our
numerical estimations of the different exponents in Table I
one obtainstz=2.00+0.06. This value is in very good
agreement with the value 7,4=2.03-0.03 found
previously'® Nevertheless, we would like to point out that
according to our analysis, such an exponent is not a reg
critical exponent and, therefore, will depend erfor finite
systems as has been found previodSly.

(6) As regards the values ¢, and B3 we would like to
note that previous analyses have not identified the two cony,
tributions toAmg. It is therefore not strange that different
values have been obtained previously: G-D7072 0.0
+0.431 0.035+-0.0281 The larger the system, the closer
the effective exponent becomesfg_ .

In this paper we have presented finite-size scaling analys
of the avalanche numbers and avalanche distributions in th&"
3D-GRFIM with metastable dynamics. After proposing a
number of plausible scaling hypotheses, we have confirmed
them by obtaining very good collapses of the numerical data We acknowledge fruitful discussions with LI. Masa and
corresponding to systems with sizes upLte 48. A. Planes. This work has received financial support from

The first result is that, in order to obtain a good descrip-CICyT (Spain, Project No. MAT2001-3251 and CIRIT
tion of the numerical data, one needs to distinguish betwee(Catalonia, Project No. 2000SGR00025. F.J.P. also ac-
different kinds of avalanches that behave differently wherknowledges financial support from DGICyT.
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