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Two-dimensional clusters of liquid 4He
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The binding energies of two-dimensional clusters~puddles! of 4He are calculated in the framework of the
diffusion Monte Carlo method. The results are well fitted by a mass formula in powers ofx5N21/2, whereN
is the number of particles. The analysis of the mass formula allows for the extraction of the line tension, which
turns out to be 0.121 K/Å. Sizes and density profiles of the puddles are also reported.
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I. INTRODUCTION

In recent years, a great deal of work has been devote
studying quantum liquids in restricted geometries.1 One im-
portant feature of these systems is that their internal struc
becomes more easily observable than in bulk liquids du
the restricted motion of the particles in the confining pote
tial. Among these systems the study of quantum films
received particular attention. They consist of liquid heliu
adsorbed to a more-or-less attractive flat surface. In 19
Bretz et al.2 observed the adsorption of4He onto the basa
plane of graphite. In the last few years, adsorption proper
of helium on different substrates such as carbon, alkali
alkaline-earth flat surfaces, carbon nanotubes, and aero
have become a fertile topic of research.

The structure and growth of thin films of4He adsorbed to
a substrate was studied by Clementset al.3 employing the
optimized hypernetted-chain Euler-Lagrange theory with
alistic atom-atom interactions. It turns out that films with lo
surface coverages, where all atoms cover the surface w
thickness corresponding to a single atom, can be appr
mated reasonably well by a two-dimensional~2D! model. In
connection with these systems, an interesting question n
rally arises as how physics depends on the dimensionalit
the space.

The homogeneous 2D liquid has been studied using
ferent theoretical methods, such as molecular dynamics4 and
quantum Monte Carlo simulations with both Green
function5 or diffusion6 techniques. The inhomogeneous ca
was studied by Krishnamachari and Chester,7 who used a
shadow variational wave function to describe 2D puddles
liquid 4He. In this work we report energies and density p
files of puddles calculated within the diffusion Monte Car
~DMC! method. Our main objective is to give an accura
estimate of the line energy or the line tension of the
liquid 4He. As atom-atom interactions we have used the
vised version of the Aziz potential dubbed as HFD-B~HE!.8

This potential has been used to study ground-state prope
of 3D bulk 4He and3He,9,10 within the DMC framework, and
0163-1829/2003/68~22!/224514~5!/$20.00 68 2245
to

re
to
-
s

3,

s
d
els

-

a
i-

tu-
of

f-

e

f
-

-

ies

it has proved to accurately reproduce the ground-state p
erties of both liquids at zero temperature.

The trial wave function used for the importance sampli
in the DMC calculation is introduced in Sec. II, where th
variational Monte Carlo~VMC!, results for this wave func-
tion are also reported. A brief explanation of the DMC tec
niques used in the present paper is presented in Sec
Section IV contains the DMC results and their analysis
terms of a mass formula in 2D. The line tension is extrac
from this mass formula. Properties characterizing
puddles, such as the density profiles, are discussed in Se
Finally, the main conclusions are summarized in Sec. VI.

II. VARIATIONAL GROUND-STATE ENERGIES

To study a system ofN 4He atoms in two dimensions w
start from the following trial wave function:

FT~R!5)
i , j

expF2
1

2 S b

r i j
D n

2
a2

2N
r i j

2 G , ~1!

written in the same way as in the 3D case.11 The coordinate
R indicates the set of coordinates of all the partic
$r1 ,r2 , . . . ,rN%, while r i j stands for the interparticle dis
tance, r i j 5ur j2r i u. The trial wave function contains th
simple McMillan form12 to deal with the very short-rang
part of the interaction and the translationally invariant part
a harmonic oscillator~HO! wave function with parametera
to roughly confine the system.

In our calculations the value\2/m4512.1194 K Å2 has
been employed for the atom mass and the parametersb andn
have been fixed to the values 3.00 Å and 5, respectively,
same values as in 3D calculations. The variational search
thus been restricted to the HO parametera, whose optimal
value is given in Table I. The expectation value of the Ham
tonian, as well as the separate contributions of kinetic a
potential energies, are given in the same table for pudd
with N atoms. It can be seen that the total energy results fr
an important cancellation between kinetic and potential
©2003 The American Physical Society14-1
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ergies, which is in fact larger than in the 3D case. Let
recall that in 3D bulk, the energy per particle results fro
adding' 14 K of kinetic energy with'221 K of potential
energy. In 2D, both kinetic and potential contributions a
very close to each other, which makes the calculation v
delicate.

In the last column of Table I the VMC results of Krish
namachari and Chester7 are reported. As compared with the
results, our calculations provide smaller binding energies
spite of the fact that the interaction used in Ref. 7 is an ol
version of the Aziz potential, which tends to underbind t
systems. In fact, the shadow wave function used in Re
contains more elaborate correlations not present in
simple trial wave function. The VMC energy for the bu
system corresponds to the saturation densityr0
50.04344 Å22, taken from the DMC calculation of Ref. 6

We have also performed calculations using a different t
wave function, replacing the translationally invariant Gau
ian part by an exponential one—i.e.,

FT~R!5)
i , j

expF2
1

2 S b

r i j
D n

2
a

2
r i j G , ~2!

expecting that this larger tail in the wave function will resu
in more binding. Actually, we do not find significant diffe
ences for small values ofN. For instance, in the caseN58,
using the same values forb andn as before, we getE/N5
20.2178(5) K, T/N51.266(2) K, and V/N5
21.484(2) K for a50.035 Å21. When the values ofb, n
anda are optimized, we obtain a slightly larger binding e
ergy, E/N520.2267(8) K for b53.04 Å, n55.0, anda
50.035 Å21. For greater values ofN, the GaussianAnsatz
tends to provide more binding than the exponential. For
ample, with the exponentialAnsatz, for N516 we getE/N
520.1816(7) K fora50.023 Å21, and optimizing the dif-
ferent parameters one getsE/N520.2514(6) K, with b
53.04 Å. In conclusion, the Gaussian wave function see
appropriate to be used as importance sampling in the D
calculations.

TABLE I. Variational results for the ground-state energy p
particleE/N of 2D 4He puddles of various cluster sizes. The co
fining HO parametera is given in Å21 and all energies are in K
The expectation values of the kinetic and the potential energies
also displayed. The column labeled KC refers to the VMC result
Ref. 7.

N a E/N T/N V/N KC

8 0.1565 20.2239~2! 1.3003~6! 21.5242~5! —
16 0.129 20.3510~2! 1.7354~6! 22.0864~5! 20.380~8!

36 0.094 20.4532~4! 2.031~3! 22.484~3! 20.471~7!

64 0.073 20.4961~7! 2.159~2! 22.655~2! 20.528~5!

121 0.054 20.5241~6! 2.223~2! 22.747~2! 20.570~7!

165 0.047 20.5328~3! 2.289~1! 22.822~1! 20.602~7!

512 0.0266 20.5493~5! 2.282~3! 22.831~3! 20.621~2!

` 0.0000 20.6904~8! 4.312~2! 25.003~1! —
22451
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III. DIFFUSION MONTE CARLO GROUND-STATE
ENERGIES

Quantum Monte Carlo~QMC! methods provide the exac
ground-state energy of a boson system, except for statis
errors. These techniques solve numerically the Schro¨dinger
equation by means of a statistical simulation. They have b
widely described in the literature; hence we briefly rec
here the main ideas, referring the reader to, for example,
13 for a more detailed description on QMC techniques.
this work we use the DMC method to solve the Schro¨dinger
equation in imaginary time (t5 i t ) for the function

f ~R,t!5FT~R!C~R,t!, ~3!

whereR represents all the particle coordinates and is usu
called ‘‘the walker,’’ C(R,t) is the wave function of the
system, andFT(R) is the previously determined trial wav
function ~Sec. II!, used here as importance sampling. It
convenient to write the solution of the time-depende
Schrödinger equation in the following form:

f ~R,t1Dt!5E dR8G~R,R8,Dt! f ~R8,t!, ~4!

whereG is the time-dependent Green’s function and is fo
mally written as

G~R,R8;t!5^Rue2HtuR8&, ~5!

where H is the Hamiltonian of the system. The functio
G(R,R8;t) represents the amplitude probability for the tra
sition from an initial stateR8 to a final oneR in a timet. In
the limit t→`, Eq. ~4! gives the exact ground-state wav
function. Thus, knowingG for infinitesimal time stepsDt,
the asymptotic solution for large timesf (R,t→`) can be
obtained by solving iteratively the above equation. To t
end, the exponential entering Eq.~5! is approximated to
some fixed order inDt. Both first- and second-order9 propa-
gators have been implemented in the present work and
of them provide the same extrapolated energy, within sta
tical errors, using the trial functionFT of Eq. ~1! as guiding
function. Our simulations have been carried out with a po
lation of typically 400 walkers. As usual, some runs are fi
done to establish the asymptotic region of the short-ti
propagator; then several values of the time step have b
used, and finally a fit, either linear or quadratic, has be
carried out to obtain the extrapolated energy. For exam
for N516 the time steps 0.0001, 0.0002, 0.0003, and 0.0
K21 have been used to perform the extrapolation. In gene
the statistical error is of the order of the time step error in o
calculations.

In Table II we present the results of our linear DMC ca
culations of the total energy per particle for puddles conta
ing N atoms. We have also reported and reproduced the
sults of the binding energy per particle of homogeneo
2D liquid 4He at the equilibrium density r0

DMC

50.04344(2) Å22, obtained in Ref. 6, where the same ve
sion of the Aziz potential was used. For this case, the sim
lations have been carried out for a system of 64 atoms w
periodic boundary conditions, for which the errors due

re
f
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TABLE II. Energy per particle~in K! for 2D 4He puddles for various cluster sizes obtained with the DM
algorithm.

N 8 16 36 64 121 `

E/N 20.2613(4) 20.4263(4) 20.578(2) 20.658(4) 20.710(2) 20.899(2)
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finite-size effects are smaller than the statistical ones.5 We
have also performed quadratic DMC calculations for so
puddles and found results which are compatible with
linear DMC ones within their error bars. For example, t
quadratic algorithm providesEquad520.2612(2) K for N
58 and20.652(4) forN564. As expected, the DMC re
sults lower the corresponding energies obtained by VMC
ther with our simple variational wave function or with
shadow wave function,7 by up to ;25% in the case of the
bulk system. It is worth mentioning that the final DMC resu
for the energy does not depend on the trial wave function
a boson system like the studied here, a fact that in the pre
case has been numerically checked for the Gaussian an
exponentialAnsätze, Eqs.~1! and~2!. Indeed, for boson sys
tems the DMC method provides exact ground-state energ
within statistical errors.

IV. ENERGY AND LINE TENSION

For a saturating self-bound system, the ground-state
ergy per particle can be expanded in a series of powers o
variableN21/D, whereN is the number of constituents andD
is the dimensionality of the space. This is the well-know
mass formula, which in the present case is written

E~N!/N5«b1« lx1«cx
21•••, ~6!

with x5N21/2. The two first coefficients of this expansio
are the bulk energy«b and the line energy« l , out of which
the line tensionl is defined by 2pr 0l5« l . Here r 0 is the
unit radius, defined as the radius of a disk whose surfac
22451
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equal to the inverse of the equilibrium density of the 2D bu
liquid—i.e., r0pr 0

251. Finally, «c is the so-called curvature
energy.

Our calculated ground-state energies~Tables I and II! are
plotted in Fig. 1 as a function ofN21/2. One can see that th
differences between our VMC and DMC energies incre
with the number of atoms in the puddle. This clearly mirro
the simplicity of the trial wave function, which could b
improved by including, for example, three-body correlation
Nevertheless, this trial function is adequate for the imp
tance sampling in the DMC calculation.

We have fitted these energies to a parabolic mass form
like Eq. ~6!. The coefficients of the fit are given in Table II
together with the deduced line tension. Notice that the co
ficient «b is identical, within statistical errors, to the bul
energy per particle of Table II. In fact, thex2 of the fit is very
small, x255.731026. Regarding the line tension and de
spite using a different version of the Aziz potential and
different trial function, we notice that our VMC estimate
rather close to the one reported in Ref. 7,l50.07 K/Å.
However, both VMC results are remarkably different fro
the DMC line tension,l50.121 K/Å.

To stress the curvature effect we have also plotted in
figure a straight line between theN58 and bulk DMC val-
ues. A linear fit of the DMC energies gives coefficients«b
520.885 K and« l51.80 K, which are appreciably differ
ent from the previous ones. The bulk energy extrapola
from this linear fit differs from the directly calculated valu
and the corresponding line energy is closer to the variatio
one, thus giving a bad estimation for the linear tension. In
cases, the line energy coefficient is approximately min
twice the volume energy term, similarly to the 3D case,11 and
t to
ght
FIG. 1. Energies per particle~in K! of N-atom
puddles as a function ofN21/2, obtained from our
VMC ~squares! and DMC ~circles! calculations.
The interaction used is Aziz HFD-B~HE!. Dashed
and solid lines correspond to a least-squares fi
these energies. The dot-dashed line is a strai
line between theN58 and bulk DMC values.
4-3



.

le
tu
ec
te

al
ca

o
in
s

ne
a
ith
e

d
th
te
n
c
t

ra
b
i

ra
o

re
es
en
ic
s
he
an

v
a

3

A
tio

its
een

-
les,

e

e or
ure
ld
e

n-

ble
e
us
rm

the
s

en-

d

f

s
es
line

ized

A. SARSA, J. MUR-PETIT, A. POLLS, AND J. NAVARRO PHYSICAL REVIEW B68, 224514 ~2003!
therefore one expects curvature effects to be important
both VMC and DMC cases the extracted«c is negative—i.e.,
the binding energy is a convex function ofx as it also hap-
pens for the 3D clusters.11 This is in contrast with the value
of «c reported in Ref. 7 which was positive but rather smal
than ours in absolute value and with larger error bars. Ac
ally, as argued in Ref. 11 for 3D clusters, one would exp
the curvature correction to the energy of a circular 2D clus
to be positive. Therefore, one should take the extracted v
for «c with certain caution and not to emphasize its physi
significance. However, it turns out that the value and sign
«c are stable against different possible fits—e.g., chang
the number of points to build the fit or using a cubic ma
formula. In any case the two first coefficients«b ,« l are quite
robust against all performed fits. As an illustration, if o
takes out the bulk point, the predicted bulk energy per p
ticle and surface tension are equal to the reported ones w
1% and 5%, respectively. Therefore, the extracted line t
sion should be reliable, as also happens for 3D clusters.11

V. DENSITY PROFILES

The calculation of observables given by operators that
not commute with the Hamiltonian poses new problem to
DMC method. After convergence, the walkers are distribu
according to the so-called mixed probability distributio
given by the product of the exact and the trial wave fun
tions. Therefore averaging the local values of the opera
does not give the exact expectation value unless the ope
commutes with the propagator. The result obtained
straightforward averaging is the mixed estimator which
correct up to first order in the trial wave function. Seve
options have been proposed in the literature in order to
tain unbiased~trial function independent and exact! values.
In this work we have used the so-calledforward or future
walking technique13 to calculate unbiased, also called pu
density profiles. The key ingredient to correct the mixed
timator is to include as a weight in the sampling the quoti
Fexact(R)/F trial(R) for each walker, given by the asymptot
number of walkers. Several algorithms have been propo
in order to compute this quantity. In this work we use t
algorithm developed in Ref. 14 that constitutes a simple
efficient implementation of the future walking method.

The pure DMC estimates of the density profiles for se
eral puddles are plotted in Fig. 2. The figure also contains
horizontal line which indicates the saturation density (r0

DMC)
of the homogeneous system. For the puddle containing
atoms, the VMC profile obtained from a GaussianAnsatz
@Eq. ~1!# is also shown for comparison as a dotted line.
one can appreciate in the figure, the process of optimiza

TABLE III. Coefficients ~in K! of a parabolic fit of the mass
formula, as given in Eq.~6!. The last column displays the deduce
line tension~in K Å21).

«b « l «c l

VMC 20.654~1! 1.41~1! 20.62~2! 0.083~1!

DMC 20.898~2! 2.05~2! 20.71~3! 0.121~1!
22451
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implied by the DMC method changes the profile reducing
thickness—i.e., producing a sharper surface. It can be s
that for the smaller clusters the central density is belowr0 ,
while for the larger values ofN shown in the figure the
central density is abover0 , indicating a leptodermous be
havior. One expects that, increasing the number of partic
the central density will approachr0 from above, as in the 3D
case.15,16 It is worth noticing the oscillating behavior in th
interior part of the density profile forN5121. It is difficult,
however, to decide whether these oscillations are genuin
are simply due to a poor statistics in evaluating the p
estimator. Unfortunately, to discard this last option wou
require an exceedingly long computing time, within th
scheme of this work.

The solid lines plotted in Fig. 2 are fits to our DMC de
sities provided by a generalized Fermi profile of the form

r~r !5
r f

F11expS r 2R

c D Gn . ~7!

The parameters defining the Fermi profile are given in Ta
IV together with the thicknesst and the root-mean-squar
~rms! radius ^r 2&1/2. We have checked that the rms radi
calculated within the DMC code and the one derived fo
the fit agree to better than 0.5%, except for theN5121 case,
where the difference is 1%. The rms radius grows with
number of particles asN1/2, as expected. Therefore it grow
faster than in 3D, in which case grows asN1/3. This behavior
allows for an alternative determination of the saturation d
sity by performing a linear fit to the relation

FIG. 2. Density profiles for4He puddles with various number o
atoms,N58 ~circles!, 16 ~squares!, 36 ~diamonds!, 64 ~triangles
up!, and 121~triangles down!, obtained from our pure estimator
for the linear DMC calculations. The solid horizontal line indicat
the saturation density of the homogeneous system. The dotted
is the VMC profile forN536 with a Gaussian trial function. The
figure also contains the fits to the data provided by a general
Fermi function, as explained in the text.
4-4
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^r 2&1/25A N

2pr0
. ~8!

The extracted value ofr0 from the mean-square radius r
ported in Table IV is 0.043 Å22, in good agreement with the
determination from the calculation for the homogeneous s
tem.

In the interval ofN considered, the thicknesst, defined as
the distance over which the density falls from 0.9 of its va
at origin to 0.1, is continuously increasing. However, as
finite value of the thickness for the semiinfinite syste
should define the asymptotic value oft, one expects that fo
larger puddles the thickness will probably have a maxim
and smoothly approach this asymptotic value, as happen
the 3D case.15 Finally, one also observes the asymmet
character of the density profiles with respect to the poin
which the density falls at half its value at the origin. This c
be appreciated by looking at the value ofn, which grows
with N and also to the increasing difference between
quantitiesR and ^r 2&1/2.

VI. SUMMARY AND CONCLUSIONS

In this work we have considered strictly two-dimension
systems of liquid4He, which are of course an idealization
a real quantum film. They are nevertheless interesting
cause their study can enlighten us as to the underlying st

TABLE IV. Parameters of a Fermi-profile fit to the density pr
files. All lengths are in Å andr f is in Å22. The parametern is
adimensional.

N r f R c n t ^r 2&1/2

8 0.03740 9.308 2.156 1.739 8.166 7.20
16 0.04204 13.38 2.656 2.284 9.580 9.18
36 0.04305 19.47 3.104 2.400 11.11 12.91
64 0.04386 26.68 3.783 3.111 13.09 16.68
121 0.04304 40.09 5.566 4.714 18.52 23.1
n-
ies
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hy
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ture of real quasi-2D systems. Of course, in the latter ca
one has to take also into account the interaction with
substrate, which basically provides a global attractive pot
tial. In the ideal 2D case, the suppression of the wave fu
tion component in the third dimension produces an inc
ment of the global repulsion between atoms, resulting i
smaller binding energy per particle and a decrease of
equilibrium density.17

The binding energies of two-dimensional4He clusters,
calculated by means of a diffusion Monte Carlo method,
well fitted by a mass formula in powers ofx5N21/2. The
analysis of the mass formula provides the main result of
paper—namely, the value of the line tensionl
50.121 K/Å, which significantly differs from the one ob
tained from a similar analysis of VMC data and the o
previously reported in the literature.7 The quadratic term of
the mass formula cannot be neglected and results in a n
tive value of the curvature energy as in the 3D case.11,16

However, the studied clusters may be too small to g
physical significance to this result.

The density profiles obtained with the pure estimator ha
been fitted by a generalized Fermi function, and the beha
of the rms radius and the thickness as well as the asymm
character of the profile as a function ofN has been discussed
However, calculations for larger puddles, which are out
the scope of the present paper due to limitations in comp
ing time, would be necessary to describe the completeN
dependence of the density profiles.
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