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The binding energies of two-dimensional clustgraddles of “He are calculated in the framework of the
diffusion Monte Carlo method. The results are well fitted by a mass formula in powsrs Kf *2, whereN
is the number of particles. The analysis of the mass formula allows for the extraction of the line tension, which
turns out to be 0.121 K/A. Sizes and density profiles of the puddles are also reported.

DOI: 10.1103/PhysRevB.68.224514 PACS nuni®er67.70-+n, 36.40—c, 61.464+w

I. INTRODUCTION it has proved to accurately reproduce the ground-state prop-
erties of both liquids at zero temperature.

In recent years, a great deal of work has been devoted to The trial wave function used for the importance sampling
studying quantum liquids in restricted geometrieg@ne im-  in the DMC calculation is introduced in Sec. Il, where the
portant feature of these systems is that their internal structuréariational Monte CarldVMC), results for this wave func-
becomes more easily observable than in bulk liquids due t§on are also reported. A brief explanation of the DMC tech-
the restricted motion of the particles in the confining poten-niques used in the present paper is presented in Sec. IIl.
tial. Among these systems the study of quantum films ha$ection IV contains the DMC results and their analysis in
received particular attention. They consist of liquid heliumterms of a mass formula in 2D. The line tension is extracted
adsorbed to a more-or-less attractive flat surface. In 1974tom this mass formula. Properties characterizing the
Bretz et al? observed the adsorption dfHe onto the basal Ppuddles, such as the density profiles, are discussed in Sec. V.
plane of graphite. In the last few years, adsorption propertiekinally, the main conclusions are summarized in Sec. VI.
of helium on different substrates such as carbon, alkali and
alkaline-earth flat surfaces, carbon nanotubes, and aerogels ||. VARIATIONAL GROUND-STATE ENERGIES
have become a fertile topic of research. . . ] )

The structure and growth of thin films 6He adsorbed to To study a system dfl "He atoms in two dimensions we
a substrate was studied by Clemegtsal® employing the Start from the following trial wave function:
optimized hypernetted-chain Euler-Lagrange theory with re- , 5
alistic atom-atom interactions. It turns out that films with low (R =]] ex;{ B) B “_rg
surface coverages, where all atoms cover the surface with a T i< rij 2N Y
thickness corresponding to a single atom, can be approxi-
mated reasonably well by a two-dimensiof2D) model. In  written in the same way as in the 3D cds@he coordinate
connection with these systems, an interesting question natir indicates the set of coordinates of all the particles
rally arises as how physics depends on the dimensionality dff;,r, ... .rn}, While r; stands for the interparticle dis-
the space. tance,rijzlrj—ri|. The trial wave function contains the

The homogeneous 2D liquid has been studied using difsimple McMillan formt? to deal with the very short-range
ferent theoretical methods, such as molecular dyndhaicd  part of the interaction and the translationally invariant part of
guantum Monte Carlo simulations with both Green’sa harmonic oscillatofHO) wave function with parametez
functior? or diffusiorf techniques. The inhomogeneous caseto roughly confine the system.
was studied by Krishnamachari and Che$terho used a In our calculations the valué?/m,=12.1194 K& has
shadow variational wave function to describe 2D puddles obeen employed for the atom mass and the paramietens v
liquid “He. In this work we report energies and density pro-have been fixed to the values 3.00 A and 5, respectively, the
files of puddles calculated within the diffusion Monte Carlo same values as in 3D calculations. The variational search has
(DMC) method. Our main objective is to give an accuratethus been restricted to the HO parametgrwhose optimal
estimate of the line energy or the line tension of the 2Dvalue is given in Table I. The expectation value of the Hamil-
liquid “He. As atom-atom interactions we have used the retonian, as well as the separate contributions of kinetic and
vised version of the Aziz potential dubbed as HF[HE).2  potential energies, are given in the same table for puddles
This potential has been used to study ground-state propertiegth N atoms. It can be seen that the total energy results from
of 3D bulk *He andHe,*°within the DMC framework, and an important cancellation between kinetic and potential en-
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TABLE |. Variational results for the ground-state energy per lll. DIFFUSION MONTE CARLO GROUND-STATE
particle E/N of 2D “He puddles of various cluster sizes. The con- ENERGIES

fining HO parameter is given in A” and all energies are in K. .
The expectation values of the kinetic and the potential energies are Quantum Monte CarléQMC) methods provide the exact

also displayed. The column labeled KC refers to the VMC results oground-state energy of a boson system, except for statistical

Ref. 7. errors. These techniques solve numerically the Stihger
equation by means of a statistical simulation. They have been

N @ E/N TIN VIN KC widely described in the literature; hence we briefly recall
here the main ideas, referring the reader to, for example, Ref.

8  0.1565 —0.22392) 1.30036) —1.52425) — 13 for a more detailed description on QMC techniques. In

16 0129 -0.351Q2) 1.73546) —2.08645) —0.3808)  this work we use the DMC method to solve the Sctinger
36 0.094 —045324) 2.0313) —2.4843) -04717)  equation in imaginary times=it) for the function

64 0.073 —0.49617) 2.1592) -—2.6552) —0.5285)

121 0054 —0.52416) 2.2232) -2.7412) -0.57Q7) f(R,7)=®(R)¥(R,7), )
165 0.047 —0.53283) 2.2891) —2.8221) —0.6027)
512 0.0266 —0.54935) 2.2823) —2.8313) —0.6212)
o0 0.0000 —0.69048) 4.3122) —5.0031) —

whereR represents all the particle coordinates and is usually
called “the walker,” (R, ) is the wave function of the
system, andb+(R) is the previously determined trial wave
function (Sec. 1)), used here as importance sampling. It is

. L . convenient to write the solution of the time-dependent
ergies, which is in fact larger than in the 3D case. Let Usschradinger equation in the following form:

recall that in 3D bulk, the energy per particle results from

adding~ 14 K of kinetic energy with= —21 K of potential

energy. In 2D, both kinetic and potential contributions are f(R,T+AT)=f dR'G(R,R",AT)f(R",7), (4)
very close to each other, which makes the calculation very

delicate. whereG is the time-dependent Green’s function and is for-

In the last column of Table | the VMC results of Krish- mally written as
namachari and Chesfeare reported. As compared with their Ty
results, our calculations provide smaller binding energies, in G(R,R";7)=(Rle"""R’), 5
spite of the fact that the interaction used in Ref. 7 is an olde(m1ere H is the Hamiltonian of the system. The function
version of the Aziz potential, which tends to underbind theG(R,R’;r) represents the amplitude probability for the tran-
systems. In fact, the shadow wave function used in Ref. &ition from an initial statek’ to a final oneR in a time r. In

contains more elaborate correlations not present in OU o |imit 7 oo Eq. (4) gives the exact ground-state wave
simple trial wave function. The VMC energy for thg bulk function. Thus, knowindgs for infinitesimal time stepg\ 7,
system corresponds to the saturation densipy the asymptotic solution for large timd{R,7—>) can be

— 2 :
=0.04344 A’*, taken from the DMC_: calcu!atlon (_)f Ref. 6‘_ obtained by solving iteratively the above equation. To this
We have also performed calculations using a different tnalend the exponential entering E(F) is approximated to

wave function, replacing the translationally invariant Gauss—some fixed order ik . Both first- and second-ordepropa-

lan part by an exponential one—i.e., gators have been implemented in the present work and both
of them provide the same extrapolated energy, within statis-
tical errors, using the trial functio®; of Eq. (1) as guiding
' (2)  function. Our simulations have been carried out with a popu-
lation of typically 400 walkers. As usual, some runs are first
done to establish the asymptotic region of the short-time
expecting that this larger tail in the wave function will result propagator; then several values of the time step have been
in more binding. Actually, we do not find significant differ- used, and finally a fit, either linear or quadratic, has been
ences for small values di. For instance, in the cag¢=8, carried out to obtain the extrapolated energy. For example,
using the same values frand v as before, we geE/N= for N=16 the time steps 0.0001, 0.0002, 0.0003, and 0.0004
—0.2178(5) K, TIN=1.266(2) K, and V/N= K~! have been used to perform the extrapolation. In general,
—1.484(2) K fora=0.035 A"1. When the values ob, »  the statistical error is of the order of the time step error in our
and « are optimized, we obtain a slightly larger binding en- calculations.
ergy, E/IN=—-0.2267(8) K forb=3.04 A, v=5.0, and«a In Table 1l we present the results of our linear DMC cal-
=0.035 A" L. For greater values df, the Gaussiansatz  culations of the total energy per particle for puddles contain-
tends to provide more binding than the exponential. For exing N atoms. We have also reported and reproduced the re-
ample, with the exponentidnsatz for N=16 we getE/N sults of the binding energy per particle of homogeneous

1/b\”
(R =]1 EXF{—E(r—) _grij

i< i

= —0.1816(7) K fora=0.023 A%, and optimizing the dif- 2D liquid “He at the equilibrium density p5™©
ferent parameters one geE&N=—0.2514(6) K, withb =0.04344(2) A2, obtained in Ref. 6, where the same ver-

=3.04 A. In conclusion, the Gaussian wave function seemsion of the Aziz potential was used. For this case, the simu-
appropriate to be used as importance sampling in the DMCations have been carried out for a system of 64 atoms with
calculations. periodic boundary conditions, for which the errors due to
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TABLE Il. Energy per particlgin K) for 2D “He puddles for various cluster sizes obtained with the DMC

algorithm.
N 8 16 36 64 121 o0
E/N —0.2613(4) —0.4263(4) —0.578(2) —0.658(4) —0.710(2) —0.899(2)

finite-size effects are smaller than the statistical ohe%  equal to the inverse of the equilibrium density of the 2D bulk
have also performed quadratic DMC calculations for somdiquid—i.e., py7r3=1. Finally, ¢ is the so-called curvature
puddles and found results which are compatible with theznergy.

linear DMC ones within their error bars. For example, the  Qur calculated ground-state energi@ables | and I are
quadratic algorithm provide& .= —0.2612(2) K forN  plotted in Fig. 1 as a function &~ *2. One can see that the
=8 and—0.652(4) forN=64. As expected, the DMC re- differences between our VMC and DMC energies increase
sults lower the corresponding energies obtained by VMC eiwith the number of atoms in the puddle. This clearly mirrors
ther with our simple variational wave function or with a the simplicity of the trial wave function, which could be
shadow wave functiohby up to~25% in the case of the improved by including, for example, three-body correlations.
bulk system. It is worth mentioning that the final DMC result Nevertheless, this trial function is adequate for the impor-
for the energy does not depend on the trial wave function fotance sampling in the DMC calculation.

a boson system like the studied here, a fact that in the present We have fitted these energies to a parabolic mass formula
case has been numerically checked for the Gaussian and thige Eq. (6). The coefficients of the fit are given in Table lII,
exponentialAnsdze Egs.(1) and(2). Indeed, for boson sys- together with the deduced line tension. Notice that the coef-
tems the DMC method provides exact ground-state energieficient ¢, is identical, within statistical errors, to the bulk
within statistical errors. energy per particle of Table II. In fact, thé of the fit is very
small, x>=5.7x10 8. Regarding the line tension and de-
spite using a different version of the Aziz potential and a
different trial function, we notice that our VMC estimate is

For a saturating self-bound system, the ground-state erfather close to the one reported in Ref. \7+=0.07 K/A.
ergy per particle can be expanded in a series of powers of tHdowever, both VMC results are remarkably different from
variableN =P, whereN is the number of constituents apd ~ the DMC line tension\=0.121 K/A.
is the dimensionality of the space. This is the well-known To stress the curvature effect we have also plotted in the
mass formula, which in the present case is written figure a straight line between tié=8 and bulk DMC val-
ues. A linear fit of the DMC energies gives coefficiests
=—0.885 K ande;=1.80 K, which are appreciably differ-
ent from the previous ones. The bulk energy extrapolated
from this linear fit differs from the directly calculated value,
with x=N"%2 The two first coefficients of this expansion and the corresponding line energy is closer to the variational
are the bulk energy,, and the line energy,, out of which  one, thus giving a bad estimation for the linear tension. In all
the line tension\ is defined by Zrrgh=¢,. Herergy is the  cases, the line energy coefficient is approximately minus
unit radius, defined as the radius of a disk whose surface isvice the volume energy term, similarly to the 3D casand

IV. ENERGY AND LINE TENSION

E(N)/N=g,+eX+eX>+ - - -, (6)
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) 05 _ _ FIG. 1. Energies per particlgn K) of N-atom
= puddles as a function =%, obtained from our
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Z 0.6~ n The interaction used is Aziz HFD{BE). Dashed
m r T and solid lines correspond to a least-squares fit to
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TABLE llI. Coefficients (in K) of a parabolic fit of the mass v T T ' T
formula, as given in Eq(6). The last column displays the deduced
line tension(in KA™1). 0.04
€p g g¢ A
VMC —-0.6541)  1.411) -0.622)  0.0831) 0.03
DMC —0.8982) 2.052) —-0.71(3) 0.1211) g

therefore one expects curvature effects to be important. Ir
both VMC and DMC cases the extractegdis negative—i.e.,
the binding energy is a convex function »fas it also hap- 0.01
pens for the 3D clusters.This is in contrast with the value
of g, reported in Ref. 7 which was positive but rather smaller
than ours in absolute value and with larger error bars. Actu-  o.00
ally, as argued in Ref. 11 for 3D clusters, one would expect
the curvature correction to the energy of a circular 2D cluster
to be positive. Therefore, one should take the extracted value FiG. 2. Density profiles fofHe puddles with various number of
for &, with certain caution and not to emphasize its physicalatoms,N=8 (circles, 16 (squares 36 (diamonds, 64 (triangles
significance. However, it turns out that the value and sign ofip), and 121(triangles dowi, obtained from our pure estimators
e, are stable against different possible fits—e.g., changindpr the linear DMC calculations. The solid horizontal line indicates
the number of points to build the fit or using a cubic massthe saturation density of the homogeneous system. The dotted line
formula. In any case the two first coefficients, e| are quite is the VMC profile forN=36 with a Gaussian trial function. The
robust against all performed fits. As an illustration, if onefigure also contains the fits to the data provided by a generalized
takes out the bulk point, the predicted bulk energy per parFermi function, as explained in the text.
ticle and surface tension are equal to the reported ones within
1% and 5%, respectively. Therefore, the extracted line tenimplied by the DMC method changes the profile reducing its
sion should be reliable, as also happens for 3D clusters. thickness—i.e., producing a sharper surface. It can be seen
that for the smaller clusters the central density is betgw
V. DENSITY PROFILES while for the larger values oN shown in the figure the
) _ central density is abovg,, indicating a leptodermous be-
The calculation of observables given by operators that dg\avior. One expects that, increasing the number of particles,
not commute with the Hamiltonian poses new problem to thgne central density will approagh, from above, as in the 3D
DMC method. After convergence, the walkers are distributeg.55¢516 |t is worth noticing the oscillating behavior in the
according to the so-called mixed probability distribution jnterior part of the density profile fai=121. It is difficult,
given by the product of the exact and the trial wave func-nowever, to decide whether these oscillations are genuine or
tions. Therefore averaging the local values of the operatog e simply due to a poor statistics in evaluating the pure
does not give the exact expectation value unless the operatgstimator. Unfortunately, to discard this last option would

commutes with the propagator. The result obtained byequire an exceedingly long computing time, within the
straightforward averaging is the mixed estimator which iSgcheme of this work.

correct up to first order in the trial wave function. Several  The solid lines plotted in Fig. 2 are fits to our DMC den-

options have been proposed in the literature in order to obsjties provided by a generalized Fermi profile of the form
tain unbiasedtrial function independent and exaatalues.

In this work we have used the so-calléatward or future

10 20 30 40 50
r(A)

walking techniqué® to calculate unbiased, also called pure, Pt
density profiles. The key ingredient to correct the mixed es- p(r)= —R\1" (7)
timator is to include as a weight in the sampling the quotient 1+exr< —”

D oyacl R)/ Pyia(R) for each walker, given by the asymptotic
number of walkers. Several algorithms have been proposed
in order to compute this quantity. In this work we use theThe parameters defining the Fermi profile are given in Table
algorithm developed in Ref. 14 that constitutes a simple andV together with the thickness and the root-mean-square
efficient implementation of the future walking method. (rmg) radius(r?)¥2, We have checked that the rms radius

The pure DMC estimates of the density profiles for sev-calculated within the DMC code and the one derived form
eral puddles are plotted in Fig. 2. The figure also contains athe fit agree to better than 0.5%, except for ke 121 case,
horizontal line which indicates the saturation dens}iwc) where the difference is 1%. The rms radius grows with the
of the homogeneous system. For the puddle containing 38umber of particles abl'’?, as expected. Therefore it grows
atoms, the VMC profile obtained from a Gaussiansatz faster than in 3D, in which case growsNY°. This behavior
[Eq. (1)] is also shown for comparison as a dotted line. Asallows for an alternative determination of the saturation den-
one can appreciate in the figure, the process of optimizatiosity by performing a linear fit to the relation

224514-4



TWO-DIMENSIONAL CLUSTERS OF LIQUID*He PHYSICAL REVIEW B68, 224514 (2003

TABLE IV. Parameters of a Fermi-profile fit to the density pro- ture of real quasi-2D systems. Of course, in the latter case,
files. All lengths are in A ang; is in A~2. The parameter is  one has to take also into account the interaction with the

adimensional. substrate, which basically provides a global attractive poten-

N tial. In the ideal 2D case, the suppression of the wave func-
N pi R c v t (re) tion component in the third dimension produces an incre-
8 0.03740 9.308 2.156 1.739 8.166 700 Ment of the global repulsion between atoms, resulting in a

smaller binding ener er particle and a decrease of the
16 004204 1338 2656 2284 9580 918 RIS degsitw gy perp
36 0.04305 19.47 3.104 2.400 11.11 12.91 - . . .
64 OoiEe 2058 3703 Sl 1309 e e BONG SRS O B ATENROIENS BUE
ca ,
121 0.04304 4009 5566 4714 1852 2315 well fitted by a mass formula in powers a=N"%2 The
analysis of the mass formula provides the main result of this
N paper—namely, the value of the line tensioh
(rle= | — 8  =0.121 K/A, which significantly differs from the one ob-
2mpg tained from a similar analysis of VMC data and the one
The extracted value g, from the mean-square radius re- previously reported in the literatufeThe quadratic te_rm of
ported in Table IV is 0.043 A2, in good agreement with the the mass formula cannot be neglected a}nd results in a nega-
determination from the calculation for the homogeneous sysive value of the curvature energy as in the 3D casd.
tem. However, the studied clusters may be too small to give
In the interval ofN considered, the thicknessdefined as  Physical significance to this result. _
the distance over which the density falls from 0.9 of its value | "€ density profiles obtained with the pure estimator have
at origin to 0.1, is continuously increasing. However, as thdeen fitted by a generallzed. Fermi function, and the behavior
finite value of the thickness for the semiinfinite system©f the rms radius and the thickness as well as the asymmetry
should define the asymptotic value toone expects that for character of the pr_oflle as a functionthas bee_n discussed.
larger puddles the thickness will probably have a maximuniiOWever, calculations for larger puddies, which are out of
and smoothly approach this asymptotic value, as happens me scope of the present paper due to Ilmltanons in comput-
the 3D casé® Finally, one also observes the asymmetric!Nd time, would be necessary to describe the compiéte
character of the density profiles with respect to the point afiéPendence of the density profiles.
which the density falls at half its value at the origin. This can
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