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We compute the density-fluctuation spectrum of sphertesd, shells adsorbed on the outer surface gf C
fullerenes. The excitation spectrum is obtained within the random-phase approximation, with particle-hole
elementary excitations and effective interaction extracted from a density-functional description of the shell
structure. The presence of one or two solid helium layers adjacent to the adsorbing fullerene is phenomeno-
logically accounted for. We illustrate our results for a selection of numbers of adsorbed atoms @< and
Ci20. The hydrodynamical model that has proven successful to describe helium excitations in the bulk and in
restricted geometries permits to perform a rather exhaustive analysis of various fluid spherical systems, namely,
spheres, cavities, free bubbles, and bound shells of variable size.
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. INTRODUCTION dominat&” or when fermionic®He is involved'® More phe-
nomenological methods based on finite-range density func-
The physics of quantum fluids in restricted geometries is aionals (FRDF's) have proven reliable to anticipate behav-
burgeoning field that has received substantial input duringors, or to describe experimental findings, in all the branches
the last decadglts richness streams mostly from three main enumerated above. In general, FRDF results have been found
sources. One is the adsorption of gases and liquids on sukh agreement with available microscopic calculations within
strates of different shapes and degrees of confinement suefuster and wetting physics. In particular, recent descriptions
as planar surfaces, aerogels, carbon nanotubes, and nanot@ehe structure of deposited helium dropfetsind adsorp-
bundles, giving rise to a variety of wetting phenomena andion on spherical substrafeshave been performed in the
film growth, which may include dimensionality transitiohs. FRDF frame. Since in the latter case, the FRDF structure and
The other branches that feed this discipline are the producnergetics of helium films does agree with exact path-
tion and analysis of helium clusteté,and the processes of integral Monte Carlo calculatiorfswe may safely rely on the
nucleation and cavitation that lead to the formation of dropsyalidity of the phenomenological approach and undertake
and bubbles in the bulk of liquid helium isotopes and theirone step forward.
mixtures® The latter two topics involve finite helium systems | the present work, we investigate the spectrum of den-
where the size parameter is the number of atoms, rather th@ﬁty fluctuations of spherical helium shells adsorbed gn C
the atom density in one or two dimensions as in e.g., fluiullerenes. The theoretical frame to evaluate this spectrum is
adsorption. the random-phase approximatiéRPA) and, as in previous
~ Recently, it has been shown that wetting and cluster physre|ated works*~*the elementary excitations of the helium
ics meet in at least two cgmmonAQrounds. The description Oﬁuasiparticles and the particle-hdleh) residual interaction
the structure of'Hey, and *Hey + “Hey, clusters formed on 5y gbtained by application of the FRDF method. Given that
planar surfaces made possible the prediction of a new clagfuantum fluid hydrodynamics has also proven to be a trust-
of single-particle(sp) states for’He atoms added to a depos- worthy instrument to describe capillarity waves and density
ited “Hey, drop;’ and to a more microscopic interpretation of fiyctuations in helium films adsorbed in the interior of cylin-
the transition from nonwetting to wetting of alkalis by fluid drical pores and on planar substratesye develop the cor-
“He.” Furthermore, anticipating the possibility of confining responding spectrum for spherical shells on the outer surface
fullerenes in optical traps and exposing them to a heliunof an attracting fullerene. This method enables us to perform
atmosphere, an investigation of atom adsorption on spherical systematic analysis of the excitation spectrum as a function
substrates has been presented, which also provides a detailefdthe number of adsorbed atoms, as well as to elucidate the
study of the growth of spherical helium shells in the outerconsequences of suppressing the most tightly bound layers
adsorbing field of fullerenes as the number of adatomsdjacent to the substrate.
increase$.A similar approach has been applied to study the This paper is organized as follows. In Sec. Il we shortly
structure of the free surface in these bound sHeishough  review the RPA formalism for finite helium systems, and in
advances in the computational applications of microscopi&ec. Il we discuss the FRDF approach here employed and
many-body techniques, Such as correlated variational opresent typical patterns of spherical helium shells and their
Monte Carlo methods, bring in the possibility to rely on first- collective excitations. The hydrodynamic description and
principle calculations to describe complex quantum fluid sys<alculations are presented in Sec. IV, and this work is sum-
tems, this is not always the case when nontrivial geometriemarized in Sec. V.
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Il. EXCITATIONS OF “He SHELLS ADSORBED ON of the film, we first derive the elementary excitation spec-
SPHERICAL SURFACES trum e, of the helium quasiparticles as done in Ref. 8, start-

We shall apply the RPA formalism, as derived for spheri-Ing from the FRDF of Ref. 7,

cal fermiort® and bosoh systems at zero temperature and

employed in several applications to doplde (Refs. 12 and E[p]:f dr
13) and 3He droplets(Ref. 14 In view of existing refined

calculations for pure and doped helium systems that employ

correlated variational and Monte Carl®? techniques(see +
also Refs. 1 and )4 one may be reassured that the simple
RPA method combined with a FRDF description provides the
main trends of the density-fluctuation spectrum. In this
frame, one searches the poles of the density-density Green’s
function'® that solves the RPA integral equation,

n2 X ¢~
am 2 [Voi(n+ 5 p(r) ()

n

(@]

p(r) p3(r)+Ve(r,R)p(r)

+

N| w

p(r)fdr’p(r’)V(|r—r’|)}. (6)

In this equation}i(r) is the coarse-grained density,
GRPA(rlyrz,w)zeo(rlyrz,w)"‘j dradr,Go(ry,r3,0)

B(r)=J dr’ p(r')W([r—r'|), @)
vah(r31r4)GRPA(r4rr2!w)' (1)

HereGO(r,,r,,w) is the free ph Green’s function a" is where the weighting functiom/(r) reads

the residual ph interaction. Fofbosons at zero temperature,

. 3/(4wh?) if r=h
this reads W(r):’()( ™) Iif :sh. (8)
Gory,ry,w)=N>, [%(r;l)%((rezw;()rf:?(rl) The finite range interaction consists of a screened LJ poten-
n S AenT R0 tial,
b5 (r2) do(r1) dp (1) n(T2) 12 61 i
_ —~ i , ) B dg[(alr)~“—(olr)?] if r=h
ho+(e,—eg)+il VLJ(r)_[VO(r/h)4 if r<h ©)

wheree, and ¢,,, respectively, denote the sp energies and
wave functions/ is a small energy parametepy(r) is the ~ With =10.22 K, 022-556_A' andh=2.359 665 A. The
sp wave function of the Bose condensate, and the sum ruff@lue of the hard-core radius has been fixed so that the

over all excited sp states. The RPA transition dengjigr) ~ Volume integral ofV,; coincides with the one in Ref. 20.
induced by a one-body excitation fielf*(r) is Notice thatVy is the value of the 6-12 potential e+ h. The

remaining parameters acé=—2.41186<10* KA (Ref. 6
andc”=1.85850< 10° KA.°
5P(f,w)=f dr’ GRPAr, I, w)Ve(r’) (€ Since at zero temperature all particles belong to the Bose
condensate, the particle and kinetic-energy density, respec-
and the dynamical susceptibility or response functid) tively, read
takes the form

p(1)=2 [da(N)|?=N|o(r)[?, (10)
X(w)ZJ’dmp(r,w)VeXt(f)- 4 o °
The poles ofy(w) yield the collective excitations of the h? > , h? , h? 1(Vp)?
system stimulated byV®* and the strength function 2m < |V (1) —ﬁN|V¢o| “oma
S(hw)=—Imy(fhw)/m reads (11
The sp wave functiong,, and energieg, are the solutions
S(ﬁw):% [(m[VeX]0)[28( = Emo). ) of the Hartree equation? "

where|0) is the RPA ground statéys), and |m), E,, are h?
RPA excited states and energies, respectively. “omAt S dn=€ndn (12

Our system of interest is a spherical helium shell adsorbed
on the outer surface of a carbon sphere of radtusThe  obtained by functional differentiation of the total energy,
substrate fieldV(r,R) experienced by one adatom at dis- whereU[ p] is the potential energy in Eq6), and 6U/dp
tancer —R from the surface is taken to be the angular inte-the mean field that includes the substrate poteMidlr,R).
gral of the Lennard-Jong&J) potential between one helium The ph interactionvVP" is given by the second functional
and one carbon atom, assuming a constant areal density dérivative of the total energy with respect to the particle gs
the latter on the sphefeTo compute the density fluctuations density, i.e.,
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2
Vph(r,r’): L[p]
op(r)dp(r’)

A straightforward calculation gives

(13

VPR r) =V([r=r'[)+{c'[p(r) +p(r")]+c"[p*(r)
+52<r'>]}W<|r—r'|>+f dr” p(r")[c’

+2 (MMt =r"DW(r"=t']). (14

It should be kept in mind that the substrate potential is
one-body field that does not enter the ph interaction explic-

itly; however, the Hartree equati@h?) reveals that this field
strongly influences the particle density, thus affectiffij.
As shown in previous work5;'? given a multipolar ex-

ternal perturbation Y*(r)=r'Y,o(r), one derives RPA

equations for thelth component of the Green function

GRPAry,r,,) in terms of the ph interactioVf"(r,,r,),
defined through the expansions

GRPA(rl,rz,w):;n GRPAr 1,12, 0) Y () Yim(T2),
| (15

VP r) = 2 VP, o) Vi) Yin(T). (16)
The lth component of the free ph Green’s function is

N
Gl(ry.rp,0)= yp. ; Roo(r1)Roo(r2)

1
“ho—(en—eo) it

7?’nl(rl)anI(rZ)-

17
Here the sp wave function is defined a&g(r)
=Rn(r)Y,m(r), corresponding to a sp energy;. The sum-

 hw+(ey—ey) il
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(ry=Jxdrr2p(r) of the mass distribution, and second layer
promotion takes place at an areal denshy(4m(r)?)
=0.11 A2, as reported in earlier experiments of helium
film growth on planar graphit&. Similarly, a third layer
starts forming at a coverage near 0.27A Since in planar
films, the first(secondl layer is solid when the secorgthird)
layer starts forming, we may assume that this structural fea-
ture is preserved in the spherical geometry. If we adopt the
phase diagram of helium on graphffea submonolayer tran-
sition from fluid to commensurate solid would be expected at
a number of atoms around;=0.04 (47(r)?) and mono-
aIayer completion—in the shape of an incommensurate
solid—should occur aNg=0.011 (4m(r)?).

Since the RPA formalism described above assumes that all
helium atoms are in the liquid phase, it has to be generalized
to accommodate the physical situation in which the first he-
lium layers are solid. One possibility is to adopt the treat-
ment by Clementst al;??in this case, for a planar geometry
the first two planes of helium are modeled by averaging suit-
able LJ He-graphite potentials, so that only the helium atoms
outside these layers are handled explicitly. A similar ap-
proach has been proposed by Pricaupenko and Tr&indro
substitute the solid layers by Gaussian distributions, conve-
niently normalized and placed. We adopt here a different
prescription to split the total number of He atoms into a solid
and a liquid part. According to the previous discussion, we
have a criterion to establish, for a given fullerene and a total
numberN of “He atoms, the amourifg in the first solid
layers, whileN;=N—N, remain in the liquid shells. The
structure of the solid shells is obtained by solving the Hartree
equation(12) for Ng, which yields a local densityg(r) that
remains frozen thereafter.

The structure of the liquid shells is next encountered from
the solution, forN, atoms at density,(r), of the Hartree
equation obtained by functional differentiation Bf p=pq
+p,] with respect top,, keepingp(r) fixed as the previ-
ously determined function. The ph interactidi" is then
given by Eq.(14) with p=ps+p;, andp=ps+p;.

Our way of treating the solid layers, certainly as crude as
other previous prescriptiorfé;>2attempts at distinguishing in
the system those atontm the liquid) that participate in the
collective oscillations, from thosgn the solid tightly bound
to the substrate, and the substrate itself. It is worth noting

mation runs over all the excited Hartree states of multipolarthat, typically, the oscillation energies of fullerenes are in the
ity 1. The transition density and the response function ar@ange 18-10° K,?* well above those of the liquid helium

then naturally decomposed into multipolés(r,w), x|(w).

shell.

Consequently, the RPA problem consists of finding the solu-

tion of a one-dimensional integral equation for edcdlsee
Refs. 11 and 12 for detajls

RPA calculations within the density-functional formalism

IIl. DENSITY-FUNCTIONAL RESULTS

In this section we illustrate our results for threg, C

thus request the previous computation of density profiles antlllerenes, namelyy=20, 60, and 120, their respective radii

sp spectrum for the selected number of atoms in the extern®, being 2.05, 3.55, and 5.00 A. In Fig. 1 we plot the density
field Vo(r,R). The analysis of the solutions of E(L2) for ~ profiles of a shell containing 25'He atoms on these
helium adsorbed on the outer surface of carbon fullerenefullerenes, which may be regarded as purely fluid particles.
has been presented in Refs. 8 and 9, where it has been shoWwar larger numbers of atoms, the presence of one or two
that adsorbed helium films grow according to a sequence dfolid layers has been removed as indicated. To illustrate this
layers. For low numbers of helium atoms, the submonolayepoint, in Fig. 2 we plot the density profiles fdx,+Ng
peaks at a distance;=3.15 A from the sphere surface, =100 helium atoms on &, with N,=35 liquid atoms, i.e.,
which roughly coincides with the location of the centroid those that remain once a previously computed shell with
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FIG. 1. Atomic densities fofHe,s on three different fullerenes FIG. 3. Atomic densities fofHes, 0n Cp,. Dotted line, liquid

C, with n=20, 60, and 120. density (345 atomy dashed line, solid densit{i55 atomg solid
line, total density(500 atoms

Ns=65 solid atoms—essentially the integral of the particle

density under the first peak, see, i.e., Ref. 8—has been sulknced by theN, particles; consequently, the solid density

tracted. As anticipated in Sec. II, althouljly atoms are inert  does influence the density profile and residual ph interaction

in the latest computation, their densijiy(r), displayed as a of the active atoms. In Fig. 3, a similar plot is displayed for

peak in dashed lines in Fig. 2, enters the mean field experthe case of 500 atoms on £g; in this case, two solid layers

are present with totdN =155 particles. As indicated in the

0.14 —————— 17— preceding section, we shall consider that for a given number

of helium atoms adsorbed on the carbon sphere, dhly

=N-— Ng atoms participate in ph transitions when excited by

0.12- - an external, long wavelength multipole field.

We have performed specific calculations for external

fields V§*'=r2Y, for 1=0, andVE*i(r)=r'Y,q(r) for =1

————— Solid to 3. It should be noted that there is a nontrivial dipole mode
--------- Liquid | that represents the displacement of the liquid shell against
008k —— Total | | the solid layers plus the fullerene as a whole. This dipole
o mode is obviously absent in pure helium droplets.
< r ] Our results for the multipolar strengtlS w), for =0 to
0,06 - 3, are displayed in Figs. 4—6, which respectively correspond

to N=N,;=25 on Gq (cf. Fig. 1; N;=35, Ng=65 on G (cf.
Fig. 2); andN,=345, Ng= 155 on G (cf. Fig. 3. In these
- figures, the strengths have been normalized so that, for each
[, the maximum peak height is unity.

It can be seen that fde>0 the strength is concentrated in
. a single collective peak. This peak exhausts most of the
. energy-weightedn; sum rulé?

0.04

0.02

r(A) ml:% Emol(m[Ve*{0)[?
FIG. 2. Atomic densities fofHe;qo0n Gs,. Dotted line, liquid

x 2
density(35 atomg; dashed line, solid densif$5 atom$, solid line, — f E S(E)dE= ﬁf dr p(r )(Vvext)Z’ (19)
total density(100 atom 0 2m
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FIG. 4. Strength functions fok=0 to 3 for Go+“Heys. The FIG. 6. Strength functions fdr=0 to 3 for G+ *Hesog. They

arrow indicates the atom emission threshold. Strength functionfave been normalized so that, for edcthe maximum peak height
have been normalized so that, for edcthe maximum peak height s unity.

is unity.

radiusa. Our simple model also assumes that the substrate
which, forl =1, becomes the Thomas-Reiche-Kuhn sum rulepotential is piecewise constant, with nonvanishing finite de-
rivative U’ (a)=V'(a,R). Figure 7 contains size parameters
of interest for the growth of helium films ongg; where(r)
and ér are, respectively, the centroid and the dispersion of
the density profile for the giveN as discussed in Ref. 8, and
It is also worth noting that these narrow resonances are & iS the hydrodynamic radius defined by
energies below the atom emission threshold, which fgy C

2

3

+*Heys is indicated by an arrow in Fig. 4. Forgg *Heygo it N= 41(a3— R3) (20
. 4 Po
lies at 12.9 K, and for o+ *Hesqg, at 7.5 K. 3
with R=Rg=3.55 A.
IV. CAPILLARY AND DENSITY WAVES IN THE To derive the modes one starts from the linearized conti-
HYDRODYNAMIC APPROXIMATION nuity and momentum conservation equations for superfluid

Capillary waves in spherical fluid drops and cavities areﬂOW’
analyzed in textbook3?° and the specific derivation of hy-

J
drodynamic density waves of helium films in the interior of »_ —po V-vs, (21
e ; at
cylindrical pores has been presented in Ref. 15. Here we
model our helium system as a shell of dengigysurrounding P
herical r f radigsand extendin har Vs
a spherical substrate of radiBsand extending up to a sharp mpoW=*VP*poVU (22)
T T I T I T I T I ]
»r T T T T T T T
— =0 ] I
T 1 = T
~06F v oot = 3 - |
8 L
A ] Z |
. o 151
) 10l
L ] NEFAS
6 8 10 12 ' | | | |
® (K) 0 100 200 300 40 500
N
FIG. 5. Strength functions fdr=0 to 3 for G+ *Heygo. They
have been normalized so that, for edcthe maximum peak height FIG. 7. Mean radius, mean radius plus dispersion, and hydrody-
is unity. namic radiusa as functions of the number of atoms.
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with pg the bulk density andl (r) the spherically symmetric potential with the corresponding bc’s. If propagation of den-
external potential on a single helium atom of massWe  sity fluctuations is allowed—i.e., if the fluid is

establish the following compressible—one seeks perturbatiopgr) proportional to
(a) The pressure at any free surface is the Laplace preghe solutione(r) of the wave equation, together with a dis-
sure of a deformable sphere with undistorted radius persion relationw=cgsq. Expansion of the solutions up to

second order im? leads then to the eigenfrequenciega),
1 for 1> 0, in the long wavelength limit. Note that the oscil-
=0 Ko— = (2+V5) 7, (23)  lation modes of an incompressible sphéeapillary waves
a which correspond to the solutions of Laplace’s equation with
bc (26), are derived in Refs. 25 and 26 assuming a velocity
potential of the formg,(r)=r'(I>0). The frequencies read

11
R R

P=o

whereo is the liquid surface tensior; is the displacement
of the surfaceK,= 1/a is the spherical curvature, aitf, is
the angular part of the Laplacian operator.

(b) The superfluid flow conditionyvs=V ¢(r), where
¢(r) is the velocity potential.

Boundar ndition 's): on herical wall lo- . . .

(c) Bou d_é y o dAtO sbe's): on a s_p erical wall 1o For a helium sphere with atoms, this is complemented by
cated at p03|t|9rR, Vs- N, =0; ona §pher|cal free surface at 4 relationp,=3N/(47a%). No monopole modes can be
positiona, vs-ns=d»/dt, with n,,, ns the unit vector per-  supported by an incompressible sphere.
pendicular to the corresponding surface, one reaches the sys-|n this work, we first solve for the capillary waves of an

gl(a)l

[oP(@))?=——— (28)

tem for the wave equation with the given bc’s, incompressible helium shell adsorbed on a sphere, with ve-
locity potential
0)2
V2¢+ ?(P:O! (24) [ R2|+1
—pl
s @l(r)_r +|+1 r|+1 (29)
Vs Ny =0, (25)

(I>0). This form is chosen to satisfy the bc at the wall,
de, while the one on the free surface gives the dispersion relation
91(@) 4 =’ ¢|(a). (26)
a 5 _g|(a)l(l+1) 1—uy
Herec, is the sound velocity in bulk helium. In E¢26) it Pline— a [+1+1lu’
has been already assumed that the velocity potential is of the

form @(r) = @1(r) Yim(7). Moreover, we have introduced the Here we have introduced the dimensionless ratip
P =@iLl) Yimit). ’ =(R/a)? 1. Expression30) coincides with the mode@9)
effective gravity

of an incompressible sphere whdk=u;=0 and g;(a)
=g,°(a). For the compressible shell, the density fluctuation

(30

(oa

1 -
g|(a)=g(a)+g?(a)= EVU ‘Ng+ 5 (I-1)(1-2) op(r) is proportional to the velocity potential, taken as
poma
2 )
@ » i (aR)
that adds the “substrate gravitgf=U’(a)/m to the “capil- @i(r)=h(ar)— 0/ (aR) ni(qr) (3D

larity gravity” gP(a). We also note that in Ref. 15 an equiva-
lent system has been solved for fully and partially filled cy-with j,(z),n,(z) the regular and irregular spherical Bessel
lindrical pores and for planar films. functions?’ Expansion of these functions in the {6) up to

Capillary waves of incompressible fluid systems are ob-their second-order terms gives the eigenfrequencies| for
tained solving Laplace’s equatidhe,(r) =0 for the velocity >0 in the long wavelength limit

wﬁnc
of= PR (32
wj a -1 (1+2)

2
T 2c2(1—u) [(+1)(21-1) (=) * (21+3)

(1—-ugu;)

with ug=u,_q.
The monopole frequencies of the compressible film are obtained after expandit@BEsp as to keep terms of ordgf.
In this way we get
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0 0 a0 0 80 1000 1000
N

FIG. 8. The oscillation modes of compressible helium shells FIG. 9. Spectrum of density waves of helium shells adsorbed on
adsorbed on g (full lines) as functions of the number of particles, Cg, as a function of atom number fot fluid atoms(full lines), N
for |=0 to 3. Dashed and dot-dashed lines, respectively, correspond 65 fluid atoms on a sphere of radiig+3.15 A, and forN
to the coherent mode of free shells and to spheres of the same 155 fluid atoms on a sphere of radiRs- 6.05 A.
number of atomgsee the Appendix for detajlsBoth the inner
surface radius of the free shell and the substrate radius for thmoved to the location of the first and second peak in the
bound system are taken as radRig . mass distribution of the inert particles, respectively. We ap-
preciate that while fot>0 multipolarities the modes are not
influenced by the removal of solid atoms for, sélyabove

) 1+ go(a)za(l_ ug) 400-500, this is not the case for the breathing excitations. It

2= 65 3¢ is worth noting, moreover, that the eigenfrequencies in Fig. 9
0 T 52 go(a) a are in good quantitative agreement—however, slightly
1-3ud+2u3+ >~ (1-5u3+5ug—ug) smaller—with the RPA results illustrated in Sec. IlI. This fact

S5Cs permits one to circumvent computationally more demanding

33 calculations, like the RPAFRDF approach, in order to ex-
amine the effects of the inert layers on the density-fluctuation

We have computed the dispersion relatiéd®), (32), and spectrum

(33) for shells adsorbed on Jullerenes; for reference, we
have also calculated the corresponding eigenfrequencies for
capillary and density waves of spheres and free shells, whose
expressions are collected in the Appendix. Typical results are |n this work we have presented a RPA calculation of the
displayed in Fig. 8 where we plot the spectrum of densitydensity-density response of spherical helium shells adsorbed
waves of shells adsorbed onfas functions of the number on carbon fullerenes, for several numbers of helium adatoms.
of atoms, together with those of spheres and free shells, forhe elementary sp excitations are taken as those in the mean
| =0 to 3. The general features of these hydrodynamic modefield derived from a FRDF previously employed in a variety
are the following. First, we encounter that in all cases, at lowof applications to helium systems. This procedure is in the
numbers of fluid atoms the eigenenergies of compressiblgpirit of earlier studies of the spectrum of density fluctuations
systems are lower than those of the incompressible one# doped helium drople’t%‘”and the results are robust and
This difference disappears for a few hundreds of particlesconsistent with the expectations for this kind of systems. For
Moreover, for sufficiently large number of fluid atoms, the the smaller particle numbers here reported, the spectrum is
common compressible and incompressible eigenenergies caharacterized by large fragmentation of the monopole
lapse onto those of a sphere with the same particle numbestrength, with main peaks lying at energies of order 10 K,
Finally, it can be seen that at low particle number, a shelland by comparatively smaller eigenenergies for higher mul-
bound to G is “stiffer” than a free shell—i.e., the oscilla- tipolarities. Due to the peculiar configuration with a sizable
tion energies are higher, revealing the presence of the sulgpherical cavity in the fluid, originated in the presence of the
strate gravity in addition to the capillarity pressure. This ef-fullerene, which shifts the location of the main peak in the
fect disappears for sufficiently large shells, roughly abovemass distribution to around 6 A, a nontrivial dipole oscilla-
500 atoms. tion appears at energies around 1 K. For all multipolarities,

In Fig. 9 we illustrate the influence of subtracting solid the eigenenergies are seen to decrease as the number of at-
layers. Forl =0 to 3, full lines denote the spectrum B oms increases, while for a given number of atoms, they grow
=N atoms adsorbed ongg; dashed lines correspond to sub- with increasing >0.
tracting a first solid layer witiNs=65, and dot-dashed lines For systems sufficient large so as to admit one or more
correspond to removing two solid layers with tothlly  layers adjacent to the adsorbing sphere, we have proposed a
=155. In the latter two cases, the sphere radius has beenethod to suppress these layers, which should be solid on a

V. SUMMARY
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purely planar graphite substrate. Our approach is slightly dif- [
ferent from similar ones employed by other autidfsand [wP(R)1*=g)(R) R (A2)
pursues the same purpose, namely, to separate inert atoms
from those expected to participate in density fluctuations. (3) Thick bubble, radiR<a: A;=1, and
The hydrodynamic description of these modes seems to point
out that the effect of the presence of inert layers becomes
irrelevant for particle numbers above a few hundreds of at- [0%(a)]?— w? w,2+[w?(R)]2m
oms. B,=a? "1 ! | _R2i+1

We have developed a simple hydrodynamic model for
spherical fluid shells on a substrate, which disregards the
shell structure and only involves bulk parameters such as (A3)
helium saturation density and surface tension, and the valng

R PO (ol (Rof

of the substrate attractive force on the free surface. Th he spectrum exhibits two branches, corresponding to a co-

eigenfrequencies can be derived analytically, both for capil- erent, onv-frequ_ency mode_, with the two spherical bound-
lary waves of an incompressible helium fluid and for densityar.Ies oscﬂla‘u_ng n pha§e—|.e., the mode to be compared
fluctuations of a compressible system. The results can b\éwth the dens_lty fluctuations of the other systems—and tq an
displayed as functions of atom number and it is clearly seel'conerent, high-frequency one for the out-of-phase oscilla-

that the eigenenergies of these modes vanish monotonical@é)n'4Th%Sezmogis are the so_lu_t|ons of the quartic equation
with increasingN, keeping the ordering sequence encoun-"4 ¢! +C; i +Co=0 with coefficients
tered in the RPA calculations. A comparison of spectra of

incompressible and compressible spheres, free shells, and

shells bound to a substrate shows that geometry effects such

cg=1-u, (A4)

as the presence of a solid sphere, as well as the distinctiogp_ _ 0 214 I+1 )+ 0 214 I

between compressible and incompressible systems, is minu{Eéb [[w' @71 I u |+ Ler(RI7| 1 [+1 Ul

above a few hundred particles. (A5)
co=[wl (@l (R]* (1-u)). (A6)
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(II) Density wavesThe density fluctuation is of the form

opi(r)=A,j,(gr)+B;n(qr) and the spectra),2 for1>0 are
APPENDIX the following.

In the spherical geometry, we may consider four mass (1) Sphere, radius: A;=1, B, =0, and

distributions at bulk density, corresponding tda) N atoms [00(a)]2
on a sphere of radiug; (b) a cavity of radiusR in the bulk [w(a)]2= ! _ (A8)
liquid; (c) N atoms in a free shell‘thick” bubble) between 0 , (1+2) a’
inner and outer radiR and a, and (d) N atoms in a shell 1+[wi(a)] m
S

bound to a substrate of radil® extending up to an outer
radiusa. We list the results below for capillary and density (2) Cavity, radiusR: A, =0, B;=1, and
waves, which respectively, correspond to the solutions of ' A

Laplace’s equation for the case of the incompressible fluid, [0%(R)]?
and to those of the wave equation for the compressible sys- [w(R)]?= ! . (A9)
tem. 0o (1R

1-[w/(R)]

(I) Capillary waves The radial velocity potential chosen
ase (r)=A r'+B,r'"! and the spectrumw? for the vari-
ous incompressible systems of interest are the following. (3) Thick bubble, radiR<a: A,=1 and

(1) Incompressible sphere, radiasA;=1, B;=0, and

2(14+1) (21-1) c2

_gl@j{(qa)— o ji(qa)

Sa)l 1= ;
[wP(a)]ZZ@_ (A1) of ni(qa)—gf(a) n/(qa)
_ YR (@R +wf ji(aR) AL0)
(2) Cavity, radiusR: A,=0, B,=1, and o n(aR+g’(R) n/(qR)’
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wheref’(b)=df(r)/dr|,_,. After expansion of the spheri- g(a)l (1+1) 1—y,
cal Bessel functions, the secular equation for the modes be- [w]?= a (A14)
comes the quartic, ;' + ¢, w?+co=0 with coefficients 141 u|+ag'(a)2a
2¢cg
2 -1
Ca= 0= 211 w%a)]? w2+ ——u with
4 4 2C§ | 21—1 0 I |
I(1+1) (I+1)(1+2) )
_ 1 |+2+|+1u2u| a= -1 (UO—U| W(l—uou,).
21431 1 |0 (A15)
| -1 The monopole modes request one more term in the expan-
0 2 2
+lor(R)] 21—1\1+1 U+ [+1 uO) sion. The results are the following.
(1) Compressible sphere:
1 [1+2
BEEE A (ALD) L, %@ a
. . , 6c2 3c?
. CO+[w|(a)]2[w|(R)]2a2 -1 ( 2) ©o= 7 T Paa (A16)
= u—u
e 2c2 (I+1@-1" ° 1+
5cg
o2 1-uj A12 2C ibl ity:
+|(2|—+3)( —ugup) |, (A12) (2) Compressible cavity:
0
(R) 1
co=02. (A13) wi= goR - . (A17)
go(R)R
(4) Bound shell, radiiR<a: A=1, B;=—j(qR)/ ==z
n/(gR), and upon expansion of the spherical Bessel func- S
tions, (3) Compressible thick bubble:
|
1-uy go@  goR)
90(a) go(R) 5 —+ —_—Uo+ —¢
) 3¢5 Ug
wy= o 3 o 3 > (A18)
L ygr F@3(L o @) %o(R) a mi_@)
2 \3 2 6 UgC2 6 2
(4) Compressible bound shell:
a)a
, L Z (1-ud)
, . Cs 3cg
w5=6— . (A19)
a go(a) a

1-3ud+2u3+ ———(1-5ud+5u3—up)
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