
PHYSICAL REVIEW B 69, 134502 ~2004!
Density modes in spherical4He shells
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We compute the density-fluctuation spectrum of spherical4HeN shells adsorbed on the outer surface of Cn

fullerenes. The excitation spectrum is obtained within the random-phase approximation, with particle-hole
elementary excitations and effective interaction extracted from a density-functional description of the shell
structure. The presence of one or two solid helium layers adjacent to the adsorbing fullerene is phenomeno-
logically accounted for. We illustrate our results for a selection of numbers of adsorbed atoms on C20, C60, and
C120. The hydrodynamical model that has proven successful to describe helium excitations in the bulk and in
restricted geometries permits to perform a rather exhaustive analysis of various fluid spherical systems, namely,
spheres, cavities, free bubbles, and bound shells of variable size.
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I. INTRODUCTION

The physics of quantum fluids in restricted geometries
burgeoning field that has received substantial input dur
the last decade.1 Its richness streams mostly from three ma
sources. One is the adsorption of gases and liquids on
strates of different shapes and degrees of confinement
as planar surfaces, aerogels, carbon nanotubes, and nan
bundles, giving rise to a variety of wetting phenomena a
film growth, which may include dimensionality transitions2

The other branches that feed this discipline are the prod
tion and analysis of helium clusters,3,4 and the processes o
nucleation and cavitation that lead to the formation of dro
and bubbles in the bulk of liquid helium isotopes and th
mixtures.5 The latter two topics involve finite helium system
where the size parameter is the number of atoms, rather
the atom density in one or two dimensions as in e.g., fl
adsorption.

Recently, it has been shown that wetting and cluster ph
ics meet in at least two common grounds. The description
the structure of4HeN4

and 3HeN3
14HeN4

clusters formed on
planar surfaces made possible the prediction of a new c
of single-particle~sp! states for3He atoms added to a depo
ited 4HeN4

drop,6 and to a more microscopic interpretation
the transition from nonwetting to wetting of alkalis by flu
4He.7 Furthermore, anticipating the possibility of confinin
fullerenes in optical traps and exposing them to a heli
atmosphere, an investigation of atom adsorption on sphe
substrates has been presented, which also provides a de
study of the growth of spherical helium shells in the ou
adsorbing field of fullerenes as the number of adato
increases.8 A similar approach has been applied to study
structure of the free surface in these bound shells.9 Although
advances in the computational applications of microsco
many-body techniques, Such as correlated variationa
Monte Carlo methods, bring in the possibility to rely on firs
principle calculations to describe complex quantum fluid s
tems, this is not always the case when nontrivial geomet
0163-1829/2004/69~13!/134502~10!/$22.50 69 1345
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dominate6,7 or when fermionic3He is involved.10 More phe-
nomenological methods based on finite-range density fu
tionals ~FRDF’s! have proven reliable to anticipate beha
iors, or to describe experimental findings, in all the branc
enumerated above. In general, FRDF results have been fo
in agreement with available microscopic calculations with
cluster and wetting physics. In particular, recent descripti
of the structure of deposited helium droplets6,7 and adsorp-
tion on spherical substrates8,9 have been performed in th
FRDF frame. Since in the latter case, the FRDF structure
energetics of helium films does agree with exact pa
integral Monte Carlo calculations,8 we may safely rely on the
validity of the phenomenological approach and underta
one step forward.

In the present work, we investigate the spectrum of d
sity fluctuations of spherical helium shells adsorbed onn

fullerenes. The theoretical frame to evaluate this spectrum
the random-phase approximation~RPA! and, as in previous
related works,11–14 the elementary excitations of the heliu
quasiparticles and the particle-hole~ph! residual interaction
are obtained by application of the FRDF method. Given t
quantum fluid hydrodynamics has also proven to be a tr
worthy instrument to describe capillarity waves and dens
fluctuations in helium films adsorbed in the interior of cyli
drical pores and on planar substrates,15 we develop the cor-
responding spectrum for spherical shells on the outer sur
of an attracting fullerene. This method enables us to perfo
a systematic analysis of the excitation spectrum as a func
of the number of adsorbed atoms, as well as to elucidate
consequences of suppressing the most tightly bound la
adjacent to the substrate.

This paper is organized as follows. In Sec. II we shor
review the RPA formalism for finite helium systems, and
Sec. III we discuss the FRDF approach here employed
present typical patterns of spherical helium shells and th
collective excitations. The hydrodynamic description a
calculations are presented in Sec. IV, and this work is su
marized in Sec. V.
©2004 The American Physical Society02-1
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II. EXCITATIONS OF 4He SHELLS ADSORBED ON
SPHERICAL SURFACES

We shall apply the RPA formalism, as derived for sphe
cal fermion16 and boson11 systems at zero temperature a
employed in several applications to doped4He ~Refs. 12 and
13! and 3He droplets~Ref. 14! In view of existing refined
calculations for pure and doped helium systems that emp
correlated variational17 and Monte Carlo18 techniques~see
also Refs. 1 and 4!, one may be reassured that the simp
RPA method combined with a FRDF description provides
main trends of the density-fluctuation spectrum. In t
frame, one searches the poles of the density-density Gre
function19 that solves the RPA integral equation,

GRPA~r1 ,r2 ,v!5G0~r1 ,r2 ,v!1E dr3 dr4G0~r1 ,r3 ,v!

3Vph~r3 ,r4!GRPA~r4 ,r2 ,v!. ~1!

HereG0(r1 ,r2 ,v) is the free ph Green’s function andVph is
the residual ph interaction. ForN bosons at zero temperatur
this reads

G0~r1 ,r2 ,v!5N(
n

H f0* ~r1!f0~r2!fn* ~r2!fn~r1!

\v2~en2e0!1 i z

2
f0* ~r2!f0~r1!fn* ~r1!fn~r2!

\v1~en2e0!1 i z J , ~2!

whereen and fn , respectively, denote the sp energies a
wave functions,z is a small energy parameter,f0(r ) is the
sp wave function of the Bose condensate, and the sum
over all excited sp states. The RPA transition densitydr(r )
induced by a one-body excitation fieldVext(r ) is

dr~r ,v!5E dr 8 GRPA~r ,r 8,v!Vext~r 8! ~3!

and the dynamical susceptibility or response functionx(v)
takes the form

x~v!5E drdr~r ,v!Vext~r !. ~4!

The poles ofx(v) yield the collective excitations of the
system stimulated byVext, and the strength function
S(\v)52Imx(\v)/p reads

S~\v!5(
m

u^muVextu0&u2d~\v2Em0!, ~5!

where u0& is the RPA ground state~gs!, and um&, Em0 are
RPA excited states and energies, respectively.

Our system of interest is a spherical helium shell adsor
on the outer surface of a carbon sphere of radiusR. The
substrate fieldVC(r ,R) experienced by one adatom at di
tancer 2R from the surface is taken to be the angular in
gral of the Lennard-Jones~LJ! potential between one helium
and one carbon atom, assuming a constant areal densi
the latter on the sphere.8 To compute the density fluctuation
13450
-

y

e
s
n’s

d

ns

d

-

of

of the film, we first derive the elementary excitation spe
trum en of the helium quasiparticles as done in Ref. 8, sta
ing from the FRDF of Ref. 7,

E@r#5E dr H \2

2m (
i

N

u“f i~r !u21
c8

2
r~r ! r̃2~r !

1
c9

3
r~r ! r̃3~r !1VC~r ,R!r~r !

1
1

2
r~r !E dr 8r~r 8!V~ ur2r 8u!J . ~6!

In this equation,r̃(r ) is the coarse-grained density,

r̃~r !5E dr 8 r~r 8!W~ ur2r 8u!, ~7!

where the weighting functionW(r ) reads

W~r !5H 3/~4ph3! if r>h

0 if r<h.
~8!

The finite range interaction consists of a screened LJ po
tial,

VLJ~r !5H 4«@~s/r !122~s/r !6# if r>h

V0~r /h!4 if r<h
~9!

with «510.22 K, s52.556 Å, andh52.359 665 Å. The
value of the hard-core radiush has been fixed so that th
volume integral ofVLJ coincides with the one in Ref. 20
Notice thatV0 is the value of the 6-12 potential atr 5h. The
remaining parameters arec8522.411 863104 K Å ~Ref. 6!
andc951.858503106 K Å. 9

Since at zero temperature all particles belong to the B
condensate, the particle and kinetic-energy density, res
tively, read

r~r !5(
n

ufn~r !u25Nuf0~r !u2, ~10!

\2

2m (
n

u“fn~r !u25
\2

2m
Nu“f0u25

\2

2m

1

4

~“r!2

r
.

~11!

The sp wave functionsfn and energiesen are the solutions
of the Hartree equation,

F2
\2

2m
D1

dU

dr Gfn5enfn ~12!

obtained by functional differentiation of the total energ
whereU@r# is the potential energy in Eq.~6!, and dU/dr
the mean field that includes the substrate potentialVC(r ,R).
The ph interactionVph is given by the second functiona
derivative of the total energy with respect to the particle
density, i.e.,
2-2
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Vph~r ,r 8!5
d2E@r#

dr~r !dr~r 8!
. ~13!

A straightforward calculation gives

Vph~r ,r 8!5V~ ur2r 8u!1$c8@ r̃~r !1 r̃~r 8!#1c9@ r̃2~r !

1 r̃2~r 8!#%W~ ur2r 8u!1E dr 9 r~r 9!@c8

12 c9r̃~r 9!#W~ ur2r 9u!W~ ur 92r 8u!. ~14!

It should be kept in mind that the substrate potential i
one-body field that does not enter the ph interaction exp
itly; however, the Hartree equation~12! reveals that this field
strongly influences the particle density, thus affectingVph.

As shown in previous works,11,12 given a multipolar ex-
ternal perturbation Vl

ext(r )5r lYl0( r̂ ), one derives RPA
equations for thel th component of the Green functio
Gl

RPA(r 1 ,r 2 ,v) in terms of the ph interactionVl
ph(r 1 ,r 2),

defined through the expansions

GRPA~r1 ,r2 ,v!5(
l ,m

Gl
RPA~r 1 ,r 2 ,v!Ylm* ~ r̂1!Ylm~ r̂2!,

~15!

Vph~r1 ,r2!5(
l ,m

Vl
ph~r 1 ,r 2!Ylm* ~ r̂1!Ylm~ r̂2!. ~16!

The l th component of the free ph Green’s function is

Gl
0~r 1 ,r 2 ,v!5

N

4p (
n

R00~r 1!R00~r 2!

3H 1

\v2~enl2e0!1 i z

2
1

\v1~enl2e0!1 i zJRnl~r 1!Rnl~r 2!.

~17!

Here the sp wave function is defined asfnl(r )
5Rnl(r )Ylm( r̂ ), corresponding to a sp energyenl . The sum-
mation runs over all the excited Hartree states of multipo
ity l. The transition density and the response function
then naturally decomposed into multipolesdr l(r ,v), x l(v).
Consequently, the RPA problem consists of finding the so
tion of a one-dimensional integral equation for eachl ~see
Refs. 11 and 12 for details!.

RPA calculations within the density-functional formalis
thus request the previous computation of density profiles
sp spectrum for the selected number of atoms in the exte
field VC(r ,R). The analysis of the solutions of Eq.~12! for
helium adsorbed on the outer surface of carbon fullere
has been presented in Refs. 8 and 9, where it has been s
that adsorbed helium films grow according to a sequenc
layers. For low numbers of helium atoms, the submonola
peaks at a distancer 153.15 Å from the sphere surface
which roughly coincides with the location of the centro
13450
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^r &5*R
`dr r 2 r(r ) of the mass distribution, and second lay

promotion takes place at an areal densityN/(4p^r &2)
50.11 Å22, as reported in earlier experiments of heliu
film growth on planar graphite.21 Similarly, a third layer
starts forming at a coverage near 0.2 Å22. Since in planar
films, the first~second! layer is solid when the second~third!
layer starts forming, we may assume that this structural f
ture is preserved in the spherical geometry. If we adopt
phase diagram of helium on graphite,21 a submonolayer tran
sition from fluid to commensurate solid would be expected
a number of atoms aroundN150.04 (4p^r &2) and mono-
layer completion—in the shape of an incommensur
solid—should occur atNs50.011 (4p^r &2).

Since the RPA formalism described above assumes tha
helium atoms are in the liquid phase, it has to be generali
to accommodate the physical situation in which the first
lium layers are solid. One possibility is to adopt the tre
ment by Clementset al.;22 in this case, for a planar geometr
the first two planes of helium are modeled by averaging s
able LJ He-graphite potentials, so that only the helium ato
outside these layers are handled explicitly. A similar a
proach has been proposed by Pricaupenko and Treiner,23 who
substitute the solid layers by Gaussian distributions, con
niently normalized and placed. We adopt here a differ
prescription to split the total number of He atoms into a so
and a liquid part. According to the previous discussion,
have a criterion to establish, for a given fullerene and a to
numberN of 4He atoms, the amountNs in the first solid
layers, whileNl5N2Nl remain in the liquid shells. The
structure of the solid shells is obtained by solving the Hart
equation~12! for Ns , which yields a local densityrs(r ) that
remains frozen thereafter.

The structure of the liquid shells is next encountered fr
the solution, forNl atoms at densityr l(r ), of the Hartree
equation obtained by functional differentiation ofE@r5rs
1r l # with respect tor l , keepingrs(r ) fixed as the previ-
ously determined function. The ph interactionVph is then
given by Eq.~14! with r5rs1r l , and r̃5 r̃s1 r̃ l .

Our way of treating the solid layers, certainly as crude
other previous prescriptions,22,23attempts at distinguishing in
the system those atoms~in the liquid! that participate in the
collective oscillations, from those~in the solid! tightly bound
to the substrate, and the substrate itself. It is worth not
that, typically, the oscillation energies of fullerenes are in
range 102–103 K,24 well above those of the liquid helium
shell.

III. DENSITY-FUNCTIONAL RESULTS

In this section we illustrate our results for three Cn
fullerenes, namely,n520, 60, and 120, their respective rad
Rn being 2.05, 3.55, and 5.00 Å. In Fig. 1 we plot the dens
profiles of a shell containing 254He atoms on these
fullerenes, which may be regarded as purely fluid partic
For larger numbers of atoms, the presence of one or
solid layers has been removed as indicated. To illustrate
point, in Fig. 2 we plot the density profiles forNl1Ns
5100 helium atoms on C60, with Nl535 liquid atoms, i.e.,
those that remain once a previously computed shell w
2-3
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Ns565 solid atoms—essentially the integral of the parti
density under the first peak, see, i.e., Ref. 8—has been
tracted. As anticipated in Sec. II, althoughNs atoms are inert
in the latest computation, their densityrs(r ), displayed as a
peak in dashed lines in Fig. 2, enters the mean field exp

FIG. 1. Atomic densities for4He25 on three different fullerenes
Cn with n520, 60, and 120.

FIG. 2. Atomic densities for4He100 on C60. Dotted line, liquid
density~35 atoms!; dashed line, solid density~65 atoms!, solid line,
total density~100 atoms!.
13450
b-

ri-

enced by theNl particles; consequently, the solid densi
does influence the density profile and residual ph interac
of the active atoms. In Fig. 3, a similar plot is displayed f
the case of 500 atoms on C120; in this case, two solid layers
are present with totalNs5155 particles. As indicated in the
preceding section, we shall consider that for a given num
of helium atoms adsorbed on the carbon sphere, onlyNl
5N2Ns atoms participate in ph transitions when excited
an external, long wavelength multipole field.

We have performed specific calculations for extern
fields V0

ext5r 2Y00 for l 50, andVl
ext(r )5r lYl0( r̂ ) for l 51

to 3. It should be noted that there is a nontrivial dipole mo
that represents the displacement of the liquid shell aga
the solid layers plus the fullerene as a whole. This dip
mode is obviously absent in pure helium droplets.

Our results for the multipolar strengthsSl(v), for l 50 to
3, are displayed in Figs. 4–6, which respectively correspo
to N5Nl525 on C20 ~cf. Fig. 1!; Nl535, Ns565 on C60 ~cf.
Fig. 2!; andNl5345, Ns5155 on C120 ~cf. Fig. 3!. In these
figures, the strengths have been normalized so that, for e
l, the maximum peak height is unity.

It can be seen that forl .0 the strength is concentrated
a single collective peak. This peak exhausts most of
energy-weightedm1 sum rule12

m15(
m

Em0u^muVextu0&u2

5E
0

`

E S~E! dE5
\2

2mE dr r~r !~“Vext!2, ~18!

FIG. 3. Atomic densities for4He500 on C120. Dotted line, liquid
density ~345 atoms!; dashed line, solid density~155 atoms!, solid
line, total density~500 atoms!.
2-4



ul

e
C

r
-
of
w

p

rate
e-

rs

of
d

nti-
uid

ion
t

t

t

dy-
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which, for l 51, becomes the Thomas-Reiche-Kuhn sum r

m1~ l 51!5
\2

2m

3

4p
N. ~19!

It is also worth noting that these narrow resonances ar
energies below the atom emission threshold, which for20
14He25 is indicated by an arrow in Fig. 4. For C601

4He100 it
lies at 12.9 K, and for C1201

4He500, at 7.5 K.

IV. CAPILLARY AND DENSITY WAVES IN THE
HYDRODYNAMIC APPROXIMATION

Capillary waves in spherical fluid drops and cavities a
analyzed in textbooks25,26 and the specific derivation of hy
drodynamic density waves of helium films in the interior
cylindrical pores has been presented in Ref. 15. Here
model our helium system as a shell of densityr0 surrounding
a spherical substrate of radiusR and extending up to a shar

FIG. 4. Strength functions forl 50 to 3 for C201
4He25. The

arrow indicates the atom emission threshold. Strength funct
have been normalized so that, for eachl, the maximum peak heigh
is unity.

FIG. 5. Strength functions forl 50 to 3 for C601
4He100. They

have been normalized so that, for eachl, the maximum peak heigh
is unity.
13450
e

at

e

e

radiusa. Our simple model also assumes that the subst
potential is piecewise constant, with nonvanishing finite d
rivative U8(a)[V8(a,R). Figure 7 contains size paramete
of interest for the growth of helium films on C60, where^r &
and dr are, respectively, the centroid and the dispersion
the density profile for the givenN as discussed in Ref. 8, an
a is the hydrodynamic radius defined by

N5
4p

3
~a32R3! r0 ~20!

with R[R6053.55 Å.
To derive the modes one starts from the linearized co

nuity and momentum conservation equations for superfl
flow,

]r

]t
52r0 “•vs , ~21!

m r0

]vs

]t
52“P2r0 “U ~22!

s
FIG. 6. Strength functions forl 50 to 3 for C1201

4He500. They
have been normalized so that, for eachl, the maximum peak heigh
is unity.

FIG. 7. Mean radius, mean radius plus dispersion, and hydro
namic radiusa as functions of the number of atoms.
2-5
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with r0 the bulk density andU(r ) the spherically symmetric
external potential on a single helium atom of massm. We
establish the following

~a! The pressure at any free surface is the Laplace p
sure of a deformable sphere with undistorted radiusa,

P5s S 1

R1
1

1

R2
D5s K02

1

a2
~21¹V

2 ! h, ~23!

wheres is the liquid surface tension,h is the displacemen
of the surface,K051/a is the spherical curvature, and¹V

2 is
the angular part of the Laplacian operator.

~b! The superfluid flow condition,vs5“w(r ), where
w(r ) is the velocity potential.

~c! Boundary conditions~bc’s!: on a spherical wall lo-
cated at positionR, vs•n̂w50; on a spherical free surface
position a, vs•n̂s5]h/]t, with n̂w , n̂s the unit vector per-
pendicular to the corresponding surface, one reaches the
tem for the wave equation with the given bc’s,

¹2w1
v2

cs
2

w50, ~24!

vs•n̂w50, ~25!

gl~a!
dw l

dr U
a

5v2 w l~a!. ~26!

Herecs is the sound velocity in bulk helium. In Eq.~26! it
has been already assumed that the velocity potential is o
form w(r )5w l(r ) Ylm( r̂ ). Moreover, we have introduced th
effective gravity

gl~a!5g~a!1gl
0~a!5

1

m
“U•n̂s1

s

r0ma2
~ l 21! ~ l 22!

~27!

that adds the ‘‘substrate gravity’’g5U8(a)/m to the ‘‘capil-
larity gravity’’ gl

0(a). We also note that in Ref. 15 an equiv
lent system has been solved for fully and partially filled c
lindrical pores and for planar films.

Capillary waves of incompressible fluid systems are
tained solving Laplace’s equation“w l(r )50 for the velocity
13450
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potential with the corresponding bc’s. If propagation of de
sity fluctuations is allowed—i.e., if the fluid is
compressible—one seeks perturbationsdr(r ) proportional to
the solutionw(r ) of the wave equation, together with a di
persion relationv5cs q. Expansion of the solutions up t
second order inq2 leads then to the eigenfrequenciesv l(a),
for l . 0, in the long wavelength limit. Note that the osc
lation modes of an incompressible sphere~capillary waves!,
which correspond to the solutions of Laplace’s equation w
bc ~26!, are derived in Refs. 25 and 26 assuming a veloc
potential of the formw l(r )5r l( l .0). The frequencies read

@v l
0~a!#25

gl
0~a! l

a
. ~28!

For a helium sphere withN atoms, this is complemented b
the relationr053N/(4pa3). No monopole modes can b
supported by an incompressible sphere.

In this work, we first solve for the capillary waves of a
incompressible helium shell adsorbed on a sphere, with
locity potential

w l~r !5r l1
l

l 11

R2l 11

r l 11
~29!

( l .0). This form is chosen to satisfy the bc at the wa
while the one on the free surface gives the dispersion rela

v l inc

2 5
gl~a! l ~ l 11!

a

12ul

l 111 l ul
. ~30!

Here we have introduced the dimensionless ratioul
[(R/a)2l 11. Expression~30! coincides with the modes~28!
of an incompressible sphere whenR5ul50 and gl(a)
5gl

0(a). For the compressible shell, the density fluctuati
dr(r ) is proportional to the velocity potential, taken as

w l~r !5 j l~qr !2
j l8~qR!

nl8~qR!
nl~qr ! ~31!

with j l(z),nl(z) the regular and irregular spherical Bess
functions.27 Expansion of these functions in the bc~26! up to
their second-order terms gives the eigenfrequencies fol
.0 in the long wavelength limit
v l
25

v l inc

2

11
v l inc

2 a2

2cs
2 ~12ul !

F l 21

~ l 11! ~2l 21!
~ul2u0

2!1
~ l 12!

l ~2l 13!
~12u0

2ul !G
~32!

with u0[ul 50.
The monopole frequencies of the compressible film are obtained after expanding Eq.~26! so as to keep terms of orderq4.

In this way we get
2-6
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v0
256

cs
2

a2

11
g0~a! a

3 cs
2 ~12u0

3!

123 u0
212 u0

31
g0~a! a

5 cs
2 ~125 u0

215 u0
32u0

5!

.

~33!

We have computed the dispersion relations~30!, ~32!, and
~33! for shells adsorbed on Cn fullerenes; for reference, we
have also calculated the corresponding eigenfrequencie
capillary and density waves of spheres and free shells, wh
expressions are collected in the Appendix. Typical results
displayed in Fig. 8 where we plot the spectrum of dens
waves of shells adsorbed on C60 as functions of the numbe
of atoms, together with those of spheres and free shells
l 50 to 3. The general features of these hydrodynamic mo
are the following. First, we encounter that in all cases, at l
numbers of fluid atoms the eigenenergies of compress
systems are lower than those of the incompressible o
This difference disappears for a few hundreds of partic
Moreover, for sufficiently large number of fluid atoms, th
common compressible and incompressible eigenenergies
lapse onto those of a sphere with the same particle num
Finally, it can be seen that at low particle number, a sh
bound to C60 is ‘‘stiffer’’ than a free shell—i.e., the oscilla-
tion energies are higher, revealing the presence of the
strate gravity in addition to the capillarity pressure. This
fect disappears for sufficiently large shells, roughly abo
500 atoms.

In Fig. 9 we illustrate the influence of subtracting so
layers. Forl 50 to 3, full lines denote the spectrum ofNl
5N atoms adsorbed on C60, dashed lines correspond to su
tracting a first solid layer withNs565, and dot-dashed line
correspond to removing two solid layers with totalNs
5155. In the latter two cases, the sphere radius has b

FIG. 8. The oscillation modes of compressible helium she
adsorbed on C60 ~full lines! as functions of the number of particle
for l 50 to 3. Dashed and dot-dashed lines, respectively, corresp
to the coherent mode of free shells and to spheres of the s
number of atoms~see the Appendix for details!. Both the inner
surface radius of the free shell and the substrate radius for
bound system are taken as radiusR60.
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moved to the location of the first and second peak in
mass distribution of the inert particles, respectively. We
preciate that while forl .0 multipolarities the modes are no
influenced by the removal of solid atoms for, say,N above
400–500, this is not the case for the breathing excitations
is worth noting, moreover, that the eigenfrequencies in Fig
are in good quantitative agreement—however, sligh
smaller—with the RPA results illustrated in Sec. III. This fa
permits one to circumvent computationally more demand
calculations, like the RPA1FRDF approach, in order to ex
amine the effects of the inert layers on the density-fluctuat
spectrum.

V. SUMMARY

In this work we have presented a RPA calculation of t
density-density response of spherical helium shells adso
on carbon fullerenes, for several numbers of helium adato
The elementary sp excitations are taken as those in the m
field derived from a FRDF previously employed in a varie
of applications to helium systems. This procedure is in
spirit of earlier studies of the spectrum of density fluctuatio
in doped helium droplets12–14 and the results are robust an
consistent with the expectations for this kind of systems.
the smaller particle numbers here reported, the spectrum
characterized by large fragmentation of the monop
strength, with main peaks lying at energies of order 10
and by comparatively smaller eigenenergies for higher m
tipolarities. Due to the peculiar configuration with a sizab
spherical cavity in the fluid, originated in the presence of
fullerene, which shifts the location of the main peak in t
mass distribution to around 6 Å, a nontrivial dipole oscill
tion appears at energies around 1 K. For all multipolariti
the eigenenergies are seen to decrease as the number
oms increases, while for a given number of atoms, they g
with increasingl .0.

For systems sufficient large so as to admit one or m
layers adjacent to the adsorbing sphere, we have propos
method to suppress these layers, which should be solid

s

nd
e

he

FIG. 9. Spectrum of density waves of helium shells adsorbed
C60 as a function of atom number forN fluid atoms~full lines!, N
265 fluid atoms on a sphere of radiusR13.15 Å, and forN
2155 fluid atoms on a sphere of radiusR16.05 Å.
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purely planar graphite substrate. Our approach is slightly
ferent from similar ones employed by other authors22,23 and
pursues the same purpose, namely, to separate inert a
from those expected to participate in density fluctuatio
The hydrodynamic description of these modes seems to p
out that the effect of the presence of inert layers becom
irrelevant for particle numbers above a few hundreds of
oms.

We have developed a simple hydrodynamic model
spherical fluid shells on a substrate, which disregards
shell structure and only involves bulk parameters such
helium saturation density and surface tension, and the v
of the substrate attractive force on the free surface.
eigenfrequencies can be derived analytically, both for ca
lary waves of an incompressible helium fluid and for dens
fluctuations of a compressible system. The results can
displayed as functions of atom number and it is clearly s
that the eigenenergies of these modes vanish monotoni
with increasingN, keeping the ordering sequence encou
tered in the RPA calculations. A comparison of spectra
incompressible and compressible spheres, free shells,
shells bound to a substrate shows that geometry effects
as the presence of a solid sphere, as well as the distinc
between compressible and incompressible systems, is m
above a few hundred particles.
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APPENDIX

In the spherical geometry, we may consider four m
distributions at bulk densityr0 corresponding to~a! N atoms
on a sphere of radiusa; ~b! a cavity of radiusR in the bulk
liquid; ~c! N atoms in a free shell~‘‘thick’’ bubble ! between
inner and outer radiiR and a, and ~d! N atoms in a shell
bound to a substrate of radiusR extending up to an oute
radiusa. We list the results below for capillary and densi
waves, which respectively, correspond to the solutions
Laplace’s equation for the case of the incompressible flu
and to those of the wave equation for the compressible
tem.

~I! Capillary waves. The radial velocity potential chose
asw l(r )5Al r l1Bl r 2 l 21 and the spectrumv l

2 for the vari-
ous incompressible systems of interest are the following

~1! Incompressible sphere, radiusa: Al51, Bl50, and

@v l
0~a!#25

gl
0~a! l

a
. ~A1!

~2! Cavity, radiusR: Al50, Bl51, and
13450
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@v l
0~R!#25gl

0~R!
l 11

R
. ~A2!

~3! Thick bubble, radiiR,a: Al51, and

Bl5a2l 11
@v l

0~a!#22v l
2

v l
21

l 11

l
@v l

0~a!#2

5R2l 11

v l
21@v l

0~R!#2
l

l 11

@v l
0~R!#22v l

2
.

~A3!

The spectrum exhibits two branches, corresponding to a
herent, low-frequency mode, with the two spherical boun
aries oscillating in phase—i.e., the mode to be compa
with the density fluctuations of the other systems—and to
incoherent, high-frequency one for the out-of-phase osci
tion. These modes are the solutions of the quartic equa
c4

0 v l
41c2

0 v l
21c0

050 with coefficients

c4
0512ul , ~A4!

c2
052H @v l

0~a!#2 S 11
l 11

l
ul D1@v l

0~R!#2 S 11
l

l 11
ul D J ,

~A5!

c0
05@v l

0~a!#2@v l
0~R!#2 ~12ul !. ~A6!

~4! Bound shell, radiiR,a: Al51, Bl5 l /( l 11) R2l 11,
and

@v l inc
#25

gl~a! l ~ l 11!

a

12ul

l 111 l ul
. ~A7!

~II ! Density waves. The density fluctuation is of the form
dr l(r )5Al j l(qr)1Bl nl(qr) and the spectrav l

2 for l .0 are
the following.

~1! Sphere, radiusa: Al51, Bl50, and

@v l~a!#25
@v l

0~a!#2

11@v l
0~a!#2

~ l 12! a2

2 l ~2l 13! cs
2

. ~A8!

~2! Cavity, radiusR: Al50, Bl51, and

@v l~R!#25
@v l

0~R!#2

12@v l
0~R!#2

~ l 21! R2

2 ~ l 11! ~2l 21! cs
2

. ~A9!

~3! Thick bubble, radiiR,a: Al51 and

Bl5
gl

0~a! j l8~qa!2v l
2 j l~qa!

v l
2 nl~qa!2gl

0~a! nl8~qa!

52
gl

0~R! j l8~qR!1v l
2 j l~qR!

v l
2 nl~qR!1gl

0~R! nl8~qR!
, ~A10!
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where f 8(b)5d f(r )/drur 5b . After expansion of the spheri
cal Bessel functions, the secular equation for the modes
comes the quarticc4 v l

41c2 v l
21c050 with coefficients

c45c4
02

a2

2cs
2 H @v l

0~a!#2 F 1

2l 21 S u0
21

l 21

l
ul D

2
1

2l 13 S l 12

l
1

l 11

l
u0

2 ul D G
1@v l

0~R!#2F 1

2l 21 S l

l 11
ul1

l 21

l 11
u0

2D
2

1

2l 13 S l 12

l 11
u0

2 ul11D G J , ~A11!

c25c2
01

@v l
0~a!#2 @v l

0~R!#2 a2

2cs
2 F l 21

~ l 11! ~2l 21!
~ul2u0

2!

1
l 12

l ~2l 13!
~12u0

2 ul !G , ~A12!

c05c0
0 . ~A13!

~4! Bound shell, radii R,a: Al51, Bl52 j l8(qR)/
nl8(qR), and upon expansion of the spherical Bessel fu
tions,
m

n,

13450
e-

-

@v l #
25

gl~a! l ~ l 11!

a

12ul

l 111 l ul1a
gl~a! a

2 cs
2

~A14!

with

a5
l ~ l 11!

2l 21
~u0

22ul !1
~ l 11!~ l 12!

2l 13
~12u0

2ul !.

~A15!

The monopole modes request one more term in the exp
sion. The results are the following.

~1! Compressible sphere:

v0
25

6cs
2

a2

11
g0

0~a! a

3cs
2

11
g0

0~a! a

5cs
2

. ~A16!

~2! Compressible cavity:

v0
25

g0
0~R!

R

1

12
g0

0~R! R

2cs
2

. ~A17!

~3! Compressible thick bubble:
v0
25

g0
0~a! g0

0~R!
12u0

3

3cs
2 u0

1
g0

0~a!

a
u01

g0
0~R!

R

12u01
g0

0~a! a

cs
2 S 1

3
2

u0

2
1

u0
3

6 D 1
g0

0~R! a

u0cs
2 S u0

3

3
1

1

6
2

u0
2

2 D . ~A18!

~4! Compressible bound shell:

v0
256

cs
2

a2

11
g0~a! a

3 cs
2 ~12u0

3!

123 u0
212 u0

31
g0~a! a

5 cs
2 ~125 u0

215 u0
32u0

5!

. ~A19!
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