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The edge excitations and related topological orders of correlated states of a fast rotating Bose gas are
studied. Using exact diagonalization of small systems, we compute the energies and number of edge excita-
tions, as well as the boson occupancy near the edge for various states. The chiral Luttinger-liquid theory of
Wen is found to be a good description of the edges of the bosonic Laughlin and other states identified as
members of the principal Jain sequence for bosons. However, we find that in a harmonic trap the edge of the
state identified as the Moore-Reé#éfaffian state shows a number of anomalies. An experimental way of
detecting these correlated states is also discussed.
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It has been arguéd® that quantum fluctuations can de- Amongst these states, we find evidence for the topological
stroy a Bose-Einstein condensg®EC) if it rotates very order (and related edge structujethat correspond to bulk
fast. Since large amounts of angular momentum can be imstates with filling fraction3u:§ and vz?1 of the principal
parted to a cold atomic gas, experimentalists have been ablain sequence. At even lower angular momentum, we study
to create systems with a large number of vortichis.>>  the edge properties of the state identified the finite-sized
Thus, the question of what happens whéneventually be-  Moore-Read(or Pfaffian staté? (v=1). We observe a num-
comes comparable to the number of particlis,has been ber of anomalies that persist up to the largest sizes studied
raised™? In Ref. 2, it was shown that for=N/N,~ 10, the  here(N=13). The bulk properties of the states at these filling
BEC and the Abrikosov vortex lattice are destroyed and refractions have also been studied in exact diagonalizations in
placed by a series of “vortex liquid” states, some of whichedgeless geometrfe¥ which have established their interpre-

are incompressibleand exhibit good overlap with bosonic tation in terms of the Laughlirﬁv:%), composite fermion

versions of wave functions known from fractional quantum(,}:g,%), and Moore-Readr=1) states. For the latter, cal-

3
Hall effect (FQHE). culations on the sphel®and on the tortfsfound the correct

Good overlap is usually a strong indication that some Ofghitt and ground-state degeneragyhich are also a conse-
the correlations of a state obtained from exact dlagonahzag(-luence of the topological ord¥r

tion are captured by a model wave function. However, ¥en An ultracold gas that rotates rapidly in a cylindrically

has emphasized that FQHE states possess a unique type Ofymetric harmonic trap acquires a pancake shape and even-
quar_ltumorder, which he dubped topological order,” that tually becomes quasi-two-dimensionajuasi-2D when the
prowdes a better way to classify them. In a deep sense, tQ,amical potentialu <7, where w, is the axial trapping
pological order can be regarded as a measure of the quantum,, ,enc\15 Furthermore, the Coriolis force acts as an effec-
entanglement existing between the particles in a correlatefl,o | orentz force. which in a quasi-2D system leads to Lan-

quantum Hall(QH) state’ dau levels(LL's) se 15
: . parated by an energyia@,.”> For u
In this paper we study the topological order of the vortex_- ofiw,, all atoms lie in the lowest Landau Ievtd:JLL), and

liquids as reflected in their edge properfisi the rotating e tota] single-particle energy is proportiorab to a con-
frame edge excitations are the low-lying excitations of thegtany to the angular momentum. Here we shall be interested
vortex liquic® and, contrary to the ground stafes?'%so far ;" pis limit, which has been already achieved in the

thgy have.received little attention. Ba_sed on _the strong Sim'éxperimenté.ln the rotating frame, the Hamiltonidrelative
larities with electron FQHE physics, chiral Luttinger i, o zero-point energys

liquids™ and similar edge excitatiohisre expected, but an
explicit demonstration is lacking for a harmonically confined Ho = T+Uy=h(w, —Q)L+g> 8 —r;) (1)

gas of bosons under rotation. This is provided here by nu- i<j Lo

merically diagonalizing the Hamiltonian of small systems.

The topological order can be studied at the edge of fairlywith AL being the total axial angular momentum agd
small droplets of QH liquid:112In what follows, we shall =\8whw, (as/¢)€? the effective coupling for a gas harmoni-
focus on three types of states that have been identified inally confined to two dimensiongs< €, being the scattering
previous works on small droplet$.In the high angular mo- length that characterizes the atom-atom interaction in three
mentum end, we study the edge properties of the Laughlinimensions,,=v%/Mw, the axial oscillator length, and
state(corresponding to a bulk filling fractiom:%). By de- =vVA/Mw,, M being the atom mags
creasing the total angular momentum, we come across the Laughlin state For L=Ly=N(N-1), the ground state of
compact composite-fermion states discussed in Ref. S ist8°
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TABLE I. Number of edge stateNoS) vs excitation angular momentum. In the data for the Moore-
Read(Pfaffian statex=0 for a pure three-body interaction and=1 for a pure two-body interaction.

m=L-Lg, 0 1 2 3 4 5 6
Laughlin (N=5, L=20) 1 1 2 3 5 7 10
Laughlin (N=6, L=30) 1 1 2 3 5 7 11
Laughlin (N— o) 1 1 2 3 5 7 11
{4, 2} CF(N=6,L=20 1 2 5 8
{5, 2 CF(N=7,L=30 1 2 5 9 15
Jainv=4(N— ) 1 2 5 10 20 36 65
Moore-Read\=0, N=8, L=24) 1 1 3 10 15
Moore-Read A =0, evenN— o) 1 1 3 5 10 16 28
Moore-Readh=1, N=12,L=60) 1 4 10 21
Moore-ReadA=0,N=7,L=18) 1 2 4 7 12
Moore-Read\ =0, oddN — <) 1 2 7 13 21 35
Moore-Readh=1,N=13,L=72) 1 6 14 29
cpo(zl,...,zm:{n@-zj)z}e-%“ﬁ'%, @) faticnl tansmutation: at larg,. a bason binds one vortex.
i<j ) v

and becomes a composite objécalled composite fermion,
CP? that behaves asspinlessermion. In a Laughlin drop-
let, the CF’s fill up theN lowest angular momentum orbitals
in the LLL. Compressing the droplet and therefore decreas-
ing L requires promoting CF’s to higher LL's and costs a
finite amount of energy. Thus, states with lower angular mo-
mentum will contain CF’s in higher CF LL's, and this leads
to the ansafz?®

where zj=(x;+i y;)/£. This wave function vanishes when
any two particles coincide and therefoldy)|®,)=0. This
property is maintained if it is multiplied by an arbitrary sym-
metric polynomial of thez. Edge excitations of the above
state are generatét by elementary symmetric polynomials
of the fOFmSn:Eil<i2<--~<imZalZaz‘"Zim- Thus,L is increased
by m units and, according t¢l), the excitation energy is
ilw, —Q)m. In the rotating frame, the edge excitations are d(z,....20)=P| I (z _Zj)cbg";‘i}](rl,“_,rN) )
the lowest energy excitations of a rotating Bose gas in the i<j
Laughlin staté Their degeneracy foL=L,+m is given by ) (N -
the number of distinct ways can be written as a sum of WhereP projects onto the LLIRef. 9 and®P" is a Slater
smaller non-negative integefée., partitions ofm,p(m)].  determinant with{N}fZ; CF'’s filling the lowest angular mo-
For example, form=4 there are five degenerate states:mentum orbitals ofp=1 CF LLs, andL=L,=N(N-1)/2
[S4,8581, (5)2,55(51)2, ()% X Dy, The properties of these +ZPgNi[N;=(2i+1)]/2 (No=N and N;=0 for i>0 in the
wave functions are captured by an effective-field thédfy, Laughlin stat¢ In what follows, we focus on the CF states
which treats these excitations as a noninteracting phonof#, 2 and {5, 2}, which have been sho®rto have good
system with HamiltoniarHegqe (0, —~Q)L, where L=L,  overlap with the exact states B§=20(N=6) andL,=30(N
+zm>0mq’;1bm, and [bmva]zﬁmnv commuting otherwise. =7), respectively. For a relatively large rangelofL,>0 (3
Hence, the number of edge statB®S) for a givenmcan be  for {4, 2 and 4 for{5, 2}) the lowest energy state is a center-
obtained from a generatingor partition function: Z(q) of-mass excitation of the state BtL,, and the interaction
=Trg-to=II,-o(1-g™1=3,-op(m)g™ In Table I, we energy is unchanged. Edge excitations are those states with
compare the theoretical No®l— =) with the numerical re-  €nergy lower than the bulk ga@, cf. Fig. 1.*#!*According
sults, finding excellent agreement for<N. The deviations [0 Refs. 8,11, these states exhibit two branches of edge
are due to finite—iize effects and can be accounted by a “trurRhonons described by.
ia:r?i Nf.unct|onZ (q), where the product is restricted to 0 Hedge™ Eo + D ﬁ[w§ﬁ>bTmbm+ wﬁﬁ)d;dm], @)
Another prediction of the theoty® is the form of the m=0
ground-state boson occupaney]), just below the highest and L=L+Z.omblby+didy], with [dmy,d1=[bn,b']
occupied orbital,l,,,=2(N-1). The following ratios of =4, commuting otherwise. Note that the edge excitations
n(l)/n(l a0 are predicted: 1:2:3:4 fd=l 4y -, Imax—3- FOr  are not degenerate in energy. However, one can still compute
N=7 bosons in the Laughlin state, we find 1.0:2.0:2.9:3.5the NoS fromz(q)=Tr g~ ""o=II,,-o(1-g™ 2 In Table | we
which is in good agreement with the theory given that itscompare the numerical results to the theoretical predictions
validity is limited tol,,—| < VN~ 3 (Ref. 11 Similar agree- for the NoS, finding perfect agreement fan=1,2. For
ment was found for the fermion Laughlin state in Ref. 11. higherm the results are affected by finite-size effects. How-
Principal Jain sequenceThe incompressibility of the ever, in the stat5, 2} the NoS form=3 is quite close to its
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0351 =T - - - incompressible agait. Since CF’s are spinless, the pairing
L = = N=7 {52} takes place inp wave and the BCS wave function is a
[ Pfaffian;*!” which must be multiplied byil;-(z-z) to
T 0.30F - yield a bosonic wave function,

1 1
q)MR:H(Zi_Zj)A[Zl_Zz"'Z ] (5)

025} - i<j N-17 2N

where A stands for antisymmetrizatidisee, e.g., Refs. 1,18
of the bracketed product, which is the Moore-ReMR)
wave function'® Soon after the MR state was introduced, it
was pointed odf that it is a zero interaction-energy eigen-
I state of a three-body potential)3=gs;;d(ri—r;)d(r;
0.15 L - - L L _ o . ; L .
s 20 30 31 Y rk). ThL,]S, it is convenient to work with a modified Hamil
L tonian,H/ | =T+AU,+(1-\)U3, so that forx=0 the ground
~ o state at angular momentuid)’R=N(N-2)/2 (even N) or
FIG: 1'2 Spectrum of the state=30 with N=7. The gapA LYR=(N-1)?/2 (odd N) is exactlythe MR state. Indeed, this
=0.09k/¢~. Below the gap, we observe two phonon branches e . . T .
along with their multiphonon excitations. modlf!cauon is not entirely artificial as the MR state can
describe the exact ground state close to a Feshbach

. resonanceé?
N— o value, and therefore we concentrate on this state for .. iheexactMR state(i.e., \=0) besides the polynomi-

further analysis. We next try to reproduce the energggs of th%lssn introduced above, Wehand Milovanovic and Rea#

16 edge states ¢5, 2} from mzlbto 3 usingwy,, ande.._,,  found a branch of fermionic edge excitations which are gen-
as the only fitting paramete[s)(l) has only a kinetic-energy erated by replacing the Pfaffian fhyg by A[Z 2 (Ze
contribution by Kohn’s theorefh The interaction part of ~Ze,) N+ (zy1-2y)" Y], wheren,, ...,ns are non-negative
h’ can be extracted from them=1 data: hoy integers. Thus the angular momentum is increasedL by
=0.01%)/€2. For m=2, there are the five following states: _Ll(\)/IR:EE_l(nk+l)_ This spectrum, together with the phonon
27%(b})?|0),b}|0), dib1[0), 27X(d])*(0),d}|0), whose ener- pranch related to Sn is describefl by L=L§"®
gies can be obtained from E¢). For m=3 the states and +Em>0[m qfnber(m_%)C;H/zcwllzl where bm,b;] are the

energies can be written down in a similar fashion. The COMpbhonon operators, and the fermiofts, 1/, C'_; /= dmn an-

parison with numerics fom=2,3 isgiven in Table Il. Thus, o5 muting otherwise. However, due to the paired nature of

these states are good representatives of the topological ordt%re state. even and odd are different. For instance. to

ggstgﬁéjgling v=% from the principal Jain sequence for compute the NoS, one must definez®*1q)=3Tr[1
FinaI.Iy, we also find evidencgo be reported elsewhéfe f(_llFl]?:L_Lo _ar?dlzzo_d;(qﬁ1Tr[1—(—1)F_]qL_"°, sin((j:e the par-
for the edge structurehree phonon branchesorrespond- 1Y (“1)7, With F=2p-oCryy/Cm-1/2. IS @ good quantum
ing to =23 However. the NoS fom> 1 is affected by finite- number® The numerical results are compared with the NoS
4 : for N—oo in Table I. Perfect agreement is found far

size effects folN=6,7. . .
Moore-Read (MR) or Pfaffian stat&round states of CF’s =[N/2]. _H_|ghe_r values oim are shpwn to illustrate the ef-
fects of finite size; the observed differences from hes «

with lower angular momentum are obtained by placing CF's
in higher effective LL's. Eventually, when the number of Values can be also accounted for by the thébyurther-

occupied levelgp— +, the CF’'s would not feel any effec- MO'& using the gﬁective-field theoty,we have also ob-
tive Coriolis force and the resulting state should be com.fained the behavior ofi(l) near the edge. FaN even the

pressible. However, in such a state the CF’s can pair anfrédicted ratios ofn()/n(lna), where ln,,=N-2, are
condense into a BCS state, which would render the staté:2:3:... For N=8, we numerically find 1.0:2.2:3.4. How-
ever, forN odd the ratios oh(l <I 20/ N(lnad (I max=N-1)
TABLE II. Interaction energiesin units of g/¢2) of the edge P€have differently(Ref. 16: 1:1:2:3. ForN=9 we numeri-
excitations of the5, 2} state(N=7, L=30, see Fig. L The predic- cally find 1.0:1.0:2.5:4.1, and the scaling observed from

tions for multiphonon states are given in brackets. Deviations ar(.sma”er systems shows a trend of convergence to the pre-
due to nonlinear terms not included in Eg). dicted ratios. Althoughn(l) had been analyZEd in Ref. 6 fora

fermion MR state, the different behavior ofl) for odd N

State No.  m=2 (th.) m=3 (th.) State No. m=3 (th.) had not been described.
As soon as the two-body interaction is turned on, i.e.,

Interaction Energy [g/]

020f

-—D>—>
|

1 000 0(0) 6 0.034(0.030  gready for small\>0, we observe that thelateau at L

2 0.002[fy"] 0.002(0.002 7 0.047(0.045 > MR s lost for smallL-L{"R. For pure two-body interac-
3 0.015(0.015 0.006[#w’] 8 0.069(0.069 tion (A=1), the states aty~+1 for N=5,9,11,13 and at
4 0.034(0.030 0.015(0.015 9 0.088(0.084 L'(\,"R+2 for N=6,7,8,10,12 have lower interaction energy
5 0.069[#w®] 0.020(0.017 10 [#ns®=a] than the ground state af'®. Thus,U, strongly perturbs the

plateau of the exact MR state by favoring states with angular
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momenta of compact CF states. If, regardless of this fact, on@here « runs over all edge excitations. The theory predicts
counts the number of states lat-Ly" with interaction en-  (Ref. 8 f,,=mvR2™, where R=\{N/v is the droplet radius.
ergies less than the first excited statd_gﬁ, the results do  For the dipole,f;=N, as required by Kohn’s theorefrand
not seem to converge and disagree with the NoS expected f@bnfirmed by our numerics. For the quadrupoe=2) f,

the MR state(see Table | for the observed NoSktl for — _on2/,, \we have numerically tested the accuracy of this

N=12, 13. We also observe a rapid deterioration of the over-, _ -
lap of the state at® with the exact MR state: from 0.91 formula for them=2 modes of the states in Tablddxcept

(N=5) and 0.90(N=6) to 0.68 (N=8) and 0.74(N=9). the MR state at=1), finding that already foN=5, 6 the
These discrepancies might be due to a very slow convefdeviations are no larger than 7%. This result suggests an
gence asN grows towards a well-defined bulk MR state. €xPerimental way of estimating the filling fraction, provided
However, we note that for very largdl, local-density f2andN (or fy) can be measuredgi,=f,/2N° More details
argument® show that the edge of the MR state will recon- Will be provided elsewher®.

struct. The anomalies in the edge of the small systems ob- . .
served here are striking in view of the good behavior exhib- M-A.C. thanks M. Greiter for a useful conversation and
ited by the Jain states, which are also approximate wavthe D_ep.artment of ECM of the Universitat de Barcelona for
functions. hospitality. We are also grateful to N. Read for helpful cor-

Experimental consequencel$ is possible to excite the respondence. Financial support from the Gipuzkoako Foru
surface modes by inducing a small time-dependent deformafldundia(M.A.C.), Grants No. BFM2002-01868 from DGE-
tion of the harmonic trap. Within linear response, the energySIC (Spanish Governmenand 2001SGRO006A5eneralitat
injected by anm-polar deformation is proportional to the de Catalunya(N.B.), and EPSRC GR/S61263/04.R.C) is
oscillator strengthf,,== [(Lo+m, a|On|Lo)% (On=2N,Z"),  gratefully acknowledged.
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