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Addition energies and density dipole response of quantum rings under the influence
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Within density functional theory, we address the effect of an in-plane electric field £ on the ground state and
the density dipole response of a many-electron quantum ring, which is also submitted to a perpendicular
magnetic field B. Addition energies and density dipole spectra are discussed as a function of £. For the
two-electron case, an exact numerical calculation is performed, obtaining the spin-phase diagram in the £&-B
plane and showing that transitions between singlet and triplet spin states can be induced by varying the fields.
We also find that, in spite of the deformation that £ causes in the electronic density, the spin of the ground state
of a given electron number ring is very robust, changing little as the strength of the electric field is reasonably

increased.
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I. INTRODUCTION

Spin effects in two-dimensional (2D) nanostructures have
been widely investigated in recent years because of their po-
tential relevance to quantum information processing
schemes. Experimental and theoretical results involving, e.g.,
spin pairing,’> Zeeman splitting®>® and spin states’# due to
in-plane or perpendicular magnetic fields, spin blockade
effects,3"1% and, of particular interest, spin transitions driven
by magnetic fields''~!" or gate voltages’®?3 have been re-
ported.

The possibility to externally control and induce transitions
between entangled spin-singlet |T])-||T) and nonentangled
spin-triplet |T) states is of great importance in the realiza-
tion of qubits since it provides an efficient way to manipulate
the entanglement of such systems. Coulomb and spin block-
ade spectroscopy experiments with lateral'®?! and
vertical'>!"” quantum dot (QD) systems, in which the QD’s
are formed by confining a few electrons of a 2D electron gas
by the application of gate voltages, have proved that the spin
of the ground state (gs) can be manipulated by magnetic
fields (B),'6 or by gate voltages at fixed B,”! the latter being
a more efficient procedure since the gate voltage can, in gen-
eral, be tuned faster than the magnetic field.>* Similar con-
clusions have been obtained from experiments with many-
electron quantum rings (QRs) fabricated with scanning force
microscope nanolithographic techniques on an AlGaAs-
GaAs heterostructure.?>?? In these ring structures, the effect
of both magnetic and electric (€) fields on the gs spin has
been investigated.

Motivated by these experimental results, we have ad-
dressed, within local spin-density functional theory
(LSDFT), the structure of GaAs quantum rings hosting up to
N=12 electrons as a function of B and £ and have used these
results to obtain their addition energies and density dipole
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response for some selected configurations. We have singled
out the N=2 electron case and have solved it exactly, obtain-
ing its spin-phase diagram in the £-B plane and showing that,
indeed, spin transitions can be externally induced at fixed
magnetic field by varying the electric field, and vice versa.
The paper is organized as follows. In Sec. II, we briefly
introduce the LSDFT and show the gs results as a function of
B and &. In Sec. III, we describe the time-dependent LSDFT
(TDLSDFT) approach that we have used to calculate the
density dipole response and the method employed to obtain
the excitation frequencies of the system. A sum rule ap-
proach to discuss the electric dipole polarizability is also
presented. The exact results for N=2 are presented and dis-
cussed in Sec. IV and, finally, a summary is drawn in Sec. V.

II. DENSITY FUNCTIONAL CALCULATION
FOR THE GROUND STATE OF THE MANY-ELECTRON
QUANTUM RING

We consider a system of N electrons, whose motion is
restricted to the xy plane, where a suitable confining poten-
tial V,,,Ar), with r=+x?+y, induces the formation of a ring-
shaped electron island. The system is placed in a magnetic
field perpendicular to the plane where the electrons move,
and an electric field £ is applied in the x direction. Both
fields are static and uniform. In the effective mass, dielectric
constant approximation, the single-electron wave functions
are given by the solution of the Kohn-Sham (KS) equations

1
{—Pz + ng + Voonfr) + VH 4 e
2m €

1

where m=m " m, is the electron effective mass in units of the
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FIG. 1. (Color online) Confining potential V,,,/r) (upper) and
electronic densities (lower) for the N=10 ring at B=0 and £=0, 1,
2, and 3 mV/nm, (a)-(d) configurations, respectively.

bare electron mass m,, ug=he/(2m,c) is the Bohr magneton,
g* and e are, respectively, the effective gyromagnetic factor
and the dielectric constant, o, is the z component of the Pauli
spin-vector operator o, and P=—iAV +eA/c represents the
canonical momentum in terms of the vector potential A,
which we write in the symmetric gauge, A=B(-y,x,0)/2,
with B=VXA=BZ. In the above equation, V¥ is the
Hartree potential, and V*= d&,.(n,m)/dn|,, and W*
= 9E,.(n,m)/ om| ¢s are the variations of the exchange-
correlation energy density &..(n,m) in terms of the local
electronic density n=n'+n! and spin magnetization m=n'
—n' taken at the gs, where n! and n' are, respectively, the
spin up and down local electron densities. The exchange-
correlation energy density &, has been constructed from the
results of the nonpolarized and fully polarized 2D electron
gas,? using the two-dimensional von Barth and Hedin?® pre-
scription to interpolate between both regimes.

To simplify the expressions, in the following, we shall
mostly use effective atomic units A=e?/e=m=1, for which
the length unit is the Bohr radius o times e/m" and the
energy unit 1s the Hartree times m /62 which we, call re-
spectively, ao and E For the GaAs, *—0. 44, m" =0.067,
and e=12.4. Thus, a0—97 9 A and Ep=11.9 meV.

The confining potential V,,,Ar) modehng the ring has
been chosen of the following smooth form

1 2 e(r—RO—w)/ v

Veonf(r) = V4 )

1+e(r—R0+w)/y1 +Vo 1+e(r—R0—w)/yz’
where Ry=2.5, V\"'=V?=5, y=7,=0.3, and w=1.25 in ef-
fective atomic units. This corresponds to a fairly thick ring of
average radius Ry~ 25 nm and 2w~ 25 nm width. A plot of
Vieons 18 shown in Fig. 1.

In the presence of an electric field, the system is no longer
circularly symmetric and the KS equations are 2D partial
differential equations, which we have solved in Cartesian
coordinates after having discretized the differential operators
using 11 point formulas and employed fast-Fourier transform
techniques?’ to obtain the Hartree potential. The essential
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FIG. 2. Addition energies for B=0 and £=0, 1, 2, and
3 mV/nm. The value of 2S, is indicated in the £=0 panel.

details of our method are given in Ref. 28. In the lower
panels of Fig. 1, we plot the ground state density of the N
=10 ring at B=0 and £=0-3 mV/nm, which shows how the
electronic density is progressively deformed along the direc-
tion of the applied electric field as the value of £ is increased.
In spite of the progressive deformation of the quantum ring
as & increases, all the electronic configurations we have
found in our study are always smooth, without charge-
density nor spin-density waves in the azimuthal direction.
We attribute this to the external ring potential we have used,
which is fairly wide radially, as we have already mentioned.
For more quasiunidimensional rings and/or electronic sys-
tems more dilute than ours, sometimes the LSDFT yields
solutions presenting azimuthally modulated charge and spin
densities. We refer the reader to Ref. 29 for a detailed dis-
cussion of these particular solutions arising in LSDFT.
Figures 2—4 show the addition energies A,(N)=E(N+1)
—2E(N)+E(N-1) for quantum rings containing up to N
=12 electrons and for some selected values of the electric
and magnetic fields. From the maxima in A,(N), at £=0 and
B=0, one can identify shell closures at N=6 and 10, as found
in previous calculations for parabolically confined QRs.3%3!
As €& starts increasing, the ring becomes more and more de-
formed, leading to a shell structure in which the sequence of
magic numbers differs from the circular case. This can be
seen, for example, for £=1 mV/nm and B=0, where a small
peak arises at N=4. Increasing further the electric field while
switching on the magnetic field, the addition spectrum dis-
plays less structure. The peak at N=8 is the sole exception,
indicating a very strong shell closure for the chosen V..
The ground state spin, S(N), is also indicated in the fig-
ures. It can be seen that, for the displayed N values, at B
=0, the spin is unaffected by electric fields up to &
=3 mV/nm. S(N) corresponding to odd-N rings turns out to
be very robust even when a magnetic field is applied and
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FIG. 3. Same as Fig. 2 for B=3 T. Upper panels display the
value of 25, only when it differs from that of the £=0 case.

does not change for any of the values of £ and B that we
have considered. The same occurs for the N=8 case. How-
ever, at B # 0, interesting features appear for the rest of even
electron numbers, namely, N=2, 4, 6, and 10. Indeed, one
can observe transitions between 2S(N)=0 and 2S(N)=2
states driven by the electric field at fixed B. Similar spin
transitions induced by an applied magnetic field have been
observed in Coulomb blockade spectroscopy experiments
with vertical and lateral few-electron quantum dots'® or by
the application of a gate voltage at fixed B.2! This technique
has also been used in experiments with many-electron quan-

tum rings,?>?* where the gate voltage-induced singlet-triplet
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FIG. 4. Same as in Fig. 3 for B=5T.
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FIG. 5. Second spin differences S,(N) for B=0T and &
=0 mV/nm.

transitions have been related to the competition between the
Hartree and the exchange interactions, which favor, respec-
tively, the formation of singlet and triplet spin states. The
second spin differences, S,(N)=S(N+1)-2S(N)+S(N-1),
have also been measured from the slopes of the Coulomb
blockade peak spacings.?* Our results at £=B=0 are shown
in Fig. 5. It can be seen that S,(N) takes the three integer
values —1, 0 and 1, with one-unit jumps. The experimental N
sequence matches that of our calculation except in one case,
in which it passes directly from the value 1 to —1. We have
found these two-unit jumps only when B # 0.

II1. DENSITY DIPOLE RESPONSE

A. Electric dipole polarizability and sum rules

Some global properties of the quantum ring excitation
spectrum can be obtained by using sum rule techniques. For
a general excitation operator F, one can define the strength
function

S(w) = 2 KWl FIW )8 = wjo). (3)

J

where | ¥ » and ) are, respectively, the jth excited state and

its excitation energy, and |W,) is the ground state of the
many-electron Hamiltonian

N
1 e 1 *
=—> |P*+V +=Ex+ = B
2m§ conf(r) € X 2g Mpb O, .
N 2

e
+ 2 T 4)
i<j=1 E|ri_ l'j|

The sum—or integral in the case of continuum spectrum—in
Eq. (3) extends over all the excited states of the system, and

the energy moments of the strength function are given by

my = f doo*S(w) =2, w§0|<‘P0|F|“Pj> 2, (5)
0 J

which define the so-called sum rules.*’~3* Of particular inter-
est are the m_;, m;, and m3 moments. For the dipole operator
along the x direction, F :D":eEf;lxi, they read

m_,=_«q,
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TABLE 1. Electric dipole polarizability in effective atomic units
for rings with different electron numbers as a function of the mag-
netic field B.

B
(T) N=6 N=8 N=10 N=12
17.34 17.82 17.96 18.99
3 18.20 17.77 18.59 19.25
5 18.51 18.28 19.18 19.83
1 N
my = SO [H.DT0) = .
2 2
1 X X
ms = S(OI[[D* HLH,[H,D'T]]0)
N 1
Yol [avp el ©

where w,.=eB/(mc) is the cyclotron frequency. Since the
ground state of the ring is deformed when £ # 0, excitations
caused by the dipole operator in the x and y directions, D*
=e3N x; and D'=e3Y |y, are not the same. « is the electric
dipole polarizability, which can be obtained as

d*(H)
dlu’2 u=0

: )

a=

with u=eE/e. m; is just the Thomas-Reiche-Kuhn sum
rule,® and m; can be easily calculated from the ground state
density n(r). The ms sum rule for D” involves the Vf deriva-
tive.

The electric polarizabilty « is a measurable quantity for
many systems, such as atoms and nuclei. Its determination
requires an accurate evaluation of the total energy of the
deformed system as a function of &£ in the limit of zero ap-
plied electric field. We give in Table I the LSDFT values of
the polarizability in effective atomic units for some selected
values of N as a function of the magnetic field. One can see
that a turns out to be rather insensitive to B and N. We recall
that the dipole polarizability is a length to the cube, and the
only length playing a role here is the mean radius R of the
confining potential, whose cube (15.63) is about 20%-30%
smaller than the value of the polarizability. The enhancement
of a with respect to RS is a measure of the quantum spillout
of the electrons outside the “ideal” ring radius.3

The usefulness of the above sum rules lies in that, under
some conditions, one may obtain information about the di-
pole strength just from the ground state structure of the sys-
tem. In particular, they allow to define two average excitation
energies,’?** namely, E,=(m;/m_,)"? and E;=(m3/m,)"?,
which give more weight either to the low-energy or to the
high-energy part of the spectrum, respectively. If the excita-
tion spectrum is concentrated in a fairly narrow energy re-
gion, E; or E; represent the mean energy of the excited
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mode. However, if the excitation spectrum is fairly frag-
mented, these mean energies can hardly represent the actual
excitation energies. This is the present case, as we show in
the next subsection.

B. Real-time adiabatic time-dependent local spin-density
theory

We have calculated the density dipole response of the
system using the real-time adiabatic TDLSDFT approach de-
scribed in detail in Ref. 37, which we have restricted to our
simpler 2D quantum ring. The analysis of the modes has
been done following the method proposed in Ref. 38. Essen-
tially, the procedure consists in considering the interaction
with the dipole field as a small perturbation to the gs |¥) of
the N-electron QR along a certain direction €, i.e., ‘If(')’é)
=eMT|W), with N<1. To first order in \, this can be
written as [W )=~ (1+i\é-r)|Wy). The ground and excited
states of the Hamiltonian H constitute a basis
{{¥o).|W)} (j#0) in which the time evolution of the per-
turbed state can be expanded: [Wi(1))=e "W )
~e W)+ 37 a; ee” [ W)). One can show that the quan-
tity (W5(1)|€-r|Wi(1)—(Wolé-r|Wo)=dq(7) is related to the
dipole strength function by the expression

1 ([~ -
Se(w) = ;J dg(t)sin wtdt = 2 |<\I’j|é : r|‘1’o>|25(wjo - w),
0

J=1

(8)

where, as in the previous subsection, w;)= w;—wy is the ex-
citation energy of the state |\Ifj>. Finally, to obtain the re-
sponse frequencies of the system, we perform a least squares
minimization of the time-discretized function defined as

3,[da(t) —Dg(1)]?, with Dg(t) given by
M
Dé(t) = 2 [A]’é COS wjot + B]’é sin wjot], (9)
j=1

where the sum extends over M frequencies of the system, M
being large enough to provide an accurate dg(z) from Dg(z)
and to assure the convergence of the calculation. The set
{wjo} is obtained from Egs. (8) and (9) as a discrete set of
Dirac delta functions that in practice we have smoothed out
into fairly narrow Lorentzians.

As an example, Fig. 6 shows the dipole strength function
corresponding to the N=6 ring for B=5T and £=0
—3 mV/nm. This ring presents a change in the spin gs in-
duced by the applied electric field, see Fig. 4. The dipole
strength represents the sum of the contributions correspond-
ing to the X and y directions, i.e., S(w) = Sg(w)+Sy(w). The
more salient feature of the density dipole response when an £
field is applied to the QR is its robustness. The £=0 refer-
ence spectrum (bottom panel) shows a two peak structure
around w=5 meV due to splitting caused by the magnetic
field and some strength around w=20 meV. This high-
energy structure has been discussed in detail in Ref. 39 and
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FIG. 6. Dipole strength function S(w) (arbitrary units) as a func-
tion of the excitation energy w corresponding to N=6, B=5 T, and
several values of the electric field £.

references therein and constitutes a signature of the QR ge-
ometry that shows up in its far-infrared spectrum. The upper
panels show that both structures are clearly visible as & in-
creases, with the only noticeable change that the dipole
strength becomes more fragmented, and the appearance of a
soft mode around w=1 meV, which is absent when the sys-
tem is axially symmetric (i.e., when £=0).

IV. EXACT SOLUTION FOR THE TWO-ELECTRON
QUANTUM RING

For the two-electron system we have solved the
Schrédinger equation with the Hamiltonian [Eq. (4)] using
the method of Ref. 40, consisting in a uniform discretization
of the xy plane and using finite differences to evaluate the
Laplacian for the kinetic energy. Associating an index with
the positions of the two electrons (r;,r,) =1, the resulting
matrix equation reads H;;¥,;=EWV,;. The Hamiltonian matrix
is very sparse since only the kinetic term yields nondiagonal
contributions to H,;, being the external fields (ring potential
and electric and magnetic fields), as well as the Coulomb
interaction, local in (r;,r,). The eigenvalue matrix equation
can be solved by using iterative methods for boundary value
problems.*! This way, one determines E and ¥, by repeated
action of H;; on an arbitrary initial guess for W,;. For the
singlet (triplet) state, the wave function W(r,,r,) is symmet-
ric (antisymmetric) with respect to the exchange of r; and r,.
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FIG. 7. Spin-phase diagram for the two-electron ring in the
electric-magnetic field plane. Black (white) indicates a triplet (sin-
glet) ground state.

This result implies that the triplet state vanishes for [
=(r,r), while the singlet has a cusp at these I’s that compen-
sates the divergence in the Coulomb interaction. To avoid
this singularity, we do not impose the Schrodinger equation
at these specific values for I, but directly enforce the zero
value of W for the triplet and the cusp behavior for the sin-
glet state. In order to extract the cusp condition, we extrapo-
late the wave function at the closer I’s using the analytically
known behavior for a parabolic confinement.*> Therefore,
this method is reliable for smooth potentials that can be ap-
proximated by parabolas at a local scale. We have systemati-
cally checked the stability of the results by using finer grids
in the calculations.

A detailed exploration of the &-B plane is presented in
Fig. 7 with the spin-phase diagram corresponding to the
ground state of the ring. The exact calculation shows the
existence of spin islands at relatively low electric and mag-
netic fields that cause spin oscillations when, for a fixed &,
one increases B. The LSDFT calculations for the same N
=2 system (not shown here) also predict the possibility to
induce singlet-triplet transitions by varying the intensity of
the electric field at fixed magnetic field. However, we want
to point out that, as expected, the LSDFT mean-field ap-
proach is unable to reproduce the details of the exact calcu-
lation, missing, in particular, the existence of spin islands
and the associated spin oscillations.

V. SUMMARY

Within the local spin-density functional theory, we have
calculated the addition energies and the density dipole exci-
tation spectrum for quantum rings containing up to N=12
electrons, under the influence of both electric and magnetic
fields. Transitions between states with spin S=0 and S=1
induced by & at fixed B are found for some even values of N.
For the two-electron ring, we have presented an exact calcu-
lation of the spin-phase diagram in the electric-magnetic
field plane that, like the mean-field calculation, shows the
possibility to induce singlet-triplet or triplet-singlet transi-
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tions by varying £ and B. These spin transitions have been
found in Coulomb blockade experiments with quantum dots
and rings. The density dipole spectrum turns out to be very
robust under the application of the electric field and shows
the characteristic structure of quantum rings, with a 20%—
30% amount of the dipole strength appearing at fairly high-
energy frequencies.
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