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We have studied the ground state structure of quantum strips within the local spin-density approximation, for
a range of electronic densities between �5�104 and 2�106cm−1 and several strengths of the lateral confining
potential. The results have been used to address the conductance G of quantum strips. At low density, when
only one subband is occupied, the system is fully polarized and G takes a value close to 0.7�2e2 /h�, decreasing
with increasing electron density in agreement with experiments. At higher densities the system becomes
paramagnetic and G takes a value near �2e2 /h�, showing a similar decreasing behavior with increasing electron
density. In both cases, the physical parameter that determines the value of the conductance is the ratio K /K0 of
the compressibility of the system to the free one.
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I. INTRODUCTION

The conductance of quantum wires, i.e., the linear con-
ductivity per unit length, is a subject of current interest since
the progress in nanostructure technology has allowed the
fabrication of quasi-one-dimensional �1D� structures. An in-
teresting phenomenon is the observation of quantization of
conductance G in units of 2e2 /h, which reflects the number
of active channels in the transport measurement.1–3 This re-
sult is usually explained by considering the allowed energy
subbands of a noninteracting 1D electron gas, where the fac-
tor of 2 is due to spin degeneracy. Interaction effects have
been considered for some time, especially in the framework
of the 1D Tomonaga-Luttinger model, where it is predicted
that the conductance is renormalized to G=��2e2 /h�, with a
parameter ��1 for attractive interactions, ��1 for repul-
sive interactions, and �=1 for a noninteracting electron
gas.4–6 However, it has been argued7–11 that � should be
unity, since the measured conductance is determined by the
noninteracting electrons which are injected in the wire.

The conductivity measured in the experiment is not the
response to the external applied electric field, but to that
which results adding to the applied field that caused by the
induced charge,12,13 usually called the induced polarization
field. In other words, the measured linear conductivity is the
screened one, which in the random-phase approximation
�RPA� used in previous calculations coincides with the free
linear conductivity. Recent measurements14 in ultra-low-
disorder quantum wires of finite length exhibit a conductance
structure close to G=0.7�2e2 /h� evolving continuosly with
increasing electron density to G=0.5�2e2 /h�, the value ex-
pected for an ideal spin-split subband. The structure at G
=0.7�2e2 /h� was already observed in low-disorder quantum
point contacts �quantum wires of zero length� by several
authors.15–20 In particular, it has been argued17 that this struc-
ture is a manifestation of electron-electron interactions in-
volving spin. Theoretically, the structure is interpreted as
some form of spontaneous spin polarization of the system
mediated through the exchange interaction.21–26 The appear-
ance of that structure has been also interpreted as a manifes-

tation of a Kondo effect in quantum point contacts.27–29

Other interpretations of the plateau of G at 0.5�2e2 /h� are
based on a possible Wigner crystalization of the 1D electron
gas at low density.30 The evolution of the structure with den-
sity in finite-length wires is not well understood. For finite-
length wires, Reilly et al.14 find additional structures in
higher subbands which suggest that many-body effects are
enhanced in longer 1D wires. Long quantum wires are ideal
systems to address one-dimensional electron transport con-
sidering electron-electron interactions and also in the pres-
ence of impurities, which are relevant to studying the
Tomonaga-Luttinger liquid.6,31,32

In this paper we present a self-consistent calculation,
within the local spin-density approximation �LSDA�, of the
ground state of quantum wires of infinite length and finite
width, which we call quantum strips. Their extension in the
third direction is neglected, as in most theoretical descrip-
tions. We apply it to obtain the screened conductivity in the
framework of linear response theory, showing that in this
approximation the key quantity that determines the conduc-
tance of the strip is the ratio of the compressibility of the
system to the free one, K /K0. Within the LSDA, the screened
response and K are determined by the exchange-correlation
interaction. At low densities, only one subband is occupied,
the system is magnetized and the conductance reduces to G
= �e2 /h��K /K0, where K is the compressibility of the spin-
polarized state, yielding values for G which range from G
�0.7�2e2 /h� to G�0.5�2e2 /h� depending on the electron
density. At larger densities, two degenerate subbands are oc-
cupied, the strip is paramagnetic, and the conductance is
given by G= �2e2 /h��K /K0, where K is now the compress-
ibility of the paramagnetic state, yielding values above—but
close to—G= �2e2 /h� and slightly density dependent in the
region where the two-subband configuration is expected to
be the physically realized stable phase of the strip.33

The system is partially magnetized when three subbands
are occupied, and a paramagnetic state is reached again at
higher density when four subbands are occupied, and so on.
Our method allows us to calculate the compressibility in all
these situations—although only the cases of one and two
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occupied subbands are presented—and yields values for G
that are in qualitative agreement with the ones found in long
wires.14 We note that a scattering matrix approach has been
recently employed to calculate the conductance through a
semiextended barrier or well in the wire.34 In this case, G can
be expressed in terms of the incident electron energy E in the
form G= �2e2 /h��nTn�E�, where Tn�E� is the current trans-
mission coefficient for an electron incident in the nth sub-
band. In our approach, G is calculated in an alternative way
in which the conductance is the linear current response of the
system to an external static electric field and hence is an
intrinsic property of the strip, as, for example, its dielectric
constant.

The plan of this work is the following. In Sec. II we
describe the model and obtain the phase diagram of the strip,
i.e., the energy and magnetization as a function of the 1D
electron density along the strip, as well as its free response.
In Sec. III we obtain the conductance by calculating the
screened response to an applied electric field in the limit of
zero intensity �linear response�, showing that it is mainly
determined by the compressibility of the strip. Some con-
cluding remarks are given in Sec. IV, and the calculation of
the density response function of the strip within time-
dependent LSDA is presented in the Appendix .

II. MODEL

We consider a single, infinitely long quantum strip in the
y direction built on a two-dimensional electron gas �2DEG�
by introducing a confining potential along the x direction.
This potential is assumed to be parabolic, 1

2m�0
2x2. In the

LSDA, the single-electron wave functions are given by the
solution of the Kohn-Sham �KS� equations

�−
1

2
�x

2 −
1

2
�y

2 +
1

2
�0

2x2 +� dr�
��r��

	r − r�	
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+ wxc�r���
	i
��r� = 
i,�	i

��r� , �1�

where i stands for the set of quantum numbers, except spin,
that characterize the two-dimensional �2D� single-particle
wave functions, and the two-dimensional electronic density
of the strip is

��r� = �
i,�

		i
��r�	2

with r��x ,y�, ��=1 �−1� if �= ↑ �↓�, and

vxc�r� =
�Exc���r�,m�r�


���r�
, wxc�r� =

�Exc���r�,m�r�

�m�r�

�2�

with ��r�=�↑�r�+�↓�r� and m�r�=�↑�r�−�↓�r�.
The exchange-correlation energy per unit surface, Exc, has

been constructed from the results on the nonpolarized and
fully polarized 2DEG,35 in the same way as in Refs. 36,37,
i.e., using the two-dimensional von Barth and Hedin38 pre-
scription to interpolate between both regimes. In Eq. �1� we

have used effective atomic units ��=e2 /�=m=1�, where � is
the dielectric constant and m is the electron effective mass.
In units of the bare electron mass me one has m=m*me. In
this system of units, the length unit is the effective Bohr
radius a0

*=a0� /m*, and the energy unit is the effective Har-
tree H*=Hm* /�2. For GaAs we have taken �=12.4 and m*

=0.067, which yields a0
*=97.9 Å and H*=11.9 meV.

Translational invariance along the y direction imposes so-
lutions of Eq. �1� of the form

	i
��r� =

1
�L

eiky
n
��x� , �3�

where n=0, 1, 2, … is the subband index. Inserting Eq. �3�
into Eq. �1� one gets
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n
��x� = �n,�
n

��x� , �4�

where we have introduced the band-head energy �n,�,

�n,� = 
i,� −
k2

2
, �5�

and the 2D density, which is y independent, reads

���x� =
1

�
�

n

�2��F − �n,��	
n
��x�	2. �6�

The 1D electron density �1 is obtained by integrating over x:

�1 =
1

�
�
n,�

�2��F − �n,�� = �1
↑ + �1

↓. �7�

The Fermi energy �F fixes the number of subbands that are
filled in the ground state of the strip. For each value of �1, it
is determined by solving the KS Eqs. �4� self-consistently
under the condition that Eq. �7� is satisfied.

For an infinite strip like the one considered here, the Har-
tree potential

VH =� � dx�dy�
��x��

��x − x��2 + �y − y��2
�8�

is obviously divergent. As in the case of the homogenous
electron gas in two or three dimensions, this requires the
introduction of a neutralizing positive background. One pos-
sible way is to assume that this background is such that the
Hartree potential is strictly canceled out, and only the ex-
change and correlation energy terms appear in the KS
equations.33 Another possibility is to introduce a positive
background that only cancels out the divergency in the Har-
tree potential. With this goal in mind, let us write
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VH = lim
q→0

� � dx�dy�eiq�y−y�� ��x��
��x − x��2 + �y − y��2

= lim
q→0

2� dx���x��K0�q�x − x��
 , �9�

where K0 is the zeroth-order Bessel function of the second
kind.39 Since for small arguments K0�s��−ln�s�, one gets

VH = lim
q→0

− 2� dx���x��ln�qa� − 2� dx���x��ln� x − x�

a
� ,

�10�

where a is an arbitrary length that in the following will be
chosen equal to the confinement length a=�1/�0, as in Ref.
40. The first term of Eq. �10� is divergent and is canceled by
a similar term arising from the background charges. The sec-
ond term is what we take as the effective 1D Hartree poten-
tial, which is logarithmic on an arbitrary length scale,

VH�x� = − 2� dx���x��ln� x − x�

a
� . �11�

This potential has been already considered in Hartree calcu-
lations of quantum wires,40,42 and may account for possible
local charge nonneutrality in systems with a finite width,43

like the strips considered here. In the following we carry out
Kohn-Sham calculations for both extreme models, i.e., when
the logarithmic Hartree term Eq. �11� is active, and when this
term is neglected due to the assumption of a complete can-
cellation of the Hartree potential Eq. �8�.

The energy per unit length of the strip can be calculated as

E

L
= �

n,�
� 1

6�
�2��F − �n,��
3/2 +

1

�
�2��F − �n,���n,�


+� dx Exc�x� −� dx ��x�vxc�x� −� dx m�x�wxc�x�

+� dx dx���x���x��ln� x − x�

a
� . �12�

The energy per electron E /N is obtained by dividing Eq. �12�
by �1.

A. Phase diagram of the quantum strip in the Kohn-Sham
framework

We have solved the KS equations for strips confined by
three different values of the harmonic potential, namely, �0
=2, 4, and 6 meV, and for �1 densities up to filling six sub-
bands. Values of �0 between 2.5 and 3.5 meV have been
determined for the gate voltage close to the threshold of the
second subband for long quantum wires using a magnetic

depopulation technique.44 We discuss the case in which the
logarithmic Hartree potential has been included, which we
call the Hartree model, and the case in which the Hartree
potential is not taken into account in the KS equations, which
we call the exchange-correlation model.

In Figs. 1–3 we have plotted E /N and the magnetization
�= ��1

↑−�1
↓� /�1 as a function of the one-dimensional electron

density for the Hartree model, and in Figs. 4–6 for the
exchange-correlation model. The numbers along the E /N
curves correspond to the number of occupied subbands, and
the vertical lines indicate the boundary between neighbor j
and j+1 subband regions.

For both models, we have found that the transition from
even to odd number of subband neighboring regions, like 2
→3 or 4→5, is smooth, as the changes in � indicate. On the
contrary, the transition from odd to even number of subband
neighboring regions, like 1→2 or 3→4, is abrupt, with
metastability regions—not shown in the figures—extending
to the left and right of the crossing points. Apart from the

FIG. 1. Energy per electron �meV, left scale� and magnetization
�right scale� in the Hartree model for a parabolic confinement of
�0=2 meV as a function of the linear density �cm−1�. The regions
separated by vertical lines correspond to the indicated number of
occupied subbands. For one single occupied subband, the system is
fully polarized.

FIG. 2. Same as Fig. 1 for �0=4 meV.
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region corresponding to the first subband, which is fully po-
larized, the magnetization reached in all the other odd sub-
band regions is below the maximum value one would naively
expect, i.e., 1 /3 for j=3 and 1/5 for j=5. This is due to the
exchange-correlation energy, which lifts the degeneracy of
the ↑, ↓ subbands. It is also worth noting that the odd sub-
band number regions are rather narrow, especially in the
exchange-correlation model, getting narrower as �1 in-
creases. The relevance of determining the boundaries of
these density regions is that, in a mean-field model, they fix
the extension of the conductance plateaus, as shown in the
next subsection.

In Figs. 7 and 8 we show the density profiles of the 2D
electronic density for the Hartree and exchange-correlation

models, respectively, and a lateral confining potential with
�0=4 meV. The values of the 1D electronic densities are
indicated, and correspond to configurations with one, three,
and six occupied subbands. Also shown is the local magne-
tization �=m�x� /��x� for the three-subband systems. It can
be seen that in this latter case, the strip presents an edge
magnetization that increases as � decreases.

Some LSDA calculations have found that, starting from
paramagnetic two-subband configurations and decreasing
further the electronic density, for certain values of the wire
width the system may undergo a phase transition and the

FIG. 3. Same as Fig. 1 for �0=6 meV.

FIG. 4. Energy per electron �meV, bottom panel� and magneti-
zation �top panel� in the exchange-correlation model for a parabolic
confinement of �0=2 meV as a function of the linear density
�cm−1�. The regions separated by vertical lines correspond to the
indicated number of occupied subbands. For one single occupied
subband, the system is fully polarized.

FIG. 5. Same as Fig. 4 for �0=4 meV.

FIG. 6. Same as Fig. 4 for �0=6 meV.
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ground state becomes a spin-density wave �SDW�.33,41 Using
as a guide the diagram shown in Fig. 1 of Ref. 33, we have
checked that, at low densities, for the strips considered here,
their LSDA ground state is the spin-polarized one. The same
happens for the narrow wires considered, e.g., in Refs. 21–24
and 26. We will come back to this point in the next section
when we discuss the conductance. It is worthwhile to note
that the presence of a SDW will modify the phase diagram at
the border between the one- and two-subband regions, as this
band structure will disappear.

B. Kohn-Sham response of the quantum strip

The KS calculation discussed above allows us also to
evaluate the KS—free, in the mean-field sense—linear den-
sity response �0�q ,�� to a field parallel to the strip, i.e., in
the y direction, which involves only intraband excitations:

�0�q,��
L

=
1

L
�

�

���	�
i=1

N

eiqyi	0��2

�� + i��2 − ��0
2

=
1

�
�
n,�
�

−�2��F−�n,��

�2��F−�n,��
dk� 1

� + i� − kq − q2/2

−
1

� + i� + kq + q2/2

 , �13�

where � is a small real quantity, and hence the longitudinal
conductivity associated with it:13

��q,��
L

= i
�e2

q2

�0�q,��
L

, �14�

with the real part given by

Re
��q,��

L
= −

�e2

q2 Im
�0�q,��

L
. �15�

The conductance G is obtained from Re���q ,�� /L
 taking
the �→0 and q→0 limits. In the small-q limit, for ��0
one gets

Im
�0�q,��

L
= −

q

2�
n,�

��� − qkF
n,�� , �16�

where we have defined

kF
n,� = �2��F − �n,�� . �17�

From Eqs. �15� and �16�, taking the Fourier transform, it can
be easily shown that

Re
��y,��

L
=

e2

2�
�
n,�

cos�� y

kF
n,�
 . �18�

Thus, in the limit �→0 and restoring �, we get for the
conductance

G =
e2

h
�
n,�

1, �19�

where the sum runs over the occupied subbands of the strip.
One thus sees that in the KS mean-field model, in the density
regions we have previously determined, the conductance
takes the values 1/2, 1, 3/2, 2, … in units of 2e2 /h. The odd
subband regions are so narrow that their experimental sig-
nificance may be limited, especially in the more relevant
case of full screening �exchange-correlation model�. Al-
though the KS conductance explains the gross experimental
features, it is unable to explain fine details, like the structures
commented on in the Introduction. In the next section we
shall try to explain these findings incorporating interaction
effects which are missing in the KS conductance.

III. CONDUCTANCE AND SCREENED RESPONSE

We turn now our attention to the conductivity of a quan-
tum strip as the screened response to the sum of the applied

FIG. 7. Several density profiles of the 2D electronic density as a
function of x�nm� for the Hartree model and a harmonic frequency
�0=4 meV �left scale�. Also shown is the local magnetization � for
the three-subband case �right scale�. The values of the 1D electronic
densities, which correspond to configurations with one, three, and
six occupied subbands, are indicated.

FIG. 8. Same as Fig. 7 for the exchange-correlation model.
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external plus the local induced field. For simplicity, we ad-
dress only the lowest-density cases, namely, when the quan-
tum strip is ferromagnetic and only one subband is occupied,
and when the strip is paramagnetic and only two subbands
�spin up and spin down� are occupied, being degenerate and
equally populated. These two situations are the more inter-
esting ones from an experimental viewpoint. The generaliza-
tion of the method to the case with more than two subbands
is straightforward but requires a more elaborate calculation.

The calculation of the conductance from the screened re-
sponse has no ambiguity when the screened response corre-
sponds to a “fictious” neutral system with the same interac-
tion law as the screened electron-electron Coulomb
interaction.13 This can be fully achieved for the exchange-
correlation model previously discussed. In the case of the
Hartree model, where local nonneutrality is assumed, the cal-
culation of the screened response is less clear and strongly
model dependent. For this reason, in the following we de-
velop the theory only for the exchange-correlation model and
just make a few comments on the Hartree model results at
the end of this section.

Our starting point is the relation12,13

��q,��
L

= i
�e2

q2

�sc�q,��
L

, �20�

where �sc�q ,�� is the screened response function. It is re-
lated to the linear density response function ��q ,�� by13

��q,�� =
�sc�q,��

1 − v�q��sc�q,��
, �21�

where

v�q� = 2� dx dx�	
0�x�	2	
0�x��	2K0�q�x − x��
 �22�

is the quasi-1D Fourier transform of the Coulomb potential
�see the Appendix �, 
0�x�=
0

↑�x� for the ferromagnetic case,
and 
0�x�=
0

↑�x�=
0
↓�x� for the paramagnetic case. In the

RPA, the electron response to the total field �the sum of the
external field plus the local induced field�, �sc�q ,��, is ap-
proximated by the free response

�sc�q,�� = �0�q,�� , �23�

yielding

�RPA�q,�� =
�0�q,��

1 − v�q��0�q,��
. �24�

To go beyond the RPA, the short-range electron-electron cor-
relations may be taken into account by modifying Eq. �23� as

�sc�q,�� =
�0�q,��

1 + �v�q�/L
G�q,���0�q,��
, �25�

where the dynamic local field correction G�q ,�� has been
introduced.45,46 Equation �25� is the most general way to ex-
press �sc�q ,�� in terms of the free response function
�0�q ,��, and yields for ��q ,��

��q,�� =
�0�q,��

1 − �v�q�/L
�1 − G�q,��
�0�q,��
. �26�

In the following we are only interested in the �=0 limit, so
the frequency dependence of the local field correction is sup-
pressed,

�sc�q,�� =
�0�q,��

1 + �v�q�/L
G�q��0�q,��
. �27�

In this form, the frequency dependence of �sc�q ,�� comes
only from �0�q ,��. An important property of the local field
correction is45

lim
q→0

v�q�G�q� = v�0�G�0� =
1

�1
2K0

�1 −
K0

K

 , �28�

where K is the compressibility of the system and K0 its free
value. In the situations we are considering, we have K0
=1/ ��2�1

3� for the ferromagnetic case, and K0=4/ ��2�1
3� for

the paramagnetic case, and the compressibility K can be cal-
culated from the standard—thermodynamical—expression

1

K
= �1

2��1
�2E/N

��1
2 + 2

�E/N

��1

 . �29�

For the locally neutral system the energy functional contains
only the kinetic and exchange-correlation pieces plus the
confining potential in the x direction. One gets

E/N =
�2

c
�1

2 +
1

�1
� dx Exc�x� + const, �30�

where c=6 for the ferromagnetic and 24 for the paramag-
netic case. Hence

1

K
=

1

K0
+ �1

2I , �31�

where we have defined

I =� dx
�2Exc

��2 	
0�x�	4. �32�

From Eqs. �13� and �27�, we write in the small-q limit

L

�sc�q,��
=

L

�0�q,��
+ v�0�G�0� =

�2 − �kF
0q�2

c�kF
0q2/�

+ v�0�G�0� ,

�33�
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where kF
0 =�2��F−�0� with �0=�0

↑ and c�=1 for the ferro-
magnetic case, and with �0=�0

↑=�0
↓ and c�=2 for the para-

magnetic case. Hence

1

L
�sc�q,�� = �c�

kF
0q2

��

1

�2 − �kF
0q/��2 = �

1

L
�0�q,�,kF

0/�� ,

�34�

where

� = �1 − c�
v�0�G�0�

�kF
0 
−1/2

=� K

K0
. �35�

It is now possible to calculate the real part of the conductiv-
ity and thus the conductance along the lines of Eqs.
�13�–�19�, using �sc�q ,�� /L=��0�q ,� ,kF

0 /�� /L in place of
�0�q ,� ,kF

0� /L. One easily gets

G =
e2

h
� K

K0
�36�

for the ferromagnetic case, and

G =
2e2

h
� K

K0
�37�

for the paramagnetic case. In both situations the ratio K /K0
is calculated from the expression

K

K0
=

1

1 + �2c�/�2�1�I
, �38�

where I is defined in Eq. �32� with 
0�x�=
0
↑�x� for the fer-

romagnetic case and 
0�x�=
0
↑�x�=
0

↓�x� for the paramag-
netic case. Equations. �35�–�38� can also be obtained calcu-
lating directly the screened response function in the time-
dependent local spin-density approximation �TDLSDA�, as
done in the Appendix . The above derivation is, however,
more general and shows that Eqs. �36� and �37� are model
independent, although the way in which we have calculated
K is clearly model dependent.

The ratio �=�K /K0 is plotted in Fig. 9 as a function of �1
for different values of the frequency of the lateral confining
potential �0. One sees from this figure that when the strip is
in the first—polarized—subband, � approximately ranges
from 1.5 to 1 for all the confinements considered here, yield-
ing for this subband a conductance that goes from G
�0.7�2e2 /h� to G�0.5�2e2 /h� with increasing density, in
agreement with the experimental data of Reilly et al.14 The
discontinuity of � and K when passing from one to two sub-
bands reflects the phase transition occurring in the system.
After that, the paramagnetic state has a conductance that,
starting from values slightly larger than 2e2 /h, decreases
with increasing density to the measured value G�2e2 /h.
Even though our model for an infinite quantum strip is ob-
viously an oversimplification of the actual experimental de-
vice, it yields a qualitative agreement with measurements,

especially the observed density dependence of the conduc-
tance. We want to comment that at values of �1 lower than
the ones considered here, �, as calculated from Eqs.
�35�–�38�, becomes imaginary because the compressibility is
negative. This result for the compressibility is well known,43

and it appears also for the electron gas in two and three
dimensions, reflecting the failure at low densities of the jel-
lium model in which the background of positive ions is kept
indefinitely rigid.

The phase transition between one and two bands makes
room for the appearance of a SDW in the system, which we
have not found in the calculations because of the way we
have carried them out in practice. The instability of the para-
magnetic configuration, as manifested by the divergency of
K /K0, shows that the ground state of the strip must be dif-
ferent from the paramagnetic one, and cannot yet be the fer-
romagnetic phase, which has a higher energy and only be-
comes the ground state at lower densities. Indeed, we have
checked that the value of the ratio CF=��0 /�F, where �F is
the Fermi energy of the 1D electron gas at the given density,
introduced in Ref. 33 to characterize the one-dimensionality
of the system, takes values that are compatible with the pres-
ence of a SDW, as shown in Fig. 1 of that reference. To
ascertain the role that a SDW might play in the conductance
of a quantum strip is beyond the present model, which as-
sumes the existence of a band structure from the start.

Finally, we discuss the effect that the nonlocal charge neu-
trality implicit in the Hartree model of Sec. II has on the
value of �. A straightforward generalization of the calcula-
tion developed in the Appendix for the exchange-correlation
model shows that, for the logarithmic Hartree potential
model �11�, one just has to change everywhere

I → I − 2� dx dx�	
0�x�	2	
0�x��	2 ln� x − x�

a
� . �39�

Differently from the exchange-correlation contribution �32�,
which is attractive, the above Hartree contribution is repul-

FIG. 9. Ratio �=�K /K0 as a function of the linear density
�1�cm−1� for the exchange-correlation model and three values of the
harmonic frequency �0. The lines have been drawn to guide the
eye.
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sive and may change the value of � in a relevant way. In the
case of two occupied subbands, the effect of the Hartree
contribution is to make the ratio K /K0 smaller than 1, and so
the value of �. Quantitatively, in the density range where the
ground state of the system is paramagnetic, the value of �
varies from 1 to 0.9, to be compared with the values slightly
larger than 1 obtained with the assumption of charge neutral-
ity. Both models yield values of G that are close to the mea-
sured value G�2e2 /h. We want to stress again that the re-
sults obtained when one adds a term that causes charge
neutrality to be locally violated are very model dependent.

IV. CONCLUSIONS

Within the LSDA, we have studied the ground state struc-
ture of quantum strips for a range of electronic densities and
several strengths of the lateral confining potential. As the 1D
electron density increases, the system can be in different
phases characterized by different values of the the magneti-
zation. These phases correspond to the filling of an increas-
ing number of electronic subbands. Due to the exchange-
correlation interaction, we have found that for odd numbers
of occupied subbands larger than 1, the system adquires
some edge magnetization. The width of the nonparamagnetic
density regions is rather narrow, and it decreases as the den-
sity increases.

We have employed two approximations for the electron-
electron interaction commonly employed to address the
structure of quantum wires. The first one is a logarithmic
Hartree potential successfully used in the past to address the
infrared response of quantum wires in the RPA.40,42 The sec-
ond one supposes that the direct electron-electron interaction
is fully screened by a jellium background, and the system is
neutral at a local scale.

We have used this second approximation to address the
conductivity of quantum strips when one or two subbands
are occupied in the ground state, going beyond the mean-
field or random-phase approximations. We have found, in a
model-independent way, that the physical parameter that de-
termines the value of conductance is the ratio K /K0 of the
compressibility of the system to the free one. This result has
been used to obtain the conductance G of the system in the
LSDA. We have found that when only one subband is occu-
pied, G takes a value close to 0.7�2e2 /h� and decreases as the
electron density increases, in agreement with experiments.
When two subbands are occupied and the system becomes
paramagnetic, G takes a value near �2e2 /h�, showing a simi-
lar decreasing behavior with increasing electron density as
for one subband.

ACKNOWLEDGMENTS

E.L. would like to thank HPC Europa, node of Barcelona,
Contract No. R113-CT-2003-506079, for financial support.
This work has been supported in part by DGI, Spain, Grant
No. FIS2005-01414.

APPENDIX

In this appendix we calculate the TDLSDA density re-
sponse function of a quantum strip for the two cases—
ferromagnetic and paramagnetic—discussed in Sec. III, and
derive the screened response in the same approximation. We
start from the time-dependent KS equations46 in an external,

time oscillating field ��Ô†e−i�t+ Ôei�t� with Ô=�i=1
N e−iqyi, in

the y direction along the wire:

i
�

�t
	�x,y,t� = �−

1

2
�x

2 −
1

2
�y

2 +
1

2
�0x2 +� dx�dy�

��x�,y�,t� − �J

��x − x��2 + �y − y��2
+ vxc���x,y,t�
 + ��ei�qy−�t� + e−i�qy−�t�

	�x,y,t� ,

�A1�

where �J is the jellium density. For the ferromagnetic case
	�x ,y� is the single-particle wave function of the electrons in
the lowest fully polarized subband and �=�↑. In the para-
magnetic case in which electrons fill the two lowest degen-
erate spin-up and spin-down subbands, 	�x ,y�=	↑�x ,y�
=	↓�x ,y� and �=�↑+�↓. Since the time-oscillating field is in
the y direction, electron density oscillations are induced by
the field only along this direction. We write

��x,y,t� = �0 + ���x,y,t� , �A2�

where �0 is the density of the unperturbed ground state which
we suppose to be equal to the jellium density for the neutral
system we are considering in this appendix, and

���x,y,t� = 	
0�x�	2���y,t� �A3�

with

���y,t� = ���ei�qy−�t� + e−i�qy−�t�� , �A4�

�� being a constant to be determined. The density fluctua-
tions Eqs. �A2�–�A4� induce fluctuations in the density op-
erator F=�i=1

N eiqyi given by
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�F�Ô,�� = ���t�	F	��t�� − �0	F	0�

=� dx dy eiqy���x,y,t� − �0
Ô = Lei�t�� ,

�A5�

where L is the length of the strip. Moreover, the dynamic
polarizability is given by

��q,�� =
L��

�
. �A6�

To determine �� we now use that the wave function 	�x ,y , t�
can be factorized into a part depending only on x, 
0�x�,
which is not affected by the external field, and a part that
depends on y and time due to the external field, 	�y , t�. Mul-
tiplying Eq. �A1� on the left by 
0

*�x� and integrating over x
we get

i
�

�t
	�y,t� = �−

1

2
�y

2 + const +� dx dx�dy�	
0�x�	2
��x�,y�,t� − �J

��x − x��2 + �y − y��2
+� dx vxc���x,y,t�
	
0�x�	2 + ��ei�qy−�t�

+ e−i�qy−�t��
	�y,t� . �A7�

We then insert ��x ,y , t� of Eqs. �A2�–�A4� into Eq. �A7� and
linearize the equations. This means writing the self-
consistent KS mean field entering Eq. �A7�, i.e.,
VKS�x ,y ,��x ,y , t�
=VH�x ,y ,��x ,y , t�
+vxc�x ,y ,��x ,y , t�
, as

VKS�x,y,��x,y,t�
 = VKS�x,y,�0� + � �VKS

���x,y,t�
�

�=�0

���x,y,t� .

�A8�

Therefore, from Eqs. �A7� and �A8� we obtain:

i
�

�t
	�y,t� = �−

1

2
�y

2 + const + ��v�q� + I
�� + ���ei�qy−�t�

+ e−i�qy−�t��
	�y,t� , �A9�

where v�q� is the Fourier transform of the Hartree potential

v�q� = 2� dx dx�	
0�x�	2	
0�x��	2K0�q�x − x��
 ,

�A10�

and I is given by

I =� dx
�vxc

��
	
0�x�	4. �A11�

This quantity represents the exchange-correlation contribu-
tion to the residual interaction. Neglecting this term in Eq.
�A9� yields the RPA which has been used to describe collec-
tive excitations of quantum wires by several
authors.40,42,47–49

Equation �A9� can be rewritten as

i
�

�t
	�y,t� = �−

1

2
�y

2 + const + ���ei�qy−�t� + e−i�qy−�t��
	�y,t�

�A12�

with

���q� = � + �v�q� + I
�� . �A13�

Equation �A12� coincides with that of a noninteracting sys-
tem coupled to an external time-oscillating field, with a cou-
pling constant �� given by Eq. �A13�. For such a system, the
density response function is the—single-particle—free re-
sponse �0�q ,�� we have studied in Sec. II. From Eq. �A6�
and from the analogous relation for the free response func-
tion

�0�q,�� =
L��

���q�
, �A14�

we obtain

���q,�� = ���q��0�q,�� = L�� . �A15�

The solution of these equations is the TDLSDA response
function

�TDLDA�q,�� =
�0�q,��

1 − ��v�q� + I
/L��0�q,��
. �A16�

The RPA response function is obtained by just neglecting the
interaction term I in the above equations:

�RPA�q,�� =
�0�q,��

1 − �v�q�/L
�0�q,��
. �A17�

In the RPA ��=�+v�q���, and electrons respond like nonin-
teracting particles to the combined effect of the external field

��Ô†e−i�t+ Ôei�t� plus the Coulomb local polarization field
v�q��� induced by the density fluctuation. Since the screened
response is by definition the linear response of the system to

GROUND STATE STRUCTURE AND CONDUCTIVITY OF… PHYSICAL REVIEW B 72, 205326 �2005�

205326-9



the sum of the external field plus the Coulomb polarization
field

���q,�� = �� + ��v�q�
�sc�q,�� = L�� , �A18�

��q,�� =
�sc�q,��

1 − �v�q�/L
�sc�q,��
, �A19�

one sees immediately that in the RPA

�sc
RPA�q,�� = �0�q,�� , �A20�

whereas in the TDLDA one gets

�sc
TDLDA�q,�� =

�0�q,��
1 − �I/L��0�q,��

. �A21�

The response functions described above refer to electrons in
the lowest subband, ��q ,��=�↑�q ,��, or filling the two low-
est spin-up and -down degenerate subbands, ��q ,��
=�↑�q ,��+�↓�q ,��. The formalism can be easily general-
ized to the case in which more than two subbands are filled.
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