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Quantum critical effects in mean-field glassy systems
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We consider the effects of quantum fluctuations in mean-field quantum spin-glass models with pairwise
interactions. We examine the nature of the quantum glass transition at zero temperature in a transverse field. In
models~such as the random orthogonal model! where the classical phase transition is discontinuous an analysis
using the static approximation reveals that the transition becomes continuous at zero temperature.
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Spin glasses are models which deserve consider
interest.1 In these systems the presence of randomness
frustration can yield very rich behavior. In particular, there
much current interest in the behavior of glassy systems in
presence of quantum fluctuations where the nature of
zero-temperature phase transition is driven by the comp
tion between randomness and quantum effects rather
thermal fluctuations.2 This makes the order-disorder trans
tion in quantum glasses belong to a new universality cla

Much work has been devoted to the study of mean-fi
quantum spin-glass models. In particular, attention has b
paid to models with a continuous transition in the Edwar
Anderson order parameter. The simplest example in th
class of models is the Sherrington-Kirkpatrick~SK! model3

in a transverse field. In this system the critical temperatur
depressed when the transverse field is switched on and
ishes for a critical value of the field.4–7 Analytical work in
the quantum SK model reveals that replica symmetry is b
ken in the quantum glass phase at zero temperature.8 This is
an indication that quantum fluctuations do not destroy one
the most interesting features in glassy systems, that is,
coexistence of a large number of phases or states.

There has been also much recent interest in the stud
classical spin-glass models with a discontinuous transitio
the order parameter. These models are characterized b
existence of a dynamical singularity at a temperature ab
the static transition.9,10 Concerning the statical and dynam
cal behavior these models are very good candidates for
scribing real glasses.11 On the one hand, the statics gives
natural explanation for the existence of a thermodyna
ideal glass transition driven by an entropy collapse. On
other hand, the dynamics of these mean-field models is
scribed by the mode coupling equations introduced to
scribe relaxational phenomena in glasses.12 In mean-field
models metastable states have an infinite lifetime, and he
dynamics is frozen at the dynamical singularity well abo
the static transition temperature. Below the dynamical tr
sition temperature the system gets trapped in states w
have larger energy than the equilibrium one. All these f
tures are absent in models with a continuous transition.

The purpose of this paper is the study of models with
discontinuous transition in the presence of quantum fluc
tions at zero temperature. The motivation is twofold. Co
cerning the statics we note that the transition cannot
driven in the quantum case by an entropy collapse. The
550163-1829/97/55~21!/14096~4!/$10.00
le
nd

e
e
ti-
an

.
d
en
-
se

is
n-

-

f
he

of
in
the
e

e-

ic
e
e-
e-

ce

-
ch
-

a
a-
-
e
a-

son is that the entropy vanishes everywhere at zero temp
ture. Concerning the dynamics we can also expect a q
different behavior from the classical case. In macrosco
quantum systems atT50 the dynamics is governed by th
Schrödinger equation which is nondissipative and there is
room for any kind of thermal-activated processes. It co
well be that trapping processes in the metastable gla
phase are suppressed in the presence of quantum fluctu
effects.

The main conclusion of this work is that the glassy sc
nario presented before is indeed suppressed by quantum
tuations. We will provide a proof for this statement with
the static approximation for a general class of exactly so
able models. Later on we will argue why this result shou
be generally valid beyond that approximation.

The family of models we are interested in are quant
Ising spin glasses with pairwise interactions in the prese
of transverse field. These are described by the Hamilton

H52(
i, j

Ji js i
zs j

z2G(
i

s i
x , ~1!

wheres i
z ,s i

x are the Pauli spin matrices andG is the trans-
verse field. The indicesi , j run from 1 toN whereN is the
number of sites. TheJi j are the couplings taken from a
ensemble of random symmetric matrices. In the case tha
Ji j are independent Gaussian variables this Hamiltonian
duces to the quantum SK model3 in a transverse field. If the
Ji j are orthogonal matrices, then Eq.~1! reduces to the ran
dom orthogonal model13 ~ROM! in a transverse field. At zero
transverse field the models become classical and dis
quite different behavior. The SK model has a continuo
finite-temperature transition without jump in the Edward
Anderson order parameter1 while the ROM presents a stron
discontinuous transition where the Edwards-Anderson or
parameter jumps to a value close to 1 at the transit
temperature.13

In order to solve model~1! we apply the Trotter-Suzuk
decomposition14 and rewrite the Hamiltonian in terms o
classical spins with an extra imaginary time dimension,

Heff5A(
i, j

Ji j(
t

s i
ts j

t1B(
i t

s i
ts i

t111C, ~2!
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where the time indext runs from 1 toM and the spinss i
t

take the values61. The constantsA, B, and C are
given by A5b/M ;B5 1

2ln@coth(bG/M)#, and C5(MN/
2)ln@ 12sinh(2bG/M)]. Now we apply the replica trick and
compute the average over the disorder of the replicated
tition function,

Z̄J
n5E @dJ#(

$s i
t%

expS (
a51

n

Heff
a D , ~3!

where*@dJ# means integration over the random ensemble
matrices. This integral can be done using known method
matrix theory.15,13The final result of Eq.~3! can be written in
terms of a generating functionG(x) which depends on the
particular ensemble ofJi j couplings via its spectrum of ei
genvalues. For the two examples we will consider in t
paper we haveGSK(x)5x2/2 ~SK model! andGROM(x)5

1
2

ln(A114x221)/2x2]1 1
2A114x22 1

2 ~ROM model!. From
Eq. ~3! we get

Z̄J
n5E dQdLexp@2NF~Q,L!#, ~4!

where

F~Q,L!52
nC

N
1

1

M2Tr~QL!2
1

2
TrG~AQ!2 ln@H~L!#,

~5!

with Qab
tt8 ,Lab

tt8 being the order parameters and the trace T
done over the replica and time indices. The termH(L) is
given by

H~L!5(
s
expS (

ab

1

M2(
tt8

Lab
tt8sa

t sb
t81B(

at
sa
t sa

t11D ,
~6!

and the free energy is obtained by making the analytic c
tinuation b f5 limn→0F(Q*L* )/n whereQ* ,L* are solu-

tions of the saddle point equationsLab
tt85(AM2/

2)@G8(AQ)#ab
tt8 (G8 stands for derivative ofG) and

Qab
tt85^sa

t sb
t8&. The averagê(•)& is done over the effective

Hamiltonian in Eq.~6!.
The natural solution to this set of equations is to assu

that the order parametersQab
tt8 ,Lab

tt8 are independent of the
time indices whenaÞb but they are only translational tim
invariant if a5b. As previously said, we are interested
investigating the order of the quantum paramagnet-quan
glass transition. To this end we will focus on the study of t
phase boundary of the model, leaving aside subtelities c
cerning the quantum glass phase. To this end, it is enoug
consider a general one-step replica-symmetry break
solution.1 We divide then replicas inton/m boxesK of size
m such thatm dividesn. The saddle point solution whena

Þb takes the form Qab
tt85q;Lab

tt85l if a,bPK and

Qab
tt85Lab

tt850 otherwise. For a5b we take Qaa
tt8

5Rut2t8u ,Laa
tt85L ut2t8u . In terms of the Matsubara frequen

ciesvp52pp/M we define as usual the order paramaters
Matsubara space R̂p ,L̂p ,ŝp ~for instance,
r-

f
in

s

s

-

e

m
e
n-
to
g

n

R̂p5M21( t50
M21eivptRt). Then, the free energy, Eq.~5!, can

be written in terms of theR̂p ,L̂p ~details will be shown
elsewhere!.

The main purpose in this paper is to investigate the gla
scenario in the phase boundary which means to determ
the order of the static and dynamical transitions. More c
cretely, this corresponds to determine the value of
Edwards-Anderson parameter at the transition point. Follo
ing Ref. 16 we expand the free energy~5! aroundm51,
f5 f 01(m21) f 11O„(m21)2… and determine the paramag
netic free energyf 0 and the correctionf 1. We get

b f 052
C

N
1(

p
R̂pL̂p*2

1

2(p G~bR̂p!2I ~L̂ !, ~7!

b f 15ql2
bq

2
G8~bR̂0!1

1

2
G~bR̂0!2

1

2
G„b~R̂02q!…

1I ~L̂ !2exp@2I ~L̂ !#E dp~x!J~x!ln@J~x!#, ~8!

where I (L̂)5 ln@J(l50)# and J(x)5(ŝp
exp@Q(ŝp ,x)#,

with

Q~ŝp ,x!5 (
p50

M21

~L̂p1MBe2 ivp!uŝpu21~2l!1/2xŝ02lŝ0
2 .

~9!

Note thatf 0 does not depend onq andl as expected for
the paramagnetic part of the free energy. The static and
namical transitions can be investigated through the stud
the term f 1 ~which plays the role of a potential function i
some spin-glass models17!. The static transition appear
when the free energyf coincides with the paramagnetic fre
energy f 0, i.e., f 150. The dynamical transition is given b
the presence of a soft mode above the static transition an
obtained by solving the equation

S ]2f 1
]q2 D S ]2f 1

]l2 D2S ]2f 1
]q]l D 250. ~10!

The solution to these equations plus the saddle p
equations] f 1 /]q5] f 1 /]l50 yields the critical tempera
ture and the value of the jump of the order parameterq at the
transition. In case the dynamical and the static transition
incide it can be shown thatq5l50 and the transition is
continuous in the order parameter. These three equation
complemented by the saddle point equations for the par
etersR̂p ,L̂p , i.e., ] f 0 /]R̂p5] f 0 /]L̂p50.

We now derive a simple expression for the dynami
transition temperature. Equation~10! for the soft mode can
be worked out and one finds

b2e2I ~L!G9„b~R̂02q!…E
2`

`

dp~x!~^ŝ0
2&2^ ŝ0&

2!2J~x!51,

~11!

where the averagê(•)& is taken over the effective Hamil
tonian ~9!.

All previous results are exact and do not involve any a
proximation. We now want to show that at zero temperat
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the quantum transition becomes continuous. To find the
der of the quantum phase transition we note thatf 1 in Eq. ~8!

only depends onR̂p in the casep50. In this paper we con-
sider the static approximation4 where only the modeR̂0 is
taken to be nonzero andR̂p5L̂p50 for p.0. This is a
crude approximation, the reliability of which will be dis
cussed later on. PuttingR5R̂0 ,L5L̂0 we find the following
saddle point equations forR,L,q,l:

L5
b

2
G8~bR!, R5 K K sinh@J0~x!#x2

J0~x! L L
0

,

l5
b

2
[G8~bR!2G8~b~R2q!#;

q5K K F E
2`

`

dp~z!sinh~T!~b/T!G2
E

2`

`

dp~z!cosh~T!
L L

0

, ~12!

where

^^~• !&&05

E
2`

`

dp~x!~• !

E
2`

`

dp~x!cosh@J0~x!#

, ~13!

with J0(x)5(2Lx21b2G2)1/2, T5(b21b2G2)1/2, and
b5@2(L2l)#1/2z1(2l)1/2x.

Exact expressions are also obtained for the free ener
f 0 , f 1 and for Eq.~11!. This set of equations can be alwa
numerically solved but explicit results can be analytica
obtained in the zero-temperature limit. Substituting the so
tion L5ub,l5vb into Eqs.~12! and performing the inte-
grals with the saddle point method we find after so
lengthy computations thatu,v and the critical fieldGc satisfy
the equations

u5
1

2
G8S 1

Gc22uD , ~14!

v5
1

2 FG8S 1

Gc22uD2G8S 1

Gc22~u2v ! D G . ~15!

It is easy to check that Eqs.~14! and ~15! only admit the
trivial solution v50. It is also possible to show that in cas
v50 also f 150. Becauseq andR vanish withT and the
free energy of this solution coincides with the paramagn
free energyf 0, we conclude that the transition becomes co
tinuous at zero temperature. In order to determine the crit
field Gc we solve Eq.~11! in theb→` limit which yields

~Gc22u!22G9S 1

Gc22uD51. ~16!

Note thatx05bR̂05(Gc22u)21 is the main result of
this computation from which we can alternatively derive t
main Eqs.~14! and~16!. The former can be derived from th
first of Eq. ~12! while the latter can be simply obtained b
r-

ies

-

e

ic
-
al

deriving Eq.~14! respect tou. Solving Eqs.~14! and~16! for
the SK model we obtainu5 1

2,Gc52, reproducing known
results.5,18 In the case of the ROM we obtainu5 1

2,Gc51.
Note that in both models the value of the critical field
given by the maximum eigenvalue of the coupling mat
Ji j .

To check our analytical computations we have nume
cally solved Eqs.~12!. In Fig. 1 we show the phase bound
aries for the dynamical and static transitions in the ROM
a function of the transverse field. Both transition tempe
tures decrease quadratically as a function of the transv
field, merging into the same point at zero temperature a
should be for a continuous phase transition. In Fig. 2

show the Edwards-Anderson order parameterq5^sz&2 in
the ROM as a function ofG as we move along the stati
(qS) and dynamical (qD) phase boundaries.

Despite the crudeness of the static approximation we n
that still some exact results can be derived in case of a c
tinuous phase transition. Starting from Eq.~11! and putting
(q5l50), Eq. ~11!, we get

FIG. 1. Phase boundariesTs(G) ~lower line! andTD(G) ~upper
line! in the ROM in the static approximation. At zero transver
field Ts.0.0646, TD.0.1336.

FIG. 2. Edwards-Anderson parameterqs ~upper line! and qD
~lower line! in the ROM on the static and dynamical phase boun
aries boundaries as a function of the transverse field. At zero tr
verse fieldqs.0.99983,qD.0.961.qs andqD vanish linearly with
T1/2 at zero temperature.
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x0
2G9~x0!51, ~17!

where x05b(^ŝ0
2&2^ŝ0&

2)5bR̂0 is the longitudinal mag-
netic susceptibility. This equation can be solved@for a given
G(x)# and yields the critical value ofx0. In particular, for
the SK modelGSK9 (x)51 which yields the resultx051 in
agreement with known results.4 In the ROM the only solu-
tion to that equation isx05`. For a continuous transitio
this implies a divergent susceptibility at the critical fie
This is in contrast to the SK model where only the bu
nonlinear susceptibility diverges at the critical field.6 We also
note that using a perturbative expansion in powers of 1/G it
would be possible to use Eq.~17! to estimateGc in the ROM
as has been done in the SK case.6

To go beyond the static approximation we should c
sider all the Matsubara modesR̂p ,L̂p in the saddle point
equations. The difficulty of this problem is similar to th
found in strongly correlated systems where an infinity
parameters has to be computed in a self-consistent way.
static approximation yields inaccurate quantitative results
the thermodynamic properties at low temperatures. Ne
theless, we expect the order of the transition to be corre
predicted. The nature of the transition should not be de
mined by the decay of the correlationRt in imaginary time
but for the particular type of replica symmetry breaking a
the Edwards-Anderson parameter at the transition po
Note that the decay ofRt for large times is different in the
ROM and in theSKmodel while the zero-temperature pha
transition seems to be continuous in both cases. The reas
-

-

f
he
r
r-
ly
r-

t.

is

that, at zero temperature,x05*0
`dtRt which is infinite in the

former case but is finite in the latter one@Rt decays like
t22 ~Ref. 7!#.

Summarizing, we have investigated the glassy behavio
a general class of Ising spin-glass mean-field models w
pairwise interactions in the presence of a transverse field
models with a discontinuous finite-temperature transition
have shown, in the framework of the static approximati
that the transition becomes continuous atT50 and there is
no room for a metastable glassy phase. We have argue
favor of this result even beyond the static approximati
According to the mode coupling theory12 real glasses are
systems characterized by the existence of a dynamical si
larity above the glass transition. It is important to note tha
finite temperature the dynamical singularity is not associa
with any thermodynamic phase transition. Since in quan
systems at zero temperature dynamics and statics are in
cably linked, it is not surprising that this singularity is r
moved in the only presence of quantum fluctuations. H
general this result is for other glassy models remains an
teresting open problem. It would be very welcome to exte
the present computations beyond the static approxima
using recent developed approaches.7 It is also worth taking
this research further by studying the zero-temperature
namical transition in quantump-spin-glass models19 and
Potts glass models.20
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