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Quantum critical effects in mean-field glassy systems
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We consider the effects of quantum fluctuations in mean-field quantum spin-glass models with pairwise
interactions. We examine the nature of the quantum glass transition at zero temperature in a transverse field. In
models(such as the random orthogonal mgdehere the classical phase transition is discontinuous an analysis
using the static approximation reveals that the transition becomes continuous at zero temperature.
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Spin glasses are models which deserve considerabkon is that the entropy vanishes everywhere at zero tempera-
interest! In these systems the presence of randomness ardre. Concerning the dynamics we can also expect a quite
frustration can yield very rich behavior. In particular, there isdifferent behavior from the classical case. In macroscopic
much current interest in the behavior of glassy systems in thguantum systems at=0 the dynamics is governed by the
presence of quantum fluctuations where the nature of th&chralinger equation which is nondissipative and there is no
zero-temperature phase transition is driven by the competi0om for any kind of thermal-activated processes. It could
tion between randomness and quantum effects rather thaiell be that trapping processes in the metastable glassy
thermal fluctuationd. This makes the order-disorder transi- Phase are suppressed in the presence of quantum fluctuation
tion in quantum glasses belong to a new universality class.effects.

Much work has been devoted to the study of mean-field The main conclusion of this work is that the glassy sce-
quantum spin-glass models. In particular, attention has beepario presented before is indeed suppressed by quantum fluc-
paid to models with a continuous transition in the Edwardstuations. We will provide a proof for this statement within
Anderson order parameter. The simplest example in thes&e static approximation for a general class of exactly solv-
class of models is the Sherrington-KirkpatricRK) modef ~ able models. Later on we will argue why this result should
in a transverse field. In this system the critical temperature i§€ generally valid beyond that approximation.
depressed when the transverse field is switched on and van- The family of models we are interested in are quantum
ishes for a critical value of the fiefti” Analytical work in  ISing spin glasses with pairwise interactions in the presence
the quantum SK model reveals that replica symmetry is broof transverse field. These are described by the Hamiltonian
ken in the quantum glass phase at zero temper&tthés is
an indication that quantum fluctuations do not destroy one of
the most interesting features in glassy systems, that is, the H==2, Jjolo’-T> o}, (1)
coexistence of a large number of phases or states. =<l :

There has been also much recent interest in the study of
classical spin-glass models with a discontinuous transition invhereo?, o} are the Pauli spin matrices aidis the trans-
the order parameter. These models are characterized by therse field. The indicegj run from 1 toN whereN is the
existence of a dynamical singularity at a temperature abovaumber of sites. Thelj;; are the couplings taken from an
the static transitiof:'® Concerning the statical and dynami- ensemble of random symmetric matrices. In the case that the
cal behavior these models are very good candidates for de;; are independent Gaussian variables this Hamiltonian re-
scribing real glasses.On the one hand, the statics gives aduces to the quantum SK modéh a transverse field. If the
natural explanation for the existence of a thermodynamic]ij are orthogonal matrices, then Ed) reduces to the ran-
ideal glass transition driven by an entropy collapse. On thelom orthogonal mod&l (ROM) in a transverse field. At zero
other hand, the dynamics of these mean-field models is daransverse field the models become classical and display
scribed by the mode coupling equations introduced to dequite different behavior. The SK model has a continuous
scribe relaxational phenomena in glasSesn mean-field finite-temperature transition without jump in the Edwards-
models metastable states have an infinite lifetime, and henggnderson order parametewhile the ROM presents a strong
dynamics is frozen at the dynamical singularity well abovediscontinuous transition where the Edwards-Anderson order
the static transition temperature. Below the dynamical tranparameter jumps to a value close to 1 at the transition
sition temperature the system gets trapped in states whidemperature?
have larger energy than the equilibrium one. All these fea- In order to solve mode(l) we apply the Trotter-Suzuki
tures are absent in models with a continuous transition.  decompositiotf* and rewrite the Hamiltonian in terms of

The purpose of this paper is the study of models with aclassical spins with an extra imaginary time dimension,
discontinuous transition in the presence of quantum fluctua-
tions at zero temperature. The motivation is twofold. Con-
cerning the statics we note that the transition cannot be He= A, JijE olot+BY, alotti+C, )
driven in the quantum case by an entropy collapse. The rea- i<i T ! it
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where the time index runs from 1 toM and the spinss! ﬁp: Mflzi\"zgle‘wpth). Then, the free energy, E), can
take the values*1. T[]e constantsA, B, and C are o \yritten in terms of theR,, A, (details will be shown
given by A=pgB/M;B=slIn[coth(B'/M)], and C=(MN/ elsewherg

1q; . .
2)In[zsinh(28I'/M)]. Now we apply the replica trick and  The main purpose in this paper is to investigate the glassy
compute the average over the disorder of the replicated pagzenario in the phase boundary which means to determine

tition function, the order of the static and dynamical transitions. More con-
n cretely, this corresponds to determine the value of the
—n_ a Edwards-Anderson parameter at the transition point. Follow-
Z [dJ]%} exp( azl Heﬁ)’ @ ing Ref. 16 we expand the free ener@® aroundm=1,
' f=fo+(m—1)f;+0O((m—1)?) and determine the paramag-
wheref[dJ] means integration over the random ensemble ohetic free energyf, and the correctiori;. We get
matrices. This integral can be done using known methods in
matrix theory*>*3The final result of Eq(3) can be written in
terms of a generating functio®(x) which depends on the
particular ensemble ol;; couplings via its spectrum of ei-
genvalues. For the two examples we will consider in this B9 . 1 R 1 .
paper we haves g (x) =x%/2 (SK mode) and Groy(X) =3 Bf1=a\— - G'(BRo) + 5 G(BRo) — 5 G(B(Ry—a))
In(v1+4x2—1)/2x3] + 31+ 4x?~3 (ROM mode). From
Eq. (3) we get

C waa, 1 N
Bfo=— 1+ 2 RoAy =52 G(BRy)-1(A),  (7)
p p

+|<A>—exq—l<A>]fdp(x)E(x)ln[E(x)], €)

Z_3=fdeAeXri—NF(Q,A)], (4 where 1(A)=In[E(\=0)] and E(x)=2; exd6(ap X1,
with
where
M-1
- _ A —iw - 125 _\ N2
F(QUA)=— '+ T THQA) - STIG(AQ) ~IN[H(A)], O(7p = 2 (Ap+ MBe0)|y]*+ (2000~ N0
9
5

Note thatf, does not depend o and\ as expected for
e paramagnetic part of the free energy. The static and dy-
namical transitions can be investigated through the study of
the termf, (which plays the role of a potential function in
1 , ' some spin-glass modéls. The static transition appears
H(A)=, exp( > Wz AL otol + B, otottt, when the free energl coincides wlth the paramagnetic free
o ab tt’ at energyfy, i.e., f;=0. The dynamical transition is given by
(6)  the presence of a soft mode above the static transition and is

and the free energy is obtained by making the analytic con(—)btame‘j by solving the equation

tinuation Bf =lim,_oF(Q* A*)/n where Q*,A* are solu- FEAYER 7f,\2
tions of tr}e saddle point equations/\gl;z(AMZ/ (&q2>(a)\2)_(0qm\) =0.
2)[G’(AQ)]§b (G’ stands for derivative ofG) and

W =(olol). Th 1)) is d the effecti : . o
Qap=(oa0,). The average(-)) is done over the effective equationsdf,/dq=df;/dIn=0 yields the critical tempera-

Hamiltonian in Eq.(6). '
The natural solution to this set of equations is to assum(%ure and the value of the jump of the order paramgtat the

W et _ ransition. In case the dynamical and the static transition co-
that the order parametef3;,, A5, are independent of the jcige it can be shown thaj=A=0 and the transition is

time indices whera#b but they are only translational ime  ¢ontinuous in the order parameter. These three equations are

?nvari?nttif aThb. AZ pre;/itc;]usly saitd, we are inter(;)sted it” complemented by the saddle point equations for the param-
investigating the order of the quantum paramagnet-quantum . - A
o, i, dfolaRy= 9t /9R ,=0.

glass transition. To this end we will focus on the study of theeterSRp A . : . .
We now derive a simple expression for the dynamical
nsition temperature. Equatigh0) for the soft mode can

phase boundary of the model, leaving aside subtelities con
cerning the quantum glass phase. To this end, it is enough t[c)> .

. . . pe worked out and one finds
consider a general one-step replica-symmetry breaking
solution! We divide then replicas inton/m boxesK of size R % R R
m such thatm dividesn. The saddle point solution whem ﬁze"(A)G”(B(RO—q))f dp(x)((s3)—(S0)?)?E (x) =1,

#b takes the form QY =q;Al,=\ if abeK and (11)

it Attt ; — tt’
Qan=Aab n(') otherwise. For a=b we take Qa, where the averagg(-)) is taken over the effective Hamil-
=Rji—v|, Aga=Aje—v|. In terms of the Matsubara frequen- {gpjan (9).
ciesw,=2mp/M we define as usual the order paramaters in - Al previous results are exact and do not involve any ap-

Matsubara space ﬁp Ay ,&p (for instance, proximation. We now want to show that at zero temperature

with Q, ,AY, being the order parameters and the trace Tr isH
done over the replica and time indices. The tddtA) is
given by

(10

The solution to these equations plus the saddle point
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the gquantum transition becomes continuous. To find the or- o020
der of the quantum phase transition we note thah Eq. (8)

only depends orIARp in the casegp=0. In this paper we con-
sider the static approximatibrwhere only the modefio is 015 |
taken to be nonzero anB,=A,=0 for p>0. This is a

crude approximation, the reliability of which will be dis-
cussed later on. Puttif@= Ry, A = A, we find the following T 010 f
saddle point equations f&®,A,q,\:

B _, SinF[Eo(X)]X2>> 005 |
A 2G (BR), R << =X K
_ B~ , . 0.00 : ' ‘ '
)\_E[G (BR)—G'(B(R—q)]1; 0.0 02 oa o8 08 10
* . 2 FIG. 1. Phase boundari@s(I") (lower line) andT(I") (upper
[f_mdp(z)sde)(b/T)} line) in the ROM in the static approximation. At zero transverse
q= - , (12 field T;~0.0646, Tp~0.1336.
f dp(z)cosiT) deriving Eq.(14) respect tal. Solving Eqs(14) and(16) for
o 0 the SK model we obtairu=3,I";=2, reproducing known
Where results>*® In the case of the ROM we obtain=3T.=1.
Note that in both models the value of the critical field is
o given by the maximum eigenvalue of the coupling matrix
{())o= - , (13) To check our analytical computations we have numeri-
f‘” dp(x)costiEo(x)] cally solved Egs(12). In Fig. 1 we show the phase bound-
—w P =0 aries for the dynamical and static transitions in the ROM as

a function of the transverse field. Both transition tempera-
with Eq(x)=(2Ax*+ 2?2, T=(b*+B°T?)?, and  tyres decrease quadratically as a function of the transverse
b=[2(A~\)]"?z+(2))?x. field, merging into the same point at zero temperature as it

Exact expressions are also obtained for the free energieghould be for a continuous phase transition. In Fig. 2 we

fo.f, and for Eq.(11). This set of equations can be always show the Edwards-Anderson order parameter(c?)? in
numerically solved but explicit results can be analytically . .
. . . o the ROM as a function of' as we move along the static
obtained in the zero-temperature limit. Substituting the solu; . .
. ~ - ; . . (gs) and dynamical ¢p) phase boundaries.
tion A=uB,A=v B into Egs.(12) and performing the inte- . . L
, : ' Despite the crudeness of the static approximation we note
grals with the saddle point method we find after some . . .
; - . . that still some exact results can be derived in case of a con-
lengthy computations that,v and the critical field" . satisfy : i . .
. tinuous phase transition. Starting from Ed@1) and putting
the equations T
(g=\=0), Eqg.(11), we get

1
u=—G’( ) (14) 1o

— 1 G/ 1 G/ 1 15 08
'T217 \T.—2u 20| 1®

It is easy to check that Eq$14) and (15 only admit the
trivial solutionv=0. It is also possible to show that in case 9 os}
v=0 alsof;=0. Becausegy and R vanish withT and the
free energy of this solution coincides with the paramagnetic
free energyf 3, we conclude that the transition becomes con- ., |
tinuous at zero temperature. In order to determine the critical
field ', we solve Eq(11) in the 8—oe limit which yields

=1. (16) r

0.0 . y :
. —2n 0.0 0.2 05 0.8 1.0
(I';—2u)™“G (FC—ZU)

R . ) FIG. 2. Edwards-Anderson parametgy (upper ling and qp
‘Note thatyo=pRo=(I'c—2u) "~ is the main result of (lower line) in the ROM on the static and dynamical phase bound-
this computation from which we can alternatively derive thearies boundaries as a function of the transverse field. At zero trans-

main Eqs(14) and(16). The former can be derived from the verse fieldgs=0.99983¢,=0.961.q andqp vanish linearly with

first of Eq. (12) while the latter can be simply obtained by T/? at zero temperature.



X3G"(x0)=1, (17)

where xo=B((s3)—(S)?) = BRy is the longitudinal mag-
netic susceptibility. This equation can be solyéat a given
G(x)] and yields the critical value of,. In particular, for
the SK modelGgx(x) =1 which yields the resulio=1 in

agreement with known resultsn the ROM the only solu-
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that, at zero temperaturgg= f;dtR; which is infinite in the
former case but is finite in the latter of&; decays like
t~2 (Ref. 7].

Summarizing, we have investigated the glassy behavior in
a general class of Ising spin-glass mean-field models with
pairwise interactions in the presence of a transverse field. In
models with a discontinuous finite-temperature transition we

tion to that equation isxo=2. For a continuous transition Nave shown, in the framework of the static approximation,
this implies a divergent susceptibility at the critical field. that the transition becomes continuousTat0 and there is
This is in contrast to the SK model where only the bulk N room for a metastable glassy phase. We have argued in
nonlinear susceptibility diverges at the critical fiélt/e also favor of this result even beyond thedstatlc approximation.
note that using a perturbative expansion in powers bfifl/ According to the mode coupling thedfyreal glasses are

4 ; X systems characterized by the existence of a dynamical singu-
would be possible tp use E(L7) to estimatd’; in the ROM larity above the glass transition. It is important to note that at
as has been done in the SK cise.

: L finite temperature the dynamical singularity is not associated
To go beyond the static approximation we should conyyith any thermodynamic phase transition. Since in quantum
sider all the Matsubara modds,,A, in the saddle point systems at zero temperature dynamics and statics are inextri-
equations. The difficulty of this problem is similar to that cably linked, it is not surprising that this singularity is re-
found in strongly correlated systems where an infinity ofmoved in the only presence of quantum fluctuations. How
parameters has to be computed in a self-consistent way. Thgeneral this result is for other glassy models remains an in-
static approximation yields inaccurate quantitative results foteresting open problem. It would be very welcome to extend
the thermodynamic properties at low temperatures. Nevetthe present computations beyond the static approximation
theless, we expect the order of the transition to be correctlyising recent developed approachdsis also worth taking
predicted. The nature of the transition should not be deterthis research further by studying the zero-temperature dy-
mined by the decay of the correlatid® in imaginary time ~ Namical transition in quantunp-spin-glass model$ and
but for the particular type of replica symmetry breaking andPotts glass modef8.
the Edwards-Anderson parameter at the transition point. | thank D. Lancaster, Th. M. Nieuwenhuizen, and F. G.

Note that the decay dR, for large times is different in the padilla for discussions and D. Lancaster for a careful reading
ROM and in theSK model while the zero-temperature phaseof the manuscript. This work has been supported by FOM

transition seems to be continuous in both cases. The reason(iBhe Netherlands
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