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We discuss the problem of static chaos in spin glasses. In the case of magnetic-field perturbations, we
propose a scaling theory for the spin-glass phase. Using the mean-field approach we argue that some
pure states are suppressed by the magnetic field and their free-energy cost is determined by the finite-
temperature fixed-point exponents. In this framework, numerical results suggest that mean-field chaos
exponents are probably exact in finite dimensions. If we use the droplet approach, numerical results sug-
gest that the zero-temperature fixed-point exponent 6 is very close to (d —3)/2. In both approaches
d =3 is the lower critical dimension in agreement with recent numerical simulations.

I. INTRODUCTION

One of the most interesting open problems in spin
glasses regards a correct understanding of the nature of
the low-temperature phase, i.e., the spin-glass phase.'?
Spin glasses are characterized by a strong freezing at a
certain critical temperature. Below that temperature a
complete description of the nature of the static phase is
still missing.

During the last years there have been several develop-
ments in the field, the most well known being the mean-
field theory.® Unfortunately, mean-field theory has re-
vealed a complex theoretical structure which is very ob-
scure when applied to nonexactly solvable models for
which some kind of perturbation theory is needed.

There are other approaches to spin glasses which are
known as phenomenological droplet models, a complete
description of them has been given by Fisher and
Huse.*> The main idea underlying these models is that
the spin-glass behavior is governed by the zero-
temperature fixed point in the renormalization-group
equations.®’ Up to now it seems that the Parisi solution
to mean-field theory is essentially correct. It has passed
the stability analysis® and gives also a correct description
of the thermodynamics, in agreement with the numerical
simulations. It is not clear what is the correct description
of the spin-glass phase in short-ranged models. Droplet
models are expected to be a good description of the low-
temperature phase mainly in the case of low dimensions.
But droplet models are not suited to describe the physics
of high-dimensional systems and particularly mean-field
theory.

The complexity of the replica approach is found when
studying the spectrum of fluctuations around the Parisi
solution. The full set of Gaussian propagators has re-
vealed a very complex structure’ and the obtention of the
one-loop corrections to the mean-field equations makes
progress slow. The main difficulty of this task is the
enormous number of sectors within replica space which
contribute to the one-loop correction. This explains also
why finite-size corrections to the main thermodynamic
functions are still unknown in mean-field theory.!® To all
these problems should be added also the fact that, up to
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now, the major part of the computations have been done
only close to T, within the Parisi approximation.

In this work we will try to introduce a different ap-
proach to the problem which can help in understanding
the nature of the spin-glass phase. The main idea of the
approach is to try to look for one order parameter whose
spectrum of fluctuations is easier to take into account.
The chaos problem was proposed some time ago and con-
cerns the chaotic nature of the spin-glass phase.!"'? The
term chaotic can be misleading since it can evoke
different meanings. In this context, we prefer to use the
word static chaos. By this we mean that a small pertur-
bation of the Hamiltonian is enough to reshuffle the
Boltzmann weights of the different equilibrium
configurations. One constructs a system which is the sum
of two Hamiltonians, the initial plus the perturbed one.
The full system lies in a larger phase space and allows for
a new order parameter. This order parameter is the over-
lap between the equilibrium configurations of the initial
system and the perturbed one. This new order parameter
has a longitudinal spectrum of fluctuations without zero
modes and hence is stable. The associated correlation
functions to this order parameter decay exponentially to
zero with a characteristic correlation length.

The nature of the chaos problem is also interesting
concerning numerical techniques like simulated anneal-
ing where the change of the temperature has to be con-
sidered as a perturbation to the system. In this case one
wants to reach the ground state after a progressive cool-
ing of the system. Let us suppose that the spin glass
behaves chaotically against temperature changes. Then,
the equilibrium configurations should reorganize com-
pletely for any small change of the temperature and a
slow cooling would be useless. A small change of temper-
ature would be considered like a new quenching and the
system would be always strongly far from equilibrium.
Fortunately, as we will discuss later for this particular
problem, if there is chaos against temperature changes
then it is small and finite-size corrections ensure that a
high degree of correlation between the equilibrium
configurations at the two temperatures is preserved.

The work is divided as follows. In the following sec-
tion we will present a quantitative definition for chaotici-
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ty and we will introduce different types of chaotic pertur-
bations. We will also present predictions from mean-field
theory and phenomenological droplet models. Section
II is devoted to the study of a particular perturbation,
i.e., chaoticity against changes of magnetic field. Starting
from the mean-field approach we propose a scaling
behavior within the spin-glass phase. We discuss also our
predictions in the framework of the droplet approach.
Section IV is devoted to numerical simulation results and
finally we present our conclusions and a discussion of the
results.

II. A WORKING DEFINITION FOR CHAOS

The idea underlying the chaoticity of the spin-glass
phase relies on the fact that it is a marginal phase.’ The
fact that the spin-glass phase is not fully stable means
that a small addition of energy to the system is able to
change completely the statistical weights of the equilibri-
um states with a very small cost of free energy (of order
1/N compared to the supplied energy to the system,
where N is the size of the system).

Marginality is one of the outstanding results in mean-
field theory of spin glasses. It is also a feature of phenom-
enological droplet models and in general it is related to
the fact that in the spin-glass phase spatial (time) correla-
tion functions decay very slowly with distance (time).
This decay is not far from a power law in the most gen-
eral case. The full reorganization of equilibrium states in
spin glasses after a small perturbation is a natural feature
in mean-field theory. In this case there is an infinite num-
ber equilibrium states and all of them contribute to the
partition function but with a different weight.!3> This is
because they have equal free energies per site except
differences of order 1/N. Any small but finite addition of
energy to the system is enough to redistribute these small
free-energy differences reshuffling the weights of the
different pure states.

In droplet models there exists the concept of overlap
length (it is sometimes denoted L, or L,y according to
the case if the perturbation is a change of the tempera-
ture or the magnetic field). Droplet models suppose that
there is only one equilibrium state. When the system is
perturbed, the correlation functions reorganize complete-
ly in a scale of distances larger than the characteristic
overlap length. It is clear anyway that the overlap length
in these models has to be always smaller than the correla-
tion length and coincide only in the limit in which the
perturbation vanishes. _

In what follows ¢ - - - ) and (.) mean thermal and dis-
order average, respectively. Now we want to give an ap-
propriate definition of what is static chaos. For simplici-
ty we will consider Ising spin glasses even though the
definition can be generalized to other models. Let us sup-
pose an Ising spin-glass system with Hamiltonian H,[c ].
Then we apply a perturbation P to the system and the
new Hamiltonian for a different copy of spins {r;} is
given by

Hy[7]=H,[r]+P[7] . n

We consider now a full Hamiltonian which is the initial
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system H,[c] plus the perturbed one H,[r], i.e.,
H[o,7]=H,[oc]+H,[r]. The phase space has been en-
larged and we can consider a new order parameter which,
for example, in the case of Ising spin glasses, is given by
the overlap <(o;7;) between the equilibrium
configurations of the system H,; with the equilibrium
configurations of the perturbed one H,. When there is no
perturbation, i.e., P =0, this is the usual order parameter
of the spin glass with Hamiltonian H =H,+H,.
We now define the chaoticity parameter r by
2
r(P)= o7 )i : )
((a}’af)},l (Tf-"rf)%,z )12

where (o?0?) denotes the order parameter evaluated
taking two copies a,b of the unperturbed system H, and
similarly for {(797%) of the perturbed system H,. The
thermal average of the order parameter in the numerator
is performed with the full Hamiltonian H. In principle,
this order parameter is equal to one if the perturbation is
zero. This is trivial because r is the order parameter of
the spin glass normalized to itself. Chaoticity in spin
glasses reflects the fact that any small but finite perturba-
tion P causes the parameter r to fall abruptly to a value
smaller than » =1. Obviously this can only happen in the
thermodynamic limit because, for a finite size N, the
chaos parameter r will always be a smooth function of the
perturbation P. This means that one has to perform the
thermodynamic limit before applying the perturbation P.
More precisely, the spin-glass phase is chaotic if

im lim r(P)<1. (3)

1
P—ON—

It is also possible to define the adimensional quantity

2
_ (UiTi>H

b

=l 4)
<0':"0',' )%]l

where the numerator is obtained by averaging over the
Hamiltonian H [0 7] and the denominator is the order pa-
rameter for two copies a and b of the same system H,[o ].
The difference between the adimensional quantities a and
r is only an appropriate normalization. In fact, the
definition of chaos given above in Eq. (3) also holds in the
case of the parameter a. The necessity to distinguish
among the parameter a and the parameter r is important
for certain types of perturbations. For example, in the
case of temperature changes the order parameter {(o%?)
is very sensitive to the temperature and vanishes at the
critical point. Let us suppose the initial Hamiltonian is
in the low-temperature phase and we change the temper-
ature by putting the system close to the critical point.
The chaos parameter a vanishes because the numerator in
Eq. (4) vanishes close to T, and the denominator remains
finite. On the contrary, the chaos parameter r of Eq. (2)
has in the denominator a term which also vanishes at T,
and normalizes appropriately the numerator. Because r
measures correctly the overlap among equilibrium
configurations it is the appropriate parameter to deal
with in case of temperature changed. The difference be-
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tween the chaos parameters a and r is not important in
the case of magnetic field changes and other types of per-
turbations.

Let us now discuss what happens in the case of ordered
systems. As an example we take the standard Ising model
in a finite number of dimensions. Let us suppose that we
are in the low-temperature phase, at temperature T below
the critical point, and let us take as a perturbation a small
change of the temperature. At the temperature T the sys-
tem has a spontaneous magnetization m. There is only
one equilibrium configuration with a fraction m of the
spins pointing in a certain direction. When we change a
little bit the temperature by a small quantity AT, the
mean number of spins which point in that direction (i.e.,
the magnetization) changes linearly with AT at least for
AT small. In this case one sees immediately that Eq. (2)
gives the value r(AT)=1 for any small change of the
temperature and the system is not chaotic. We represent
an equilibrium state by an N-dimensional vector
v=(my,m,,...,my), where the m; are the local spin
magnetizations. In the Ising model a slight change of the
temperature modifies only the length of this vector but
not its direction. The chaos mechanism in spin glasses is
driven by the fact that as soon as we perturb the system
this vector v suffers a sudden rotation because the weight
of the different states are changed. In most cases, any
small perturbation makes the vector v to become orthog-
onal to its previous value and r(P) vanishes for a finite
perturbation P.

There are many examples of perturbations that one can
apply to the system. As was mentioned in the introduc-
tion, one can change the temperature or change the mag-
netic field. These are among the most studied perturba-
tions in the literature. But one can imagine other kinds
of perturbation like, for instance, changing the realiza-
tion of disorder. In this case, a finite fraction of the J;;
couplings is changed (for instance, in case of symmetric
distribution of couplings, this change could consist in
reversing the sign of the perturbed couplings J;;). One
can also imagine to add a small ferromagnetic or antifer-
romagnetic part to the couplings. In these cases, spin
glasses seem to behave chaotically against these perturba-
tions. As an example, we show in Fig. 1 how the parame-
ter r decreases with the size N, for the case of the
Sherrington-Kirkpatrick (SK) model for two different
perturbations. The first perturbation corresponds to a
very large change of temperature (AT =0.4) for an initial
temperature T =0.5=T,/2 (the perturbed system is at
T =0.9 which is very close to T, but always in the spin-
glass phase). The other perturbation is the application of
a small magnetic field » =0.2 to a system initially at zero
magnetic field and T7=0.6 [the de Almeida-Thouless
(AT) line lies at h ~0.4]. The results for N less than 20
have been obtained by calculating exactly the partition
function, the remaining ones using Monte Carlo simula-
tions. From Fig. 1, the system seems much more sensitive
against magnetic-field perturbations than temperature
changes. This is clear also if we observe that under the
temperature perturbation, even though it is very strong
because it puts the perturbed system close to the
paramagnetic phase, the equilibrium configurations at

FELIX RITORT 50
1 Aaa,
ot "o-:‘.
09 F x
L I
0.8 o .
- o7 [ I
e r(AT)
0.6 r s T (h) {
05 F
0.4 L - P ial n " At a2l e A ia i i
1 10 100 1000
N

FIG. 1. Chaos parameter r in the SK model for two different
perturbations. In one case the system is at T7=0.6, # =0 and
we apply a field A =0.2, T staying constant. In the other case
the system is at 7=0.5 and we increase the temperature by
AT=0.4. Error bars in the second case are smaller than the size
of the symbols. More details are in the text.

both temperatures still retain a high degree of coherence
(r~0.7).

In the following, we will focus on the study of a partic-
ular perturbation, which has turned out manageable in
order to understand its effects in the spin-glass phase: the
case in which the perturbation consists in applying a
small magnetic field to a spin glass at zero field. This has
been the subject of previous research, specially by Kon-
dor in the case of mean-field theory.!* One could also
study the case in which the system is at a finite field in the
spin-glass phase and the field is slightly changed. This
problem is more subtle than the previous one in which
the system is initially at zero magnetic field. The main
reason is that (at least for short-ranged systems) we do
not know if the spin-glass phase survives to a magnetic
field. If the spin-glass phase survives to the magnetic
field then we expect (as predicted in the mean-field ap-
proach) that chaoticity will be present in a magnetic field.
In the other case (and this is the prediction of droplet
models), the system would then be always in the
paramagnetic phase and chaos should not be present.
Then, according to Eq. (2), r(P)=1+0(Ah) would be
continuous for Ah =0.

In the case the system is initially at zero magnetic field,
mean-field approach and droplet models agree in that
they both predict that the spin-glass phase is chaotic.
More specifically 7 (k) (we use the intensity of the applied
magnetic field h for the perturbation P) is zero for any
finite . But the main mechanism which makes the spin-
glass phase chaotic is very different in both pictures. In
phenomenological droplet models the spin-glass phase is
marginal: the correlation functions decay very slowly
with the distance and the correlation length associated to
the two-point function C(x)={o(0)a(x))? is infinite.
When a magnetic field is applied the spin-glass phase is
destroyed and the correlation length becomes finite. It is
given by*

gN(QEAhZ)l/(ZG_d) (5)
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with gg, the Edwards-Anderson order parameter and 6
the thermal exponent which gives the characteristic ener-
gy scale L® of droplet excitations of typical size L. This
means that all excitations of droplets of sizes larger than
a certain length £ will be suppressed by the field. The ex-
ponent 0 is a zero-temperature exponent (it is determined
by the zero-temperature fixed point of the
renormalization-group equations) and it is expected to be
constant in the low-temperature phase. In the critical
point the associated thermal exponent 8, is determined
by the finite-temperature fixed point of the
renormalization-group equations and is related to the
critical exponents by 6,=(d —2+7)/4, where 7 is the
anomalous dimension exponent and d is the dimension
[even though it has been argued that at low dimensions
there appears a new exponent 8, (Ref. 15)]. In general,
we expect that 0, is smaller than 0 above the lower criti-
cal dimension and both vanish in the lower critical di-
mension.

Mean-field theory approach gives a completely
different mechanism of chaoticity. After applying a small
magnetic field, the spin-glass phase is not destroyed. We
suppose that the effect of the magnetic field is the disap-
pearance of a large number (infinite) of equilibrium states.
This mechanism is easy to visualize by taking into ac-
count the correct order parameter for spin glasses which
is the distribution P(g). Its physical meaning was ex-
plained some time ago'®!” and it gives the probability
density that two pure states @ and B have a common
overlap g,g=gq. This common overlap corresponds to
the scalar product of the local spin magnetization in both
states. At zero magnetic field the function P(q) is
symmetrically distributed around ¢ =0 and nonzero
within the interval (—¢,,,,qm.,)- In a magnetic field the
reversal symmetry o— —o is broken and P(q) is
nonzero only for g positive and larger than a minimum
value g ;.. The value of q.,,, is nearly independent of the
magnetic field (this approximation, which works extreme-
ly well close to T,, is called the Parisi-Toulouse hy-
pothesis'®). In some sense the effect of the magnetic field
is to suppress those equilibrium states a which had over-
laps g,z with the other remaining states B smaller than
Gmin- Within the usual picture of the spin-glass phase in
mean-field theory!® there is an infinity of states with a few
number of them dominating the Gibbs measure. This
infinity of states lay in the tips of an ultrametric tree and
the effect of the magnetic field corresponds to progres-
sively cutting those branches which generate the states
which are suppressed. The suppression of the states also
conserves the ultrametricity property. The understanding
of how pure states a are suppressed by the field according
to their statistical weight w, is still an interesting open
problem.

il

A[PQR]= 3 (P} +Q2% +2R%)+3R2,

a<b
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III. CHAOS IN MAGNETIC FIELD

This section is devoted to the study of chaos in case of
an Ising spin glass initially at zero field after turning on a
magnetic field. We are interested in the case of a d-
dimensional Ising spin glass with random J;; couplings
defined by the Hamiltonian

H=—EJ,10',01—h20', ’ (6)
(i, ) i

where the couplings J;; are quenched variables distribut-
ed according to a probability function P (J) of zero mean
and finite variance. The interaction is restricted to
nearest neighbors and 4 is the magnetic field. The Ising
spins o; take the two possible values =1 and live in a d-
dimensional hypercubic lattice. In the limit d — o one
expects to converge to mean-field theory, i.e., the SK
model. In the SK model all spins interact one to each
other and the couplings J;; are normalized by a factor
1/V'N, where N is the number of spins.

A. The case of mean-field theory

This question was addressed some time ago by Kon-
dor.!* Let us consider two copies of the same realization
of disorder, one at zero magnetic field and the other one
at finite magnetic field 4. The full Hamiltonian of the
problem is given by

Hlo,7]=H,[c]+H[r]—h3 T )]
with
H1=_ 2 Jljalaj . (8)
1<i<j<N

This problem can be directly solved using the standard
replica trick for the full Hamiltonian ¥,-, ,H,, where
H, is given by Eq. (7) and a is the replica index which
runs from 1 to the full number of replicas n (on a final
stage one takes the limit n —0). Now one applies the re-
plica trick

_ Z}—1
InZ =lim s 9
n—0 n

which yields the expression

Zj= [dP,dQ.,dR,, exp(—N A [PQR]) (10

with

—InTr,, exp (B > P00, +p2 S QuTaTs +p2 S R, 0,7, +ﬁ22Raaaa1'a +Bh3y T, | . (11)
a

a<b a<b

aF*b a
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In this way, one is able to reduce the problem in terms
of a Lagrangian A4 [PQR] with three order parameters
corresponding to the different overlaps among the two
copies, i.e, Py =(0,0,); Py =0, Q. =(7,7); Quu=0
and R,,=(o,7,). For finite h there is an immediate
solution for the equations of motion which is given by the
P,, and Q,, Parisi matrices with zero and magnetic field
h, respectively, and R,, =0. The free energy of the whole
system is the sum of the free energy of one copy at zero
magnetic field plus the free energy of the other copy with
field h. This is a solution because it gives the full free en-
ergy of two uncoupled systems. The order parameter as-
sociated to R is

g=0;T; . (12)

In order to study the stability of this solution one com-
putes the spectrum of fluctuations. The full set of fluc-
tuations is very complex. For instance, within the sub-
spaces generated by the diagonal subblocks P and Q, it
corresponds to the spin-glass spectrum derived by De
Dominicis and Kondor.’ Only the fluctuations around
R =0 (the off-diagonal subblock) are those which are
physically relevant to the problem because they measure
spatial correlations between states corresponding to the
two Hamiltonians, the initial and the perturbed one. In
mean-field theory there are no distances and we want to
obtain the spatial behavior of the system within the
mean-field approximation. This can be done using a
Ginzburg-Landau approximation by introducing spatially
dependent order parameters in the effective action of Eq.
(10). Now the order parameters P,Q,R depend on the
space variable x and we add to the action A4 a kinetic
term of the type 3, ., [0°R,,(x)/dx2]. The spectrum of
fluctuations is contained in the momentum space propa-
gator. This is given by the Fourier transform G (p) of the
correlation function

C(x)=(0¢0, 77y ) » (13)

where (.) means averaging over disorder and {(.)) is the
usual thermal average over the Hamiltonian Eq. (7).

The problem of computing the propagator reduces to
the diagonalization of a hierarchical matrix of the Parisi
type. The full expression has been reported in Ref. 14.
Its singular part is given by

Tmax Ormax 2+ 14+ Mg)AMQ)
Gp=["d dg-£ 14
(p) fo qum Q[p2+1—?»(q)k(Q)]3 s
with
qmax
MD=B |1 =gt [ " dax ()|, 1s)

where B is the inverse of the temperature. The same ex-
pression applies in the case of A(Q). Here g (x) and Q(x)
are the order-parameter functions for the spin glass at a
zero and h field, respectively.

The correlation function Eq. (13) decays to zero for
large distances x with a characteristic length £ which is
given by the minimum eigenvalue of the stability matrix.
This eigenvalue is nonzero for finite A which demon-
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strates the stability of the R =0 solution. The correlation
length & (which is the inverse square root of the minimum
eigenvalue) diverges like [1—A(Q,;,)]1 "2 Close to
T.=1 we have Q_;,,~h?/3. This gives £~h ~?/*> which
diverges when h —0.

The stability of the R =0 solution implies that the sys-
tem is chaotic. This means that r(P) [as given by Eq. (2)]
always vanishes for finite A like 1/N, where N is the size
of the system. The result that £ diverges when h goes to
zero is rather natural because in that case the perturba-
tion vanishes and the two copies are identical. Then the
correlation length £ is the spin-glass correlation length
which is infinite because there is marginal stability. In
some sense, there is a first-order phase transition at A =0
where the probability distribution associated to the order
parameter q defined in Eq. (12) changes from a § function
peaked in g =0 to the usual order-parameter distribution
for the spin glass.!® Also the critical point is chaotic but
in this case the correlation length diverges like £~h ~1/2.
We remind the reader that in the paramagnetic phase
there could not be chaos of the type defined in Eq. (3).
This is because the correlation length £ would never
diverge but only converge smoothly to its corresponding
finite value at zero magnetic field.

Now we turn to the behavior of the propagator G (p) of
Eq. (14) in the limit p—0. Using the known expres-
sions? for g (x) and Q(x) close to T, in Eq. (14) we ob-
tain a divergent expression for G (0). Its most divergent
part is

Crna do
G(O)~f9m [1-MQ)]2

which gives G (0)~p ~*~£*~h ~8/3, This is not new and
this result can also be obtained from the study of the in-
travalley Gaussian propagators as derived in Ref. 21. We
can define a certain kind of nonlinear susceptibility by

Xm=3C(i)=G (0)~h 3/ . (17)

(16)

This susceptibility can also be written x,;=N{g?) with ¢
given in Eq. (12). Using the fact that R =0 is a stable
solution altogether with Eq. (17), the following scaling
behavior holds:

a=r~f(Nh%73) . (18)

This result will be derived in the following section using
scaling arguments and will be also generalized to short-
range models.

B. Scaling theory of chaos with magnetic field

Next we want to give a precise physical meaning to the
correlation length £&. As commented in the previous sec-
tion, the spin-glass phase is marginal with an infinity of
equilibrium states, none of them having a characteristic
correlation length. Under a small magnetic field, a lot of
states are suppressed and the correlation length £ is finite.
We interpret £ as the new typical correlation length of
the states which have been suppressed. This is the natu-
ral continuation of what comes out in the critical point.
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In this case there is only one marginal state. After apply-
ing a magnetic field, the correlation length becomes finite
and the system goes into the paramagnetic phase. In the
spin-glass phase the suppressed states acquire finite corre-
lation length and their free energy increases respectively
to the remaining ones. We are still within the spin-glass
phase because the remaining states dominate the parti-
tion function and they still have infinite correlation
length. In the spin-glass phase all equilibrium states are
nonequivalent. Some of them have a much higher statisti-
cal weight. This means that only those states {a} which
give overlaps {q,5=9,,,VB} are simply erased by the
magnetic field. When all states are suppressed we reach
the AT line.?? This can only happen in cases when an
infinity of equilibrium states coexist in the low-
temperature phase.

If we want to be more precise we have to generalize
these ideas to the case of short-range models. Two basic
assumptions are enough to this aim. The first one con-
cerns the physical interpretation on the effect of the mag-
netic field on the equilibrium states. The second one uses
information in the critical point to understand what hap-
pens in the spin-glass phase. More precisely, we suppose
that the cost in free energy of the disappearing states in
the spin-glass phase scales in the same way as in the criti-
cal point. We argue that the low-temperature spin-glass
phase is determined by the finite-temperature fixed point
of the renormalization-group equations. This is the con-
trary assertion of droplet models in which the spin-glass
behavior is governed by the zero-temperature fixed point.
Our assumptions give exact results in mean-field theory.
The existence of some critical properties in the low-
temperature phase has been also seen in a different con-
text. For example, it has been proved that the exponent
which characterizes the decay of the tail of the P(q)
around g =q,, freezes below the critical point in mean-
field theory. ! In short-range Ising spin glasses there are
also numerical results which suggest that the freezing of
some critical exponents really takes place in the low-
temperature phase. 2324

At the critical point we know that the singular part of
the free energy (per site) is given by

fsing~h2q~qd/[q] . (19)

Here q is the usual order parameter defined in Eq. (12), d
is the dimension, and [q] is the dimension of the operator
Q. in units of the inverse of the correlation length. The
value [q] is connected to the critical exponents 3, v, and
7 via the relation [g]=B/v=(d —2+7)/2.

Now we generalize this expression to the case in which
replica symmetry is broken, i.e., in the spin-glass phase.
First of all, we need a general expression for the singular
part of the free energy which is invariant under the per-
mutation group of the different replicas. The most easy
expression of this type is

fsing ~ E be/[q] ’ (20)

a<b

where the exponent [¢q] is given by the critical exponents.
One can easily derive the correct behavior of the singu-
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FIG. 2. Mean-field theory order-parameter function g(x) in
the spin-glass phase with magnetic field. It is characterized by a
minimum overlap ¢.;,, a maximum overlap ¢q,,,, and the corre-
sponding breakpoints X ;n, X max-

lar part of the free energy for an order parameter g (x) of
the type shown in Fig. 2. To obtain the correct singular
part of the free energy corresponding to the states which
are suppressed by the field we have to take the difference
of Eq. (20) with h#0 and h =0:

fsing = 2 Qc;ib/[q](h)_ 2 Qn;ib/[q](o)

a<b a<b

1
= [ 1ai 90— g8/ (x)]dx
=X min g{tllq]=q;‘n{x[lq]+l . (21)

The main ingredient that we have used in this deriva-
tion is the fact that the order parameter g (x) in short-
range models is characterized by a continuous part plus a
plateau. Under the application of a magnetic field a new
plateau appears with ¢ (x)=q;, and x_;, ~q.;,. This
last result is connected with the fact that the order-
parameter distribution P(q) at zero magnetic field is
finite for ¢ =0. Because P(a)=dx (q)/dq [where x (q) is
the inverse of the g(x)] this means that gq(x)~x for x
close to zero. In the critical point the previous derivation
applies with x,,=1 and ¢~h%*?®  where
6=(d +2—m)/(d —2+n). For droplet models the same
derivation is valid but now x_;; =1 and P(0) vanishes in
the thermodynamic limit like L ™% with 6 the zero-
temperature fixed-point exponent. The singular part of
the free energy scales like £~ ¢, £ being given by Eq. (5)._

Now we apply Eq. (21) to mean-field theory. Mean-
field critical exponents together with =0 give [¢g]=2.
Because g, ~h2/® we obtain fsing~h%/> and the global
singular free energy scales like Nk 3/3, Because the param-
eters a and r are adimensional we reproduce the scaling
behavior of Eq. (18).

C. Estimate of the AT line and the lower critical dimension

The first result which comes out from the previous sub-
section is that d =4 plays a role as a special critical di-
mension. This deserves some explanation. The upper
critical dimension in Ising spin glasses is 6. Above six di-
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mensions the critical exponents coincide with the mean-
field ones. These exponents are associated with the order
parameter Q (x) corresponding to the overlap o%(x)o%(x)
between two copies a,b with the same Hamiltonian. The
correlation length associated to the two-point function
(Q(0)Q(x))diverges at the critical point and remains
infinite in the low-temperature phase. The chaos correla-
tion length is associated to the two point function
(R (0)R (x)) and corresponds to a different order param-
eter R (x)=c(x)r(x) which couples two systems with
different Hamiltonians. We argue that the exponent of
the chaos correlation length £ associated to R (x) lies in a
different universality class of that to which the order pa-
rameter Q (x) belongs.

We can find the appropriate upper critical dimension
associated to the criticality of chaos. From Eq. (18) and
using £~h ~%?/3 we obtain an argument of the scaling
function for a of the form L /& in four dimensions. This
means that d, =4 has the role of an upper critical dimen-
sion.

In the most general case we can introduce the exponent
A defined by g, ~h2’*. We expect the following scaling
to be satisfied:

a_:_r~f(Nh2(d+[q])/}\[q]) . (22)

The value [g] depends on the critical exponents and this
scaling contains only one noncritical parameter (A) and
thus is easily measurable in a simulation.

The exponent A is theoretically unknown and there is
no numerical prediction on its value. From the value of
A one obtains the AT line using the condition ¢ ;, ~ g max-
Because g, ~7° with 7=(T,—T)/T, the AT line is
given by the equation # ~7%/2 In mean-field theory
B=1, A=3 gives h~7°/2. In d =4 depending on the
value of A and B, a different expression is found. This and
the special case d =3 are left as a discussion in the next
section.

One can also estimate what is the lower critical dimen-
sion d;,. In fact, we expect that the scaling Eq. (22) for
T,=0 should be of the form a=f(Nh?). This gives
d +[q]=Alq], i.e., [q](A—1)=d. The exponent A should
diverge as d approaches d; because q is discontinuous at
T,=0 when a magnetic field is applied. So [¢]=0, i.e.,
d;—2+n=0 which is the usual relation determining the
lower critical dimension? (in principle this relation
should at least be satisfied for Hamiltonians with a con-
tinuous distribution of couplings). Furthermore, in case
d =d, one expects E~h /Y. Because £~h "% for
d =d, =4 this means that d; =3 at zero order of approxi-
mation or mean-field level. We call it mean-field level or
zero order because in this case we suppose the exponent
for the correlation length £ does not vary between d, =4
and d =3. The fact that 4 and 3 are very close assures
that this is a good approximation which is probably ex-
act.

We should now recall that all these predictions have to
be appropriately modified for droplet models. For these
models there is no transition in a magnetic field. The
condition d; —2+7=0 also applies and the exponent 6 is
well approximated by the result 86=(d —3)/2. This is in
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agreement with the numerical results of the following
section. Recent numerical simulations for the case d =2
show that the zero-temperature exponent 6 ~ —0.46 (Ref.
26) is surprisingly close to the chaos prediction —0.5.
This suggests that in the framework of droplet models
also d; =3 and the previous expression for 6 are probably
exact.

IV. NUMERICAL RESULTS

In this section we present Monte Carlo numerical
simulations in order to test these ideas. We should note
that the chaos parameters a and r defined in this work
and all the scaling laws based on them are computable us-
ing standard numerical simulations. The standard tech-
nique is to consider two parallel Monte Carlo simula-
tions, one for the system H, and the other one for the
perturbed system H,=P[H,]. The first copy is at zero
magnetic field while the second one has a magnetic field
h. Both copies evolve in time and, once they have
thermalized, one computes the corresponding order pa-
rameters. Since one is interested in scalings within the
spin-glass phase, the main difficulty is that samples have
to be equilibrated in the low-temperature phase where
metastability is very strong. All the results in this section
are for small lattices and we have paid attention that they
are fully equilibrated. The general schedule of the simu-
lation is as follows. An initial cooling is performed until
the first copy at zero magnetic field thermalizes at the
working temperature and the second copy thermalizes
with an applied magnetic field equal to a maximum value
h .x- Then, the first copy evolves without any perturba-
tion and the field of the second copy is progressively de-
creased step by step down to zero. In general, for each
different value of the magnetic field of the second copy, a
long enough thermalization is done after which statistics
is collected. Then, the order parameters a and r of Egs.
(4) and (2) can be computed.

The Hamiltonian under study is given by Eq. (6). In all
simulations we have used the heat-bath algorithm and
spins are updated sequentially. In case of short-range
models we impose periodic boundary conditions. The
distribution of the coupling J is discrete (the J;; can take
the values =1 with equal probability). If there is a finite-
temperature phase transition we expect universality to
apply (anyway see Ref. 27) and the results for discrete
couplings should be equivalent to the case in which the
distribution is continuous. Our main goal is now to test
scaling laws of the type Eq. (22). Scaling fits work well if
we use the parameter r or the parameter a (in all cases
they differ very slightly, approximately by 5%). Then, we
will present results only for the parameter a.

We now show the results in case of mean-field theory.
The results for different magnetic fields ranging from 0.2
up to 1.0 at T =0.6 are shown in Fig. 3 for several sizes.
We show the parameter a versus AN>/® (we have chosen
this argument instead of Nh®? in order to compare
directly these mean-field results with those corresponding
to short-range models). There is an agreement with the
prediction of Eq. (18). At the critical point 7"=1 the ap-
propriate scaling argument is N4* and in order to com-
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FIG. 3. Chaos with magnetic field in the SK model at
T =0.6. Field values range from h =0.2 up to & =1.0 for the
smaller sizes and up to 2 =0.4 for the largest ones. The number
of samples range from 200 for N =32 down to 40 for N =1632.
Typical error bars are of order 5% in all cases.

pare with the scaling law Eq. (18) of Fig. 3 we show re-
sults for T.=1 in Fig. 4. If in Fig. 3 we plot the chaos
parameter a in function of Nh%3 (instead of hN3/%) we
discover that the scaling functions of Figs. 3 and 4 are
clearly different suggesting that the criticality of chaos in
the critical point and in the low-temperature phase are in
a different universality class.

Next we present results for the case d =4. Figure 5
shows the parameter a as a function of Lh?/3. This is the
mean-field scaling which is in full agreement with data.
Simulations were performed at T=1.5 [T,=~2.04 (Ref.
28)] which is =~0.7T,. Metastability effects are very
strong and thermalization is more difficult (in the sense
that one needs more thermalization steps) than in the SK
model case. Error bars are not shown because they are
very small (of order of the size of the symbols). The
agreement with the theoretical prediction is good.

Then we can derive results for the AT line. Using Eq.
(22) we get A=4.2 which gives g, ~#%*. In the criti-
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FIG. 4. Chaos with magnetic field in the SK model at
T =T.=1. Field values range from 2 =0.1 up to A ~0.8. The

number of samples range from 200 for N =32 down to 50 for
N =1736.
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FIG. 5. Chaos with magnetic field in the 4d+J Ising spin
glass at T=1.5. Magnetic field values range from & =0.1 up to
h =1. The number of samples is approximately 100 for all lat-
tice sizes. Typical error bars in this case are of the size of the
symbols.

cal point taking 7~ —0.25 and using the hyperscaling re-
lation 8=(d +2—n)/(d —2+7), where g ~h*’® one gets
the result § ~3.6. In the critical point, g scales with the
magnetic field with a larger exponent ¢ ~4%3% and one
has the impression that this is a general feature at any di-
mension (in the mean-field case g scales linearly with the
field in the critical point while the minimum overlap
scales like 7273 in the spin-glass phase.) Because the criti-
cal exponent S~0.6 and n=—0.25%0.1 the correspond-
ing AT line should scale like & ~7"-3*%! which is close to
the mean-field theory result (even though there is no
reason that it should coincide). Unfortunately we have
no means to test if this prediction is correct, mainly be-
cause the question of the existence of the AT line is still
unsolved.? 3! In the framework of droplet theory we
can derive the correct value of the zero-temperature ex-
ponent 6. It gives 8=0.5 (in the critical point the finite-
temperature exponent 6 is 8, ~0.43). Figure 5 also gives
valuable information in the case there is no AT line. The
chaos correlation length should correspond to the corre-
lation length of the spin-glass in the paramagnetic phase
is given in Eq. (5). In the case of d =4 we obtain
E=5h ~%/% if we estimate £ as the distance over which the
chaos parameter a decreases by an order of magnitude.
In order to search numerically for the existence or not of
phase transition in magnetic field at T=1.5 one should
study lattice sizes L > £ where £ is given by the previous
expression.

We analyze now the data of d =3. Simulations were
performed for the *J nearest-neighbor Ising spin glass.
Recent numerical simulations suggest that there is only a
singularity at 7 =0.3? But, due to the so large correla-
tion length, we expect that the system will have some
kind of pseudocritical behavior for small lattices. In fact,
standard numerical simulations for small sizes show that
T,~1.2 with n~—0.1, B~0.5.3%3% This means that,
even if there is no true phase transition in the thermo-
dynamic limit, simulations for small lattices should be
sensitive to the pseudocritical behavior and finite-size



6852
1 F LI S
4
2N
L E
© e 3 <>§’><
. 4 x
o5 3
x 6 Ef
+ 7
01 L | .
0.1 1 10 100
hL3/2

FIG. 6. Chaos with magnetic field in the 3d+J Ising spin
glass at T=1.5. Magnetic field values range from & =0.1 up to
h =1. The number of samples is approximately 200 for all lat-
tice sizes except for L =7 in which there are 100 samples. Typi-
cal error bars are shown in case L =6.

scaling for the chaos parameter a should give information
regarding this pseudocritical point. What comes out is
very interesting and has been plotted in Fig. 6. The
mean-field result £~h ~2/3 fits very well the data. This is
in agreement with the fact that d,=3 which is the value
for the lower critical dimension if mean-field theory is ex-
act. If d;=3 then any finite T belongs to the paramagnet-
ic phase which is characterized by the true finite correla-
tion length £ (in order to distinguish it from the chaos
correlation length £). The chaos correlation length &
would behave like £ ~2/3 in the regime £ <<&;. In the re-
gime £ ~§& the value of the chaos correlation length &
should progressively match the value of £; and remain-
ing finite. We can derive in this regime of sizes the loca-
tion of the pseudocritical AT line. From Eq. (22) we
derive g,;, ~h %2 which gives h ~ " for the critical ex-
ponent B~0.5. This result is not far from experimental
determinations of the AT line in bulk CuMn spin
glasses®® (where a scaling of the form h ~7'-® with an ex-
ponent slightly larger than the mean-field result 2 is com-

patible with experiments.)

V. CONCLUSION

It seems that the study of static chaos in spin glasses
can give interesting predictions of the nature of the spin-
glass phase. The information obtainable from the subject
is great because of the different ways one can perturb the
system. In this work we have focused in a magnetic-field
perturbation. In this case it is possible to establish a
physical picture in which states are suppressed by the ac-
tion of the magnetic field. By “suppression of the states”
we mean that these states increase their free energy and
do not contribute any more to the partition function.
Similar to what happens at the critical point where there
appears a finite correlation length after applying a mag-
netic field, these suppressed states acquire a finite correla-
tion length (the chaos correlation length). To prove this
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result we should know what is the real mechanism of the
modification of the free energies of the different equilibri-
um states. This means to understand how states are
suppressed by the magnetic field depending on their sta-
tistical weights. This is an interesting analytical problem
in mean-field theory which is possibly not out of reach.
Using these ideas we have been able to derive a scaling
behavior for the chaos parameters a and r which depends
on the critical exponents at T,. We argue that some criti-
cal exponents survive in the spin-glass phase which
means that the low-temperature phase is governed by the
finite-temperature fixed point. Curiously this is the oppo-
site assertion of droplet models in which the spin-glass
behavior is governed by the zero-temperature fixed point.
The complete understanding of the correct description of
the low-temperature phase in spin-glasses is one of the
major still open problems. The mean-field approach

yields the value % for the chaos correlation length ex-

ponent. We expect this exponent to be exact down to
d =4 which is the upper critical dimension if hyperscal-
ing applies for the singular part of the free energy of the
suppressed states. Our numerical results are in very good
agreement with this prediction. Surprisingly this
“mean-field” behavior seems exact down to d =3 which
should correspond to the lower critical dimension. In the
framework of droplet picture our numerical results sug-
gest that the relation 6=(d —3)/2 is probably exact.
Both approaches predict that 3 is the lower critical di-
mension even though we expect some kind of pseudocriti-
cal behavior in the regime in which lattice sizes are small-
er than the true correlation length. This pseudocritical
behavior is expected also with finite magnetic field giving
a pseudocritical AT line. Our results predict a transition
line in agreement with some experimental results. For
d >d;=3 the physics is determined by the existence or
not of a spin-glass phase with magnetic field. A definite
answer on the existence or not of the AT line in finite di-
mensions is a prioritary task in order to clarify the con-
troversy on the real nature of the spin-glass phase (see
Ref. 36 for some recent numerical results.)

Now we discuss the case of temperature changes. In
this case, as shown in Fig. 1, chaos is much weaker. This
is an interesting result which finds also a natural explana-
tion in the context of mean-field theory. This result has
already been shown in Ref. 14 doing the same kind of
analysis as has been performed in Sec. III A. Namely,
when the initial system at temperature T and the per-
turbed one at temperature T’ both lie within the spin-
glass phase then A(g) in Eq. (15) is always equal to one
which corresponds to an infinite correlation length. This
means that if chaos exists then it is marginal and the
chaos parameter r for any finite perturbation AT goes to
zero like N % with an exponent a < 1. Obviously this re-
sult does not exclude the possibility that chaos is absent
and a=0. Why chaos is much weaker in case of tempera-
ture changes than for magnetic-field perturbations can be
intuitively understood if one imagines that by lowering
the temperature new equilibrium configurations emerge
from previous ones and that the system suffers a continu-
ous bifurcations into new states. In this case, a degree of
coherence has to be preserved between the new and the
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old states and this is in agreement with mean-field calcu-
lations on the chaos problem.

It would also be very interesting to understand the
chaotic nature of the low-temperature phase in other
spin-glass models, random-field problems, and the
vortex-glass phase in superconductors. The chaos ap-
proach could reveal as a good starting point to obtain
(like happens in Ising spin glasses) the lower critical di-
mension for several models in which there is still much
controversy.

From the study of chaoticity in spin glasses we also ex-
pect to give some hint regarding some real dynamical ex-
periments in spin glasses.>”*® Cycling temperature ex-
periments show that by lowering the temperature some
degree of correlation is preserved between the probed
states.>>* Even though experimental spin glasses never
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reach equilibrium we think that a correct answer to the
statics is relevant to a qualitative understanding of the
effect of perturbations in the out-off equilibrium relaxa-
tions.*""*? There are also of course*> some cycling mag-
netic field experiments which we hope will be in agree-
ment with the main conclusions of this work.
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