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We study the relaxational dynamics of the one-spin facilitated Ising model introduced by Fredrickson and
Andersen. We show the existence of a critical time which separates an initial regime in which the relaxation is
exponentially fast and aging is absent from a regime in which relaxation becomes slow and aging effects are
present. The presence of this fast exponential process and its associated critical time is in agreement with some
recent experimental results on fragile glasses.@S0163-1829~96!04426-8#

I. INTRODUCTION

The subject of glassy dynamics has received a lot of at-
tention in the last years.1 During a fast enough cooling pro-
cess real glasses do reach a metastable glassy phase of free
energy higher than that of the crystal phase. Apparently the
glass transition behaves as a purely kinetic phenomenon and
the glass does not equilibrate when probed in a time scale
smaller than the relaxation time.

Laboratory experiments can measure one time extensive
quantities like enthalpy and its associated specific heat and
also the two-times correlation function by measuring the
scattering processes. These spectra give direct information
about the relaxational processes which take place in glasses.
One of the most studied relaxational processes in glasses is
the so-called structural ora relaxation which yields the
structural relaxation time. While thea relaxation is a slow
process there are other faster processes which have been ob-
served experimentally. Close to the glass transition two fast
processes have been observed:~1! the b-relaxation process
predicted by the mode coupling theory,2 and observed in
dielectric response measurements and~2! a faster process of
the order of picoseconds observed in neutron-scattering
experiments.3 In this last case, evidence has been reported on
the existence of a critical time from the crossover from De-
bye ~exponential in time and diffusive in space! to non-
Debye relaxation.4 This critical time follows a temperature-
dependent Arrhenius behavior. The purpose of this work is
to show that the existence of this critical time is an essential
ingredient of some kinetic models with short-range con-
strained dynamics.

Several types of models have been proposed to under-
stand the dynamical behavior of real glasses. All of them
have in common the presence of a certain type of frustration.
These models can be classified in two large classes. In the
first class of models, there is frustration in the energy func-
tion. During its dynamical evolution these systems move in
phase space avoiding configurations of higher free energy.
The dynamics can be very slow due to the existence of en-
ergy barriers~strong metastability5! or due to entropy barri-
ers~strong marginality6!. Spin glasses7 belong to these large
class of systems where, in the most general case, disorder is

not essential and can be self-generated by the dynamics.8

While the first class of models~at least, in the mean-field
approximation! seem to capture the experimentally observed
features related to the~slow! a-relaxation process and the
~fast! b-relaxation process12 it is still unclear how much they
can account for this observed new type of fast Debye relax-
ational process.4

In the second type of models the frustration is directly
introduced in the dynamics. In this case the free-energy land-
scape can be very simple but only certain transitions between
configurations in phase space are allowed. These models are
known under the name of constrained kinetic models,9 a nice
example being then-spin facilitated Ising model (nSFM!
introduced by Fredrickson and Andersen.10

There are few studies~theoretical as well as numerical! of
this simple model but we think it contains some of the fun-
damental processes observed in real glasses. We will study
the dynamical properties of one of the simplest models be-
longing to the aforementioned second class. In particular we
will concentrate in the 1SFM~to be defined below! at finite
dimensions. We have observed that there exists a character-
istic time tc , independent of the dimensionality of the sys-
tem, below which relaxation is exponential and aging is ab-
sent and above which the relaxation becomes nonexponential
and aging appears. This critical time follows an Arrhenius
law with the temperature and suggests a connection with
some fast processes recently observed by the
experimentalists.4

The paper is organized as follows. In the next section, we
define the 1SFM and the main observables we are interested
in. Section III contains some exact relations for one-time
staggered quantities at any dimension. This reveals the exist-
ence of two fast processes. Section IV presents numerical
simulations in the equilibrium regime and also in the off-
equilibrium regime which evidence the existence of these
fast processes in the two-times correlation and integrated re-
sponse function. After the conclusions we present in the Ap-
pendix the exact zero-temperature solution of the 1SFM in
one dimension.

II. THE 1SFM MODEL: DEFINITION AND OBSERVABLES

Let us take a set of field variablesf(x) in a lattice of
dimensionD and a HamiltonianH$f(x)%. Let us consider
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an observableO(t) which depends on timet through the
configuration of the systemO@$f t(x)%#. Now we define a
discrete time dynamics for this system. In what follows we
will consider a discrete Monte Carlo~MC! dynamics with
random updating. A point of the lattice is randomly selected
and a change of the variablef(x) is proposed. The rate
variation ofO in N elementary moves@one Monte Carlo step
~MCS!# is given by

]O~ t !

]t
5P@f t~x,t !#W@f t~x,t !→f t8~x,t !#DO~ t !, ~1!

whereDO(t)5O„f t8(x)…2O„f t(x)… is the change in an el-

ementary move of the set of fieldsf t(x), (•••) stands for
the average over all the possible transitions andP„f t(x)… is
the probability of the configurationf(x) at time t.

We consider transition probabilitiesW of the form,

W@f t~x!→f t8~x!#}Min†exp$2b@H„f t8~x!…

2H„f t~x!…] %,1‡a~f t ,f t8!,
~2!

where the terma(f t ,f t8) is temperature independent and
cannot, in general, be absorbed in the energy function@note
that the terma(f t ,f t8) can be zero for certain transitions
while this can never be the case at finite temperature for the
MC dynamics#. In the simplest case wherea51 we recover
the usual Metropolis algorithm for the Monte Carlo dynam-
ics. Our purpose is to study a simple model where frustration
only appears in the dynamics via the terma(f t ,f t8) due to
the fact that some transitions between configurations are for-
bidden.

A simple model of this type is given by then-spin facili-
tated Ising model (nSFM! in D dimensions.10 To each node
of the lattice we attach a spin variables i which can take the
values 0,1. The energy of the system is defined by the num-
ber of spins with value equal to one~with a minus sign!,
E52( is i . By defining the new set of variables
s52s21 we recognize in the previous expression the en-
ergy of an Ising paramagnet in a magnetic fieldh5 1

2. Fre-
drickson and Andersen proposed a constrained dynamics for
the nSFM in the following way: a randomly chosen spin in
the lattice is selected and a flip of that spin is proposed
(s i→s i8512s i). This change is accepted if at leastn of its
nearest neighbors are 0 and according to the probability Min
(e2bDE,1). The interest of this model is based on the fact
that the nontrivial~and glassy! dynamics is all contained in
the terma„s(t),s8(t)… ~note that the Hamiltonian of this
model has no interaction!. Consequently, the dynamics of the
nSFM is highly complex at infinite temperature,11 while in
spin glasses and other glassy models@wherea(f t ,f t8)51#
the dynamics in this limit is trivial. ThenSFM model has
been mainly studied in the casen51,2.10,13 In this work we
are mainly interested in the casen51 where some analytic
results can be obtained.

There are several physical interpretations of the
nSFM.13 The simplest one relates spin variables to the local
compressibility of a fluid region. In this case regions with
very high compressibility can facilitate the mobility of the

neighboring ones while regions of low compressibility lead
to a jamming of the dynamics.

We define the set of variablest i512s i . In terms of this
set the transition probabilityW, Eq. ~2!, for the 1SFM model
reads10

W~sx→sx8!}
1

2D
exp~2bsx! (

m51

D

~tx1em
1tx2em

!, ~3!

i.e., the transition probability at pointx depends linearly on
the magnetization of the nearest neighbors. The set
$em ;m51, . . . ,D% is a base for theD-dimensional lattice.
This transition probability satisfies detailed balance and is
expected to generate an irreducible Markov process~in the
thermodynamic limit! in casen51 for any dimension at
nonzero temperature~see Ref. 13 for a discussion on this
point!.

While the thermodynamics of this model is trivial, its dy-
namics is much complicated and only partial results can be
obtained in some cases, especially in one dimension. In this
last case, the full dynamics can be exactly solved at zero
temperature. Because we are not aware of this result in the
literature we present it in the Appendix. Unfortunately we
have not been able to close the dynamical equations at finite
temperature.

The general dynamical equation for an observableO(t) in
the 1SFM model is given by

]O~ t !

]t
5

1

2D
DO~x!@2e2b1~11e2b!tx#

3S (
m51

D

~tx1em
1tx2em

!D , ~4!

where DO(x)5O(sx51)2O(sx50) stands for an el-
ementary variation of the observableO at time t for the
change ofsx from 0 to 1. Furthermore, the right-hand side
has to be averaged over all pointsx of the lattice.

We are interested in the energy-energy correlation func-
tion CE(t,t8) (t8,t) defined as

CE~ t,t8!5
~1/N!( i51

N t i~ t !t i~ t8!2mt~ t8!mt~ t !

mt~ t8!@12mt~ t8!#
, ~5!

wheremt(t)5(1/N)( i51
N t i(t) is the global magnetization

associated with the set of variables$t i ; i51, . . . ,N%.14CE is
normalized in such a way thatCE(t,t)51.

We define the staggered one-point and two-point func-
tions

C0~ t !5
1

N(
i51

N

~21!~(m51
D im!t i , ~6!

C1~ t !5
1

ND(
n51

D

(
i51

N

~21!~(m51
D im!t it i1en

, ~7!

where (im ;m51, . . . ,D) are the coordinates of the pointi in
theD-dimensional lattice. The main interest of defining these
quantities is that they can be exactly closed in any dimension
~see next section!.
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Another quantity of interest is the energy response func-
tion GE(t,t8) defined by

GE~ t8,t !5
dm~ t !

db~ t8!
, t8,t. ~8!

This function measures the change of energy of the system at
time t if a small temperature change is done att8,t. Even-
tually we will be also interested in the integrated response
functionK(t8,t), defined as

K~ t8,t !5E
t8

t

GE~ t9,t !dt9. ~9!

In order to study the response of the system to a change of
temperature it will be convenient to stay in the linear-
response regime. In this regime the change in energy is linear
with the variation ofb. If the largest relaxation time@asso-
ciated with the correlation functionCE(t8,t)# is strongly de-
pendent with the temperature and if the perturbation ofb is
not too small then we can expect strong deviations from the
linear-response regime. We will return to this point later.

We should note that staggered functions can be defined
only in finite dimensions and have no meaning in a mean-
field version of the model. Our main interest is to show that
some general results on the dynamics of the 1SFM model
can be inferred from the staggered one- and two-point func-
tions even though a complete solution of its dynamics at
finite temperature is still lacking.

III. FAST PROCESSES IN FINITE DIMENSIONS

In the finite-dimensional case some general results can be
derived for the staggered magnetizations Eq.~7!. In the spe-
cific case of the 1SFM the time evolution equations for
C0(t), C1(t) exactly close without the need of introducing
hierarchies. Using Eq.~4! it is easy to check that the time
evolution equation forC0(t) reads

]C0~ t !

]t
52e2bC0~ t !. ~10!

For C1(t) the following result is obtained:

]C1~ t !

]t
52~11e2b!C1~ t !. ~11!

This simple result is a consequence of the particular dynam-
ics for the 1SFM as defined in Eq.~4!. In the case of the
2SFM,13 it is not clear if such a type of relation exists. Un-
fortunately we have not been able to generalize this closure
of equations in case of higher-order correlation functions. It
is important to note that staggered correlation functions are
zero for homogeneous conditions~uniform or random for
instance!. Hence they cannot relax in time if initially they are
at their equilibrium values. But it is reasonable to expect the
response of the quantitiesC0 andC1 to a staggered magnetic
field to be also of exponential type.

From previous equations~10! and ~11! we observe the
existence of at least two characteristic time scales. One of
these time scales ist051/(11e2b), the other one is
tc5eb. The time scalet0 does not diverge at zero tempera-
ture and is nearly independent of the temperature (t05

1
2 at

infinite temperature andt051 at zero temperature!. This
time scale corresponds to the relaxation time for the Ising
paramagnet in absence of interaction. Hence, the time scale
t0 corresponds to the relaxation of a single spin in the pres-
ence of a heat bath and is independent of the nature of the
constrained dynamics.

The time scaletc is more interesting. It diverges at zero
temperature and has an Arrhenius behavior. Moreover, this
time scale corresponds to the smallest relaxation time of one
spin interacting with its nearest neighbors and is independent
of the dimension of the lattice. Note that this diverging time
scale is a direct consequence of the constrained dynamics in
the system. Then, we conclude thattc is the first relevant
time scale as a consequence of the cooperative phenomena
which takes place in the 1SFM. We will see later that this
time scale is associated with a new fast relaxation process.

In addition to these two time scales there is at least an-
other oneteq associated with the large time decay of the
equilibrium two-times correlation function Eq.~5!. This is
the largest time scale and would correspond the
a-relaxational process observed in glasses.15 Diagrammatic
approximations done by Fredrickson and Andersen10 for the
two-times correlation function Eq.~5! show that this time
scale coincides withtc . Our numerical investigation~in
agreement with previous work16! suggests thatteq is much
larger thantc and increases withb fastereb. But more de-
tailed investigations are necessary in order to obtain a better
understanding of this point.

It is natural to think that the exponential relaxation pro-
cesses described by Eqs.~10! and~11! could be present also
in the relaxation of nonstaggered two-times quantities like
the energy-energy correlation function Eq.~5! and the inte-
grated response function Eq.~9!. Even though we do not
have a rigorous proof of this assertion we have performed
Monte Carlo numerical simulations for large lattices which
clearly show that this is indeed the case. In what follows, we
will focus our research in the physical consequences of the
fast relaxation process described bytc . We will see the ex-
istence of a fast process of exponential character which
manifests in equilibrium and off-equilibrium measurements.
Unless otherwise stated, all results will refer to the 1SFM
case.

IV. NUMERICAL RESULTS

A. Numerical algorithm

We have performed Monte Carlo numerical simulations
of the dynamical equations~3! in one and two dimensions.
Starting from an initial configuration, the spins in the lattice
are randomly selected and flipped according to the probabil-
ity Eq. ~3!. Simulations were done for relatively large lattice
sizesN5LD with L532 000 in one dimension andL5200
in two dimensions with periodic boundary conditions. In the
range of times we are interested in~short-time processes!
finite-size corrections are certainly negligible and we have
checked that this is really the case. In order to test our pre-
vious exact results, Eqs.~10! and~11!, we show in Fig. 1 the
exponential decay ofC0(t) at different temperatures as a
function of the rescaled timet85te2b in one dimension
starting from the periodic condition 11101110 . . . .
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B. Equilibrium results

In order to investigate the equilibrium properties, we
should start from an initial fully thermalized configuration.
There are several arguments which show that a dynamical
transition is absent in the 1SFM in finite dimensions.13 In
this case, an equilibrium configuration can be easily built
because the model has no interaction in the energy function,
i.e., the correlation length is zero in equilibrium. We start
from a random initial configuration with energy equal to the
equilibrium energy, the system is let to evolve and we com-
pute the correlation functionCE(t,t8). At equilibrium, the
CE(t,t8) is time-translational invariant and depends only on
the difference of timesCE(t,t8)5CE

eq(t2t8). We have care-
fully checked this point. We have repeated these measure-
ments at different temperatures. We have observed that cor-
relation functions display two regimes separated by the
critical time tc5eb. In the first initial regime~for times
smaller than the critical timetc5eb) correlation functions
decay exponentially fast. Empirically we find that the relax-
ation time associated with this exponential process is~with
very high precision! 2tc ,

CE
eq~ t !.exp„2t/~2tc!…5„C0~ t !…

1/2; t!tc . ~12!

In the second regime, for times larger thantc , the relaxation
turns out to be much slower with stretched-exponential be-
havior at high temperatures which comes close to a power-
law behavior at low temperatures. We think that no conclu-
sive relaxation behavior can be guessed numerically in this
second regime. A crude estimate of the relaxation timeteq for
the second regime can be obtained~integrating the equilib-
rium correlation function respect to the time! and we obtain
values larger thantc . This is an interesting point which de-
serves a more detailed investigation and should yield the
relaxation timeteq for the slowest relaxational process.

17 Fig-
ure 2 showsCE

eq(t) in one dimension at three different tem-
peraturesT50.15,0.2,0.40. The values of the critical time
associated with these temperatures aretc.780,150,12, re-
spectively. These critical times are indicated with an arrow in
the figure. The initial exponential decay Eq.~12! is also de-
picted in the figure as a continuous line.

Similar results have been obtained in two dimensions
where we expect the this fast process to be independent on

the dimension. This is shown in Fig. 3 where we plot the
CE
eq(t) for two temperaturesT50.15,0.25 in one and two

dimensions and the expected relaxation Eq.~12!. The values
of the critical time associated with these temperatures are
tc.780,55, respectively. These times are indicated with an
arrow in the figure. From this figure it can be clearly appre-
ciated that the regimet,tc ~the region of small times limited
by the arrow! is independent of the dimension of the system
as argued previously. The empirical relaxation Eq.~7! which
fits pretty well the fast decay process is also depicted by a
continuous line. In the second regimet.tc relaxation be-
comes dependent on the dimension and slower in one dimen-
sion than in two dimensions as expected~dynamical con-
straints in the 1SFM tend to forbid less paths in phase space
as the dimensionality of the lattice increases!.

We have also analyzed the integrated response function at
equilibrium K(t8,t)5Keq(t2t8). In order to measure it we
have prepared the system at equilibrium at a temperature
b. After some time we change the temperature of the system
by the quantityDb and we let the system evolve at the new
constant temperatureb1Db. If the change of temperature
was applied at zero time then we have

Keq~ t !5
mb1Db~ t !2mb

eq

Db
. ~13!

FIG. 1. Exponential relaxation ofC0(t) in one dimension for
several temperaturesT50.1,0.2,0.3,0.4,0.5.

FIG. 2. CE
eq(t) in one dimension at temperatures

T50.15,0.25,0.4. The continuous lines are the exponential relax-
ations, Eq.~ 12!.

FIG. 3. CE
eq(t) at temperaturesT50.15 @D52 ~squares!, D51

~crosses!# T50.25 @D52 ~times!, D51 ~circles!# in one and two
dimensions. The continuous lines are the exponential relaxations,
Eq. ~12!.
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In order to be in the linear-response regime it is necessary to
make the changeDb small enough. But it is important to
note thatDb cannot be arbitrarily small, otherwise the re-
sponse of the system to the temperature change is very small
and theKeq(t) measurements become much too noisy.

In Fig. 4 we plot theKeq(t) normalized to its infinite time
equilibrium valueKeq(`). This quantity converges to 1 in
the infinite time limit. Numerical experiments are shown in
one dimension at two different temperaturesT50.4 and
T50.25 ~data have been averaged over 20 different runs!,
for two different signs of the perturbationDb. The results of
the figure display some deviations from the linear-response
regime especially at large times and low temperatures. As
commented previously, the equilibrium relaxation timeteq is
strongly dependent on the temperature and increases with
b faster than doestc . Then we expect the response of the
system to a perturbation of the temperature to display depar-
tures from linearity in the part of the relaxation process con-
trolled by the time scaleteq. In the part of the relaxation
process dominated bytc this effect should be smaller. Sup-
port in favor of this argument is shown in Fig. 4 where the
arrow indicates the value of the critical time for the two
temperatures. The dependence on the sign of the perturbation
seems to be stronger for the slowest part of the relaxation
~i.e., for timest.tc) than in the fast part of the relaxation
~i.e., for timest,tc). In order to get more clear cut results it
would be necessary to go to lower temperatures. Unfortu-
nately theKeq(t) becomes much too noisy even though we
have been able to confirm this trend.

C. Off-equilibrium results

In this section we want to investigate the role of the criti-
cal time tc for nonequilibrium relaxation processes. We are
going to show thattc sets a minimum time scale above which
nonequilibrium relaxations display aging effects. In the fol-
lowing we will use the notation in whicht8→tw ,t→tw1t
(tw stands for waiting time!. We have done numerical simu-
lations of the 1SFM in one and two dimensions measuring
CE(tw ,tw1t).

Results for theCE(tw ,tw1t) are shown in Fig. 5 in the
one-dimensional case. We start from a random initial
condition19 with initial energyE(t50)520.5 quite far from

its equilibrium value @Eeq(b)521/(11e2b)#. We com-
puted theCE(tw ,tw1t) for different values of the waiting
time tw510,102,103,104,105 at T50.1 ~at this temperature
tc.22 000) in one and two dimensions~we show only the
results in one dimension, in two dimensions they are quali-
tatively similar!. In order to clearly appreciate the qualitative
trend of the data we only show the values oft within the
range 1032105 MCS. Figure 5 shows two regimes. In the
first regime (tw510,102,103,tc) aging effects are absent,
i.e., the relaxation curveCE(tw ,tw1t) only depends ont. In
the regimetw5105.tc aging effects appear@i.e., the full
relaxation curveCE(tw ,tw1t) also depends ontw#. The con-
tinuous line is the equilibrium exponential behavior Eq.~12!.

As emerges from Fig. 5, the aging effects in the correla-
tion function are very small even fortw.tc at least in the
region of times where the value of the correlation function is
not too small. In fact, a scaling of the type
CE(tw ,tw1t)5 f (t/tw) will not work at all. This is surpris-
ing since one would expect in the off-equilibrium slow re-
gime a dynamical behavior plagued of strong aging effects in
the correlation function. Possibly, this is a consequence of
the particular correlation function used. In what follows we
will see that the response function displays clear aging ef-
fects.

We have measured the off-equilibrium integrated re-
sponse function starting from a random initial configuration.
The system is let to evolve for a timetw at constant~inverse
temperature! b. At time tw we make a copy of the system
and we make it evolve at the constant new temperature
b1Db. After tw we measure the difference between the
magnetizations of the two copies evolving with the same
thermal noise but different temperatures. In this way we
compute

K~ tw ,tw1t !5
mb1Db~ t1tw!2mb~ t1tw!

Db
. ~14!

In Fig. 6 we show the normalized integrated response func-
tion K(tw ,tw1t)/Keq(`) at T50.1 (tc.22 000) for differ-
ent values oftw510,102,103,104,105 in the one-dimensional
case. We can clearly appreciate the existence of the critical
time tc which separates a regime where there is

FIG. 4. NormalizedKeq(t) in one dimension at temperatures
T50.4 with Db50.2 ~squares!, 20.2 ~crosses!, andT50.25 with
Db50.4 ~rhombs!, 20.4 ~dots!.

FIG. 5. CE(tw ,tw1t) for different waiting times
tw510,102,103,104,105 in one dimension at T50.1. For
tw510,102,103 the relaxation curves superimpose and aging is ab-
sent.
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no tw dependence from a regime where the systemages. As
tw increases the response of the system becomes smaller
which is a typical feature of aging.20 Note that the equilib-
rium value ofKeq(t) in the window of time shown in the Fig.
6 is practically zero~and converges to 1 for large times!
while in the off-equilibrium regime the response reaches a
~negative! approximate value of2103. Hence the response
of the system is three orders of magnitude larger and nega-
tive in the off-equilibrium regime than in the equilibrium
case.

V. CONCLUSIONS

This work has been devoted to the study of one of the
simplest constrained kinetic Ising models, i.e., the so-called
nSFM introduced by Friedrickson and Andersen in the spe-
cial case ofn51. This is an interesting model with an ex-
tremely simple energy function where the frustration is con-
tained in the dynamical rules which forbid certain transitions
between configurations in phase space.

Our main interest has been the research of fast processes
in the 1SFM. In this model the rate of variation of the energy
in one point of the lattice is linearly coupled to the energy of
the nearest neighbors. This is the simplest case one can con-
sider, while the 2SFM corresponds to a quadratic coupling
between the nearest-neighbor sites in the lattice.10 In case of
the 1SFM some exact closed dynamical equations can be
obtained for the one- and two-point staggered functionsC0
andC1 in any dimensions. This reveals that both staggered
functionsC0 andC1 decay exponentially fast~with charac-
teristic timestc and t0) independently of the dimensionality
of the lattice.t0 is the relaxation of a single spin uncoupled
to its nearest neighbors embedded in a thermal bath~hence,
independent of the dimension! and tc is an Arrhenius
temperature-dependent relaxation time resulting from the dy-
namical constraints. Then we expect the existence of these
fast processes in other nonstaggered quantities like the
energy-energy correlation function and also the integrated
response function. While we have not found a precise dem-
onstration of this result we have given strong numerical sup-
port to this hypothesis by measuring the equilibrium and
nonequilibrium behavior of the correlation function Eq.~5!
and integrated response function Eq.~9! in one- and two-

dimensional lattices. In the equilibrium case the correlation
function Eq.~5! decays exponentially fast with an~empiri-
cally found! relaxation time 2tc in the regime of times
t,tc while relaxation becomes slower in the regimet.tc .
Furthermore, the integrated response function displays strong
nonlinear effects in the regimet.tc specially at low tem-
peratures. Concerning the off-equilibrium behavior we find
that aging effects are absent for values of the waiting time
less than the critical time. This is nicely observed in the
behavior of the integrated response function~Fig. 6!.

Now we should discuss to what extent our results are
general and not confined to the particular 1SFM case. Equa-
tions~10! and~11! are exact results in the 1SFM case and we
expect they are not more valid in thenSFM with n larger
than 1. We have performed some numerical simulations in
case of the 2SFM but we have not found evidence on the
existence of this critical time. This could explain why some
previous numerical works on the 2SFM~Ref. 13! were able
to fit the equilibrium relaxation functions to a stretched-
exponential behavior, while in the 1SFM this is not possible
due to the existence of two different regimes. In numerical
simulations one is able to explore only relatively small scales
of time. It is clear that an initial exponential process would
make the numerical fits of the slow regime difficult, specially
in the low-temperature phase where the critical time starts to
become large. Consequently, the nature of the slow relax-
ational processes in the one-spin facilitated Ising model is
difficult to establish using numerical simulations. This is a
necessary task to estimate the relaxation time for the slow
processesteq in this model in order to draw conclusions
about the fragility of the glass.

Also in the realm of disordered systems~for instance in
spin glasses7! we are not aware of the existence of this criti-
cal time, possibly because in that case frustration is directly
introduced in the energy function and not in the dynamics.
We are tempted to conclude that~1! the existence of a tem-
perature activated critical time and~2! the presence of expo-
nential decay processes in the relaxation of some correlation
functions in the short-time regime, are both strictly related to
the nature of this type of constrained short-range dynamics.

Summarizing, we have found evidence about the exist-
ence of two fast processes in the 1SFM model. The first
process with characteristic timet0 corresponds to the relax-
ation of single spin in the lattice. This is a trivial process not
related to any cooperative effect in the lattice. The second
process is a fast exponential process consequence of the dy-
namical constraints. Physically it would correspond to the
relaxation of some coupled degrees of freedom of the sys-
tem. The results which emerge from the study of the 1SFM
are in agreement with some recent experimental findings by
Colmenero et al. on fragile polymer glasses. By doing
neutron-scattering measurements in glasses they claim the
existence of a temperature-activated critical time~with small
energy barrier! which separates two well-defined time re-
gions. In the first region the relaxation is exponential, while
in the second regime relaxation is much slower with higher
relaxation time. This feature seems to be captured by the
present model.

It would be very interesting to analytically solve the dy-
namics at finite temperature of this model~at least in one
dimension! in order to confirm the numerical findings of this

FIG. 6. NormalizedK(tw ,tw1t) atT50.1 for several values of
tw andDb50.5. The symbols are a guide to the eyes. Note that
Keq(t) is nearly zero in this range of times.
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work. This would also shed light on the existence of other
relaxational processes~like the a andb relaxation! as pre-
dicted by the mode coupling theory.
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APPENDIX

In this appendix we present the exact solution of the
1SFM in one dimension at zero temperature. Let us take a
chain ofN spinss i and we define the new set of variables
t i512s i . In terms of this set of variables we define the
following set of correlation functions:

Dk~ t !5
1

N(
r51

N

t r~ t !t r11~ t ! . . . t r1k~ t !. ~A1!

The magnetizationmt5(1/N)( r51
N t r5D0(t) is the first

term of this hierarchy. Using Eq.~4! we can derive the time
evolution of theDk(t) at zero temperature. We get

]Dk

]t
52Dk112kDk ; k>0. ~A2!

We introduce the generating function

G~x,t !5 (
k51

`
xk

k!
Dk~ t !. ~A3!

In terms of this generating function we have the following
partial differential equation:

]G~x,t !

]t
52~11x!

]G~x,t !

]x
. ~A4!

This linear partial differential equation is readily solved
yielding

G~x,t !5G0@~11x!e2t21#, ~A5!

whereG0(x)5G(x,0) is the initial condition. We can obtain
the different set of moments

Dk5S ]kG

]xk D
x50

. ~A6!

In particular we get for the magnetization
mt5G0@exp(2t)21#. In the large time limit it converges to
G0(21) depending on the initial condition. For the particu-
lar initial conditions i50,G0(x)5ex and the magnetization
mt does not converge to its equilibrium value (mt

eq51) but
to 1/e.

We can also compute the two-times correlation function
Eq. ~5!. At zero temperature we find

CE~ t8,t !5
12m~ t !

12m~ t8!
5

mt~ t !

mt~ t8!
5

G0~e
2t21!

G0~e
2t821!

. ~A7!

In Fig. 7 we compare Eq.~A7! with the numerical results for
different values oft8.
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