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Evidence of a critical time in constrained kinetic Ising models
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We study the relaxational dynamics of the one-spin facilitated Ising model introduced by Fredrickson and
Andersen. We show the existence of a critical time which separates an initial regime in which the relaxation is
exponentially fast and aging is absent from a regime in which relaxation becomes slow and aging effects are
present. The presence of this fast exponential process and its associated critical time is in agreement with some
recent experimental results on fragile glas$86163-18206)04426-9

[. INTRODUCTION not essential and can be self-generated by the dyndmics.
While the first class of modelat least, in the mean-field

The subject of glassy dynamics has received a lot of atapproximation seem to capture the experimentally observed

cess real glasses do reach a metastable glassy phase of f(as B-relaxation proceséit is still unclear how much they

energy higher than that of the crystal phase. Apparently th&an account for this observed new type of fast Debye relax-

glass transition behaves as a purely kinetic phenomenon a[%lonal proces§.

. . . In the second type of models the frustration is directly
the glass does not equ!hbra_te when probed in a time Scalfﬁtroduced in the dynamics. In this case the free-energy land-
smaller than the relaxation time.

Laborat i " i tensi scape can be very simple but only certain transitions between
aboratory experiments can measure one Ume extensiVegnfigyrations in phase space are allowed. These models are

guantities like 'enthalpy and_its assogiated specific heat anghown under the name of constrained kinetic models)ice

also th_e two-times correlation functlon_ by measuring th_eexample being ther-spin facilitated Ising model (SFM)
scattering processes. These spectra give direct informatiqRiroduced by Fredrickson and Andersén.

about the relaxational processes which take place in glasses. There are few studiegheoretical as well as numerigadf

One of the most studied relaxational processes in glasses fiis simple model but we think it contains some of the fun-
the so-called structural ot relaxation which yields the damental processes observed in real glasses. We will study
structural relaxation time. While the relaxation is a slow the dynamical properties of one of the simplest models be-
process there are other faster processes which have been ddmging to the aforementioned second class. In particular we
served experimentally. Close to the glass transition two fastvill concentrate in the 1SFMto be defined beloat finite
processes have been observéd:the B-relaxation process dimensions. We have observed that there exists a character-
predicted by the mode coupling the(fryind observed in istic timet., independent of the dimensionality of the sys-
dielectric response measurements é)da faster process of tem, below which relaxation is exponential and aging is ab-
the order of picoseconds observed in neutron-scatterin§ent and above which the relaxation becomes nonexponential
experiments.In this last case, evidence has been reported oRNd aging appears. This critical time follows an Arrhenius
the existence of a critical time from the crossover from De-@W Wwith the temperature and suggests a connection with
bye (exponential in time and diffusive in spaceo non- SOme fast processes recently —observed by the
Debye relaxatiofd. This critical time follows a temperature- experimentalists. .
dependent Arrhenius behavior. The purpose of this work is '!'he paper is organized as_follows. In the next section, we
to show that the existence of this critical time is an essentizﬁjeflne the 1SFM and the main observables we are interested

ingredient of some kinetic models with short-range con-": Section IlI contains some exact relations for one-time
strained dynamics staggered quantities at any dimension. This reveals the exist-

Several types of models have been proposed to undefnce of two fast processes. Section IV presents numerical

stand the dynamical behavior of real glasses. All of the |ml_J!at|_ons In Fhe eq“_'"b”“”_‘ regime and _also in the off-

have in common the presence of a certain type of frustratio equilibrium regime which _ewdence the_ existence of these
ast processes in the two-times correlation and integrated re-

These models can be classified in two large classes. In t : : .
sponse function. After the conclusions we present in the Ap-

first class of models, there is frustration in the energy func . ; .
tion. During its dynamical evolution these systems move iyﬁgdé?rggﬁsiegﬁd zero-temperature solution of the 1SFM in

phase space avoiding configurations of higher free energ
The dynamics can be very slow due to the existence of €Nl THE 1SEM MODEL: DEFINITION AND OBSERVABLES
ergy barriersstrong metastabilify or due to entropy barri- '

ers(strong marginalit§). Spin glass€sbelong to these large Let us take a set of field variables(x) in a lattice of
class of systems where, in the most general case, disorderdémensionD and a HamiltoniarH{#(x)}. Let us consider
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an observabléO(t) which depends on timé through the neighboring ones while regions of low compressibility lead
configuration of the syster®[{®,(x)}]. Now we define a to a jamming of the dynamics.

discrete time dynamics for this system. In what follows we We define the set of variables=1— ;. In terms of this
will consider a discrete Monte CarldMC) dynamics with  set the transition probability, Eq. (2), for the 1SFM model
random updating. A point of the lattice is randomly selectedreads®

and a change of the variablé(x) is proposed. The rate

variation ofO in N elementary movelone Monte Carlo step ) 1 °
(MC9)] is given by W(oy—0oy)x EGXR—BUX);l (Txre, t 7xe,)s (3)
d0(t) - i.e., the transition probability at point depends linearly on
—r ~PLAOIWLA(x, )= ¢ (X D]JAO(), (1) the magnetization of the nearest neighbors. The set
{e,in=1,... D} is a base for theD-dimensional lattice.

whereAO(t) =O(¢{ (x))— O(¢(x)) is the change in an el- This transition probability satisfies detailed balance and is
ementary move of the set of fields(x), (---) stands for €Xxpected to generate an irreducible Markov prodésshe
the average over all the possible transitions Biig,(x)) is  thermodynamic limit in casen=1 for any dimension at

the probability of the configuratiog(x) at timet. nonzero temperaturésee Ref. 13 for a discussion on this
We consider transition probabilitia/ of the form, point. , _ o
While the thermodynamics of this model is trivial, its dy-
W (X)— ! ()] Min[exp — B[H (¢! (X)) namics is much complicated and only partial results can be
t t

obtained in some cases, especially in one dimension. In this
last case, the full dynamics can be exactly solved at zero
—H (o (x)1} el b, 1), temperature. Because we are not aware of this result in the
) literature we present it in the Appendix. Unfortunately we
have not been able to close the dynamical equations at finite
temperature.
The general dynamical equation for an observai(g) in
e 1SFM model is given by

where the terma(¢;,¢{) is temperature independent and
cannot, in general, be absorbed in the energy fundiamte

that the terma(¢¢,¢;) can be zero for certain transitions y,
while this can never be the case at finite temperature for the

MC dynamicg. In the simplest case where=1 we recover J0o(t) 1

the usual Metropolis algorithm for the Monte Carlo dynam- ——=5=A0(X)[—e P+(1+e P 7]

) ) : . at 2D

ics. Our purpose is to study a simple model where frustration

only appears in the dynamics via the tearQip; , ¢ ) due to b

the fact that some transitions between configurations are for- X 21 (Tx+eM+ Tx_e#) , 4
bidden. m=

A simple model of this type is given by thespin facili-  \ynere AO(X)=0(o,=1)—O(0o,=0) stands for an el-
tated Ising model SFM) in D dimensions® To each node ementary variation of the observab® at timet for the
of the lattice we attach a spin variahke which can take the change ofo, from 0 to 1. Furthermore, the right-hand side
values 0,1. The energy of the system is defined by the nunj55 to pe averaged over all pointf the lattice.

ber of spins with value equal to on@ith a minus sigi We are interested in the energy-energy correlation func-
E=—-2jo;. By defining the new set of variables g, Ce(t,t') (t'<t) defined as

s=20—1 we recognize in the previous expression the en-

ergy of an Ising paramagnet in a magnetic fible 3. Fre- (UN)EN L 7i(H) () —m(t")m(t)
drickson and Andersen proposed a constrained dynamics for  Cg(t,t’)= - y , (5
the nSFM in the following way: a randomly chosen spin in mA(t)[1=m.(t")]

the lattice is selected and a flip of that spin is proposedynere m,(t)=(1/N)IN ,7(t) is the global magnetization
(oi—0i=1-0;). This change is accepted if at leasbf its  associated with the set of variables;i=1, ... N}.1Cgis
nearest neighbors are 0 and according to the probability Milormalized in such a way th&g(t,t)=1.

(e_’BAE,l). The interest of this model is based on the fact We define the Staggered One_point and tWO_point func-
that the nontrivialland glassy dynamics is all contained in  tions

the terma(o(t),o’(t)) (note that the Hamiltonian of this

model has no interactionConsequently, the dynamics of the 1 N .

nSFM is highly complex at infinite temperatutewhile in Colt)==2, (—1)Eu=1ig, (6)
spin glasses and other glassy mode¥biere a(¢,,¢;)=1] =1

the dynamics in this limit is trivial. TheaSFM model has

D N
been mainly studied in the case=1,21%*In this work we 1 o
oy | | Cut)y == D (-D) ., ()
are mainly interested in the case=1 where some analytic NDZ) &4 v
results can be obtained.
There are several physical interpretations of thewhere (,;u=1,... D) are the coordinates of the poinin

nSFM 2 The simplest one relates spin variables to the locathe D-dimensional lattice. The main interest of defining these
compressibility of a fluid region. In this case regions with quantities is that they can be exactly closed in any dimension
very high compressibility can facilitate the mobility of the (see next sectign
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Another quantity of interest is the energy response funcinfinite temperature and,=1 at zero temperatuye This

tion Gg(t,t") defined by time scale corresponds to the relaxation time for the Ising
paramagnet in absence of interaction. Hence, the time scale

Ge(t/ )= om(t) et @ o corresponds to the relaxation of a single spin in the pres-

' op(t")’ ' ence of a heat bath and is independent of the nature of the

?nstrained dynamics.

The time scald; is more interesting. It diverges at zero
temperature and has an Arrhenius behavior. Moreover, this
%ime scale corresponds to the smallest relaxation time of one
spin interacting with its nearest neighbors and is independent

¢ of the dimension of the lattice. Note that this diverging time
K(t’,t)=J Gg(t",t)dt”. (9)  scale is a direct consequence of the constrained dynamics in
v the system. Then, we conclude thatis the first relevant
In order to study the response of the system to a change diime scale as a consequence of the cooperative phenomena
temperature it will be convenient to stay in the linear-which takes place in the 1SFM. We will see later that this
response regime. In this regime the change in energy is linedime scale is associated with a new fast relaxation process.
with the variation ofg. If the largest relaxation timgasso- In addition to these two time scales there is at least an-
ciated with the correlation functioBg(t’,t)] is strongly de- other onet,, associated with the large time decay of the
pendent with the temperature and if the perturbatioga$  equilibrium two-times correlation function E@5). This is
not too small then we can expect strong deviations from théhe largest time scale and would correspond the
linear-response regime. We will return to this point later. ~ a-relaxational process observed in glasSeBiagrammatic
We should note that staggered functions can be define@pproximations done by Fredrickson and Andet8éor the
only in finite dimensions and have no meaning in a meantwo-times correlation function Eq5) show that this time
field version of the model. Our main interest is to show thatscale coincides witht,. Our numerical investigatior{in
some general results on the dynamics of the 1SFM modedgreement with previous wof® suggests thaty, is much
can be inferred from the staggered one- and two-point funclarger thant, and increases witi fastere®. But more de-
tions even though a complete solution of its dynamics atailed investigations are necessary in order to obtain a better

This function measures the change of energy of the system g
timet if a small temperature change is dond'att. Even-
tually we will be also interested in the integrated respons
functionK(t',t), defined as

finite temperature is still lacking. understanding of this point.
It is natural to think that the exponential relaxation pro-
Il. FAST PROCESSES IN FINITE DIMENSIONS cesses described by EQQO) and(11) could be present also

in the relaxation of nonstaggered two-times quantities like
In the finite-dimensional case some general results can b@e energy-energy correlation function E§) and the inte-
derived for the staggered magnetizations &. In the spe-  grated response function E¢). Even though we do not
cific case of the 1SFM the time evolution equations forhave a rigorous proof of this assertion we have performed
Co(t), C4(t) exactly close without the need of introducing Monte Carlo numerical simulations for large lattices which
hierarchies. Using Eq4) it is easy to check that the time clearly show that this is indeed the case. In what follows, we

evolution equation foCy(t) reads will focus our research in the physical consequences of the
fast relaxation process described ty We will see the ex-
9Col(t) a8 istence of a fast process of exponential character which
e PCy(1). (10 . . T L
at manifests in equilibrium and off-equilibrium measurements.
For C,(t) the following result is obtained: (L:J;SIESS otherwise stated, all results will refer to the 1SFM
aC4(1)
;t = —(1+e A)Cy(t). (11)

IV. NUMERICAL RESULTS

This simple result is a consequence of the particular dynam-
ics for the 1SFM as defined in E¢4). In the case of the
2SFM2 it is not clear if such a type of relation exists. Un- We have performed Monte Carlo numerical simulations
fortunately we have not been able to generalize this closuref the dynamical equation@) in one and two dimensions.
of equations in case of higher-order correlation functions. IiStarting from an initial configuration, the spins in the lattice
is important to note that staggered correlation functions arare randomly selected and flipped according to the probabil-
zero for homogeneous conditiortaniform or random for ity Eq. (3). Simulations were done for relatively large lattice
instancé. Hence they cannot relax in time if initially they are sizesN=LP with L=32 000 in one dimension arld=200
at their equilibrium values. But it is reasonable to expect than two dimensions with periodic boundary conditions. In the
response of the quantiti€%, andC, to a staggered magnetic range of times we are interested (short-time processgs
field to be also of exponential type. finite-size corrections are certainly negligible and we have

From previous equation6l0) and (11) we observe the checked that this is really the case. In order to test our pre-
existence of at least two characteristic time scales. One ofious exact results, Eq§10) and(11), we show in Fig. 1 the
these time scales igo=1/(1+e #), the other one is exponential decay oCy(t) at different temperatures as a
t.=eP. The time scalé, does not diverge at zero tempera- function of the rescaled tim¢'=te # in one dimension
ture and is nearly independent of the temperattige=§ at  starting from the periodic condition 11101a1. . .

A. Numerical algorithm
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FIG. 1. Exponential relaxation oEo(t) in one dimension for T_:O.15,0.25,0.4. The continuous lines are the exponential relax-
several temperatures=0.1,0.2,0.3,0.4,0.5. ations, Eq( 12).

the dimension. This is shown in Fig. 3 where we plot the
Cg{t) for two temperatured =0.15,0.25 in one and two

In order to investigate the equilibrium properties, we dimensions and the expected relaxation 84). The values
should start from an initial fully thermalized configuration. of the critical time associated with these temperatures are
There are several arguments which show that a dynamica}=780,55, respectively. These times are indicated with an
transition is absent in the 1SFM in finite dimensidfidn  arrow in the figure. From this figure it can be clearly appre-
this case, an equilibrium configuration can be easily builtciated that the regime<t, (the region of small times limited
because the model has no interaction in the energy functiorny the arrow is independent of the dimension of the system
i.e., the correlation length is zero in equilibrium. We startas argued previously. The empirical relaxation &g.which
from a random initial configuration with energy equal to thefits pretty well the fast decay process is also depicted by a
equilibrium energy, the system is let to evolve and we com-<continuous line. In the second regimet. relaxation be-
pute the correlation functio€g(t,t"). At equilibrium, the comes dependent on the dimension and slower in one dimen-
Cg(t,t') is time-translational invariant and depends only onsion than in two dimensions as expect@ynamical con-
the difference of time€g(t,t")=Cg{t—t’). We have care- straints in the 1SFM tend to forbid less paths in phase space
fully checked this point. We have repeated these measuré&s the dimensionality of the lattice increases
ments at different temperatures. We have observed that cor- We have also analyzed the integrated response function at
relation functions display two regimes separated by theequilibrium K(t’,t)=K®{t—t"). In order to measure it we
critical time t;=ef. In the first initial regime(for times  have prepared the system at equilibrium at a temperature
smaller than the critical timé,=e?) correlation functions B. After some time we change the temperature of the system
decay exponentially fast. Empirically we find that the relax-by the quantityA 8 and we let the system evolve at the new
ation time associated with this exponential procesgvigh ~ constant temperaturg+ A B. If the change of temperature
very high precisiop 2t.., was applied at zero time then we have

B. Equilibrium results

CE(t)=exp(—t/(2t:))=(Co()M?  t<t.. (12

In the second regime, for times larger than the relaxation
turns out to be much slower with stretched-exponential be-
havior at high temperatures which comes close to a power-
law behavior at low temperatures. We think that no conclu-
sive relaxation behavior can be guessed numerically in this
second regime. A crude estimate of the relaxation tiggéor
the second regime can be obtaingategrating the equilib-
rium correlation function respect to the tilnend we obtain
values larger tham,. This is an interesting point which de- 04
serves a more detailed investigation and should yield the
relaxation timet for the slowest relaxational proceSsFig- 021
ure 2 showsCg{(t) in one dimension at three different tem-
peraturesT=0.15,0.2,0.40. The values of the critical time 0
associated with these temperatures fre780,150,12, re-
spectively. These critical times are indicated with an arrow in
the figure. The initial exponential decay HG2) is also de- FIG. 3. C&{(t) at temperature3=0.15[D =2 (squares D=1
picted in the figure as a continuous line. (crosse T=0.25[D=2 (timeg, D=1 (circles] in one and two
Similar results have been obtained in two dimensionsiimensions. The continuous lines are the exponential relaxations,
where we expect the this fast process to be independent dfy. (12).

Keqt)= (13

cT®

10°
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FIG. 4. NormalizedK®{(t) in one dimension at temperatures  fFiG, 5. Cg(t, t,+t) for different waiting times
T=0.4 withAp=0.2 (squares —0.2 (crosse andT=0.25 with ¢ —10,1¢10°10"10° in one dimension atT=0.1. For
Ap=0.4(rhombs, —0.4 (dots. t,=10,1¢,10° the relaxation curves superimpose and aging is ab-

sent.
In order to be in the linear-response regime it is necessary to
make the changa g small enough. But it is important to jts equilibrium value[E®Y8)=—1/(1+e #)]. We com-
note thatA g cannot be arbitrarily small, otherwise the re- puted theCg(t,,.t,,+1t) for different values of the waiting
sponse of the system to the temperature change is very smglhe t,=10,1¢,10°,10"',10° at T=0.1 (at this temperature
and theK®{(t) measurements become much too noisy.  t_~22000) in one and two dimensiofi&e show only the

In Fig. 4 we plot theK®{t) normalized to its infinite time  results in one dimension, in two dimensions they are quali-
equilibrium valueK®{(=). This quantity converges to 1 in tatively similap. In order to clearly appreciate the qualitative
the infinite time limit. Numerical experiments are shown intrend of the data we only show the valuestofithin the
one dimension at two different temperatur€s-0.4 and  range 16— 10° MCS. Figure 5 shows two regimes. In the
T=0.25 (data have been averaged over 20 different yuns first regime (,=10,1¢,10°<t.) aging effects are absent,
for two different signs of the perturbatiah3. The results of j e the relaxation curv€q(t,, t,,+t) only depends on. In
the figure display some deviations from the linear-responsghe regimet,,=10°>t, aging effects appedj.e., the full
regime especially at large times and low temperatures. Agelaxation curveCg(t,,t,,+t) also depends of,]. The con-
commented previously, the equilibrium relaxation titggis  tinuous line is the equilibrium exponential behavior Etp).
strongly dependent on the temperature and increases with As emerges from Fig. 5, the aging effects in the correla-
B faster than does;. Then we expect the response of thetion function are very small even fdg,>t, at least in the
system to a perturbation of the temperature to display depafegion of times where the value of the correlation function is
tures from linearity in the part of the relaxation process connpot too small. In fact, a scaling of the type
trolled by the time scaléeq. In the part of the relaxation c_(t,,,t,,+t)=f(t/t,) will not work at all. This is surpris-
process dominated hly. this effect should be smaller. Sup- ing since one would expect in the off-equilibrium slow re-
port in favor of this argument is shown in Fig. 4 where the gime a dynamical behavior plagued of strong aging effects in
arrow indicates the value of the critical time for the two the correlation function. Possibly, this is a consequence of
temperatures. The dependence on the sign of the perturbatigie particular correlation function used. In what follows we
seems to be stronger for the slowest part of the relaxatiogjill see that the response function displays clear aging ef-
(i.e., for timest>t.) than in the fast part of the relaxation fects,

(i.e., for timest<t.). In order to get more clear cutresults it~ \We have measured the off-equilibrium integrated re-
would be necessary to go to lower temperatures. Unfortusponse function starting from a random initial configuration.
nately theK®{t) becomes much too noisy even though weThe system is let to evolve for a tintg at constantinverse

have been able to confirm this trend. temperaturg 3. At time t,, we make a copy of the system
and we make it evolve at the constant new temperature
C. Off-equilibrium results B+ApB. After t, we measure the difference between the

magnetizations of the two copies evolving with the same

In this section we want to investigate the role of the criti- tharmal noise but different temperatures. In this way we
cal timet; for nonequilibrium relaxation processes. We arecompute

going to show that, sets a minimum time scale above which

nonequilibrium relaxations display aging effects. In the fol- Mg ap(t+ty) —mg(t+ty)

lowing we will use the notation in which’ —t,,,t—t,+t Kty ty+t)= AB . (19

(t,, stands for waiting time We have done numerical simu-

lations of the 1SFM in one and two dimensions measuringn Fig. 6 we show the normalized integrated response func-

Ce(ty tyt1). tion K(t,,,ty+1t)/K®Y(x) at T=0.1 (t.=22 000) for differ-
Results for theCg(t,, ,t,,+t) are shown in Fig. 5 in the ent values ot,,=10,1¢,10°,10*,1C° in the one-dimensional

one-dimensional case. We start from a random initialcase. We can clearly appreciate the existence of the critical

condition'® with initial energyE(t=0)= —0.5 quite far from time t. which separates a regime where there is
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dimensional lattices. In the equilibrium case the correlation
function Eq.(5) decays exponentially fast with gempiri-
cally found relaxation time 2. in the regime of times

200 ‘ -

UE, 200 L ] t<t. while relaxation becomes slower in the regimet. .

®x i Furthermore, the integrated response function displays strong
? 400 ¢ w ] nonlinear effects in the regime>t; specially at low tem-

~% 800 | ——10 ] peratures. Concerning the off-equilibrium behavior we find
< 11880 ] that aging effects are absent for values of the waiting time
x 0 :188880 less than the critical time. This is nicely observed in the

1000 | 1 behavior of the integrated response functi{fig. 6).
1200 ‘ ‘ L ‘ Now we should djscuss to what. extent our results are
; 10 100 1000 10° 10° general and not confined to the particular 1SFM case. Equa-
t tions(10) and(11) are exact results in the 1SFM case and we
expect they are not more valid in tmeSFM with n larger

FIG. 6. Normalized(ty, ,ty+1) at T=0.1 for several values of than 1. We have performed some numerical simulations in
ty andAB=0.5. The symbols are a guide to the eyes. Note that55e of the 2SFM but we have not found evidence on the
K*{t) is nearly zero in this range of times. existence of this critical time. This could explain why some

previous numerical works on the 2SHRef. 13 were able
not, dependence from a regime where the systgfas As o fit the equilibrium relaxation functions to a stretched-
ty increases the response of the system becomes smallexponential behavior, while in the 1SFM this is not possible
which is a typical feature of aging.Note that the equilib- due to the existence of two different regimes. In numerical
rium value ofK®qt) in the window of time shown in the Fig. simulations one is able to explore only relatively small scales
6 is practically zero(and converges to 1 for large times of time. It is clear that an initial exponential process would
while in the off-equilibrium regime the response reaches anake the numerical fits of the slow regime difficult, specially
(negative approximate value of-10°. Hence the response in the low-temperature phase where the critical time starts to
of the system is three orders of magnitude larger and negdecome large. Consequently, the nature of the slow relax-
tive in the off-equilibrium regime than in the equilibrium ational processes in the one-spin facilitated Ising model is
case. difficult to establish using numerical simulations. This is a

necessary task to estimate the relaxation time for the slow

V. CONCLUSIONS processed,q in this model in order to draw conclusions

about the fragility of the glass.

This work has been devoted to the study of one of the Also in the realm of disordered systertfsr instance in
simplest constrained kinetic Ising models, i.e., the so-calledpin glasse$ we are not aware of the existence of this criti-
nSFM introduced by Friedrickson and Andersen in the specal time, possibly because in that case frustration is directly
cial case ofn=1. This is an interesting model with an ex- introduced in the energy function and not in the dynamics.
tremely simple energy function where the frustration is con‘We are tempted to conclude th@) the existence of a tem-
tained in the dynamical rules which forbid certain transitionsperature activated critical time ar@) the presence of expo-
between configurations in phase space. nential decay processes in the relaxation of some correlation

Our main interest has been the research of fast processfmctions in the short-time regime, are both strictly related to
in the 1SFM. In this model the rate of variation of the energythe nature of this type of constrained short-range dynamics.
in one point of the lattice is linearly coupled to the energy of Summarizing, we have found evidence about the exist-
the nearest neighbors. This is the simplest case one can cognce of two fast processes in the 1SFM model. The first
sider, while the 2SFM corresponds to a quadratic couplingrocess with characteristic tintg corresponds to the relax-
between the nearest-neighbor sites in the laifida.case of  ation of single spin in the lattice. This is a trivial process not
the 1SFM some exact closed dynamical equations can belated to any cooperative effect in the lattice. The second
obtained for the one- and two-point staggered functiGgs process is a fast exponential process consequence of the dy-
andC, in any dimensions. This reveals that both staggeredhamical constraints. Physically it would correspond to the
functionsC, and C; decay exponentially fagiwith charac- relaxation of some coupled degrees of freedom of the sys-
teristic timest. andty) independently of the dimensionality tem. The results which emerge from the study of the 1SFM
of the lattice.ty is the relaxation of a single spin uncoupled are in agreement with some recent experimental findings by
to its nearest neighbors embedded in a thermal Gahce, Colmeneroet al. on fragile polymer glasses. By doing
independent of the dimensiprand t. is an Arrhenius neutron-scattering measurements in glasses they claim the
temperature-dependent relaxation time resulting from the dyexistence of a temperature-activated critical tifwéith small
namical constraints. Then we expect the existence of thesenergy barrier which separates two well-defined time re-
fast processes in other nonstaggered quantities like thgions. In the first region the relaxation is exponential, while
energy-energy correlation function and also the integrateih the second regime relaxation is much slower with higher
response function. While we have not found a precise demrelaxation time. This feature seems to be captured by the
onstration of this result we have given strong numerical suppresent model.
port to this hypothesis by measuring the equilibrium and It would be very interesting to analytically solve the dy-
nonequilibrium behavior of the correlation function E§) namics at finite temperature of this modak least in one
and integrated response function Ef) in one- and two- dimension in order to confirm the numerical findings of this
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work. This would also shed light on the existence of other
relaxational processdfike the o and B relaxation) as pre-
dicted by the mode coupling theory.
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APPENDIX

In this appendix we present the exact solution of the t

1SFM in one dimension at zero temperature. Let us take
chain of N spinso; and we define the new set of variables
7i7=1—0;. In terms of this set of variables we define the
following set of correlation functions:

1 N
D)= N2, (O a(D) - 7ilD),

(A1)

The magnetizatioanz(1/N)E{“:1n= Dy(t) is the first
term of this hierarchy. Using Eq4) we can derive the time
evolution of theD(t) at zero temperature. We get

dD,
7=_Dk+1_ka§ k=0. (A2)
We introduce the generating function
G(x,t)= 2 7 D(b). (A3)
k=1 k!

In terms of this generating function we have the following E

partial differential equation:

aG(xt)

dG(x,t)
ot '

r (A4)

—(1+x)

This linear partial differential equation is readily solved
yielding

a

FIG. 7. Cg(ty,ty+t) for different waiting times
t,=0.0125,0.125,1.25 at zero temperature in one dimension. The
lines are the exact solutiai\7).

G(x,1)=Gg[(1+x)e '—1], (AB)

whereGgy(x) = G(x,0) is the initial condition. We can obtain
the different set of moments

D= 7G A6
=l oxk] (AB)
x=0
In  particular we get for the magnetization

m,= Gyl exp(—t)—1]. In the large time limit it converges to
Go(—1) depending on the initial condition. For the particu-
lar initial condition o; =0, Gy(x) =€* and the magnetization
m, does not converge to its equilibrium value{=1) but
to 1ke.

We can also compute the two-times correlation function
g. (5). At zero temperature we find

1-m(t)  myt) Gole '-1)

T1-mt) m(t) Gye'-1)

Ce(t',1) (A7)

In Fig. 7 we compare EqA7) with the numerical results for
different values ot’.
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