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Abstract

The controlled-source electromagnetics (CSEM) and magnetotellurics (MT) methods are

common geophysical tools for imaging the electrical properties of the Earth’s subsurface

and are employed independently, jointly, and in combination with other geophysical tech-

niques. In order to appreciate measured data, both methods require forward and inverse

modeling of the electrically conductive subsurface with the ultimate goal of finding a fea-

sible model for which the simulated data reasonably fits the observations. Naturally, the

potential goodness of this fit not only depends on the error in the measured data and on the

numerical error but also on the degree of physical approximation inferred by numerical

modeling. Therefore, active research focuses on new methods for modeling and inversion

to obtain accurate and reliable models of the Earth’s structure in increasingly complex

scenarios.

A first step is to enhance modeling approximations by taking into account physical fac-

tors such as anisotropy, topography or realistic sources. Second, in order to accommodate

these factors in a modeling and inversion program and to deal with typically large data

sets, numerical methods need to be assessed in terms of solution accuracy, time efficiency

and memory demand. The finite elements (FE) modeling methods are known to offer most

flexibility in model geometry and contain quality control mechanisms for the solution, like

shape function order and adaptive mesh refinement. Most emerging modeling programs

are based on FE, appreciating significant advantages, but nearly all inverse modeling pro-

grams to date are still based on finite differences (FD) or integral equation (IE) methods.

Furthermore, inverse modeling developed for electromagnetic (EM) data is generally

based on gradient methods and is formulated in a reduced space, where the only optimiza-

tion variables are the model parameters, that is the electric conductivity of the subsurface.

Originally, the inverse problem is stated for the EM fields and the conductivity parameter,

and constrained by partial differential equations (PDEs) governing the EM field variables.

The reduced-space strategy eliminates the field variables by applying equality constraints

and solving then, the unconstrained problem in the reduced-space of model parameters. A

common drawback of such methods is the repeated costly computation of the solution of

the forward problem and of the Jacobian matrix of sensitivities (for Newton’s based meth-

ods). In contrast, it is also possible to solve the inverse problem in the full-space of model

parameters, including both the EM field variables and the electric conductivity parameter.

Solving the PDE-constrained optimization problem directly (full-space) has the advantage

that it is only necessary to solve exactly the PDEs at the very end of the optimization pro-
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cess but it comes at the cost of many more optimization variables and of the presence of

equality constraints. Also, in particular, within a FE framework, the PDE-constrained op-

timization problem provides the additional benefit to include sophisticated FE techniques

in the inversion process, such as adaptive mesh refinement.

This thesis develops a robust and versatile adaptive unstructured mesh FE program

to numerically model the total field for two-dimensional (2-D) anisotropic CSEM and MT

data, allowing for arbitrarily oriented, three-dimensional (3-D) sources. To represent 3-D

CSEM sources for a 2-D physical model, a two-and-a-half-dimensional (2.5-D) approxi-

mation is employed. The FE formulations are derived for both methods, for isotropic and

anisotropic subsurface conductivity structures. Although the anisotropic case is not gen-

eral, it includes vertical and dipping anisotropy. The accuracy of the solution is controlled

and improved by an adaptive mesh refinement algorithm using a-posteriori error estimator

methods.

Exhaustive numerical experiments validate the adaptive FE program for both CSEM

and MT methods and on land and marine environments. The influence of the model di-

mensions, mesh design and order of shape functions on the solution accuracy is studied

and notably, an outperformance of quadratic shape functions is found compared to lin-

ear or cubic realizations. Several examples demonstrate the effect of complex scenarios on

EM data, in particular, a model with bathymetry, a land and marine model with oriented

and finite-length sources, a vertical anisotropic media with an embedded reservoir and

another one with a reservoir within an anticline structure. These examples showcase the

importance of adequate consideration (in terms of forward modeling) of physical features

such as the topography, the geometry and orientation of the source and the anisotropy of

the media, which are very common in real world data.

Further, a formulation for the 2.5-D CSEM inverse problem as a PDE-constrained opti-

mization in full-space is derived within a FE framework following two different strategies:

discretize-optimize and optimize-discretize. The discretize-optimize strategy considers the

inverse problem to be present in discretized form and the Lagrangian optimization con-

ditions and the Newton’s step are derived based on the discretized inverse problem. Con-

trarily, the optimize-discretize approach, first derives the optimization conditions and the

Newton’s step or an approach of it, and after discretizes the resulting equations. The per-

formance of the implementation of the discretize-optimize formulation is demonstrated

through two examples, a canonical reservoir model and a more realistic marine model

with topography, using a general-purpose optimization program, which is an implementa-

tion of a sequential quadratic programming (SQP) algorithm. Although, without explicit

regularization, different meshes for the model parameters and for the field variables allow

recovery of the main structures of the model within an acceptable data misfit. However,

the time and memory efficiency of the program should be improved.

Finally, the 2.5-D CSEM inverse problem is formulated as a PDE-constrained optimiza-

tion in full-space andwithin a FE framework using an optimize-discretize strategy as a first

step of the development of an inversion scheme using adaptive FE meshes.



Resum

El mètode de font electromagnètica controlada (CSEM) i el mètode magnetotel.lúric (MT)

són tècniques geofı́siques usades habitualment per obtenir una imatge de les propietats

elèctriques del subsòl terrestre i s’utilitzen independentment, conjuntament i en combi-

nació amb altres tècniques geofı́siques. Per poder interpretar les dades, ambdós mètodes

necessiten la modelització directa i inversa de la conductivitat elèctrica del subsòl amb

l’objectiu final d’obtenir un model coherent per al qual les dades simulades s’ajustin de

forma raonable a les observacions. Naturalment, la qualitat d’aquest ajust no només depèn

de l’error en les dades mesurades i de l’error numèric, sinó també del grau en l’aproximació

fı́sica inferit per la modelització numèrica. D’aquesta manera, les recerques actuals se

centren a investigar noves metodologies per a la modelització i inversió, per tal d’obtenir

models acurats i fiables de les estructures de la Terra en escenaris cada cop més complexos.

Un primer pas és millorar les aproximacions en la modelització tenint en compte fac-

tors fı́sics com ara l’anisotropia, la topografia o fonts més realistes. En segon lloc, per tal

d’acomodar aquests factors en un programa de modelització i inversió i per poder tractar

els conjunts de dades tı́picament llargs, els mètodes numèrics han de ser avaluats en termes

de la precisió de la solució, l’eficiència en temps i la demanda en memòria. Els mètodes

de modelització en elements finits (FE) són coneguts per oferir una major flexibilitat en

la modelització de la geometria i contenen mecanismes de control de la solució, com ara

l’ordre de les funcions forma i la tècnica de refinament adaptatiu de la malla. La majoria

de programes de modelització emergents estan basats en els FE, i mostren avantatges sig-

nificatius, però gairebé tots els programes de modelització inversa, encara avui dia, estan

basats en el mètode de les diferències finites (FD) o en el mètode de l’equació integral (IE).

A més a més, la modelització inversa desenvolupada per a dades electromagnètiques

(EM) es basa generalment en mètodes del gradient i es formula en un espai reduı̈t, on

les úniques variables d’optimització són els paràmetres del model, és a dir, la conductivi-

tat elèctrica del subsòl. Originalment, el problema invers es formula per als camps EM i

per al paràmetre conductivitat, i està constret per les equacions diferencials en derivades

parcials (PDEs) que governen les variables camps EM. L’estratègia d’espai reduı̈t elimina

les variables camps aplicant lligams d’igualtat i soluciona, doncs, el problema no constret

en l’espai reduı̈t dels paràmetres del model. Un desavantatge general d’aquests mètodes

és la costosa repetició del càlcul de la solució del problema directe i de la matriu jaco-

biana de sensibilitats (per mètodes basats en Newton). D’altra banda, també és possi-

ble de solucionar el problema invers en l’espai complet de les variables camps EM i del
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paràmetre conductivitat. Solucionar-hi el problema d’optimització constret per les PDEs

té l’avantatge que només és necessari de solucionar exactament el problema directe al final

del procés d’optimització, però això comporta el cost addicional de tenir moltes més vari-

ables d’optimització i de la presència de lligams d’igualtat. També, en particular, en el marc

dels FE, el problema d’optimització constret per les PDEs té l’avantatge afegit d’incloure

tècniques sofisticades pròpies dels FE en el procés d’inversió, com ara el refinament adap-

tatiu de la malla.

Aquesta tesi desenvolupa un programa robust i versàtil amb FE i malles irregulars

adaptatives per modelar numèricament el camp total de dades CSEM i MT bidimensionals

(2D) i anisòtropes, que permet l’ús de fonts tridimensionals (3D) orientades arbitràriament.

Per tal de representar fonts CSEM 3D en un model fı́sic 2D, s’utilitza una aproximació dos

i mig dimensional (2.5D). Les formulacions FE es deriven per a ambdós mètodes, per a

estructures de conductivitat del subsòl isòtropes i anisòtropes. Encara que el cas anisòtrop

no és general, inclou anisotropia vertical i de cabussament. La precisió en la solució es con-

trola i millora amb un algoritme de refinament adaptatiu de la malla utilitzant mètodes

d’estimació de l’error a posteriori.

Una sèrie exhaustiva d’experiments numèrics valida el programa de FE adaptatius per

ambdós mètodes, CSEM i MT, i en escenaris terrestres i marins. S’estudia la influència de

les dimensions del model, del disseny de la malla i de l’ordre de les funcions forma en

l’exactitud de la solució i es troba un comportament notablement superior de les funcions

forma quadràtiques comparades amb les lineals o cúbiques. Diferents exemples mostren

l’efecte d’escenaris complexos sobre les dades EM, en particular, un model amb batime-

tria, un model terrestre i un de marı́ amb fonts orientades i de dimensió finita, un medi

amb anisotropia vertical amb un reservori encastat i un altre amb un reservori encastat en

una estructura anticlinal. Aquests exemples demostren la importància de considerar ade-

quadament (en termes de modelització directa) caracterı́stiques fı́siques com la topografia,

l’orientació i geometria de la font i l’anisotropia del medi, que sovint es troben en mesures

reals.

Juntament amb això, es deriva una formulació per al problema invers 2.5D CSEM

com una optimització constreta per les PDEs en l’espai complet i en un marc de FE,

seguint dues estratègies diferents: discretització-optimització i optimització-discretització.

L’estratègia de discretització-optimització considera que el problema invers es troba en

forma discretitzada i deriva les condicions d’optimitat de la Lagrangiana i el pas de New-

ton. Contràriament, l’aproximació optimització-discretització deriva primer les condi-

cions d’optimitat i el pas de Newton o una aproximació d’aquest, i després discretitza

les equacions resultants. La implementació de la formulació discretització-optimització

es mostra en dos exemples, un model canònic de reservori i un model marı́ més realista

amb topografia, utilitzant un programa d’optimització de propòsit general, que és una im-

plementació d’un algoritme de programació quadràtica seqüencial (SQP). Encara que no

s’utilitza una regularització explı́cita, l’ús de diferents malles per al paràmetre del model

i per a les variables camps, permet recuperar les principals estructures del model i obtenir
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un ajust de les dades acceptable. Cal dir, però, que l’eficiència en temps i memòria del

programa hauria de millorar-se.

Finalment, el problema invers 2.5D CSEM es formula com un problema d’optimització

constret per les PDEs en l’espai complet i en un marc de FE utilitzant una estratègia

d’optimització-discretització i com un primer pas per al desenvolupament d’un esquema

d’inversió que utilitzi malles adaptatives de FE.
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Adrià Meléndez, Manel Prada, Alejandra Lago, Sara Martı́nez, and everyone in the past

and present of the group, with best regards to Naiara Korta and Ivan de la Cruz Vargas by

countless discussions and life experiences.

I would like to offer my special thanks to my tutor at the University of Barcelona, Prof.

Pilar Queralt, for her support during the development of this thesis and especially for my

time in their EM group during the development of my Master’s thesis, and extend my grat-
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CHAPTER1

Introduction

Electromagnetic (EM) induction methods are used in geophysics to measure the electric

properties of geologic formations. Propagation of EM fields depends on the electrical con-

ductivity of the medium, which mainly depends on a combination of rock composition,

porosity and pore-fluid content. This relation is used by EM methods that measure and

study the EM fields, usually on the Earth’s surface, and try to reconstruct a subsurface con-

ductivity model which explains the observed data. Two different EM induction methods

are the controlled-source electromagnetic (CSEM) and the magnetotelluric (MT) methods.

CSEM uses an artificial EM source to excite induced currents in the subsurface and mea-

sure the induced EM fields for distinct source-receiver configurations and frequencies or

transient decays for time-domain methods. On the other hand, MT is a natural-source

method that exploits time variations of the Earth’s magnetic field (Chave and Jones, 2012),

caused at low frequencies (< 10Hz) by the interaction of the solar plasma with the iono-

sphere and the magnetosphere as sources, and at high frequencies (> 10Hz) by global

lightning activity (Garcia and Jones, 2002). In both cases, the fluctuating magnetic field

induces electric currents in the ground dependent on in-depth conductivity structure and

MT analyses the resulting time variations of the EM fields to infer the conductivity distri-

bution.

The MT method was first introduced in the 1950s (Cagniard, 1953) and since then it

has developed fast. It has been used successfully on land and on marine environments to

study large-scale features of the litosphere (Chave and Jones, 2012). In MT surveys time

variations of the electric and magnetic field components are recorded simultaneously on

the surface, at a sampling interval between 1 × 10−3 − 1× 105s. The frequency dependent

transfer function between the electric and magnetic fields, which physically represents the

electrical conductivity structure, is statistically appreciated. The depth of signal penetra-

tion can easily reach mid-mantle depths and is solely limited by the frequency range of the

observed signal. MT has been proven to be particularly useful for mapping salt, volcanics

and carbonates which present challenges to seismic methods. The reason is that MT is

primarily sensitive to electrically conductive material, where electric currents are prefer-

entially induced, and thus can detect the sediments below resistive volcanics or carbonates,
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where seismic methods experience difficulties. However, this technique alone is not use-

ful for hydrocarbon fluid detection, because MT currents within the Earth are generated

mostly in the horizontal plane and the thin sub-horizontal, resistive formations typical for

the presence of hydrocarbons are almost invisible to the method. In this context, CSEM is a

complementary technique to MT, because common EM transmitters used in marine CSEM

generate vertical electric fields which are sensitive to horizontal resistors of sufficient size.

The deepwater marine CSEMmethod used today for hydrocarbon exploration was first

proposed by Cox (1981) and the first experiment was carried out to measure the conduc-

tivity of the lithosphere. On subsequent experiments, marine CSEMmethods were focused

on detecting magma chambers and hydrothermal systems at mid-ocean ridges (e.g. Young

and Cox, 1981; Evans et al., 1991; MacGregor et al., 2001). It has been in the past decade

that the CSEMmethod has been widely recognized as an exploration tool for detecting and

delineating hydrocarbon reservoirs (e.g. Edwards, 2005).

Even though, CSEM methods can employ electric or magnetic dipole transmitters, a

typical frequency-domain marine CSEM survey uses a high powered horizontal electric

dipole to transmit a low-frequency EM signal through the seafloor to an array of multi-

component EM receivers. The direct signal is rapidly attenuated within the conductive

sea water, and already at source-receivers separations of more than a few hundred meters,

the received signal is dominated by fields that have interacted with the Earth. Transmis-

sion frequencies are typical between 0.01 and 10Hz and the depth of investigation ranges

between a few tens of meters to depths of several kilometers.

The fast progress of these techniques had been supported by advances of the theory,

field instrumentation and interpretation tools. At present, the interpretation process con-

sists mainly in a processing phase and in a modeling (also called forward modeling) and

inversion phases. For data processing, the spectral responses are estimated from the mea-

sured time series. The spectral responses in MT are impedances, or more specifically the

relation between the electric and magnetic fields in the frequency domain, and in CSEM

the spectral response relates the received EM fields with the transmitted source signal in

the frequency domain, thus normalized EM fields. The modeling phase calculates EM

fields or impedances for a given synthetic model solving the Maxwell’s equations, and

these fields are compared to the real measurements (after processing) through an inver-

sion process in which the misfit between synthetic and real data is minimized iteratively

by varying the synthetic model. The resulting synthetic model from the optimization pro-

cess is taken as the best model to represent the measurements, and ultimately as an image

of the subsurface conductivity model.

Modeling and inversion codes have been improved continuously along with the on-

going advances in computer performance. The programs evolved from approximating the

Earth as a one-dimensional (1-D) model to consider the full problem of a three-dimensional

(3-D) Earth. However, the two-dimensional (2-D) approach is still the standard tool for in-

version.
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1.1 Modeling

The different numerical methods in use for MT and CSEM modeling include variations of

the integral equation (IE), finite differences (FD) and finite elements (FE) methods. We

will give more details on these techniques on the next chapter and an overview of their

application to EM methods is provided, for example, by Avdeev (2005) and Börner (2010).

Amongst these techniques, the FE method has been proven to be the more flexible with

respect to model geometry (e.g. Avdeev, 2005). The reason is that FE methods in combina-

tion with the use of unstructured grids, allow for a better representation of the topography

and of the different resistivity boundaries than for example, FD techniques, and are able

to accommodate both small and large structures in the same grid. Moreover, FE accepts

superior order spatial approximations in contrast to FD, which is usually derived using

first or second order approximations, and enables extensive error estimation analysis.

Recently, with the improvement of computer technology and the availability of high-

quality mesh generators and robust and efficient numerical solvers, a number of modeling

programs using FE have been developed for MT (e.g. Mogi, 1996; Farquharson and Mien-

sopust, 1993; Key and Ovall, 2011; Ren et al., 2013) and for CSEM (e.g. Badea et al., 2001;

Schwarzbach et al., 2011; Mukherjee and Everett, 2011; Key and Ovall, 2011).

Many of these FE codes are developed for the 3-D problem and are fast and memory

efficient if only a limited number of forwardmodeling solutions is required. However, they

are still impractical for inversion, where a large number of simulations is essential. Thus,

it is easier to investigate on new techniques for modeling and inversion on 2-D problems,

where the time and memory requirements are in a more reasonable level for the existing

computational resources. Moreover, most MT and CSEM data is collected along a profile

(Constable, 2010) and in many geological situations the subsurface conductivity structure

can be assumed invariant in one horizontal dimension and described as 2-D.

Last advances in FEmodeling incorporate adaptive mesh refinement techniques to con-

trol solution accuracy and program efficiency (e.g. Franke et al., 2007; Li and Pek, 2008;

Key and Ovall, 2011; Schwarzbach et al., 2011). Adaptive mesh refinement methods esti-

mate the error contribution of each mesh element to the solution error or to the error of a

certain functional, and based on this error select a subset of elements to refine. The grid is

then refined in these regions and the entire process is repeated iteratively improving the

solution or functional accuracy until a stopping criteria is reached.

On the other hand, only a few of the state-of-the-art codes allow for simulations on an

electrically anisotropic media. However, it is widely known by the EM community that

anisotropy is an important factor to consider when interpreting EM geophysical data (e.g.

Wannamaker, 2005; Martı́, 2014). In 2-D modeling the few codes that allow for anisotropy

and are based on FE are proposed by Li and Pek (2008), for MT and generally anisotropic

media, and by Li and Dai (2011) for CSEM and dipping anisotropic structures.
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1.2 Inversion

Inversion of EM geophysical data is a specially challenging and computationally intense

task. The EM inverse problem is nonlinear and underdetermined with unstable solutions.

These features make the inverse problem ill-posed. Furthermore, the problem is also large-

scale with thousands of data points to be inverted in the tens of thousands of model pa-

rameters (Avdeev, 2005).

Usually, inverse programs include a regularization function to deal with the instability

and non-uniqueness of the problem. Then, the inverse problem is generally solved numer-

ically, minimizing a functional which penalizes both misfit to the data and model rough-

ness, using derivative-based optimization methods, such as non-linear conjugate gradi-

ents (e.g. Newman and Alumbaugh, 2000; Rodi and Mackie, 2001; Commer and Newman,

2008), quasi-Newton (e.g. Haber, 2005; Avdeev and Avdeeva, 2009) or Gauss-Newton (e.g.

Mackie andMadden, 1993; Siripunvaraporn et al., 2004). For further details of the applica-

tion of these optimizations methods to solve EM inverse problems we refer to the reviews

of Avdeev (2005) and Siripunvaraporn (2012). These methods present different benefits

and drawbacks when applied to the EM inverse problem, however, in most of them the

computation of the forward solution and of the sensitivities constitute the most expensive

part (e.g. Siripunvaraporn, 2012; Egbert and Kelbert, 2012).

On the other hand, most of the inversion codes to date are based on the FD method

for discretization or on the IE method. Only very recently, a few 3-D codes have appeared

that implement a FE framework in the inversion scheme (Schwarzbach and Haber, 2013;

Grayver, 2015). Schwarzbach andHaber (2013) give a novel formulation for the regulariza-

tion function in a FE framework, and Grayver (2015) include in their code the possibility

to use different meshes for the forward and inverse problems, and to additionally calcu-

late the optimal mesh in each case and in each iteration of the inversion process. This last

point allows to calculate accurate EM responses on a suitable fine mesh and at the same

time avoids overparametrization of the model parameter variable with a coarser mesh that

represents imaged subsurface structure.

All thementioned inversion schemes shear a common initial approximation which con-

sists of eliminating the partial differential equation (PDE) that constraints the forward

solution variables from the optimization problem, by substituting it, using equality con-

straints, in the predicted variable of the objective function misfit term. Then, the only

variable in the optimization is the model parameter. Methods using this approach are

called reduced-spacemethods, because they reduce the space of optimization variables, and

are also sometimes referred to as black-box methods (Herzog and Kunisch, 2010), since

they treat the state equation as a black-box, embedding it into an optimization loop. By

contrast, there is a developed mathematical theory in the full-space, in which the PDE-

constrained optimization problem is addressed directly (e.g. Nocedal and Wright, 1999;

Biros and Ghattas, 2005), treating the state andmodel parameters variables as independent

optimization variables, which are coupled through the PDE constraint. These methods are
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sometimes called all-at-once methods (e.g. Haber et al., 2004; Bangerth, 2008).

The main advantage of the all-at-once approach over black-box methods is that while

the latter require the repeated costly solution of the (nonlinear) state equation for each

evaluation of the objective function and of the adjoint equation to evaluate the sensitivities

and the gradients, the former avoid these calculations and only need to solve exactly the

state equation at the very end of the optimization process. This advantage comes at the

cost of many more optimization variables and of the presence of equality constraints. All-

at-once inversion schemes have already been applied to solve EM inverse problems in a

FD framework (Haber et al., 2000, 2004; Wilhelms et al., 2013), and Haber et al. (2004)

concluded that this procedure has potential for a solution to be reached faster than in

traditional unconstrained optimization approaches.

Recent research has formulated algorithms using all-at-once methods in a FE frame-

work and using a continuous function space setting to allow for discretizations that are

adaptively refined as nonlinear iterations proceed (Bangerth, 2008; Herzog and Kunisch,

2010; Günther, 2010). In these optimizations schemes, the common techniques in all-at-

once approaches are first formulated on continuous function spaces and then discretized.

This has the advantage that then, the finite dimensional norms usually used for estimating

the error of the variables in the meshes, are independent of the mesh size and individ-

ual steps of the algorithm are comparable even if they used differently refined meshes

(Bangerth, 2008). This can reduce significantly the numerical effort to solve the inverse

problem because it allows to use independent adaptive meshes for the model parameter

variables and for the field variables. The mesh for the model parameter can then be coarser

where we lack information, making the inverse problem better posed, and the mesh for the

fields variables can be fine only in the required regions for accuracy.

1.3 Objectives of the Thesis

This thesis is concerned with the development of a robust and versatile unstructured mesh

FE program to numerically model the total field for 2-D anisotropic CSEM and MT data,

allowing for arbitrarily oriented 3-D sources. To represent 3-D CSEM sources for a 2-D

physical model, a 2.5-dimensional (2.5-D) approximation will be considered. We will de-

rive and implement the FE formulations for both methods, for isotropic and anisotropic

subsurface conductivity structures. Moreover, we investigate on adaptive mesh refinement

techniques to control the accuracy of the solution.

Further, we study a framework for the 2.5-DCSEM inverse problem as a PDE-constrained

optimization in full-space with a FE discretization and demonstrate viability of this scheme.

1.4 Outline

Chapter 2 begins by reviewing the numerical techniques to model CSEM and MT data us-

ing 2-D and 3-D approaches, states the isotropic and anisotropic 2.5-D frequency-domain
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CSEM and 2-DMT problems, and derives their FE formulation. The adaptive mesh refine-

ment techniques are introduced as a method to control and improve the quality of the FE

solution. These FE formulations form the basis of the development of an algorithm pre-

sented in Chapter 3, where used packages and different techniques for the implementation

are described and the capabilities of the program discussed. Then, Chapter 4, assesses the

performance and accuracy of the developed modeling software. The results of conducted

numerical experiments are presented to illustrate and validate the main characteristics

and numerical strategies of the software for MT and CSEM and on 1-D and 2-D synthetic

models. In particular, the influence of the model dimensions and the mesh design on the

accuracy of the solution is studied, which justifies the need of an adequate mesh design.

Then, the performance of the adaptive mesh refinement is benchmarked and the influence

of shape function order and choice of error estimator method is studied with respect to

solution accuracy. Additionally, advantages of this technique for modeling topography are

illustrated. Finally, numerical experiments demonstrate the importance firstly, to realisti-

cally model sources in certain situations and secondly, to appropriately treat anisotropy.

Work on a PDE-constrained full-space optimization scheme to the solution of the 2.5-D

CSEM inverse problem using the FE method for the discretization is presented in Chap-

ter 5, beginning by briefly reviewing contributions on EM inversion. Then, two differ-

ent strategies on formulating the PDE-constrained optimization problem in full-space are

discussed: a discretize-optimize strategy and an optimize-discretize strategy. Formulation

for the 2.5-D CSEM PDE-constrained optimization problem using the discretize-optimize

strategy are derived and implemented by using a general-purpose optimization algorithm.

Synthetic inversion examples verify the program. At the end of the Chapter the PDE-

constrained full-space optimization formulation is derived to solve the 2.5-D CSEM in-

verse problem by using the FE method for the discretization. This formulation of an

optimize-discretize strategy offers the potential to use adaptive FE meshes during the in-

version. Chapter 6 discusses the contributions of the thesis and Chapter 7 summarizes the

major conclusions and suggests directions for future work.

1.5 Remark on the basic notation

In this thesis, vectors, matrices and tensors are distinguished from scalars by the use of

bold typeface. All variables and parameters are in the International System of Units (SI).

The reference frame for the equations and Figures we show in the thesis is not the

conventional one used in geophysics. Our reference frame, S ′, is related to the conventional

one in geophysics, S , by:

x′ = y

y′ = −z

z′ = −x,
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thus, the horizontal right-hand-side axis is denoted x (instead of y); the depth is defined as

−y (typically z) and finally, the strike axis is represented by z (usually x). The reason for the

different reference frame compared to a typically accepted standard in geophysics, is that

our program uses COMSOL (COMSOL, 2015) and S ′ is the reference frame in COMSOL.

Therefore, all the equations presented in this thesis are derived in this particular reference

frame. The output of the program could be easily rotated to the reference frame S , and

then, the Figures we show in this thesis would be on the typical system. However, we

preferred to keep the same reference frame for both the equations and the Figures, to

maintain consistency and avoid confusion throughout the work.
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CHAPTER2

CSEM and MT Finite Elements modeling in 2-D

2.1 Introduction

The process of forward modeling consists in solving a mathematical boundary value prob-

lem (BVP), that is, solving the PDE that describe some physical phenomena in some me-

dia/model. When this model presents a simple geometry, i.e. it only varies in depth, that

is a 1-D approach, an analytical or semi-analytical solution exists for the MT (e.g. Wait,

1953; Yin, 2006) and CSEM (e.g. Løseth and Ursin, 2007; Key, 2009; Streich and Becken,

2011) governing equations. In particular, 1-D CSEM modeling is a fast and simple tool

that has showed its usefulness in the interpretation of tabular bodies when both source

and receiver are over the target (Constable, 2010). However, for more complex geome-

tries numerical methods are required. Usually the problem is split in smaller regions, in

a process known as discretization, and solved within each one of them with appropriate

boundary conditions. The numerical solution needs the computational domain to be finite

and bounded, but the original BVP is located naturally in an infinite 3-D space and an

artificial boundary is added so the fields in the truncated domain reproduce the problem

in the original infinite domain.

The accuracy of the numerical solution and the efficiency of its computation in terms

of time and memory are principal concerns of the modeling process and depend mainly

on the numerical methods used for the BVP solution. However, other determinant fac-

tors to obtain realistic synthetic MT and CSEM responses are a suitable approximation of

boundary conditions and EM sources, and of the conductivity model, keeping it as simple

as possible. That is, in certain geologic and experimental scenarios, to model the orienta-

tion and geometry of the sources or to mesh accurately the topography or the small and

large structures of a complex geological formation. Another component which can have

an impact on the EM observations are electrically anisotropic structures in the model, for

which suitable considerations on the conductivity tensor need to be performed.

Numerical techniques in use for EM induction methods modeling include variations of

the IE, FD and FE methods.

The IE method is suitable when the model consists of an anomalous region (e.g., a min-
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eral deposit) incrusted in an homogeneous model. Discretization is only applied in the

anomalous region and consequently the number of unknowns and equations is smaller

than with other techniques. At the beginning, when the computational resources where

limited, IE methods were the most practical for modeling the full 3-D problem (e.g. Wei-

delt, 1975; Wannamaker et al., 1984).

Advances in computational resources has promoted the use of FD methods which are

more appropriate for more complex and generalized models in MT (e.g. Jones and Pas-

coe, 1972; Smith and Booker, 1991; Mackie et al., 1993) and CSEM (e.g. Newman and

Alumbaugh, 1995; Haber et al., 2000; Weiss and Constable, 2006; Streich, 2009) model-

ing. In parallel, research on efficient IE codes has continued (e.g. Zhdanov and Fang, 1996;

Avdeev et al., 1997). Using FD methods the discretization is generally in all the model

so the unknowns and equations involved are larger than for the IE method. Furthermore,

the discretization is commonly based on a structured rectangular grid and fine-scale dis-

cretization required to handle topography in the central region of a model leads to thin

cells that extend laterally and vertically throughout the entire domain, often resulting in

highly elongated cells and poor convergence in the resulting numerical linear system (Key

and Ovall, 2011).

Amongst the different numerical methods the FE method provides the greatest flexi-

bility in accounting for model geometry (e.g. Avdeev, 2005). Latest programs incorporate

unstructured grids which allow for a better representation of the topography and of the

different resistivity boundaries than FD and are able to accommodate both small and large

structures in the same grid. Moreover, FE accepts superior order spatial approximations

in contrast to FD, which is usually derived using first or second order approximations, and

enables extensive error estimation analysis. Although the first 3-D FE algorithm appeared

in Pridmore et al. (1981), it was not since recently, with the emergence of more powerful

computers, that new algorithms were developed for MT (e.g. Mogi, 1996; Farquharson and

Miensopust, 1993; Ren et al., 2013) and CSEM (e.g. Badea et al., 2001; Börner et al., 2008;

Schwarzbach et al., 2011; Mukherjee and Everett, 2011). The reason is that FE techniques

are more difficult to implement than FD and require more complex calculations, which

translate in larger computational time.

Further details on EM applications of these techniques is provided, for example, in the

reviews of Avdeev (2005) and Börner (2010).

Three-dimensional simulations can now be fast and memory efficient if only a limited

number of forward modeling solutions is required. However, 3-D modeling can become

impractical if a large number of simulations is essential, i.e. for parameter testing or res-

olution studies in inversion (Streich et al., 2011). In addition, most MT and CSEM data

is collected along a profile (Constable, 2010) and in many geological situations the sub-

surface conductivity structure can be assumed invariant in one horizontal dimension and

described as 2-D.

The 2-D approach of the CSEM problem can not be applied through a direct 2-D for-

mulation of the problem because of the 3-D nature of the source fields. Rather a 2.5-D
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formulation is considered. In this approach, the geology is 2-D and the 3-D Maxwell’s

equations are Fourier transformed in the strike direction coordinate onto the wavenumber

domain, resulting in a formulation that captures the 3-D physics but is substantially more

efficient to compute than the full 3-D solution (Unsworth et al., 1993; Streich et al., 2011).

Discretization is necessary only over a cross-section, rather than throughout a volume, but

the problem needs to be solved for a number of wavenumber values in order to perform

the inverse Fourier transform of the solution fields back to the spatial domain.

Stoyer and Greenfield (1976) published one of the first solutions to the 2.5-D CSEM

problem using FD and Lee and Morrisson (1985) reported the first 2.5-D FE modeling

scheme. However, the number of publications that succeed their work is very limited

(Leppin, 1992; Everett and Edwards, 1992; Unsworth et al., 1993). The main reason is that

advances in computational resources made the fully 3-D problem as tractable as the 2.5-D,

even though it may require significantly more computer power, and research focused on

it (Everett and Edwards, 1992). Recently, interest in the 2.5-D approach has resurged and

solutions have been published using both FD (e.g. Abubakar et al., 2008; Streich et al.,

2011) and FE methods (e.g. Mitsuhata, 2000; Kong et al., 2008; Li and Dai, 2011; Key and

Ovall, 2011).

Otherwise, most of the mentioned IE, FD and FE state-of-the-art algorithms assume

that the 2-D or 3-D subsurface is electrically isotropic and can not model electrically

anisotropic structures. Contrarily, it is widely known by the EM community that anisotropy

is an important factor to consider when interpreting EM geophysical data (e.g. Wanna-

maker, 2005; Martı́, 2014). First modeling programs dealing with anisotropy were pub-

lished at the same time as the isotropic ones (e.g. Reddy and Rankin, 1971, 1975), but not

as many have been developed in subsequent years. Among the most known, for different

1-D scenarios are e.g. Pek and Santos (2002) and Yin (2006) for MT and Li and Pedersen

(1992) and Løseth and Ursin (2007) for controlled-source in land and marine media, re-

spectively. In 2-D the most recognized and used code for MT is the one of Pek and Verner

(1997) for arbitrary anisotropy using the FD method based on the FE algorithm of Reddy

and Rankin (1975). More recently, Li and Pek (2008) presented a 2-D MT FE program for

generally anisotropic media and Li and Dai (2011) a 2.5-D CSEM FE algorithm for dipping

anisotropic structures. Research on MT modeling of 3-D anisotropic media has been also

published (e.g. Weidelt, 1999; Weiss and Newman, 2002).

Last advances in both 2-D and 3-D FE modeling increase time efficiency and solution

accuracy incorporating a posteriori adaptive mesh refinement techniques (e.g. Franke et al.,

2007; Li and Pek, 2008; Key and Ovall, 2011; Schwarzbach et al., 2011; Grayver and Bürg,

2014). Adaptive methods seek to increase the solution accuracy by iteratively refining the

grid. At each iteration, is calculated an estimation of the error contribution by the mesh

elements. Posterior, it is selected a subset of elements for refinement based on this estimate

and finally, the grid is refined by creating new smaller elements in these regions.

One of the goals of this thesis is the development of a robust and efficient forward

modeling program, which has to be able to model MT and CSEM responses in complex
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2-D geometries and electrically anisotropic structures. For this purpose we develop a

2.5-D CSEM and 2-D MT frequency-domain adaptive unstructured FE program which

is additionally able to model arbitrary oriented magnetic and electric sources. Many of

the newest discussed 2-D adaptive FE codes incorporate some of the characteristics of our

program, but only last versions of the forward algorithm of MARE2DEM (Key and Ovall,

2011) present similar features regarding versatility in: method (CSEM and MT), sources

(electrical and magnetic arbitrarily oriented) and including anisotropy of the conductivity.

In this Chapter, we state the 2.5-D frequency-domain CSEM and 2-DMT problems and

we derive their FE formulation. We first extract the 2.5-D CSEM governing equations for

an isotropic conductivity model and then we apply to this BVP the FE method. Then, we

extend the derived problem to the dipping electrically anisotropic case. Finally, we present

the MT problem as a particular case of the 2.5-D CSEM equations. Original contributions

of this Chapter are the derivation of the 2.5-D CSEM problem and its FE formulation for

dipping anisotropic conductivity structures using the total field formulation.

2.2 The 2.5-D frequency-domain CSEM problem

The fundamental equations of classical electrodynamics are Maxwell’s equations, which

describe how electric and magnetic fields are generated and altered by each other and

by charges and currents in a macroscopic media. The 2.5-D CSEM problem consists of

a mathematical approximation for the solution of the 3-D Maxwell’s equations on a 2-D

conductivity model with 3-D sources. The conductivity does not vary in the strike direc-

tion (z), but the source is finite, as in the case of a loop or grounded wire (Figure 2.1).

The approximation is the Fourier transformation of the equations in along-strike spatial

direction onto the wavenumber domain xyκz. The problem is solved over a cross-section in

the xyκz−domain. Many solutions are required for several wavenumber values κz to trans-

form the fields back to the spatial domain. In this section the 2.5-D CSEM BVP is stated

by deriving its governing equations and the harmonic source equations are specified.

2.2.1 Governing equations

Time domain Maxwell’s equations in a region free of sources are:

∇×E+
∂B

∂t
= 0, (2.1a)

∇×H−
∂D

∂t
= J, (2.1b)

∇ ·D = ρv , (2.1c)

∇ ·B = 0, (2.1d)

where E is the electric field intensity, H is the magnetic field intensity, D is the electric

flux density (or dielectric displacement), B is the magnetic flux density (or magnetic in-
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Figure 2.1: Two and a half dimensional (2.5-D) CSEM problem scheme. The conductivity (σ) model
varies in the two-dimensional (2-D) xy−plane and extends to infinity in the z− direction; the sources
are finite and can be oriented in any of the three-dimensional (3-D) space directions. In this picture
we show a representation of an horizontal electric dipole (HED) or a vertical magnetic dipole (VMD).
The reference frame in the picture is the one we use in all this thesis.

duction), J is the electric current density and ρv is the volume electric charge density. All

field quantities are function of space and time.

If there is conservation of charge, the charge density is related to the current density by

the continuity equation:

∇ · J+
∂ρv
∂t

= 0. (2.2)

Furthermore, the field quantities are related by the constitutive relations:

D = ǫ ∗E, (2.3a)

B = µ ∗H, (2.3b)

J = σ ∗E, (2.3c)

in which ǫ is the electrical permittivity, µ is the magnetic permeability and σ is the elec-

trical conductivity of the media. The asterisk denotes convolution in time and when the

equations are transformed to the frequency-domain becomes a product.

For the frequency-domain CSEMmethod, the following general assumptions are made:

• The electrical properties in the earth are independent of time, temperature or pres-

sure.

• Due to attenuation in the earth and use of low frequencies, fields propagate only by
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diffusion (quasi-static approximation): ∂D
∂t
≈ 0 and

∂ρv
∂t
≈ 0.

• There are external electric andmagnetic harmonic sources which generate an electric

current J s and a magnetizationM s respectively.

• The EM fields are time-harmonic with time dependence eiωt and with constant an-

gular frequency ω.

Additionally, we consider the simplest case and assume for the remainder of this work,

that:

• The media is isotropic for the electromagnetic properties: ǫ = ǫI and µ = µI.

• The electrical permittivity and the magnetic permeability can be approximated by

their value in the free space ǫ0 and µ0, leaving the information of the media only

through the electrical conductivity property σ .

Moreover, for the following derivations we also assume an electrically isotropic con-

ductivity: σ = σI.

With the assumptions above, Maxwell’s equations can be expressed in complex form as

(Ward and Hohmann, 1988):

∇×E+ iωµ0H = −iωµ0M
s (2.4a)

∇×H− (σ + iǫ0ω)E = Js , (2.4b)

where E and H are now the frequency-domain electric and magnetic fields, complex-

valued vector functions of position but not time. The use of the same nomenclature for the

time-domain and frequency-domain fields is ambiguous, but is restricted to this section.

Only the frequency-domain quantities will be considered throughout in the remainder of

this work.

Equations (2.4) are only valid within a material and if there is more than one material,

both equations hold separately within each.

Continuity conditions that must be satisfied as the fields traverses the boundary be-

tween conductor I and II (Figure 2.2) are (Ward and Hohmann, 1988):

• Normal B. The normal component of B is continuous across an interface separating

medium I from medium II :

n̂ · (BI −BII ) = 0. (2.5)

• Normal D. The normal component of D is discontinuous at an interface due to the

accumulation of a surface-charge density ρs:

n̂ · (DI −DII ) = ρs. (2.6)
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ΩI

ΩII

n̂

σI

σII

Figure 2.2: Interior boundary separating domain ΩI with conductivity σI from domain ΩI I with
conductivity σI I , where continuity conditions are imposed. The vector n̂ is the unitary normal vec-
tor to the boundary.

• Tangential E. The tangential component of E is continuous across an interface:

n̂× (EI −EII ) = 0. (2.7)

• Tangential H. The tangential component of H is continuous across an interface if

there is no surface current:

n̂× (HI −HII ) = 0. (2.8)

• Current density J. If displacement currents are neglected, the normal component of

the electric current density J is continuous across an interface:

n̂ · (JI − JII ) = 0. (2.9)

It follows from this last condition together with (2.3c) in frequency-domain that in re-

gions where σ is discontinuous, the normal component of E to the discontinuity will be

also discontinuous. A comment on (2.6) is that in static equilibrium, the surface electric

charge density ρs at the interface between two conductors may be different from zero de-

spite the fact that the volume charge density ρv vanishes everywhere.

Particularizing for the 2.5-D CSEM problem, we consider a 2-D space and define a

Cartesian xy−coordinate system with y vertically upwards and x horizontally right, the

conductivity is invariant in the z−direction: σ = σ(x,y) (Figure 2.1). Despite the 2-D

conductivity distribution, the source terms M s and J s contain 3-D variations and conse-

quently the EM fields are also 3-D and we have to solve the complete Maxwell’s equations.

Following the 2.5-D approximation, equations (2.4) are Fourier transformed along the

strike direction z onto the wavenumber-domain.

We define the 1-D Fourier transformation as:

F [F(x,y,z))] (κz) = F̂(x,y,κz) =

∫ +∞

−∞

F(x,y,z)e−iκzzdz, (2.10)
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and the corresponding inverse transform as:

F −1
[

F̂(x,y,κz)
]

(z) = F(x,y,z) =
1

2π

∫ +∞

−∞

F̂(x,y,κz)e
iκzzdκz, (2.11)

where κz is the along-strike wavenumber.

We transform equations (2.4) with (2.10) and using:

F

[

∂F(x,y,z)

∂z

]

(κz) =

∫ +∞

−∞

∂F(x,y,z)

∂z
e−iκzzdz = iκzF̂(x,y,κz), (2.12)

for the transformation of the derivatives of the fields with respect to the along-strike coor-

dinate. After applying some algebra, we obtain a system of PDEs for the electric and mag-

netic along-strike field components Êz and Ĥz (Stoyer and Greenfield, 1976; Mitsuhata,

2000):

−∂x(ŷκ
−2
e ∂xÊz)−∂y(ŷκ

−2
e ∂yÊz) + iκz∂x(κ

−2
e ∂yĤz)− iκz∂y(κ

−2
e ∂xĤz) + ŷÊz = f̂1, (2.13a)

−∂x(ẑκ
−2
e ∂xĤz)−∂y(ẑκ

−2
e ∂yĤz)− iκz∂x(κ

−2
e ∂yÊz) + iκz∂y(κ

−2
e ∂xÊz) + ẑĤz = f̂2, (2.13b)

where we introduce the impedivity ẑ = iµ0ω and the admittivity ŷ = σ + iǫ0ω (Ward and

Hohmann, 1988), with the admittivity approximated as: ŷ ≈ σ , because of the quasi-static

assumption; κ2e is defined as κ2e = κ2z + ẑŷ (Hohmann, 1988) and f̂1 and f̂2 are the source

terms which in the most general case include electric and magnetic sources oriented in the

three space directions and can be expressed as:

f̂1 = −Ĵ
s
z + iκz∂x(κ

−2
e Ĵ

s
x) + iκz∂y(κ

−2
e Ĵ

s
y)−∂x(ẑŷκ

−2
e M̂

s
y) +∂y(ẑŷκ

−2
e M̂

s
x), (2.14a)

f̂2 = −ẑM̂
s
z + iκz∂x(ẑκ

−2
e M̂

s
x) + iκz∂y(ẑκ

−2
e M̂

s
y) +∂x(ẑκ

−2
e Ĵ

s
y)−∂y(ẑκ

−2
e Ĵ

s
x). (2.14b)

Equations (2.14) can be written in a more compact form (Key and Ovall, 2011) and

introducing Dirichlet boundary conditions in the outer boundary yields:

−∇ · (ŷκ−2e ∇Êz)− iκz∇ · (κ
−2
e R∇Ĥz) + ŷÊz = f̂1

−∇ · (ẑκ−2e ∇Ĥz) + iκz∇ · (κ
−2
e R∇Êz) + ẑĤz = f̂2 inΩ

Êz, Ĥz = 0 on ∂Ω

(2.15a)

(2.15b)

(2.15c)

with

f̂1 = −Ĵ
s
z + iκz∇ · (κ

−2
e Ĵst ) +∇ · (ẑŷκ

−2
e RM̂s

t), (2.16a)

f̂2 = −ẑM̂
s
z + iκz∇ · (ẑκ

−2
e M̂s

t)−∇ · (ẑκ
−2
e RĴst ), (2.16b)
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where the field variations are only in the xy−plane, ∇ = (∂x,∂y), andΩ ⊂ R
2 is the bounded

computational domain with outer boundary ∂Ω. The vectors Ĵst and M̂s
t are the source

currents transverse to z, i.e. Ĵst = (Ĵ sx, Ĵ
s
y) and M̂s

t = (M̂s
x, M̂

s
y); and R is a rotation matrix for a

rotation of π/2:

R =













0 −1

1 0













. (2.17)

With the introduction of the domain Ω and the enforcement of boundary conditions

on ∂Ω the real physical problem naturally posed on an infinite domain is approximated to

a problem restricted on an artificial finite domain, which can be solved numerically. The

quality of this approximation depends on how good the external boundary conditions ap-

proximate the solution in infinity. The physical justification for Dirichlet boundary condi-

tions is that the EM fields decay away from the transmitter source, such that at a sufficient

distance satisfy (2.15c) sufficiently well. However for this to be true, Ω must be chosen

sufficiently large that the approximation due to the inexact boundary condition posed on

∂Ω is not larger than the discretization error. Besides, the domainΩ is partitioned in non-

overlapping subdomains Ωi , Ω =
⋃

i
Ωi , such that within each subdomain the constitutive

parameters and source terms are continuous functions of space. The discontinuities of

the fields coincide with interfaces between subdomains, where continuity conditions are

imposed.

Equations (2.15) together with continuity conditions of the tangential field components

in the interior boundaries, define the 2.5-D frequency-domain CSEMBVP in its continuous

form.

The two PDEs (2.15a) and (2.15b) for Êz and Ĥz are coupled through the middle terms

on the left-hand-side (LHS) and are proportional to κz. Therefore, these equations must be

solved simultaneously for Êz and Ĥz. Once the system (2.15) is solved, the other EM field

components are obtained from space derivatives of Êz and Ĥz using:

Êx = κ
−2
e

(

−iκz∂xÊz + ẑ∂yĤz − ẑĴ
s
x + iκz ẑM̂

s
y

)

, (2.18a)

Êy = κ
−2
e

(

−iκz∂yÊz − ẑ∂xĤz − ẑĴ
s
y − iκzẑM̂

s
x

)

, (2.18b)

Ĥx = κ
−2
e

(

−ŷ∂yÊz − iκz∂xĤz − iκz Ĵ
s
y − ẑŷM̂

s
x

)

, (2.18c)

Ĥy = κ
−2
e

(

ŷ∂xÊz − iκz∂yĤz + iκz Ĵ
s
x − ẑŷM̂

s
y

)

, (2.18d)

or in more compact form (Key and Ovall, 2011):

Êt = κ
−2
e

(

−iκz∇Êz − ẑR∇Ĥz − ẑĴ
s
t − iκzẑRM̂

s
t

)

,

Ĥt = κ
−2
e

(

ŷR∇Êz − iκz∇Ĥz + iκzRĴ
s
t − ẑŷM̂

s
t

)

,

(2.19a)

(2.19b)

with Êt = (Êx, Êy) and Ĥt = (Ĥx, Ĥy ) and we assumed the more general situation with

electric and magnetic sources oriented in the three space directions.
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In the limit, when κz is 0, the coupling terms in (2.15) disappear, and the resulting PDEs

separate into two independent modes, transverse electric (TE) and transverse magnetic

(TM), as in MT or for an infinitely long wire source (Unsworth et al., 1993; Everett and

Edwards, 1992):

−∇ · (ẑ−1∇Êz) + ŷÊz = −Ĵ
s
z −∇ · (RM̂

s
t) (2.20a)

−∇ · (ŷ−1∇Ĥz) + ẑĤz = −ẑM̂
s
z −∇ · (ŷ

−1RĴst ). (2.20b)

The TE mode is defined by equation (2.20a) and the electric field is only in the along-

strike direction, while the magnetic field is in the xy−plane. The TM is defined by equation

(2.20b) and, in this case, it is the magnetic field that has only the along-strike direction

component, while the electric field is in the xy−plane.

To compute the response for a finite source (κz , 0), the coupled equations (2.15a) and

(2.15b) must be considered for a range of κz values to represent the fields in the 3-D space.

Then (2.11) is used to transform the fields back to the spatial domain.

It is important to note that equations (2.15) are formulated in terms of the transformed

total E and H fields. The same formulation has been used by e.g. Stoyer and Greenfield

(1976); Mitsuhata (2000); Key and Ovall (2011). Nevertheless, equivalent formulations

have appeared in the literature for 2.5-D CSEM modeling applying the primary (back-

ground)/secondary (scattered) field approach to the E and H equations (e.g. Unsworth

et al., 1993; Li and Key, 2007); and formulations for only one of the EM secondary fields

(E orH) within the xyκz domain vector Helmholtz equation (e.g. Streich et al., 2011). We

chose the total field formulation because although source terms are singular and difficult

to model numerically it is more suitable for complex structures. On the other hand, com-

paring the E - H formulation (equations 2.15) with the E or H formulation (Helmholtz

equations), the E - H approach is advantageous, because the number of unknowns is re-

duced from 3 to 2 and because the along-strike field components are continuous in the

interfaces.

2.2.2 Harmonic sources

There is a variety of EM sources used in CSEM methods. In land-based surveys, magnetic

loops or long horizontal wires are grounded, and in marine surveys, they are deployed

at the seafloor or towed through the water. In both cases there is also the possibility to

use vertical electrical sources. Commonly, the sources are approximated as point electric

and magnetic dipoles, assuming a sufficiently large distance between source and receiver.

When this approximation is not valid the source is approximated as a line of point dipoles

and their response is calculated independently and after integrated.

In the following we give the equations for electric and magnetic point dipoles oriented

in any of the three space directions and we derive their form after applying the Fourier
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transform in the strike-parallel direction.

Harmonic electric dipole

The electric dipole is a straight conducting filament of length ∆s carrying a current I . The

dipole is grounded at both ends to the surroundings conductors. At a sufficient distance

from the source the electric dipole can be modeled as an electric point dipole. If point

sources, such as an electric or magnetic dipole, are to be modeled, the source term is not a

classical function any more but a distribution, the Dirac delta distribution δ.

The current density in a x−directed electric dipole (a small current element of length

∆s) at the origin can be represented by (Ward and Hohmann, 1988):

J sx = I∆s

[

u (x +∆s/2)− u (x −∆s/2)

∆s

]

δ(y)δ(z), (2.21)

where u(x ±∆s/2) is the Heaviside step function.

Letting ∆s→ ds:

J sx = Idsδ(x)δ(y)δ(z), (2.22)

using that the derivative of the step function is the delta distribution, dudx = δ(x). This result

applies to a current density in any given direction, so in general:

Js = pδ(x − x0)δ(y − y0)δ(z − z0)
r

|r|
, (2.23)

where p is the dipole moment:

p = Ids [A ·m]. (2.24)

Transforming (2.23) to the κz−wavenumber domain reads:

Ĵs =

∫ +∞

−∞

pδ(x − x0)δ(y − y0)δ(z − z0)e
−iκz(z−z0)dz

r

|r|
= pδ(x − x0)δ(y − y0)e

−iκzz0
r

|r|
, (2.25)

where we have used the Dirac delta property Fz[δ(z − z0)](κz) = e
−iκzz0 .

An horizontal electric dipole (HED) will generate a Jst current in the xz−plane, thus it

will be decomposed in a combination of J sx and J
s
z .

In the case in which there is only a x−directed HED source Jst = (J sx,0), equations (2.16)

will reduce to:

f̂1 = iκz∇ · (κ
−2
e Ĵst), (2.26a)

f̂2 = −∇ · (ẑκ
−2
e RĴst ), (2.26b)

and equations (2.19) to:

Êt = κ
−2
e

(

−iκz∇Êz − ẑR∇Ĥz − ẑĴ
s
t

)

, (2.27a)
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Ĥt = κ
−2
e

(

ŷR∇Êz − iκz∇Ĥz + iκzRĴ
s
t

)

. (2.27b)

A z−directed HED source generates a J sz current and equations (2.16) reduce to:

f̂1 = −Ĵ
s
z , (2.28a)

f̂2 = 0, (2.28b)

and equations (2.19) to:

Êt = κ
−2
e

(

−iκz∇Êz − ẑR∇Ĥz
)

, (2.29a)

Ĥt = κ
−2
e

(

ŷR∇Êz − iκz∇Ĥz
)

. (2.29b)

A vertical electric dipole (VED) generates a J sy current and equations (2.16) and (2.19)

will read as (2.26) and (2.27), respectively, with Ĵst = (0, Ĵ sy).

Harmonic magnetic dipole

A small loop of current I at the origin and in the xy−plane can be represented by an in-

finitesimal magnetic dipole with moment (Ward and Hohmann, 1988):

m = IS, (2.30)

where S is the area of the loop. The magnetization vector is given by:

Ms
z =mδ(x)δ(y)δ(z). (2.31)

The magnetization vector in a general direction will read:

Ms =mδ(x − x0)δ(y − y0)δ(z − z0)
r

|r|
. (2.32)

Transforming it to the κz−wavenumber domain yields:

M̂s =

∫ +∞

−∞

mδ(x − x0)δ(y − y0)δ(z − z0)e
−iκz(z−z0)dz

r

|r|
=mδ(x − x0)δ(y − y0)e

−iκzz0
r

|r|
, (2.33)

where, again, we have used the Dirac delta property Fz[δ(z − z0)](κz) = e
−iκzz0 .

An horizontal magnetic dipole (HMD) will be generated from a loop in the xy−plane,

Ms
z , or a yz−plane,M

s
x.

ForMs
x magnetizationMs

t = (Ms
x,0), equations (2.16) reduce to:

f̂1 = +∇ · (ẑŷκ−2e RM̂s
t), (2.34a)

f̂2 = +iκz∇ · (ẑκ
−2
e M̂s

t), (2.34b)
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and equations (2.19) to:

Êt = κ
−2
e

(

−iκz∇Êz − ẑR∇Ĥz − iκzẑRM̂
s
t

)

, (2.35a)

Ĥt = κ
−2
e

(

ŷR∇Êz − iκz∇Ĥz − ẑŷM̂
s
t

)

. (2.35b)

For aMs
z magnetization the sources terms are:

f̂1 = 0, (2.36a)

f̂2 = −ẑM̂
s
z , (2.36b)

and the transverse field components:

Êt = κ
−2
e

(

−iκz∇Êz − ẑR∇Ĥz
)

, (2.37a)

Ĥt = κ
−2
e

(

ŷR∇Êz − iκz∇Ĥz
)

. (2.37b)

A vertical magnetic dipole (VMD) will have a Ms
y magnetization and equations (2.16)

and (2.19) will reduce to (2.34) and (2.35) respectively with M̂s
t = (0, M̂s

y).

2.3 The Finite element method for 2.5-D CSEM

The FE method is a numerical technique to calculate an approximate solution to a BVP.

The basis of the method consists of transforming the problem to a weak form or varia-

tional problem that involves an integration of the governing differential equations over

the problem domain, in contrast to other methods, e.g. FD, which approximate the PDEs

directly. Using the FE method, the model domain is partitioned into a number of subdo-

mains called finite elements and the solution of the PDEs is approximated by piecewise

polynomial functions in each element in the overall domain, compared to FD where the

solution is approximated within a set of points. The variational problem is spatially dis-

cretized, and the integration in the whole domain, translates into a sum of integrals on

each finite element, reducing the BVP to a system of linear equations. Moreover, a mea-

sure of the quality of the numerical solution is obtained that quantifies the discretization

and solution errors, and can be iteratively improved up to a desired accuracy.

In this section we will apply the Galerkin method (a type of weighted residual method)

to derive the FE linear system of equations approximating the 2.5-D CSEM BVP (equation

2.15 and continuity conditions). Equivalently, variational theory could be used. For more

details on theoretical aspects of FE methods for Maxwell’s equations we address the reader

to e.g. Silvester and Ferrari (1996) and Monk (2003).
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2.3.1 The weak form

The weak form or variational problem is the basis for the method of FE. The equivalence

of the weak and strong formulations (differential equations) is a fundamental property of

Euler-type second-order partial differential equations (Badea et al., 2001) and will not be

discussed in this thesis. Only let us stress that the weak formulation relaxes smoothness

and derivability conditions on Êz and Ĥz.

In the previous section, we obtained second order governing PDEs for the 2.5-D CSEM

problem, while the original Maxwell’s equations are first order. The second order PDE

requires the electric field to be differentiable twice while the original Maxwell system re-

quires only the first derivative to be defined. In the weak formulation of the BVP governed

by equations (2.15) only first order derivatives are required, as it will be shown later.

To construct the weak form, the equality in equations (2.15) is only required in an

inner product sense, that is, after applying the inner product to equation (2.15) with a test

function v, the equality needs to be preserved for every possible choice of v.

We consider two complex valued scalar functions u and v to be square-integrable, be-

long to L2(Ω), with the inner product defined as:

(u,v)L2(Ω) =

∫

Ω

v̄ud2r, (2.38)

where v̄ denotes the complex conjugate of v. Then, equations (2.15) read in the weak sense

as an L2(Ω) square-integrability:

∫

Ω

v̄1
(

−∇ · (ŷκ−2e ∇Êz)− iκz∇ · (κ
−2
e R∇Ĥz) + ŷÊz

)

d2r =

∫

Ω

v̄1f̂1d
2r, (2.39a)

∫

Ω

v̄2
(

−∇ · (ẑκ−2e ∇Ĥz) + iκz∇ · (κ
−2
e R∇Êz) + ẑĤz

)

d2r =

∫

Ω

v̄2f̂2d
2r. (2.39b)

From the divergence theorem:

∫

Ω

∇ ·Ad2r =

∮

∂Ω
A · n̂dr, (2.40)

where ∂Ω is a closed contour enclosing the surface Ω ⊂ R
2 and n̂ is a unit vector normal

to the closed contour ∂Ω; and using the vector formula:

U(∇ ·A) = −(∇U ) ·A+∇ · (UA), (2.41)

we obtain the following result:

∫

Ω

v̄∇ · (p∇u)d2r = −

∫

Ω

∇v̄ · (p∇u)d2r +

∮

∂Ω
v̄(p∇u) · n̂dr, (2.42)

where p = p(x,y) > 0.
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Using (2.42), the integrals in equations (2.39) can be transformed to:

∫

Ω

(

∇v̄1 · (ŷκ
−2
e ∇Êz) +∇v̄1 · (iκzκ

−2
e R∇Ĥz) + v̄1ŷÊz

)

d2r

−

∫

Ω

(

−v̄1Ĵ
s
z −∇v̄1 · (iκzκ

−2
e Ĵst )−∇v̄1 · (ẑŷκ

−2
e RM̂s

t)
)

d2r

+

∮

∂Ω
v̄1κ

−2
e

(

−ŷ∇Êz − iκzR∇Ĥz − iκz Ĵ
s
t − ẑŷRM̂

s
t

)

· n̂dr = 0,

(2.43a)

∫

Ω

(

∇v̄2 · (ẑκ
−2
e ∇Ĥz)−∇v̄2 · (iκzκ

−2
e R∇Êz) + v̄2ẑĤz

)

d2r

−

∫

Ω

(

−v̄2ẑM̂
s
z −∇v̄2 · (iκzẑκ

−2
e M̂s

t) +∇v̄2 · (ẑκ
−2
e RĴst)

)

d2r

+

∮

∂Ω
v̄2κ

−2
e

(

−ẑ∇Ĥz + iκzR∇Êz − iκzẑM̂
s
t + ẑRĴ

s
t

)

· n̂dr = 0,

(2.43b)

where we have used (2.16a) and (2.16b) for f̂1 and f̂2 respectively.

At this point, we need to define the space where Êz and Ĥz, and the test functions v1 and

v2 are well-defined in equations (2.43). We require the Sobolev space of complex valued

once-differentiable functions on Ω, H1(Ω), such that both the functions and its first-order

weak derivatives are square-integrable (belong to L2, see equation 2.38).

The Sobolev space H1 has the inner product and norm:

(u,v)1 = (u,v) + (∇u,∇v) =

∫

Ω

(v̂u +∇v̂ · ∇u)dr, (2.44)

‖u‖1 =

[∫

Ω

(u2 + (∇u)2)dr

]1/2

, (2.45)

where v̂ is the complex conjugate of v. For a further discussion on Sobolev spaces, see

Monk (2003).

On the other hand, focusing now only on the boundary integral terms in (2.43), multi-

plying them by the identity matrix RTR and using the relation RR = −I, we obtain:

∮

∂Ω
v̄1κ

−2
e RT

(

−ŷR∇Êz + iκz∇Ĥz − iκzRĴ
s
t + ẑŷM̂

s
t

)

· n̂dr, (2.46a)

∮

∂Ω
v̄2κ

−2
e RT

(

−ẑR∇Ĥz − iκz∇Êz − iκzẑRM̂
s
t − ẑĴ

s
t

)

· n̂dr, (2.46b)

where by comparing with equations (2.19), the transverse components Êt and Ĥt are ex-

posed. Substituting them in (2.46), together with the relation −RT = R, we obtain:

∮

∂Ω
v̄1RĤt · n̂dr, (2.47a)

−

∮

∂Ω
v̄2RÊt · n̂dr. (2.47b)
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Ω2, σ2

Ω1, σ1

Γ2

Γ1

Σ12

Ω = Ω1 ∪ Ω2

∂Ω = Γ1 ∪ Γ2 ∪ Σ12

x

y

n̂12

Figure 2.3: Partitioning of domain boundaries. The domain Ω splits in two subdomains, Ω1 and
Ω2 characterized by the conductivities σ1 and σ2. Besides, the boundary ∂Ω of Ω splits in two
boundaries resulting from its intersection with each subdomain outer boundary, Γ1 and Γ2. As a
consequence of the partitioning, an additional boundary, Σij , between subdomains Ω1 and Ω2

must be considered.

As explained in the last section, the PDEs (2.15) are only defined on subdomains Ωi

and Ω =
ns
⋃

i=1
Ωi . Then, integrations in (2.47) are split into the sum over all ns subdomains.

The boundary of Ωi is composed of an outer boundary part Γi = ∂Ω ∩ ∂Ωi and an inner

boundary part ∂Ωi \ Γi =
⋃

i,j
Σij which is the union of all interfaces with adjacent subdo-

mainsΩj (Figure 2.3).

With this in mind, equations (2.47) read:

∮

∂Ω
v̄1RĤt · n̂dr =

ns
∑

i=1

(∮

∂Ωi\Γi

v̄1RĤt · n̂dr +

∮

Γi

v̄1RĤt · n̂dr

)

, (2.48a)

−

∮

∂Ω
v̄2RÊt · n̂dr = −

ns
∑

i=1

(∮

∂Ωi\Γi

v̄2RÊt · n̂dr +

∮

Γi

v̄2RÊt · n̂dr

)

. (2.48b)

Considering the inner boundaries and the normal vector n̂ on Σij pointing from sub-

domain i to subdomain j yields:

ns
∑

i=1

∮

∂Ωi\Γi

v̄1RĤt · n̂dr =

ns
∑

i,j=1
i,j

∫

Σij

v̄1RĤt · n̂dr =

ns
∑

i,j=1
i<j

∫

Σij

v̄1
[

RĤt · n̂
]

Σ
dr = 0, (2.49a)

−

ns
∑

i=1

∮

∂Ωi\Γi

v̄2RÊt · n̂dr = −

ns
∑

i,j=1
i,j

∫

Σij

v̄2RÊt · n̂dr = −

ns
∑

i,j=1
i<j

∫

Σij

v̄2
[

RÊt · n̂
]

Σ
dr = 0, (2.49b)

where we have used that the tangential components of E and H are continuous across an

interface (equations 2.7 and 2.8) also known as natural boundary conditions. For the outer
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boundary integrals, the Dirichlet boundary condition (equation 2.15c) will be enforced

explicitly as an essential boundary condition. Thatmeans that the test functions are chosen

such that they are null in Γi and the corresponding boundary integrals vanish, thus the

space of the dependent variables and test functions is redefined to a subspace H1
0 (Ω) ⊂

H1(Ω) of functions that vanish on the boundary.

Finally, the BVP problem can be restated as the variational problem:

Find Êz, Ĥz ∈ H = [H1
0 (Ω)]2 such that

∫

Ω

(

∇v̄1 · (ŷκ
−2
e ∇Êz) +∇v̄1 · (iκzκ

−2
e R∇Ĥz) + v̄1ŷÊz

)

d2r =

∫

Ω

v̄1f̂1d
2r

∫

Ω

(

∇v̄2 · (ẑκ
−2
e ∇Ĥz)−∇v̄2 · (iκzκ

−2
e R∇Êz) + v̄2ẑĤz

)

d2r =

∫

Ω

v̄2f̂2d
2r

for all v1,v2 ∈ H and with

∫

Ω

v̄1f̂1d
2r =

∫

Ω

(

−v̄1Ĵ
s
z −∇v̄1 · (iκzκ

−2
e Ĵst)−∇v̄1 · (ẑŷκ

−2
e RM̂s

t)
)

d2r

∫

Ω

v̄2f̂2d
2r =

∫

Ω

(

−v̄2ẑM̂
s
z −∇v̄2 · (iκzẑκ

−2
e M̂s

t) +∇v̄2 · (ẑκ
−2
e RĴst )

)

d2r.

(2.50a)

(2.50b)

(2.50c)

(2.50d)

HereH = [H1
0 (Ω)]2 is the space where the functions and its first order weak derivatives

are square integrable inΩ and vanish in the outer boundary ∂Ω.

It is necessary at this point to emphasize that boundary conditions have been absorbed

into the function space and that integration by parts has eliminated second derivatives

terms from the formulation, relaxing the smoothness requirements of Êz and Ĥz in (2.15),

as already anticipated. It is also important to note, that in the derivation of the BVP weak

form, (2.50), the inner product is taken in the whole domainΩ, but actually, as mentioned

in the last section and in the analysis of boundary integrals, the PDEs are only defined on

subdomains where the constitutive parameters are continuous functions of space. Thus,

although not explicitly written for simplicity, the integrals in (2.50) split into the sum over

all subdomains.

The significance of the weak formulation lies in the guarantee that considering a bi-

linear form a(u,v) (as the LHS of 2.50a or of 2.50b) with exact solution u ∈ H and test

function v ∈ H, an approximate solution uh ∈ Hh ⊂ H is the closest possible solution to u

in Hh when measured by the corresponding bilinear form and v ∈ Hh. This guarantee is

possible without explicit a priori knowledge of u. The reason is because choosing v ∈ Hh,

both a(u,v) = (f ,v) and a(uh,v) = (f ,v) (with (f ,v) the right-hand-side (RHS) of 2.50a or of

2.50b) hold true for all v ∈ Hh and their subtraction yields a(u − uh,v) = 0 for all v ∈ Hh.
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Figure 2.4: Elemental decomposition of the model domain. The model domainΩ is divided into nτ
elements τk , triangles, forming a FE mesh ∆. The model domain Ω does not coincide exactly with
the approximated domain ∆ in the boundaries. The quality of the approximation can be improved,
e.g. by mesh refinement.

This means, the error between the approximate solution uh and the exact solution u is

orthogonal to the space Hh with respect to a(·, ·).

2.3.2 Spatial discretization using finite elements

In the variational problem (2.50), derived in the previous section, the function space H

is infinite dimensional, but in numerical computation it is not possible to treat infinite

dimensional function spaces. The fundamental step of the FE method is to approximate

the infinite dimensional function spaces by finite dimensional subspaces Hh of piecewise

polynomial functions, such that it is feasible to compute an approximate solution of the

variational problem. In this section we apply the FE analysis to derive a system of linear

equations to be solved computationally.

First, the model domainΩ is divided into nτ simple geometrical elements τ, e.g. trian-

gles (Figure 2.4),

Ω ≈ ∆ =

nτ
⋃

k=1

τk . (2.51)

If Ω consists of several subdomains the elemental decomposition has to respect the sub-

domain interfaces. The set of elements, ∆, is known as the FE mesh or grid. For our

FE discretization we use a triangular mesh of non overlapping elements,
nτ
⋂

k=1
τk = ∅. The

model domain Ω does not generally need to exactly coincide with the discretized domain

∆, because of the error introduced when discretizing complex boundaries with triangles.

However, the approximation can be accurate and in complex situations can be improved

using unstructured grids and fine meshing.

The FE space, P p(∆), can be constructed with the following constraints (Schwarzbach,

2009): (a) it is a subspace of H, i.e. it satisfies the same continuity conditions, (b) its mem-
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bers are piecewise polynomial (c) its basis functions have a compact support, i.e. its scope

of influence is limited only to neighboring elements, and (d) it forms an exact sequence.

We use a subscript h in members from P p(∆) to indicate the dependency on some dis-

cretization parameter h. We define the FE space P p(∆) of functions uh ∈ H = [H1
0 ]

2, which

are polynomials of degree p in each finite element, that is:

P p(∆) =
{

uh ∈ H = [H1
0 (Ω)]2 : uh|τ polynomial of degree p <∞

}

, (2.52)

where uh|τ denotes the restriction of uh onto element τ.

The approximated variable uh ∈ P
p(∆) can be written as a linear combination of a finite

number of basis functions:

uh(r) =

nu
∑

i=1

Uiφi(r), (2.53)

for r ∈ τ where {φi }
nu
i=1 is a basis of P p(∆) and nu = dimP p(∆). The basis function φi is

associated with mesh entity indexed by i and the degrees of freedom (DOFs) are the linear

coefficients Ui of the basis function expansion of uh in P
p(∆) and fulfill:

Ui(φj ) = δij , i, j = 1, . . . ,nu , (2.54)

where δij is the Kronecker delta.

The field variables and test functions of the continuous BVP are chosen from the fi-

nite dimensional P p ⊂ H of piecewise polynomial functions. The approximation of the

dependent variable functions, Êz,h and Ĥz,h, are called trial functions.

Substituting them and the test functions approximations v1,h and v2,h in (2.50), the

discrete variational problem reads:

Find Êz,h, Ĥz,h ∈ Hh such that

∫

∆

(

∇v̄1,h · (ŷκ
−2
e ∇Êz,h) +∇v̄1,h · (iκzκ

−2
e R∇Ĥz,h) + v̄1,hŷÊz,h

)

d2r =

∫

∆

v̄1,hf̂1d
2r (2.55a)

∫

∆

(

∇v̄2,h · (ẑκ
−2
e ∇Ĥz,h)−∇v̄2,h · (iκzκ

−2
e R∇Êz,h) + v̄2,hẑĤz,h

)

d2r =

∫

∆

v̄2,hf̂2d
2r (2.55b)

for all v1,h,v2,h ∈ Hh,

where the finite dimensional space of trial and test functions,Hh, is defined as

Hh = {uh,vh ∈ P
p(∆) : uh = 0,vh = 0 on ∂∆} (2.56)

with uh = (Êz,h, Ĥz,h), and vh = (v1,h,v2,h).

The use of the same function space for test and trial functions is a characteristic of the

Galerkin method.
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As in (2.53), the trial functions are a linear combination of a set of basis functions

{φu,i }
nu
i=1 from Hh:

Êz,h(x,y) =

nE
∑

i=1

ÊiφE,i (x,y), (2.57a)

Ĥz,h(x,y) =

nH
∑

i=1

ĤiφH,i(x,y). (2.57b)

Following the Galerkin method, we choose the test function v to be a linear combina-

tion of the same nu basis function used for Êz,h and Ĥz,h:

v1,h(x,y) =

nE
∑

i=1

φE,i (x,y) (2.58a)

v2,h(x,y) =

nH
∑

i=1

φH,i (x,y); (2.58b)

and we also choose the same basis function for Êz,h and for Ĥz,h, thus:

φE,i = φH,i ≡ φi ,

nE = nH ≡ n.

Replacing (2.58) and (2.57) in (2.55) gives a well-determined system of 2n linear equa-

tions with 2n unknowns:

n
∑

i=1

n
∑

j=1

∫

∆

(

∇φ̄i ·
(

ŷκ−2e ∇(Êjφj )
)

+∇φ̄i ·
(

iκzκ
−2
e R∇(Ĥjφj )

)

+ φ̄i ŷÊjφj
)

d2r =

n
∑

i=1

n
∑

j=1

∫

∆

φ̄i f̂1d
2r,

(2.59a)

n
∑

i=1

n
∑

j=1

∫

∆

(

∇φ̄i ·
(

ẑκ−2e ∇(Ĥjφj )
)

−∇φ̄i ·
(

iκzκ
−2
e R∇(Êjφj )

)

+ φ̄i ẑĤjφj
)

d2r =

n
∑

i=1

n
∑

j=1

∫

∆

φ̄i f̂2d
2r,

(2.59b)

which is a consequence of choosing the same basis for trial and test functions.

Written in matrix form:

AU = F, (2.60)
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where A is a n× n matrix with elements Aij , 2× 2 matrices,

Aij =















∫

∆
ŷ
(

κ−2e ∇φ̄i · ∇φj + φ̄iφj
)

d2r iκz
∫

∆
κ−2e ∇φ̄i ·R∇φjd

2r

−iκz
∫

∆
κ−2e ∇φ̄i ·R∇φjd

2r
∫

∆
ẑ
(

κ−2e ∇φ̄i · ∇φj + φ̄iφj
)

d2r















for i, j = 1,2, . . .n,

(2.61)

U is the vector of unknowns of dimension n×1 where elementsUj associated to mesh entity

j read:

Uj =













Êj

Ĥj













, for j = 1,2, . . .n, (2.62)

and finally, F is a n× 1 vector, with vector elements:

Fi =













∫

∆
φ̄i f̂1d

2r
∫

∆
φ̄i f̂2d

2r













, for i = 1,2, . . .n. (2.63)

In the linear system (2.60) we have not specified the shape of the piecewise polynomi-

als functions. A variety of piecewise polynomials basis functions have been studied and

applied to different problems; below we describe the Lagrange shape functions which are

appropriate for our problem. With the use of these functions we derive an elementwise

system of equations which is more appropriate for a computer implementation.

2.3.3 Lagrange shape functions

In the FE method, basis functions are constructed elementwise in terms of shape func-

tions. A shape function is the restriction of a basis function to an element. We consider the

quadratic Lagrange shape functions on triangles. Lagrange shape functions are basis func-

tions of P p(∆) and are the standard type used to approximate scalar functions which are

globally continuous. Using quadratic Lagrange shape functions the nodes (coordinate lo-

cations of the DOFs) are placed at the vertices andmidsides of a triangular element (Figure

2.5 left).

The FE basis is constructed such that: (1) if φi is associated with node indexed by i,

then is unity at node i and vanishes at all other nodes and (2) φi is only nonzero on those

elements containing node i (Figure 2.5 right):

φi(xj ,yj ) = δij , for i, j = 1, . . . ,n. (2.64)

Thereby, the quadratic Lagrange shape function N k
ik
(x,y) associated with local node ik

in an arbitrary element τk with local nodes indexed by 1,2, . . .6 (Figure 2.5 left), satisfies:

N k
ik
(xjk ,yjk ) = δikjk , ik , jk = 1,2, . . .6, (2.65)
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Figure 2.5: Triangular element with vertices 1,2,3, and nodes 1 − 6, on the vertices and on the
midsides of the triangle, for quadratic Lagrange FE approximations (left); and linear nodal basis
functions φ1 for a cluster of four FE at node 1 (right).

and has the form:

N k
ik
= d1 + d2x + d3y + d4x

2 + d5xy + d6y
2, (2.66)

where the value of the coefficients dl , l = 1,2, . . .6 can be determined from (2.65). Then, the

restriction of the approximated function Êz,h (or Ĥz,h) to element τk reads:

Êz,h(x,y) =
6

∑

ik=1

ÊikN
k
ik
(x,y), (x,y) ∈ τk . (2.67)

With this definition of the shape functions, the continuity of the approximated fields is

fulfilled by construction, because the nodes are placed on vertex elements and midsides

edges.

It is important to note that we are using local indexes ik = 1, . . . ,nk for the Lagrange

shape functions on element k, N k
ik
; and global indexes i = 1, . . . ,n for the basis functions

φi ∈ P
p(∆). It is necessary a discrete mapping between local indexes ik = 1, . . . ,nk and

global indexes i = i(k, ik) = 1, . . . ,n (Figure 2.6) such that:

• The local basis function N k
ik
is part of the global basis function φi ,

i.e. φi(x,y) =N
k
ik
(x,y) for x,y ∈ τk , k = 1, . . . ,nτ .

• The global basis function satisfy global continuity conditions.

• Ui =U
k
ik
.

If more than one element contribute to a global basis function there are several local in-

dexes ik1 , ik2 , . . . that map to the same global index i. If the global DOFs are to be defined

unambiguously, the local DOFs that are mapped to the same global DOF! (DOF!) need

to be evaluated for the same value. For this reason, they cannot be defined on all geo-

metric entities of an element. If we use the same shape functions for Êz,h and Ĥz,h (then

v1,h = v2,h = vh) and we substitute the global basis functions by the local Lagrange shape
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Figure 2.6: The same triangular element with global nodes (i indexes) 4,7,8 and local nodes (ik
indexes) 1,2,3 respectively.

functions in (2.57) and (2.58), we obtain:

Êz,h(x,y) =

nk
∑

ik=1

ÊikN
k
ik
(x,y), (x,y) ∈ τk , (2.68a)

Ĥz,h(x,y) =

nk
∑

ik=1

ĤikN
k
ik
(x,y), (x,y) ∈ τk , (2.68b)

vh(x,y) =

nk
∑

ik=1

N k
ik
(x,y), (x,y) ∈ τk , (2.68c)

where nk are the total number of nodes in the triangle (6 for quadratic Lagrange polyno-

mials), N k
ik
is the shape function associated with node ik in element τk , and Êik and Ĥik are

unknown coefficients on the nodes of element τk to be found by the FE method.

2.3.4 System of linear equations

The substitution of the trial and test functions by the local Lagrange shape functions, equa-

tions (2.68), in the discrete variational problem (2.55) results in:

nτ
∑

k=1

6
∑

jk=1

[∫

τk

(

Êkjk∇N̄
k
ik
· (ŷκ−2e ∇N

k
jk
) + Ĥk

jk
∇N̄ k

ik
· (iκzκ

−2
e R∇N k

jk
)

+Êkjk N̄
k
ik
ŷN k

jk

)

d2r
]

=

nτ
∑

k=1

6
∑

jk=1

[∫

τk

N̄ k
ik
f̂1d

2r

]

; ik = 1,2, . . . ,6,

(2.69a)

nτ
∑

k=1

6
∑

jk=1

[∫

τk

(

Ĥk
jk
∇N̄ k

ik
· (ẑκ−2e ∇N

k
jk
)− Êkjk∇N̄

k
ik
· (iκzκ

−2
e R∇N k

jk
)

+Ĥk
jk
N̄ k
ik
ẑN k

jk

)

d2r
]

=

nτ
∑

k=1

6
∑

jk=1

[∫

τk

N̄ k
ik
f̂2d

2r

]

; ik = 1,2, . . . ,6.

(2.69b)

Written in matrix form:
nτ
∑

k=1

[Ak]{Uk} =

nτ
∑

k=1

{Fk}, (2.70)
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where [Ak] is a 6× 6 matrix with components:

Akikjk =















ŷ
∫

τk

(

κ−2e ∇N̄
k
ik
· ∇N k

jk
+ N̄ k

ik
N k
jk

)

d2r iκzκ
−2
e

∫

τk
∇N̄ k

ik
·R∇N k

jk
d2r

−iκzκ
−2
e

∫

τk
∇N̄ k

ik
·R∇N k

jk
d2r ẑ

∫

τk

(

κ−2e ∇N̄
k
ik
· ∇N k

jk
+ N̄ k

ik
N k
jk

)

d2r















for ik , jk = 1,2, . . .6,

(2.71)

with medium properties ŷ,κ−2e and ẑ assumed constant inside an element. {Uk} is the 6× 1

vector of unknowns on the nodes of triangle τk , with vector elements:

Ukjk =













Êjk
Ĥjk













for jk = 1,2, . . .6; (2.72)

and {Fk} is a 6× 1 vector with components:

Fkik =















∫

τk
N̄ k
ik
f̂1d

2r
∫

τk
N̄ k
ik
f̂2d

2r















for ik = 1,2, . . .6. (2.73)

The three integrals that appear in the element matrix Akikjk (2.71) are:

∫

τk

∇N̄ k
ik
· ∇N k

jk
d2r, (2.74a)

∫

τk

N̄ k
ik
N k
jk
d2r, (2.74b)

∫

τk

∇N̄ k
ik
·R∇N k

jk
d2r. (2.74c)

Note that, these integrals only depend on the geometry, so they can be reused for calcu-

lations with different frequencies, different wavenumber values κz and different source-

receiver geometries. They can be calculated by Gaussian quadrature or more precisely,

quadrature rules.

Element matrices [Ak] and element vectors {Uk} and {Fk} are generated for all elements

in the mesh and assembled into their proper locations in the global matrix and vectors. The

positions of the elemental matrices and vectors in their global counterparts are determined

by their indexing.

The assembly process avoids the explicit summations in (2.69) and yields the general

expression:

AU = F, (2.75)

where A is a 2n × 2n global matrix; U is a global 2n × 1 vector of 2 unknowns, Ej and Hj ,

on each mesh node j; F is a global 2n × 1 vector containing the source terms and n is the

dimension of the trial space (the number of DOFs).

The FE matrix A is sparse because the nodal basis function φi vanishes outside the
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triangles containing node i as a vertex, implying that integrals in equations (2.74) are zero

if node i is not connected to node j.

2.3.5 Finite element solution

The last step to construct a FE solution for the 2.5-D CSEM BVP is the solution of the lin-

ear system (2.75) obtaining the values of the approximated along strike field components,

Êz,h and Ĥz,h, on the mesh nodes. Then, the solution in all the computational domain

∆ is approximated using the interpolation piecewise polynomial functions on each mesh

element.

The matrix system (2.75) is large and sparse, since each shape function is nonzero only

on adjacent elements sharing a certain node. There are a number of techniques to solve

it which essentially can be differentiated into iterative and direct. Iterative methods need

relatively little memory compared to direct methods, because they require to store only

matrix-vector products. However, ill-conditioning of matrices can lead to poor iterative

results. Direct techniques need to store the whole matrices, but sparse factorization tech-

niques can reduce the memory requirements. Additionally, direct solution methods are

less affected by ill-conditioning, if sufficient numerical precision is used. As we will de-

scribe in the next Chapter, we use a direct solver for the solution of (2.75).

The remaining EM field components, Êx, Êy , Ĥx and Ĥy , are derived from Êz,h and Ĥz,h

using (2.19). However, the resulting EM fields are in the κz-wavenumber domain, hence

an inverse Fourier transformation to the spatial domain is required. To compute the in-

verse Fourier transform (2.11) numerically, it is necessary to calculate a set of solutions for

several wavenumbers κz.

In the next Chapter we give further details on the solution of the FE linear system and

on the numerical technique we use to calculate the inverse Fourier transform.

2.4 Analysis of the finite element method

When solving a BVP using a numerical technique it is important to provide a measure

of the quality of the approximate solution. Errors in the FE solution can be differentiated

between FE approximation errors, ‖u−uh‖, where ‖·‖ is some appropriate norm, and pertur-

bation errors generated from: a) numerical integration; b) interpolated Dirichlet boundary

conditions by functions in P p; and c) errors caused by the approximation of the external

boundary domain ∂∆ by piecewise-polynomial functions.

Analysis of the FE approximation error consists, essentially, on two steps (Flaherty):

1. Show that uh is optimal in the sense that the error of discretization satisfies:

‖u − uh‖ ≤ C min
wh∈Hh

‖u −wh‖, (2.76)

in an appropriate norm and C > 1.
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2. Find an upper bound for the RHS of (2.76) (convergence rate).

With the FE numerical method accurate a priori and a posteriori estimates of discretiza-

tion errors and convergence rates are possible. A priori estimations can, without compu-

tation, infer that FE solutions converge at a certain rate depending on the exact solution’s

smoothness. Otherwise, a posteriori error estimates, obtain the error from a computed FE

solution. The a posteriori estimate can give more quantitative information about the accu-

racy of the solution than a priori estimates, for which error bounds are expressed in terms

of unknown constants which are difficult, if not impossible, to determine.

As a part of this thesis we included in our algorithm amesh refinement technique based

on a posteriori error estimators. Technical details are given in Chapter 3. We have also

performed some numerical experiments using two different a posteriori error estimation

techniques to generate an optimal mesh, which will be discussed in Chapter 4. In the fol-

lowing section, we will summarize some principal ideas about the subject, however error

estimators of Maxwell’s equations are nontrivial and are the topic of active research. For

a thorough details on FE error estimation techniques we refer to Babuška and Strouboulis

(2001).

2.4.1 A priori error estimates

The a priori error estimates utilize information about the smoothness of the exact solution,

the input data, the span of the FE basis functions, and the geometry of the elements to

infer the convergence rate of the FE solution. All these quantities are known prior to the

computation of the FE solution for the problem of interest. The a priori estimates are im-

portant because they guarantee that, in principle, the FE solution uh can approximate the

exact solution u, with arbitrarily high accuracy, and because they characterize the factors

on which the accuracy depends on. A priori estimates however cannot be used effectively,

for the quantitative estimation of the error.

First of all, let us consider a Galerkin problem for a second-order differential equation,

find u ∈H1
0 such that:

A(u,v) = F(v), ∀v ∈H1
0 , (2.77)

where A is the FE operator and v is the test function, and we have changed the notation

respect equation (2.75), to clarify the following exposition. Also we consider its FE coun-

terpart, find uh ∈ P
p such that:

A(uh,vh) = F(vh), ∀vh ∈ P
p. (2.78)

Second, we define the discretization error as:

e(x,y) = u(x,y)− uh(x,y), (2.79)
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and the global norm as a square root of the strain energy of the error:

‖e‖A :=
√

A(e,e), (2.80)

with the L2 norm:

‖e‖0 :=

[∫

e2
]1/2

. (2.81)

Additionally, we consider a family of uniform FE meshes ∆ for which all angles of all

elements are bounded away from 0 and π and all aspect ratios are bounded away from

zero as the element size h→ 0. Uniformity ensures that transformations from the physical

to the computational space are well behaved. Thus, with uniform meshes the error in

interpolating a function u ∈Hp+1 by a complete polynomial wh of degree p satisfies (2.76).

We also assume that u ∈ H1
0 and uh ∈ S

N
0 ⊂ H

1
0 satisfy (2.77) and (2.78), respectively,

where A(u,v) is a symmetric, continuous, and H1−elliptic bilinear form; SN0 consists of

complete piecewise-polynomial functions of degree p with respect to a uniform family of

meshes τh; and u ∈H
1
0 ∩H

p+1. Then we find:

‖u − uh‖1 ≤ Ch
p‖u‖p+1, (2.82)

and

A(u − uh,u − uh) ≤ Ch
2p‖u‖

2p
p+1, (2.83)

with h∆ the maximum element size for the mesh ∆.

The convergence of the approximate solution can be addressed by letting n→∞. For

the Galerkin FE method n = pN (∆), and the convergence can be achieved in one of the

following three ways (Babuška and Strouboulis, 2001):

1. By refining the mesh such that the mesh size h∆ tends to zero as the number of ele-

ments N (∆) diverges to infinity, while keeping p fixed. This is the h version of the FE

methods.

2. By increasing p while keeping the mesh ∆ fixed. This is the p version of the FE

methods.

3. By letting h∆ tend to zero, and increasing p simultaneously. This is the hp version of

the FE method.

in this thesis we address the h and p versions with p = 1,2,3.

The FE solution converges to the exact solution by establishing asymptotic estimates

for the energy norm, the L2 norm, and various other norms of the error (Babuška and

Strouboulis, 2001).
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2.4.2 A posteriori error estimates

A posteriori error estimates utilize a computed FE solution to estimate quantitatively the

discretization error. There are several techniques available, which can be divided into four

categories (Flaherty):

1. Residual error estimates. Local FE problems are created on either an element or a

subdomain and solved for the error estimate. The data depend on the residual of the

FE solution.

2. Flux-projection error estimates. A new flux is calculated by post processing the FE

solution. This flux is smoother than the original FE flux and an error estimate is

obtained from the difference of the two fluxes.

3. Extrapolation error estimates. Two FE solutions having different orders or different

meshes are compared and their differences are used to provide an error estimate.

4. Interpolation error estimates. Interpolation error bounds are used with estimates of

the unknown constants.

It is also important to differentiate between error estimator and element error indicator

(Babuška and Strouboulis, 2001):

• The error estimator gives an estimate for the error in a solution quantity, and serves

as criterion for the acceptance of the results, whether the desired accuracy in the out-

puts of interest has been achieved. Thus the estimator is used as a stopping criteria.

• The error indicator is a tool for the adaptive construction of the approximation. In

many cases an error indicator is the contribution of the element in an estimate for a

quantity of interest, e.g. the global energy norm of the error, but often the indicator

is based on heuristics, for example, the indicator which employs the gradient of the

computed solution, or some function of the residual.

A major requirement is that the computation of the a posteriori estimates should have

reasonable cost. Another important requirement is that the a posteriori estimates must be

accurate.

In this thesis we will use in the adaptive mesh refinement technique a posteriori error

estimator methods. In particular, we will use some form of the residual error estimate.

2.5 2.5-D CSEM in an electrically anisotropic media

In an electrically anisotropic media, the conductivity varies with the direction of the ap-

plied electric field. Anisotropy in the Earth observed using EM methods can be originated

in a microscopic scale (e.g. preferred orientations within crystals) or in a macroscopic

scale due to the inability of EM methods to resolve oriented structures smaller than the



Chapter 2. CSEM and MT FE modeling in 2-D 39

averaged volume (Martı́, 2014). Electrical anisotropy is recognized by the EM community

as an important factor to consider in order to understand EM observations (e.g. Li and Pek,

2008; Martı́, 2014). However, most of the modeling programs used today assume that the

subsurface is electrically isotropic and only recent publications report anisotropic model-

ing studies for 2-D marine CSEM. In 2.5-D CSEM, Kong et al. (2008) included diagonal

anisotropy in their marine modeling program, and Li and Dai (2011) presented a more

complete FE algorithm to model 2-D dipping anisotropic conductivity structures.

In the program we develop in this thesis we have implemented the possibility to model

2-D dipping anisotropic conductivity structures. In the sections above we have derived

the 2.5-D CSEM modeling equations for an electric isotropic conductivity model. The

derivation is simpler for the isotropic case and it is helpful for a clear description of the FE

analysis. In the following we derive the governing equations and weak form of the 2.5-D

CSEM problem considering anisotropy. We follow the derivation of Li and Dai (2011),

but only partly since they use the primary/secondary field approach whereas we consider

the total field. In the derivation we concentrate only in the differences with the above

described isotropic case: the governing equations and the weak form equations in the FE

context.

2.5.1 Governing equations

In this section we derive and give the governing equations for the 2.5-D CSEM electrically

anisotropic problem. The starting point are equations (2.4), Maxwell’s equations in com-

plex form. All the previous assumptions to these equations are still valid, except the one

concerning the electrical conductivity, which now we assume to be more general where the

media has dipping electrical conductivity anisotropy:

σ =























σxx σxy 0

σyx σyy 0

0 0 σzz























. (2.84)

In the Earth the conductivity tensor is symmetric and positive definite (e.g. Martı́,

2014). Accordingly, σxy = σyx and the conductivity tensor (2.84) is characterized only by

four components. The conductivity tensor above (2.84) and even the more general one

where σxz and σyz are non-zero, can be rotated, because of the symmetry and positive def-

initeness properties, into their principal axes using Euler’s elementary rotations and then

be described by its three principal values, σx, σy and σz, and the corresponding three Euler

angles, αs (strike), αd (dipping) and αl (slant) (e.g. Martı́, 2014), as shown in Figure 2.7.

The tensor above describes the dipping anisotropic case for which the diagonal elements

can be all different, σx , σy , σz , σx, and αd , 0 and αs = αl = 0 (Figure 2.8 left). When

all the angles are null and the tensor is diagonal in the measuring reference frame, the

anisotropy is vertical for a vertical axis of symmetry (Figure 2.8 right).

We rewrite equations (2.4) substituting the isotropic conductivity variable σ (σI) with
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Figure 2.7: Euler’s elementary rotations applied to the 3 × 3 conductivity tensor to define it by its
three principal values, σx,σy and σz , and by three rotation angles: αs (strike), αd (dip) and αl (slant).
Three rotations are successively applied to the diagonal principal form of the conductivity tensor;
first, around the vertical axis by the anisotropy strike αs , then around the new strike axis by the
anisotropy dip αd , and finally, around the latest vertical axis by the slant angle αl . In this way, any
orientation of the conductivity tensor in space can be achieved. Redrawn and modified from Martı́
(2014).
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σz = σzz
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αs = αd = αl = 0αd 6= 0 and αs = αl = 0

Figure 2.8: Left: Dipping anisotropy; the three principal values of the conductivity can be all differ-
ent σx , σy , σz , and αd , 0 and αs = αl = 0. Right: Vertical anisotropy; the three principal values of
the conductivity can be all different σx , σy , σz , and αd = αs = αl = 0. Redrawn and modified from
Martı́ (2014).
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the anisotropic tensor σ:

∇×E+ iωµ0H = −iωµ0M
s, (2.85a)

∇×H− (σ + iǫ0ω)E = Js. (2.85b)

We apply, as before, the 2.5-D approximation and we Fourier transform the equations us-

ing equation (2.10) and equation (2.12). After some algebra, we obtain a system of coupled

PDEs for the electric and magnetic along-strike field components, Êz and Ĥz, in a bounded

domainΩ ⊂ R
2 with conductivity σ:

−∇ · (σ2Λ
−1∇Êz)− iκz∇ · (Λ

−1R∇Ĥz) +σzzÊz = f̂a,1

−∇ · (ẑRΛ−1RT∇Ĥz) + iκz∇ · (RΛ
−1RTR∇Êz) + ẑĤz = f̂a,2 inΩ

Êz, Ĥz = 0 on ∂Ω,

(2.86a)

(2.86b)

(2.86c)

with

f̂a,1 = −Ĵ
s
z + iκz∇ · (Λ

−1Ĵst ) +∇ · (ẑσ2Λ
−1RM̂s

t), (2.87a)

f̂a,2 = −ẑM̂
s
z + iκz∇ · (ẑRΛ

−1RT M̂s
t)−∇ · (ẑRΛ

−1RTRĴst ), (2.87b)

and

∇ = (∂x,∂y); σ2 ≡













σxx σxy

σxy σyy













; ẑ = iµ0ω; R =













0 −1

1 0













;

Λ ≡ ẑσ2 +κ
2
z I =













γ2
x ẑσxy

ẑσxy γ2
y













; Λ
−1 =

1

det(Λ)
RΛTRT ;

γ2
x = ẑσxx +κ

2
z ;

γ2
y = ẑσyy +κ

2
z ;

γ2
xy = γ

2
xγ

2
y − ẑ

2σ2
xy = det(Λ).

In the outer boundary, ∂Ω, Dirichlet boundary conditions are imposed. The vectors Ĵst
and M̂s

t are, as before, the transformed source currents transverse to z, i.e. Ĵst = (Ĵ sx, Ĵ
s
y) and

M̂s
t = (M̂s

x, M̂
s
y).

Writing the governing equations using the variables we defined above helps to see the

equations of the electrically anisotropic problem as a generalization of the isotropic prob-

lem given by equations (2.15). Equation (2.15a) is directly recovered from (2.86a) if σxx =

σyy = σzz = σ and σxy = 0 since in this case σ2 = ŷ = σI, σ = σzz, and Λ
−1 = κ2e = ẑŷI + κ

2
z I.

Equation (2.15b) is also readily found from equation (2.86b) with the mentioned substitu-

tions, but with, RΛ−1RT = κ2e = ẑŷI+κ
2
z I, where the identity RIRT = I has been used.

The other EM field components can be obtained from space derivatives of Êz and Ĥz
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using:

Êt =Λ
−1

(

−iκz∇Êz − ẑR∇Ĥz − ẑĴ
s
t − iκzẑRM̂

s
t

)

,

Ĥt = RΛ−1RT
(

Rσ2R
TR∇Êz − iκz∇Ĥz + iκzRĴ

s
t − ẑRσ2R

T M̂s
t

)

,

(2.88a)

(2.88b)

with Êt =
(

Êx, Êy
)

and Ĥt =
(

Ĥx, Ĥy
)

.

2.5.2 Finite elements formulation

To derive the FE formulation of the electrically anisotropic 2.5-D CSEM problem we follow

the same scheme as for the isotropic case. In this section we focus mainly on the derivation

of the weak form of the governing equations.

Considering the inner product L2(Ω) of two complex valued scalar functions (equation

2.38) and applying it to equations (2.86), with test functions v1 and v2, reads:

∫

Ω

v̄1
(

−∇ · (σ2Λ
−1∇Êz)− iκz∇ · (Λ

−1R∇Ĥz) +σzzÊz
)

d2r =

∫

Ω

v̄1f̂a,1d
2r, (2.89a)

∫

Ω

v̄2
(

−∇ · (ẑRΛ−1RT∇Ĥz) + iκz∇ · (RΛ
−1RTR∇Êz) + ẑĤz

)

d2r =

∫

Ω

v̄2f̂a,2d
2r. (2.89b)

Using equation (2.42), the integrals above can be transformed to:

∫

Ω

(

∇v̄1 · (σ2Λ
−1∇Êz) +∇v̄1 · (iκzΛ

−1R∇Ĥz) + v̄1σzzÊz
)

d2r

−

∫

Ω

(

−v̄1Ĵ
s
z −∇v̄1 · (iκzΛ

−1Ĵst)−∇v̄1 · (ẑσ2Λ
−1RM̂s

t)
)

d2r

+

∮

∂Ω
v̄1Λ

−1
(

−σ2∇Êz − iκzR∇Ĥz − iκz Ĵ
s
t − ẑσ2RM̂

s
t

)

· n̂dr = 0,

(2.90a)

∫

Ω

(

∇v̄2 · (ẑRΛ
−1RT∇Ĥz)−∇v̄2 · (iκzRΛ

−1RTR∇Êz) + v̄2ẑĤz
)

d2r

−

∫

Ω

(

−v̄2ẑM̂
s
z −∇v̄2 · (iκzẑRΛ

−1RT M̂s
t) +∇v̄2 · (ẑRΛ

−1RTRĴst )
)

d2r

+

∮

∂Ω
v̄2RΛ

−1RT
(

−ẑ∇Ĥz + iκzR∇Êz − iκzẑM̂
s
t + ẑRĴ

s
t

)

· n̂dr = 0,

(2.90b)

where we have used (2.87a) and (2.87b) for f̂a,1 and f̂a,2 respectively.

Analyzing the boundary integral terms in (2.90), we multiply by the identity matrix

RTR and use the relations −RT = R and RR = −I to obtain

∮

∂Ω
v̄1R

TRΛ−1RT
(

−Rσ2∇Êz + iκz∇Ĥz − iκzRĴ
s
t + ẑRσ2R

T M̂s
t

)

· n̂dr, (2.91a)

∮

∂Ω
v̄2RΛ

−1
(

ẑR∇Ĥz + iκz∇Êz + iκz ẑRM̂
s
t + ẑĴ

s
t

)

· n̂dr, (2.91b)
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where we can identify the transverse components Êt (equation 2.88a) and Ĥt (equation

2.88b) and substitute them in (2.91) together with the relation −RT = R, obtaining

∮

∂Ω
v̄1RĤt · n̂dr (2.92a)

−

∮

∂Ω
v̄2RÊt · n̂dr. (2.92b)

This result is exactly the same as for the isotropic case, equation (2.47). The integrals

in the boundaries are 0, by natural boundary conditions (continuity conditions in internal

boundaries) and by explicitly enforcing essential boundary conditions. Therefore, the test

functions are chosen null in the external boundary.

Finally, the electrically anisotropic BVP can be restated as the variational problem:

Find Êz, Ĥz ∈ H = [H1
0 (Ω)]2 such that

∫

Ω

(

∇v̄1 · (σ2Λ
−1∇Êz) +∇v̄1 · (iκzΛ

−1R∇Ĥz) + v̄1σzzÊz
)

d2r =

∫

Ω

v̄1f̂a,1d
2r,

∫

Ω

(

∇v̄2 · (ẑRΛ
−1RT∇Ĥz)−∇v̄2 · (iκzRΛ

−1RTR∇Êz) + v̄2ẑĤz
)

d2r =

∫

Ω

v̄2f̂a,2d
2r,

for all v1,v2 ∈ H and with

∫

Ω

v̄1f̂a,1d
2r =

∫

Ω

(

−v̄1Ĵ
s
z −∇v̄1 · (iκzΛ

−1Ĵst )−∇v̄1 · (ẑσ2Λ
−1RM̂s

t)
)

d2r,

∫

Ω

v̄2f̂a,2d
2r =

∫

Ω

(

−v̄2ẑM̂
s
z −∇v̄2 · (iκzẑRΛ

−1RT M̂s
t)

+∇v̄2 · (ẑRΛ
−1RTRĴst )

)

d2r.

(2.93a)

(2.93b)

(2.93c)

(2.93d)

The space H = [H1
0 (Ω)]2 is, as before, the space where the functions and its first order

weak derivatives are square integrable in Ω and vanish in the outer boundary ∂Ω.

The next steps are, as for the isotropic problem, to approximate the infinite dimen-

sional function spaces, H, by finite dimensional ones, Hh, and to spatially discretize the

model domain. Then, the dependent variables are approximated by a linear combination
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of a set of basis functions {φi }
n
i=1 fromHh:

Êz,h(x,y) =
n

∑

i=1

Êiφi(x,y), (2.94a)

Ĥz,h(x,y) =
n

∑

i=1

Ĥiφi(x,y), (2.94b)

and the test function v as a linear combination of the same n basis function used for Êz,h

and Ĥz,h:

v1,h(x,y) = v2,h(x,y) =
n

∑

i=1

φi(x,y). (2.95)

The discretized FE problem reads then,

n
∑

i=1

n
∑

j=1

∫

∆

(

∇φ̄i ·
(

σ2Λ
−1∇(Êjφj )

)

+∇φ̄i ·
(

iκzΛ
−1R∇(Ĥjφj )

)

+φ̄iσzzÊjφj
)

d2r =
n

∑

i=1

n
∑

j=1

∫

∆

φ̄i f̂a,1d
2r,

(2.96a)

n
∑

i=1

n
∑

j=1

∫

∆

(

∇φ̄i ·
(

ẑRΛ−1RT∇(Ĥjφj )
)

−∇φ̄i ·
(

iκzRΛ
−1RTR∇(Êjφj )

)

+φ̄i ẑĤjφj
)

d2r =
n

∑

i=1

n
∑

j=1

∫

∆

φ̄i f̂a,2d
2r,

(2.96b)

which has a similar form as for the isotropic case (2.59), and again can be expressed in

matrix form as a linear system of matrices:

AU = F, (2.97)

where A is a n× n matrix with elements Aij , 2× 2 matrices,

Aij =















∫

∆

(

∇φ̄i ·
(

σ2Λ
−1∇φj

)

+σzzφ̄iφj
)

d2r iκz
∫

∆
∇φ̄i ·

(

Λ
−1R∇φj

)

d2r

−iκz
∫

∆
∇φ̄i ·

(

RΛ−1RTR∇φj
)

d2r
∫

∆
ẑ
(

∇φ̄i ·
(

RΛ−1RT∇φj
)

+ φ̄iφj
)

d2r















for i, j = 1,2, . . .n,

(2.98)

U is the vector of unknowns of dimension n×1 where elementsUj associated to mesh entity

j read:

Uj =













Êj

Ĥj













, for j = 1,2, . . .n; (2.99)
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and finally, F is a n× 1 vector, with vector elements:

Fi =













∫

∆
φ̄i f̂a,1d

2r
∫

∆
φ̄i f̂a,2d

2r













, for i = 1,2, . . .n. (2.100)

We use again Lagrange shape functions for the trial functions above, and then, the

integrals in A are evaluated on each element, reducing to the same ones as for the isotropic

case. Therefore:

∫

τk

∂xN̄
k
ik
∂xN

k
jk
d2r, (2.101a)

∫

τk

∂yN̄
k
ik
∂yN

k
jk
d2r, (2.101b)

∫

τk

∂xN̄
k
ik
∂yN

k
jk
d2r, (2.101c)

∫

τk

∂yN̄
k
ik
∂xN

k
jk
d2r, (2.101d)

∫

τk

N̄ k
ik
N k
jk
d2r. (2.101e)

In the integrals above, the dependency with σ has been moved out of the integration.

Functions of the conductivity tensor components: σxx,σyy ,σzz and σxy , resulting fromprod-

ucts between the vectors and matrices: ∇, σ2, Λ
−1 and R, are constant inside each element

and can be moved out of the integrals. The linear system in (2.97) is solved using a direct

solver, as in the previous case.

2.6 The Magnetotellurics modeling problem

In the MT method, the natural EM fields at the surface of the Earth can be approximated

as plane waves with most of their energy reflected but with a small amount propagating

vertically downward into the subsurface. For plane waves, κz = 0 and the sources terms

are also null because the sources are not located in the model, but at infinity. However it is

necessary to generate these EM plane waves, and this can be achieved through boundary

conditions (e.g. Franke et al., 2007).

When modeling MT in 2-D structures, it is necessary to solve the problem for two

independent polarizations: the E-polarization or TE mode and the H-polarization or TM

mode (Figure 2.9). In the TE mode, the electric field, E, points in the strike direction and

the magnetic field, H, lies in the plane orthogonal to the strike. In contrast, in the TM

mode, H points in the strike direction and E is oriented in the horizontal plane orthogonal

to the strike.

These two modes of MT excitation are described by two uncoupled differential equa-

tions for Êz and Ĥz, respectively, which can be derived directly from Maxwell’s equations.



46 2.6. The Magnetotellurics modeling problem

However, in the following, we derive them from the 2.5-D CSEM equations (2.15) or (2.86),

for an electrically anisotropic media, as a particular case when κz = 0 and Jst = 0, Ms
t = 0,

J sz = 0,Ms
z = 0.

We consider the MT governing equations for an electrically anisotropic media starting

from (2.86), and show the governing equations for the particular case when the media can

be approximated as isotropic. Below, we develop the FE analysis for MT, concentrating

strictly on the differences with the described 2.5-D CSEM FE formulation, principally, the

weak form of the governing equations.

We excite the model giving appropriate Dirichlet conditions in the outer boundaries

following Franke et al. (2007). These conditions are constructed from 1-D solutions for

the corresponding layered media at the left and right lateral sides of the model. Solutions

for plane waves diffusing in a 1-D media can be calculated analytically applying a matrix

propagation method to the vector composed of the horizontal components of the MT field.

In the top and bottom boundaries, a cosine taper is applied between the 1-D values at the

left and right margins of the model.

2.6.1 Governing equations

The MT governing equations can be derived as a particular case of the 2.5-D CSEM equa-

tions when κz = 0, and Jst = 0, Ms
t = 0, J sz = 0, Ms

z = 0. The basic assumptions are the same

as for CSEM; the conditions in the inner boundaries are again: continuity of the tangential

component of the electric field, continuity of the normal component of the current density

and continuity of all components of the magnetic field.

Considering the 2.5-DCSEM equations for an electrically anisotropicmedia (2.86), and

imposing κz = 0, and Jst = 0, Ms
t = 0, J sz = 0, Ms

z = 0, we obtain:

−∇ ·

(

1

ẑ
∇Ez

)

+σzzEz = 0

−∇ ·
(

Rσ−12 RT∇Hz
)

+ ẑHz = 0 inΩ

Ez,Hz = g(x,y) on ∂Ω,

(2.102a)

(2.102b)

(2.102c)

with

∇ = (∂x,∂y); ẑ = iµ0ω; R =













0 −1

1 0













;

σ2 ≡













σxx σxy

σxy σyy













; σ−12 =
1

det(σ2)
RσT2 R

T ; det(σ2) = σxxσyy −σ
2
xy .

The PDEs (2.102) are the governing equations for MT; two uncoupled equations for the

electric and magnetic strike-parallel field components Ez and Hz in a bounded domain
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x

−y −Hy −Ey

Hx Ex

HzEz
z

TE mode TM mode

Figure 2.9: Transverse electric (TE) and transverse magnetic (TM) modes of the magnetotellurics
fields for a 2-D conductivity model. The electric field in the TE mode is directed in the strike di-
rection (z) and the magnetic field lies in the xy-plane of the model. Inversely, in the TM mode, the
magnetic field points along the strike direction and the electric field has only components in the
xy-plane.

Ω ⊂ R
2 with conductivity σ (equation 2.84), and external boundary conditions g(x,y).

Each equation corresponds to one transverse mode (Figure 2.9), equation (2.102a) as the

TE mode and equation (2.102b) as the TM mode. Here, the EM fields are in the spatial

domain and the external boundary conditions g(x,y) are a function of space calculated by

using analytical solutions for a layered model (Wait, 1953).

Once equations (2.102) have been solved, the other EM field components can be ob-

tained from space derivatives of Ez and Hz using:

Et = −σ
−1
2 R∇Hz

Ht =
1

z
R∇Ez,

(2.103a)

(2.103b)

with Et =
(

Ex,Ey
)

and Ht =
(

Hx,Hy
)

.

The equations for an electrically isotropic media are easily obtained from equations

(2.102) by imposing σxx = σyy = σzz = σ and σxy = 0:

−∇ ·

(

1

ẑ
∇Ez

)

+σEz = 0

−∇ ·

(

1

σ
∇Hz

)

+ ẑHz = 0 inΩ

Ez,Hz = g(x,y) on ∂Ω,

(2.104a)

(2.104b)

(2.104c)

with σ = σ(x,y), and

Et = −
1

σ
R∇Hz

Ht =
1

z
R∇Ez.

(2.105a)

(2.105b)
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2.6.2 Finite elements formulation

To model the MT method with FE, the first step is, as explained before, to derive the

weak form of the governing equations. Considering the more general equations for the

electrically anisotropic media (2.102) and taking the inner product L2(Ω) of two complex

valued scalar functions (equation 2.38), with test functions v1 and v2, reads:

∫

Ω

v̄1

(

−∇ ·

(

1

ẑ
∇Ez

)

+σzzEz

)

d2r = 0, (2.106a)

∫

Ω

v̄2
(

−∇ ·
(

Rσ−12 RT∇Hz
)

+ ẑHz
)

d2r = 0. (2.106b)

Using equation (2.42), the integrals can be transformed to:

∫

Ω

(

∇v̄1 ·
(

1

ẑ
∇Ez

)

+ v̄1σzzEz

)

d2r −

∮

∂Ω
v̄1

1

ẑ
∇Ez · n̂dr = 0, (2.107a)

∫

Ω

(

∇v̄2 ·
(

Rσ−12 RT∇Hz
)

+ v̄2ẑHz
)

d2r −

∮

∂Ω
v̄2Rσ

−1
2 RT∇Hz · n̂dr = 0. (2.107b)

Analyzing the boundary integrals, the in-plane field components expressions can be iden-

tified using (2.103):

−

∮

∂Ω
v̄1

1

ẑ
∇Ez · n̂dr =

∮

∂Ω
v̄1RHt · n̂dr, (2.108a)

−

∮

∂Ω
v̄2Rσ

−1
2 RT∇Hz · n̂dr = −

∮

∂Ω
v̄2REt · n̂dr. (2.108b)

Splitting each of the boundary integrals in an integral for interior boundaries and an in-

tegral for exterior boundaries, the integrals for interior boundaries are null per continuity

boundary condition of tangential components (natural boundary conditions) and the inte-

grals for the outer boundary vanish, by choosing test functions v1,v2 = 0 on this boundary

(essential boundary conditions), that is v1,v2 ∈ H.

Then, the weak formulation of the MT problem in an electrically anisotropic media

Ω ⊂ R
2 is:

Find Ez,Hz ∈ Hg such that

∫

Ω

(

∇v̄1 ·
(

1

ẑ
∇Ez

)

+ v̄1σzzEz

)

d2r = 0

∫

Ω

(

∇v̄2 ·
(

Rσ−12 RT∇Hz
)

+ v̄2ẑHz
)

d2r = 0

for all v1,v2 ∈ H = [H1
0 (Ω)]2,

(2.109a)

(2.109b)
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where

Hg ≡
{

u ∈ [H1(Ω)]2 : u = g on ∂Ω
}

,

H ≡
{

v ∈ [H1(Ω)]2 : v = 0 on ∂Ω
}

, (2.110)

and [H1(Ω)]2 is the space for which the functions and their first order weak derivatives are

square integrable inΩ.

The next steps in the FE analysis follow the same scheme as for the CSEM problem ex-

plained in the previous section. The space is discretized in a mesh of finite elements, and

the problem is projected from an infinite dimensional function space,H, to a finite dimen-

sional one, Hh. The fields Ez and Hz, and the test functions v1 = v2 = v are approximated

as linear combinations of basis functions {φi}
n
i=1 ∈ Hh:

Ez,h(x,y) =
n

∑

i=1

Eiφi(x,y), (2.111a)

Hz,h(x,y) =
n

∑

i=1

Hiφi(x,y), (2.111b)

vh(x,y) =
n

∑

i=1

φi(x,y). (2.111c)

The discretization of equations (2.109) and the substitution of its variables with the

expressions (2.111) leads to:

n
∑

i=1

n
∑

j=1

∫

∆

(

1

ẑ
∇φ̄i · ∇(Ejφj ) + φ̄iσzzEjφj

)

d2r = 0, (2.112a)

n
∑

i=1

n
∑

j=1

∫

∆

(

∇φ̄i ·
(

Rσ−12 RT∇(Hjφj )
)

+ φ̄i ẑHjφj
)

d2r = 0. (2.112b)

Equations above are uncoupled and can be expressed in matrix form as two indepen-

dent systems of linear equations:

AEUE = 0, (2.113a)

AHUH = 0, (2.113b)

where AE and AH are n× nmatrices with elements:

AE,ij =

∫

∆

(

1

ẑ
∇φ̄i · ∇φj +σzzφ̄iφj

)

d2r, (2.114a)

AH,ij =

∫

∆

(

∇φ̄i ·
(

Rσ−12 RT∇φj
)

+ ẑφ̄iφj
)

d2r, for i, j = 1,2, . . .n; (2.114b)

respectively, and UE and UH are unknown vectors of dimension n × 1, where elements
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associated to mesh entity j read

UE,j = Ej , (2.115a)

UH,j =Hj , for j = 1,2, . . .n. (2.115b)

The trial functions are chosen as Lagrange shape functions. Then, the integrals in AE

andAH are elementwise and reduce to the same ones as for the CSEM problem in equation

(2.101). Conductivity terms can be moved out of the integrals since they are constant

inside each element.

In the linear systems above we have not included the inhomogeneous boundary condi-

tions yet. The vectors UE and UH contain ni elements for the interior points in the ∆/∂∆

domain and n − ni elements for the points in the outer boundary ∂∆. To correctly apply

the Dirichlet conditions we need to split the vector elements into those corresponding to

interior points and those corresponding to the outer boundary:

UE = UE,∆/∂∆ +UE,∂∆, (2.116a)

UH = UH,∆/∂∆ +UH,∂∆, (2.116b)

and substitute them in equations (2.113):

AEUE,∆/∂∆ = −AEUE,∂∆, (2.117a)

AHUH,∆/∂∆ = −AHUH,∂∆. (2.117b)

Finally, the linear systems of equations (2.117) will be solved using direct methods.
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CHAPTER3

Implementation of a 2-D adaptive FE modeling program

3.1 Introduction

In this Chapter we present our development of an algorithm to model the frequency-

domain CSEM and MT methods on a 2-D conductivity structure using the FE technique.

Outstanding features of the program are: 1) the use of the FE method in the modeling

of 2.5-D CSEM and 2-D MT in both marine and land environments, and the possibility

to model dipping electrical anisotropic structures, 2) the possibility to model 3-D CSEM

sources, punctual and finite-length, in any arbitrary orientation and to model inhomo-

geneities near the source thanks to the modelization of the total field instead of a pri-

mary/secondary field approximation, 3) it is possible to use high-order shape functions in

the FE method, 4) the FE system matrix is solved using a fast and robust direct solver 5)

the meshes can be unstructured, giving the possibility to accommodate complicated ge-

ometries and small and large structures in the same grid, 6) an adaptive mesh refinement

algorithm is included with the choice of a global or a goal-oriented error estimator.

In recent years, many FE packages, both open source and commercial, have appeared

that assemble the governing equations of a given problem and solve the resulting linear

system with sophisticated numerical solvers. The emergence of these packages is directly

related to the simultaneous appearance of fast and robust numerical solver libraries and

high-quality meshing tools. Recent publications make use of these libraries and of the

FE packages in their EM application codes. Key and Ovall (2011) uses the open-source

constrained and conforming Delaunay triangulation code TRIANGLE (Shewchuk, 1996)

for their 2.5-D CSEM FE code. Schwarzbach et al. (2011) use the open-source tetrahedral

mesh generator TETGEN (Si, 2007), for the 3-D problem. MUMPS (Amestoy et al., 2006)

and PARDISO (Schenk and Gärtner, 2004) direct solvers are used in, e.g., Streich et al.

(2011) and Schwarzbach et al. (2011), respectively. Ultimately, open-source FE packages

as FEMSTER (Castillo et al., 2005) and deal.II (Bangerth et al., 2007), have also been used

for the implementation of the 3-D EM FE modeling problem in Schwarzbach et al. (2011)

and Grayver and Bürg (2014), respectively, and the commercial FE package, COMSOL

Multihysics (COMSOL, 2015), has been used in e.g. Franke et al. (2007) and Börner (2010).
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In the work developed in this thesis we use COMSOL Multihysics FE simulation soft-

ware together with MATLAB for the implementation of our program. Among the numer-

ous capabilities that COMSOL offers we highlight the sophisticated geometry generator,

the high-quality unstructured mesh generator; the possibility to use different shape func-

tions with high-order (higher than quadratic) and the incorporation of several fast and

robust numerical solvers, e.g. MUMPS and PARDISO. It also includes an interface to com-

municate with MATLAB, through which it is possible to program with MATLAB language

and using object-oriented programming. Inconveniences are mainly related with the in-

ability to access COMSOL source code.

The basic scheme of our modeling algorithm consists of the discretization of the model

geometry in elements (triangles), the assembling of the FE equations we have derived in

Chapter 2, the solution of the resulting linear system for a set of wavenumber values, and

the inverse Fourier transformation of the solution back to the spatial domain. Additionally,

it incorporates an automatic adaptive mesh refinement algorithm. In this Chapter, we

describe in detail the strategies we have used in each component of the program.

3.2 Implementation details

The implementation of the 2.5-D CSEM and 2-D MT FE problem derived in Chapter 2 is

done using COMSOLMultiphysics (COMSOL, 2015) andMATLAB using the interface that

connects them.

A typical FE software framework contains a preprocessing module to define the prob-

lem geometry, mesh and data; a processing module to assemble the FE equations and solve

the resulting system; and a postprocessing module to output the solution and calculate

additional quantities of interest. Lately, a module for the analysis of the FE solution is also

added.

The modeling program we have developed in this thesis follows this framework. In

Figure 3.1 we present the general flowchart of the program. The necessary inputs are the

model and a set of settings mainly related with the experiment setup: frequencies, type

of sources, location and orientation of the sources and location of the receivers. The spac-

ing of the wavenumber values at which the fields are computed and the upper and lower

limits for the wavenumber spectrum must be specified. The model, the geometry and the

electrical conductivity tensor in each region of the geometry, and an initial unstructured

triangular mesh, can be generated or imported, following some specific formats, with the

COMSOL graphical interface, and saved as a MATLAB file. The geometry of the model

is defined as a composition of different domains, and the input conductivity is constant

in each domain. In the unstructured grid, the elements are only constrained to be shape

regular (triangles) and the element edge length can vary from side to side and element to

element.

The program accepts complex geometries and it is possible to include an air layer and

a sea layer, and to locate the sources in any position of the model. The sources can be
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electric or magnetic dipoles in arbitrary orientations. The receivers can be also located in

any position of the model or in the strike plane. The allowed anisotropy in the model is

given by the electrical conductivity tensor in equation (2.84).

The processing and postprocessing modules are programmed in a COMSOL-MATLAB

interface and using object-oriented programming. In this environment the inputs are read

and sort, and the FE equations derived in Chapter 2 for MT and CSEM are assembled

using COMSOL libraries. For CSEM modeling, appropriate source terms are included.

Otherwise, for MTmodeling, the model is excited by imposing boundary conditions which

we calculate analytically as described in Chapter 2.

The resulting linear system of equations is solved using the direct solver MUMPS

(Amestoy et al., 2006). Sweeps are performed for different frequencies and sources and

over a set of wavenumber values; for each frequency and source, a sweep over wavenum-

ber values is required. The shape functions for the dependent variables, the Fourier trans-

formed strike-directed electric and magnetic fields, are nodal Lagrange functions with

order up to 7th.

We have also implemented an automated a posteriori adaptive mesh refinement algo-

rithm adapting a COMSOL library to our problem. The adaptive mesh refinement is an

iterative algorithm, which at each iteration selects a subset of elements to refine based

on an estimate of their contribution to the solution error. As we will describe later, we

use two different criteria to estimate the error: a L2-norm global error estimation and a

goal-oriented error estimation.

As we alreadymentioned, the system of equations (2.97) is solved for the strike-parallel

field components in the wavenumber domain. The other field components, the electric Êx

and Êy and magnetic Ĥx and Ĥy , are calculated by differentiating the FE solution fields in

the xy− plane (equations 2.88). In the CSEM case, an inverse Fourier transform of all com-

ponents is necessary to obtain the solution in the spatial domain. The integration is in the

strike-parallel wavenumber coordinate and therefore the FE solution must be computed

for a set of discrete wavenumber values. Then, we apply a cubic-spline interpolation of

the field values for the different wavenumbers, and finally an inverse Fourier transform

using the digital filter method is applied.

At last, the required output is calculated if necessary, that is, amplitudes and phases

for CSEM or apparent resistivities and phases for MT.

In the following we describe some technical aspects on the methods we use in our

program.

3.2.1 Source modeling

Sources used in the CSEMmethod includemagnetic loops and long horizontal wires which

are grounded in land-based surveys or deployed on the seafloor or towed through the water

in marine surveys (in this thesis we do not consider airborne methods). Vertical electrical

sources are also used. The sources most commonly used in present day CSEM applications
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are horizontal wires with length of several hundred meters (Streich et al., 2011).

There are distinct strategies used in the literature on how to model the sources. We

differentiate between using the primary/secondary fields approximation (e.g. Everett and

Edwards, 1992; Unsworth et al., 1993; Li and Key, 2007; Streich et al., 2011) or modeling

the total field (e.g. Stoyer and Greenfield, 1976; Mitsuhata, 2000; Key and Ovall, 2011).

In the primary/secondary field approach the source term is eliminated from the equa-

tions and the principle of superposition is applied. The EM fields are expressed in terms of

a primary field induced by the source in a 1-D layered background model with a primary

conductivity and secondary fields which arise in regions where the conductivity differs

from the primary one. The reason of this approach is to avoid the modeling of the source

term, which is singular and hence it is difficult to represent accurately by a discrete formu-

lation (Unsworth et al., 1993). However, this conventional scheme is not effective for com-

plex structures lacking a simple background model (Mitsuhata, 2000). Moreover, when

modeling general 3-D sources, 1-D analytical or semianalytical solutions for the primary

field do not exist in the xyκz−domain, and it is necessary to first calculate the primary field

in the spatial-domain and then Fourier transform it numerically along the strike direction

onto the wavenumber-domain for the 2.5-D problem. These additional calculations in-

crease the computational time and reduces the quality of the solution, since the error in

the additional numerical integration is added to the problem.

With the aim of developing a code which can be used in a maximum of geological

structure scenarios and to take advantage of the potential of FE methods and unstructured

grids in representing complex geometries we model the total field. We include the source

terms in the equations and we apply a mesh refinement in the source region.

In Chapter 2 we gave the source term equations for magnetic and electric point dipoles

oriented in the three-space directions and we derived their weak form. The point dipole

approximation is valid for sufficiently large source-receiver distances (offsets) typical on

most common CSEM surveys. However, when the interest is to resolve relatively small

structures in an increasingly complex scenario, measurements at short offsets are neces-

sary and the inaccuracy of the dipole approximation is on the order of the target-related

anomalies (Streich et al., 2011). For these cases the actual source geometry needs to be

considered. We discretize the finite-length wire source into a set of point dipoles and cal-

culate the model responses for each one of them separately. Afterwards, we superpose the

solution fields in the receiver locations.

To deal with oriented sources, the program analyzes the input azimuth and dip angles

and the type of source and classifies them. If the source is oriented, the program decom-

poses the orientation in the Cartesian axes and gives appropriate equation source terms

in each direction and a parity index, based on the source-receiver configuration, for the

calculation of the Fourier inverse transform. As we will describe later on this Chapter, de-

pending on this parity the program uses the sine or cosine filters or both, and only positive

wavenumbers or positive and negative wavenumbers for the computation of the inverse

Fourier transform.
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3.2.2 Direct solver

In Chapter 2, the application of the FE method to model the 2.5-D CSEM and the 2-D MT

problems lead to a large and sparse system of linear equations (equation 2.75) of the form:

Ax = b, (3.1)

where A is the square sparse system matrix, and we changed slightly the notation with

respect to equation (2.75) to simplify the following explanations.

To solve the above linear algebraic system we use a direct solver, in particular, the

MUMPS package (Amestoy et al., 2006).

Using direct techniques, the solution of (3.1) is found after a finite number of algebraic

operations. Direct methods utilize Gaussian elimination, factorizing A into the product:

A = LU, (3.2)

known as LU decomposition, where L is a lower triangular matrix and U is an upper tri-

angular matrix with unit diagonals. Once L and U have been determined it follows:

Ax = LUx = b, (3.3)

and the system is solved by forward and backward elimination steps. In the forward sub-

stitution the system:

Ly = b, (3.4)

is solved, and then the backward substitution:

Ux = y. (3.5)

If A is a symmetric matrix (A = AT ), as it is for the problem under consideration, the

factorization is carried out without the computation of U, but decomposing:

A = LDLT , (3.6)

known as LDLT factorization, where L is again a lower triangular matrix, andD a diagonal

matrix. Thus, equation (3.1) reads:

Ax = LDLT x = b, (3.7)

and once L and D are determined, the system is solved through forward, diagonal and

backward substitution steps:

Lz = b, Dy = z, LT x = y. (3.8)
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The above procedures ignore sparsity in A. For sparse matrices it is sufficient and

more memory efficient to store only the non-zero values and their position. This can be

done with banded versions of the factorization. There are other techniques that improve

the efficiency of the direct solution process, for example, preordering algorithms, which

permute the columns and thereby minimize the fill-in. Moreover, numerical stability can

be enhanced by pivoting, i.e. allocating the largest absolute values to the diagonal matrix

by exchanging columns.

MUMPS incorporates a number of these techniques and computes the direct solution

of large sparse systems of linear equations on distributed memory parallel computers us-

ing multifrontal Gaussian elimination. It solves a linear system of equations within three

phases. In the analysis phase, the matrix structure is analyzed and a suitable ordering and

data structures for an efficient factorization are produced. In the subsequent factorization

phase, the numerical factorization is performed using the LU decomposition for the un-

symmetric case or the LDLT for the symmetric case. The final solve phase computes the

solution of the system by forward and backward substitution using the factors that were

just computed (Amestoy et al., 2002). The numerical factorization is the most expensive of

these phases and parallelism is exploited.

We have found for our problem that it is more efficient to use a direct solver, like

MUMPS, in agreement with recent publications, e.g. Key and Ovall (2011); Streich et al.

(2011), instead of an iterative solver. The matrix is symmetric, and multiple transmitter

sources result in multiple right-hand side vectors in the linear systems that can be solved

using the same factorization of the system matrix A. However, it is important to note

that to be able to reuse a factorized matrix for multiple sources, the system matrix and

accordingly, the FE mesh must be the same for all sources that reuse this factorization.

Specific mesh refinement for each source would require a new factorization for every new

grid.

3.2.3 Adaptive mesh refinement

As we have advanced in Chapter 2, in the FE method the solution error scales with el-

ements size in the discretized mesh. Solution accuracy can be increased by refining the

mesh. However, grid refinement in the overall model can result in a large system, increas-

ing memory and computational time unnecessarily. Hence, an optimal mesh is required

with which a minimum number of vertices results in an accurate FE solution. Automated

adaptivemesh refinement techniques can solve this problem by iteratively refining the grid

and therewith increasing the accuracy. They start with a coarse grid and in each iteration a

subset of elements is selected for refinement based on an estimate of their contribution to

solution error. Then, the grid is refined by splitting these elements. The process is repeated

iteratively until the desired solution accuracy is obtained or computational resources are

exhausted.

In Chapter 2 we introduced a posteriori methods in the context of analysis of the FE
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solution. A posteriori methods use the FE solution or the computation of an auxiliary so-

lution to calculate the error estimator. They calculate the error contribution of each mesh

element to a certain error function. Adaptive mesh refinement techniques using a posteri-

ori error estimation methods seek to reduce the global error in the FE solution or the error

of some functional measure which depends on the FE solution, a goal function, by iter-

atively refining the mesh. A posteriori error estimation methods that estimate the global

error are called global error estimator methods, and methods that estimate the error of a

goal function are referred to goal-oriented error estimator methods.

Automated adaptive mesh refinement algorithms using a posteriori error estimators

have been included in recent EM geophysical modeling programs (e.g. Franke et al., 2007;

Li and Key, 2007; Key and Ovall, 2011; Schwarzbach et al., 2011; Grayver and Bürg, 2014).

Most of them use goal-oriented error estimation methods in their adaptive mesh refine-

ment algorithms. The reason is that EM geophysical measurements are made on a few

discrete points in the model and therefore the FE solution needs only to be accurate there.

The use of global error estimation techniques would not work as efficient as goal-oriented

error estimators since several refinement iterations would have little impact on the solu-

tion accuracy around the receiver locations (Li and Key, 2007). Moreover, manually refin-

ing the mesh in the proximity of the receivers would also not necessarily work since the

solution for the elliptic problem depends on data through the entire model (e.g. Babuška

and Strouboulis, 2001).

The modeling program we present in this thesis includes an automated adaptive mesh

refinement algorithm. The implementation is based on a COMSOL package, and there are

two possible methods for the calculation of the error estimator: a global error estimator

and a goal-oriented error estimator.

Our program uses the L2-norm error estimate to estimate the global error. The L2-norm

error estimate relies on an assumption of a strong stability estimate for the PDE problem.

From such an assumption, it is possible to show that there is a constant C, such that the

L2-norm of the error, el , in the l−th equation satisfies:

‖el‖ ≤ C‖h
qlρl‖, (3.9)

where ρl is the residual in the l−th equation, ql is the stability estimate derivative order

and h is the local mesh element size. The adaptive solver algorithm uses the following

L2−norm error estimator:

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∫

∆

∑

l

s−2l h
2ql |ρl |

2dA















1/2

, (3.10)

with the default value ql = 2, and the scaling factors sl for the residual with the default

value sl = 1. The error indicator for a k − thmesh element is:

ηk =
∑

l

s−2l h
2qlα2

l,kAk , (3.11)
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where Ak is the area of the k − th mesh element, and αl,k is the absolute value of the l−th

equation residual on the k − thmesh element.

The adaptive solver using the global error estimator performs the following iterative

algorithm (COMSOL, 2015):

1. Solve the problem on the existing mesh.

2. Evaluate the residual of the PDEs on all mesh elements.

3. Estimate the error in the solution on all mesh elements. The computed error estimate

is an error indicator because it involves an unknown constant.

4. Terminate execution if the algorithm has made the requested number of refinements

or if it has exceeded the maximum number of elements.

5. Refine a subset of the elements based on the sizes of the local error indicators.

6. Repeat these steps.

The goal-oriented error estimator for adaptive mesh refinement included in the pro-

gram implements the dual-weighted residual (DWR)method (Becker and Rannacher, 2001).

Goal-oriented error estimators compute the error estimate with respect to a given goal

functional. They use a sensitivity function to calculate how the errors in several regions of

the model influence the error in another particular portion of the model. For this purpose,

the DWR method applies a weighting term to the error indicator, where the weight is de-

termined by a dual or adjoint solution of the FE system. The error estimate is calculated

as the sum of contributions from individual mesh elements. For each mesh element, the

contribution is split over equations and is a product of a residual and dual weights.

Following Becker and Rannacher (2001), let J(u) be a quantity of physical interest de-

rived from the solution u by applying a functional J(·). The goal is to control the error ek

in terms of local residuals ρk(uh) computable on each of the mesh elements τk . The effect

of the element residual ρk on the error ek′ at another element τk′ , is governed by the Green

function of the continuous problem. In practice it is generally not possible to calculate the

complex error interaction analytically, and it has to be computed numerically. Then, the a

posteriori error estimate reads:

|J(u)− J(uh)| ≈ 〈ρ(uh),ωh(z)〉, (3.12)

where the sensitivity factor ωh(z) is obtained by approximately solving an adjoint problem

A∗z = j, with j a density function associated with J(·). The adjoint solution zmay be viewed

as a generalizedGreen’s functionwith respect to the output functional J(·), and accordingly

the weight ωh(z) describes the effect of local variations of the residual ρ(uh) on the error

quantity J(u)− J(uh), for instance as a consequence of mesh adaption.
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Following again Becker and Rannacher (2001) to derive equation (3.12) in the frame-

work of optimal control, we start with the variational problem:

A(u,v) = F(v), for all v ∈ V , (3.13)

and its discretized form:

A(uh,vh) = F(vh), for all vh ∈ Vh, (3.14)

where Vh is the finite dimensional space, subspace of V , and uh ∈ Vh. Then J(uh) is an

approximation of the goal function J(u).

The constraint optimization problem for u ∈ V is:

J(u) = min!, A(u,v) = F(v), for all v ∈ V . (3.15)

Introducing the corresponding Lagrangian L(u,z) ≡ J(u)+F(z)−A(u,z), with the adjoint

variable z ∈ V , the minimal solution u is the first component of a stationary point ofL(u,z),

which is calculated from the Euler-Lagrange system, consisting of (3.13) and the adjoint

problem:

A(v,z) = J(v), for all v ∈ V . (3.16)

By construction, the solution u and z are mutually adjoint to each other in the sense

that J(u) = A(u,z) = F(z). Hence, it is equivalent to compute J(u) or F(z).

The Euler-Lagrange system is approximated by the Galerkin method in Vh, resulting in

the discrete equations (3.14) for uh ∈ Vh and:

A(vh, zh) = J(vh), for all vh ∈ Vh, (3.17)

and for zh ∈ Vh. For both errors e ≡ u−uh and e
∗ = z−zh we have the Galerkin orthogonality

property A(e, ·) = 0 = A(·, e∗) on Vh. Therefore,

J(e) = A(e,z) = A(e,e∗) = A(u,e∗) = F(e∗). (3.18)

The residuals of uh and zh are represented by ρ(uh, ·) ≡ F(·)−A(uh, ·) and ρ
∗(zh, ·) ≡ J(·)−

A(·, zh) respectively. Then, applying again the Galerkin orthogonality property:

ρ(uh, z − vh) = A(e,e
∗) = ρ∗(zh,u − vh), (3.19)

with arbitrary vh ∈ Vh. Finally the error representation reads:

J(e) = min
vh∈Vh

ρ(uh, z − vh) = min
vh∈Vh

ρ∗(zh,u − vh) = F(e
∗). (3.20)
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Bounds on the error J(e) are:

|J(e)| ≤ ηw(uh) ≡
∑

k

ρkωk , (3.21)

where ρk are element residuals and ωk are weights. These quantities are calculated by

introducing an extension mapping πh, from the current FE space to a higher-order FE

space:

ρk = ‖ρ(πh,uh, ·)‖k , (3.22a)

ωk = ‖z −πhz‖k , (3.22b)

where the residual is computed assembling the problem for the higher-order FE space.

This residual is then used to compute a normalized elementwise norm for each equation.

On the other hand, the weight function is estimated using polynomial-preserving recovery

technique (Naga and Zhang, 2005) over the dual solution.

Finally, the error estimation function is:

|J(e)| =
∑

k

∑

l

ρk,lωk,l , (3.23)

where the error contribution from each l−th equation is added.

In conclusion, the necessary steps for the iterative adaptive algorithm using the DWR

method for the error estimation are:

1. Solve the problem on the existing mesh.

2. Calculate the residual of the PDE on all mesh elements, using a higher order approx-

imation of the shape-functions.

3. Solve the adjoint problem.

4. Calculate the weights.

5. Calculate the error indicator for each mesh element.

6. Terminate execution if the requested number of refinements is reached or if the max-

imum number of elements is exceeded.

7. Refine a subset of the elements based on the sizes of the local error indicators.

8. Repeat these steps.

The mesh refinement in our program is applied using a fixed mesh fraction technique,

that is, refining in each step of the adaptive mesh refinement a fixed fraction of elements

with the largest error indicator.



68 3.2. Implementation details

Typical modeling settings of CSEM and MT methods require to compute the solution

for different frequencies, transmitter positions and wavenumbers (for CSEM). To apply the

adaptive mesh refinement algorithm to each physical parameter value would be compu-

tationally very expensive. Instead, our program classifies each of the physical parameters

sets of values in groups of near values and combine groups of different physical parameter.

Then, in a first stage, the program selects a midvalue of each parameter in each group and

applies the adaptive mesh refinement algorithm to these selected values. In a second stage,

the resulting mesh for each group is fixed and used to compute the solutions for the rest

of parameter values of each group. This strategy has been inspired by the work in Key and

Ovall (2011) and will be discussed in more detail in the next Chapter.

3.2.4 From wavenumber domain onto spatial domain

As explained in detail in Chapter 2, for the solution of the CSEM modeling problem using

the 2.5-D approach, the EM fields need to be Fourier transformed into the strike-parallel

wavenumber domain. However, we seek the solution in the spatial domain and therefore

we need to calculate the inverse Fourier transform:

F −1
[

F̂(x,y,κz)
]

(z) = F(x,y,z) =
1

2π

∫ +∞

−∞

F̂(x,y,κz)e
iκzzdκz. (3.24)

To compute it numerically, the EM fields in the κz−domain are solved for a set of

wavenumber values. In general, it is sufficient to use a few logarithmically spaced wavenum-

bers since the wavenumber spectra varies smoothly. Around 5−10 wavenumbers per log10

decade, spaced evenly from about 10−5 to 10−1m−1, is sufficient for computations involving

the fields in the plane of the transmitter at z = 0 (Li and Key, 2007).

For strike-parallel or perpendicular sources, every EM field component is either sym-

metric or antisymmetric along the strike direction. The integral (3.24) can be separated

into its cosine and sine counterparts, and then, depending on the parity of each EM field

component, even or odd, the only non-vanishing term is the cosine or sine, respectively:

F(x,y,z) =
1

π

∫ ∞

0
F̂(x,y,kz)cos(kzz)dkz, (3.25a)

F(x,y,z) =
i

π

∫ ∞

0
F̂(x,y,kz)sin(kzz)dkz. (3.25b)

The integrals above are solved using a digital filter method (Ghosh, 1971) employing

available fast algorithms (e.g. Anderson, 1983). The transformed EM fields can be seen as

a kernel function F̂(κz) times an oscillatory function g(κzz), the cosine or sine:

F(z) =

∫ ∞

0
F̂(κz)g(κzz)dκz. (3.26)

The kernel function is also an oscillatory function. Due to the oscillatory behavior,
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standard quadrature methods can be slow to converge or even fail. The digital filter

method and fast Hankel transform, have been proven to be efficient and accurate in numer-

ous geophysical EM applications (e.g. Li and Key, 2007; Streich et al., 2011; Key and Ovall,

2011). Key (2012) investigated if the fast Hankel transform is faster than the quadrature

and concluded that it is true when the integral needs to be evaluated at many offsets and

the lagged convolution variant of the fast Hankel transform is applied.

Shortly, from Key (2012), the method involves considering the Hankel transform inte-

gral:

F(z) =

∫ ∞

0
F̂(λ)Ji(λz)dλ, (3.27)

where Ji is an ith order Bessel function of the first kind.

Employing a coordinate transformation z = ex and λ = e−y , the above integral results

in:

exF(ex) =

∫ ∞

−∞

F̂(e−y)Ji(e
x−y)ex−ydy, (3.28)

and applying the integral convolution we obtain

I(x) =

∫ ∞

−∞

F̂(y)h(x − y)dy =

∫ ∞

−∞

F̂(x − y)h(y)dy. (3.29)

The discrete approximation to the convolution is

I(j) =
∞
∑

i=−∞

F̂(j − i)h(i), (3.30)

with indices i and j and the function h as a vector of linear filter coefficients. The idea

of the method is to compute optimal filter coefficients for finite length filters and apply

it to arbitrary kernel functions F̂. Optimal filters coefficients are computed solving (3.30)

for a length n filter using known integral transform pairs I and F̂. The transform pairs are

selected with similar characteristics as the kernels of the original integrals. Once the filters

are calculated, the integral (3.26) is solved with:

zF(z) ≈
n

∑

i=1

F̂(bi /z)hi , (3.31)

where the logarithmically spaced filter abscissa are:

bi = zλ = eai , i = −l,−l +1, . . . , l, (3.32)

with l = (n− 1)/2 and a the spacing coefficient.

Commonly, for an arbitrary oriented source, a set of strike-parallel and perpendicular

point dipoles is considered. The solution is obtained solving separately the problem for

each orientation (in-line and broad-side) and then superposing the resulting fields.

Streich et al. (2011) developed an alternative scheme which demonstrated to be signif-
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icantly more efficient for oriented complex 3-D source geometries. This technique is based

on splitting each field component into its symmetric and antisymmetric parts:

S(x,y,kz) =
F̂(x,y,kz) + F̂(x,y,−kz)

2
, (3.33a)

A(x,y,kz) =
F̂(x,y,kz)− F̂(x,y,−kz)

2
, (3.33b)

followed by the calculation of the sine and cosine integrals using a set of positive and

negative values of strike-parallel wavenumbers:

F(x,y,z) =
1

π

∫ ∞

0
S(x,y,kz)cos(kzz)dkz +

i

π

∫ ∞

0
A(x,y,kz)sin(kzz)dkz. (3.34)

This approximation does not assume any parity of the EM fields and therefore can be

used for any orientation of the sources modeling the EM fields at once. At the same time,

the integrals can be calculated using the same fast cosine and sine transform filters.

Our program distinguishes the cases when the source is oriented parallel or perpen-

dicular to the strike or when the source is arbitrarily oriented. In the first case, it uses

the known parity of the fields and calculates the integrals using only positive wavenumber

values. When the source is arbitrarily oriented, the program uses the described alternative

scheme and a set of positive and negative wavenumber values.

The sine and cosine integrals are numerically solved using the digital filter method

and the 601−point digital filter developed by Key and Ovall (2011). The integrands of the

integrals are evaluated by cubic-spline interpolation of the fields computed at the discrete

wavenumbers.

When the solution is required in the z = 0 plane, the inverse Fourier transform is easily

computed using the integral trapezoidal rule.
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CHAPTER4

Numerical experiments on modeling

4.1 Introduction

This Chapter analyzes and discusses the performance and accuracy of the developed mod-

eling software described in Chapter 3 as an implementation of the FE formulation derived

in Chapter 2. As explained before, the program has been designed with the aim of model-

ing CSEM and MT data for a broad range of geological and experimental situations. Here,

we will illustrate and validate the main characteristics and numerical strategies of the soft-

ware that give rise to this versatility considering different numerical experiments on 1-D

and 2-D synthetic models.

The solution computed with numerical methods is intrinsically influenced by various

arbitrary decisions made by the user such as mesh design, polynomial order of the shape

functions, location of model boundaries when using Dirichlet boundary conditions and

accuracy in the solution of the FE linear system. Additionally for the 2.5-DCSEM problem,

the set of wavenumber values are also parameters that must be given a priori. In this

Chapter we examine the dependency between the accuracy and efficiency of the solution

and each one of these parameters. Although these dependencies are well understood and

many times the best accuracy is achieved by the finest and largest model, this decreases

the time efficiency of the program, thus it is important to find the optimal mesh and size of

the model that provides best accuracy with minimum computational time. In this context,

we validate our implementation of the adaptive mesh refinement method and of the mesh

group strategy presented in Chapter 3, which automatizes some of the user’s arbitrary

decisions on mesh design by attempting to find an optimal mesh.

On the other hand, increasing the polynomial order of the shape functions can have a

similar effect on the accuracy of the solution as making the elements smaller. In general,

in the tests in this chapter we use quadratic shape functions. However, we will also inves-

tigate the influence of varying the order of the polynomial shape functions on the program

accuracy considering linear, quadratic and cubic functions.

Moreover, it is well documented that some physical aspects, i.e. the topography of

the model, the dimensions and orientation of the controlled source or the anisotropy of

73
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the electrical model can have a large impact on the measured MT and CSEM responses.

However, many modeling programs used today can not simulate some of these features

or they can do it with a low order approximation, e.g., modeling the topography with FD

by a staggered interface, approximating the source as a point dipole or simplifying the

degree of anisotropy. These low order approximations can result in accurate responses

for some experimental and geological settings but may not work in many other situations.

The numerical experiments in this Chapter are also designed to show the importance of

considering a better representation of the physical problem and to validate our program

on simulating these features with a higher order approximation, e.g., modeling the topog-

raphy using FE and triangular unstructured grids, modeling the controlled source length

and orientation and including dipping anisotropy in the problem implementation.

To benchmark our program for some of the results we present in this Chapter, we

compare our results with solutions obtained with the semi-analytical open-source code

DIPOLE1D1 (Key, 2009) for land and marine CSEM 1-D models, and with the open-

source and freely available FE modeling software MARE2DEM2 (Key and Ovall, 2011) for

2-D models. DIPOLE1D allows to use any electric and magnetic source in an electrically

isotropic layered media. The modeling part of MARE2DEM presents similar capabilities

to our program; only the possibility to use higher-order polynomial functions for the shape

functions and the possibility to consider dipping anisotropy in our program are superior

to the features of the available version of MARE2DEM.

Throughout this Chapter we use specific nomenclature for two commonly used source-

receiver geometries, in-line and broad-side. The in-line configuration refers to the situa-

tionwhen the source is oriented in the direction of the receiver position profile. In contrast,

in the broad-side configuration, the transmitter is oriented perpendicular to the receiver

location profile.

4.2 Influence of the model dimensions and the mesh design

Because of the Dirichlet boundary conditions, the model dimensions and the mesh design

have a strong influence on the solution accuracy and proper values for these parameters

are essential. There are some bounds that can be considered when fixing the size of the

model and designing the mesh. These come firstly from the frequencies to model. Impos-

ing Dirichlet boundary conditions to represent the EM fields at infinite distance, requires

to place the artificial boundaries as far as possible from the sources to ensure that the

fields are sufficiently attenuated. For applications dominated by induction, as the ones

that concern us, the distance is usually expressed in terms of the skin depth. The skin depth

is defined as the depth where the amplitude of the fields have fallen to 1/e of their value

1http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM/; last visited on December, 2015
2http://mare2dem.ucsd.edu/; last visited on December, 2015
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in the surface and for typical frequencies used in CSEM and MT can be calculated by:

δ =

√

2

ωµσ
. (4.1)

Then, this parameter is used as an indicator to guarantee the attenuation of the EM fields

at the boundaries. Usually, the boundaries are located several skin depth away from the

region of interest by increasing the node-spacing gradually. Whenmodeling a range of fre-

quencies in the same experiment, the outer boundaries of the model are fixed considering

the lowest frequency which results in the largest skin depth.

The size of the elements in the FE mesh are also defined by the frequency to model.

When modeling a range of frequencies, it is the highest frequency which constraints the

size of the smallest element because the minimum wavenumber or skin depth needs to be

resolved.

Generating smaller elements or augmenting the dimensions of the model increases the

size of the problem and consequently the time and memory to solve it. In practice, a trade

off is necessary between the gain in time efficiency obtained reducing the dimensions of

the model and the loss in accuracy due to increasing the mesh elements size. It is especially

useful to consider this balance in the modeling of the air layer. In the air the skin depth

is very large and therefore the model should be very big. Accordingly, it is interesting to

study how the change in the air layer thickness affects the solution accuracy in a certain

model in order to reduce its dimensions to an optimum.

In the 2.5-D modeling of CSEM data the problem is first solved in the wavenumber

domain, hence the spacing of the wavenumber values at which the fields are computed

and the upper and lower limits of the wavenumber spectra must be specified. We find in

the literature that a set of some tens of wavenumber values spaced logarithmically from

around 10−6 to 10−1m−1 are sufficient to obtain accurate responses for typical marine (e.g.

Everett and Edwards, 1992; Key and Ovall, 2011) and land (e.g. Streich et al., 2011) CSEM

model parameters and transmission frequencies.

The wavenumber parameter, κz, is related to the mesh element size and this affects

the accuracy of the calculated EM fields. Mitsuhata (2000) derives an expression for a

rough threshold of κz to obtain accurate results, that is: κz,max < 1/d, where κz,max is the

upper selected wavenumber value and d is the node spacing. This expression proposes

the maximum value of κz based on the upper limits of κx and κy which are defined by the

spatial discretization d.

The set of numerical experiments in this section is oriented to analyze the influence

of the listed parameters in the solution accuracy and to validate our program for different

situations. For this purpose, we consider 1-D models for which the numerical solution can

be compared with the analytical or semi-analytical ones. Particularly, we concentrate in

two models: a land MT model and a marine CSEM model.
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Figure 4.1: One-dimensional resistivity model used for MT numerical tests. It consists of an air
layer and three subsurface layers. The frequencies in the tests using this model are 30 values
spaced logarithmically from 10−5 to 101Hz.

4.2.1 MT layered model

We simulate the MT responses of the layered model in Figure 4.1 for 30 different values

of frequency spaced logarithmically from 10−5 to 101Hz, a typical range of values used

in MT measurements, and for different values of the model dimensions and of the mesh

elements size. Then, we analyze the accuracy resulting from the different combinations of

parameter values comparing the responses with the analytical solution.

The model in Figure 4.1 consists of an air layer and three subsurface layers with re-

sistivities 10Ω ·m,1000Ω ·m and 10Ω ·m, and thicknesses 1km, 3km and ‘semi-infinite’,

meaning that extends to the model boundary. The resistivity of the air is taken finite with a

value of 109Ω ·m in all the models we examine in this Chapter. The receivers are assumed

to lay buried in the first subsurface layer, at 0.1m depth. The skin depth for the lowest

and for the highest frequency with the resistivity of the receiver’s layer is δ ≈ 5×105m and

δ ≈ 500m respectively, and in the air layer is δ ≈ 5× 109m and δ ≈ 5× 106m. As mentioned

before, the skin depth for the lowest frequency constraints the model dimensions and the

skin depth for the highest frequency bounds the mesh elements size.

Taking into account these values we will determine the appropriate parameter values

to obtain accurate responses. We consider four model variants with dimensions: 1×105,5×

105,1× 106 and 5× 106m, and all with the same fixed mesh elements size of 500m. Addi-

tionally, we study two more models, both with the same model dimensions of 5×106m and

with different minimum element sizes: 250m and 1000m, respectively. All the models are

square shaped and centered at x = 0,y = 0.

The TMmode errors of the apparent resistivity and of the phase between the numerical

and the analytical solutions for the different models are shown in Figure 4.2 as a function

of frequency. The results are for a receiver located in the center of the model. Accordingly,

the distance to the outer boundary is half of the side length value given in the legend, that

is 5× 104m,2.5× 105m,5× 105m and 2.5× 106m.

Examining the relative errors of the apparent resistivities (Figure 4.2 left), when the
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Figure 4.2: Relative error of the TM apparent resistivity (left) and absolute error of the TM phase
(right) as a function of frequency, calculated from the responses of the 1-D MT layered model
(Figure 4.1) and the analytical solution, for different model dimensions and mesh element sizes (in
colors). All the models are centered in (0,0), and the given values in the legend are the side length
and the approximate value of the mesh elements edge length, h, in the receivers locations.

distance to the boundary is 5 × 104m, a value much smaller than the skin depth for the

lowest frequency, the relative error is between 1 and 10% for all the frequencies larger than

1Hz and up to values of 100% for lower frequencies. Increasing the model dimensions,

decreases the error for a large number of low frequencies, as expected. However, only

when the model is 5×106m side the relative error is approximately smaller than 1% for all

the frequencies. For this model, the boundary is at 2.5× 106m distance from the receiver,

that is a larger value than the skin depth for the lowest frequency in the 10Ω ·m layer, but

still smaller than the skin depth in the air for the same frequency.

In the same Figure, the effect of reducing the mesh element size to half of its value,

250m, to the largest model, results in a gain in accuracy for the largest frequencies. The

relative error decreases to values smaller than 0.7%. Contrarily, the effect of increasing

the element mesh size in the same model to 1000m, increases the error to a value of ap-

proximately 6% at the frequency of 10Hz. The effects of varying the model dimensions

and the mesh elements size in the phase (Figure 4.2 right) are similar to the effects in the

amplitude, and the best results, with an absolute error of less than 2◦ are obtained for the

model with 5× 106m side, and 250m element edge length.

Although the best results for the tested cases are, as expected, for the largestmodel with

smallest element size, the results for the largest model with h = 500m are also acceptable

for all the frequencies in the range. It is also important to emphasize that if we would

not model the complete range of frequencies comprising several orders of magnitude at

the same time, we could use a fine mesh with small model dimensions for the largest

frequencies and a coarse mesh with large model dimensions for the lower ones.

In Table 4.1 we give information of the number of mesh elements and of the number

of DOFs used to compute the solution for each model. The number of DOFs includes both

the DOFs of Ez and of Hz using quadratic shape functions. We observe that the number of

elements increases largely when augmenting the model dimensions or reducing the mesh
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Table 4.1: Numerical data of tests with the 1-D MT model varying the model dimensions and
mesh elements size. Length of the model side, length of the edges of the elements at the receivers
locations, number of mesh elements, number of DOFs and run time. Themodels are square shaped
and centered at x = 0,y = 0 and the mesh is the same for all frequencies in each case and fixed
before the computations (not adaptive). The number of DOFs includes the DOFs for Ez andHz using
quadratic shape functions. The run time values are the time to factorize and solve the system
matrix for Ez and Hz, and for the 30 frequencies, using an INTEL i7 4 GHz quad-core processor and
16 GB RAM desktop computer.

Model size
(m)

h(m)
Num. of
elements

Num. of
DOFs

Run time (s)
(30freq.)

1× 105 500 9124 36690 12
5× 105 500 50018 200314 72
1× 106 500 97548 390450 141
5× 106 500 533776 2135402 863
5× 106 250 1114840 4459690 1895
5× 106 1000 208622 834758 315

element size. The unstructured mesh can accommodate large elements far from the re-

ceivers locations and small elements closed to them, however in these tests we are using a

fixed mesh, not adaptive, and the elements in all the layer where the receivers are located

are set to a small size, so when the model augments laterally or the elements in this layer

are refined, the number of elements increases significantly. In the same Table we provide

the run time for each model which includes the time of factorization and solution of the

system for both Ez and Hz for the 30 frequencies using an INTEL i7 4 GHz quad-core pro-

cessor and 16 GB RAM desktop computer. When the model is small, it takes only 12s to

factorize and solve the system matrix 30 times, however for a larger model and with finer

elements it takes 1895s.

Finally, in Figure 4.3 we show, for both the TE and the TM modes, the apparent re-

sistivities and phases and the corresponding relative and absolute errors, comparing the

numerical and analytical solutions, as functions of frequency for the model with 5× 106m

side and with 250mmesh element edge length. The apparent resistivities coincide for both

modes and the phases have a difference of 180◦. The apparent resistivities at the highest

and at the lowest frequencies are asymptotic to 10Ω ·m, the resistivity of the first and of the

third layers. The frequencies in between are about 25Ω ·m, indicating a resistive layer. The

phases at the highest frequency start at 45◦ and return to this value at lower frequencies.

At the frequencies between, they decrease to approximately 20◦.

The observed behavior is expected for MT responses in 1-D models, and as shown, the

numerically computed responses are very accurate for all the frequencies when compared

to the analytical solution, with relative errors in the apparent resistivities of approximately

less than 1%, and absolute errors in the phases of generally less than 1◦. Only, for the

highest and lowest frequencies, the error is slightly larger, but still smaller than 3% in the

resistivities, and less than 2◦ in the phases.
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Figure 4.3: Apparent resistivity (top left), relative error of the apparent resistivity (top right), phase
(bottom left) and absolute error of the phase (bottom right) as a function of frequency, for the 1-D
MT layered model in Figure 4.1. The error is calculated between the FE numerical solution and the
analytical solution. The model used in the numerical calculations has 5 × 106m side length and
elements edge length h = 250m in the receivers locations.
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Figure 4.4: One-dimensional canonical disc resistivity model for marine CSEM proposed by Weiss
and Constable (2006). It comprises an air layer, a 1km seawater layer and a resistive reservoir of
100Ω ·m, which could be oil or gas, embedded in a sedimented background of 1Ω ·m. The reservoir
is 100m thick and is located at 2km depth, 1km below the seafloor. The source is located 100m
above the seafloor and operates at 0.25Hz and the receivers are positioned at 0.5m above the
seafloor, along the x spatial dimension.

4.2.2 Marine CSEM: one-dimensional canonical model

We conduct numerical experiments to study the influence of themesh design, the wavenum-

ber parameter, the order of the shape functions and the model dimensions on the solution

accuracy for a marine CSEM model.

The model considered for these experiments is the 1-D reservoir canonical model pro-

posed byWeiss and Constable (2006) and displayed in Figure 4.4. The 1-D reservoir canon-

ical model is representative of a large, deepwater oil or gas field. It consists of an air layer,

a 1km seawater layer with 0.3Ω ·m resistivity, a sedimented seafloor with 1Ω ·m resistiv-

ity, and a 100m thick, 100Ω ·m reservoir layer at 1km depth. The higher resistivity of the

reservoir layer is characteristic of the replacement of porewater by resistive hydrocarbons,

but could also result from, basaltic sills, carbonates or evaporite layers.

We employ an x−directed horizontal electric point dipole source, transmitting at a fre-

quency of 0.25Hz and located at x = 0, z = 0, and 100m above the seafloor. A linear array

of 20 receivers is positioned along the seafloor from −10 to 10km. The model dimensions

are 60km wide and 40km long, with 20km of air layer, except for the experiments studying

the influence of the model dimensions on the solution accuracy.

The solution for this model is first computed using three different meshes plotted in

Figure 4.5. For these three tests the shape functions are quadratic. The first mesh has an

element edge size of around 300m in the receivers locations layer. The second and third

meshes are a result of uniform refinements of the second and third layers (from top to

bottom) of the first mesh with elements edge size of 100m and 50m, respectively. The EM

responses in the wavenumber domain are calculated using 28 discrete wavenumber values

distributed logarithmically between 10−4 and 10−1m−1.

Figure 4.6 shows the real and imaginary parts of the wavenumber domain in-line

electric field, Êx, as a function of wavenumber κz from a receiver located in x = 1000m,
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y = −999.5m, for the three different meshes. We observe that the electric field is constant

for κz values smaller than 3 × 10−3m−1 for all meshes. For higher values of κz the fields

decay rapidly and at highest values, the fields stop to decay and begin to oscillate. The

wavenumber value at which the oscillations occur depends on the mesh used for the calcu-

lation of the field. The electric field computed with the mesh with edge element h ≈ 300m

presents oscillations for κz > 1×10−2m−1. When using the mesh with h ≈ 100m the oscilla-

tions are for κz > 3×10−2m−1, and when using the third mesh with h ≈ 50m the oscillations

are for κz > 6× 10−2m−1.

Taking into account that the shape functions in this example are quadratic, the node

spacing d for each mesh is then h/2: 150m,50m and 25m. If we apply the expression for

the maximum effective κz given by Mitsuhata (2000), we obtain κz,max < 6.7 × 10−3 for

h ≈ 300m, κz,max < 2 × 10−2 for h ≈ 100m and κz,max < 4 × 10−2 for h ≈ 50m. These values

coincide approximately with the beginning of the oscillations and indicate that fields for

higher wavenumbers are meaningless and should not be added to the computation of the

Fourier inverse transform. Therefore, it is important to check that the relation given by

κz,max < 1/d is fulfilled before computing the solution, to decrease the mesh element size

or take a smaller value for the upper wavenumber in case it is necessary.

Next, we analyze the results of two experiments changing the polynomial order of the

Lagrangian shape functions to linear (p = 1) and to cubic (p = 3), and we compare them

with the results from varying the mesh element size. When augmenting the polynomial

order, nodes are added in the midpoints between the nodes of the previous polynomial,

thus we expect similar results between decreasing the mesh element size to half of its value

and increasing the polynomial order by one. The results for both experiments are plotted

in Figure 4.7. The relative error of the amplitude and the absolute error of the phase of

the in-line electric field, Ex, are calculated between the numerical and the semi-analytical

solutions for the different meshes with different mesh element sizes and for the different

cases with different polynomial order of the Lagrangian shape functions. The different

meshes used to compute these results are the plotted in Figure 4.5, with mesh elements

sizes at the receivers locations of approximately: h = 300,100 and 50m. In these tests, the

polynomial order of the Lagrangian shape functions is set to quadratic. In the two other

tests, the polynomial order is changed to linear, p = 1, and to cubic, p = 3, but the mesh

used in each one of them is the same, a mesh with h = 100m at the receiver locations.

Examining the relative errors of the amplitude (Figure 4.7 left), the largest errors are

obtained from the model with the largest mesh element size, h = 300m and p = 2, and from

the model with lower polynomial order, h = 100m and p = 1. The model with h = 300m

and p = 2, has an error around 10% in the amplitudes measured for receivers located at x =

±1km and around 1% at the rest of receivers, and the model with h = 100m and p = 1 has

an error of around 10% for all receivers and around 1% for receivers closer to the source.

Decreasing the mesh element size at the receivers locations from h = 300m to h = 100m

and 50m decreases the relative error to values of less than 0.3% in all receivers. The error

is slightly smaller for h = 100m than for h = 50m, contrarily of what we would expect,
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Figure 4.5: Three different unstructured triangular meshes used in the FE computations of the
wavenumber experiments for the 1-D CSEM canonical model. Top left: whole model mesh, with
edge element size ≈ 300m in x ≈ 1000m,y ≈ −1000m, nearby a receiver location. Top right: zoom
of the top left mesh. Bottom left: zoom of a second mesh with edge element size ≈ 100m in
x ≈ 1000m,y ≈ −1000m, nearby a receiver location. The whole mesh is the same as in the top
left, only in the second and third layers (from top to bottom) the triangular elements are smaller.
Bottom right: zoom of a third mesh with edge element size ≈ 50m in x ≈ 1000m,y ≈ −1000m,
nearby a receiver location. The whole mesh is the same as in the top left, only in the second and
third layers (from top to bottom) the triangular elements are smaller.
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Figure 4.6: Real (left) and imaginary (right) parts of the wavenumber domain electric field Êx in
(x,y) = (1000,−999.5)m as a function of wavenumber κz , computed using three different unstruc-
tured triangular meshes with edge element size h = 300,100 and 50m in this position.
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Figure 4.7: Relative error of the amplitude of the in-line electrical field Ex (left) and absolute er-
ror of its phase (right) as a function of the x coordinate receivers locations, calculated from the
responses of the 1-D CSEM canonical model and the analytical solution, for different tests varying
the mesh elements size (h, edge length in m) and varying the order of the Lagrangian polynomial
shape functions (p).

and only for receivers located at ±1km, the model with h = 50m has a smaller error value.

We associate these small differences to oscillations of the error when it is already small

enough to become independent of the mesh element size and starts to be dominated by

perturbation errors (e.g., integration errors, boundary approximation errors). The rise in

the polynomial order from quadratic to cubic do not diminish the amplitude relative error,

the values are similar and even slightly larger than for the quadratic case with h = 100m

and with h = 50m.

Observing the absolute error of the phases (Figure 4.7 right), again the largest errors

are for the models with h = 300m and p = 2 and with h = 100m and p = 1, with an error

of less than 4◦ for the first model and between 3◦ and 7◦ for the second one. Decreasing

the mesh element size from h = 300m to h = 100m and 50m decreases the absolute error to

less than 0.6◦ with slightly smaller values for the model with h = 50m. When increasing

the polynomial order to p = 3 we observe a small decay in the absolute error of the phases

compared with the same model with p = 2, contrarily to the observed behavior of the

amplitude relative error.

From these results we can conclude that the relative error reduces when decreasing the

mesh element size or increasing the polynomial order, as expected, and that the reduction

of the mesh elements size has more effect for receivers closer to the source. However, when

the mesh element size is h = 100m and the polynomial order is quadratic, the amplitude

relative error and the phases absolute error do not change significantly if we reduce the

size of the elements or increase the order of the polynomial, and the improvement in the

accuracy is only observed in the phases. The reason could be that for a mesh with elements

of this size, the error is not related anymore to the FE approximation, but to the perturba-

tion error. For a frequency of 0.25Hz, the skin depth, δ, in the sea water is about 550m and

in the sediments is about 1000m, so the mesh with element size 100m is already (1/5)δ. On

the other hand, reducing the polynomial order to linear for the same mesh with elements



84 4.2. Influence of the model dimensions and the mesh design

x(m) ×104
-1 -0.5 0 0.5 1

A
m
p
li
tu
d
e
(V

/m
,A

/m
)

10−15

10−13

10−11

10−9

10−7

Ex Ey Hz DIPOLE1D

x(m) ×104
-1 -0.5 0 0.5 1R

el
at
iv
e
er
ro
r
-
A
m
p
li
tu
d
e
(%

)

10−3

10−2

10−1

100

Ex Ey Hz

x(m) ×104
-1 -0.5 0 0.5 1

P
h
as
e
(◦
)

-200

-100

0

100

200

Ex Ey Hz DIPOLE1D

x(m) ×104
-1 -0.5 0 0.5 1

A
b
so
lu
te

er
ro
r
-
P
h
as
e
(◦
)

0

0.05

0.1

0.15

0.2

Ex Ey Hz

Figure 4.8: Amplitude, phase, amplitude relative error and phase absolute error of the electric
field components Ex ,Ey and of the magnetic field componentHz as a function of the x−coordinate
receivers position for the 1-D canonical model computed with mesh 3 in Figure 4.5. Top left: Am-
plitude of Ex ,Ey and Hz as a function of the x−coordinate receivers computed with FE (in colors)
and with the semi-analytical code DIPOLE1D (in black). Top right: Ex ,Ey and Hz amplitude relative
error between the FE solution and the semi-analytical solution obtained from DIPOLE1D. Bottom
left: Phase of Ex ,Ey andHz as a function of the x−coordinate receivers computed with FE (in colors)
and with the semi-analytical code DIPOLE1D (in black). Bottom right: Absolute error of the Ex ,Ey
and Hz phase, between the FE solution and the semi-analytical solution obtained from DIPOLE1D.

size 100m, increases the error and supports our conclusion.

The amplitude and phase of all the non-zero field components, Ex,Ey and Hz, com-

puted numerically using the finest mesh in Figure 4.5 (h ≈ 50m at the receivers locations)

are shown in Figure 4.8 as a function of the x receivers position, together with the semi-

analytical solution computed with DIPOLE1D (Key, 2009). The relative errors in the am-

plitudes and absolute errors in the phases, between the numerical and the semi-analytical

solutions, are also plotted and show the results are accurate with amplitude relative errors

smaller or equal to 0.3% and phase absolute errors smaller than 0.2 degrees.

In the last experiments with this model, we study the accuracy of the solution when

reducing the model dimensions. The skin depth at 0.25Hz is: in the air with resistivity

109Ω ·m, δ ≈ 3 × 107m, in the seawater with resistivity 0.3Ω ·m, δ ≈ 550m, and in the

first layer with resistivity 1Ω ·m, δ ≈ 1000m. The seawater layer, where the source and

receivers are located, strongly attenuate the EM fields, so for a marine model the overall

model dimensions can be reduced compared to a landmodel. In the tests above we already

used appropriate model dimensions, a 60km × 40km model. In the next experiments, the
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Figure 4.9: Relative error of the amplitude of the in-line electric field component Ex (left) and abso-
lute error of its phase (right) as a function of the x coordinate receivers locations, calculated from
the FE responses of the 1-D CSEM canonical model and the semi-analytical solution, for different
model dimensions (in colors). All the models are centered in 0 in the horizontal coordinate. The
models with 40km height have 20km of air layer, the one with 30km height has 10km of air layer,
the one with 25km height has 5km of air layer and the model with 21km has 1km of air layer. The
semi-analytical solution is calculated using DIPOLE1D.

purpose is to study if these dimensions can be reduced without affecting significantly the

solution accuracy. We execute five tests withmodel dimensions: 60km×40km, 30km×40km,

60km× 30km, 60km× 25km and 60km× 21km.

Figure 4.9 displays the relative error of the in-line electric field (Ex) and the absolute

error of its phase between the numerical and the semi-analytical solutions, as a function of

receiver locations for the different models. All the models are centered at x = 0, and they

differ in the air layer: 20km (for the models with 40km height), 10km (for the models with

30km height), 5km (for the models with 25km height) and 1km (for the models with 21km

height), and in the horizontal dimension: 60km and 30km. All the results are computed

with a similar mesh (only changing because of the dimensions of the model), with mesh

element edge length 100m at the receiver locations, that is (1/5)δ in the seawater, and with

quadratic Lagrangian shape functions.

The relative error in the amplitude is 0.3% and 0.2% in the cases for receivers located

at 1km (x = ±1km) and 2km (x = ±2km) to the source, respectively, indicating the indepen-

dence of the model dimensions. The error at the rest of receivers positions and for all the

model dimensions cases increases with the distance to the source (located at x = 0). The

largest error, up to 11%, occurs for the model with 1km air layer. Although the attenua-

tion in the water is very high, the 1km air layer is not enough to avoid boundary effects

on the responses. When the air layer is 5km (25km height) the error is already less than

10%. The model with 10km air layer (60km × 30km) and the model with 30km horizontal

length (30km× 40km) have a very similar error, with smaller values than 3% and could be

acceptable if computation time is a concern. The best accuracy is achieved for the model

with 60km×40km sides, with 20km air layer and lateral boundaries at 30km to the source.

The relative error is, in this case, smaller than 0.3%.

The absolute error in the phase presents a similar behavior as for the amplitude when
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Table 4.2: Numerical data of tests with the 1-D CSEM canonical model varying the model dimen-
sions, the mesh elements size and the shape function order. Model dimensions, edge element size
(h), shape function order (p), number of mesh elements, number of DOFs and run time data. The
meshes are plotted in Figure 4.5 and the edge element size information refers to a region around
the receivers locations. The solution time data is the time employed to assemble the FE equations
and to solve the resulting linear system for 29 wavenumber, κz, values, using an INTEL i7 4 GHz
quad-core processor and 16 GB RAM desktop computer.

Model size
(km2)

h(m) p
Num. of
elements

Num. of
DOFs

Run time (s)
(29κz)

60× 40 300 2 11512 46230 19
60× 40 100 2 46622 186742 71
60× 40 50 2 143326 573650 258
60× 40 100 1 46622 46750 17
60× 40 100 3 46622 419978 188
30× 40 100 2 23080 92570 40
60× 30 100 2 45787 183404 68
60× 25 100 2 45411 181928 71
60× 21 100 2 43731 175412 68

varying the model dimensions, with the largest error of up to 6.2◦ for the 60×21kmmodel,

and errors smaller than 0.5◦ for the three models with 10km and 20km air layer.

For completeness, in Table 4.2 we give some numerical data from the computations of

the experiments above. It contains, for each experiment, the model dimensions, the edge

element size, the shape function order, the number of mesh elements, the number of DOFs

and the run time data for 29 κz wavenumber values. The number of DOFs includes the

DOFs for both Êz and Ĥz. The solution time is the time employed in the assemble of the

FE equations and the solution of the resulting linear system for 29 values of κz, that is, the

time spent in solving the problem 29 times, using an INTEL i7 4 GHz quad-core processor

and 16 GB RAM desktop computer.

4.3 Adaptive mesh refinement

As we have shown above, the mesh design influences the solution accuracy and the time ef-

ficiency of the program. In the experiments above, the different frequency and wavenum-

ber constraints and the possibility to benchmark the 1-D solution, helped us to find the

mesh resulting in the best accuracy by trial and error. However, generally for 2-D models,

the semi-analytical solution do not exist and we need another way to control and reduce

the error. As discussed in Chapter 2 and Chapter 3, automated adaptive mesh refinement

techniques provide a measure of FE approximation errors and use it to iteratively refine,

globally or locally, the FE grid to enhance the solution accuracy.

Our FE program includes an adaptivemesh refinement algorithm as described in Chap-

ter 3. It is based on a posteriori error estimate, utilizing a computed FE solution to estimate

quantitatively the discretization error. Further, it is possible to use two different error es-
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timators: a residual error estimator, using a L2-norm error estimate, and a goal-oriented

error estimator based on a dual-weighted residual method. With the residual error estima-

tor the aim is to reduce the global error based on the residual of the system of equations

and mesh refinement is applied for elements with estimated largest errors. On the other

hand, the goal-oriented error estimator aims to reduce the error of a functional measure, in

our case: (∇Êz +∇Ĥz)|xr ,yr , where xr ,yr are the receiver locations. Here, the mesh is refined

only on regions of the model that affect more strongly the error of the functional measure.

As discussed previously, the PDEs we are solving when modeling CSEM and MT data

depend, for a certain conductivity model, on the operating frequency, the strike-directed

wavenumber κz and on the source setup parameters. In the previous section we have

shown that different values of these parameters require different mesh designs for a proper

solution quality. Computing the optimal mesh for each configuration of parameters is

computationally very expensive. Instead, we split the different parameters in groups of

nearby values and calculate the suitable mesh applying the adaptive mesh refinement to

representative values of the parameters in each one of these groups. Then, the resulting

optimal mesh is used for the computation of the other parameter values of the group. We

refer to ‘mesh group’ to the group of configurations of parameters that share the same

mesh.

In this section, we validate the performance of the adaptive mesh refinement method

on CSEM and MT models, on marine and land environments. Besides, we also study the

accuracy of the solution when using the adaptive mesh refinement method and varying

the order of the shape functions (p-refinement) from quadratic (p = 2) to linear (p = 1) and

cubic (p = 3).

4.3.1 Validation and robustness

To validate the performance of our adaptive mesh refinement algorithm and to demon-

strate its robustness, we compare our solution to the semi-analytical solution of a 1-D

model.

Again, we consider the 1-D CSEM canonical model introduced in the previous section

(Figure 4.4) with an in-line horizontal electric point dipole operating at a frequency of

0.25Hz, and located in the center of the model, 100m above the seafloor, (x,y) = (0,−900)m.

The set of wavenumber values to compute the solution are again 28 values distributed

logarithmically from 10−4 to 10−1m−1 and 0. We group the wavenumber values with 9

members for the adaptive mesh refinement, with κz = 0 and κz = 1×10−1m−1 as individual

groups, giving a total of 5 mesh groups. The representative value of the parameter κz

in each group is the midvalue of the group, that is for each of the 5 groups: 0,2.7826 ×

10−4,2.7826×10−3,2.7826×10−2 and 1×10−1m−1. Since we only compute the solution for

one source position and for one frequency, the total number of mesh groups equals the

number of κz groups, that is 5.

In the first test we use quadratic order Lagrangian shape functions and we apply the
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goal-oriented adaptive mesh refinement algorithm with 5 iterations. The process to com-

pute the solution with the adaptive mesh refinement mainly consists on two phases, as

described in Chapter 3. In the first stage, the program computes, for the representative

values of the parameters of each group, the solution of the system of equations (primal so-

lution), the residual and the dual solution using the given goal function and calculates an

elementwise error indicator. These computations are repeated iteratively until the stop-

ping criteria is reached, refining in each iteration a fraction of elements with the worst

error indicator value. For this test we set this fraction to 20%. Then, in the second stage,

the obtained mesh for each group is used to calculate the solution for the remaining group

members.

To illustrate this computational process, Figures 4.10 and 4.11 display from top to bot-

tom, the solution (in the κz domain), the dual solution, the residual and the error indicator

for Êz and Ĥz respectively, after a first refinement step and for the mesh group 2 with

κz = 2.8 × 10−4m−1. Examining the dual solution of Êz in Figure 4.10, the largest values

are localized in the receivers positions. In a different way, the residual is larger in a region

around the source that extends some kilometers laterally and in depth. As a result, the

elementwise error indicator in the same Figure is largest at the receiver locations and at

the source position.

The results are similar for Ĥz (Figure 4.11), with the largest values of the dual solution

localized at the receiver positions and the largest values of the residual located around the

source, but more confined to the source position than the residual of Êz. The resulting

error indicator is, as expected a combination of the dual solution and the residual, with

larger values in the receiver positions.

Figures 4.12-4.15 illustrate the elementwise error indicator associated with Êz and the

corresponding mesh, for the initial mesh and in different refinement levels. The results in

each Figure correspond to a mesh group and we have excluded the figure of mesh group

1 since when κz = 0, Êz is 0 for the source-receiver configuration under consideration.

Similarly, Figures 4.16-4.20 display the elementwise error indicator with the associated

mesh at different refinement steps and for the different mesh groups, but for the dependent

variable Ĥz.

Comparing first, the elementwise error indicator associated with the variable Êz be-

tween the different mesh groups with different values of κz in Figures 4.12-4.15, the re-

gions with larger error and consequently more refinement, vary depending on the magni-

tude of κz.

The elementwise error indicator for mesh group 2 with κ
g2
z = 2.8×10−4m−1 (Figure 4.12)

is larger in the receiver and source locations and in the central region of the model below

the resistive layer, approximately from 2km depth to 10km depth, in the initial mesh. As

the adaptive mesh refinement proceeds, the mesh is mainly refined in these regions, and

consequently the elementwise error indicator decreases. After the third refinement step,

the elementwise error indicator has already decreased in the region below the resistive

layer and the refinement continues principally in the source and receiver locations, as it
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can be observed in the plot corresponding to the 5th iteration (bottom panel). For mesh

group 3 with κ
g2
z = 2.8 × 10−3m−1 (Figure 4.13), the largest error indicator is much more

concentrated at the source and receiver locations, and the mesh adaption acts in this re-

gion. We also observe that, as the iterations proceed, the error decreases in the receivers

locations, and the mesh adaption concentrates in the source location and in the receiver

locations closer to the source. The result after the 5th iteration is a finer mesh in the source

location and a coarser mesh in the other regions compared to the mesh for the same itera-

tion number of group 2 (Figure 4.12 bottompanel). This behavior is evenmore accentuated

for mesh group 4 and 5, with κ
g4
z = 2.8× 10−2m−1 and κ

g5
z = 1× 10−1m−1 (Figures 4.14 and

4.15). Note that, for these figures we only show the results until the third iteration, since

the error decreases faster than for mesh group 2 and 3.

The error indicator of Ĥz evolves similarly to Êz with the iterations of the goal-oriented

adaptive mesh refinement algorithm and for the different mesh groups (Figures 4.16-4.20).

The error indicator for mesh group 1 in Figure 4.16 is larger at the receiver locations and

in a central region below the resistive layer. When the adaption evolves, these regions are

refined and the elementwise error indicator decreases as it can be observed for iterations:

1,3 and 5. The error indicator for mesh group 2, in Figure 4.17, is similar to the error for

mesh group 1 and the adaptive mesh refinement proceeds also in a similar way, with the

only difference of a large error also in the air layer some kilometers above the source, where

consequently the mesh is refined too. For mesh group 3 (Figure 4.18) the error indicator is

large around the source and receiver locations, as in the Êz case. Finally, the error indicator

for the largest κz values of mesh groups 4 and 5 (Figures 4.19 and 4.20) is, for the initial

mesh, large at the source and receiver locations and in the air layer, some kilometers above

the receivers positions. In the first iteration of the adaptive mesh refinement, the mesh

is refined in these regions and the error decreases fast in the air layer and in the most

distant receivers relative to the source. In the next iterations (second and third), the largest

errors are concentrated around the source location and its closest receivers, and the mesh

refinement occurs in this region.

To study the evolution of the solution accuracy during the adaptive mesh refinement

process, Figure 4.21 displays the relative error of the amplitude and the absolute error of

the phase of the in-line electric field component compared to the semi-analytical solution

for 5 mesh refinement steps of the goal-oriented adaptive mesh refinement algorithm. The

error is based on the comparison of our numerical solution result to a semi-analytical result

calculated using DIPOLE1D (Key, 2009). Examining the relative error of the amplitude

(Figure 4.21 left), it decays mostly during the first three iterations. Initially the error is

between 1% and 10%, and after the first adaptive mesh refinement iteration it decreases

at all the receivers to values smaller than 1%, except at the receivers closest to the source,

where the error is still larger than 5%. After a second mesh refinement step, the reduction

of the error is small, and after the third mesh refinement step, the error at the receivers

closest to the source decreases to values smaller than 1%, too. In the last two iterations,

the 4th and 5th mesh refinement steps, the variations are small.
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Figure 4.10: From top to bottom: Êz, dual of Êz , residual and error indicator with corresponding
mesh, for the parameter value κ

g2
z = 2.8 × 10−4m−1 after the first iteration of the goal-oriented

adaptive mesh refinement algorithm for the 1-D CSEM canonical model. Plots on the right side
zoom into the center where the source and receivers are located.
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Figure 4.11: From top to bottom: Ĥz, dual of Ĥz, residual and error indicator with corresponding
mesh, for the parameter value κ

g2
z = 2.8 × 10−4m−1 after the first iteration of the goal-oriented

adaptive mesh refinement algorithm for the 1-D CSEM canonical model. Plots on the right side
zoom into the center where the source and receivers are located.



92 4.3. Adaptive mesh refinement

Figure 4.12: Elementwise error indicator of the dependent variable Êz for the parameter value
κ
g2
z = 2.8×10−4m−1, in different steps of the goal-oriented adaptive mesh refinement algorithm, for

the 1-D CSEM canonical model and corresponding adaptive mesh. From top to bottom, error for
the initial mesh and for three goal-oriented adaptive mesh refinement steps: 1,3 and 5. Plots on
the right side zoom into the center where the source and receivers are located.
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Figure 4.13: Elementwise error indicator of the dependent variable Êz for the parameter value
κ
g3
z = 2.8×10−3m−1, in different steps of the goal-oriented adaptive mesh refinement algorithm, for

the 1-D CSEM canonical model and corresponding adaptive mesh. From top to bottom, error for
the initial mesh and for three goal-oriented adaptive mesh refinement steps: 1,3 and 5. Plots on
the right side zoom into the center where the source and receivers are located.
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Figure 4.14: Elementwise error indicator of the dependent variable Êz for the parameter value
κ
g4
z = 2.8×10−2m−1, in different steps of the goal-oriented adaptive mesh refinement algorithm, for

the 1-D CSEM canonical model and corresponding adaptive mesh. From top to bottom, error for
the initial mesh and for three goal-oriented adaptive mesh refinement steps: 1,2 and 3. Plots on
the right side zoom into the center where the source and receivers are located.
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Figure 4.15: Elementwise error indicator of the dependent variable Êz for the parameter value
κ
g5
z = 1× 10−1m−1, in different steps of the goal-oriented adaptive mesh refinement algorithm, for

the 1-D CSEM canonical model and corresponding adaptive mesh. From top to bottom, error for
the initial mesh and for three goal-oriented adaptive mesh refinement steps: 1,2 and 3. Plots on
the right side zoom into the center where the source and receivers are located.
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Figure 4.16: Elementwise error indicator of the dependent variable Ĥz for the parameter value
κ
g1
z = 0, in different steps of the goal-oriented adaptive mesh refinement algorithm, for the 1-D

CSEM canonical model and corresponding adaptive mesh. From top to bottom, error for the initial
mesh and for three goal-oriented adaptive mesh refinement steps: 1,3 and 5. Plots on the right
side zoom into the center where the source and receivers are located.
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Figure 4.17: Elementwise error indicator of the dependent variable Ĥz for the parameter value
κ
g2
z = 2.8×10−4m−1, in different steps of the goal-oriented adaptive mesh refinement algorithm, for

the 1-D CSEM canonical model and corresponding adaptive mesh. From top to bottom, error for
the initial mesh and for three goal-oriented adaptive mesh refinement steps: 1,3 and 5. Plots on
the right side zoom into the center where the source and receivers are located.



98 4.3. Adaptive mesh refinement

Figure 4.18: Elementwise error indicator of the dependent variable Ĥz for the parameter value
κ
g3
z = 2.8×10−3m−1, in different steps of the goal-oriented adaptive mesh refinement algorithm, for

the 1-D CSEM canonical model and corresponding adaptive mesh. From top to bottom, error for
the initial mesh and for three goal-oriented adaptive mesh refinement steps: 1,3 and 5. Plots on
the right side zoom into the center where the source and receivers are located.
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Figure 4.19: Elementwise error indicator of the dependent variable Ĥz for the parameter value
κ
g4
z = 2.8×10−2m−1, in different steps of the goal-oriented adaptive mesh refinement algorithm, for

the 1-D CSEM canonical model and corresponding adaptive mesh. From top to bottom, error for
the initial mesh and for three goal-oriented adaptive mesh refinement steps: 1,2 and 3. Plots on
the right side zoom into the center where the source and receivers are located.
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Figure 4.20: Elementwise error indicator of the dependent variable Ĥz for the parameter value
κ
g5
z = 1× 10−1m−1, in different steps of the goal-oriented adaptive mesh refinement algorithm, for

the 1-D CSEM canonical model and corresponding adaptive mesh. From top to bottom, error for
the initial mesh and for three goal-oriented adaptive mesh refinement steps: 1,2 and 3. Plots on
the right side zoom into the center where the source and receivers are located.
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Figure 4.21: Relative error of the amplitude (left) and absolute error of the phase (right) of the
in-line electric field, Ex , compared with the semi-analytical solution for several goal-oriented adap-
tive mesh refinements steps using quadratic order polynomial shape functions for the 1-D CSEM
canonical model.
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Figure 4.22: Relative error of the amplitude (left) and absolute error of the phase (right) of the
Ex ,Ey andHz components, comparedwith the semi-analytical solutions for the 1-D CSEMcanonical
model, after 5 steps of the goal-oriented adaptive mesh refinement algorithm and using 5 groups
of mesh refinement and quadratic order of shape functions.

Observing the absolute error in the phases (Figure 4.21 right), it is possible to appreci-

ate an approximately constant diminution after each mesh refinement step, changing from

an initial error of 10◦ to a final error of 0.1◦ after the fifth mesh refinement step.

For completeness, Figure 4.22 illustrates the relative error of the amplitude and the

absolute error of the phase for the rest of the non-zero EM field components of this ex-

periment, Ex,Ey and Hz. The relative error in the amplitude is for all the receivers and

for all the EM field components, smaller than 1% and the absolute error of the phase is

smaller than 1◦. Note that the relative error in the amplitude and the absolute error in the

phase are slightly smaller for the Hz component in some of the receivers. This is expected

since we solve the system of equations for Ĥz and Êz, and the other components, Êx and Êy ,

are obtained as mixture of spatial derivatives of the strike-directed fields, increasing their

error.

Next, we analyze the run time of the computations above using the adaptive mesh

refinement algorithm to solve for the 1-D CSEM model. In Figure 4.23 we plot the time as
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Figure 4.23: Time versus number of DOFs in the modeling of the 1-D CSEM canonical model. The
computer used in the test is a desktop computer with an INTEL i7 4GHz quad-core processor and
16GB RAM. Left: In the goal-oriented adaptive mesh refinement process, time for factorization and
solution of the system matrices, calculation of the residual and computation of the dual solution
as a function of the number of DOFs (external, the ones associated to Êz and Ĥz, plus internal, from
the dual solution of Êz and Ĥz and the error estimation) for the different κz values representative
of each mesh group (in colors). Right: Time versus number of DOFs of the primal solution for:
factorization and solution of the system matrices for all the parameter values of each of the mesh
groups (squares and colors); factorization and solution of the system of matrices for the κz values
representative of each mesh group (circles and colors); selection of elements to refine and mesh
refinement (asterisks and colors) and total run time (squares in red).

a function of the number of DOFs for this experiment, categorized for different stages of

the adaptive mesh refinement process. The computer used in the experiments is a desktop

computer with an INTEL i7 4 GHz quad-core processor and 16 GB RAM.

As we previously explained, the first phase of the goal-oriented adaptive mesh refine-

ment technique calculates an elementwise error indicator to decide which elements to re-

fine, it computes the solution of the assembled system of equations, the residual of this

system and the dual solution using the given goal function. This requires the factorization

and solution of the primal system of matrices, the calculation of the residual using higher

order polynomial shape functions and the solution of the dual variables using the factor-

izedmatrix from the solution of the primal variables. Summarizing, the program performs

in this phase two factorizations of the system matrix and solves three systems of matrices.

The total number of DOFs is now the sum of DOFs of the primal solution and DOFs of the

dual solution. This first phase is executed for each one of the mesh groups independently,

using the representative values of the parameters of each group, in this case κz.

On the LHS in Figure 4.23, we compare the required time in the first stage for each of

the 5 mesh groups and as a function of the total number of DOFs (from the primal and the

dual solution), corresponding to the initial mesh and to each one of the 5 adaptive mesh

refinement steps. The computation time using the initial mesh (with 87093 DOFs) and in

the mesh resulting from the first refinement step (with about 1.1×105 DOFs) are between 2

and 3s for all groups and increases linearly with the number of DOFs, up to a time between

5 and 6s in the fifth iteration, for a number of DOFs between 2.7× 105 and 2.9× 105.

In the second phase of the adaptive mesh refinement process, the resulting grids from
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the first phase are used to compute the solution for the rest of wavenumber values of each

mesh group. On the RHS in Figure 4.23, we compare the time spent on these calculations

(squares in blue, magenta, green and cyan) as a function of the number of DOFs. Each

data point corresponds to a mesh refinement step up to 5 for the different mesh groups,

including also the data for the initial mesh. The number of DOFs refers only to the ones of

the primal solution, since there are no calculations of the error in this phase. Further, the

Figure includes the necessary time for the factorization of the system matrix and solution

for only one of the parameter values of each group (discontinuous line with circles and in

colors), and the time used to select the elements to refine and to refine them (discontinuous

line with asterisks in colors).

The total time of factorization and solution for each of the 9 values of κz for mesh

groups 2,3 and 4 is 10s for the initial mesh and grows slowly up to 30s for the resulting

mesh after 5 adaptive mesh refinement steps. For mesh groups 1 and 5 the time is much

smaller since they only contain one value in each group, and coincides with the time data

of the factorization and solution for only one value of κz for each group (discontinuous

line with circles and in colors). These values are about 2s for the initial mesh and 3s for

the final mesh, after 5 adaptive mesh refinement steps.

The time to select the elements to refine and to refine the mesh (circles in colors and

dashed line) is about 1s for all groups and does not increase notable with the number of

DOFs.

Finally, the total run time (squares in red) is 80s for the initial mesh, and increases

up to 300s for the final mesh, after 5 adaptive mesh refinement steps, with an increase

of about 2 × 105 number of DOFs from the initial value. This total run time in the last

refinement step includes the goal-oriented adaptive mesh refinement process time for 5

iterations and 5 mesh groups (summing up all values of the left plot: 5 × 3s + 5 × 3s + 5 ×

3.5s+5×4s+5×5s+5×6s = 122.5s), the time for the computation of the solution for each

of the parameter values of each group (3 groups ×30s + 2 groups ×3s, for nref = 5) and the

time for mesh refinement in each iteration for each group (5 iterations ×5 groups ×1s, for

nref = 5), which sums up to approximately 243.5s. The remaining time until 300s includes

among other things the loading of all input (e.g. the model geometry and the initial mesh),

the generation of mesh groups, the data transfer in several parts between the COMSOL

structure and MATLAB, and the calculation of the Fourier inverse transform.

The time efficiency of the program could be improved, in a first attempt, by paral-

lelizing the computations of the mesh groups since they run independently, which would

already reduce the ≈ 244s by a factor of approximately 3 (because there are 5 groups but 2

have only onemember requiring already a very short time) in the test under consideration.

4.3.2 Influence of the shape function order and of the error estimator method

In the second set of numerical experiments in this section we model again the 1-D CSEM

canonical model (Figure 4.4), but varying the order of the polynomial shape functions. In
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the previous tests we used a quadratic order and now we study the effect in the solution

accuracy of changing it to linear (p = 1) and cubic (p = 3), when using the adaptive mesh

refinement method, and we compare the results to the ones resulting from the quadratic

case.

In Table 4.3 we provide information of the initial and final (after 5 adaptive mesh

refinement steps) number of DOFs and number of elements involved in the tests for the

different cases of shape function order: p = 1,2 and 3, and for each mesh group. The mesh

groups used in the adaptive mesh refinement are the same as in the tests above, with the

representative parameter κz given in the table (κ
gi
z ). The number of DOFs given in the

table corresponds only to the primal solution, and the number of DOFs per element varies

depending on the shape function order as explained in Chapter 2. The table also includes

information about the variation of the global error estimate between the initial and the

final mesh (η
5,gi
ω /η

0,gi
ω ), for each state characterized by the order of the shape functions and

by the mesh group. Later in this Chapter, we will discuss this index in more detail.

For all cases the initial mesh is the same, with 10864 elements, and the initial number

of DOFs changes depending on the shape function order, with the minimum number of

DOFs for case p = 1 and the maximum for p = 3, by construction, and the same numbers

Table 4.3: Numerical data of tests with the 1-D CSEM canonical model using the goal-oriented
adaptive mesh refinement algorithm, with 5 mesh groups of κz and for three cases with order of
shape functions: linear, quadratic and cubic. The data is: mesh group index, representative value
ofκz in each group, order of the shape functions (p), number of elements in the initialmesh, number
of mesh elements after the 5th adaptive mesh refinement iteration, number of DOFs (of Êz and Ĥz)
in the initial mesh, number of DOFs after the 5th adaptive mesh refinement step, normalized error
estimate.

Mesh
group
i

κ
gi
z (m

−1) p
Num. of
elements

n0

Num. of
elements

n5

Num. of
DOFs
n0

Num. of
DOFs
n5

η
5,gi
ω /η

0,gi
ω

1 0
1 10864 37324 10954 37414 2.89× 10−2

2 10864 36736 43634 147122 3.98× 10−4

3 10864 38830 98042 349736 1.06× 10−5

2 2.8× 10−4
1 10864 35700 10954 35790 2.86× 10−2

2 10864 35730 43634 143098 3.88× 10−4

3 10864 37774 98042 340268 1.05× 10−5

3 2.8× 10−3
1 10864 34202 10954 34292 1.48× 10−2

2 10864 34300 43634 137378 1.87× 10−4

3 10864 35670 98042 321296 6.50× 10−6

4 2.8× 10−2
1 10864 34777 10954 34870 1.06× 10−9

2 10864 34437 43634 137932 8.15× 10−11

3 10864 34806 98042 313538 8.42× 10−11

5 1× 10−1
1 10864 34691 10954 34782 3.72× 10−15

2 10864 34523 43634 138272 2.90× 10−20

3 10864 34951 98042 314834 1.94× 10−23
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Figure 4.24: Error estimate as a function of number of DOFs for the 1-D CSEM canonical model.
Left: Error estimate versus number of DOFs for the 5 different mesh groups (in color) used in the
adaptive mesh refinement. Right: Error estimate versus number of DOFs using different order in
the polynomial shape functions: linear, quadratic and cubic (colors) for mesh group 2 (using κ

g2
z ).

The error estimate values are normalized to the value in the initial mesh for each case of mesh
group and of p.

for all groups. After the fifth mesh refinement step of the goal-oriented adaptive mesh

refinement algorithm, the number of DOFs and the number of elements has increased to

about 3.5 times its initial value for all mesh groups.

To discuss the variation of the global error estimate, also included in Table 4.3, let us

draw your attention to Figure 4.24, where the normalized error estimate value is displayed

as a function of the number of DOFs for the different mesh groups and for a different order

of the polynomial shape functions.

On the LHS of Figure 4.24, the shape function order is quadratic and each data point

corresponds to onemesh refinement step, starting with the data from the initial mesh. The

error estimate values are normalized to the error value in the initial mesh. We observe that

the decrease of the error in the first and second refinement steps is very small (≈ 10−1)

and that it is after the third step, when the model has about ≈ 92000 DOFs, two times the

initial value, that the decrease is significant. Also note the different behavior after the third

refinement step between the mesh groups 1,2 and 3, and the mesh groups 4 and 5 with the

highest values of κz. For mesh groups 1,2 and 3, the error after the third mesh refinement

step decays to a value between 2×10−3 and 1×10−3, and remains approximately between 1×

10−3 and 1×10−4 in the next refinement steps, even though the number of DOFs increases.

Contrarily, the error of mesh groups 4 and 5 decays after the third refinement level to a

smaller value than mesh groups 1,2 and 3, to 4.8×10−7 and to 2.5×10−6, respectively, and

the decay continues steeply as the mesh refinement steps advance and the number of DOFs

increases. This decrease is more sharp for κ
g5
z (1×10−1m−1) than for κ

g4
z (2.8×10−2m−1). The

reason is that after mesh refinement step 3, the size of the elements at the receiver locations

are sufficiently small for the high wavenumbers to fulfill the relation we discussed in the

previous section (κz,max < 1/d) and the error decreases. However the EM field values for

κ
g4
z and κ

g5
z are very small (as shown in Figure 4.6) and it takes longer for them to converge,

so the variations between iterations are large.
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On the RHS panel of Figure 4.24, the error estimate is plotted as a function of number

of DOFs for the three cases of varying the polynomial order of the shape functions to

p = 1,2 and 3. The data in this plot corresponds to mesh group 2 with κ
g2
z = 2.8× 10−4m−1

and the error estimate values are normalized for each case to its value for the initial mesh.

Each data point corresponds to a mesh refinement step, including the initial mesh, and in

each refinement step, 20% of the elements with worst error have been refined. The main

differences are between the decay error curves of p = 1 and p = 2,3. The model with p = 1

starts with very few DOFs (10954), and the error estimate value diminishes slowly as the

number of DOFs increases. When the number of DOFs reaches the value of ≈ 1×105, after

10 adaptive mesh refinement steps, the error estimate value has decreased to 6.8 × 10−3

times its initial value. Models using p = 2 and p = 3 start with a higher number of DOFs

than p = 1, 43634 and 98042, respectively, and their decay after a few iterations is much

more abrupt than the one for p = 1. The error for p = 2, falls after the third refinement

step to 2.3×10−3 with 93562 number of DOFs, and then continues to reduce constantly in

each refinement step. For p = 3, the decay is more notable already in the first and second

refinements, falling down to 0.6 and 8.5 × 10−2. After the third iteration, the normalized

error is 1.5× 10−3, a similar value to the error in the same iteration for p = 2, but here the

number of DOFs is larger: 218930. The error continues to decrease for larger number of

DOFs and more abruptly than for p = 2.

To analyze how the error between the solution obtainedwith the goal-oriented adaptive

mesh refinement method and the semi-analytical solution changes with the number of

DOFs, when varying the shape functions order p, in Figure 4.25 we display the relative

error of the amplitude (left) and the absolute error of the phase (right) of the in-line electric

field component, Ex, for p = 1,2 and 3 and for different receivers locations x = 1,5 and 9km

(from top to bottom). The number of DOFs in the plots are the ones corresponding to mesh

group 2 using κ
g2
z = 2.8× 10−4m−1.

The same Figure also contains data from a third experiment (in black) and data dis-

cussed in the previous section (cyan). Firstly, this third experiment employs quadratic

shape functions and a residual error estimator in the adaptive mesh refinement process,

in contrast to the weighted residual used in the experiments above. The global error esti-

mator is a L2-norm of the residual (equation 3.10). In this case, as explained in Chapter 3,

the goal is to reduce the global error in the model and not the error of the goal function,

using the residual to estimate the error. The purpose of this experiment is to compare the

performance of this method with the goal-orientedmethod, analyzing the error (compared

to the semi-analytical solution) when increasing the number of DOFs (refining the mesh).

Secondly, the data from the previous section corresponds to the tests we used to study the

influence of the element size in the receivers locations to the error of the solution. In each

of these tests themeshes were fixed, and the element sizes were approximately the same for

all elements in the receiver locations domain. We considered three cases with element sizes

h = 300,100 and 50m (Figure 4.5) with a corresponding number of DOFs: 46230, 186742

and 573650. The action of reducing the size of the elements in the entire receiver domain
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Figure 4.25: Relative error of the amplitude (left) and absolute error of the phase (right) of the
in-line electric field component, Ex , as a function of the number of DOFs in different receiver lo-
cations, (x = 1,3,9km from top to bottom), obtained using: the goal-oriented (weighted residual)
adaptive mesh refinement algorithm with different order of the shape functions (p = 1,2,3; blue,
magenta, green); the residual L2-norm error estimator for the adaptive mesh refinement (black)
and a uniform refinement of the region where the receivers are located (cyan). The number of
DOFs for adaptive mesh refinement methods are the ones corresponding to mesh group 2 using
κ
g2
z = 2.8× 10−4m−1.
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can be seen as a uniform refinement of the mesh domain, since all elements are refined.

Therefore, we will also compare this refinement method with the adaptive refinement.

We start examining the relative error of the amplitude as a function of the number of

DOFs for a receiver located at 1km offset (x = 1km) in Figure 4.25 top left. Concentrating

only on the errors of the solutions obtained using the goal-oriented adaptive mesh refine-

ment method: p = 1,2 and 3, we observe a similar behavior to the error estimate values in

Figure 4.24 right.

For p = 1 the error in the initial mesh, with 10954 DOFs, is about 13%. When the

adaptive mesh refinement iterations advance and the number of DOFs increases, the error

for p = 1 decreases slowly while oscillating. After the sixth refinement step, with 43902

number of DOFs the error is still larger than 3%, and although it reaches a minimum of

0.3% in the seventh refinement step, with 53664 DOFs, the error increases again to a value

of about 2% when the number of DOFs is 80322. For p = 2 the error in the initial mesh,

with 43634 DOFs, is also about 16%, however the decay of the error with the increment of

the number of DOFs is more abrupt than for p = 1, and after the fourth refinement step,

with 116362 number of DOFs, the error reaches to a minimum of 0.2%, that stabilizes to

a value of about 0.4% when the number of DOFs is 143098, in the next step. The initial

error for p = 3, with 98042 DOFs, is about 5%, a smaller value than for p = 1 and p = 2,

and it decays faster than for any of the other cases, with an error of 0.08% after the first

refinement step, with 134912 DOFs. In the following iterations the error stabilizes to a

value of about 0.3%.

In the same plot, the relative error calculated with the solution using the adaptive mesh

refinement with a global error estimator and quadratic shape functions presents a similar

behavior with the number of DOFs to the goal-oriented case with p = 2. However, the slope

of the line is smoother, and when the DOFs are about 90000, the error is 4%, a larger value

than the 0.6% error for the goal-oriented case for a similar number of DOFs.

The performance of the error using a uniform refinement and quadratic shape func-

tions is also similar to the other two cases with p = 2. The observed differences are a

larger increment of the number of DOFs between refinement steps, it passes from 46230

to 186742 after the first refinement level and to 573650 in the second refinement level,

with a smaller decay of the error compared to the other methods; it decays from 13% to

0.3% and to 0.2%. Thus, the error-number of DOFs line corresponding to the uniform

refinement presents a smaller slope than the ones corresponding to the adaptive mesh

refinement methods.

The absolute error of the phase at x = 1km is very similar to the described relative

error of the amplitude (Figure 4.25 top right and top left). The slopes are similar for data

obtained using goal-oriented methods with p = 1,2 and 3, but smoother for data obtained

using a global error estimator method and a uniform refinement method. The initial error

for p = 1 is 37◦, a larger value than for all p = 2 cases, about 4◦, and p = 3, 3.5◦. When the

number of DOFs is about 175000, the error is 0.6◦ for the uniform refinementmethod, 0.3◦

for the L2-norm error estimator method, 0.04◦ for the goal-oriented method with p = 2,
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and 0.004◦ with p = 3. Thus, the error for large number of DOFs corresponding to the

uniform refinement method and to the adaptive method with the global error estimator is

higher than the error corresponding to the adaptive method with the goal-oriented mesh

refinement.

Interpreting the results at x = 1km, the goal-oriented method with p = 1 starts with a

few number of DOFs and needs many mesh refinement steps to increase them and there-

fore, to be able to accommodate the strong variations of the EM fields closed to the source.

The goal-oriented method with p = 2 starts with more DOFs than p = 1. In the first iter-

ations the error is larger than the one for p = 1 for the same number of DOFs. However,

since for p = 2 each element has more DOFs, the goal-oriented method refines the appro-

priate elements and in a few iterations the error decays to a lower value than for p = 1

and for the same total number of DOFs. Then, the solution converges and although per-

forming more mesh refinement steps, the error does not decrease. A similar interpretation

is valid for p = 3, but in competition with p = 2, it needs more number of DOFs to con-

verge, since it has more DOFs per element. Within the adaptive mesh refinement cases,

comparing the global error estimator with the goal-oriented method, the differences in the

amplitude error are not very notable at this receiver location, but the slightly better per-

formance of the goal-oriented method could indicate that there are some elements that

are not located where the residual is higher, that are affecting the solution in the receiver

location, as we have seen before, which are refined by the goal-oriented method but not

by the global error estimator. These results, also show that the differences between both

methods are larger for the phases which might indicate that this effect is more notable on

phases than on amplitudes. On the other hand, the uniform mesh refinement increases

faster the number of DOFs, because in each refinement step it refines all the elements (in

the domain), instead of only the elements with higher estimated error. At the same time, it

only refines elements in this domain and does not take into account elements from other

domains that could be affecting the error in the receiver locations, which could explain the

phase behavior associated to this method.

For receivers at x = 5km and x = 9km the performance of the error for the different

cases is similar to the described one at x = 1km. For a receiver at x = 5km (middle panels)

some differences are a lower initial error for p = 2 and p = 3 than at x = 1km. It is 1%

for adaptive mesh refinement methods with p = 2, 0.3% for the uniform mesh refinement

method (p = 2) and 0.6% for the adaptive mesh refinement method with p = 3. Another

difference, compared to the error for x = 1km, is that for p = 1 the error in the firsts it-

erations decreases faster. With only 18406 DOFs the error is already at 2%. However, to

decrease this value to an error of less than 1%, the necessary number of DOFs is similar to

the previous example, 80322. We also observe that the error corresponding to the case of

the goal-oriented refinement method with p = 2, stabilizes after the first refinement step

with 58378DOFs, much faster than at x = 1km, and that the slope of p = 3 is smoother. The

absolute error in the phase in this case, starts approximately at the same values as before,

only the initial error for p = 3 is significantly smaller, 0.15◦, and in general all the curves
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corresponding to the goal-orientedmethod have a smaller slope than at x = 1km, and more

similar to the two other mesh refinement methods.

The interpretation of the smoother curves at this location (x = 5km) is that the EM fields

do not vary as strong as at 1km from the source, and the same error values can be reached

with less number of DOFs. As described above, the error for p = 1 and p = 2 reduces faster

(with less number of DOFs, and refinements) and by using p = 2 and p = 3 the initial error

is smaller than at x = 1km, with p = 2 decreasing the error faster. The explanation of the

phase error could be the same one as at x = 1km.

Finally, at 9km distance to the source (Figure 4.25 bottom), the initial error for p = 1

and p = 2 is similar to x = 5km and lower than at x = 1km, and the initial error for p = 3

is smaller, 0.08%. The error for p = 1 decreases more smoothly than at x = 5km. The error

corresponding to the goal-oriented adaptive mesh refinement method with p = 2 needs

more DOFs, 116362, to converge to a value of 0.15◦ and the error using the global error

estimator would need much more DOFs to reach a similar value than at x = 5km. The

absolute error in the phase does not show large changes comparing it with the error in the

phase at x = 5km. Themost significant difference is that the error for large number of DOFs

and adaptive methods is larger than at x = 1 and 5km. The error from data computed using

the goal-oriented method stabilizes to 0.1◦ compared to a value around 0.01◦ at x = 1,5km,

and the error from data computed using the adaptive method with the L2-norm remains

at a value larger than 0.1◦ for large number of DOFs, 333428.

The interpretation of the changes in the curves at x = 9km regarding the curves at x =

1,5km are that the goal-oriented method, although it is refining elements in this location,

refines more elements at x = 5km which is closer to the source, for this reason some more

refinement steps are necessary at this location for p = 1 and p = 2 than at x = 5km to

reach the same error values. It is possible that another goal function in the adaptive mesh

refinementmethod, which could better weight the receivers locations, could improve these

results.

The different behavior of the adaptive method using the global error estimator has

also a similar cause but much more accentuated than the goal-oriented method, since the

larger residual is at the source location and this method is not weighted. To illustrate how

differently these methods are refining the mesh, in Figure 4.26 we plot the initial mesh

for all these tests, a mesh corresponding to the goal-oriented adaptive mesh refinement

method and a mesh corresponding to the residual adaptive mesh refinement method for

similar number of DOFs. As commented, the goal-oriented method refines elements at

all receivers locations, where the error indicator has large values, and the global error

estimator method refines elements around the source, where the residual is larger.

From these tests we find an outperformance of the goal-oriented adaptive mesh re-

finement method with p = 2 compared to the same method with p = 1 and p = 3, and in

comparison to the uniform refinement method or the adaptive mesh refinement method

with a global error estimator.
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Figure 4.26: Different meshes obtained from modeling the 1-D CSEM canonical model using dif-
ferent error estimator strategies in the adaptive mesh refinement: a goal-oriented or weighted
residual error estimator and a residual error estimator (L2-norm). From top to bottom: Initial mesh,
mesh obtained using the goal-oriented error estimator and mesh obtained using the L2-norm error
estimator. The plots in the right are a zoom in center of the plots in the left, zooming the source and
receivers locations. The initial number of DOFs are 43634, and the plotted meshes resulting from
the different adaptive mesh refinement strategies have a very similar number of DOFs: 175098, for
the goal-oriented error estimator and 173152, for the L2-norm residual error estimator. The grids
are for the mesh group 2 with κ

g2
z = 2.8× 10−4m−1.
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4.4 Modeling complex geometries

In this section we validate the performance of our program on modeling complex geome-

tries, such as an undulating seafloor topography or a graben-like structure embedded in

thin and thick sedimented layers. Additionally, we study the distortion effects caused by

the bathymetry on a CSEM model.

4.4.1 Two-dimensional CSEMmodel with undulating seafloor topography

Marine CSEM data are strongly affected by bathymetry because of the conductivity con-

trast between seawater and the crust below the seafloor. The bathymetry influences all

electric and magnetic components to different extents (Li and Constable, 2007). The ef-

fects depend on several experimental settings and on the interface conductivity contrast

and geometry. In particular, the bathymetry effects are determined by the transmission

frequency, the seabed conductivity, the seawater depth, the transmitter-receiver geome-

try, and the roughness of the seafloor topography (Li and Constable, 2007). In order to

avoid misinterpretation of marine CSEM data sets it is necessary to take bathymetry into

account.

The topography also affects MT data (e.g. Wannamaker et al., 1986). On land, the

topographic distortion influences principally the TM mode where the electric field is per-

pendicular to the geological strike, and in a marine environment both, the TM and the

orthogonal TE modes are distorted (Schwalenberg and Edwards, 2004).

There are two possible approximations to take topography into account, it can be in-

cluded directly into the model or its effects can be estimated and the data corrected prior

to inversion (Schwalenberg and Edwards, 2004). The incorporation of the topography in

the model using FE or FD numerical methods is straightforward, with the FE method be-

ing superior over the FD method. Using the FD method the topography is handled using

the ‘stair-case’ method, whereby rectangular conductivity cells approximate the sloping

seafloor as sequences of stair steps with variable height and width. Contrarily, the FE

method allows a more precise representation of the topography, accommodating any arbi-

trary surface using small and large elements where required.

In this section, we will show the flexibility of our program to accommodate the topog-

raphy using unstructured grids which permits both decreasing the element size towards

the interface and retaining well-shaped elements, and the efficiency of the goal-oriented

adaptive mesh refinement technique to refine only the required regions of the model for

accurate responses on the receivers locations. We will also examine the changes in the

efficiency of the adaptive mesh refinement method when varying the polynomial order

to p = 1,2 and 3. Finally, we will use this model to study the distortion caused by the

bathymetry, restricting the analysis to the in-line electric field component (Ex).

As first model we consider a 2-D canonical model with a flat seafloor (Figure 4.27). It

comprises, as in the 1-D case, an air layer and a 1km sea layer, and the 100Ω ·m reservoir
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Figure 4.27: Two-dimensional canonical disc resistivity model for marine CSEM proposed by Weiss
and Constable (2006). It comprises an air layer, a 1km seawater layer and a resistive reservoir of
100Ω ·m, which could be oil or gas, embedded in a sediments background of 1Ω ·m. The reservoir
is a 6km wide block, 100m thick and is located at 2km depth, 1km below the seafloor. The source
is located 100m above the seafloor and operates at 0.25Hz and the receivers are located at 0.5m
above the seafloor, along the x spatial dimension.

layer is substituted, in this case, by a rectangular block, 100m thick, 6km wide at the same

depth (2km) and centered at x = 0. The source is again an in-line horizontal electric dipole

located 100m above the seafloor and operating at a frequency of 0.25Hz, and the receivers

are distributed along the x−direction, every 1km from −10km to 10km, at 0.5m above the

seafloor.

We also examine a second model, variant of the 2-D canonical model, with the only

difference of an inclusion of an undulating seafloor topography (Figure 4.28). The shape

of the harmonic interface can be expressed as:

y(x) = Y cos(
2π

λ
x), (4.2)

with amplitude Y = 100m and wave length λ = 4000m, and withmaximums at y = −1000m

and minimums at y = −1200m (Figure 4.28 right). The receivers are located in the same

horizontal positions as for the flat model, and at 0.5m above the seafloor, following the

topography. Thus, the ones situated over a ridge are at −999.5m depth, and the ones over

the depression are at −1199.5m depth.

The sinusoidal interface topography of this second model, although not very realistic,

has been previously used to study topography effects onMT applications (e.g. Franke et al.,

2007), and Schwalenberg and Edwards (2004) derived a MT analytical solution for this

interface on land and marine scenarios. Li and Constable (2007) also considered it in a

variant form to study bathymetry effects on CSEM data using a FE modeling program.

To begin with, we compute the EM field solution for the flat and bathymerty 2-D canon-

ical models for different order of the polynomial shape functions, using p = 1,2 and 3. We

use the same set of wavenumber parameter values as for the 1-D canonical model, com-

prised of 28 values distributed logarithmically from 10−4 to 10−1m−1 and κz = 0. Also as
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Figure 4.28: Left: 2-D CSEM canonical model with undulating seafloor topography. Right: zoom
in center of the 2-D canonical model with the sinusoidal interface between the sea and the crust.
The maximum and minimum of the oscillations are at −1000m and at −1200m respectively, and the
wavelength is 4km. The receivers are located every 1km from −10km to 10km, at 0.5m above the
seafloor.
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Figure 4.29: Comparison of the responses of the 2-D canonical model with the ones of a flat
seafloor, computed with our program and with MARE2DEM (Key and Ovall, 2011). Left: Relative
error of the in-line electric field component Ex . Right: Absolute error of the phases of Ex .

for the 1-D case, we set 5 mesh groups of κz parameter values, and we apply the goal-

oriented adaptive mesh refinement technique to representative parameter values of each

group, the ones listed in Table 4.3, separately. As a stopping criteria for the adaptive mesh

refinement we set to decrease the error estimate to at least a fraction of 10−3 of its initial

value (η
r,g i

w /η
0,g i

w ≈ 10−3). The choice of this value for the normalized error estimate is only

justified by our experience after running several tests.

In Figure 4.29 we compare, for the flat model, the in-line electric field responses ob-

tained with our program with the responses computed usingMARE2DEM (Key and Ovall,

2011). We plot the relative error of the amplitude and the absolute error of the phase of

Ex as a function of the receiver positions with the transmitter at x = 0. The errors are very

small, with amplitude errors below 1% and phase errors of less than 0.5◦.

In Table 4.4 we list the initial and final number of elements and of DOFs for the flat and

for the bathymetry model, and for different order of the polynomial shape functions. For

both the flat and bathymetry models the final number of elements and number of DOFs is

larger for lower p, and the initial number of DOFs is larger for larger p by construction of

the FE. The differences in the initial and final number of elements and number of DOFs

between the flat and the bathymetry models for each p are small, and in general slightly
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Table 4.4: Initial and final number of elements and number of DOFs of mesh group 2, when model-
ing the 2-D canonical model with flat seafloor and with λ = 4km undulating bathymetry, for differ-
ent order of the polynomial shape functions, p = 1,2 and 3, using the goal-oriented adaptive mesh
refinement algorithm. The final mesh is obtained after the error estimate has decreased at least

10−3 its initial value:
η
r,g2
ω

η
0,g2
ω

≈ 10−3.

Model p
Num. of
elements

n0

Num. of
elements

η
r,g2
ω

η
0,g2
ω

≈ 10−3

Num. of
DOFs n0

Num. of
DOFs

η
r,g2
ω

η
0,g2
ω

≈ 10−3

Flat
1 4564 888390 4630 888456
2 4564 46842 18386 187498
3 4564 9974 41270 89960

Bathymetry
1 4809 765097 4880 765168
2 4793 49551 19312 198344
3 4761 10521 43058 94898

Figure 4.30: Final mesh of the canonical 2-D model with λ = 4km undulating bathymetry for mesh
group 2 using κ

g2
z and p = 2, obtained after applying the goal-oriented adaptive mesh refinement

algorithm, with stopping criteria a decrease in the error estimate of at least 10−3 of its initial value.
In the right, a zoom of the center of the unstructured triangular mesh showing the fine meshing
around the receiver locations and along the bathymetry.

larger for the bathymetry model, since some extra elements are required to accommodate

the smooth topography (Figure 4.30). This illustrates the flexibility of the FE method us-

ing triangular unstructured grids to accommodate the topography while maintaining the

size of the elements in the rest of the mesh. We also note some slight variability on the

initial number of elements of the bathymetry model for different number of p, although

the selected parameters for generating the initial mesh were the same. We attribute these

differences to an error of the geometry generator to build a sinusoidal curve of 1 × 105m,

which produce a slightly different shape for different runs of the program, which translates

to a slightly different mesh.

The differences of number of elements and number of DOFs between the differentmesh

groups on the different mesh refinement steps are similar to the ones showed for the 1-D

case, as it can be observed in Figure 4.31 left. We can observe that the normalized error
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Figure 4.31: Error estimate as a function of number of DOFs for the 2-D CSEMcanonical model with
a flat seafloor and an undulated topography seafloor. The error estimate values are normalized
to the value in the initial mesh for each case of mesh group and of p. Left: Error estimate versus
number of DOFs for the 5 different mesh groups (in color) used in the adaptive mesh refinement
and for the model with flat seafloor (solid line) and bathymetry (dashed line). Right: Error estimate
versus number of DOFs using different order in the polynomial shape functions: linear (p = 1),
quadratic (p = 2) and cubic (p = 3), and for the model with flat seafloor (solid line) and for the one
with bathymetry (dashed line). The number of DOFs corresponds to mesh group 2 (using κ

g2
z ).

estimate decreases much faster for mesh groups 4 and 5, with the largest wavenumber val-

ues, when increasing the number of DOFs (refinement steps proceed), and that is similar

for mesh groups 1,2 and 3.

In Figure 4.31 right, we plot the normalized error estimate as a function of number of

DOFs for the flat and bathymetry models, and for different order of the polynomial shape

functions, p. The curves behavior is again similar to the 1-D case, with steeper slope for

larger p. We also note that p = 1 is the least appropriate, since it needs about 8×105 DOFs

to decrease the error a fraction of 10−3, compared to p = 2 and p = 3 which need much less

DOFs, about 2 × 105 and 1 × 105 respectively. As we already commented, the difference

between the curves corresponding to the flat and to the bathymetry models, are small.

In Figures 4.32 and 4.33we plot the Êz and Ĥz elementwise error indicator, respectively,

for the bathymetry model and for the initial mesh and for different mesh refinement steps

of the adaptive mesh refinement process for mesh group 2 (κ
g2
z = 2.8× 10−4). The results

correspond to quadratic shape functions, and the number of elements of the initial and fi-

nal (level 10) grids are listed in Table 4.4. Observing Figure 4.32, the initial error is largest

in the receiver locations, in the reservoir and in the region below the reservoir. As the

adaptive mesh refinement progresses, these regions are refined and the error decreases.

The error distribution for Ĥz in Figure 4.33 is similar to the one of Êz, and the main differ-

ence is that the error is also large in the air in a region above the source. Accordingly this

region is also refined in the adaptive mesh refinement process. After the 10th refinement

step, we observe a very fine mesh in the receiver locations, and following the bathymetry,

and a fine mesh in the reservoir region and in the air, in a region above the source.

As a complementary information, in Figures 4.34 and 4.35, we plot for Êz and Ĥz,

respectively, the field component solution, the dual solution, the residual and the error
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Figure 4.32: Elementwise error indicator of the dependent variable Êz for the parameter value
κ
g2
z = 2.8×10−4m−1 in different steps of the goal-oriented adaptive mesh refinement algorithm, for

the 2-D CSEM canonical model with λ = 4km undulating bathymetry and corresponding adaptive
mesh. The results correspond to quadratic shape functions. From top to bottom, error for the initial
mesh and for three goal-oriented adaptive mesh refinement steps: 1st,5th and 10th. The plots on
the right side are a zoom in center of plots in the left, zooming the source and receivers regions of
the model.
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Figure 4.33: Elementwise error indicator of the dependent variable Ĥz for the parameter value
κ
g2
z = 2.8×10−4m−1 in different steps of the goal-oriented adaptive mesh refinement algorithm, for

the 2-D CSEM canonical model with λ = 4km bathymetry and corresponding adaptive mesh. The
results correspond to quadratic shape functions. From top to bottom, error for the initial mesh
and for three goal-oriented adaptive mesh refinement steps: 1st,5th and 10th. The plots on the
right side are a zoom in center of plots in the left, zooming the regions of the source and receivers
locations.



Chapter 4. Numerical experiments on modeling 119

Figure 4.34: From top to bottom: Êz, dual of Êz , residual and error indicator with corresponding
mesh, for the parameter value κ

g2
z = 2.8 × 10−4m−1 and quadratic shape functions, after the first

step of the goal-oriented adaptive mesh refinement algorithm for the 2-D CSEM canonical model
with λ = 4km undulating bathymetry. Plots on the right side zoom into the center where the source
and receivers are located.
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Figure 4.35: From top to bottom: Ĥz, dual of Ĥz, residual and error indicator with corresponding
mesh, for the parameter value κ

g2
z = 2.8×10−4m−1 after the first step of the goal-oriented adaptive

mesh refinement algorithm for the 2-D CSEMcanonical model withλ = 4km undulating bathymetry.
Plots on the right side zoom into the center where the source and receivers are located.
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Figure 4.36: Left: 2-D CSEM canonical model with λ = 1km undulating seafloor topography. Right:
zoom in center of the 2-D canonical model with the sinusoidal interface between the sea and the
crust. The maximum and minimum of the oscillations are at −1000m and at −1200m respectively,
and the wavelength is 1km. The receivers are located every 1km from −10km to 10km, at −999.5m.

indicator, resulting from the product of the dual solution and the residual. All these sur-

face plots are for mesh group 2, obtained using quadratic shape functions and correspond

to data after the first mesh refinement step. In both cases, Êz and Ĥz, the largest values

of the dual solution are on the receivers locations. In contrast, the largest values of the

residual are around the source and around the reservoir regions. The spatial distribution

of the error indicator for both Êz and Ĥz is then a combination of the distributions for the

dual solution and the residual. The error indicator for Êz is larger at the receivers locations

and around the source and reservoir regions, and the error indicator for Ĥz has its largest

values also in these regions and additionally in an air region above the source.

Finally, we use the computed solutions using quadratic shape functions to study the

distortion of the in-line electric field component by the undulating seafloor topography

on the 2-D canonical model. Additionally to the original 2-D canonical model with flat

seafloor and 1km sea layer (Figure 4.27), and the variant with undulating bathymetry of

wavelength λ = 4km (Figure 4.28), we consider three other models, also variants of the

2-D canonical model. The first one is the 2-D canonical model with a flat seafloor and a

thicker sea layer of 1.2km. A second model is the 2-D canonical model with bathymetry,

but changing the wavelength of the harmonic interface to λ = 1km (Figure 4.36). In Figure

4.37 we show the mesh for this last model after some steps of the goal-oriented adaptive

mesh refinement algorithm, where again it can be observed the fine meshing around the

receivers locations and along the sea-crust interface. We note that the meshing along all

the interface is finer than for the model with λ = 4km bathymetry (Figure 4.30), since it

needs to accommodate a more abrupt topography. The third model is simply the original

2-D canonical model without the reservoir, thus, a homogeneous model with an air layer

and a 1km sea layer.

For all the models the source is located at 100m above the seafloor and the operating

frequency is 0.25Hz. The receivers are located along the x−direction every 1km, from

−10km to 10km, and at 0.5m above the seafloor. That means that in the flat models, 2-D

canonical and homogeneous, with a sea layer of 1km, the receivers are located at −999.5m

depth and that in the flat canonical 2-D model with 1.2km sea layer, the receivers are at

−1199.5m depth. In the model with λ = 4km undulating bathymetry, the receivers follow
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Figure 4.37: Model mesh of the canonical 2-D model with λ = 1km bathymetry for mesh group 2
using κ

g2
z and p = 2, obtained after 4 steps of the goal-oriented adaptive mesh refinement algo-

rithm. On the right, a zoom of the center of the unstructured triangular mesh showing the fine
meshing around the receiver locations and along the bathymetry.

the slope and are located at −999.5m above the ridge, at −1199.5m above the depression

and at −1099.5m in between. Finally, in the model with λ = 1km undulating bathymetry,

all the receivers are situated above a ridge, at −999.5m depth, since they are horizontally

distributed every 1km along a profile.

In Figure 4.38 we plot the amplitude and phase of the in-line electric field component,

Ex, as a function of the receiver locations for these 5 models, and the relative error of the

amplitude and the absolute error of the phase between the responses from: the bathymetry

model with λ = 4km and the flat model with 1km sea layer, the bathymetry model with

λ = 4km and the flat model with 1.2km sea layer, the bathymetry model with λ = 1km and

the flat model with 1km sea layer, the flat model with 1km sea layer and the homogeneous

model. The error curves corresponding to differences between models with bathymetry

and flat models give information of the distortion caused by the bathymetry, and the error

curve corresponding to the differences between the flat model and the homogeneousmodel

shows the distortion caused by the reservoir.

Concentrating first on the distortion caused by the reservoir (Figure 4.38) , it is for most

of the receivers larger than the anomaly distortion caused by the bathymetry. The relative

error of the amplitude is about 1% at x = ±1km, and grows with the distance to the source

to 100% at x = ±3km, coinciding with the lateral boundaries of the reservoir. For receivers

located at further distances than x = ±3km the error remains at 100% and about x > ±7km

decays again to a value of 1%. A similar behavior can be observed for the absolute error of

the phase, with the largest distortion, of about 50−60◦, registered at x = ±3,4,5km, and an

error of about 20◦ registered at receivers located at x = ±6,7,8km.

The distortion caused by the bathymetry of λ = 4km is also significant. The amplitude

relative error between the responses of the λ = 4km bathymetry model and the flat model

with 1km sea layer oscillates from 2−3% to about 10%. We note a correspondence between

the location of the maximums and minimums of the error in the amplitude with the ridge

and valley topography. We differentiate two opposite relations of this correspondence. The
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Figure 4.38: Left, from top to bottom: Amplitude and phase of the in-line electric field component
for five differentmodels (colors): 2-D canonical model with a flat seafloor, 2-D canonical model with
a flat seafloor and a 1.2km sea layer, 2-D canonical model with λ = 4km undulating bathymetry,
2-D canonical model with λ = 1km undulating bathymetry and homogeneous model (with air and
sea layers). Right, from top to bottom: relative error of the amplitude and absolute error of the
phase between: the λ = 4km bathymetry model and the flat model with 1km sea layer, the λ = 4km
bathymetry model and the flat model with 1.2km sea layer, the λ = 1km bathymetry model and
the flat model with 1km sea layer and between the flat model and the homogeneous model. The
error curves for the three first cases (blue, cyan,red) gives information of the distortion caused by
topography and the last one (green) gives information on the distortion caused by the reservoir.
These results for the different models are obtained using quadratic Lagrangian shape functions
and after applying the goal-oriented adaptive mesh refinement algorithm.
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first relation is for the receivers closest to the source |x| < 5km, and shows that the error

is minimum for receivers located in the valley, x = ±2km, and maximum for locations be-

tween the ridge and the valley, x = ±1,3km. The second relation is for receivers located at

more than 5km, and then, the maximum of the error corresponds to a valley in the topog-

raphy, x = ±6,10, and the minimum of the error to a ridge in the topography, x = ±8km.

We interpret the distortion behavior as caused principally from a combined inductive and

galvanic effects for the receivers closest to the source, and by the geometry for receivers

at longer distance. A geometry effect means that we are comparing the responses from

the bathymetry model with receivers at different depths, with a flat model where all re-

ceivers are at the same depth, −999.5m. Then, the error is minimum for receivers above

the ridge because they are also located at −999.5m, and maximum at the valley because the

difference of the depth locations of the receivers between the bathymetry model and the

reference model is maximum. On the other hand, the absolute error of the phase seems

to be mainly affected by a geometry effect, since the maximums, at about 10◦, coincide

with the locations of the depressions, and the minimums at about 1◦ coincides with the

locations of the ridges.

To verify this interpretation, we also plot the error between the same λ = 4km bathymetry

model and the flat model with 1.2km sea layer. Then, the receivers in the valley are at the

same depth as the receivers in the reference model, and have the same water column above

them. We observe that when compared with this reference model, all the receivers present

a larger error than in the previous case, with values oscillating between 10% to 20− 50%.

The variations of the error with the receivers location follow approximately the expected

behavior from the explanation above. Responses for the receivers with smaller offsets have

maximum errors in positions between the ridge and the valley, x = ±1,3km, and mini-

mums in positions coinciding with the topographic valleys, x = ±2km. Responses for the

receivers with the largest offset present a minimum error in the topographic depressions,

x = 6,10km, and a maximum in the topographic ridges, x = 8km. However, it is difficult to

identify these minimums for large offsets, since the error curve presents an upward shift

for receivers |x| > 3km, coinciding with the lateral boundary of the reservoir.

Comparing the phase error of the λ = 4km undulating bathymetry model to error of the

flat model with 1.2km sea layer, we also observe a different behavior between the responses

for receivers near the source and over the reservoir, and the responses for more distant re-

ceivers. The responses for receivers near the source have a maximum error, about 16◦, at

the topographic valleys x = ±2km, and a minimum error, 4◦, above the ridges x = ±4km.

The responses from receivers at larger offsets have minimum error, of 8◦ and 2◦, at po-

sitions above the valleys, at x = 6 and 10km, respectively, and a maximum error, of 30◦,

above the ridge, at x = 8km. Hence, it seems the error is dominated for larger offsets by the

geometry effect.

Finally, we analyze the error between the λ = 1km bathymetry model and the flat model

with 1km sea layer. In this case, the receivers in the bathymetry model are all located

above a topographic ridge, at the same depth of the receivers in the flat model, −999.5m.
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Figure 4.39: Relative error of the amplitude (left) and absolute error of the phase (right) of the
in-line electric field component, between responses of the 2-D canonical model with λ = 1km un-
dulating bathymetry and responses of the same model with a flat interface.

The relative error of the amplitude is, in this case, larger than for the λ = 4km bathymetry

model, with values between 22 and 33%, approximately, and the absolute error of the

phase is between 3◦ and 10◦.

To examine the error variations more conveniently, in Figure 4.39 we plot the relative

error of the amplitude and the absolute error of the phase for this case solely. We observe

a maximum of the error of the amplitude of about 30%, for the receivers located closest to

the source and another one above the reservoir, at x = ±1,2km. At x = ±3,4km the error has

decayed to approximately 27%, and this decay continues until it reaches the value of 22%

at x = ±7km. For receivers at further distance, the error increases to a maximum of 26% at

x = ±9,10km.

Examining the absolute error of the phase in this last case, there is a maximum of

about 10◦ at x = ±2km and at x ± 3,4km the error has decayed to 4◦. For receivers with

larger offsets the oscillations continue but with lower amplitude, with maximums at x = 6

and 10km of about 6◦ and a minimum at x = 8km of about 3◦.

We explain the large error at all positions because of an inductive-galvanic effect, larger

than in the λ = 4km undulating bathymetry model, due to a more rough bathymetry in this

last test. On the other hand, we explain the larger error close to the source and above the

reservoir because of an interaction between the bathymetry distortion and the reservoir

distortion.

4.4.2 Two-dimensional MT graben-like model

To validate our program on a 2-D MT model with a complex geometry, we consider the

graben-like model introduced in the COMMEMI project (Zhdanov et al., 1997) and re-

ferred as the COMMEMI model 2D-4. The COMMEMI model 2D-4 (Figure 4.40) consists

of an air layer and three layers with resistivities 25Ω ·m, 1000Ω ·m and 5Ω ·mwith a graben-

like structure embedded between the first and the second layer. The first layer is 0.5km

thick. The graben-like structure has a resistivity of 2.5Ω ·m and diminishes to the right-
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Figure 4.40: Scheme of the COMMEMI model 2D-4 by Zhdanov et al. (1997). It comprises an air
layer and three layers with resistivities 25Ω ·m,1000Ω ·m and 5Ω ·m with a graben-like structure
embedded between the first and the second layers. The first layer is 0.5km thick. The graben-like
structure has a resistivity of 2.5Ω ·m and diminishes to the right-hand model boundary. The thicker
part is 3.5km and the thiner part is 1km thick. On the left-hand model boundary the stratifica-
tion is different because of a semi-infinite layer with 10Ω ·m resistivity and with 1.5km thickness.
Frequencies used in the tests for this model are 0.01,1/9 and 1Hz.

hand side model boundary. The thicker part is 3.5km and the thinner part is 1km thick. On

the left-hand side model boundary the stratification is different because of a semi-infinite

layer with 10Ω ·m resistivity and with 1.5km thickness. The receivers are located in the

subsurface at −0.1m depth, distributed along the x−axis, at: −20,−10,−7,−6,−5,0,2.5,8

and 16km. The model is studied using three frequencies: 0.01,1/9 and 1Hz. The lowest

frequency forces large model dimensions of 2000km× 2000km.

We solve for Ez and Hz in this model, applying the goal-oriented adaptive mesh re-

finement to each frequency separately, with three mesh groups each one with only one

frequency, and using quadratic shape functions. The goal function is again a gradient of

the dependent variables Ez and Hz. We set to refine in each iteration of the adaptive mesh

refinement algorithm, a fraction of 10% of the elements with larger error.

In Figures 4.41 and 4.42 we plot the elementwise error indicator for the initial mesh,

for the first refinement step and for the last one (5th level), for Ez andHz, respectively. The

data correspond to mesh group 2 with frequency 1/9Hz which we found representative of

the results for all other frequencies. We observe that although the mesh is coarse in the

top and bottom of the model, in the middle the mesh is very fine in order to accommo-

date the 0.5 and 1 − 2km layers. For both Ez and Hz, the initial error is larger in the air

layer, in the receiver locations, in the corners of the embedded graben-like structure and

in the top of the bottom layer, at around y = −25km. As the adaptive mesh refinement al-

gorithm progress, these regions are refined, and after the 5th iteration, the error indicator

has decreased in these regions to more than 10−5 of its initial value.

Figures 4.43 and 4.44 show the spatial distribution of the dual solution, the residual

and the error indicator for the same frequency of 1/9Hz, for the first refinement step and
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for Ez andHz, respectively. We observe that for Ez (Figure 4.43), the dual solution is largest

in the receivers locations but it is also large in both the center of the model and in the air

layer. On the other hand, the residual is largest in the thin layers, in the graben-structure

and in the air layer. Consequently, the elementwise error indicator is distributed as de-

scribed above.

The dual solution for Hz in Figure 4.44 shows smaller values in the air layer com-

pared to Ez. The largest values are in the receivers locations, in the first thin layers, in

the graben-structure and in the top of the more bottom layer. The residual shows also a

different spatial distribution compared to Ez. The air layer has the largest values, and the

residual in the center of the model is more than 105 orders of magnitude smaller, with only

significant larger values in the corners of the graben-structure. The error indicator can be

easily seen as the product of these two quantities, resulting in a similar distribution as for

Ez, as described above.

We associate the larger error values in the air compared to the rest of themodel, because

of large EM fields values in this region. As described in Chapter 2, in MT we excite the

model by giving boundary conditions on the EM fields in the top of the model. In the air

the EM fields have a similar value as in the top of the model and the diffusion is significant

when penetrating the Earth. Thus, the largest values in the air give a largest residual. The

largest values of the dual solution in the air could be explained partly for the same reason

but also because of the strong variation of the conductivity values in the air-Earth interface,

affecting the accuracy of the solution in the receivers locations.

As a consequence of the large error in the air, the mesh refinement concentrates in

this region, augmenting largely the number of elements before decreasing the error in the

receiver locations. However, for the first model we examined in this Chapter (Figure 4.1),

for which we did not apply the adaptive mesh refinement algorithm, a coarse mesh in

the air was resulting in accurate results at the receivers. Therefore, we think the adaptive

mesh refinement algorithm should be improved to apply it in MT examining other error

estimators.

In Table 4.5 we provide the initial and final (after 5 mesh refinement steps) number

of elements and number of DOFs used to calculate the solutions for the three frequencies.

The same table lists the time used to assemble and solve the solution, the residual and the

dual solution in the 5th iteration of the adaptive mesh refinement algorithm, and the time

to solve the system of equations on the mesh resulting after the 5th mesh refinement iter-

ation. All quantities are given for the three frequencies and correspond to the solution of

both Ez and Hz together. We find that there are not significant variations of the number of

elements, and consequently number of DOFs or solution time, between frequencies. The

initial number of elements is large since themodel dimensions are large (2000km×2000km)

and the mesh needs to accommodate the shallow thin layers of the model. Consequently,

the number of DOFs is also large and larger than the number of elements since we are

solving for both Ez and Hz and using quadratic shape functions. The increase of these

quantities after the 5th mesh refinement step is significant, the number of elements is al-
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Figure 4.41: Elementwise error indicator of the dependent variable Ez at 1/9Hz frequency in differ-
ent steps of the goal-oriented adaptivemesh refinement algorithm, for theMTCOMMEMImodel 2D-
4 and corresponding adaptive mesh. The results correspond to quadratic shape functions. From
top to bottom, error for the initial mesh and for two goal-oriented adaptive mesh refinement steps:
1st and 5th. Plots on the right side zoom into the center where the embedded graben-structure
and the receivers are located.
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Figure 4.42: Elementwise error indicator of the dependent variable Hz at 1/9Hz frequency in dif-
ferent steps of the goal-oriented adaptive mesh refinement algorithm, for the MT COMMEMI model
2D-4 and corresponding adaptive mesh. The results correspond to quadratic shape functions.
From top to bottom, error for the initial mesh and for two goal-oriented adaptive mesh refinement
steps: 1st and 5th. Plots on the right side zoom into the center where the embedded graben-
structure and the receivers are located.
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Figure 4.43: From top to bottom: Ez, dual of Ez , residual and error indicator with corresponding
mesh, at 1/9Hz frequency and using quadratic shape functions, after the first step of the goal-
oriented adaptive mesh refinement algorithm for the MT COMMEMI model 2D-4. Plots on the right
side zoom into the center where the embedded graben-structure and the receivers are located.
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Figure 4.44: From top to bottom: Hz, dual of Hz, residual and error indicator with corresponding
mesh, at 1/9Hz frequency and using quadratic shape functions, after the first step of the goal-
oriented adaptive mesh refinement algorithm for the MT COMMEMI model 2D-4. Plots on the right
side zoom into the center where the embedded graben-structure and the receivers are located.
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Table 4.5: Frequency, initial and 5th mesh refinement step number of elements and number of
DOFs, time for calculation of the solution, the residual and the dual solution and time for calcu-
lation of the solution in the resulting mesh, after the 5th mesh refinement step, when modeling
the MT COMMEMI model 2D-4. The computer used in the tests is an INTEL i7 4 GHz quad-core
processor and 16 GB RAM desktop computer.

Frequency
(Hz)

Num. of
elements

n0

Num. of
elements

n5

Num. of
DOFs
n0

Num. of
DOFs
n5

Time n5:
Sol., Res.,
Dual (s)

Sol. Time
n5 (s)

0.01 103575 187601 414804 751208 25.01 12.49

1/9 103575 187276 414804 749874 27.88 13.36

1 103575 185428 414804 742534 26.59 13.08

most twice the initial value. As discussed above the error estimator function we are using

in the adaptive mesh refinement seems not to be adequate in this form to be applied to MT

models, and other functions or methods should be investigated.

The time that needs the solver to assemble and solve the system of equations is also

large since the number of DOFs is large. It needs about 13s using an INTEL i7 4 GHz

quad-core processor and 16 GB RAM desktop computer. If additionally we calculate the

dual solution and the residual it takes about twice this time.

In Figure 4.45 we also show the variation of the global error estimate with the number

of DOFs for the three different frequencies. We observe that after the 5th mesh refinement

step, with about 7.5 × 105 DOFs, the error for the lower frequencies, 0.01 and 1/9Hz, is

smaller than 10−1 the initial value and, in contrast, the error for the highest frequency

of 1Hz has not reached this threshold. The reason is that the skin depth is larger for

lower frequencies, thus, the mesh is fine enough for the lowest frequencies but not for the

highest ones, which need a finer mesh for the same accuracy. When the number of DOFs

are almost twice its value in the 5th mesh refinement step, 13×105, the error for the 0.01Hz

frequency has not decreased, it is 3× 10−2 its initial value. For the same number of DOFs,

at a frequency of 1/9Hz, the error has decreased slightly, from 5 × 10−2 to 1.5× 10−2, and

for the highest frequency of 1Hz it has reached the 10−1 threshold, arriving to a value of

3.5 × 10−2 its initial value. This shows that after the 5th mesh refinement step the error

for the lowest frequency of 0.01Hz, is not sensitive anymore to the refinement, contrarily

to the error for 1/9 and 1Hz, which could still be reduced. This shows again that the

performance of the adaptive mesh refinement is not optimal for this problem.

Finally, we compare our results with the responses computed with MARE2DEM (Key

and Ovall, 2011) and with the corresponding solutions published in Zhdanov et al. (1997)

from the COMMEMI project, an international project on the comparison of modeling

methods for electromagnetic induction. To compute the solutions using the MARE2DEM

program we used the default FE parameters in the free-available code, and for the com-

parison with solutions obtained from the COMMEMI project we took the corrected mean

values (with index 1). The quantities to benchmark the solution are the apparent resisiv-
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Figure 4.45: Normalized error estimate as a function of the number of DOFs for three different
frequencies: 0.01,1/9 and 1Hz (in colors), when modeling the MT COMMEMI model 2D-4 using the
goal-oriented adaptivemesh refinement algorithm. The normalization is realized dividing the error
estimate values by the initial value for each frequency case.

ities and phases for both the TE and TM modes calculated from the EM fields solution.

The comparison with the COMMEMI data is done only for the apparent resistivities at the

slightly different receivers locations that are available, these are at: −10,−7,−6,−5,2,3.5

and 5km.

Figure 4.46 shows the apparent resistivities for the two EM modes as a function of re-

ceiver locations calculated using our program, together with the results calculated using

MARE2DEM and the ones from the COMMEMI project. The COMMEMI results are plot-

ted with the standard deviation given in Zhdanov et al. (1997) as an error bar. The same

figure illustrates the relative error of the apparent resistivities for the two polarization

modes as a function of the receivers positions and for the three frequencies, calculated

between our solution and the MARE2DEM solution, and between our solution and the

COMMEMI results.

In Figure 4.47 the phases and absolute errors of the phases are plotted for both modes

and for the three different frequencies, from the results obtained with our program and

from the results obtained using MARE2DEM. The absolute errors are also plotted, calcu-

lated between the solutions computed with our program and the solutions of MARE2DEM.

Describing qualitatively the apparent resistivity curves (Figure 4.46), at 0.01Hz the

TM mode shows stronger variations with the resistivity than the TE mode. The TM mode

apparent resistivity is about 70Ω ·m at receivers −20,−10 and −7km as a result of the resis-

tive, 1000Ω ·m, layer at 2km depth. It starts to decay at −6km, where the more conductive

graben-structure is located, to a minimumvalue of 3Ω ·m at 0km, approximately in the cen-

ter of the 2.5Ω ·m structure. Then, the resistivity grows steeply along the inclined plane

until a value of about 35Ω ·m at the 5km position, where the inclined plane finishes and

becomes a thin layer, 1km thick. The curve is then flat, with a resistivity of about 50Ω ·m

at 8 and 16km positions, a smaller value than the one on the LHS of the graben-structure.

The TE apparent resistivity curve shows a smoother shape than the TM mode, however it

is affected by the resistivity variations in a larger range of positions. It is about 50Ω ·m at
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Figure 4.46: Computed TM (blue) and TE (red) modes apparent resistivities (left) and relative error
of the apparent resistivities (right) as a function of the receivers locations, for three different fre-
quencies (from top to bottom): 0.01,1/9 and 1Hz, for the MT COMMEMI model 2D-4. The apparent
resistivity plots also include data calculated with the MARE2DEM program (Key and Ovall, 2011)
and data from the COMMEMI project (Zhdanov et al., 1997), corrected mean values (with index 1)
with standard deviation. The relative error is calculated between our results and the results ob-
tained using MARE2DEM (solid line), and between our results and the results from the COMMEMI
project (dashed line). The apparent resistivity values calculated using MARE2DEM and the ones
from the COMMEMI project are not all at the same receivers locations, since the published COM-
MEMI data is given at different receiver locations compared to the original model. The receivers
locations for the MARE2DEM results are: −20,−10,−7,−6,−5,0,2.5,8 and 16km, and for the COM-
MEMI results are: −10,−7,−6,−5,2,3.5 and 5km.
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Figure 4.47: Computed TM (blue) and TE (red)modes phases (left) and absolute error of the phases
(right) as a function of the receivers locations, for three different frequencies (from top to bottom):
0.01,1/9 and 1Hz, for the MT COMMEMI model 2D-4. The phases plots also include data calculated
with the MARE2DEM program (Key and Ovall, 2011). We add 180◦ to the TEmode phase for a better
visualization of the results. The relative error is calculated between the results obtained with our
program and the results obtained using MARE2DEM.
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−20km, and in the next receiver position, at −10km, the value has decayed to 40Ω ·m. If we

continue moving to the right, the decay continues smoothly to a minimum of more than

15Ω ·m at x = 0. After this position to the right, the resistivity curve starts to grow also

smoothly, with a maximum of about 40Ω ·m at the last receiver location, at 16km.

The relative error at this frequency, comparing our results to the ones of MARE2DEM,

is less than 2% at most of receivers for both the TE and TMmodes, and only slightly higher,

4%, for the TMmode at −6km position in which the resistivity curve changes abruptly. The

relative error compared to the COMMEMI results is below 3% for TE resistivities and larger

for the TM resistivities at most of the receivers, with values up to 30% at −5km. However,

we want to note that the COMMEMI results are mean values with error bars, and that all

the solutions with our code fall inside the error bars.

In the same Figure, at 1/9Hz frequency, the apparent resistivity is not so much affected

by the 1000Ω ·m resistive layer at 2km depth compared to the result at 0.001Hz, it is about

35Ω ·m at −20km. As for the lowest frequency, we observe the decay of the TM mode

apparent resistivity at −6km, coinciding with the LHS lateral boundary of the embedded

graben-structure, and of the TE mode, at −10km further away of the graben-structure. The

minimum value is at x = 0 for both modes, with 2.5Ω ·m for the TE and 3Ω ·m for the TM

modes. When moving to the right of the graph, the TM mode apparent resistivity grows

more steep than the TE mode, as observed for the 0.01Hz frequency. The slope changes for

the TM curve at 5km with about 20Ω ·m and continues growing smoothly until it reaches

the 25Ω ·m at 8km. The value is the same, 25Ω ·m, at 16km, and also approximately the

same that reaches the TE mode in a smoother way.

At the same frequency, the relative error compared with the MARE2DEM solution is

less than 2% for the TE mode, with the largest value at −7km, and less than 4% for the TM

mode with the largest values at −6km and 0 positions, coincidingwith the start of the decay

of the apparent resistivity curve and with its minimum. The relative error compared to the

COMMEMI results also shows larger values for the TM mode than for the TE mode. It is

about 10% for the TM mode and less than 2% for the TE mode. The largest discrepancies

of the TM mode apparent resistivity coincide approximately with the abrupt decay of the

resistivity on the LHS of the graben-structure, and with receivers over the inclined plane,

at 3.5 and 5km, where the apparent resistivity grows steeply. However, all the resistivity

values calculated with our program fall inside the error bars of the COMMEMI results.

At the highest frequency of 1Hz (Figure 4.46 bottom) the resistivity variations are very

smooth compared to the ones at lower frequencies, and very similar for both TE and TM

modes. At the RHS of the graben-structure, the resistivity is about 10Ω ·m for both EM

modes, influenced by the shallower layers. Continuing to the right, at −6km the resistivity

decreases slightly and at −5km, the receiver is above the graben-structure and the apparent

resistivity is about 6.5Ω ·m. This indicates that the graben-structure influences the appar-

ent resistivity, but since the apparent resistivity value is larger than for the other lower

frequencies at the same location, we interpret that this frequency is more sensitive to the

shallower resistive layer which has a larger resistivity value of 25Ω ·m. The apparent re-
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sistivity remains constant for all the other receivers above the graben for both EM modes.

After the horizontal position of 2km, the apparent resistivity for the TMmode starts to fall

down smoothly to a value of about 5.5Ω ·m at 5km, coinciding with the position where

the inclined plane finishes and the graben-structure becomes a thin layer. Moving more

to the right of the model, the resistivity variations are very smooth for the TM mode, and

at 16km, the apparent resistivity is about 6Ω ·m. The decay for the TE mode from 2km

to 16km positions is slightly smoother than for the TM mode, and at 16km the apparent

resistivity is also 6Ω ·m.

For the same frequency, the relative error compared to the MARE2DEM solution is

larger for the TM mode than for the TE mode. The relative error for the TM mode is

between 1 and 8% with the largest values at −20 and 8km, and the relative error for the

TE mode is between 0.1% and 2.5%, with the largest value at 16km. The relative error

compared to the COMMEMI results is similar for both modes with values of less than 4%.

Examining the phases in Figure 4.47 we observe that at 0.01Hz the phases are between

30◦ and 65◦ (after the addition of 180◦ to the TE mode), and that the more conductive

graben-structure produces a maximum in the TM mode and a minimum in the TE mode.

The apparent resistivities at the same frequency, show changes in the TM mode which are

more abrupt than for the TE mode and coincide more precisely with the positions of the

change of the resistivity. Contrarily, the jump in the phase due to the graben-structure is

larger for the TE mode than for the TMmode, passing from 55◦ to 30◦ in the first one, and

from 55◦ to 64◦ in the second one. The absolute error of the phases at this frequency is

between 0.6 and 1.4
◦
for the TM mode, and below 0.3◦ for the TE mode.

In the same Figure, at 1/9Hz, the effect of the graben-structure in the phases is a max-

imum for both modes, more pronounced for the TM mode. The jump for the TE mode is

from 27◦ to 40◦, and the jump for the TM mode is from 20◦ to 53◦. We observe, as for

the 0.01Hz frequency, that the changes in the phase of the TM mode coincide precisely

with the changes in the resistivity structures, and that the TM mode is affected by these

variations in a larger spatial range than the TE mode. The absolute error of the phases is

between 0.4 and 1◦ for the TM mode and below 0.4◦ for the TE mode.

Finally, the spatial variation of the phases at the highest frequency of 1Hz (Figure 4.47

bottom) is very similar for both modes as observed in the apparent resistivities at this

frequency. The conductive graben-structure effect in the phases is again a maximum for

receivers above it, passing from 45◦ to 62◦, and again to 45◦ when moving to the right

of the conductive structure. Also, as for the lower frequencies, the variations of the TM

mode phase coincide precisely with the variations of the resistivity, and the variations of

the TE mode are affected by the resistivity changes in a larger rank of receiver positions.

The absolute errors of the phase are small, below 1.4◦ for the TMmode and 0.8◦ for the TE

mode.

From these tests, we can conclude that our numerical results are accurate when com-

pared to COMMEMI and MARE2DEM results, although we have detected that the perfor-

mance of the adaptive mesh refinement algorithm for MT is not efficient and we should
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investigate a more appropriate error estimator. The programmodels accurately the abrupt

changes in the apparent resistivities and phases which coincide with jumps in the resis-

tivity due to the geological structure, and also the apparent resistivities and phases corre-

sponding to the inclined plane forming the graben-structure. The thin layers at the upper

part of the subsurface model are also well resolved by the highest frequencies. We also

observed a better accuracy of the TE mode with respect the TM mode. This result is also

contained in the COMMEMI results. The COMMEMI TM mode error bars are also larger

than the TE mode ones, indicating more variability in the TMmode results between differ-

ent programs. The explanation is that the TM mode is more sensitive to the air layer, and

consequently the solution is less stable.

4.5 Oriented and finite-length 3-D sources

Usually, in 2-D modeling codes and in the previous models we used in this Chapter for

numerical experiments, the CSEM sources are approximated as point dipoles. However,

typical CSEM sources used in land and marine environments are horizontal wires with

length of several hundred meters, that generate 3-D EM fields, sensitive to both, resistive

and conductive, and relatively deep targets. When the source-receiver distance is suffi-

ciently large, the point dipole is a good approximation. However, when the goal of the

CSEM survey is to resolve small structures, it is necessary to reduce the offset, and then

the inaccuracy of the dipole approximation can be on the order of the target anomalies,

thus, it is necessary to consider the actual source geometry (Streich and Becken, 2011).

In Chapter 3, we described the capability of our program to model the orientation and

length of the sources and give some details on the implementation. In this section, we

benchmark this component of the program, modeling different orientation and geometry

of the CSEM source and at the same time, we discuss the importance of considering a more

realistic approximation of the CSEM source on certain model situations.

For this purpose, we start considering a land CSEM model grossly simulating the ge-

ology at the carbon sequestration site in Ketzin, Germany. This model was examined by

Streich et al. (2011) and by Streich and Becken (2011) for similar source studies in the

framework of a 1-D solution and of a 2.5-D numerical solution using a primary/secondary

field approach and FD. In Figure 4.48 we illustrate a 1-D and a 2-D approximations of the

model.

The 1-D model (Figure 4.48 left) is composed of an air layer and three subsurface lay-

ers. The resistivity in the first layer is 3Ω ·m and the thickness 635m. The second layer

represents the storage layer with resistivity 10Ω ·m and thickness 15m and the third layer

is 1Ω ·m.

In the 2-D model (Figure 4.48 right), the storage layer is substituted by two blocks

embedded between the 3Ω ·m and the 1Ω ·m layers. One of the blocks has a 5Ω ·m resistivity

and is 30m thick, 1.3km wide and its top side is located at 635m depth. The other one, has

a 10Ω ·m resistivity, is 76m thick and 1.5km wide and its top side is located at 612m depth.
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Figure 4.48: One-dimensional (left) and two-dimensional (right) resistivity models, grossly simu-
lating the geology at the carbon sequestration site in Ketzin Germany proposed by Streich et al.
(2011). The model includes an air layer and a first layer of 3Ω ·m resistivity and 635m thick. The
storage cavity is represented with a 15m thick, 10Ω ·m layer in the 1-D model over a 1Ω ·m resis-
tivity layer. In the 2-D model, the storage layer is substituted by two blocks embedded between the
3Ω ·m and the 1Ω ·m layers. One of the blocks has a 5Ω ·m resistivity and is 30m thick, 1.3km
wide and its top side is located at 635m depth. The other one, has a 10Ω ·m resistivity, is 76m
thickness and 1.5km wide and its top side is located at 612m depth. The source is buried 0.1m in
the subsurface and is located at x = 0 and the receivers are buried at 0.15m depth and distributed
along the positive x−coordinate.

On land, the dipole sources need to be particularly long to achieve strong EM fields and

surface obstacles may force the practitioner to orient the source in a certain manner. We

simulate the CSEM source on the Ketzin model in four different situations: a) an in-line

(90◦ azimuth) horizontal electric point dipole, b) a 120◦ azimuth oriented horizontal elec-

tric point dipole, c) an in-line straight 1km length grounded wire, and d) a 120◦ azimuth

oriented grounded wire, 1km length. The source is located at 0.1m depth and centered

in (x,z) = (0,0) and operates at 0.1Hz in all cases. The receivers are at 0.15m depth and

distributed every 500m along the x-direction, from −10km to 10km.

As explained in Chapter 3, we model an oriented source all-at-once, computing its re-

sponse for positive and negative wavenumber values, and the long grounded wire is simu-

lated by superposing the EM fields computed separately for different point dipole sources

situated in certain positions along its length. The wavenumber data set is again composed

of 28 values distributed logarithmically from 10−4 to 10−1m−1 and κz = 0. For oriented

sources 28 negative values of κz, distributed between −1× 10−1 and −1× 10−4m−1m−1, are

added to the data set. The 1km length dipole is modeled using 10 point dipoles. For the

computation of the EM fields solution we have applied the goal-oriented adaptive mesh

refinement strategy to different mesh groups of wavenumber values. We used 5 groups

when modeling an in-line dipole, and 9 groups when modeling an oriented source.

First, we examine the 1-D case (Figure 4.48 left). This model is costly to solve, because

the 15m thin layer forces a very fine mesh that extends with the layer to the lateral outer

boundaries, resulting in a large number of DOFs. As an example, for the in-line horizontal

electric point dipole (HEPD), the initial number of DOFs of the primal solution is 292710,

and the final number of DOFs, after two mesh refinement iterations and for mesh group
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log10[−κz(m
−1)]

-1 -2 -3 -4

Ê
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Figure 4.49: In-line (left) and broad-side (right) electric field component in the κz-domain as a
function of negative and positive wavenumber (κz) values (log10) resulting from an in-line horizon-
tal electric point dipole (top) and from an oriented 120◦ azimuth horizontal electric point dipole
(bottom) on the 1-D Ketzin model.

2, with κz = 2.78× 10−4m−1, is 385348. However, we found that two iterations of the goal-

oriented adaptive mesh refinement algorithm are sufficient to obtain accurate results.

Figure 4.49 shows an intermediate result. The in-line and the broad-side electric field

components in the κz-domain, Êx and Êz, respectively, are plotted as functions of log10(κz),

for negative and positive values, and for two different orientations of the HEPD source: in-

line (90◦ azimuth) and oriented 120◦ azimuth. For the in-line HEPD (Figure 4.49 top), the

in-line electric field component Êx is an even function to the κz = 0 axis and the broad-side

component Êz is an odd function to the same axis. From these plots and the explanation in

Chapter 3, it is easy to see that with this source orientation, the inverse Fourier transform

for the in-line electric field component can be calculated with only positive wavenumber

values multiplying the integral kernel by two and using digital filters for the cosine and

sine functions, and that for the broad-side component the same integral will be null.

When the HEPD is oriented 120◦ azimuth (Figure 4.49 bottom), the symmetry of the

in-line and broad-side electric field components is not even nor odd to the κz = 0 axis. To

calculate the inverse Fourier transform using the digital filters for the cosine and sine func-

tions, it is necessary to either decompose the source in an in-line and broad-side sources

for which the EM field components symmetry is even or odd, then, compute the solu-

tion for each case and superpose them, or compute the solution for negative and positive

wavenumber values, and decompose each field component in its even and odd parts. Both
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Figure 4.50: Relative error of the amplitude (left) and absolute error of the phase (right) of the
in-line electric field component, Ex , as a function of receivers locations, for the 1-D Ketzin model
with different orientation and geometry of the CSEM source (in colors), when compared with semi-
analytical responses calculated using DIPOLE1D (Key, 2009). The frequency of operation is 0.1Hz
and the different source cases are: in-line (90◦ azimuth) horizontal electric point dipole (blue), 120◦

azimuth oriented horizontal electric point dipole (red), in-line horizontal electric dipole (grounded
wire) 1km length (cyan) and 120◦ azimuth oriented horizontal electric dipole of 1km length (ma-
genta).

approximations are equivalent and require approximately the same run time when model-

ing the total field, since with the first one it is necessary to compute the solution two times,

and with the second one it is necessary to compute the solution for double the number of

wavenumber values. In our program we use the second one for sources with an orientation

different from the axis.

We compute the solution for the 1-D model in Figure 4.48 left for all source cases

using the appropriate strategy depending on the source orientation. In Figure 4.50 the in-

line electric field component, Ex, is compared for the different cases to the semi-analytical

solution calculated with DIPOLE1D (Key, 2009), which allows oriented sources and length

sources on 1-D models. The solution is in all cases accurate with errors in the amplitude

between 0.1 and 1%, approximately, and errors in the phase of less than 0.1◦.

In Figure 4.51 we plot the amplitude and phase of the in-line electric field component

for the same model and for four different source cases, and for the same model with the in-

line electric point dipole, but without the reservoir layer. In the same Figure we also show

the relative error in the amplitude and the absolute error in the phase calculated between

the electric field for the in-line HEPD in the Ketzin model and the electric field for: a) the

same source in a model without the reservoir layer, b) a 120◦ azimuth oriented HEPD, c)

an in-line 1km length HED and d) a 120◦ azimuth oriented, 1km length HED.

Observing the error in the amplitude, the reservoir layer at this frequency (0.1Hz) is

more notable at about 3km from the source, with an error of 10% when compared to the

same model without the storage layer, and the error is about 1% for receivers located at

6km or larger offsets. This indicates that small offsets, between 1 and 5km will be neces-

sary to measure the effect of the very thin target layer on the electric field. The difference

between modeling the orientation of the point dipole (120◦ azimuth) or approximating it
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as an in-line directed point dipole gives a relative error in the amplitude of about 10%

at all receivers locations, thus of the same order of magnitude as the error caused by the

storage layer. The largest errors are caused by the differences between modeling the longi-

tude (1km length) of the grounded wire or approximating it as a point dipole, with values

larger than 10% for offsets smaller than 3km. Finally, the differences between modeling the

source with its longitude (1km) and orientation (120◦ azimuth) or modeling it as an in-line

point dipole, results in errors of 10% in the amplitude, with smaller values in receivers

located at offsets smaller than 3km.

The phases (Figure 4.51 bottom) are less sensitive to the source approximation and to

the storage layer, with error values smaller than 1.4◦ for all cases and about 0 for the 120◦

azimuth oriented point dipole. Also the error curve for the in-line 1km length electric

dipole is slightly different from the rest, with values of about 1◦ in small offsets (smaller

than 3km), where for the rest of cases, the errors are less than 0.2◦.

According to these results, in this model it is necessary to simulate both the orientation

and geometry of the source since the errors caused in the amplitudes and phases by a

simpler approach are similar or even larger than the anomaly caused by the target layer.

We extend the study of the modeling of the sources to the Ketzin 2-D case (Figure 4.48

right), described at the beginning of this section.

We model again the same four source variants: a) an in-line HEPD, b) a 120◦ azimuth

HEPD, c) a 1km grounded wire oriented in the in-line direction, and d) a 1km grounded

wire with 120◦ azimuth orientation. The source is located as in the 1-D case at 0.1m depth

and centered at (x,z) = (0,0), and the receivers are at 0.15m depth and every 500m along

the x-direction. We simulate all these source cases for 3 different frequencies: 0.01,0.1 and

1Hz.

The solution is computed in each case using the goal-oriented adaptive mesh refine-

ment algorithm. We apply it to 5 and 9 groups of κz values, for the in-line and for the

120◦ azimuth oriented source, respectively, and to each frequency separately, resulting in

15 and 27 mesh groups, respectively. The long grounded wire is calculated using 10 point

dipoles, all modeled using the same mesh. The FE with the adaptive mesh refinement

methods are more efficient for this model than for the 1-D Ketzin model, since now the

storage structure is not a thin layer but two small blocks, and the FE mesh can be very fine

in the reservoir location without the need to extend this fine mesh region to all the model.

The initial number of DOFs is 46346, a considerable smaller value compared to the 292710

of the 1-D case.

The differences on the in-line electric field component between modeling the orienta-

tion and geometry of the CSEM source or modeling it as an in-line point dipole approx-

imation in the 2-D Ketzin model are given in Figure 4.52, for the different frequencies,

through the relative error of the amplitude and the absolute error of the phase. The errors

are calculated between the responses for each source case under study and the responses

for the in-line electric point dipole source. The error between the responses of the model

with the blocks and the same model without them is also plotted (in blue). The error in the
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Figure 4.51: Differences on the in-line electric field component when modeling the orientation
and geometry of the CSEM source in the 1-D Ketzin model. Amplitude and phase (left, from top
to bottom) and relative error of the amplitude and absolute error of the phase (right, from top to
bottom) of the in-line electric field component as a function of receivers locations for different ori-
entation and geometry of the CSEM sources. The frequency of operation is 0.1Hz and the different
source cases are: in-line (90◦ azimuth) horizontal electric point dipole (blue), 120◦ azimuth oriented
horizontal electric point dipole (red), in-line horizontal electric dipole (grounded wire) 1km length
(cyan) and 120◦ azimuth oriented horizontal electric dipole of 1km length (magenta). The electric
field for an in-line horizontal electric point dipole on the same model, but without the reservoir
layer is also plotted (black). The errors are calculated between the responses of the model without
reservoir and the model with it using an in-line HEPD (blue), and between the responses for each
of the described sources and the response of the in-line HEPD for the 1-D Ketzin model.
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Figure 4.52: Relative error of the amplitude (left) and absolute error of the phase (right) of the
in-line electric field component, Ex , as a function of receivers locations, calculated between the
responses using different orientation and geometry approximations of the CSEM sources and the
responses from an in-line horizontal electric point dipole source in the 2-D Ketzin model, for three
different frequencies (from top to bottom): 0.001,0.1 and 1Hz. The error of the electric field be-
tween the 2-D Ketzin model responses and the responses of the same model, but without the stor-
age blocks, using an in-line horizontal electric point dipole source in both models, is also plotted
(blue). The different source cases are: 120◦ azimuth oriented horizontal electric point dipole (red),
in-line horizontal electric dipole (grounded wire) 1km length (cyan) and 120◦ azimuth oriented hor-
izontal electric dipole of 1km length (magenta).
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amplitude caused by the different sources is similar between different frequencies and also

similar to the 1-D case. The error associated to the 120◦ azimuth oriented HEPD is 10%

at all receivers, and the error associated to the point approximation of the in-line electric

dipole is the largest for small offsets of less than 3km, with values between 100 and 10%,

and it decays to smaller values at larger offsets. When the source has finite-length and is

oriented with 120◦ azimuth, the error in comparison to the in-line HEPD is mostly dom-

inated by the orientation, showing a similar curve to the 120◦ azimuth oriented electric

point dipole, with 10% error at all receivers, except at small offsets, where the error is be-

tween 1 and 10%. The reservoir block causes an error of similar magnitude to the error

associated with the source approximation, about 10% at 0.001 and 0.1Hz and smaller at

1Hz, but more localized to its actual position, with a maximum at 3km.

The error in the phases (Figure 4.52 right) is smaller than 0.1◦ for all cases at 0.001Hz,

and below 2% at 0.1 and 1Hz, with the largest errors caused by the longitude of the source

and with similar values to the ones caused by the reservoir blocks.

From these synthetic experiments we observe again the necessity to model the correct

orientation and longitude of the source for this model, where the small target requires

small offsets for detection and produces anomalies in the in-line electric field of similar

magnitude to the ones caused by the source approximation.

Finally, we examine a marine CSEM experiment. We consider the 1-D canonical model

(Figure 4.4) and four different sources approximations: a) an in-line HEPD, b) an in-line

100m HED, c) a 120◦ azimuth oriented HEPD, and d) a 120◦ azimuth oriented HEPD with

orientation also in the vertical direction, with 20◦ dip angle. A 100m floating wire is a

typical marine CSEM source used in marine CSEM surveys for commercial hydrocarbon

exploration. As the source is much shorter than in the land experiment, we expect in this

case, smaller discrepancies with the point dipole approximation. On the other hand, the

oriented source with an azimuth and dip angles is a practical problem in marine surveys,

where the water currents distort the source shape and orientation, thus, it is important to

study the effect of this factor on the model responses.

In the tests, the source operates at 0.25Hz and it is located 100m above the seafloor and

centered at (x,z) = (0,0). To benchmark the solution also along the broad-side direction

(z , 0), the receivers are on the seafloor, at −999.5m, distributed every 100m from x = −5km

to x = 5km, and from z = −5km to z = 5km, forming a mesh of receivers.

To compute the solution we used again the same set of wavenumber values as for the

land model, and we applied the goal-oriented adaptive mesh refinement algorithm with

a tolerance error criteria of 10−3, which result in about 10 iterations for most of the mesh

groups. To simulate the source with length, we used 10 point dipoles and the same mesh

to compute the solution for each one of them.

In Figure 4.53 we present the results from these tests. We show a set of xz surface plots

(horizontal plane, at y = −999.5m) for each source case. We plot: a) the amplitude of the

in-line electric field component, b) the relative error of the amplitude of the in-line electric

field component when comparing it to the semi-analytical solution and c) the error of the
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amplitude of the in-line electric field component calculated between the responses from

different tests with different source cases. Thereby, we benchmark the solution for each

source case and we compare the effect of the source geometry and orientation. To calculate

the semi-analytical solution we use again DIPOLE1D (Key, 2009).

The first row of plots in Figure 4.53 corresponds to the responses of the in-line HEPD,

and the error plot on the right (Figure 4.53 c) corresponds to the comparison of the re-

sponse of this source and the response of the same source but for the 1-D canonical model

without the reservoir layer. The second row of plots are for the responses of an in-line

100m wire (HED), and the plot on the right (Figure 4.53 f) compares the responses of this

source case with the responses of the in-line HEPD in the same model. On the third row,

the source is a 120◦ azimuth oriented HEPD, and the error on the right plot (Figure 4.53

i) is calculated between the responses of this source and the responses of an in-line HEPD.

Finally, the fourth row of plots corresponds to a 3-D oriented HEPD, with a 120◦ azimuth

angle and a 20◦ dip angle. The plot on the right (Figure 4.53 l) compares the amplitude for

this source with the amplitude for a horizontal source oriented an angle of 120◦ azimuth.

The errors when comparing the responses to the semi-analytical solutions are for all

source cases very small, with values of about 0.001% for receivers between z = −2km and

z = 2km, and with slightly larger errors, of about 0.1%, for receivers closer to the source in

the x-direction. The errors for all source cases, at receivers between z = −4km and z = −5km

and between z = 4km and z = 5km, are about 0.1%, with larger values, of about 10%, for

receivers closer to the source in the x−direction.

In the same Figure, examining the plots on the right column, in the upper plot, we

observe that the reservoir layer is appreciable at almost all the receivers positions, with

anomalies between 10 and 100%. In the plot below (Figure 4.53 f), the error between

considering the length of the source (100m) or approximating it as a point dipole is very

small, less than 1% at most receivers, indicating that for this model a point dipole is a

good approximation. Contrarily, the error between the amplitude for the 120◦ azimuth

oriented HEPD and the amplitude for the in-line HEPD (Figure 4.53 i) is significant, about

some decades for most receivers. Finally, in Figure 4.53 l), we observe that modeling the

dip angle or considering the source horizontally oriented differs significantly. The error is

about 10% and it is larger on the RHS of the plot, for this inclination of the source (dip

angle).

From these results we conclude that a point dipole approximation is accurate in a ma-

rine scenario with a realistic source of 100m length and with the target reservoir at a large

distance to the source compared to the region influenced by the dipole geometry. How-

ever, we confirm that for the same scenarios, a slightly different orientation of the source

modifies significantly the electric field responses. This influence of the orientation extends

several kilometers from the source location and can be of the same order of magnitude as

the electric field distortion caused by the target reservoir.
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4.6 Anisotropy

4.6.1 Introduction

Electrical anisotropy can have a profound effect on both CSEM and MT measurements. To

avoid a misinterpretation of the results it is necessary to incorporate such effects into the

imaging processes.

In this thesis we have implemented both the CSEM and MT dipping anisotropic prob-

lems in the developed FE program. However, in this section we will only examine the

CSEM anisotropic case, since it is less studied compared to MT.

Electrical anisotropic effects observed in CSEM data can be originated in a micro-

scopic scale (e.g. preferred orientations within crystals) or in a macroscopic scale when

the method can not resolve oriented structures smaller than the averaged volume. In geo-

logic basins in which CSEM is employed for hydrocarbon exploration, horizontally layered

sedimentary sequences are often encountered that can exhibit transverse anisotropy on a

macroscopic scale - a scale much larger than individual sedimentary layers (e.g. Newman

et al., 2010).

For vertical anisotropy or transverse isotropy with a vertical axis of symmetry (TIV)

the resistivity (or conductivity) tensor is uniaxial, that is, a diagonal tensor with one of the

components with different resistivity from the other two, and can be described by inde-

pendent vertical and horizontal resistivities, ρv and ρh. On the other hand, another case

of anisotropy with a uniaxial resistivity tensor is the transverse isotropy with a horizon-

tal axis of symmetry (TIH), also described by ρv and ρh, but with a perpendicular axis of

symmetry to the TIV case. The effects of a horizontally anisotropic seafloor excited by an

HED transmitter are analyzed by Everett and Constable (1999) in the framework of deep

crustal studies.

In the case of horizontal strata, the anisotropy is vertical and ρv > ρh. The degree of

vertical electrical anisotropy is variable and is defined by the anisotropy coefficient λ =
√

ρv/ρh. For horizontally layered sedimentary sequences λ ranges between one and three

(Tompkins, 2005).

Anisotropy effects on CSEMmeasurements depend strongly on source-receiver config-

uration (Newman et al., 2010) and field amplitudes increase dramatically with increas-

ing subsurface anisotropy (Tompkins, 2005). Ramananjaona et al. (2011), among others,

showed that the TM mode (in-line electric field data) is sensitive to the vertical resistivity

and to the anisotropic ratio and that the TE mode (broad-side electric field data) is more

sensitive to the horizontal resistivity. On the other hand, Tompkins (2005) and Li and Dai

(2011) observed that electrical anisotropy in the overburden has a much larger effect on

the measurements than reservoir anisotropy. Furthermore, Tompkins (2005) showed that

if data recorded over a vertically anisotropic earth are interpreted assuming isotropic earth

models, reservoir properties, such as depth, resistivity or lateral extent will be erroneously

estimated, with errors depending on the excess of anisotropy. Abubakar (2010) studied
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the ability to resolve transverse electric anisotropy of the reservoir in a 2-D model using

in-line data with either electric or magnetic transmitters and with either electric or mag-

netic receivers respectively, and concluded that it is necessary electric and magnetic data

and both transmitters to discriminate horizontal and vertical resistivity.

The described anisotropy effects are based on studies of transverse isotropic, horizon-

tal, TIH, and vertical, TIV, resistivity models. In the same manner, most of marine CSEM

modeling and data interpretation state-of-the-art algorithms which account for anisotropy

are also restricted to transverse isotropy. Li and Dai (2011) and Davydycheva and Frenkel

(2013) overcome this limitation on their 2-D FE and 3-D FD modeling programs, respec-

tively, and incorporate the possibility to model transverse isotropy with a tilted axis of

symmetry (TTI), which can be found on geologic structures typical for accumulation of

hydrocarbons, as synclines or anticlines. Li and Dai (2011) study the impact on CSEM

data of dipping anisotropy overburden on an underlying target in a 2-D model and Davy-

dycheva and Frenkel (2013) simulate the effect of 3-D TTI on more complex models, with

a reservoir embedded on syncline and anticline structures. They both find that ignoring

the TTI effect, if it is present, might lead to incorrect assessment of the dimensions and

location of the target reservoir.

In the dipping anisotropic case (TTI) the resistivity tensor ρ is not uniaxial (equation

2.84 with ρ = σ−1). It can be expressed in terms of the principal resistivities ρx,ρy and ρz,

in the principal axes x′ ,y′ and z′, applying a 3-D rotation of dip angle αd , to the principal

resistivity tensor ρ′ = diag(ρx ,ρy ,ρz), around the z−axis (strike direction) (Figure 2.8):

ρ =RT diag(ρx ,ρy ,ρz)R =




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


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
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, (4.3)

where R is a rotational matrix, which for the coordinate system in this thesis is:

R =






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
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
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, (4.4)

for a rotation angle in the clockwise direction.

In this section we validate our FE implementation of the anisotropic CSEM problem.

We simulate the responses ofmodels with vertical anisotropy (TIV) and dipping anisotropy

(TTI), using an anticline structure model proposed in Davydycheva and Frenkel (2013) for

this second case, and we analyze and compare the results.

4.6.2 Marine CSEM experiments with vertical and dipping anisotropy

In this section we conduct numerical experiments modeling marine CSEM on anisotropic

electrical resistivity models. The set of models used in the experiments are a 1-D model
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Figure 4.54: Anisotropic resistivity models schemes. Left: Two-dimensional marine model with a
1km thick, 0.3Ω ·m resistivity sea layer and with an isotropic 20Ω ·m reservoir, 5kmwide, 100m thick,
embedded at 2.5km depth in horizontal strata simulated as a TIV half-space with vertical resistivity
ρv = 2Ω ·m and horizontal resistivity ρh = 1Ω ·m. Right: Model in the left with an additional anticline
structure simulated as two TTI resistivity blocks, 4km wide, centered at x = −2km and x = 2km,
respectively, and with their top at 1.6km depth. The TTI resistivity of the blocks is ρv = 2Ω ·m and
ρh = 1Ω ·m, with a dip angle αd in the right block and −αd in the left block.

with a sea layer and a TIV resistivity half-space and two 2-D models, one with a sea layer

and a reservoir embedded in TIV resistivity sediments (Figure 4.54 left), and another one

also with the sea layer and the TIV resistivity sedimented subsurface, but with the reservoir

embedded in an additional anticline structure simulated as two bulk-tilted anisotropic

(TTI) structures (Figure 4.54 right).

The transmitter is, in all the experiments, an horizontal electric point dipole located

at 50m above the seafloor, and we consider it at different locations, x = 0,2,4 and 6km,

and for the in-line and broad-side configurations. The operating frequencies are 0.05,0.25

and 1Hz, and the receivers are located at −999.5m depth, every 1km from x = −15km to

x = 15km. Model dimensions are in all cases: 100km × 60km, and the model is centered

at x = 0,y = 0, with an air layer of 30km, and with a 1km depth sea layer. The set of

wavenumber, κz, values used in the experiments are 37 values spaced logarithmically from

10−5 to 10−1m−1.

First, we examine the 1-D model. The vertical anisotropy in the subsurface has resistiv-

ities: ρv = 2Ω ·m and ρh = 1Ω ·m. We simulate the EM fields for this model and we compare

them with two additional models with the same layered structure but with isotropic sub-

surface resistivity of 1Ω ·m and 2Ω ·m, respectively. The CSEM responses of a layered

model with TIV resistivity is well studied and let us benchmark our algorithm.

The responses for the three layered models are computed with the FE program apply-

ing the adaptive mesh refinement algorithm to 15 mesh groups, 3 groups of frequencies

times 5 groups of wavenumbers. The transmitter is considered only at x = 0, with two per-

pendicular orientations: in-line and broad-side, and both orientation cases are included

in the same mesh group for adaptive mesh refinement. The stopping criteria is a decrease

of 10−3 of the global error, or a maximum number of iterations of 10, refining 30% of

elements in each iteration.
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In Figure 4.55 we show the results. The field amplitude is plotted as a function of

the receiver position for each model and for all non-zero field components of the in-line

(Figure 4.55 left): Ex,Ey and Hz, and of the broad-side configurations (Figure 4.55 right):

Ez,Hx and Hy and for the three frequencies: 0.05,0.25 and 1Hz (in rows).

For in-line configuration fields, the responses of the anisotropicmodel are almost iden-

tical to the responses of the 2Ω ·m isotropic model at all frequencies and for all offsets. The

differences between the Ex andHz fields on these models and on the 1Ω ·m isotropic model

are more pronounced for offsets smaller than 10km, being negligible for larger offsets. Dif-

ferently, the differences for Ey increase with the distance to the source.

Contrarily, for the broad-side configuration, the fields from the anisotropic model are

almost identical to the ones from the 1Ω · m isotropic model. Only the Hx horizontal

component presents some variations to the 1Ω ·m isotropic model because it is affected

by the interaction of the airwave with the seafloor.

The explanation of this behavior is that the in-line configuration electric fields are in

the model plane and propagate in the seafloor with a significant vertical component, thus

in the vertical anisotropic model they are more sensitive to the vertical resistivity com-

ponent of 2Ω ·m, and the responses approach to the ones of an isotropic model with this

resistivity. On the other hand, in the broad-side configuration the electric fields are purely

azimuthal and largely horizontal, thus in the vertical anisotropic model they are more sen-

sitive to the horizontal component of the resistivity of 1Ω ·m, and the responses approach

the ones of an isotropic model with this resistivity.

The obtained modeling results of the EM fields for a TIV 1-D model are consistent

with the expected responses behavior and validate our implementation. Additionally, in

Figure 4.56, the accuracy of the numerically computed field responses for the isotropic

1Ω ·m and 2Ω ·m 1-Dmodels are shown, comparing themwith the semi-analytical solution

calculated with DIPOLE1D. The plots show the relative error of the amplitude of each field

component, for each transmitter/receivers configuration (in-line and broad-side) and for

each frequency, as a function of the receiver locations, with the transmitter positioned at

x = 0. The errors for the in-line configuration are below 3%, with the largest errors at

the largest offsets. At 1Hz, the in-line configuration vertical field component, Ey , presents

large errors of several orders of magnitude, up to 104% for the 1Ω ·m model, for offsets

larger than approximately 10km. We have tried different refined meshes to decrease this

error without success, however this does not change neither the analysis above nor the

validity of the anisotropy implementation. For the broad-side configuration the amplitude

errors are below 1% at all frequencies and at all receiver locations, thus smaller than for

the in-line configuration. These plots show a good accuracy of all field components at all

frequencies for both broad-side and in-line configuration, except for the vertical electrical

field component, Ey , at large offsets (approximately larger than 10km).

Next, we simulate the responses of a 2-D model with an isotropic reservoir embedded

in vertical anisotropic sediments (Figure 4.54 left). It consists of an air layer, a 1km sea

layer and a 5km wide, 100m thick and 20Ω ·m isotropic resistivity block, simulating a
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Figure 4.55: Comparison between responses of a vertical anisotropic 1-D model and of isotropic
1-D models. Amplitude of the in-line (left) and broad-side (right) configuration field components,
Ex ,Ey and Hz and Ez,Hx and Hy , respectively, as a function of the receiver locations (with the
transmitter at x = 0), for three different 1-D models: a TIV sedimented seafloor model (circles)
and a 1Ω ·m (diamonds) and a 2Ω ·m (squares) isotropic seafloor models; and for three different
frequencies (from top to bottom): 0.05,0.25 and 1Hz.
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Figure 4.56: Comparison of the numerically computed responses of two 1-D isotropic models with
1Ω ·m and 2Ω ·m resistivities, respectively, with the corresponding semi-analytical solutions cal-
culated with DIPOLE1D. Relative error between the numerical and the semi-analytical amplitudes
of the in-line (left) and broad-side (right) configuration field components, Ex ,Ey and Hz and Ez,Hx
and Hy , respectively, as a function of the receiver locations (with the transmitter at x = 0), for the
1Ω ·m (diamonds) and for the 2Ω ·m (squares) isotropic seafloor models; and for three different
frequencies (from top to bottom): 0.05,0.25 and 1Hz.
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reservoir, embedded in vertical anisotropic sediments of ρv = 2Ω ·m and ρh = 1Ω ·m . The

reservoir is at 1.5km depth below the seafloor and centered at x = 0.

The solution is computed for 4 transmitter positions, x = 0,2,4 and 6km and for two

transmitter orientations (in-line and broad-side) in each position, and at three frequencies:

0.05,0.25 and 1Hz. We apply the adaptive mesh refinement algorithm to 20 mesh groups

prior to the computation of the solution for all parameters values. These mesh groups are a

combination of 4 groups for the source locations, 1 group for the frequencies, and 5 groups

for the wavenumber values. The stopping criteria is again a decrease of 10−3 of the global

error, or a maximum number of iterations of 10, refining 30% of elements in each iteration.

In Figure 4.57 we show the results of the in-line configuration horizontal electric field

for thismodel. The first two rows of plots are the amplitudes and phases of Ex, respectively,

as a function of the receivers locations, for the three different frequencies of 0.05,0.25 and

1Hz and for different transmitter locations, x = 0,2,4 and 6km. The third row of plots is

the amplitude normalized by the Ex amplitude response of the TIV 1-D model examined

above (a sea layer and a TIV half-space), and shows the effect of the reservoir. The plots are

again the responses for the different frequencies and transmitter locations. In the last row,

we plot the amplitude of Ex normalized by the amplitude response of the same reservoir

2-Dmodel but with an isotropic seafloor of 1Ω ·m, for different frequencies and transmitter

positions. Normalizing by the responses of the same model structure but with isotropic

sediments shows the effect of the vertical anisotropic sediments.

Observing the effect of the reservoir (Figure 4.57 third row of plots), when the source

is positioned above the center of the reservoir (x = 0), the normalized amplitude shows

two maximums, increments of the field amplitude due to the reservoir, on each site of

the source, approximately between x ± 4 and x = ±10km depending on the frequency, at

shorter offsets for larger frequencies. The reservoir is centered at x = 0, is 5km wide and

is positioned at 1.5km depth, and each frequency shows a maximum of sensitivity at dif-

ferent offsets. The values of the increment are similar for frequencies of 0.25Hz and 1Hz,

about 1.1, but the changes are more abrupt for the highest frequency. At 0.05Hz there is

also an increment of the amplitude, it changes to 1.05, but it is smoother than for higher

frequencies. As the source moves to the right and away of the reservoir, until x = 6km,

the augment of the amplitude for the different frequencies is observed at the left side of

the source, indicating the presence of the reservoir. In these situations, the increase of the

amplitude is larger than when the source is positioned above the center of the reservoir,

since now the offset distance for which the sensitivity is larger coincides approximately

with the distance to the reservoir, for all frequencies. Thus, the largest values are observed

when the transmitter is located at x = 4km, at 1.5km from the right boundary of the reser-

voir, and for this case, the maximums of the normalized amplitude are approximately 1.7

at 1Hz and located at x = −3km, 1.5 at 0.25Hz and located at x = −5km, and 1.2 at 0.05Hz

and located at x = −8km.

Observing the effect of the vertical anisotropy on the bottom row of plots of Figure 4.57,

there is an increment of the normalized amplitude and it is much larger than the increase
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due to the reservoir at all frequencies and for all transmitter positions. The increment at

each frequency has two maximums, one at each side of the source, of approximately 12−14

at 5km offset and at 1Hz frequency, of 4 at 7km offset and at 0.25Hz frequency, and of 2

at 10km offset and at 0.05Hz frequency. The offset locations of these maximums and their

magnitude are approximately constant when varying the source position, as expected since

we are observing the effect of the TIV resistivity in the sediment.

From these results we observe that some data with vertical anisotropy can not be treated

as isotropic since the anisotropy effect is large and could mask the reservoir or indicate its

position in a different location, with different dimensions and resistivity value.

In Figure 4.58 we show the same plots for the broad-side configuration. First, we an-

alyze the plots of the normalized amplitude by the TIV half-space responses, which show

the effect of the reservoir. The results are similar to the ones described for the in-line

configuration, but smaller. For the transmitter at x = 0 there are two maximums on both

sides of the source, of about 1.05 for both the 0.25 and 1Hz frequencies and smaller for the

0.05Hz frequency. The maximum increment of the amplitude can be observed, at all fre-

quencies, for the transmitter located above the reservoir, at x = 2km, at 500m of the reser-

voir right lateral boundary, with values of about 1.14 for the 1Hz frequency at x = 5km,

1.1 for the 0.25Hz frequency at x = 6km, and 1.05 for the lowest frequency of 0.05Hz at

x = 10km. The smaller effect of the reservoir is explained because of the lower sensitivity

of the broad-side configuration.

The vertical anisotropic effect for this source/receivers configuration (Figure 4.58 bot-

tom) is also smaller than for the in-line configuration. The curves show an increase of the

amplitude for the receivers with smallest offset at all frequencies and two peaks at 5 and

6km offset, of 1.8 and 1.25, at 0.25 and 1Hz frequencies, respectively. At 0.05Hz the in-

crease of the amplitude due to the anisotropy is approximately constant to 1.1 value from

1km to 12km offset.

From these results, we conclude that the vertical anisotropy effect can be observed in

both in-line and broad-side configurations, but the effect is larger for the in-line disposi-

tion. This can be explained because in the plots, the isotropic sediments of the 2-D model

we used for the normalization are 1Ω ·m, the same resistivity value of the horizontal com-

ponent, ρh, in the anisotropic case, and as we observed in the experiments before with a

1-D TIVmodel, the broad-side configuration is more sensitive to the horizontal component

of the resistivity and the in-line configuration to the vertical one.

In Figure 4.59 we show the accuracy of the discussed results for the TIV 2-D model,

comparing them to the responses computed using MARE2DEM (Key and Ovall, 2011) FE

program. The relative error of the amplitude and absolute error of the phase of the hori-

zontal electric field are plotted for the in-line and broad-side configurations of source and

receivers and for the three different frequencies: 0.05,0.25 and 1Hz, as a function of the

receivers locations, with the transmitter located at x = 0. The same errors are also plotted

in the same Figure for the responses of the isotropic 2-D model, with seafloor resistivity

1Ω ·m. The relative errors of the amplitudes are below 1% for all analyzed cases and in



1
5
6

4
.6
.
A
n
iso

t
r
o
p
y

A
m
p
li
tu
d
e
[E

x
(V

/
m
)]

10−18

10−16

10−14

10−12

10−10
Txx = 0 Txx = 2km Txx = 4km Txx = 6km

0.05Hz
0.25Hz
1Hz

P
h
a
se

[E
x
(◦
)]

-180

0

180

360

N
o
rm

a
li
ze
d
a
m
p
./
1
D

re
sp
.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x(m) ×104
-1.5 -1 -0.5 0 0.5 1 1.5

N
o
rm

a
li
ze
d
a
m
p
./
2
D

re
sp
.

0

2

4

6

8

10

12

14

16

x(m) ×104
-1.5 -1 -0.5 0 0.5 1 1.5

x(m) ×104
-1.5 -1 -0.5 0 0.5 1 1.5

x(m) ×104
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 4.57: In-line configuration electric field responses of a 2-D marine model with an isotropic reservoir and vertical anisotropic (TIV) sediments. From
top to bottom: Ex amplitude, phase, amplitude normalized by homogeneous 1-D TIV model response and amplitude normalized by 2-D reservoir isotropic
model response, for three frequencies: 0.05,0.25 and 1Hz (in colors), and for transmitter locations, x = 0,2,4 and 6km (from left to right).



C
h
a
p
t
e
r
4
.
N
u
m
e
r
ic
a
l
e
x
p
e
r
im

e
n
t
s
o
n
m
o
d
e
l
in
g

1
5
7

A
m
p
li
tu
d
e
[E

z
(V

/
m
)]

10−18

10−16

10−14

10−12

10−10
Txx = 0 Txx = 2km Txx = 4km Txx = 6km

0.05Hz
0.25Hz
1Hz

P
h
a
se

[E
z
(◦
)]

-180

0

180

360

N
o
rm

a
li
ze
d
a
m
p
./
1
D

re
sp
.

0.95

1

1.05

1.1

1.15

x(m) ×104
-1.5 -1 -0.5 0 0.5 1 1.5

N
o
rm

a
li
ze
d
a
m
p
./
2
D

re
sp
.

0.75

1

1.25

1.5

1.75

2

x(m) ×104
-1.5 -1 -0.5 0 0.5 1 1.5

x(m) ×104
-1.5 -1 -0.5 0 0.5 1 1.5

x(m) ×104
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 4.58: Broad-side configuration electric field responses of a 2-D marine model with an isotropic reservoir and vertical anisotropic (TIV) sediments.
From top to bottom: Ez amplitude, phase, amplitude normalized by homogeneous 1-D TIV model response and amplitude normalized by 2-D reservoir
isotropic model response, for three frequencies: 0.05,0.25 and 1Hz (in colors), and for transmitter locations, x = 0,2,4 and 6km (from left to right).



158 4.6. Anisotropy
R
el
a
ti
v
e
er
ro
r
(A

m
p
li
tu
d
e
E

x
)
[%

]

10−3

10−2

10−1

100

101
In-line

R
el
a
ti
v
e
er
ro
r
(A

m
p
li
tu
d
e
E

z
)
[%

]

10−5

10−4

10−3

10−2

10−1

100

101
Broad-side

x(m) ×104
-1.5 -1 -0.5 0 0.5 1 1.5

A
b
so
lu
te

er
ro
r
(P

h
a
se

E
x
)
[◦
]

0

0.2

0.4

0.6

0.8

1

1.2
0.05Hz, Isotropic
0.05Hz, TIV
0.25Hz, Isotropic
0.25Hz, TIV
1Hz, Isotropic
1Hz, TIV

x(m) ×104
-1.5 -1 -0.5 0 0.5 1 1.5

A
b
so
lu
te

er
ro
r
(P

h
a
se

E
z
)
[◦
]

0

0.2

0.4

0.6

0.8

1
0.05Hz, Isotropic
0.05Hz, TIV
0.25Hz, Isotropic
0.25Hz, TIV
1Hz, Isotropic
1Hz, TIV

Figure 4.59: Comparison of the computed responses for the 2-D reservoir model with TIV seafloor
and for the 2-D reservoir model with isotropic seafloor with the responses calculated using the
FE program MARE2DEM. Relative error of the horizontal electric field amplitude (top) and absolute
error of the phase (bottom) for the in-line (left) and broad-side (right) source/receivers configura-
tions, and for different frequencies: 0.05,0.25 and 1Hz (in colors), as a function of the receivers
locations, with the transmitter at x = 0.

both in-line and broad-side configurations, and the absolute errors of the phases are below

1.2◦ in all cases, indicating a good agreement between both FE programs solutions.

Finally, we examine a 2-D model where the resistive reservoir is embedded in an anti-

cline structure surrounded by vertical anisotropic sediments (Figure 4.54 right). The anti-

cline structure is simulated with two 4km wide blocks, centered at x = −2km and x = 2km,

respectively, and located at 1.6km depth, 600m below the seafloor, with anisotropic resis-

tivities of TTI type. The TTI resistivities of these blocks are ρh = 1Ω ·m and ρv = 2Ω ·m,

and we consider two different cases, one with a dip angle of αd = 20◦, in the right block,

and αd = −20
◦, in the left block, and another one with a dip angle of αd = 40◦, in the right

block, and αd = −40◦, in the left block. The sediments surrounding these blocks are as-

sumed with TIV resistivity, with the same ρh = 1Ω ·m and ρv = 2Ω ·m. The computational

parameters used to solve for the responses of these models are the same as specified for

the model above, with a reservoir embedded in TIV sediments.

In Figure 4.60 we plot the results for the in-line configuration. The Figure shows the

horizontal electric field amplitude, phase, amplitude normalized by the response of the

same model without the anticline and amplitude normalized by the response of the same

model but without the anticline andwith 1Ω ·m isotropic sediments. These results are plot-

ted for the three frequencies, for the two models with different dip angle and for different
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horizontal position of the transmitter: x = 0,2,4 and 6km.

Observing the amplitudes and the phases, it is easy to distinguish between the curves

for the different frequencies, with a faster decay of the fields for the larger frequencies.

However, it is difficult to appreciate the differences between the two models with different

resistivity dip angle. In the same Figure, the plots of the normalized amplitude highlight

the effects of the dipping anisotropic structure.

First we examine the amplitude normalized by the responses of a 2-D reservoir model

embedded in vertical anisotropic sediments. These plots show the effects of the anticline

on the model responses. When the transmitter is positioned at x = 0, we observe a decay of

the amplitude, between 1km and 4km offset, coinciding with the position of the anticline

structure, to values smaller than one, symmetric to the source position. This decay is

larger for higher frequencies, and larger also for the model with dip angles ±40◦. Thus,

the smallest values of the normalized amplitude are for the model with dip angle 40◦

and at 1Hz, with values of 0.6. At offsets larger than approximately 4km, the normalized

amplitude increases until it reaches the value of one, at approximately 10km. When the

transmitter is moved to the right, the drop of the normalized amplitude occurs in the left

side, where the anticline structure is positioned, and it reaches smaller values than when

the transmitter was above the center of the structure, about 0.4 for dip 40◦ and at 1Hz. The

minimum is followed by a maximum of the normalized amplitude, to values larger than

one, and its location and magnitude depends for each case on the frequency. The largest

values and more abrupt maximums are for the frequency of 1Hz and are about 2.8 for the

model with dip angle 40◦.

In the bottom row of Figure 4.60, the amplitude of the horizontal in-line electric field is

normalized by the response of a 1-Dmodel with an air and a sea layers and a TIV half-space

with the same ρv and ρh resistivities as in the model under study, highlighting the effect of

the anticline and the reservoir together. The normalized amplitude curves are very similar

to the ones above, and the main differences are that the maximums and the minimums

values are slightly smaller in this case. The effect of the reservoir should be an augment

of the amplitude, however, as it can be observed, the anticline structure dominates the

responses and the effect of the reservoir is almost masked.

In Figure 4.61 we show the same plots as in Figure 4.60 for the broad-side configura-

tion. The amplitude normalized by the responses of a 2-D model with vertical anisotropic

seafloor shows a very similar behavior as observed in the in-line configuration, with a drop

of the amplitude, larger for larger dip angle and for higher frequencies, but with slightly

smaller magnitude than in the in-line configuration. To highlight the effect of both the

anticline structure and the reservoir we normalize the amplitude by the responses of a

1-D TIV model (Figure 4.61 bottom). The results in this case present differences with the

in-line configuration. When the source is located at x = 0, the normalized amplitudes at

1Hz show a small decay of the amplitude above the anticline structure, followed by an

abrupt change to a maximum of about 1.05 at x = 4km and to a minimum at x = 5km,

coinciding with the boundaries of the structure. These maximums and minimums of the
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normalized amplitude are small, and the minimums are more abrupt for the model with

larger dip angle. For frequencies of 0.25 and 1Hz, the normalized amplitude above the

anticline presents a small increase. When moving the transmitter to the right, at x = 2km

and x = 4km, the effect is similar in the left side, above the anticline, with a combined effect

of the anticline and the reservoir with a decrease and increase of the amplitude at 1Hz and

only an increase at 0.25Hz, showing more sensitivity to the reservoir than to the anticline.

Thus, in the broad-side configuration, both the effects of the anticline and the combined

effect of the anticline with the reservoir, are smaller than for the in-line configuration. The

combined effect of the anticlinewith the reservoir is a drop or amaximumof the amplitude

depending on which factor, the anticline or the reservoir, is more important for a certain

frequency and receiver offset.

Next, we analyze the distribution of the in-line geometry electric fields for the stud-

ied anisotropic models compared to the distribution for the 2-D isotropic reservoir model.

Figure 4.62 shows surface plots in the xy−plane of the in-line electric field for the isotropic

case, the vertical anisotropic case and the dipping anisotropic case considering two posi-

tions of the transmitter: x = 0 and x = 2km. The colors in the plots are the amplitude of the

electric field in the in-line geometry (E = (Ex,Ey)) in a logarithmic scale and the arrows

show the direction of the real part of the in-line geometry electric field. Examining the

model with the reservoir embedded in vertical anisotropic sediments, it can be observed

that the electric field decay is slower compared to the isotropic case. This effect is caused

by the larger resistivity in the vertical direction compared to the horizontal and causes the

observed augment of the amplitude when the receivers are located on the seafloor. Analyz-

ing the electric field distribution for the model with the anticline, when the transmitter is

at x = 0 it is possible to notice slightly a slower decay of the field inside the anticline struc-

ture. When the transmitter is at x = 2km, above the center of the positive tilted structure (a

block 4km wide, with resistivity dip angle +40◦), the electric field is asymmetric with the

source location and decays slower along the dipping direction.

The observed TIV seafloor anomalies of a large increment of the amplitude which mask

the reservoir anomaly are in agreement with the results by Li and Dai (2011) and Davydy-

cheva and Frenkel (2013). On the other hand, the anticline anomaly consisting in a drop

of the amplitude which masks the effect of the reservoir is also observed by Davydycheva

and Frenkel (2013).
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Figure 4.61: Broad-side configuration electric field responses of a 2-Dmarine model composed of an isotropic reservoir embedded in an anticline structure
(TTI resistivity) surrounded by vertical anisotropic (TIV) sediments. From top to bottom: Ez amplitude, phase, amplitude normalized by 2-D TIV model
response and amplitude normalized by 1-D TIV model response, for three frequencies: 0.05,0.25 and 1Hz (in colors), for two models with resistivity dip
angle: αd = 20 and 40◦, respectively, and for transmitter locations: x = 0,2,4 and 6km (from left to right).
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Figure 4.62: In-line electric field surface plots of the xy−plane for three variant models of the 2-D
marine reservoir model: a model with the isotropic reservoir embedded in isotropic sediments of
1Ω ·m (top left); a model with the isotropic reservoir embedded in vertical anisotropic sediments
(TIV) with resistivities ρh = 1Ω ·m and ρv = 2Ω ·m (bottom left); a model with the isotropic reservoir
embedded in an anticline structure (TTI) with dip angle 40◦, and surrounded by vertical anisotropic
sediments (top and bottom right). The anisotropic models schemes are represented in Figure 4.54.
The transmitter is located above the center of the reservoir at x = 0 in the isotropic and vertical
anisotropic plots, and at x = 0 and x = 2km in the dipping anisotropic plots. The colors in the plots
are the amplitude of the electric field in the in-line geometry (E = (Ex ,Ey)) in a logarithmic scale
and the arrows show the direction of the real part of the in-line geometry electric field.
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CHAPTER5

Controlled-source electromagnetic inversion: a PDE-constrained

optimization in full-space

5.1 Introduction

Electromagnetic data measured by the CSEM (or MT) method can not be interpreted di-

rectly. To infer about the spatial distribution of the Earth’s conductivity it is necessary to

solve an inverse problem, that is, to find the mathematical representation of the Earth’s

conductivity model for which the predicted responses best match the actual observations.

The inverse problem can therefore be described as an optimization problem in which the

misfit between predicted and actual observations is systematically minimized by varying

the unknown conductivity parameters, subject to the constraint that the prediction satis-

fies the CSEM (or MT) governing PDEs.

In a more general framework, inverse problems are known as parameter estimation, a

particular case of PDE constrained optimization. In this context, the governing PDEs are

named state equations and the dependent variables, state variables. These problems are

also found in a vast number of other investigation areas, e.g. aerodynamics or biomedical

imaging, and are still the focus of active research.

Inversion of EM geophysical data is a specially challenging and computationally in-

tense task. The EM inverse problem is nonlinear which means that the relation between

the parameter to estimate and the state variable is nonlinear, and undetermined, if any

solution can be found, there are infinite number of other acceptable solutions. Moreover,

the solutions are unstable, which means that very large changes to the model result in only

small or even no change in the fit to the data. These features make the inverse problem

ill-posed. Furthermore, the problem is also large-scale; usually with thousands of data

points to be inverted in the tens of thousands of model parameters (Avdeev, 2005).

To deal with the non-uniqueness and instability of the problem, a common strategy is to

apply a penalty to the model, usually, some variation on first-order derivative smoothness.

Then, the inverse problem is generally solved numerically minimizing a functional which

penalizes both misfit to the data and model roughness, using derivative-based optimiza-

tionmethods, such as non-linear conjugate gradients (e.g. Newman and Alumbaugh, 2000;

167
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Rodi and Mackie, 2001; Commer and Newman, 2008), quasi-Newton (e.g. Haber, 2005;

Avdeev and Avdeeva, 2009) or Gauss-Newton (e.g. Mackie and Madden, 1993; Siripun-

varaporn et al., 2004).

The non-linear conjugate gradients (NLCG)methodminimizes the objective (or penalty)

function prescribed for the non-linear inverse problem by direct optimization. It calculates

the gradient of the objective function with respect to the model parameters and uses it to

define a search direction in the model space. The objective function is then minimized

along this direction using a line search which requires at most a few evaluations of the

forward operator, and the model parameter is updated. The whole process is repeated

iteratively until the stopping criteria is reached.

Differently, Gauss-Newton (GN) is based on a linearization of the forward function

approximating it with a first-order Taylor expansion about some reference model. The ob-

jective function is also approximated to a second-order in a Taylor expansion around a cur-

rent estimate of the model solution. The Newton step for the model update is derived from

this expansion. Then, the gradient and the Hessian of the objective function in the Newton

step are approximated for the linearized forward function, where second-order derivatives

are discarded, resulting in the system of normal equations. This system contains the for-

ward function and the Jacobian. The Jacobian, or sensitivity matrix, is the derivative of the

forward function with respect to the model parameters and relates changes in the model

to corresponding changes in predicted data. In the minimization process, the system of

normal equations is solved and the solution is then taken as a new reference model. The

process is repeated recomputing the Jacobian for the updated model parameters. Occam’s

inversion (Constable et al., 1987; deGroot Hedlin and Constable, 1990), very popular in

the EM community, is a variant of GN.

Finally, the quasi-Newton method applies directly the Newton method to minimize

the objective functional and approximates the inverse of the Hessian through a recursive

update process.

For further details of the application of these optimizations methods to solve EM in-

verse problems we refer to the reviews of Avdeev (2005) and Siripunvaraporn (2012).

All these optimization strategies show different benefits and drawbacks when applied

to the EM inverse problem, but in all of them the computation of the forward solution typ-

ically constitute the most expensive part (e.g. Siripunvaraporn, 2012; Egbert and Kelbert,

2012). A key component in the GN scheme is the Jacobian. Computing the full Jacobian

required for any direct GN algorithm is a very demanding computational task for multidi-

mensional EM problems (e.g. Siripunvaraporn, 2012; Egbert and Kelbert, 2012). This has

motivated various algorithmic approximations for the Jacobian based on EM fields com-

puted for homogeneous or 1-D Earth models (Smith and Booker, 1991; Farquharson and

Oldenburg, 1996) or approximate the solutions of the normal equations with a memory

efficient Krylov-space solver such as conjugate-gradients (CG) (e.g. Mackie and Madden,

1993). This last approximation only needs the computation of matrix-vector products with

the Jacobian, which can be accomplished without forming or storing the whole matrix, at
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the cost of two forward solutions (e.g. Egbert and Kelbert, 2012). In contrast, NLCG or

quasi-Newton methods avoids explicitly forming and storing the coefficient matrix of the

normal equations. However, the GN approach exhibits convergence rates with order lower

than quadratic, but significantly higher than linear, in comparison to NLCG and limited

memory quasi-Newton methods which exhibit linear convergence (Nocedal and Wright,

1999).

Recent advances have focused on two directions, on one hand, Grayver et al. (2013)

have shown that an efficient 3-D inverse algorithm using a GN optimization approach

with explicit formation of the Jacobian is affordable using a direct solver for the forward

solution, and is even likely to require less memory than combination of direct solvers and

implicit Jacobian usage for many moderate-scale CSEM surveys. This inversion scheme

takes advantage of minimizing the number of model updates using a method with high

convergence rate such as GN, and of using a direct solver for the forward solution, which

allows multiple solutions reusing the same matrix factorization by forward and backward

substitutions. This last point enables the explicit computation of the Jacobian.

On the other hand, new inversion algorithms have been developed formulating and dis-

cretizing the forward and inverse problems in a FE framework (Key, 2012; Schwarzbach

and Haber, 2013; Grayver, 2015). Most of the inversion codes to date were built around

FD techniques on orthogonal meshes or based on the IE method, while many state-of-the-

art forward programs are based on FE. Schwarzbach and Haber (2013) presents a 3-D FE

based inversion program using a GN with CG optimization approach and rigorously de-

rive two regularization functions for the inversion scheme: a smoothing function using

a primal-dual mixed FE formulation which generalizes the standard Laplacian operator

for a piecewise constant conductivity model on unstructured meshes, and a total variation

regularization function for the same models. Moreover, Grayver (2015) has developed an

inversion algorithm based on a 3-D FE forward program with the possibility to use differ-

ent meshes for forward and inverse problems. The use of different meshes to compute the

state variables and the model parameters avoids overparametrization of the model vari-

able or underparametrization of the state variables, and has already showed its benefits on

FD based inversion programs (Sasaki, 2001; Commer and Newman, 2008). The novel ap-

proach in Grayver (2015) is to additionally calculate the optimal mesh for each case. The

mesh to calculate state variables and sensitivities (adjoint variables) have to provide accu-

rate EM responses, whereas the mesh to calculate the model parameter variables should

adequately represent imaged subsurface structure. They use an adaptive mesh refinement

method to calculate the optimal state and adjoint mesh, applying it independently to dif-

ferent frequencies, and an automatic approach for efficient initial model parameter mesh

design based on the linearized model resolution matrix.

All the inversion schemeswe havementioned above share a common initial approxima-

tion which consists of eliminating the PDE constraint from the optimization problem, by

substituting it using equality constraints in the predicted variable of the objective func-

tion misfit term. Then, the only variable in the optimization is the model parameter.
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Methods using this approach are reduced-space methods, because they reduce the space

of optimization variables, and are also sometimes referred to as black-boxmethods (Herzog

and Kunisch, 2010), since they treat the state equation as a black-box, embedding it into an

optimization loop. By contrast, there is a developed mathematical theory in the full-space,

in which the PDE-constrained optimization problem is addressed directly (e.g. Nocedal

and Wright, 1999; Biros and Ghattas, 2005; Huber, 2013), treating the state and model pa-

rameters variables as independent optimization variables, which are coupled through the

PDE constraint. These methods are sometimes called all-at-oncemethods (e.g. Haber et al.,

2004; Bangerth, 2008; Herzog and Kunisch, 2010) or one-shot methods, because they solve

the forward problem and the inverse problem simultaneously in one iterative process.

The main advantage of all-at-once methods over black-box methods is that while black-

box approaches require the repeated costly solution of the (nonlinear) state equation for

each evaluation of the objective function and of the adjoint equation to evaluate the sensi-

tivities and the gradients, all-at-once methods avoid these calculations and they only need

to solve exactly the state equation at the very end of the optimization process. This advan-

tage comes at the cost of many more optimization variables and of the presence of equality

constraints.

All-at-once inversion schemes have already been applied to solve EM inverse problems

in a FD framework (Haber et al., 2000, 2004; Wilhelms et al., 2013). In Haber et al. (2004),

they applied this method to invert time- and frequency-domain 3-D EM data, concluding

that this procedure has potential for a solution to be reached faster than in traditional

unconstrained optimization approaches.

When formulating the PDE-constrained optimization problem directly, there are two

possibilities: first discretize the optimization problem and then solve a discrete optimiza-

tion problem or first optimize the continuous problem and obtain a set of equations to

discretize. The first approach is referred as discretize-optimize and the second one optimize-

discretize (Haber, 2007). In most cases, and in Haber et al. (2000, 2004); Wilhelms et al.

(2013) the discretize-optimize strategy is preferred because with the optimize-discretize ap-

proach one can obtain inconsistent gradients (Haber, 2007). On the other hand, using

the discretize-optimize approach, discretizations cannot be changed by adapting the mesh

between nonlinear iterations, and the potential to significantly reduce the numerical cost

by taking into account the spatial structure of solutions is lost (Bangerth, 2008). Chang-

ing the mesh between nonlinear iterations in the discretize-optimize approach, changes the

size of the finite dimensional problem making the norms in different inversion steps not

comparable.

Furthermore, recent research has formulated algorithms using all-at-once methods in

a FE framework and using a continuous function space setting to allow for discretiza-

tions that are adaptively refined as nonlinear iterations proceed (Bangerth, 2008; Herzog

and Kunisch, 2010; Günther, 2010). In these optimizations schemes, the commonly used

Newton steps or line search are first formulated on continuous function spaces and then

discretized. The advantage is that then, the finite dimensional norms are independent
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of the mesh size and individual steps of the algorithm are comparable even if they used

differently refined meshes. This can reduce significantly the numerical effort to solve the

inverse problem and at the same time the possibility to use an adaptivemesh coarser where

we lack information or where a fine mesh is not required which makes the inverse problem

better posed (Bangerth, 2008).

In this thesis we have investigated the applicability of a PDE-constrained full-space

optimization scheme to the solution of the 2.5-D CSEM inverse problem. Our objective is

to formulate a framework for our problem based on this approach, using the FE method

for numerical discretization. The advantages of such a formulation is on one hand, to in-

clude all the benefits the FE method offers on modeling, and that we have shown in the

previous chapters of this thesis, and on the other hand, for the inversion to take advan-

tage of techniques with convergence rates higher than linear and that at the same time

avoid the cumbersome task of solving the exact forward problem in every iteration. An-

other interest of using the FE method in combination with a PDE-constrained full-space

optimization strategy, is that if formulated using an optimize-discretize approach, it can nat-

urally include the possibility to use optimal meshes for both state and control variables for

each updated model in the inversion process. Moreover, it makes it possible to incorporate

equality/inequality and linear/non-linear constraints in the inversion.

Particularly, in this Chapter, we derive a formulation of a PDE-constrained full-space

optimization scheme for the solution of the isotropic 2.5-D CSEM inverse problem. We

derive it first, using a discretize-optimize strategy and we implement the problem in the

COMSOL-MATLAB structure using a general-purpose optimization algorithm for its solu-

tion. Then, we apply the program to two synthetic inversion examples and we show the

results. Finally, we derive a formulation for the same problem using an optimize-discretize

scheme, as a first step towards an inversion program with adaptive FE meshes.

5.2 The inverse problem as a PDE-constrained optimization

The inverse problem of estimating the subsurface conductivity model, m, compatible with

the EM observations at discrete surface locations, dobs , can be formulated as an optimiza-

tion problem in which all the physical quantities are governed by a set of PDEs. Thus, the

PDE-constrained optimization problem can be expressed as:

min
u,m

F(u,m) =
1

2
‖Qu − dobs‖2 +

β

2
‖R(m−mref )‖

2

subject to e(u,m) = 0, (5.1)

with e(u,m) the set of governing PDEs or state equations, and u the state variables or the

EM fields solution of the PDEs. The function F is referred to as the objective or penalty

function and in equation (5.1) it is a Tikhonov functional (Tikhonov and Arsenin, 1977).

The first term in the function is a L2 norm misfit term between observed and predicted
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data with Q a measurement operator which transforms and projects the fields onto the ob-

servables in the measurement locations and the second term is a regularization functional

to stabilize the minimization, with β the regularization parameter that balances the effect

of data misfit and model regularization during minimization. As discussed in the section

above, the inverse problem is ill-posed, thus it is common to regularize the problem with a

penalty term which restricts the set of acceptable solutions to those that meet some a priori

constraints on model structure, commonly, smoothness constraints.

In geophysical EM applications, it is a standard approach to eliminate the field u in

the objective function using equality constraints, obtaining an unconstrained optimization

problem of the form (Haber et al., 2000):

min
m
F(m) =

1

2
‖QS (m)− dobs‖2 +

β

2
‖R(m−mref )‖

2, (5.2)

where S is a solution operator, u = S (m), which solves e(S (m),m) = 0. This approach is

possible because the state variable u can be uniquely (or at least locally uniquely) deter-

mined from the PDE: e(u,m) = 0 (e.g. Herzog, 2010). In the resulting problem there is only

one optimization variable, the model parameter m, and the minimization problem is com-

monly solved using gradient-based optimization methods as described in the introduction

of this chapter.

In contrast, in this thesis we address the PDE-constrained optimization problem (5.1)

directly in the full-space, solving for both the fields and the model parameter at the same

time with an all-at-once approach.

Under appropriate conditions (see e.g. Nocedal and Wright, 1999; Tröltzsch, 2010),

solutions of the PDE-constrained optimization problem (5.1) with the PDE as an explicit

side constraint, are stationary points of an associated Lagrangian defined as:

L = F(u,m) + (e(u,m),λ), (5.3)

which couples the penalty function F (in equation 5.1) with the state equation constraints

through Lagrange multipliers λ. Then, the first-order necessary conditions for optimality

are given in abstract form by (see e.g. Nocedal and Wright, 1999; Tröltzsch, 2010):

∇xL(x)(x̃) = 0, (5.4)

where x = {u,m,λ} are the optimal solutions and x̃ are the perturbation directions x̃ =

{ũ, m̃, λ̃}. The derivatives in (5.4) are formally Gâteaux derivatives, and in our problem are

particularly Fréchet derivatives (see e.g. Tröltzsch, 2010) which are ultimately determined

as directional derivatives.

In the Lagrangian (5.3) we only consider PDE equality constraints and assume, for

ease of exposition, that inequality constraints such as bounds in the model parameter,

ml ≤m ≤mu , are non-existent or inactive at the solution. In the more general case, they can

be included in the Lagrangian, and then the first-order necessary conditions are typically
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known as the Karush-Kuhn-Tucker (KKT) conditions (e.g. Nocedal and Wright, 1999).

To solve the inverse problem (5.1), the first-order necessary conditions (5.4) need to be

solved, but due to their nonlinearity, a direct solution of (5.4) is not possible. There are

a large variety of methods to solve the KKT system (see e.g. Nocedal and Wright, 1999;

Haber et al., 2000; Biros and Ghattas, 2005; Hinze et al., 2009), but all fast converging

optimization methods use the idea of Newton’s method in some sense (Hinze et al., 2009).

Newton’s method generates a sequence of iterates xk = {uk ,mk ,λk} hopefully converging

to the exact solution x = {u,m,λ} of (5.4) as k→∞. In each iteration, it computes a search

direction δxk to update the current xk and get xk+1, by using a local approximation of (5.4).

This approximation is a second-order Taylor expansion of L that takes the direction to the

stationary point of the approximation as next search direction. Thus, the Newton step for

the Lagrangian functional is:

∇2xL(xk)(δxk , x̃) = −∇xL(xk)(x̃). (5.5)

Formulating the inverse problem in this way has several advantages (e.g. Huber, 2013).

First, the linear systems arising from this formulation, the constraints Jacobian’s and the

Lagrangian’s Hessian, are sparse and can be evaluated exactly and stored explicitly, thus

avoiding additional approximation errors. Second, inexact solutions of the PDEs are ac-

ceptable. The state variables are not assumed to satisfy all the constraints in each iteration,

they are not forced to be feasible, thus the algorithm can visit infeasible points and feasi-

bility and optimality can be simultaneously gained through the optimization iterations.

Finally, the evaluation of the objective function for every new updated model is very cheap

since it is not necessary to reassemble, refactorize and solve the PDEs as is the case using

reduced-space methods.

On the other hand, the systems of equations arising from (5.5) are usually indefinite, i.e.

they have negative and positive eigenvalues, and are very large. Therefore, it is in this point

that the different strategies emerge to approximate the Hessian of the Lagrangian and to

guarantee that the reduced Hessian is positive definite. For solving these large scaled op-

timization problems inexact Newton methods, Sequential Quadratic Programming (SQP)

methods or Interior Point (IP) methods have been developed and implemented. For an

overview of these techniques we refer to Nocedal and Wright (1999).

In this thesis we consider a state-of-the-art SQP algorithm (Gill et al., 2002, 2005, 2015)

with a limited-memory quasi-Newton approximation to the Hessian. SQP methods are

equivalent to Newton’s method applied to the KKT conditions (5.5) and are sometimes re-

ferred as Lagrange-Newton methods. They solve in every iteration a Quadratic Program-

ming (QP) problem to generate a new search direction. The QP problem is built from a

quadratic approximation of the Lagrangian and by linearizing the equality and inequality

constraints.
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5.3 Measurements and state variables for isotropic 2.5-D CSEM

In CSEM we measure the EM fields or a relation between them in certain positions on the

surface of the model we want to characterize, and for different frequencies and different

transmitter locations. Accordingly,

dobs = dobs(rsrci ,rrcvj ,ωk), i = 1, . . . ,ns, j = 1, . . . ,nr , k = 1, . . . ,nf , (5.6)

where rsrci ,rrcvj and ωk are the ith source position vector, the jth receiver position vector

and the kth operating frequency (angular frequency), respectively. Then, the objective

function for the multi-experiment is:

F(u,m) =

















nf
∑

k=1

ηk

ns
∑

i=1

nr
∑

j=1

1

2

∥

∥

∥

∥
W d
ijk

(

d
syn
ijk − d

obs
ijk

)

∥

∥

∥

∥

2

















+
β

2
‖R(m−mref )‖

2, (5.7)

with a frequency weighting:

ηk =
ω−2k

∑nf
s=1ω

−2
s

, (5.8)

and a data weighting:

W d
ijk =

1

|dobsijk |ǫijk
, (5.9)

with ǫijk the estimated relative error of the ijk-datum. The frequency weighting function

is discussed by Abubakar et al. (2008), and balances each frequency data component.

As explained in detail in Chapter 2, when modeling CSEM data with a 2.5-D approx-

imation, the EM fields are not solved directly, but for the κz-domain transformed along-

strike directed EM field components, Êz and Ĥz. Thus, to obtain the EM fields in the spatial

domain we need to solve the governing PDEs of these transformed fields for a set of κz val-

ues (see Chapter 2). Since we want to use a PDE-constrained optimization strategy with

the PDEs as explicit side constraints, we need to include the overall set of PDEs for all the

κz values in the optimization process.

To simplify the following derivations and in the remainder of this thesis, we assume

that the transmitter is a x−directed horizontal electric dipole, that we model as a point

dipole, located at z = 0, in the model plane. Additionally, we take the amplitude and phase

of the in-line electric field component, Ex, as observables d
a and dp, respectively.

Applying these assumptions and splitting the operator Q, that relates:

d
syn
ijk = {d

syn,a
ijk ,d

syn,p
ijk }, (5.10)

with:

uik =
{

ulik

}

=
{

Êlz,ik
(

x,y,κlz
)

, Ĥ l
z,ik

(

x,y,κlz
)}

, with l = 1, . . . ,nκz , (5.11)
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into two operators Q = PO, results in:

d
syn
ijk = (Q (uik))ijk = (PO (uik))ijk . (5.12)

Then, we define the operator P = {Pa,Pp}, as the operator that calculates the amplitudes

and phases of Ex,ik(x,y,z) and projects them onto the receivers locations (xj ,yj , zj ):

d
syn,a
ijk = PaEx,ik(x,y,z) = |Ex,ik(xj ,yj , zj )| =
(

Re
(

Ex,ik
(

xj ,yj , zj
))2

+ Im
(

Ex,ik
(

xj ,yj , zj
))2

)1/2
,

(5.13a)

d
syn,p
ijk = PpEx,ik(x,y,z) = ϕEx,ik(xj ,yj , zj ) = arctan

















Im
(

Ex,ik
(

xj ,yj , zj
))

Re
(

Ex,ik
(

xj ,yj , zj
))

















, (5.13b)

and the operatorO, as the operator that relates the field Ex,ik(x,y,z) with the state variables

uik :

Ex,ik(x,y,z) =Ouik(x,y,κz) =

∫ ∞

−∞

Êx,ik(x,y,κz)e
−iκzzdκz

∣

∣

∣

∣

z=0
≈

nκz
∑

l=1

ν l Êlx,ik(x,y,κ
l
z), (5.14)

where the integral is numerically approximated for z = 0, and ν l denote weight functions

of the numerical integration, and Êlx,ik is related to Êlz,ik and Ĥ
l
z,ik , through:

Êlx,ik = (κle,k)
−2

(

−iκlz∂xÊ
l
z,ik + ẑk∂yĤ

l
z,ik − ẑk Ĵ

s
x,i

)

. (5.15)

In this last expression equation (2.27) applies for Êlx,ik considering the isotropic problem,

and Êlz,ik , Ĥ
l
z,ik , (κ

l
e,k)
−2 and ẑk are:

Êlz,ik = Ê
l
z,ik(x,y,κ

l
z), (5.16a)

Ĥ l
z,ik = Ĥ

l
z,ik(x,y,κ

l
z), (5.16b)

(κle,k)
−2 =

(

(κlz)
2 + ẑkσ

)−1
, (5.16c)

ẑk = iµ0ωk . (5.16d)

The relation between Êlx,ik and Êlz,ik , Ĥ
l
z,ik , in equation (5.15), can be also written in a

more compact form as:

Êlx,ik = (κle,k)
−2













(

∂x ∂y
)













−iκlz 0

0 ẑk

























Êlz,ik
Ĥ l
z,ik













− ẑk Ĵ
s
x,i













= (κle,k)
−2

[

∇clku
l
ik − ẑk Ĵ

s
x,i

]

, (5.17)

where clk is defined as:

clk =













−iκlz 0

0 ẑk













. (5.18)
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Taking into account the relation betweenmeasurements and state variables, the inverse

problem for the 2.5-D CSEM PDEs reads:

minimize

















nf
∑

k=1

ηk

ns
∑

i=1

nr
∑

j=1

1

2

∥

∥

∥

∥
W d
ijk

(

d
syn
ijk −d

obs
ijk

)

∥

∥

∥

∥

2

















+
β

2
‖R(m−mref )‖

2,

subject to elik(Ê
l
z,ik , Ĥ

l
z,ik ,m) = 0, for i = 1, . . . ,ns; k = 1, . . . ,nf ; l = 1, . . . ,nκz . (5.19)

The Lagrangian function (5.3) for our particular problem is then,

L =

















nf
∑

k=1

ηk

ns
∑

i=1

nr
∑

j=1

1

2

∥

∥

∥

∥
W d
ijk

(

d
syn
ijk −d

obs
ijk

)

∥

∥

∥

∥

2

















+
β

2
‖R(m−mref )‖

2

+

nf
∑

k=1

ns
∑

i=1

nκz
∑

l=1

(

elik
(

Êlz,ik , Ĥ
l
z,ik ,m

)

,λlik
)

,

(5.20)

where we introduce a Lagrange multiplier λlik for each set of PDEs corresponding to each

ik − th experiment and to each l − th κz parameter value.

5.4 Constrained optimization with a SQP method using SNOPT

In the previous sections we introduced the general framework for the PDE-constrained

optimization strategy in the full-space and we derived a particular Lagrangian for the

isotropic 2.5-D CSEM PDEs. Our problem is especially complex, the solution of the PDEs

are not directly the observables and we need to include the PDEs for a set of wavenumber

values to correctly represent the observable variables. To simplify the Lagrangian, we only

consider an in-line horizontal electric dipole and a specific observable: the in-line electric

field component, Ex.

Now, we will use the elements given in the previous sections to derive a formulation

of a PDE-constrained optimization scheme in the full-space for the particular Lagrangian

in equation (5.20). This formulation is implemented by using the COMSOL-MATLAB pro-

gramming structure and a general-purpose optimization algorithm, SNOPT (Gill et al.,

2002, 2005). SNOPT solves the PDE-constrained optimization problem using an imple-

mentation of a Sequential Quadratic Programming (SQP) method and it is included in the

COMSOL package. SQP methods are equivalent to the previously introduced Newton’s

method (e.g. Boggs and Tolle, 1995).

The essential idea of the SQP method is to solve the nonlinearly constrainedminimiza-

tion problem using a sequence of QP subproblems. In each iteration the QP subproblem

minimizes a quadratic approximation to the Lagrangian function, subject to the lineariza-

tion of the constraints in the original problem. The solution of the QP subproblem is used

as a search direction to update the model for the next iteration. The main advantage of

using a QP subproblem is that it is relatively easy to solve and yet, it is assumed to reflect
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in some way the local properties of the original problem (Boggs and Tolle, 1995).

A SQP method is one of the most effective methods to solve nonlinearly constrained

optimization problems (Nocedal and Wright, 1999) and SNOPT is a robust and efficient

optimization solver. However, we use it through COMSOL and we do not have access to

the source code, thus we can not exploit the particular matrix structures arising from our

problem which could improve the performance. Due to the complexity of the formulation

of such a constrained scheme, at present we have limited our program to the implemen-

tation with COMSOL. This allows us to validate the problem formulation and to realize

preliminary studies on its performance, as a first step towards a more efficient implemen-

tation.

In this section, we will derive the problem formulation, describe the basic algorithm of

a SQP method and the principal techniques that SNOPT uses to implement it. Finally, we

validate the performance of the inversion results for two synthetic models.

5.4.1 Problem formulation for the 2.5-D CSEM isotropic PDEs

We assume a discretize-optimize strategy (Haber et al., 2004) to formulate the 2.5-D CSEM

PDE-constrained optimization problem in the full-space, because this form is required for

implementation in the COMSOL-MATLAB structure and SNOPT optimization solver.

We start with the objective function (5.7) in a FE discretized form:

F
({

U l
}

,m
)

=
1

2

(

dsyn
({

U l
}

,m
)

−dobs
)T

W T
d Wdη

(

dsyn
({

U l
}

,m
)

−dobs
)

+
β

2
R
(

m−mref
)

,
(5.21)

where the observed data, dobs , is a vector of nd = nf × ns × nr values and the synthetic data,

dsyn, is a vector with the same dimensions, which depends on the elementwise discretized

model parameterm and on a set of vectors U l with block elementsU l
ik , which at the same

time are vectors containing the FE discretized fields
(

Êlik , Ĥ
l
ik

)T

j
on each node j, associated

with the ik − th experiment and with the l − th κz parameter value. The matrices η andWd

are nd × nd diagonal matrices as defined in (5.8) and (5.9), respectively, note however, that

the frequency weighting is constant for all data at a specific frequency but varying source

and receiver position.

To form the Lagrangian function associated with the objective function above, we use

the discretized FE system (2.60) as state equation for the isotropic 2.5-D CSEM PDEs, and

we include them for each ik − th experiment and each l − th κz parameter value, since they

all constrain the state variables and also indirectly the observables:

L =
1

2

(

dsyn
({

U l
}

,m
)

−dobs
)T

W T
d Wdη

(

dsyn
({

U l
}

,m
)

−dobs
)

+
β

2
R
(

m−mref
)

+

nf
∑

k=1

ns
∑

i=1

nκz
∑

l=1

(

λlik

)T [

Al
ik(m)U l

ik −F
l
ik(m)

]

.
(5.22)



178 5.4. Constrained optimization with a SQP method using SNOPT

Individual state equations and variables do not couple across experiments, therefore the

Lagrangian above can be written as:

L =
1

2

(

dsyn (U ,m)−dobs
)T

W T
d Wdη

(

dsyn (U ,m)−dobs
)

+
β

2
R
(

m−mref
)

+λT [A(m)U −F (m)] ,
(5.23)

where we have redefinedA as a block diagonal matrix with block elements,Al
ik , the vector

U is composed of block vectorsU l
ik , the vector F is composed of block vectors F l

ik , and the

vector of the Lagrange multipliers λT is formed by block vectors λlik .

Without loss of generality but for sake of simplicity, in the following we only consider

one experiment, that is the data corresponding to a single transmitter position and operat-

ing at a single frequency. Then, the matrices in the state equations are:

A = diag
(

Al
)

; l = 1, . . . ,nκz , (5.24)

Al = {Al
ij }; i, j = 1, . . . ,n, (5.25)

where n is the number of nodes of the discretized FE mesh, and:

U = {U l }; l = 1, . . . ,nκz , (5.26)

U l = {U l
j } =

{

(

Êlj Ĥ l
j

)T
}

; j = 1, . . . ,n, (5.27)

F = {F l}; l = 1, . . . ,nκz , (5.28)

F l = {F l
i }; i = 1, . . . ,n. (5.29)

The Lagrange multipliers λ are also discretized in the following form:

λ = {λl }; l = 1, . . . ,nκz , (5.30)

λl = {λlj } =
{

(

λlE,j λlH,j

)T
}

; j = 1, . . . ,n, (5.31)

and the relation between dsyn and {U l } is, in discretized form:

dsyn = PEx; (5.32)

Ex =

nκz
∑

l=1

ν lÊl
x, (5.33)

Êl
x = D̄l(m)

[

C̄lU l − S̄
]

, (5.34)

where P is an operator that projects the solution to the receiver locations, Ex and Êl
x are

vectors with length, the number of nodes n, and D̄l (m) and C̄l are n× n diagonal matrices

from the discretization in equation (5.17) of (κle)
−2 and of the derivative operator with clk ,

respectively. The vector S̄ contains the source term, thus, it is sparse.

As explained at the beginning of this chapter, a stationary point {U ,m} of the La-
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grangian needs to fulfill the first-order conditions (5.4), which in the discretized case and

for our particular problem considering a single experiment, expand as:

LÊlz =
(

P ν lD̄lC̄l110
)T

W T
d Wd

(

dsyn −dobs
)

+ (Al110)
Tλl , (5.35a)

LĤ l
z
=

(

P ν lD̄lC̄l101
)T

W T
d Wd

(

dsyn −dobs
)

+ (Al101)
Tλl , (5.35b)

Lm =















P

nκz
∑

s=1

νs∇mD̄
s
[

C̄sU s − S̄
]















T

W T
d Wd

(

dsyn −dobs
)

+
β

2
∇mR(m−m

ref )

+

nκz
∑

s=1

[∇mA
sU s −∇mF

s]T λs,

(5.35c)

LλlE
= 1T10(A

lU l −F l), (5.35d)

LλlH
= 1T01(A

lU l −F l), (5.35e)

(5.35f)

where 110 and 101 are vectors of n block elements with a
(

1 0
)T

vector and a
(

0 1
)T

vector in each block, respectively.

To form the Newton step (5.5), we derive the second derivatives of the Lagrangian:

LÊlzÊlz =
(

P ν lD̄lC̄l110
)T

W T
d Wd

(

P ν lD̄lC̄l110
)

, (5.36)

LÊlzĤ l
z
=

(

P ν lD̄lC̄l110
)T

W T
d Wd

(

P ν lD̄lC̄l101
)

, (5.37)

LÊlzÊnz =
(

P ν lD̄lC̄l110
)T

W T
d Wd

(

P νnD̄nC̄n110
)

, (5.38)

LÊlzĤn
z
=

(

P ν lD̄lC̄l110
)T

W T
d Wd

(

P νnD̄nC̄n101
)

, (5.39)

LÊlzm =
(

P ν lD̄lC̄l110
)T

W T
d Wd















P

nκz
∑

s=1

νs∇mD̄
s
[

C̄sU s − S̄
]















+∇m
(

P ν lD̄lC̄l110
)T

W T
d Wd

(

dsyn −dobs
)

+∇m(A
l110)

Tλl ,
(5.40)

LÊlzλlE
= (Al110)

T110, (5.41)

LÊlzλlH
= (Al110)

T101, (5.42)

LÊlzλn = 0, (5.43)

LĤ l
z Ê

l
z
=

(

P ν lD̄lC̄l101
)T

W T
d Wd

(

P ν lD̄lC̄l110
)

, (5.44)

LĤ l
zĤ

l
z
=

(

P ν lD̄lC̄l101
)T

W T
d Wd

(

P ν lD̄lC̄l101
)

, (5.45)

LĤ l
z Ê

n
z
=

(

P ν lD̄lC̄l101
)T

W T
d Wd

(

P νnD̄nC̄n110
)

, (5.46)

LĤ l
zĤ

n
z
=

(

P ν lD̄lC̄l101
)T

W T
d Wd

(

P νnD̄nC̄n101
)

, (5.47)
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LĤ l
zm

=
(

P ν lD̄lC̄l101
)T

W T
d Wd















P

nκz
∑

s=1

νs∇mD̄
s
[

C̄sU s − S̄
]















+∇m
(

P ν lD̄lC̄l101
)T

W T
d Wd

(

dsyn −dobs
)

+∇m
(

Al101
)T

λl ,

(5.48)

LĤ l
zλ

l
E
= (Al101)

T110, (5.49)

LĤ l
zλ

l
H
= (Al101)

T101, (5.50)

LĤ l
zλn

= 0, (5.51)

LmÊlz =















P

nκz
∑

s=1

νs∇mD̄
s
[

C̄sU s − S̄
]















T

W T
d Wd

(

P ν lD̄lC̄l110
)

+
(

dsyn −dobs
)T

W T
d Wd

(

P ν l∇mD̄
lC̄l110

)

+ (λl)T∇mA
l110,

(5.52)

LmĤ l
z
=















P

nκz
∑

s=1

νs∇mD̄
s
[

C̄sU s − S̄
]















T

W T
d Wd

(

P ν lD̄lC̄l101
)

+
(

dsyn −dobs
)T

W T
d Wd

(

P ν l∇mD̄
lC̄l101

)

+ (λl )T∇mA
l101,

(5.53)

Lmm =















P

nκz
∑

s=1

νs∇mD̄
s
[

C̄sU s − S̄
]















T

W T
d Wd















P

nκz
∑

s=1

νs∇mD̄
s
[

C̄sU s − S̄
]















+
β

2
∇m

(

∇mR(m−m
ref )

)

+

nκz
∑

s=1

∇m [∇mA
sU s −∇mF

s]T λs,

(5.54)

LmλlE
=

(

∇mA
lU l −∇mF

l
)T

110 (5.55)

LmλlH
=

(

∇mA
lU l −∇mF

l
)T

101 (5.56)

LλlE Ê
l
z
= 1T10A

l110, (5.57)

LλlEĤ
l
z
= 1T10A

l101, (5.58)

LλlE Ê
n
z
= 0, (5.59)

LλlEĤ
n
z
= 0, (5.60)

LλlEm
= 1T10

(

∇mA
lU l −∇mF

l
)

, (5.61)

LλlEλ
l
E
= 0, (5.62)

LλlEλ
l
H
= 0, (5.63)

LλlEλ
n
E
= 0, (5.64)

LλlEλ
n
H
= 0, (5.65)

LλlH Ê
l
z
= 1T01A

l110, (5.66)

LλlHĤ
l
z
= 1T01A

l101, (5.67)

LλlH Ê
n
z
= 0, (5.68)

LλlHĤ
n
z
= 0, (5.69)

LλlHm
= 1T01

(

∇mA
lU l −∇mF

l
)

, (5.70)
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LλlHλ
l
E
= 0, (5.71)

LλlHλ
l
H
= 0, (5.72)

LλlHλ
n
E
= 0, (5.73)

LλlHλ
n
H
= 0. (5.74)

Accordingly, the Newton step for our particular problem can be written as:









































































Lu1u1 . . . Lu1unκz Lu1m Lu1λ1 . . . Lu1λnκz

...
...

...
...

...
...

Lunκz u1 . . . Lunκz unκz Lunκzm Lunκz λ1 . . . Lunκz λnκz

Lmu1 . . . Lmunκz Lmm Lmλ1 . . . Lmλnκz

Lλ1u1 . . . Lλ1unκz Lλ1m Lλ1λ1 . . . Lλ1λnκz

...
...

...
...

...
...

Lλnκz u1 . . . Lλnκz unκz Lλnκz m Lλnκz λ1 . . . Lλnκz λnκz






















































































































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
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(5.75)

where the blocks in the matrix above are also matrices of the second derivatives of the

Lagrangian with the subscripts ul referring to Êlz and Ĥ
l
z with all combinations given in

(5.36) – (5.74), and the subscripts λl referring to λlE and λlH with all possible combinations

given by the same set of equations. Therefore, we can identify transposed terms, and terms

that are null, so that the system above results in:
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. . . 0
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0
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

. (5.76)

The next step in the solution of the inverse problem using a PDE-constrained optimiza-

tion approach is to solve the above system for δu1, . . . ,δunκz ,δm,δλ1 , . . . ,δλnκz and use the

solution as a search direction for the new update.

5.4.2 Essentials of the SQP method

Sequential Quadratic Programming (SQP) methods solve the nonlinearly constrainedmin-

imization problem using a sequence of Quadratic Programming (QP) subproblems. In

the QP subproblem the objective function is a quadratic approximation of the Lagrangian

function in (5.3) (or in 5.23), subject to the linearization of the constraints of the original
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problem. Therefore, the QP subproblem at an iterate yk = {uk ,mk}, λk is stated as:

min
y
Lq(y,yk ,λk)

subject to eL(y,yk ) = 0, (5.77)

where Lq is the quadratic approximation to L at yk :

Lq(y,yk ,λk) = L(yk ,λk) + (∇yL)
T (yk ,λk)δy +

1

2
δyT∇2yL(yk ,λk)δy, (5.78)

and eL is the linearization of the constraints e at yk :

eL(y,yk) = e(yk) + (∇ye(yk))
T δy. (5.79)

Note that the constraints are included in the objective function (Lq) for this equivalent

problem and, in this formulation we only consider the equality PDE-constraints to sim-

plify the presentation, however, the method allows to include both equality and inequality

constraints in a similar way (see e.g. Boggs and Tolle, 1995; Nocedal and Wright, 1999).

Although the optimal multipliers are not known, approximations λk to the multipliers can

be maintained as part of the iterative process.

Iterations in SQP methods are distinguished in major and minor iterations. The major

iterations generate a sequence of yk , that satisfy the linear constraints and converge to a

point y, which satisfies the nonlinear constraints and the first-order conditions for opti-

mality. On the other hand, at each major iteration the solution of the QP subproblem is

calculated through a sequence of minor iterations, and provides a new search direction.

SQP methods are particularly suitable to solve problems with nonlinear constraints.

The reason is that using these methods neither the initial point nor the different points

in the solution process need to be feasible, that is, need to satisfy all of the constraints.

This is advantageous in problems with nonlinear constraints since in these cases finding a

feasible point can be a difficult task. Additionally, SQP methods can be easily modified so

that linear constraints are always satisfied.

On the other hand, SQP methods, like Newton’s method and steepest descent, are only

guaranteed to find a local solution of the optimization problem. An important issue of the

method is to assure global convergence to this local minimum, that is to assure that, un-

der suitable conditions, the method will converge to some local solution from any remote

starting point.

The iterates generated by the QP subproblem (5.77) are identical to those generated

by Newton’s method when applied to the system composed of the KKT conditions and

the constraints equations. This means that the SQP method would have theoretically, lo-

cal convergence properties similar to Newton’s method. However, the need for a globally

convergent algorithm requires an approximation of the Hessian, ∇2xL, that fulfills certain

properties (see e.g. Boggs and Tolle, 1995), in spite of the convergence properties.
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Let Hk be an approximation to ∇2L at the point (yk ,λk), we can rewrite the problem as:

min
u,m

Fk + g
T
k δy +

1

2
δyTHkδy

subject to ek + J
T
k δy = 0, (5.80)

where the subindex k indicates an evaluation at yk , or at (yk ,λk) for the Hessian, and g

is the gradient of the objective function, ∇yF, and J is the Jacobian, ∇ye(y). Note that we

applied that ∇yekδy is constant.

Then, the first-order optimality conditions for the QP subproblem are:

gk +Hkδyk − J
T
k πk = 0, (5.81a)

ek + J
T
k δyk = 0, (5.81b)

with δyk the optimal point, and πk the optimal multiplier of the QP subproblem (5.80)

at the k − th iteration. The solution δyk is used to generate a new iterate yk+1, by taking

a step from yk in the direction of δyk . However, a new estimate of the multiplier λk is

also required to continue to the next iteration. A possible choice is to use the optimal

multipliers πk of the QP subproblem as the new estimate λk+1. Then, the vectors δyk and

πk can be identified with the solution of the Newton step (5.5) with πk = λk+1.

Defining δλk as δλk = πk −λk , then:

λk+1 = πk = λk + δλk , (5.82)

and substituting this expression and rearranging terms, the system of equations (5.81)

becomes:

Hkδyk − J
T
k δλk = −gk + J

T
k λk , (5.83a)

JTk δyk = −e(yk). (5.83b)

The solution of this system for δyk and δλk is used to generate the new iterates, using a

line search procedure to determine the steplength in the search directions. To decide if the

step for the new iterate should be accepted, the line search method uses a merit function,

ψ. The length of the step is modified so that the step from yk to yk+1 reduces the value of

ψ. If the merit function is properly chosen, the reduction implies that acceptable progress

towards the solution is being made, and global convergence can be achieved.

In the unconstrained minimization a natural merit function is the objective function

itself. Contrarily, in the constrained optimization, the merit function has to balance the

drive to decrease the objective function with the need to satisfy the constraints, since the

iterates are generally infeasible. This balance is often controlled by a parameter in ψ that

weights a measure of the infeasibility against the value of either the objective function or

the Lagrangian function (Boggs and Tolle, 1995).
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Finally, the new iterates are used to evaluate the problem functions and derivatives and

to calculate the prescribed choice of Hk+1.

The basic algorithm underlying the SQP method can be summarized as:

Algorithm 1 Local SQP algorithm (modified from Nocedal and Wright, 1999)

1: Choose an initial pair (y0,λ0); set k← 0;
2: repeat
3: Evaluate F(yk), g(yk), e(yk), J(yk) and form H(yk ,λk).
4: Solve the QP subproblem, (5.80), to obtain δyk and πk (or δλk);
5: Choose steplength α so that ψ(yk +αδyk) < ψ(yk).
6: Set yk+1← yk +αδyk and λk+1← πk ;
7: Set k← k +1;
8: until a convergence test is satisfied

5.4.3 SNOPT: A general-purpose large-scale SQP algorithm

SNOPT (Sparse Nonlinear OPTimizer; Gill et al., 2002, 2005) is an established general-

purpose optimization software package which implements a SQP method for large-scale

problems. In this thesis, we use the 7th version of SNOPT (Gill et al., 2006) through the

COMSOL-MATLAB programming structure.

In the SQP method, SNOPT approximates the Hessian of the Lagrangian by a limited-

memory quasi-Newton method and it uses a reduced-Hessian semidefinite QP solver for

the QP subproblems. The algorithm accepts problems with general inequality constraints

both linear and nonlinear, using an active-set strategy and includes several additional ad-

vanced techniques to deal, adaptively with specific problem features. Details on SNOPT

implementation are fully described in Gill et al. (2005).

In this section, we expose briefly the basis of the different approximations implemented

in SNOPT, following Gill et al. (2005) and Gill and Wong (2012). In some points the algo-

rithm has more than one method to solve the problem; here we only describe the ones that

are suitable for the characteristics of our problem.

Firstly, SNOPT uses a modified Lagrangian function associated with (5.77), given by:

L(y,yk ,λk) = F(y)−λ
T
k (e(y)− êk(y)), (5.84)

where êk(y) denotes the vector of linearized constraints functions (state equations and

other constraints), êk(y) = e(yk) + J(yk)(y − yk), and e(y) − êk(y) is the departure from the

linearity (Gill and Wong, 2012). Then the first and second derivatives from the modified

Lagrangian are given by:

∇L(y,yk ,λk) = g(y)− (J(y)− J(yk))
T λk (5.85a)

∇2L(y,yk ,λk) = ∇
2F(y)−

m
∑

i=1

λk,i∇
2ei (y). (5.85b)
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The Hessian of the modified Lagrangian is independent of yk and coincides with the Hes-

sian of the conventional Lagrangian. Also, L(y,yk ,λk)|y=yk = F(yk), and ∇L(y,yk ,λk)|y=yk =

g(yk). Thus, the quadratic objective function in (5.80), defines also a local quadratic model

at y = yk of this modified version of the Lagrangian.

The Hessian above is approximated ensuring positive definiteness, and it is updated

using the BFGS quasi-Newton method:

Hk+1 =Hk +θk(∆Lk)(∆Lk)
T − Γkqkq

T
k , (5.86)

where

θk = 1/(∆Lk)
T
∆yk ,

Γk = 1/qTk ∆yk ,

qk =Hk∆yk ,

∆yk = yk+1 − yk ,

∆Lk = ∇L(yk+1,yk ,π)−∇L(yk ,yk ,π).

When Hk is positive definite, Hk+1 is positive definite if and only if the approximate

curvature (∆Lk)
T
∆yk is positive. Note that L is function of a π vector. There are several

possibilities for this vector, for example the least-squares multipliers λk . However, SNOPT

uses the updated multipliers πk+1 from the line search, because they result in short steps

in the search and are available at no cost. Then, from the expression of ∇L in (5.85a), ∆Lk

results in:

∆Lk = ∇L(yk+1,yk ,πk+1)−∇L(yk ,yk ,πk+1)

= gk+1 − gk − (Jk+1 − Jk)
T πk+1. (5.87)

In fact, the Hessian of the modified Lagrangian at the optimal point is only required

to be positive definite on a subspace, and the approximate curvature, (∆Lk)
T
∆yk , can be

negative or very small at points close to the optimal point. The program incorporates a

criteria to decide if (∆Lk)
T
∆yk is sufficiently positive, and it modifies the update when it is

not (see Gill et al., 2005).

To treat the problems where the number of nonlinear variables is very large, SNOPT

uses a limited-memory approach, in which Hk is not a result of k updates, but of a limited

number of updates. Considering N the number of nonlinear variables, and let r and k

denote two major iterations such that r ≤ k ≤ r +p, with p a preassigned value. At iteration

k the Hessian is approximated by the BFGS method and can be expressed in terms of p

updates to a positive-definiteHr :

Hk =Hr +
k−1
∑

j=r

(

θj (∆Lj )(∆Lj)
T − Γjqjq

T
j

)

. (5.88)
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The quantities {∆Lj ,qj ,θj ,Γj } are stored for each j. During the major iteration k, the QP

solver accesses Hk by requesting products of the form Hkv:

Hkv =Hrv +
k−1
∑

j=r

(

θj
(

(∆Lj )
T v

)

(∆Lj )− Γj
(

qTj v
)

qj
)

. (5.89)

In SNOPT, the SQP structure is extended to incorporate general equality and inequality

constraints and nonlinear constraints which are linearized. In the solution process, SNOPT

estimates at each iteration a subset of constraints that are binding (are active) at a QP

solution, the so-called working set, W . Then, it solves the QP subproblem imposing the

constraints in the working set as equalities and all other constraints are ignored.

For the solution of the QP subproblem, SNOPT uses a reduced-Hessian method to ob-

tain δyk in the KKT system (5.81), with ek all the constraints in the working set at the

current iteration. Examining this system of equations, the part of the step δyk in the range

space of JTk is completely determined by the second block row JTk δyk = −ek. The Lagrangian

Hessian, Hk , affects only the part of δyk in the orthogonal subspace, namely the null-space

of Jk (Nocedal andWright, 1999). Then, using a reduced-Hessian technique, quasi-Newton

methods (e.g. BFGS method) are applied to find approximations to only the part contain-

ing the Hessian.

The derivation of reduced-Hessianmethod passes by definingmatrices Yk andZk whose

columns span the range space of JTk and the null-space of Jk , respectively. Then, the search

direction, solution of (5.81) can be written as (Nocedal and Wright, 1999):

δyk = Ykpy +Zkpz, (5.90)

and substituting it in (5.81), the following system is obtained:

(

ZTk HkZk
)

pz = −
(

ZTk HkYk
)

py −Z
T
k gk , (5.91a)

(JkYk)py = −ek . (5.91b)

The system above can be simplified dropping the cross term
(

ZTk HkYk
)

py , yielding the

simpler system:
(

ZTk HkZk
)

pz = −Z
T
k gk . (5.92)

Removing the cross term is justified when ZTk HkZk is replaced by a quasi-Newton ap-

proximation, because the normal component py usually converges to zero faster than the

tangential component pz (Nocedal and Wright, 1999).

There are several possibilities to solve the above system with SNOPT, but because our

system is very large we will use the CG method, which is applicable here since the QP

Hessians, Hk , are by construction positive definite or semidefinite.

Once the QP solution is determined in a certain iteration, new estimates of a solution

of the optimization problem are computed using a line search method and an augmented
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Lagrangian merit function.

Finally, the convergence criteria for SNOPT is based on satisfying the first-order opti-

mality conditions to within certain tolerances.

5.4.4 Synthetic examples

In this section we show the inversion results of two synthetic marine CSEM models ob-

tained using a FE PDE-constrained optimization scheme and SNOPT solver package, de-

scribed in the section above. Although SNOPT is a robust and efficient general-purpose

program, we access it through the COMSOL-MATLAB programming structure as a black-

box, which complicates to adequately tune performance to our particular problem. Amore

efficient application of the PDE-constrained optimization scheme could be built by using

an open-source package since then the particular problem structure could be exploited.

Further investigation opportunities in this direction will be discussed in Chapter 7. Nev-

ertheless, it is insightful to develop a first implementation using SNOPT, to verify the ap-

plicability of a PDE-constrained optimization scheme to the 2.5-D CSEM inverse problem

and to investigate its performance for this particular case.

As inversion data in the objective function we use the natural logarithm of amplitudes

and the phases of the in-line electric field component Ex. The model parameter is the

decadal logarithm, log10, of the conductivity. Inverting for the logarithm of the amplitudes

instead of for the amplitudes directly, gives a better scaling of all data corresponding to

different receivers, since amplitudes vary orders of magnitude with the distance to the

source. To calculate correctly the phase misfit, taking into account periodicity we use the

following expression:

Φ
obs
Ex
−Φ

syn
Ex

= −i log
(

exp
(

i
(

Φ
obs
Ex

[rad]−Φ
syn
Ex

[rad]
)))

.

In the examples presented in this section we do not include a regularization term in

the objective function. A smoothing regularization function of the form of a gradient of

the model parameter is singular at element interfaces when using a FE formulation with

elementwise constant shape functions for the conductivity variable, thus it can not be di-

rectly incorporated in the objective function. A proposed solution is a reformulation in

terms of a primal-dual FE formulation as developed in Schwarzbach and Haber (2013).

However, we have not implemented it in this thesis to not over-complicate the problem

in this first stage. In the following examples we use another strategy to deal with the ill-

posedness of the inverse problem, consisting of the use of different meshes for the control

variable (conductivity parameter variable) and for the state variables (variables solution of

the modeling PDEs, Êz and Ĥz). The main idea is to compute the EM fields in a suitable

unstructured mesh that is finer in the vicinity of the sources and coarser with the distance,

and to calculate the control variable in a coarser mesh, even regular if the initial geome-

try allows. Applying this strategy we model properly the fields on one hand, and on the

other hand, we reduce the number of conductivity unknowns (elementwise conductivity)
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reducing the ill-posedness of the problem and the computational time.

The communication betweenmeshes is established defining a coupling operator. In our

implementation we use a predefined coupling operator from COMSOL. It is defined in the

control variable mesh (source map) and given the model parameter variable as argument.

When the value of the coupling operator is required in some location within the state

variable mesh (destination map), its argument is first evaluated in the source mesh and

thereafter mapped to the destination mesh.

In the first example, we want to recover the spatial distribution of the conductivity for

the canonical 2-D model, Figure 4.27, introduced in Chapter 4. Although we invert for the

conductivity model parameter, in this section we show results of the resistivity (inverse of

the conductivity), since the model in Figure 4.27 is given in resistivities.

The ‘real’ data is calculated first, modeling the EM fields in the 2-D canonical model.

The mesh used for these computations is finer than the state variable mesh used for the

inversion to avoid the inverse crime. The EM fields are excited by an x−directed horizontal

electric dipole at 100m above the seafloor, and are calculated for three different horizontal

positions of this transmitter: x = −1km,0 and 1km. For all the positions, the transmitter is

located above the reservoir, which extends from x = −3km to 3km. The operating frequency

is 0.25Hz, a suitable frequency to resolve the 100Ω ·m reservoir embedded in 1Ω ·m sed-

iments at 1km depth, below the seafloor. The receivers are located along an x−directed

profile, extending from −10km to 10km, every 500m, and on the seafloor (at 0.5m above

the seafloor).

The initial model for the inversion is homogeneous, with a control variable value of

0.01, and with the air and the sea layers of the ‘real’ model. The size of the whole model

where the fields are calculated is 60km× 40km with center in (0,0), and the inversion do-

main, where the conductivity is a parameter coupled to the control variable in the control

variable model, is 22km× 4km and centered at (0,−3km). The FE mesh for this model has

2624 elements, with 662 elements in the inversion domain, and the same mesh is used for

all the wavenumber parameter values and for all the transmitter positions. Although in

this thesis we have shown that the accuracy of the solution when modeling the EM fields

depends on the mesh design, and this should be adapted to the different wavenumber pa-

rameter values and transmitter positions, this would further complicate the problem, so

at present, in this example we consider a unique mesh for all these situations. The shape

functions for the EM fields are quadratic Lagrange shape functions, which results in 5311

DOFs for Êlz and 5311 DOFs for Ĥ l
z , for each wavenumber parameter value and for each

transmitter position.

The model for the control variable has the size of the inversion domain in the state

variables model, and a coarser mesh since it does not need to accommodate the variations

of the fields closed to the source, but fine enough to resolve the thin, 100m, reservoir. The

total number of elements in this mesh is 582, and coincides with the number of DOFs of

the control variable, since it is modeled with constant elementwise shape functions. To

better constrain the inversion process, we give bounds to the control variable, an upper
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bound mu = 1, and a lower bound ml = −2.

The PDE system of equations is assembled for a set of wavenumber parameter values

and for the three transmitter positions, since we want a multi-experiment inversion using

a PDE-constrained optimization. The set of wavenumber parameter values consists of 23

values distributed logarithmically from 1×10−4 to 5×10−2m−1 and 0. Taking into account

the number of DOFs of the problem, for Êz and Ĥz, for each wavenumber parameter value

and for each frequency, the resulting FE system of linear equations is huge, with a total

number of (5311Êz +5311Ĥz)×24κz×3Tx = 764784 DOFs. Adding the DOFs associated to

the control variable, 582, the total number of DOFs is 765366.

In each major iteration of the SQP solver, it is necessary to evaluate the gradient of the

objective function, ∇mF(u,m):

∇mF(u,m) =
∂F

∂m
+
∂F

∂u
·

(

∂e

∂u

)−1

·
∂e

∂m
. (5.93)

We use the adjoint method to calculate the gradient. This method introduces and defines

an adjoint solution u∗ as:

u∗ =
∂F

∂u

(

∂e(u)

∂u

)−1

. (5.94)

This expression is then multiplied in the RHS by the term ∂e/∂u and transposed, obtaining

a single system of linear equations:

(

∂e

∂u

)T

·u∗ =
∂F

∂u
. (5.95)

Then, the gradient of the objective function can be calculated solving this additional sys-

tem of equations and substituting u∗ with (∂F/∂u)(∂e/∂u)−1 in equation (5.93). Using

MUMPS direct solver, this system can be solved at the cost of a back-substitution, since

it is the transpose of the last linearization needed for solving the forward problem. The

main inconvenience of using this strategy is that considering a PDE-constrained optimiza-

tion scheme, our system matrix is huge and requires lot of memory, thus other strategies

should be investigated.

In this first example, we set to stop the SNOPT optimization solver when it reaches an

optimality tolerance of 1 × 10−3 with a maximum number of objective evaluations of 34.

As mentioned before, the optimality tolerance is the level of accuracy to which we want

the final iterate of SNOPT fulfill the first-order optimality conditions. Our choice for the

values of these parameters is based on trial and error, after performing several tests and

can still be improved upon.

Figure 5.1 displays the final resistivity model in the control variable and in the state

variablemeshes. The inversion program recovers the reservoir block in the correct position

and approximately with the correct shape and resistivity of 100Ω · m with some lower

values in some of the elements forming the reservoir. However, some small artifacts can
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Figure 5.1: Resistivity model (log10ρ(x,y)) resulting from the inversion of the 2-D canonical model
in-line electric field data. Top: Resistivity model in the model parameter (control variable) mesh.
Bottom: Resistivity model in the mesh used for the electric field calculations. The model domain of
the control variable coincides with the inversion domain. It is a 22km× 4km rectangle centered at
x = 0,y = −3km. The model domain where the electric field is calculated is larger, a 60×40km rect-
angle, and includes the inversion domain and the sea and the air layers. The control variable mesh
has 582 elements and the state variables mesh, 662 in the inversion domain and 2624 elements
in total. Both meshes are fixed during the inversion process. The initial model was homogeneous,
with 0.9772Ω ·m, and with the air and the sea layers, and we inverted for the Ex amplitude and
phase data corresponding to three different transmitter locations, at x = −1000m,0 and 1000m
and y = −900m, and operating at a 0.25Hz, with receivers along the x−axis from −10km to 10km,
every 500m and on the seafloor. The results have been obtained without a regularization function.
Information of the quality of the results is given in Figure 5.3.

be observed in the LHS of the model, below the receivers.

The corresponding amplitude and phase of the ‘real’ in-line electric field data together

with the inversion predicted data for the three different experiments with different trans-

mitter positions are plotted in Figure 5.2 as a function of the receivers positions. According

to the plots, the mismatch is small in both amplitudes and phases, and for all three experi-

ments, however, it is notable in the phases for large offsets, at receivers located at distances

larger than approximately 7km to the source.

Information of the optimization process and of the quality of the solution is given in

Figure 5.3 where the evolution of the objective function value and of the error with the

number of major iterations is provided. This error is an estimate of the degree of non-

optimality; further details can be found in (Gill et al., 2006). The same Figure illustrates

the number of minor iterations in each major iteration as bar graph.

Observing the evolution of the objective function, it is between the second and the

third major iterations that the decay is stronger. It passes from a value of 22 to a value

of 6. In the next iterations, the decay continues but with a smoother slope. The decay

behavior changes again after the 8th major iteration, the slope gets smaller indicating a

slow decrease of the objective function value. It passes from a value of 3.2 in the 8thmajor

iteration to a value of 1.9 in the last iteration, the 31st one.

The evolution of the error with the major iterations is related to the one of the objective
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Figure 5.3: Data from the PDE-constrained optimization process using SNOPT solver for the in-
version of the 2-D canonical model electric field data. The left axis corresponds to the objective
function value (blue) and the right axis to the first-order optimality error (orange), which are plot-
ted as a function of the major iteration number. The bar graph plots the number of minor iterations
required by the program to solve the QP subproblem at each major iteration.
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Figure 5.4: Resistivitymodel resulting from the inversion of the 2-D canonical model in-line electric
field data for three different transmitter positions, computed using MARE2DEM, a FE modeling pro-
gram with an implementation of the well-established Occam’s inversion method. To obtain these
results we used the default parameters of MARE2DEM. We inverted for three sets of Ex amplitude
and phase data corresponding to three different transmitter positions, at −1km,0 and 1km.

function, thus it shows similar decay stages. It starts with a value of 1.3 which decreases

to a value of 4.7 × 10−2 in the 3rd major iteration. Then the decay is smoother reaching a

value of 2× 10−3 at the last iteration.

These different phases of decay of the objective function and the error are also followed

by the number of minor iterations. Initially, in each major iterations it is required a large

number of minor iterations, around 100, to solve the QP subproblem and continue to the

next major iteration. After the third major iteration, the number of minor iterations per

major iteration is smaller, around 30, and it changes again for major iterations after the

8th with a number of minor iterations per major iteration between 20 and 5.

The required time to run this example was 41min and 52s with an INTEL i7 3.2 GHz

quad-core processor and 16GBRAMdesktop computer, and thememory used was: 4.89GB

of physical memory and 10.23GB of virtual memory. It is a high demand of computational

resources for a simple model. Thus the inversion scheme should be improved investigat-

ing techniques to reduce the memory required to solve the problem and consequently to

improve the time efficiency.

Finally, we have calculated the solution of the inverse problem for this example using

the extensively tested MARE2DEM program (Key and Ovall, 2011; Key, 2012), with the

goal to verify qualitatively the validity of our solution. The resulting resistivity model is

plotted in Figure 5.4 and it is very similar to the one we obtained using SNOPT (Figure

5.1).

The inversion algorithmMARE2DEM implements thewell-establishedOccam’s method

(Key, 2012), which does not solve the PDE-constrained optimization problem directly. It

would be interesting to compare the different performance between the inversion scheme

of MARE2DEM and the one under study, however because of the big differences already

on the problem formulation, it is not a trivial task, and we consider it out of the scope of

this thesis.

As a second example, we invert data from a marine model represented in Figure 5.5. It
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Figure 5.5: Marine resistivity model with bathymetry and with two bodies, with resistivities of 4Ω ·
m and 50Ω · m, embedded in a stratified media with more conductive materials. This model is
taken from the example model included in the MARE2DEM open source and freely available version
program. The color scale is the logarithm of the resistivity and the numbers in the image are the
resistivity inΩ ·m.

consists in a model with an air layer and a sea layer, with bathymetry and with a stratified

subseafloor of 1,0.7 and 0.6Ω ·m, where two bodies with larger resistivities of 4Ω ·m and

50Ω ·m are embedded at approximately 1 − 2km below the seafloor. The model has also

a 100Ω · m basement, which is only possible to resolve with MT. This model is taken

from the example given in the freely available version of MARE2DEM1. It is designed to

test the program for both CSEM and MT methods, independently and jointly. Here, we

use it only for CSEM, thus it is not possible with an inversion to recover the entire model

structures, because themethod is not sensitive to all of them. However, we use it to validate

our inversion scheme and to check that although not recovering the complete model, our

result is similar to the one of MARE2DEM.

As in the example before, we invert for the natural logarithm of the amplitudes and

for the phases of the in-line electric field component, and the model parameter is also

logarithmic conductivity. The ‘real’ data we use in the inversion is calculated importing the

model (Figure 5.5) given in theMARE2DEM package to our program, and using a different

mesh (finer) than the one we will use in the inversion. This data is calculated for eight

experiments, with four different transmitter positions, at (0,−2140), (5208.33,−2053.79),

(10416.67,−1855.01) and (15625,−1586.17)m, and for two different frequencies of 0.25

and 0.75Hz. The transmitter is, as in the example above, an in-line horizontal electric

dipole, and the receivers are located on the seafloor, following the bathymetry, every 1km

from x = 1km to x = 25km.

The initial model is an homogeneous model with log10σ0 = 1 × 10−3, and with the air

and sea layers, and the bathymetry of the ‘real’ model. We use again different meshes and

models for the state variables and for the control variable. The model of the state variables

contain the entire initialmodel, and the size of the wholemodel is 200km×200km, centered

in (0,0). In this model the inversion domain is defined as a polygon enclosing the area

comprised between x = 0 to x = 25km, and y = −10km to y ≈ −2.2km on the LHS, and

y = −10km to y ≈ −0.93km on the RHS of the domain, with the upper horizontal boundary

1MARE2DEM version downloaded in 2015 from http://mare2dem.ucsd.edu/
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coinciding with the bathymetry of the model. The model for the control variable is just the

area defined by this polygon.

The number of elements of the state variable mesh is 8490, with 2896 elements mesh-

ing the inversion domain. This same mesh is used for all the wavenumbers, frequencies

and transmitter positions, and it is fixed during the inversion process. The number of

DOFs, using quadratic Lagrange shape functions, is 17053 for Êz and 17053 for Ĥz, for

each wavenumber, frequency and transmitter position.

The mesh of the control variable has 2724 elements. It is not much coarser than the

mesh of the inversion domain in the state variablemesh because the control variablemodel

also includes the bathymetry, which requires a fine meshing. The control variable is dis-

cretized using constant elementwise shape functions, hence the number of DOFs is the

same as the number of elements: 2724. We also include bounds to the control variable in

the optimization process, with an upper bound of mu = 1 and a lower bound of ml = −2.

The wavenumber parameter, κz, values are the same as in the previous model, thus the

total number of DOFs are: (17053Êz + 17053Ĥz)× 24κz × 4Tx × 2f req. = 6548352 DOFs. If

we add the number of DOFs of the control variable, the total number is 6551076. Thus the

systemmatrix of the state equations is huge, and lot of memory will be required to operate

with it.

The inversion parameter settings are an optimality tolerance of 1×10−4 and amaximum

number of objective function evaluations of 200.

Figure 5.6 displays the resistivity model resulting from the inversion in the control

variable and in the state variable meshes. The inversion recovers the two resistive bodies,

the big and the small one, and with approximately the correct value of resistivity, slightly

overestimated in the big body, and underestimated in the small body. It also finds a more

conductive sediment above and below the small body, with a resistivity smaller than 1Ω ·m,

and between the two bodies, coinciding with the structure in the ‘real’ model.

The ‘observed’ and predicted amplitude and phase data associated to these models is

plotted in Figure 5.7 for the different transmitter positions and for the two different fre-

quencies. Qualitatively, the amplitude mismatch between the ‘observed’ and the predicted

data is acceptable for all transmitters and frequencies. On the other hand, the phase mis-

match is acceptable for the 0.25Hz frequency, but a bit too large for the phases at 0.75Hz

frequency and for large offsets, although it does not seem to affect significantly the resis-

tivity model result.

Figure 5.8 displays the evolution of the objective function value and of the error with

the number of major iterations, and the number of minor iterations in each major iteration

for this inversion example. Initially, the objective function value is about 8 and in the next

iterations oscillate between 8 and 4. In the 4thmajor iteration, the objective function value

starts to grow reaching a value of 20 at the 7th iteration, that does not decay significantly

until the 11th iteration to a value of 18, and to a value of about 2 in the 12th iteration. In

the next major iterations, the decrease of the objective function value continues, but more

slowly and it is 0.2 in the last iteration, the 53rd.
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Figure 5.6: Resistivity model (log10ρ(x,y)) resulting from the inversion of the in-line electric field
data for the marine model in Figure 5.5, for eight sets of data corresponding to four transmitter
positions and two frequencies. Top: Resistivity model in the model parameter (control variable)
mesh. Bottom: Resistivity model in the mesh used for the electric field calculations. The model
domain of the control variable coincides with the inversion domain in the electric field model. It is
a polygon enclosing the area comprised between x = 0 to x = 25km, and y = −10km to y ≈ −2.2km
on the LHS, and y = −10km to y ≈ −0.93km on the RHS of the domain, with the upper horizon-
tal boundary coinciding with the bathymetry of the model. The model domain where the elec-
tric field is calculated is larger than the domain of the control variable, it is a 200km × 200km
square, and includes the inversion domain and an air and a sea layers. The control variable
mesh has 2724 elements and the state variables mesh, 2896 in the inversion domain and 8490
elements in total. Both meshes are fixed during the inversion process. The initial model was ho-
mogeneous, with 0.9977Ω ·m (log10σ0 = 1 × 10−3), and with the air and the sea layers, and we in-
verted for the Ex amplitude and phase data corresponding to four different transmitter locations,
at (x,y) = (0,−2140), (5208.33,−2053.79), (10416.67,−1855.01) and (15625,−1586.17)m, and for two
frequencies of 0.25 and 0.75Hz, with receivers along the x−axis from 1km to 25km, every 1km, and
on the seafloor following the bathymetry. The results have been obtained without a regularization
function. Information of the quality of the results is given in Figure 5.8.
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Figure 5.7: ‘Real’ data of the marine model in Figure 5.5 and data predicted by the inversion for
four different positions of the transmitter and for two different frequencies. ‘Observed’ (circles)
and predicted (squares) amplitudes (left) and phases (right) of the in-line electric field Ex as a func-
tion of the receiver locations, and for four different transmitter positions, Tx1x = (0,−2140),T x2x =
(5208.33,−2053.79),T x3x = (10416.67,−1855.01) and Tx4x = (15625,−1586.17)m, and for two differ-
ent frequencies, 0.25Hz (top) and 0.75Hz (bottom).
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The decay of the error has a more constant slope, it starts with a value of 1× 10−2 and

it is 2.9× 10−4 at the final major iteration.

Observing the evolution of the number of minor iterations with the major iterations,

we can distinguish three phases. At the beginning, and in the first two major iterations

the number of minor iterations per major iteration is approximately between 200 and 300.

This phase coincides with the initial oscillations of the objective function value. A second

phase occurs between the 3rd and the 23rd major iterations, with about 100 minor itera-

tions per major iteration, without an appreciable relation with the objective function value.

Finally, the third phase is between the 24thmajor iteration and the final one, with a small

number of minor iterations per major iteration, between 1 and 13. This behavior of the

number of minor iterations coincides with the small variations behavior of the objective

function values at these last major iterations.

The time to run this example was 19h22m3s with an INTEL i7 3.2 GHz quad-core pro-

cessor and 32 GB RAM desktop computer, and the memory used was: 26.18GB of physical

memory and 34.77GB of virtual memory. Both time and memory are very high since in

this inversion scheme we introduce all the equations for all wavenumbers, frequencies and

transmitters in the same matrix.
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Figure 5.9: Resistivity model resulting from the inversion of the in-line electric field data for the
marine model in Figure 5.5, using MARE2DEM, a FE modeling program with an implementation of
the well-established Occam’s inversion method. To obtain these results we used the default pa-
rameters of MARE2DEM. We inverted for eight sets of Ex amplitude and phase data corresponding
to four different transmitter positions along the model and for two frequencies of 0.25 and 0.75Hz.

Finally, in Figure 5.9 we show the resistivity model obtained from solving the inverse

problem of this example with MARE2DEM. We observe a similar solution to the one we

showed in Figure 5.6, but smoother since MARE2DEM uses a regularization functional.

The recovered model shows the two resistive bodies and a more conductive region in the

sediments between them, and above the small resistive body.



198 5.5. Optimize-discretize 2.5-D CSEM constrained optimization

5.5 Optimize-discretize 2.5-D CSEM constrained optimization

In the previous section we have derived a formulation for the constrained optimization

problem in the full-space following a discretize-optimize strategy, that is starting with the

discretized state equations and variables and then deriving the first-order optimality con-

ditions and the Newton’s step for the Lagrangian. We have also described a first implemen-

tation of this scheme using the COMSOL-MATLAB programming structure and SNOPT

optimization solver.

Our next goal is to investigate a FE all-at-once approach formulation that should open

the possibility to implement an inversion code with adaptive FE meshes for the state and

control variables. Advantages of a program implementing this formulation would be, on

one hand, a significant reduction of the numerical effort needed to solve the inverse prob-

lem, and on the other hand, to better pose the problem by choosing a discretization mesh

coarser where we lack information in the control variable mesh or where a fine mesh is not

required for accuracy in the state variable mesh (Bangerth, 2008).

To derive such a formulation we consider an optimize-discretize approach, because with

a discretize-optimize approach, as already presented in this chapter, the discretization can

not be changed by adapting the FE mesh between nonlinear iterations, and the potential

to reduce the numerical cost by taking into account the spatial structure of the solutions

is lost. The explanation is that a change in the discretization changes the size of the fi-

nite dimensional problems, and then, norms used to estimate the error in adaptive mesh

refinement techniques, become meaningless (Bangerth, 2008).

The optimize-discretize approach, derives all the optimization problem in continuous

function spaces before discretizing it into numerical systems. This strategy gives more

flexibility in discretizing as iterations in the optimization process advance and resolve all

scaling issues related to different mesh sizes (Bangerth, 2008).

The use of adaptive FE meshes in a PDE constrained optimization scheme is a very re-

cent area of research. To formulate the basic problem, we have followed the mathematical

works of Bangerth (2002, 2008); Günther (2010) and the works on applications of Joshi

et al. (2004); Bangerth and Joshi (2008); Wang et al. (2013). To derive the inverse problem

in a variational form, we have also followed the work of Petra and Stadler (2011).

In this section, we first formulate the Lagrangian optimization problem with PDE con-

straints for the 2.5-D CSEM PDEs in variational form, and second, we discretize the New-

ton step using FE on independent meshes.

5.5.1 State equations

To derive the formulation of the constrained optimization problem for the 2.5-D CSEM

data, we start with the strong form of the 2.5-D CSEM PDEs for the isotropic problem

(2.15). To formulate the problem we need to include the overall set of PDEs correspond-

ing to the set of κz parameter values, {κlz}, with l = 1, . . . ,nκz , used in the Fourier inverse
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transform.

Without loss of generality but for sake in exposition, we consider a single experiment,

with the transmitter at a single position (i = 1) and operating at a single frequency (k = 1).

Additionally, as in the section above, we suppose a particular case of a x−directed HEPD

transmitter. Then, for each κlz, the state equations are:

−∇ ·
(

ŷ(κle)
−2∇Êlz

)

− iκlz∇ ·
(

(κle)
−2R∇Ĥ l

z

)

+ ŷÊlz = +iκlz∇ ·
(

(κle)
−2Ĵst

)

(5.96a)

−∇ ·
(

ẑ(κle)
−2∇Ĥ l

z

)

+ iκlz∇ ·
(

(κle)
−2R∇Êlz

)

+ ẑĤ l
z = −ẑ∇ ·

(

(κle)
−2RĴst

)

in Ω (5.96b)

Êlz, Ĥ
l
z = 0 on ∂Ω, (5.96c)

where

ẑ = iµ0ω, ŷ = σ, (κle)
−2 =

(

(κlz)
2 + ẑŷ

)−1
, ∇ = (∂x,∂y), Ĵst = (Ĵ sx,0), R =













0 −1

1 0













.

The equations above can be rewritten in a more compact form as:

−∇ · (ClE∇Ê
l
z)−∇ · (D

l∇Ĥ l
z) + ŷÊ

l
z = ∇ · (D

lRT Ĵst) (5.97a)

−∇ · (ClH∇Ĥ
l
z) +∇ · (D

l∇Êlz) + ẑĤ
l
z = −∇ · (C

l
HRĴ

s
t), (5.97b)

where

ClE = ClE(κ
l
z,σ,ω) = ŷ(κ

l
e)
−2,

ClH = ClH (κ
l
z,σ,ω) = ẑ(κ

l
e)
−2,

Dl =Dl(κlz,σ,ω) = iκ
l
z(κ

l
e)
−2R.

5.5.2 Variational form

In Chapter 2 we derived the variational or weak form for the equations above (equation

2.50); here, we write them for a particular case of a x−directed HEPD transmitter, for a κlz
parameter value, and using the variables ClE ,C

l
H andDl defined above:

∫

Ω

(

∇v̄ l1 · (C
l
E∇Ê

l
z) +∇v̄

l
1 · (D

l∇Ĥ l
z) + v̄

l
1ŷÊ

l
z

)

d2r = −

∫

Ω

∇v̄ l1 · (D
lRT Ĵst)d

2r (5.98a)

∫

Ω

(

∇v̄ l2 · (C
l
H∇Ĥ

l
z)−∇v̄

l
2 · (D

l∇Êlz) + v̄
l
2ẑĤ

l
z

)

d2r =

∫

Ω

∇v̄ l2 · (C
l
HRĴ

s
t )d

2r, (5.98b)

where the variables Êlz, Ĥ
l
z and the test functions v l1,v

l
2 are from the space Hl ⊂ H =

[H1
0 (Ω)]2, the Sobolev space of functions with square integrable first-order weak deriva-

tives inΩ, and that vanish in the outer boundary ∂Ω. We can rewrite the equations above
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in a more compact form, with (·, ·) denoting the L2(Ω) inner product (equation 2.38):

(ClE∇Ê
l
z,∇v

l
1) + (Dl∇Ĥ l

z ,∇v
l
1) + (ŷÊlz,v

l
1) = −(D

lRT Ĵst ,∇v
l
1) (5.99a)

(ClH∇Ĥ
l
z ,∇v

l
2)− (D

l∇Êlz,∇v
l
2) + (ẑĤ l

z ,v
l
2) = (ClHRĴ

s
t ,∇v

l
2), (5.99b)

or

AlE(κ
l
z;σ ; [Ê

l
z, Ĥ

l
z])(v

l
1) = 0, (5.100a)

AlH (κ
l
z;σ ; [Ê

l
z, Ĥ

l
z])(v

l
2) = 0, (5.100b)

with

AlE(κ
l
z;σ ; [Ê

l
z, Ĥ

l
z])(v

l
1) = (ClE∇Ê

l
z,∇v

l
1) + (Dl∇Ĥ l

z ,∇v
l
1) + (ŷÊlz,v

l
1) + (DlRT Ĵst ,∇v

l
1) (5.101a)

AlH (κ
l
z;σ ; [Ê

l
z, Ĥ

l
z])(v

l
2) = (ClH∇Ĥ

l
z,∇v

l
2)− (D

l∇Êlz,∇v
l
2) + (ẑĤ l

z ,v
l
2)− (C

l
HRĴ

s
t ,∇v

l
2), (5.101b)

where the semilinear forms AlE and AlH are nonlinear in their first set of arguments, but are

linear in the test functions, and include partial differential operators and inhomogeneous

forcing terms (transmitter terms).

5.5.3 Problem statement

The PDE-constrained optimization problem (5.1) can be stated as:

minimize F({Êlz,ik , Ĥ
l
z,ik},m) =

















nf
∑

k=1

ηk

ns
∑

i=1

nr
∑

j=1

1

2

∥

∥

∥

∥
W d
ijk

(

(

PO
({

Êlz,ik , Ĥ
l
z,ik

}))

ijk
− dobsijk

)∥

∥

∥

∥

2

















+
β

2
‖R(m−mref )‖

2,

subject to AlE,ik(κ
l
z;m; [Êlz,ik , Ĥ

l
z,ik])(v

l
1,ik) = 0, AlH,ik(κ

l
z;m; [Êlz,ik , Ĥ

l
z,ik])(v

l
2,ik) = 0, (5.102)

∀v l1,ik ,v
l
2,ik ∈ H

l,e, and for l = 1, . . . ,nκz , k = 1, . . . ,nf , i = 1, . . . ,ns,

with the objective function from (5.7) and the variational form of the PDEs from (5.100),

for the multi-experiment case, and withHl,e ⊂Hl the space of the l − th shape functions of

the e − th experiment (or ik − th experiment). In the equations above the model parameter

is m, which can be σ or a function of it, e.g. log10σ , since the conductivity varies orders of

magnitude in a model. The space of m isM = {m ∈ L∞(Ω) : ml ≤ m(x,y) ≤ mu }, where ml

and mu are lower and upper bounds, respectively.

Let us consider a single experiment (i = 1, k = 1), for which we want to solve the con-

strained minimization problem:

minimize F({Êlz, Ĥ
l
z},m) =

nr
∑

j=1

1

2

∥

∥

∥

∥
W d
j

(

(

PO
({

Êlz, Ĥ
l
z

}))

j
− dobsj

)∥

∥

∥

∥

2
+
β

2
‖R(m−mref )‖

2,
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subject to AlE(κ
l
z;m; [Êlz, Ĥ

l
z])(v

l
1) = 0, AlH (κ

l
z;m; [Êlz, Ĥ

l
z])(v

l
2) = 0, (5.103)

∀v l1,v
l
2 ∈ H

l , and for l = 1, . . . ,nκz .

To characterize the solutions of the minimization problem, we vectorize the variables

{u l} = {Êlz , Ĥ
l
z} resulting in u, and we introduce a set of Lagrange multipliers λlE ,λ

l
H ∈ H

l ,

which we also vectorize and denote the joint set of all variables by x = {u,λE ,λH ,m} ∈ Xm =

H×H×M, whereH = {Hl }.

The Lagrangian function L : Xm→R, (5.3), for the 2.5-D CSEM problem is then:

L(x) = F(u,m) +

nκz
∑

l=1

(

AlE(κ
l
z;m;u l)(λlE) +A

l
H(κ

l
z;m;u l)(λlH )

)

, (5.104)

which couples the objective function F :H ×M→ R
+, defined above, and the state equa-

tions constraints, through the Lagrange multipliers, λlE ,λ
l
H ∈ H

l . Note that in the La-

grangian, different state equations for different experiments would be included in the sum

with different λlE,ik ,λ
l
H,ik .

Deriving the optimality conditions (5.4), where Lx : Xm × Xm → R, for our particular

problem and taking the Gâteaux derivatives of L at the optimal solution x in the perturba-

tion direction x̃ we obtain:

LÊlz (Ẽ
l
z) =

(

dsyn − dobs ,
∂dsyn

∂Ex
ν l(−iκlz)(κ

−2
e )l∂xẼ

l
z

)

+ (ClE∇Ẽ
l
z,∇λ

l
E) + (ŷẼlz,λ

l
E)

− (Dl∇Ẽlz,∇λ
l
H ) = 0,

(5.105a)

LĤ l
z
(H̃ l

z) =

(

dsyn − dobs ,
∂dsyn

∂Ex
ν l ẑ(κ−2e )l∂yH̃

l
z

)

+ (ClH∇H̃
l
z,∇λ

l
H ) + (ẑH̃ l

z ,λ
l
H )

+ (Dl∇H̃ l
z,∇λ

l
E) = 0,

(5.105b)

Lm(m̃) =















dsyn − dobs ,
∂dsyn

∂Ex

nκz
∑

l=1

ν l
∂Êlx
∂m

m̃















+ β (∇m,∇m̃) +

nκz
∑

l=1

(

(∂mC
l
Em̃∇Ê

l
z,∇λ

l
E)

+(∂mD
lm̃∇Ĥ l

z,∇λ
l
E) + (∂mŷm̃Ê

l
z,λ

l
E) + (∂mD

lRT m̃Ĵs,lt ,∇λ
l
E) + (∂mC

l
Hm̃∇Ĥ

l
z,∇λ

l
H )

−(∂mD
lm̃∇Êlz,∇λ

l
H )− (∂mC

l
Hm̃RĴs,lt ,∇λ

l
H )

)

= 0,

(5.105c)

LλlE
(λ̃lE) = (ClE∇Ê

l
z,∇λ̃

l
E) + (Dl∇Ĥ l

z,∇λ̃
l
E) + (ŷÊlz, λ̃

l
E) + (DlRT Ĵs,lt ,∇λ̃

l
E) = 0, (5.105d)

LλlH
(λ̃lH ) = (ClH∇Ĥ

l
z ,∇λ̃

l
H )− (D

l∇Êlz,∇λ̃
l
H ) + (ẑĤ l

z , λ̃
l
H )− (C

l
HRĴ

s,l
t ,∇λ̃

l
H ) = 0, (5.105e)

for l = 1 . . .nκz , where we have used the definitions of the measurement variable dsyn, we

have chosen j = 1 for ease of exposition, and we have used a particular choice for the

regularization functional R(m) = (∇m,∇m).

In the resulting equations, (5.105a) and (5.105b) can be identified as the adjoint equa-

tions in variational form, defining λlE and λlH , equation (5.105c) is the control equation,

and equations (5.105d) and (5.105e) are state equations in a variational form for l = 1 . . .nκz .
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5.5.4 Search directions and discretization

We formulate the solution of the coupled system of nonlinear equations above, using New-

ton’s method in equation (5.5), for a search direction:

δx = {δÊ1
z ,δĤ

1
z , . . . ,δÊ

nκz
z ,δĤ

nκz
z ,δm,δλ1E ,δλ

1
H , . . . ,δλ

nκz
E ,δλ

nκz
H }.

Newton’s method requires second-order derivatives of the Lagrangian (the Hessian of the

Lagrangian), Lxx(δx, x̃), which expanded read as:

LÊlzÊlz (δÊ
l
z, Ẽ

l
z) =

(

∂dsyn

∂Ex
ν l (−iκlz)(κ

−2
e )l∂xδÊ

l
z,
∂dsyn

∂Ex
ν l (−iκlz)(κ

−2
e )l∂xẼ

l
z

)

, (5.106)

LÊlzĤ l
z
(δĤ l

z, Ẽ
l
z) =

(

∂dsyn

∂Ex
ν l ẑ(κ−2e )l∂yδĤ

l
z ,
∂dsyn

∂Ex
ν l (−iκlz)(κ

−2
e )l∂xẼ

l
z

)

, (5.107)

LÊlzÊnz (δÊ
n
z , Ẽ

l
z) =

(

∂dsyn

∂Ex
νn(−iκnz )(κ

−2
e )n∂xδÊ

n
z ,
∂dsyn

∂Ex
ν l (−iκlz)(κ

−2
e )l∂xẼ

l
z

)

, (5.108)

LÊlzĤn
z
(δĤn

z , Ẽ
l
z) =

(

∂dsyn

∂Ex
νnẑ(κ−2e )n∂yδĤ

n
z ,
∂dsyn

∂Ex
ν l(−iκlz)(κ

−2
e )l∂xẼ

l
z

)

, (5.109)

LÊlzm(δm,Ẽ
l
z) =















∂dsyn

∂Ex

nr
∑

l=1

ν l
∂Êlx
∂m

δm,
∂dsyn

∂Ex
ν l(−iκlz)(κ

−2
e )l∂xẼ

l
z















+

(

dsyn − dobs ,
∂dsyn

∂Ex
ν l∂m((κ

−2
e )l)δm(−iκlz)∂xẼ

l
z

)

+ (∂mC
l
Eδm∇Ẽ

l
z,∇λ

l
E)

+ (∂mŷδmẼ
l
z,λ

l
E)− (∂mD

lδm∇Ẽlz,∇λ
l
H ),

(5.110)

LÊlzλlE
(δλlE , Ẽ

l
z) = (ClE∇Ẽ

l
z,∇δλ

l
E) + (ŷẼlz,δλ

l
E), (5.111)

LÊlzλlH
(δλlH , Ẽ

l
z) = −(D

l∇Ẽlz,∇δλ
l
H ), (5.112)

LÊlzλnE
(δλnE , Ẽ

l
z) = 0, (5.113)

LÊlzλnH
(δλnH , Ẽ

l
z) = 0, (5.114)

LĤ l
z Ê

l
z
(δÊlz, H̃

l
z) =

(

∂dsyn

∂Ex
ν l(−iκlz)(κ

−2
e )l∂xδÊ

l
z,
∂dsyn

∂Ex
ν l ẑ(κ−2e )l∂yH̃

l
z

)

, (5.115)

LĤ l
zĤ

l
z
(δĤ l

z , H̃
l
z) =

(

∂dsyn

∂Ex
ν l ẑ(κ−2e )l∂yδĤ

l
z ,
∂dsyn

∂Ex
ν l ẑ(κ−2e )l∂yH̃

l
z

)

, (5.116)

LĤ l
z Ê

n
z
(δÊnz , H̃

l
z) =

(

∂dsyn

∂Ex
νn(−iκnz )(κ

−2
e )n∂xδÊ

n
z ,
∂dsyn

∂Ex
ν l ẑ(κ−2e )l∂yH̃

l
z

)

, (5.117)

LĤ l
zĤ

n
z
(δĤn

z , H̃
l
z) =

(

∂dsyn

∂Ex
νnẑ(κ−2e )n∂yδĤ

n
z ,
∂dsyn

∂Ex
ν l ẑ(κ−2e )l∂yH̃

l
z

)

, (5.118)

LĤ l
zm
(δm,H̃ l

z) =















∂dsyn

∂Ex

nκz
∑

l=1

ν l
∂Êlx
∂m

δm,
∂dsyn

∂Ex
ν l ẑ(κ−2e )l∂yH̃

l
z















+

(

dsyn − dobs ,
∂dsyn

∂Ex
ν l∂m((κ

−2
e )l)δmẑ∂yH̃

l
z

)

+ (∂mC
l
Hδm∇H̃

l
z ,∇λ

l
H )

+ (∂mD
lδm∇H̃ l

z ,∇λ
l
E),

(5.119)
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LĤ l
zλ

l
E
(δλlE , H̃

l
z) = (Dl∇H̃ l

z ,∇δλ
l
E), (5.120)

LĤ l
zλ

l
H
(δλlH , H̃

l
z) = (ClH∇H̃

l
z ,∇δλ

l
H ) + (ẑH̃ l

z ,δλ
l
H ), (5.121)

LĤ l
zλ

n
E
(δλnE , H̃

l
z) = 0, (5.122)

LĤ l
zλ

n
H
(δλnH , H̃

l
z) = 0, (5.123)

LmÊlz (δÊ
l
z, m̃) =















∂dsyn

∂Ex
ν l(−iκlz)(κ

−2
e )l∂xδÊ

l
z,
∂dsyn

∂Ex

nκz
∑

l=1

ν l
∂Êlx
∂m

m̃















+

(

dsyn − dobs ,
∂dsyn

∂Ex
ν l∂m((κ

−2
e )l)m̃(−iκlz)∂xδÊ

l
z

)

+ (∂mC
l
Em̃∇δÊ

l
z,∇λ

l
E)

+ (∂mŷm̃δÊ
l
z,λ

l
E)− (∂mD

lm̃∇δÊlz,∇λ
l
H ),

(5.124)

LmĤ l
z
(δĤ l

z, m̃) =















∂dsyn

∂Ex
ν l

(

ẑ(κ−2e )l∂yδĤ
l
z

)

,
∂dsyn

∂Ex

nκz
∑

l=1

ν l
∂Êlx
∂m

m̃















+

(

dsyn − dobs ,
∂dsyn

∂Ex
ν l∂m((κ

−2
e )l)m̃ẑ∂yδĤ

l
z

)

+ (∂mD
lm̃∇δĤ l

z,∇λ
l
E)

+ (∂mC
l
Hm̃∇δĤ

l
z,∇λ

l
H ),

(5.125)

Lmm(δm,m̃) =















∂dsyn

∂Ex

nκz
∑

l=1

ν l
∂Êlx
∂m

δm,
∂dsyn

∂Ex

nκz
∑

l=1

ν l
∂Êlx
∂m

m̃















+ β(∇δm,∇m̃), (5.126)

LmλlE
(δλlE , m̃) = (∂mC

l
Em̃∇Ê

l
z,∇δλ

l
E) + (∂mD

lm̃∇Ĥ l
z,∇δλ

l
E) + (∂mŷm̃Ê

l
z,δλ

l
E)

+ (∂mD
lRT m̃Ĵs,lt ,∇δλ

l
E),

(5.127)

LmλlH
(δλlH , m̃) = (∂mC

l
Hm̃∇Ĥ

l
z ,∇δλ

l
H )− (∂mD

lm̃∇Êlz,∇δλ
l
H )

− (∂mC
l
Hm̃RĴs,lt ,∇δλ

l
H ),

(5.128)

LλlE Ê
l
z
(δÊlz, λ̃

l
E) = (ClE∇δÊ

l
z,∇λ̃

l
E) + (ŷδÊlz, λ̃

l
E), (5.129)

LλlEĤ
l
z
(δĤ l

z , λ̃
l
E) = (Dl∇Ĥ l

z ,∇λ̃
l
E), (5.130)

LλlE Ê
n
z
(δÊnz , λ̃

l
E) = 0, (5.131)

LλlEĤ
n
z
(δĤn

z , λ̃
l
E) = 0, (5.132)

LλlEm
(δm,λ̃lE) = (∂mC

l
Eδm∇Ê

l
z,∇λ̃

l
E) + (∂mD

lδm∇Ĥ l
z ,∇λ̃

l
E) + (∂mŷδmÊ

l
z , λ̃

l
E)

+ (∂mD
lRT δmĴs,lt ,∇λ̃

l
E),

(5.133)

LλlEλ
l
E
(δλlE , λ̃

l
E) = 0, (5.134)

LλlEλ
l
H
(δλlH , λ̃

l
E) = 0, (5.135)

LλlEλ
n
E
(δλnE , λ̃

l
E) = 0, (5.136)

LλlEλ
n
H
(δλnH , λ̃

l
E) = 0, (5.137)

LλlH Ê
l
z
(δÊlz, λ̃

l
H ) = −(D

l∇δÊlz,∇λ̃
l
H ), (5.138)

LλlH Ĥ
l
z
(δĤ l

z , λ̃
l
H ) = (ClH∇δĤ

l
z ,∇λ̃

l
H ) + (ẑδĤ l

z , λ̃
l
H ), (5.139)

LλlH Ê
n
z
(δÊnz , λ̃

l
H ) = 0, (5.140)
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LλlH Ĥ
n
z
(δĤn

z , λ̃
l
H ) = 0, (5.141)

LλlHm
(δm,λ̃lH ) = (∂mC

l
Hδm∇Ĥ

l
z ,∇λ̃

l
H )− (∂mD

lδm∇Êlz,∇λ̃
l
H )

+ (∂mC
l
HδmRĴs,lt ,∇λ̃

l
H ),

(5.142)

LλlHλ
l
E
(δλlE , λ̃

l
H ) = 0, (5.143)

LλlHλ
l
H
(δλlH , λ̃

l
H ) = 0, (5.144)

LλlHλ
n
E
(δλnE , λ̃

l
H ) = 0, (5.145)

LλlHλ
n
H
(δλnH , λ̃

l
H ) = 0. (5.146)

Then, the update direction for the k − th iteration, δxk , is determined from equation

(5.5) with equations (5.106) – (5.146) as the second derivatives and equations (5.105) as

the first derivatives evaluated at xk , obtaining a system of equations that represent one

condition for each variable in δxk .

The formulation of the optimization problem until this point is derived in function

spaces. To actually compute finite-dimensional approximations to x, we have to discretize

both the state and adjoint variables, as well as the model parameters.

We discretize Newton’s step with the FE method, and choose as basis functions of

a finite dimensional space, piecewise quadratic shape functions on triangular meshes,

{φi}
Nu
i=1, ∀φi ∈ Hh, for the state and adjoint variables:

Ẽlz =

Nu
∑

i=1

φi ; H̃ l
z =

Nu
∑

i=1

φi ; δÊlz =

Nu
∑

i=1

δEliφi ; δĤ l
z =

Nu
∑

i=1

δH l
iφi ; (5.147a)

λ̃lE =

Nu
∑

i=1

φi ; λ̃lH =

Nu
∑

i=1

φi ; δλlE =

Nu
∑

i=1

δλlE,iφi ; δλlH,i =

Nu
∑

i=1

δλlH,iφi ; (5.147b)

for l = 1, . . . ,nκz ,

and piecewise constant discontinuous functions, {χi}
Nm
i=1, ∀χi ∈Mh, for the model parame-

ter:

m̃ =

Nm
∑

i=1

χi ; δm =

Nm
∑

i=1

δmiχi . (5.148)

In the equations above we have chosen the same function spaces for the state and ad-

joint variables and for all the variables corresponding to different wavenumber parameter

values. This simplifies the problem, since we do not see any advantage of using different

spaces for these variables. However, from a mathematical point of view we could have

chosen different spaces.

Substituting these expressions in (5.105), (5.106) – (5.146) and rearranging terms, and
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evaluating them at xk we obtain a discretized Newton’s step:
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(5.149)

where
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1
z

. . . L
Ĥ1
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Ĥ

nκz
z λ

nκz
E









































, DHλH
=









































LĤ1
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Ê
nκz
z



























, GH =



























LĤ1
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and where the individual blocks ij of the second derivatives matrices above are:

[

LÊl
zÊ

l
z

]

ij
(xk) =

(

∂dsyn

∂Ex
ν l (−iκlz)(κ

l
e(mk))

−2∂xφj ,
∂dsyn

∂Ex
ν l (−iκlz)(κ

l
e(mk))

−2∂xφi

)

, (5.150)
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[

LÊl
zĤ

l
z

]
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l
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, (5.151)
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n
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]
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, (5.152)
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[

LÊl
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l
E

]

ij
(xk) =

(

ClE(mk)∇φi ,∇φj
)

+
(

ŷ(mk)φi ,φj
)

, (5.155)

[

LÊl
zλ

l
H

]

ij
(xk) = −

(

Dl(mk)∇φi ,∇φj
)

, (5.156)

[

LÊl
zλ

n
E

]

ij
(xk) = 0, (5.157)

[

LÊl
zλ

n
H

]

ij
(xk) = 0, (5.158)

[
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l
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[
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]
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, (5.164)
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LĤ l
zλ

l
H

]
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, (5.165)

[

LĤ l
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]

ij
(xk) = 0, (5.166)

[

LĤ l
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]

ij
(xk) = 0, (5.167)
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LmĤ l
z

]

ij
(xk) =















∂dsyn

∂Ex
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Ĥn

z

]

ij
(xk) = 0, (5.176)

[

Lλl
E
m

]

ij
(xk) =

(

∂mC
l
E

∣

∣

∣

∣

mk
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and of the first derivatives:
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∇Êlz,kχi ,∇λ

l
E,k

)

+
(

∂mD
l
∣

∣

∣

mk
∇Ĥ l
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∇Ĥ l

z,kχi ,∇λ
l
H,k

)

−

(

∂mD
l
∣

∣

∣

mk
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with the subscripts i, j iterating over all DOFs and l over all wavenumber parameters.

Note that the system (5.149) in the multi-experiment case, would not couple equations

and variables across experiments and the Hessian of this system would be a block matrix



Chapter 5. CSEM Inversion: a PDE-constrained optimization in full-space 209

of a larger diagonal matrix including all experiments. The solution of the system (5.149) is

the search direction δxk to update xk . The system (5.149) is huge and indefinite, i.e. it has

negative and positive eigenvalues, thus solving it directly is not possible and it is necessary

to use an approximation method, for example GN with CG method.

On the other hand, in the formulation above, we have chosen different function spaces

for the state and adjoint variables and for the control variable. To include adaptive mesh

refinement techniques in the optimization process, we would additionally choose entirely

independent grids for the state variables and the control variables and apply mesh refine-

ment independently to each one of them. For the adaptive mesh refinement, investigation

should be done to determine an appropriate error indicator for each mesh case.
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CHAPTER6

Summary and Discussions

6.1 Adaptive FE modeling of anisotropic 2-D CSEM and MT

FE formulation of the CSEM and MT problems

We derived the governing equations of the frequency-domain 2.5-D CSEM problem and

applied a Fourier transformation to the strike-directed spatial coordinate, z, of the 3-D

Maxwell’s equations onto the wavenumber domain κz. As a result, we obtained a set of

coupled PDEs with variables the transformed electric and magnetic field components and

with second-order derivatives in the 2-D conductivity model plane. The 2.5-D approxima-

tion allows to simulate correctly the 3-D controlled-sources and EM fields in a 2-D con-

ductivity model, but the problem needs to be solved for a set of κz wavenumber parameter

values in order to transform the EM fields back to the spatial domain. The derivations of

the governing PDEs for the CSEM andMTmethods are for a total field approximation, and

the MT fields are excited through boundary conditions.

Next, we derived the FE Galerkin formulation for the frequency-domain 2.5-D CSEM

problem in the electrically isotropic and anisotropic cases. The FE formulation transforms

the infinite dimensional problem to a finite dimensional one by firstly, expressing the prob-

lem in its weak form, introducing test functions, and secondly, discretizing the geometry

in finite elements and approximating the variables and the test functions as a linear com-

bination of trial functions and subsequently of elementwise defined shape functions. This

formulation reduces in one the order of the derivatives. We have chosen as test functions

and shape functions Lagrange polynomials. The Lagrange shape functions are defined in

the nodes, and then, since the problem variables are the strike-directed transformed com-

ponents, the continuity conditions on the normal components are fulfilled by construction.

The continuity conditions on the tangential EM field components in interior boundaries

are imposed as natural boundary conditions in the FE derivation.

The result is a large and sparse linear system of discretized equations with unknowns

the wavenumber-domain transformed strike-directed electric and magnetic field compo-

nents in the nodes of the FE mesh, and with the matrix operator composed of elementwise

integrals of products between the shape functions and its derivatives. We also provided

215
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the corresponding form for arbitrary oriented electric and magnetic sources. The formu-

lation for the electrically anisotropic problem has been derived considering four DOFs in

the conductivity tensor, which can describe the dipping anisotropic case.

We obtained the MT TE and TM modes equations as a particular case of the 2.5-D

CSEM problem equations when the source terms and the wavenumber parameter are null.

We derived the FE formulation and the linear system of discretized equations for both the

isotropic and anisotropic cases, using again Lagrange shape functions.

A contribution from this thesis is the derivation of a compact form for the FE dis-

cretized PDEs, for the frequency-domainCSEMmethod in a dipping electrically anisotropic

media and using a total field approach.

Program implementation using state-of-the-art numerical packages

We implemented the derived FE formulation for the CSEM and MT modeling problems

in the COMSOL FE software, in particular we use the COMSOL-MATLAB interface in an

object-oriented programming environment. COMSOL offers a number of benefits related

with the wide variety of powerful libraries it includes. But even though, implementing

a physical problem in COMSOL may seem easy at first, however, it swiftly complicates

as soon as there is no suitable pre-defined interface readily available or when complete

programs are to be implemented. Another drawback is the impossibility to access the dif-

ferent library source codes. Despite these inconveniences, the robust an efficient libraries

included in COMSOL in combination with the object-oriented programming of MATLAB

result in a high performance program suitable for testing new approaches quickly once the

physical formulation is set up in the COMSOL environment.

The program we developed is prepared to model arbitrary oriented electric and mag-

netic sources with finite-length. It uses the MUMPS direct solver for the solution of the FE

system, which is intrinsically efficient since the factorization of the system matrix can be

reused for the computations of the adjoint solution and for multiple transmitter sources

which result in multiple right-hand-side vectors.

For MT, the program excites the model through boundary conditions. It calculates

analytically 1-DMT fields for the left and the right hand sides of the model independently

and assumes these field values as given boundary conditions to the left and right hand side

of the model, respectively.

The program also includes the possibility to use different shape function orders and

unstructured meshes and an automated adaptive mesh refinement algorithm based on an

a posteriori error estimator to control the quality of the solution.

The accuracy of the solution scales with the size of the mesh elements, thus it can be

improved by refining the mesh. Refining the whole mesh would result in a large system

that would increase the memory and computational time unnecessarily. Automated adap-

tive mesh refinement methods increase the solution accuracy by iteratively refining the

grid. At each iteration, an elementwise estimation of the error contribution to the solu-
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tion error is calculated and used to select a subset of elements for refinement. Then, a

posteriori error estimator methods calculate an estimate of the error contribution of each

element using the FE solution in a certain iteration or computing an auxiliary solution. In

our program it is possible to use two different a posteriori error estimator methods. One is

a global error estimator and the other one a goal-oriented error estimator. The global error

estimator method uses the FE solution to estimate the error contribution of each element

to the global error. On the other hand, the goal-oriented error estimator method estimates

the elementwise error contribution to a goal function. In the program, the goal-oriented

error estimator is an implementation of a dual-weighted residual (DWR) method. Using

this method the error contribution is calculated as a product of the residual and the dual

solutions.

Whenmodeling CSEMwith our program, all the transformed EM field components are

calculated first in the wavenumber domain and transformed after onto the spatial domain

using fast sine and cosine digital filters and a set of positive wavenumber values. To use

these filters, the parity of the EM field components is first determined depending on the

source-receivers geometry. When the configuration is not in-line or broad-side, the EM

field component is decomposed into its even and odd parts, and the inverse Fourier trans-

form is calculated using the digital filters and a set of positive and negative wavenumber

values.

The capabilities of ourmodeling program are similar to the ones of the free state-of-the-

art MARE2DEM program (Key and Ovall, 2011; Key, 2012), being our program superior

with the option to employ different shape function orders and to define a more general

conductivity tensor. However, MARE2DEM is much faster for a multiexperiment because

it is efficiently parallelized.

Influence of the model dimensions and mesh design on the solution accuracy

Model dimensions and mesh design influence the solution accuracy. Bounds to these pa-

rameters can be extracted from the operating frequency and from the wavenumber pa-

rameter values (for CSEM). Because we use Dirichlet boundary conditions, the model

dimensions have to be large enough, so that the EM fields are sufficiently attenuated at the

boundaries. In EM induction methods, an indicative value of this attenuation is given by

the skin depth. Other studies suggest that locating the external boundaries of the model

at a few times the skin depth usually ensures sufficient attenuation. The expression of the

skin depth is inversely related to the frequency, thus lower frequencies require larger mod-

els. In contrast, the higher frequencies provide a lower bound on the smallest reasonable

mesh element size because not more than the minimum skin depth can be resolved.

In CSEMmodeling, the wavenumber parameter, κz, is related to the mesh element size.

Mitsuhata (2000) demonstrated that in order to obtain accurate results, the node spacing

has to be smaller than the inverse of the largest κz.

We conducted numerical experiments to revisit these relations and to illustrate which
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orders of magnitude are typical for MT and CSEM models. These experiments were per-

formed on 1-D models in order to validate our results with analytical and semi-analytical

solutions.

In MT, we studied the solution accuracy when varying the model dimensions andmesh

element size for a wide range of frequencies, varying from 1×10−5 to 1×101Hz. We found

that for accuracy at all the frequencies, it is necessary a mesh element size of 250m and a

model size of 5×106m side. The mesh element size coincides with two times the skin depth

at the highest frequency and the model size is some orders of magnitude smaller than the

skin depth in the air layer and larger than the skin depth in the receiver locations layer, at

the lowest frequency.

Moreover, we studied the influence of model dimensions and mesh design in a 1-D

CSEM model, a marine 1-D reservoir canonical model proposed by Weiss and Constable

(2006). First, we computed the solution for three different meshes using quadratic La-

grange shape functions, and verified that the relation given by Mitsuhata (2000) is a good

indicator of the necessary mesh element size to obtain accurate solutions for a given set

of wavenumber values. When this relation was not fulfilled, and the wavenumber values

were larger than the inverse of the node spacing, the plotted transformed in-line electric

field component as a function of the wavenumber values was oscillating.

Second, we computed, for the samemodel, the solution for different values of the shape

function order, 1st, 2nd and 3rd, for the same mesh and compared with the previous re-

sults, varying the mesh and for a fixed quadratic polynomial order. When increasing the

order of the Lagrange shape functions by one, nodes are added in the midpoints of the pre-

vious FE mesh. Therefore, similar results are expected between a finer mesh and a larger

polynomial order. We found that the reduction of the mesh element size, has more effect

for receivers closer to the source, where the EM fields change faster, and that if the mesh in

these positions is fine enough, the polynomial order is not particularly important. In con-

trast, for larger offsets the polynomial order has more influence in the solution accuracy

than the mesh element size. The results verify, in general, that increasing the polynomial

order or reducing the element size decreases the error. However, when the mesh element

size is sufficiently small and the polynomial is quadratic, the error does not change signif-

icantly if we reduce the size of the elements or increase the order of the polynomial. The

reason is that for a mesh with sufficiently small elements the error is not anymore related

to the FE approximation but to the perturbation error.

Lastly, we compared the solution accuracy between different tests, varying the model

dimensions and the air layer thickness. The errors were similar and small for receivers at

short offsets and they increased with the distance to the source in all cases. Best accuracy

was achieved for models with a 20km thick air layer, a value much smaller than the skin

depth in the air, because of high attenuation in the sea layer.
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Adaptive mesh refinement: validation and robustness

In a general 2-D case, a semi-analytical solution of a model does not exist, thus, we can not

measure the error of the numerical solution in the sameway as for a 1-Dmodel. Automated

adaptive mesh refinement techniques provide a measure of FE approximation errors and

use it to iteratively refine, globally or locally, the FE grid to enhance the solution accuracy.

In the results discussed here we used the DWR method to estimate the error of a goal

function: the gradient of the transformed strike-directed electric and magnetic fields in

the receivers locations.

Different frequencies and wavenumber parameter values require different mesh de-

signs. Computing the optimal mesh for each configuration of parameters would be com-

putationally very expensive. In our program, we split the different parameters in groups of

nearby values and calculate the suitable mesh applying the adaptive mesh refinement al-

gorithm for representative values of the parameters of each group. This strategy is adopted

from Key and Ovall (2011). Then, the resulting optimal mesh is used for the computation

of the solution using the rest of parameters values of the groups. We refer to each of these

groups as ‘mesh group’, because the parameter values of each group shear the same refined

mesh.

We conducted several tests on the 1-D canonical model for CSEM, using the adaptive

mesh refinement algorithm to validate its performance, comparing the resulting numerical

solution with a semi-analytical solution. We distributed the set of wavenumber values in 5

mesh groups. The adaptive mesh refinement was applied for the midvalue of each group.

In a first stage, the program calculates for the midvalue parameter of each group, the

primal solution, the residual and the dual solution for the goal function and calculates the

elementwise error indicator as a product of the residual and the dual solution. In each

iteration of the adaptive mesh refinement algorithm a fraction of elements with the worst

error indicator is selected for refinement. In a second stage, the mesh obtained from the

first stage for each group is used for the calculation of the solution for the rest of parameter

values in the group.

We observed that initially, at small wavenumber values, the dual solution is larger at the

receiver locations and the residual is larger around the source, extending some kilometers

laterally and in depth. This behavior is expected because on one hand, the functional we

are using to calculate the dual solution is defined in the receiver locations, and on the other

hand, the accuracy of the primal solution, related with the residual, is lower around the

source position, where a coarse mesh can not accommodate the strong variations of the EM

fields. The error indicator resulting from an elementwise product of these two solutions

was consequently larger at the receivers locations and around the source position.

At the first iterations of the adaptivemesh refinement algorithm, both the region around

the source and the receivers positions are refined. After some mesh refinement steps, the

error in the region around the source is sufficiently low and the refinement concentrates

in the receivers positions. At larger wavenumber values the largest errors are more con-



220 6.1. Adaptive FE modeling of anisotropic 2-D CSEM and MT

centrated at the source position. As the mesh refinement algorithm proceeds, the error,

at these wavenumber values, decreases faster at the receiver positions and needs more it-

erations to decrease at the source position. The reason of these observations is that the

transformed fields for which we are computing the error are faster attenuated at large

wavenumbers than at small ones, thus the error is more concentrated on the source posi-

tion where the fields are larger.

To study the evolution of the solution accuracy during the adaptive mesh refinement

process, we investigated the error of the amplitudes and of the phases of the in-line electric

field component between our solution and the semi-analytical solution for different mesh

refinement steps. We observed that the error decay for the amplitudes occurs mostly at the

early iterations, whereas the error decay for the phases is more monotone with the mesh

refinement steps.

We analyzed the run time of the program, to compute the discussed solutions, as a

function of the number of DOFs. The computer used in the experiments was a desktop

computer with an INTEL i7 4 GHz quad-core processor and 16 GB RAM. The time to fac-

torize and solve the primal solution, the residual and the dual solution, used to compute

the error indicator is about 2 to 6s for 87093 to 2.9× 105 DOFs, including the DOFs of the

dependent variables and of the adjoint variables. The total run time is 80s for an initial

mesh of about 5.5 × 104 DOFs and up to 300s for a final mesh after 5 adaptive mesh re-

finement steps, with an increase of about 2 × 105 number of DOFs from the initial value.

This total run time in the last refinement step includes the goal-oriented adaptive mesh

refinement process time, for 5 iterations and 5 mesh groups, the time for the computation

of the solution for each of the parameter values of each group (3 groups with 9 wavenum-

bers values and 2 groups with one wavenumber value) and the time for mesh refinements

in each iteration for each group. This sums up to approximately 243.5s. The remaining

time until 300s includes, among other things, the loading of all the inputs (e.g. the model

geometry and the initial mesh), the generation of mesh groups, the data transfer in sev-

eral parts between COMSOL structure and MATLAB, and the calculation of the Fourier

inverse transform. The time efficiency of the program could be improved by parallelizing

the computations of the mesh groups since they are independent.

Adaptive mesh refinement: shape function order and error estimator

We studied the influence of the shape function order on the performance of the adaptive

mesh refinement method using again the 1-D canonical model for CSEM. We varied the

order of the shape functions from quadratic to linear and cubic (p = 1 and 3).

First, we estimated the normalized error as a function of the number of DOFs (or

adaptive mesh refinement iterations) for different mesh groups corresponding to differ-

ent wavenumber values and we fixed the shape function order to p = 2. The normalization

of the error was for each group to the value of the error in the initial mesh. We observed

that in the first two iterations the decrease of the error is very small, and that it is after
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the third step, when the model is about two times the initial number of DOFs, that the de-

crease is important. We also observed a different behavior after the third refinement step,

between the mesh groups of smaller wavenumbers and the mesh groups of larger ones. At

the smallest wavenumbers, the error decay after the third refinement step is small. Con-

trarily, at the largest wavenumbers the decrease of the error, after the third refinement step,

is very steep and reaches values some orders of magnitude smaller than the ones reached

at the same refinement level by smaller wavenumbers. We interpret these observations as

an indication that after the third refinement step, the size of the elements at the receiver

locations is sufficiently small for large wavenumbers to fulfill the relation of the maximum

wavenumber value being smaller than the inverse of the node separation. Moreover, the

EM fields for these wavenumbers are very small and it takes longer for them to converge,

which explains the large error variation between iterations.

Second, we examined the normalized error estimate as a function of the number of

DOFs for different order of the polynomial shape functions p = 1,2 and 3, and for a fixed

mesh group with a small wavenumber value. The error estimate was normalized for each

p by its value in the initial mesh. The main differences were observed between the decay

of the error curves for p = 1 and for p = 2,3. The initial mesh for p = 1 has smaller number

of DOFs than for p = 2 and 3, and for the first 10 mesh refinement steps, the decay of the

error with the number of DOFs is very small, since the increment of DOFs in each step is

also small. Models using p = 2 and p = 3 start with many more number of DOFs, and their

error decay after a few iterations is much more abrupt than the one for p = 1. Comparing

the error decay between p = 2 and p = 3, for p = 3 the decay is more abrupt, but it starts

with a larger number of DOFs and in each iteration the increment of DOFs is larger than

for p = 2. Comparing the error curves for a particular number of DOFs, after a certain

number of mesh refinement steps, different for each p case, we observed that the error

for p = 2 is smaller than for p = 1 and for p = 3, and that the differences are larger when

compared to p = 1.

Third, we analyzed the error between the numerical and semi-analytical solution as a

function of the number of DOFs for different shape function orders at different receivers

positions. The results for a receiver at a short offset, x = 1km, and for p = 1,2 and 3 with

the goal-oriented error estimator, were similar to the described ones for the error indicator.

The error corresponding to data calculated with the adaptive mesh refinement using a

global error estimator and p = 2 showed a similar behavior to the error corresponding to

data calculated with the goal-oriented error estimator and p = 2, but the slope of the curve

was smoother for the first one. Therefore, for the same number of DOFs, the error for the

global error estimator method was larger than for the goal-oriented method. Comparing

these results with the error for the mesh refined entirely in each step and with p = 2, its

evolution with the number of DOFs was also similar to the other cases with p = 2, but in

each refinement step the increment of the number of DOFs was very large, and the slope

of the error curve was smaller than the one for the adaptive mesh refinement cases.

Our interpretation of these results is that the goal-oriented method with p = 1 starts
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with a very low number of DOFs and needs many mesh refinement steps to increase them

before it is be able to accommodate the strong variations of the EM fields closed to the

source. The goal-oriented method with p = 2 starts with more DOFs than p = 1, and actu-

ally in the first iterations the error is larger than the one of p = 1 for the same number of

DOFs. However, since for p = 2 each element has more DOFs, the goal-orientedmethod re-

fines the appropriate elements and in a few iterations the error decays to a lower value than

for p = 1, even though with the same total number of DOFs. Then, the solution converges

and although performing more mesh refinement steps, the error does not decrease. A sim-

ilar interpretation is valid for p = 3, but in comparison to p = 2, it needs more DOFs to

converge, since it has more DOFs per element. Comparing the adaptive mesh refinement

process between using the global or the goal-oriented error estimators, the differences in

the amplitude error are not very notable at this receiver location, but the slightly better

performance of the goal-oriented method could indicate that there are some elements that

are not located where the residual is higher, that are affecting the solution accuracy in the

receiver location, and the goal-oriented method is refining them whereas the global error

estimator not. On the other hand, the uniform mesh refinement increases faster the num-

ber of DOFs, because in each refinement step it refines all the elements (in the domain),

instead of only the elements with a large estimated error. At the same time, it only refines

elements in this domain and does not take into account elements from other domains that

could be affecting the error at the receivers locations.

The performance of the error is similar for data at larger offsets. At 5km offset, the

initial error for p = 2 and p = 3 is smaller, and the error for p = 1 decays faster than at

shorter offsets. The error for p = 2 also converges faster than at shorter offsets, and the

slope of p = 3 is smoother. We interpret the lower initial error for p = 2,3, and the fast

decay at this location, for p = 1,2, because the EM fields do not vary as strongly as at a

short offset, and the same error values can be reached with less number of DOFs. For the

same reason the curve for p = 3 is smoother, since the error at the beginning is already

small, and a mesh refinement step increases largely the number of DOFs, to values where

the error is not anymore dominated by the approximation error but by the perturbation

error.

At a 9km offset, the initial error for p = 1 and 2 is similar to the one at 5km, and the

error for p = 3 is smaller. The curves are smoother, and require more number of DOFs to

decrease the error. Our interpretation of the changes in the curves at x = 9km regarding

the curves at x = 1,5km are that the goal-oriented method although is refining elements

in this location, refines more elements at x = 5km which is closer to the source, for this

reason some more refinement steps are necessary at this location for p = 1 and p = 2 than

at x = 5km to reach the same error values. It is possible that another goal function in

the adaptive mesh refinement method, which better weights the receivers locations, could

improve these results. The different behavior of the adaptive method using the global

error estimator has also a similar cause but much more accentuated than the goal-oriented

method, since the larger residual is at the source location and this method is not weighted.
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From these tests we find an outperformance of the goal-oriented adaptive mesh refine-

mentmethod with p = 2 compared to the samemethod with p = 1 and p = 3, and compared

to both, the uniform refinement and the adaptive mesh refinement with a global error es-

timator.

Modeling complex geometries: 2-D CSEMmodel with topography

We checked the flexibility of the modeling program to accommodate the topography in a

CSEM model and we examined the changes in its efficiency when varying the polynomial

order to p = 1,2,3 in a flat and in the topography models.

We considered as a first model, the 2-D canonical model with a flat seafloor and as a

second model, a variant of the 2-D canonical model where the only difference is an un-

dulating seafloor topography with amplitude Y = 100m and wavelength λ = 4000m. We

computed the EM field responses for the flat and the bathymerty 2-D canonical models

and for different order of the polynomial shape functions, p = 1,2 and 3. For both, the flat

and the bathymetry models, the final number of elements and number of DOFs is larger

for lower p, and the initial number of DOFs is larger for larger p, by construction. The

differences of the initial and final number of elements and number of DOFs between the

flat and the bathymetry models, for each p, are small, and in general slightly larger for the

bathymetry model, since some extra elements are required to accommodate the smooth

topography. Thus, the adaptive FE method using triangular unstructured grids accommo-

dates efficiently the topography, decreasing the element size towards the sea-Earth inter-

face and retaining well-shaped elements, while maintaining the size of the elements in the

rest of the mesh, resulting in a total number of elements very similar to the flat model. On

the other hand, varying the shape functions order in the bathymetry model does not show

an improvement compared to varying the shape functions order in the flat model.

Using the same models we studied the distortion of CSEM data caused by the undu-

lating seafloor topography, restricting the analysis to the in-line electric field component

(Ex). In this analysis we fixed the shape function order to quadratic. Additionally to the

original 2-D canonical model with flat seafloor and 1km sea layer, and the variant with

bathymetry of wavelength λ = 4km, we considered three more models, also variants of the

2-D canonical model: 1) the 2-D canonical model with a flat seafloor and a thicker sea layer

of 1.2km, 2) the 2-D canonical model with bathymetry, but changing the wavelength of the

harmonic interface to λ = 1km 3) the flat 2-D canonical model without the reservoir.

We examined the in-line electric field component as a function of the receiver locations

for these 5 models calculating the error between the responses from: a) the bathymetry

model with λ = 4km and the flat model with 1km sea layer, b) the bathymetry model with

λ = 4km and the flat model with 1.2km sea layer, c) the bathymetry model with λ = 1km

and the flat model with 1km sea layer, d) the flat model with 1km sea layer and the homo-

geneous model.

Comparing d) with a), b) and c), we found that the anomaly caused by the reservoir
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is larger than the distortion caused by the bathymetry, in both amplitudes and phases.

However, the distortion caused by the bathymetry is also significant.

In a) we could see the effect of the λ = 4km bathymetry, with the receiver positions in

the reference flat model coincidingwith receiver positions over the ridges in the bathymetry

model. We observed a correspondence between the location of the maximums and mini-

mums of the error in the amplitude with the ridge and valley topography. We interpreted

the distortion of the amplitudes caused by a combination of inductive and galvanic effects

for receivers close to the source and over the reservoir, and by the geometry for receivers

at a longer distance. The phase distortion seemed mainly affected by a geometry effect.

To verify this interpretation, in b) we calculated the error between the responses of the

same bathymetry model and the responses of a flat reference model with receiver positions

coinciding with receiver positions on the valleys of the bathymetry model. In this case, we

observed a larger error (bathymetry distortion) than in the previous case for all receivers.

Similarly to the first test, we interpreted the origin of the variations of the error, as an

inductive-galvanic effect for positions close to the source and as a geometric effect for posi-

tions at large offsets. However, in this case, this association at large offsets was not so clear

as in the previous case, because the magnitude of the error at all the receiver positions is

much larger and masks slightly the variations. The phases in this second test showed, as

in the first test, a geometric effect at large offsets.

Finally, in c) we analyzed the bathymetry distortion on a λ = 1km undulating bathymetry

model, comparing the responses to the ones of a flat reference model, with all the receivers

in the bathymetry model located on the ridges and in the same positions as in the flat

reference model. The distortion associated to this model is larger for the amplitudes and

similar for the phases to the distortion observed in the model with a λ = 4km undulating

bathymetry. We observed that the distortion close to the source and above the reservoir

is larger than at receivers at larger offsets. We explained the large error at all positions as

caused by an inductive-galvanic effect, larger than in the λ = 4km undulating bathymetry

model, because of a more rough bathymetry in this last test. Further, we explained the

larger error close to the source and above the reservoir because of an interaction between

the bathymetry distortion and the reservoir distortion.

Modeling complex geometries: 2-D MT graben-like model

To validate our program on a 2-D MT model with a complex geometry, we considered

the graben-like model introduced in the COMMEMI project (Zhdanov et al., 1997) and

referred to as the COMMEMI model 2D-4. To compute the FE solution, we applied the

goal-oriented adaptive mesh refinement algorithm and we observed large values of the

error indicator in the air layer. Examining the residual and the dual solutions, we found

that both have large errors in the air layer. We explained these observations with the large

EM fields in this region. In MT we excite the model by giving boundary conditions on the

EM fields in the top of the model. In the air the EM fields have a similar value as in the
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top boundary, and the diffusion is only significant when penetrating the Earth. Thus, the

large values in the air yield a large residual. On the other hand, the largest values of the

dual solution in the air could be explained partly for the same reason but also because of

the strong variation of the conductivity values in the air-Earth interface, which affect the

accuracy of the solution in the receiver locations.

As a consequence of the large errors in the air, the mesh refinement concentrates in

this region, augmenting largely the number of elements before decreasing the error in the

receiver locations, therefore the adaptive mesh refinement algorithm is not efficient in this

case and other error estimator methods should be investigated for MT.

Comparing our results to the responses computed with MARE2DEM (Key and Ovall,

2011) and to the corresponding solutions from the COMMEMI project (Zhdanov et al.,

1997), we concluded that our numerical results are accurate. The program models ac-

curately the abrupt changes in the apparent resistivities and phases which coincide with

jumps in the resistivity due to the geological structure, and the apparent resistivities and

phases corresponding to the inclined plane forming the graben-structure. The thin layers

at the upper part of the subsurface model are well resolved by the highest frequencies. We

also observe a better accuracy of the TE mode with respect the TM mode. However, the

COMMEMI TM mode error bars are also larger than the TE mode error bars, indicating

more variability in the TM mode results between different programs. The explanation is

that the TM mode is more sensitive to the air layer, and consequently the solution is less

stable.

Oriented and finite-length 3-D sources

In order to benchmark the sourcemodeling component of our program and to demonstrate

the importance of considering realistic sources in certain experimental scenarios we ana-

lyzed land and marine CSEMmodels for different orientation and geometry of the sources.

First, we considered a land CSEM model grossly simulating the geology at the carbon

sequestration site in Ketzin, Germany, proposed by Streich et al. (2011) and Streich and

Becken (2011). We studied two variants of this model, a 1-D approach that we could com-

pare to a semi-analytical solution and a 2-D approach simulating a more realistic geology.

Additionally, we considered four different source cases: 1) an in-line (90◦ azimuth) hori-

zontal electric point dipole, 2) a 120◦ azimuth oriented horizontal electric point dipole, 3)

an in-line straight 1km length grounded wire, and 4) a 120◦ azimuth oriented grounded

wire, 1km length.

We found that, the solution of the 1-D Ketzin model for all source cases and at a fre-

quency of 0.1Hz is accurate compared to the semi-analytical solution calculated using

DIPOLE1D (Key, 2009), which allows oriented sources with finite length on 1-D models.

We examined the different source approximation effects in the in-line electric field

component, by calculating the error between the responses of the in-line HEPD in the

Ketzin model and the responses of: a) a model without the reservoir layer and with the
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same source, b) the same model with a 120◦ azimuth oriented HEPD, c) the same model

with an in-line 1km length HED and d) the same model with a 120◦ azimuth oriented, 1km

length HED. The error calculated with a) highlights the effect of the reservoir, with b), the

effect of the orientation is isolated, with c), we observe the longitude effect and with d), we

show both the longitude and orientation effects.

We observe that the error due to the reservoir is larger at the receivers approximately

above the boundaries of the reservoir. The difference between modeling the orientation

of the point dipole (120◦ azimuth) or approximating it as an in-line directed point dipole

gives a relative error in the amplitude of the same order of magnitude as the error caused

by the storage layer. The largest errors are caused by the differences between modeling

the longitude of the grounded wire or approximating it as a point dipole. Finally, the

differences between modeling the source with its longitude and orientation or modeling it

as an in-line point dipole, results in errors similar to the effect of the longitude. We find

that the phases are also distorted by the reservoir and the source approximation but in a

lower order, thus showing less sensitivity to these effects. According to these results, in

this model it is necessary to simulate both the orientation and geometry of the source since

the errors caused in the amplitudes and phases by a simpler approach are similar or even

larger than the caused by the target layer.

We extended the study of the source approximations to the Ketzin 2-D model, consid-

ering again the same source variants and 3 different frequencies of: 0.01,0.1 and 1Hz and

computed the error of the in-line electric field component between modeling the orienta-

tion and geometry of the CSEM source or modeling an in-line point dipole approximation

for different frequencies. We found that the error in the amplitude caused by the differ-

ent sources is similar for all frequencies and similar to the 1-D case. The distortion of the

field due to the source approximation is larger at short offsets and larger than the reser-

voir anomaly. Because the small targets of the Ketzin 2-D model require short offsets for

detection, it is necessary to consider a realistic approximation of the source.

Second, we analyzed a marine CSEM experiment with a 100m floating wire, typical

for marine CSEM commercial hydrocarbon exploration, oriented with an azimuth and dip

angles, which is a practical problem inmarine surveys, where the water currents distort the

source shape and orientation. In these tests, we considered the canonical 1-D model and

four different source approximation cases: 1) an in-line HEPD, 2) an in-line 100mHED, 3)

a 120◦ azimuth orientedHEPD, and 4) a 120◦ azimuth orientedHEPDwith orientation also

in the vertical direction, with 20◦ dip angle. The operating frequency was 0.25Hz. Again,

we validated the results by comparing our responses to the semi-analytical solutions and

examined the results by comparing the effects of the source geometry and orientation. We

observed that the reservoir layer for this model is appreciable at almost all the receivers

positions and that the error between considering the length of the source or approximating

it as a point dipole is very small, indicating that for this model a point dipole is a good

approximation. In contrast, we observed that the error approximation of not modeling the

orientation, both the azimuth or dip, is large. From these results we conclude that a point
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dipole approximation is accurate in a marine scenario with a source of 100m length and

with the target reservoir at a large distance to the source, compared to the region influenced

by the dipole geometry. However, we confirm that in the same scenarios, slightly different

orientation of the source results in significant differences of the electric field response,

that extend several kilometers from the source location and that can be of the same order

of magnitude as the electric field anomaly indicating the presence of the target reservoir.

CSEMmodeling of vertical and dipping anisotropy

We validated our FE implementation of the anisotropic CSEM problem, simulating and

analyzing the responses of models with vertical anisotropy (TIV) and dipping anisotropy

(TTI). The models used in the experiments were a 1-D model with a sea layer and a TIV

resistivity half-space and two 2-D models, one with a sea layer and a reservoir embedded

in TIV resistivity sediments, and another one also with the sea layer and the TIV resistivity

sedimented subsurface, but with the reservoir embedded in an additional anticline struc-

ture simulated as two bulk-tilted anisotropic (TTI) structures. The TIV half-space model

has a vertical resistivity of ρv = 2Ω ·m and a horizontal resistivity of ρh = 1Ω ·m. The trans-

mitter was, for all the experiments, an horizontal electric point dipole located 50m above

the seafloor, and we considered it at different locations, and for the in-line and broad-side

configurations. The operating frequencies were 0.05,0.25 and 1Hz.

First, we compared the EM fields responses of the TIV resistivity half-space model

with the EM fields responses of two isotropic half-space models with resistivities coincid-

ing with ρv and ρh. The CSEM responses of a layered model with TIV resistivity is well

understood, thus, it is appropriate to benchmark our algorithm. For in-line configuration

fields, the responses of the anisotropic model were almost identical to the responses of the

2Ω ·m isotropic model at all frequencies and for all offsets. Contrarily, for broad-side con-

figuration, the fields from the anisotropicmodel were almost identical to the ones from the

1Ω ·m isotropic model. The explanation of this behavior is that the in-line configuration

electric fields are in the model plane and propagate in the seafloor with a significant verti-

cal component, thus in the vertical anisotropic model they are more sensitive to the verti-

cal resistivity component of 2Ω ·m, and the responses approach to the ones of an isotropic

model with this resistivity. On the other hand, in the broad-side configuration the electric

fields are purely azimuthal and largely horizontal, thus in the vertical anisotropic model

they are more sensitive to the horizontal component of the resistivity of 1Ω ·m, and the

responses approach the ones of an isotropic model with this resistivity. The obtained mod-

eled results of the EM fields for a TIV 1-D model are consistent with the expected response

behavior and validated our implementation.

Second, we simulated the responses of a 2-D model with an isotropic reservoir em-

bedded in vertical anisotropic sediments with the same ρv = 2Ω ·m and ρh = 1Ω ·m. In

the in-line configuration, we observed the effect of the reservoir in the amplitude as a

maximum in the reservoir boundaries locations. On the other hand, the effect of the TIV
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sediments consisted of a large increase of the amplitude, much larger than the one caused

by the reservoir at all frequencies. Therefore, we concluded that fitting an isotropic model

to in-line data that contains vertical anisotropy could mask the reservoir or indicate a dif-

ferent location, dimensions and resistivity value. On the other hand, for the broad-side

configuration, we observed reservoir effects similar to the ones observed in the in-line con-

figuration, an increase of the amplitude, but with a smaller magnitude.

From these results, we concluded that the vertical anisotropy effect can be observed in

both in-line and broad-side configurations, but the effect is larger for the in-line disposi-

tion. This can be explained because the isotropic sediments of the 2-D model we used for

the normalization are 1Ω ·m, the same resistivity value as the horizontal component, ρh,

in the anisotropic case, and as we discussed in the previous experiments with a half-space

TIV model, the broad-side configuration is more sensitive to the horizontal component of

the resistivity and the in-line configuration to the vertical component of the resistivity.

Comparing our results, for the TIV 2-D model, to the responses computed for the same

model using MARE2DEM, we find a good agreement between both solutions.

Third, we examined a 2-D model where the resistive reservoir is embedded in an

anticline structure surrounded by vertical anisotropic sediments. The anticline struc-

ture is simulated with two blocks, located at 1.6km depth, 600m below the seafloor, with

anisotropic resistivities of TTI type. The TTI resistivities of these blocks are ρh = 1Ω ·m

and ρv = 2Ω ·m, and we consider two different cases, one with a dip angle of αd = 20◦,

in the right block, and αd = −20◦, in the left block, and another one with a dip angle of

αd = 40◦, in the right block, and αd = −40
◦, in the left block. The sediments surrounding

these blocks are assumed with TIV resistivity, with the same ρh = 1Ω ·m and ρv = 2Ω ·m.

In the in-line configuration, we observed the anticline anomaly as a decay of the am-

plitude to values smaller than one. This decay was larger for higher frequencies and for

the model with dip angles ±40◦. For the same source-receivers configuration, we also

examined the isolated effect of the anticline and the reservoir together. The normalized

amplitude curves were very similar to the ones of the anticline anomaly, and the main dif-

ferences were that the maximum and minimum values were slightly smaller in this last

case.

For the broad-side configuration, the effect of the anticline was very similar to the ob-

served in the in-line configuration, with a drop of the amplitude, larger for larger dip angle

and for higher frequencies, but with slightly smaller magnitude than in the in-line config-

uration. On the other hand, the isolated effect of the anticline and the reservoir together,

was also similar to the observed in the in-line configuration.

Our interpretation of these results is that the anticline structure anomaly dominates the

responses, when isolated from the vertical anisotropy distortion, but its effect is weighted

by the effect of the reservoir, thus reducing its magnitude compared to the effect of the

anticline alone.

The observed TIV seafloor anomalies of a large increment of the amplitude which mask

the reservoir anomaly are in agreement with the results by Li and Dai (2011) and Davydy-
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cheva and Frenkel (2013). The distortion effect of the anticline consisting in a drop of the

amplitude which masks the reservoir is also observed by Davydycheva and Frenkel (2013).

6.2 2.5-D CSEM PDE-constrained optimization

In the last years, there has been a rise in FE modeling programs that simulate the EM fields

in 2-D and 3-D models. However, these modeling codes have not been transferred onto

inversion codes, and only very recently, investigations in this direction have appeared.

We investigated a FE framework for the inversion of CSEM data and formulated for the

first time the 2.5-DCSEM inverse problem as a PDE-constrained optimization in full-space

(all-at-once approach) and using FE. Most of the inversion programs for EM are developed

in the reduced space, that is eliminating the state variables from the inversion using equal-

ity constraints and solving the optimization problem only for the model parameters. There

are alternative approaches that do not eliminate the state variables and treats the state

and model parameters variables as independent optimization variables which are coupled

through the PDEs constraints. These methods are referred to all-at-once or full-space.

Our interest on the application of these approaches to the solution of the CSEM in-

verse problem is justified for several reasons. First, using this approach it is not necessary

to repeatedly compute the costly solution of the PDEs for each evaluation of the objec-

tive function and of the adjoint equation, to evaluate the sensitivities and the gradients,

because it only requires to solve exactly the solution of the state equation at the end of

the optimization process. Second, the approach can handle techniques with convergences

rates higher than linear and third, the combination of the PDE-constrained optimization

in the full-space with a FE discretization can include adaptive FE meshes in the inversion

process.

We derived this formulation in two different ways: using a discretize-optimize strategy

and an optimize-discretize strategy. In the discretize-optimize strategy the problem is con-

sidered in discretized form and the Lagrangian optimization conditions and the Newton’s

step are derived on it. We followed this scheme for the derivation and we implemented the

resulting problem in the COMSOL-MATLAB structure using a general-purpose optimiza-

tion program, SNOPT, which is an implementation of a SQP method.

We showed two synthetic examples of application of this implementation: a canonical

reservoir model and a more realistic marine model with topography. We did not use a reg-

ularization function in the examples, but a different mesh for the control variables and for

the state variables. In this way, the mesh for the control variables can be coarser than the

mesh for the state variables and the problem is better posed, behaving similar to a regular-

ization functional. In both cases the program recovered the main structures of the model

within an acceptable data misfit. However, the performance of the program is not efficient,

it requires much memory and time. In the all-at-once approach the system matrix is sparse

but also very large, because the same system matrix includes the discretized equations for

all the wavenumbers, frequencies and transmitters, thus, increasing the time and memory
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demands of the program. Furthermore, it is difficult to improve the performance of our

program since using SNOPT through COMSOL does not grant access to the system matrix

structure and thus prohibits problem specific performance optimizations. To extract fur-

ther conclusions on the inversion scheme performance, we should implement the problem

directly from MATLAB, avoiding the use of the general-purpose optimizer.

Finally, we have formulated the 2.5-D CSEM inverse problem as a PDE-constrained

optimization in full-space using an optimize-discretize strategy and FE, as a first step of an

inversion scheme using adaptive FE.
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CHAPTER7

Conclusions and Outlook

7.1 Conclusions

Wedeveloped a robust and versatile adaptive unstructuredmesh FE program for 2-Dmod-

eling of CSEM and MT data. The CSEM modeling problem is formulated with a 2.5-D

approximation that considers a 2-D conductivity model and realistic 3-D EM sources. The

FE formulation uses nodal shape functions for both methods and allows to simulate the

EM fields on isotropic and anisotropic conductivity models. Though, the anisotropic case

is not general, it includes vertical and dipping anisotropy. The FE formulations are de-

rived for the total field and for arbitrary oriented 3-D sources when modeling CSEM. The

derived formulation of the FE 2.5-D CSEM anisotropic problem for the total field and for

general sources is a contribution of this thesis.

The program is implemented through COMSOL and MATLAB software using modern

libraries and a high-qualitymesh generator. It is prepared tomodel arbitrary oriented elec-

tric andmagnetic sources with finite-length. The program solves the FE system using a fast

and robust direct solver which allows to reuse the factorization of the FE system matrix to

compute, for example, the adjoint solution. The accuracy of the solution is controlled and

improved by an adaptive mesh refinement algorithm. In this algorithm there is the pos-

sibility to use two different a posteriori error estimator functions: a global error estimator

and a goal-oriented error estimator. The global error estimator, estimates the error contri-

bution of each element to the solution error using the residual of the FE approximation.

On the other hand, the goal-oriented error estimator, estimates the error contribution of

each element to a goal function using a DWRmethod which necessitate the residual of the

FE primal solution and the dual solution. The Fourier inverse transform required by the

2.5-D CSEM approximation is calculated using fast sine and cosine digital filters methods.

The influence of the model dimensions and mesh design on the solution accuracy is

validated by revisiting the known relations with the frequency and the wavenumber pa-

rameters, and demonstrates the importance of a proper mesh design to obtain accurate

responses.

The program is verified for both, CSEM and MT, methods and for land and marine
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environments by comparing the numerical solution with an analytical or semi-analytical

one, finding good accuracy in all cases. The 2-D modeling results are benchmarked versus

the MARE2DEM program and compared to published results. Time efficiency has been

demonstrated, obtaining times for the factorization and solution of the problem of a few

seconds for a number of DOFs of 1 × 105 and quadratic shape functions. The run time

grows to hundreds of seconds, for the CSEM modeling which requires the solution for dif-

ferent wavenumber values and when the adaptive mesh refinement process is applied. The

time efficiency could be improved by parallelizing the program for different wavenumbers,

frequencies and sources.

The program allows to use high-order shape functions in contrast to most of the state-

of-the-art algorithms which uses linear shape functions. We used this advantage to study

the influence of the shape function order on the solution accuracy, finding an outperfor-

mance of the quadratic shape functions compared to linear and cubic ones.

The performance difference of the two adaptive mesh refinement methods, included in

the program for CSEM modeling, are compared and yield similar results for receivers at

short offsets and differentiate more for farther offsets, with superiority of the goal-oriented

method over the global error estimator method. The reason is because the global error

estimator method refines the regions that contribute larger to the solution error in the

whole model, using the residual of the FE equations, and these are around the source

where the EM fields vary strongly. Therefore, after some refinement steps, the solution is

accurate at short offsets, but not at large distances. Contrarily, the goal-oriented method

calculates the error contribution of each element to a goal function, in our case a gradient of

the dependent variables defined on the receivers locations, using a dual weighted residual

method. Thus, the refinement occurs around the source and at the receivers positions, and

the solution is more accurate at large offsets than the solution calculated using the global

error estimator. Nevertheless, we found that the performance of the goal function could

be still improved experimenting with different goal functions, that better weight the data

at all receivers.

We used the high capabilities of the program to study synthetically different physical

problems that are often encountered in realistic models and experimental situations, but

that can not always be modeled properly because of program limitations. In particular, we

addressed three main physical situations: a marine CSEMmodel with seafloor topography,

a land and a marine model with oriented and finite length sources and a marine model

with a reservoir embedded in a vertical anisotropic structure and in an anticline structure.

We conclude that anomalies caused by any of these physical phenomena can be of the

order or larger than typical target anomalies, therefore, appropriate modeling should be

considered.

In recent years, FE modeling programs emerged that simulate the EM fields in 2-D and

3-D models. However, these modeling codes are rarely employed in inversion codes, and

only very recently, investigation in this direction has begun. We have formulated for the

first time the 2.5-DCSEM inverse problem as a PDE-constrained optimization in full-space
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(all-at-once approach) that uses FE, in contrast to the reduced-space approach underlying

most available inversion programs for EM. The all-at-once approach can use techniques

with convergences rates higher than linear and at the same time avoid the repeated costly

calculation of sensitivities and gradients at each iteration. Another advantage of combin-

ing a PDE-constrained optimization scheme in the full-space with a FE discretization is

that it can be included the possibility of adaptive FE meshes in the inversion process.

We have derived this formulation for the all-at-once approach in two different ways:

using a discretize-optimize strategy and an optimize-discretize strategy. In the discretize-

optimize strategy the inverse problem is considered discretized and the Lagrangian opti-

mization conditions as well as the Newton’s step are derived from this form. The resulting

inverse problem is implemented in the COMSOL-MATLAB structure using the general-

purpose optimization program SNOPT, which is an implementation of a SQPmethod. Two

synthetic examples verify the approach: a canonical reservoir model and a more realistic

marinemodel with topography. Though regularization is not explicitly applied, it is shown

that using a different mesh for the control variables and for the state variables has a similar

effect as regularization if the mesh for the control variable is coarser than the mesh for the

state variable. In both examples the program recovered the main structures of the model

with an acceptable data misfit. However, the performance of the program is not efficient,

it requires lot of memory and time. This is because in the all-at-once approach the system

matrix is sparse but also extremely large. The same system matrix includes the discretized

equations for all the wavenumbers, frequencies and transmitters.

Finally, we have formulated the 2.5-D CSEM inverse problem as a PDE-constrained op-

timization in full-space using an optimize-discretize strategy and FE, as a first step towards

an inversion scheme using adaptive FE.

7.2 Outlook

In the development of this thesis we found many points that deserve further investigation.

First of all, the derived FE formulation for an electrically anisotropic media is limited

to a four component tensor. To extend anisotropy in this formulation is quite complex for

CSEM because of the 2.5-D approach but can be achieved. To our knowledge, a general

anisotropic formulation has only been derived for MT but not yet for 2.5-D CSEM.

Secondly, the function in the goal-oriented adaptive mesh refinement should be further

investigated. In this thesis we compared the goal-orientedmethod to the global one, but we

left open to study the performance of different goal functions. However, we realized that

goal functions using a DWR method could be interesting to investigate since they better

scale all the receivers.

The modeling program presented in this thesis is quite efficient when it is only nec-

essary to solve the problem for one value of the parameters wavenumber, frequency and

transmitter. However, for 2.5-D CSEM it is always necessary to calculate the solution for

a set of wavenumber values, and typical MT and CSEM experiments are for several fre-
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quencies and transmitter positions. Therefore, a parallelization of the program for these

parameters is desirable.

Further the inclusion of even more general transmitters is a possibility. Our implemen-

tation includes arbitrary oriented sources with finite-length, but the finite length transmit-

ters are restricted to a straight shape. However, in real surveys, the long transmitters used

for land CSEM are often not straight, due to environmental or anthropogenic reasons, and

it has been demonstrated that a straight line approximation can distort the data.

In the inversion part of this thesis, we only present the first steps towards an adaptive

FE inversion program using an all-at-once approach. Hence, it provides a set of new ideas

for further research.

First, the presented formulation using the discretize-optimize strategy, that we tested

with the SNOPT general-purpose optimization program, could be directly implemented in

the COMSOL-MATLAB structure and solved with a Gauss-Newton approximation, which

is similar to SQP, but may be easier to implement. Then, appropriate open-source libraries

to solve the resulting system could be used to avoid the limitations caused by proprietary

software.

Even more interesting would be to implement the optimize-discretize formulation in the

COMSOL-MATLAB structure using a Gauss-Newton approximation. This could open the

possibility to use adaptive FE meshes in the inversion, so that the FE meshes optimize in

each iteration independently for the control and the state variables.

Finally, due to the complication of the problem we restricted the formulation to the

in-line electric field component, Ex, observable. A more general formulation should be

derived that includes other observables, and a formulation for the MT problem.
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