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Abstract

Nowadays, we can find several diseases related with the unhealthy diet habits of the

population, such as diabetes, obesity, anemia, bulimia and anorexia. In many cases, it

is related with the food consumption of the people. Mediterranean diet is scientifically

known as a healthy diet that helps to prevent those and other food problems. In partic-

ular, our work focuses on the recognition of Mediterranean food and dishes. It is part

of a wider project that analyses the daily habits of users with wearable cameras, within

the topic of Lifelogging. It appears as an objective tool for the analysis of the patient’s

behavior, allowing specialist to discover patterns and understand user’s lifestyle to find

unhealthy food patterns.

With the aim to automatic recognize a complete diet, we introduce a challenging multi-

labeled dataset related to Mediterranean diet called FoodCAT. The first kind of labels

contains 115 food classes with an average of 400 images per dish, and the second one is

composed by 12 food categories with an average of 3800 pictures per class. This dataset

will serve as a basis for the development of automatic diet tracking problems.

Deep learning and more specifically Convolutional Neural Networks (CNNs), are actually

the technologies with the state-of-the-art recognizing food automatically. In our work,

we adapt the best, so far, CNNs architectures for image classification, to our objective

into the diet tracking. Recognizing food categories, we achieved the highest accuracies

top-1 with 72.29%, and top-5 with 97.07%. In a complete diet tracking recognizing

dishes from Mediterranean diet, enlarged with the Food-101 dataset, we achieve the

highest accuracies top-1 with 68.07%, and top-5 with 89.53%, for a total of 115+101

food classes.
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Chapter 1

Introduction

Technology that helps track health and fitness is on the rise, in particular, automatic

food recognition is a hot topic for both, research and industry. People around us have

at least 2 devices, such as tablets, computers, or phones, which they use daily to take

pictures. These pictures are commonly related to food; people upload dishes to social

networks such as Instagram, Facebook, Foodspotting or Twiter. They do it for several

reasons; to share a dinner with a friend, to keep track of a healthy diet or to show

their own recipes. This amount of pictures are really attractive for companies, who are

already putting so much effort to understand peoples diet, in order to offer personal food

assistance and get huge benefits from that.

In research, the trend is applied differently. Obesity, diabetes, anemia, and other dis-

eases, all are close related to food consumption. Many doctors tell patients to write a

diary of their diet, trying to make them aware of what they are eating. Usually people

do not care too much about that and also they think it is boring. Another approach

that would work better, is to make the food diary by pictures with the phone, or even

better, to take the pictures automatically with a wearable little camera. This last ap-

proach is part of a wider project that analyses the daily habits of users with wearable

cameras, within the topic of Lifelogging. It appears as an objective tool for the analysis

of the patient’s behavior, allowing specialist to discover patterns and understand user’s

lifestyle to find unhealthy food patterns.

Looking at food habits, the Mediterranean diet is scientifically know as a healthy diet.

For example, a growing number of scientific researches have been demonstrating that

olive oil, operates a crucial role on the prevention of cardiovascular and tumoral diseases,

being related with low mortality and morbidity in populations that tend to follow a

Mediterranean diet [1].

1
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1.1 Automatic food recognition

Deep learning and more specifically Convolutional Neural Networks (CNNs), are actually

the technologies with the state-of-the-art recognizing food automatically. In this section,

we present the best approaches in the field, in order to use it later.

First, let us introduce the two CNNs architectures that we will use in our work. The first

one, GoogleNet [2], was responsible for setting the state of the art for classification and

detection in the ImageNet Large-Scale Visual Recognition Challenge in 2014 ILSVRC14

[3]. The second model is VGG [4], which secured the first and the second places also

for the ImageNet ILSVRC14 competition [3], in the localization and classification tasks

respectively.

Second, let us introduce the first public database based on food: It is the Food-101

dataset [5], containing 101 food categories, with 101’000 images, that we will use later.

Many researchers have been working with this dataset achieving very good results on

food recognition [6], or in both location and food recognition [7].

Other food related classification task that we are interested in, is to classify food cate-

gories. In our case, we will do it following a robust classification of Catalan diet proposed

in the book ”El Corpus del patrimoni culinari català” [8]. Other related work on that

topic, such as classifying 85 food categories [9] or 50 food categories [10] are achieving

good results.

1.2 Objectives

In this section, we list and describe the specific aims of this project.

1.2.1 Build a dataset including healthy food

As we show in subsection 1.1, the actual food datasets are built in order to achieve a

good performance in the general challenge of recognizing pictures automatically.

Our goal is to present a method for food recognition of extended dataset based on

Mediterranean food, as it is scientifically supported as a healthy diet. This dataset has

been classified following two different approaches. On one side, the images has been

classified based on the food dishes categories, and on the other side, in a more general

food categories. As an example, our system will recognize a dish with chickpeas and

spinach as the food class ’cigrons amb espinacs’, but also as food category ’legumbres’.
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1.2.2 Technological solution to recognize the dataset automatically

We claim to define robust approaches to recognize the datasets with the state of the art

methods.

1.2.2.1 Convolutional Neural Networks to recognize Food dishes

First, we are interested in applying a Convolutional Neural Network to recognize the new

healthy dataset, together to the dataset Food-101 [5]. To achieve this food recognition

challenge, we use pre-trained models over the large dataset ImageNet, such as GoogleNet

[2] and the VGG [4], both, as we said before, winners in different categories of the

ILSVRC competition [3]. Second, in order to recognize food categories, we compare the

differences between fine-tuning a pre-trained model over all the layers, versus the same

model trained only for the last fully-connected layer.

1.2.2.2 Techniques to improve the quality of the dataset and the recognition

task: Super-resolution

It has been proven that large images resolutions improves recognition accuracy [11].

Therefore, we will base on a new method to increase the resolution of the images, based

on a Convolutional Neural Network, known as Super-resolution. With that, our goal is

to get a better performance in the image recognition task.

We will also explore different methods such as, balance all classes for both datasets,

or reduce the resolution of Food-101, making it more similar to the resolution of our

healthy dataset.

Finally, we will compare all methods and we will choose the one which gets a better

performance.

1.3 Memory Structure

This document is organized in six chapters. The first one is the current introduction.

In Chapter 2, we expose the background required to understand all other sections, we

explain the used datasets, the procedure from a biological neuron until a Convolutional

Neural Network, and the super-resolution method to increase images resolution. Chap-

ter 3 explains all methods used to build the FoodCAT dataset, as well as the dataset

description, for the two different labels; dishes and categories. In chapter 4, first we
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introduce the organization of the project, and then, we expose the general procedure

to reproduce all the experiments, using a particular example just to be more clear. We

end the chapter with the SR’s implementation description. The results are depicted

in Chapter 5 as follows; First, we introduce how to set up all experiments, second, we

explain the theory of the evaluation metrics, third, the results for foods and categories

recognition, and fourth, we give our personal opinion about a recognition system based

con CNN. Finally, in the last chapter we expose the conclusions and the future work.



Chapter 2

Methodology

Image Classification problem is the task of assigning a label from a predefined set of

categories to an input image. Instead of trying to create an algorithm to perform this

task, we will take a data-driven approach. We will do the same strategy that we would

do with a child: We are going to show to a CNN many samples for each category and

then develop learning algorithms to learn from the appearance of each class.

In this section, first, we would specify from which dataset we are going to face the image

recognition challenge. Later, we explain the needed background on Convolutional Neural

Networks to understand all related concepts used. Then, we expose the specific models

used to learn the features of our dataset, and finally, we explain how the method known

as Super-Resolution works, increasing image resolutions in order to improve the image

recognition.

2.1 Used datasets

To face the image recognition challenge over the Mediterranean Diet, we decide to create

a dataset containing a subset of Mediterranean dishes. These representative classes are

based on Catalan Food, and we explain how this dataset has been built in section 3.1.

We call this dataset foodCAT, referencing to Catalan Food.

As Food-101 dataset contains some classes that also belong to Mediterranean diet, e.g.

”paella”, and it also contains several non-related classes with the Catalan Food, we will

use both datasets to implement our recognition system.

5



6

2.2 Convolutional Neural Networks

In this section, we expose the needed background about Convolutional Neural Networks,

in order to understand the architecture and configuration of the used models, for the

food image recognition task. With this knowledge, we will be able also to understand the

different phases for the section implementation, and the different measures to evaluate

the built classifier. First, we introduce the intuitive model for a simple neuron called

Perceptron induced by a biological neuron, and we derive with that the notion of a

Neural Network. Lastly, we introduce the CNN with all parameters that we use later.

All materials used in this section are token from the course Neural Networks attended

at the University of Groningen, part of the Artificial Intelligence bachelor’s program.

The content of this course, at the same time, was created based on the book [12].

2.2.1 Biological neuron

Figure 2.1 shows a very much simplified diagram of a biological counterpart. However,

from the artificial neural network point of view, a typical neuron, collects signals from

others through a host of fine structures called dendrites. The neuron triggers electrical

pulses called spikes, through a long and thin thread known as an axon, which splits

into several branches. Each branch will join a dendrite of another neuron in a point of

intersection called synapse, where the input electrical signal will be altered to inhibit

or excite the activity in the connected neuron. Depending if a neuron receives enough

excitatory input, it sends a spike of electrical activity down its axon. We say that

a neuron is learning, when the effectiveness of the synapses is changed to influence

differently to another neuron.

Figure 2.1: Simplified diagram of a biological neuron.

2.2.2 Perceptron

The Perceptron is an artificial neuron modeling the behavior of the biological neuron.

Let us introduce few names to formalize this concept as an analogy of the biological.



7

Let xi be the i-th input, as analogy of the i-th axon in the biological neuron. Let wki be

the weight of the i-th input to the k-th neuron, as the synapse between the i-th axon and

the i-th dendrite of the k-th neuron. Let bk be the threshold of the k-th neuron, as the

frontier that a biological neuron needs to beat, to be exited and generate an electrical

spike.

With this concepts, we can define the summing junction vk, as the sum of the weighted

inputs, vk =
∑

i xiwki − bk, and the k-th output, as a function of the summing junction,

yk = ϕ(vk). The function ϕ is called activation function. A basic example of the

activation function could be the step function ϕ : R→ {0, 1} defined by

ϕ(vk) :=

1, if vk > 0,

0, if vk < 0.

Figure 2.2: Perceptron, a model of the biological neuron.

In figure 2.2 we can visualize an artificial neuron with the specified notations. Same

notations are useful to introduce a Neural Network (NN) or Multilayer Perceptron, which

is nothing else than several Perceptrons connected, with an arbitrary structure, from n

inputs x1, x2, . . . , xn, to m outputs y1, y2, . . . , ym. Tipically a NN is organized by layers;

the input layer, the output layer, and the hidden layers, located between these two. The

hidden and output layers are composed by Perceptrons, whereas the input layer are just

values. Figure 2.3 shows a simple Neural Network topology.

2.2.3 Learning rule

In an artificial NN, learning means adaptation of the weights, as analogy of the change in

the effectiveness of the synapses in a biological NN. Intuitively, we should keep learning

until we perform the task without error, and that concept needs to be defined for this
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Figure 2.3: Artificial Neural Network composed by m inputs, n hidden neuron, and
1 output neuron.

context. In literature exists several different error functions, but we are going to use the

Euclidean, just as an example to visualize the learning rule better.

Figure 2.4: Artificial Neural Network with hidden layer i and output layer j.

Let us define these concepts from the architecture defined in figure 2.4, for an input

pattern P :

• xPi , as the input values of the i-th neuron for the pattern P .

• tPj , as the target output of the j-th neuron for the pattern P .

• vPj =
∑

iwjix
P
i − bj , as the activation of j-th neuron for the pattern P .

• yPj = ϕ(vPj ), as the predicted output of the j-th neuron for the pattern P .

• ePj = tPj − yPj , as the error for the pattern P in the single j-th neuron.
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Then, we define the error for the pattern P as eP =
∑

j (ePj )2. The calculation of all

outputs at the hidden and outputs neurons is known as forward pass, and the calculations

of the errors in the outputs and hidden neurons is called backward pass. The strategy

is to learn after each forward pass, calculating the errors, and uploading the weights

of the NN with the goal to minimize the loss in the output neurons. It is called the

backpropagation or generalized delta rule, using the gradient descent.[13]. We do not

want learn indefinitely and we want to minimize the error globally rather than locally,

there are few parameters to deal with this problems:

• The learning rate η sets the factor of the learning. The higher the learning rate

is, the quicker the net will learn, if η = 0, the net will not learn.

• The Momentum µ is a trick to not fall in a local minimum. It is based in uploading

the weights using the previous states of them.

Let us present the recipe to upload the weights following the scenario presented by figure

2.4, and then explain the pseudo-code of the backpropagation for a general architecture.

For the following, a smooth activation function ϕ is required in order to apply the chain

rule. With the same notations:

• eP

∂wji
= eP

∂ePj

ePj
∂yPj

yPj
∂aPj

aPj
∂wji

• ∆wji = −η eP

∂wji
, or ∆wji(n) = −η eP

∂wji
(n)+µ∆wji(n−1), if we use the momentum.

• wji′ = wji + ∆wji

For a general architecture the backpropagation pseudo-code looks as follow:

while ( Error is larger than stop criterion)

for (all training patterns)

(forward pass)

calulate the output of the hidden nodes

calulate the output of the output nodes

(backward pass)

calculate the error in the output nodes

calculate the error in the hidden nodes

calculate the new weights

2.2.4 CNN

Convolutional Neural Networks are very similar to conventional Neural Networks, the

main difference is that now the inputs are images, and therefore, we can apply certain
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properties allowing to reduce the amount of parameters making the execution of the net

more efficient. The basic new concept that we need to feel comfortable before go further,

is that in CNN, the layers have neurons arranged in 3 dimensions: width, height, and

depth, e.g. in the case of the input layer as an image in RGB, the depth is 3 as the

number of channels, and width and height are the spatial dimensions of the image. Let

us say that the input images are 48x48x3. Then, each neuron in the input layer can be

thought as a 3D volume 1x1x3, and therefore, we have 48x48 3D neurons in the input

layer. In order to understand the models in the next section, let us explain in detail

what a convolution is, the common layers in a CNN, and the parameters that define the

shapes of each layer.

2.2.4.1 Convolution

Let us show a simple example to understand the concept considering an image with size

6x6x3. Then, the filter or kernel that we want to apply to the image, must have the

depth dimension equal to 3, to match the depth dimension of the input image. We have

freedom to choose the width and height of the filter, while being smaller or equal to the

original image, let us set it to 3x3. During the forward pass, we slide (more precisely,

convolve) each filter across the width and height of the input image, starting with the

two images aligned on the left top. In the first step, the entire filter will be align with

the third first columns and rows of the input image. Then, we compute dot products

between the entries of the filter and the input at any position for each channel and we

add them, getting a single value. Next step we slide the kernel 3 positions to the right

of the image. Therefore, the kernel is align with the first three rows and the last three

columns. Again we apply the dot products and we get again a single value. Therefore,

we have transformed the 6 columns and the first 3 rows of the input image in 2 values,

i.e, from 3x6=18 cells to 2. Then, we apply again the filter with the half bottom of

the image, and we obtain again 2 values. Now we have 4 values (a 2x2 square), when

initially we had 6x6x3=108. Then, if we consider N filters instead of 1, and we apply

the same mechanism, after apply this filters to the input image, we will have an output

volume with dimensions 2x2xN. Figure 2.5 shows another example with a kernel 3x3

applied to one of the channels of an image 5x5.

2.2.4.2 Spatial arrangement

There are three hyperparameters controlling the shape of an output volume after apply

a convolution or any of the other layers that we will explain later:
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Figure 2.5: Convolution with 3x3 filter to one of the channels of an image 5x5. Source
stanford.

1. Receptive field (F): This is the size of the square filter we would like to apply. In

our case F=3

2. Depth (K): It corresponds to the number of filters we would like to use, each

learning a different rule. In the example above, F=N.

3. Stride (S): This is the number of pixels that we slide the filter. When the stride

is 1, we slide the filters 1 pixel at time. In the example above, we use S=3.

4. Zero-padding (P): Sometimes will be useful to pad the input volume with zeros

around the border. The common use of that is to preserve the spatial size of the

input volume, adding a zero-padding of 1 and using a filter 3x3, so we can apply

to each pixel the convolution. In the above example we use P=0.

The formula to calculate how many spatial neurons the output volume has, is given by

(WF + 2P )/S + 1. In the example above it is (6− 3 + 2× 0)/3 + 1 = 2.

2.2.4.3 Layers

Now that we have the notions of 3D volume and convolution clear, let us list and briefly

explain, the main layers that a CNN contains:

• INPUT : It Holds the pixel values of the image, normally the dimension are WxHx3,

where W is width and H height.

• CONV : This are the convolutional filters explained in section 2.2.4.1. In general, a

convolutional layer will have K filters of dimensions FxFxD, where D is the depth

of the previous layer and F the Receptive field. If we are applying the convolutions

to the images, D=3.

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
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• RELU : This layer applies for each element of the previous layer an activation

function, such as the max(0,x). This does not change the dimensions of the input

volume.

• POOL: This layer performs a downsampling operation along the spatial dimen-

sions, changing the width and height, but not changing the depth.

• FC : Neurons in a fully connected layer have full connections to all activations in

the previous layer, as seen in regular Neural Networks.

2.2.4.4 Caffe framework

There are several frameworks with high capabilities in the field of Deep Learning such

as TensorFlow, Torch, Theano, Caffe, Neon, etc. We choose Caffe because the basis

languages are C++ and Python, because it tracks the state-of-the-art in both code and

models, and once you get used to it, it is fast for developing. We also decide to use it

because it has a large community giving support on the Caffe-users group and Github,

uploading new pre-trained models, that people like us, can use it again for different

purposes. It allows a faster training and better accuracies [14] because normally these

models are trained originally for larger datasets that the ones we will use on the fine-

tuning.

2.3 Models

In this section we present the two models that we are using in our experiments. We

explain why we choose them and we expose briefly their architecture. Both models are

defined to take a image as an input with dimension 224x224x3, as a random crop of an

image with resolution of 256x256x3.

2.3.1 GoogleNet

This deep convolutional neural network architecture is a replication of the model de-

scribed in the GoogleNet publication [2]. It was the responsible for setting the state of

the art for classification and detection in the ImageNet Large-Scale Visual Recognition

Challenge in 2014 (ILSVRC14) [3]. The goal of this challenge was to recognize 1000

object categories and it was trained over 1.2 million images.
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The files containing the net definition and the learned weights over the dataset (ILSVRC14),

were downloaded from GitHub1.

2.3.1.1 Topology

The network is 22 layers deep when counting only layers with parameters (or 27 layers

if we also count pooling). Figure 2.6 shows the topology of the net, and make clear two

of the features that made this net so powerful, as they explain in the paper [2]:

Figure 2.6: Topology of googleNet architecture containing 22-layer deep

1. Auxiliary classifiers connected to the intermediate layers (yellow layers in picture

2.6): This was thought to combat the vanishing gradient problem, given the rel-

atively large depth of the network. During training, their loss gets added to the

total loss of the network with a discount weigh. In practice, the auxiliary networks

is relatively minor (around 0.5%) and it is required only one of them to achieve

the same effect.

2. Inception modules: The main idea for it is that in images, correlations tend to

be local. Therefore, in each of this 9 modules they use convolutions of dimension

1x1, 3x3, 5x5, and pooling layers of 3x3. Then, they put all outputs together as a

concatenation. Figure 2.7 shows the structure of the Inception, and figure 2.8 shows

the concrete pipeline. Note that to reduce the depth of the volume, convolutions

3x3 and 5x5 are performed after apply a 1x1 convolution, and pooling 3x3 is also

1https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
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followed by a convolution 1x1. This arguments makes the model more efficient

reducing the number of parameters in the net.

Figure 2.7: Topology of the inception module.

Figure 2.8: Topology of the inception modules visually described. The image is taken
from a descriptive video in Udacity.

2.3.2 VGG-19

VGG model [4] secured the first and the second places for the ImageNet ILSVRC-2014

competition [3], in the localization and classification tasks respectively.

The learned weights over the dataset ILSVRC14, were downloaded from the Official

website2. On another hand, their link to GitHub for downloading the net definition,

and in this case, the net provided was deprecated for the new version of the framework

Caffe. We changed all needed parameters in order to make it work, and we made it

public (See appendix A for more details).

2http://www.robots.ox.ac.uk/~vgg/research/very_deep/

https://www.youtube.com/watch?v=VxhSouuSZDY
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
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2.3.2.1 Topology

This net has 5 blocks of different depth convolutions (64, 128, 256, 512, and 512 consecu-

tively) and 3 FC layers. The first 2 blocks contains 2 different convolutions each and the

last 5 contains 4 different convolutions each. It is a total of 2× 2 + 3× 4 + 3 = 19 layers.

All convolutions have a kernel size of 3x3 with a padding of 1 pixel, i.e. the spatial

resolution is preserved after convolution. Finally, after each convolutional block a max

pooling is performed over a 2x2 pixel window, with stride 2, i.e. reducing by a factor

of 2 the spatial size after each block. Section 2.3 in VGG-19 paper [4], confirm that

small-size convolution filters are the key, together with apply deep CNN, to outperform

googleNet in ILSVRC14 [3] in terms of the single-network classification accuracy. Figure

2.9 shows the VGG-19 structure explained above.

Figure 2.9: Topology of VGG-19 layers.

2.4 Super-resolution

The image dimensions of FoodCAT dataset are in average smaller than 256x256. There-

fore, the images are increased to this size as an input for Caffe, causing deformation

noise. We found interesting the fact that larger images improves recognition accuracy

as it is show in [11]. In this paper, they demonstrate, there are many cases where the

object size is small, and downsizing simply loses too much information. Motivated with

that, we claim that increasing the resolution with a state-of-the-art method instead of

leave the net do it with the regular resize, the image recognition accuracy is better.

To increase the size of the images we use the new method called super-resolution [15]. In

this paper they show how obtaining a high-resolution (HR) image from a low-resolution

(LR) can be perform by a combination of the conventional sparse coding model and

CNN, achieving notable improvements over the generic CNN model in terms of both

recovery accuracy and human perception.
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2.4.1 Examples of SR for images in the used datasets

In this section we show the accuracy from a human perception, of the SR applied to two

images, one from Food-101 and the other from FoodCAT. The goal for these examples

is to show that increasing the FoodCAT images with SR, to a size bigger or equal than

256x256, and then let Caffe decrease the resolution to 256x256, the resulting image looks

better from a human perspective, than increasing the resolution from the original size

to 256x256 by the standard resize, as Caffe does.

2.4.1.1 Example with Food-101

First we will show the behaviour explained with a image of resolution higher than

256x256. The goal is to see that the original reduced to this size, looks very similar

to the same image decreasing the resolution to smaller than 256x256, and then applying

the procedure explained before for the FoodCAT images.

Figure 2.10: Example of SR used in a hight resolution image. Left: original image
512x512 resized to 256x256. Right: Original reduced at 40% 230x230, then increased

by SR x2 to 460x460, and finally resized to 256x256.

With our eyes we can not see any difference in figure 2.10, both images looks very similar.

Also, computing standard image measure, the difference in not even big, as it is shown

in table 2.1. We also show the histogram for the two images in figure 2.11. We conclude,

from a human perspective, than the method is working good for this example.

mean max min

Original 91.10 255 91.10

SR 91.04 255 91.04

Table 2.1: Mean, max, and min computed for two images. Original: original image
512x512 resized to 256x256. SR: Original reduced at 40% 230x230, then increased by

SR x2 to 460x460, and finally resized to 256x256.
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Figure 2.11: Distribution of pixels amongst those grayscale values. Left image is the
original, and right with the SR.

2.4.1.2 Example with FoodCAT

In this example we choose a random image from FoodCAT dataset, and we applied SR

in order to get that both image dimensions, width and height, to be bigger or equal than

256. Original image is 402x125, so the SR was applied with a factor of 3, because 2 was

not enough (2×125 < 255). Figure 2.12 shows how the image with SR looks much more

better than the original, when they are resized to 256, from a human perspective.

Figure 2.12: Left shows the SR decreased to 256x256 and right shows the original
increased to 256x256.



Chapter 3

Construction of the healthy food

dataset

In this section we show how we created the dataset FoodCAT with two different labels:

Catalan dishes, and Catalan food Categories. We will refer as FoodCAT when we speak

about the first kinf of labels, and as FoodCategories for the second. This creation

involve: find all Catalan food dishes, select a sample, get images for each class and clean

the non-related images.

3.1 FoodCAT

Mediterranean Diet is based on several dishes that involves many countries along the

Mediterranean Sea. We choose the Catalan cuisine as a representation of this diet

because we are from Catalonia, so it is easy to choose a representative sample of the

Catalan food. This is the reason why we call it FoodCAT, where CAT is used refer to

Catalonia.

3.1.1 Data scraping

First step we made is generate a database with a big list of the greatest and more

representative names of Catalan cuisine. For that purpose we used ”El Corpus del

patrimoni culinari català” [8], which is the longest database of Catalan recipes that

exists so far. This book also provides a wonderful work classifying each of this dishes

among 12 food categories.

18
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The website cuinacatalana1 provides a large subset of these recipes. We created the

script tools/scripts/scrapCuinaCatalana.py to download all these dishes on the

file tools/raw_data/food.json, with the fields ”category”, ”name” and ”ingredients”.

Here is an example of a food dish downloaded from this website:

{"category": "Caracoles", "name": "Bunyols de cargols", "ingredients": ["1 kg

de cargols grans.", "150 g de farina.", "20 cl de llet.", "1 ceba.", "4 alls.

", "Una mica de llevat en pols.", "Julivert.", "Oli.", "Sal.", "Aigua."]}

A total of 904 dishes names can be found in the file specified above, and almost all dishes

belong to 1 of the 12 food categories. From this big collection we selected manually the

140 more popular dishes, always trying to respect the percentages of dishes by categories.

We show in table 3.1 these values, where the first column lists the categories, the second

and third show the original dataset, and the fourth and fifth the selected dataset. A

funny anecdote watching the percentages from the original dataset and the selected, is

that we can say how much we like desserts.

# dishes % # selected dishes %

Carnes 223 24,67 26 18,57

Pescados y mariscos 156 17,26 25 17,85

Postres y dulces 123 13,61 34 24,28

Pastas, arroces y otros cereales 91 10,07 11 7,85

Verduras y otras hortalizas 79 8,74 11 7,85

Sopas caldos y cremas 71 7,85 8 5,71

Huevos 46 5,09 5 3,57

Ensaladas y platos frios 34 3,76 5 3,57

Caracoles 23 2,54 3 2,14

Legumbres 23 2,54 6 4,28

Salsas 20 2,21 4 2,85

Not available 11 1,22 0 0

Setas 4 0,44 2 1,42

Total 904 100 140 100

Table 3.1: Number of dishes per category. First column lists the categories, the second
and third column show the original dataset, and the fourth and fifth the selected dataset.

3.1.2 Image scraping

Let us explain how we obtained the images related to the dataset of the selected food

dishes introduced in the previous section. We created the script located in the path

tools/scripts/imageRetrieve.py to download and save a sample of 1000 pictures

related to a query using Google images. The other script created to find the images

is located at tools/scripts/findImages.py, and it reads the file tools/raw_data/

1http://www.cuinacatalana.eu/ca/pag/receptes/

http://www.cuinacatalana.eu/ca/pag/receptes/
http://www.cuinacatalana.eu/ca/pag/receptes/
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selectedFoods.json, where we saved all selected food classes. Then, one bye one, we

used tools/scripts/imageRetrieve.py to download the images related to the corre-

sponding class.

3.1.3 Image cleaning

Almost 1000 images were downloaded for each of the 140 selected food classes, but,

just an average of 400 images were related with the corresponding class. We had been

cleaning manually all these non-related images for each dish. Once we had chosen the

best images, we decided to use in our dataset just the classes with at least 100 images.

Therefore, the number of classes decreased from 140 until 115, and the final summary

is a dataset with 115 dishes with an average of 400 images per class.

3.1.4 Final datasets

As we introduced in section 2.1, we are using the two datasets FoodCAT and Food-101

for the food-recognition task. Let us first summarize in table 3.2 the number of images

used for the complete datasets and the balanced one, that we explain later in detail.

training validation testing total

Complete 116.248 (80.800+35.448) 14.540 (10.100+4.440) 14.516 (10.100+4.416) 145.304(101.000+44.304)

Balanced 73.085 (40.400+32.685) 9.143 (5.050+4.093) 9.124 (5.050+4.074) 91.352(50.500+40.852)

Table 3.2: Number of images per phase (training, validation and testing) over the
complete dataset and the balanced one. The values are presented giving the total first,

and then, inside the brackets, giving first for Food-101 and then for FoodCAT.

All pictures in Food-101 dataset have one dimension (width or height) equal to 512,

whereas that pictures in FoodCAT does not follow any pattern, and in average, the

resolution is below 256x256. In addition, the classes joining the two datasets are far to be

balanced. This is the reason why we presented a combinations of both datasets changing

the resolutions or balancing the classes, because we want to study how the model’s

learning process is influenced by these. Below, we present three different combinations

changing resolutions, each of them presented in two forms; with the original classes and

the balanced classes.
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3.1.4.1 Original datasets

Here we present two datasets; ’foodCAT OLD’, which is just the union of FoodCAT and

Food-101, and ’foodCAT 500’, consisting on the dataset foodCAT OLD, but taking, at

most, 500 images per class.

Figure 3.1: Images resolutions of FoodCAT and Food-101.

Figure 3.1 shows the dimension of all images for each dataset in foodCAT OLD. We

can observe how Food-101 dataset follows the pattern to have one dimension (width or

height) equal to 512, and FoodCAT has a huge diversity of resolutions, but in average,

lower than 256x256.

In section 2.3 we explain that the used models transforms the resolution of the input im-

ages to 256x256. Therefore, images of FoodCAT are increased and deformed to 256x256,

whereas that images of Food-101 are decreased and deformed for the training. Thus, we

are using images with much more noise in FoodCAT than in Food-101. The next two

different datasets are created in order to face this problem.

3.1.4.2 Food-101 with resolution halved

In this dataset we decrease the resolution of all images in Food-101, to force the network

to increase the resolution, and therefore add some noise to the images, as it is done

with FoodCAT. The resulting datasets are named ’foodCAT resized’, which is just the

union of FoodCAT and Food-101 resized, and foodCAT resized balanced, consists on the

dataset ’foodCAT resized’, but taking at most 500 images per class. Figure 3.2 shows

the resulting resolutions for the datasets.
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Figure 3.2: Images resolutions of FoodCAT, and Food-101 with resolution halved.

3.1.4.3 FoodCAT with resolution increased with super-resolution

In this dataset we increase the resolution of all images in FoodCAT with the SR tech-

nique, to later force the network to decrease resolution, and therefore have less noise

in the images, trying to copy the behavior that is done with FoodCAT. The resulting

dataset named ’foodCAT SR’ is the union of FoodCAT resized by SR and Food-101. The

resulting dataset named ’foodCAT SR balanced’, consist on the dataset foodCAT SR,

but taking at most 500 images per class. Figure 3.3 shows the resulting resolutions for

the datasets.

Figure 3.3: Images resolutions of FoodCAT with resolution increased by SR, and
Food-101.
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3.2 FoodCAT spplited by categories

To create this dataset we used the images from FoodCAT and the information about

which category they belong, according to the website cuinacatalana2, that is based in

the book ”El Corpus del patrimoni culinari català” [8]. Table 3.3 shows the number of

images per category.

# Images

Postres y dulces 11.933

Carnes 7.373

Pescados y mariscos 5.977

Pastas, arroces y otros cereales 4.728

Verduras y otras hortalizas 3.007

Ensaladas y platos frios 2.933

Sopas caldos y cremas 2.857

Salsas 2.462

Legumbres 1.920

Huevos 615

Caracoles 470

Setas 438

Total 44.713

Table 3.3: Number of images per category.

2http://www.cuinacatalana.eu/ca/pag/receptes/

http://www.cuinacatalana.eu/ca/pag/receptes/
http://www.cuinacatalana.eu/ca/pag/receptes/


Chapter 4

Implementation

In this chapter we expose a step by step guide of our implementation. We would like,

first, to let you know how the project is organized and which tools we use. Second, how

to reproduce our experiments using the framework Caffe , including our new approaches

to some lacks of this tool. And third, we explain the implementation of the Super-

resolution method, that is very important in order to apply the CNN on a dataset of

images with different resolutions.

4.1 Project Organization

Let us explain briefly how we organized the project, which tools we used, and show the

basic pipeline. We used a local machine to built the dataset and to test the models. On

another hand, all training of the models was done on a cluster of computers.

4.1.1 Local Machine

The local computer used was a a Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz. Here we

set up all experiments that after we execute on the cluster.

4.1.2 Cluster

All CNNs trainings were performed on the Peregrine HPC cluster1, provided by the

University of Groningen. This cluster contains many nodes (computers) with different

features, but we use just single nodes with the next following components:

1https://redmine.hpc.rug.nl/redmine/projects/peregrine/wiki
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https://redmine.hpc.rug.nl/redmine/projects/peregrine/wiki
https://redmine.hpc.rug.nl/redmine/projects/peregrine/wiki
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• 24 cores @ 2.5 GHz (two Intel Xeon E5 2680v3 CPUs)

• 128 GB memory

• 1 TB internal disk space

• 2 Nvidia K40 GPU accelerator cards

All instructions used to connect with the cluster, synchronize the cluster with the lo-

cal computer, submitting jobs on the cluster, and another useful commands, can be

found fully explained in the file /utils/docs/peregrineCLUSTER. Let us show the two

instructions we use more often to synchronize both computers. We execute these in-

structions from the local machine, so, the instruction ’push’, sends all new information

from the local machine to the cluster and the instruction ’pull’ does it in the other way

around. Both instructions look as follow, respectively:

rsync -aPv TFG/ s3021610@peregrine.hpc.rug.nl:/data/s3021610/TFG/

rsync -aPv s3021610@peregrine.hpc.rug.nl:/data/s3021610/TFG/ /home/pedro/TFG/

In the file mentioned we can find plenty of flags that allow us to, for example, delete on

the cluster what we delete on the local machine because the default ’push’ is deleting

nothing.

4.1.3 GIT

All projects longer than one month should use a control version tool. In our case, it

was not used to recover ever a previous snapshot of the project. Instead of that, we

use the portability that allows us to combine this tool with a remote repository, in our

case GitHub. We want to remark how useful it is describe nicely each commit we do, so

every time we start to work, we can have a brief summary explaining what we did on

the previous commits.

4.1.4 Project Pipeline

We basically use GitHub as a remote repository to save all created files, avoiding the

images and the files .caffemodels and .solverstate that Caffe generates, because they

are too heavy, and GitHub has a limited memory for the free version. The training of

the models is performed by the cluster, which we maintain synchronized with the local

computer, including the files that we avoid with GitHub.
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Figure 4.1: Project pipeline. GitHub is used as a remote repository and the cluster
is used in the training of the CNN models

4.2 Recognizing Catalan Food

In this section we expose all required steps in order to reproduce any of our experiments.

We start listing the requirements for the framework that we are using, then we explain

in detail how to set up a model to train, next we describe the training, and last we

introduce new methods to choose and test the best learned model. We end the section

giving some tips about how to make the project portable to work with Caffe in any

computer.

We avoid briefly the installation instructions because other people already did success-

fully, so we just provide the link2 with the instructions we used.

4.2.1 Caffe Requirements

To fine-tuning a model it is needed:

1. dataset : We use both datasets Food-101 and FoodCAT

2https://github.com/tiangolo/caffe/blob/ubuntu-tutorial-b/docs/install_apt2.md

https://github.com/tiangolo/caffe/blob/ubuntu-tutorial-b/docs/install_apt2.md
https://github.com/tiangolo/caffe/blob/ubuntu-tutorial-b/docs/install_apt2.md
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2. train, validation and testing : .txt files linking the images with the class number

they belong to.

3. model : .prototxt file defining the net architecture. There we also need to set:

(a) On data layers TRAIN and TEST, we need to specify the path of the train

and validation .txt files respectively.

(b) On the last inner product layer, we define the number of classes that the net

will be able to distinguish.

(c) Note that we can set η to zero to an arbitrary layer. It will mean that we do

not want to modify the learned weights from the loaded model on that layer.

4. solver : .prototxt file defining the net parameters and the model file.

5. snapshot : .caffemodel file with the weights we want to tune, that must match with

the model definition.

4.2.2 Caffe Structure

Caffe is a really flexible tool that mainly allows us to work with the folders and files

structure that we desire. Here we introduce how we do it, trying always to be easy and

useful. All our scripts are made in order to follow that structure, so, to reproduce our

implementation without changing the internal code, this structure is required.

The structure depicted below requires the items listed in section 4.2.1. We are not

defining all folders and sub-folders that our project contains in this section, but we will

introduce and explain the most relevant ones. When we require scripts in folders that

are not described here, we give their relative path from our main folder.

Our main folder is called TFG, and it is structured as follows:
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TFG

data

food-101

images

foodCAT-db

foodCAT

classesID.txt

train.txt

val.txt

test.txt

test just foodCAT.txt

models

googlenet SR

train val.prototxt

solver.prototxt

test.prototxt

test just foodCAT.prototxt

LOGS

snapshots

• data: Inside the folder data, we have two different datasets, Food-101 and FoodCAT-

db. Each dataset contains n and m class respectively, where each class contains Ni

images with 1 <= i <= n for food-101 dataset, and Mj images with 1 <= j <= m

for foodCAT-db.

• foodCAT : Contains the corresponding class for each image, divided in the training,

validation and test sets. An example about how each line in this files looks is shown

in section 4.2.8. The file classesID.txt” contains the correspondence between a class

and the associated value.

This folder with all files, except the ”test just foodCAT.txt” file, is automatically

generated given the path to the datasets we want to use. Our script to do it, is

called as follow:

~/TFG/buildNET/builder$ python buildNET.py -p ’../../ data/foodCAT -db

’, ’../../ data/food -101/ images ’ -t ’../..’
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The file ”test just foodCAT.txt” is a copy of the file ”test.txt”, but deleting all

lines with pictures from the food-101 dataset.

• models: For each different model, we create a folder with the structure as it

is shown for the branch ”googlenet SR” in the tree in section 4.2.2. The file

”train val.prototxt” is the model explained in section 4.2.1. The file ”test.prototxt”

is used in section 4.2.6 to test the performance of the learned model. It is a copy

of ”train val.prototxt” deleting the TRAIN layer and linking the TEST layer to

the path TFG/foodCAT/test.txt instead of to TFG/foodCAT/val.txt. The file

”test just foodCAT.prototxt” is a copy of ”test.prototxt” pointing the TEST layer

to TFG/foodCAT/testJustFoodCAT.txt.

In ”LOGS” we save our training output, pictures and results of the current model.

In the folder called ”snapshots”, is where the net saves the files .caffemodel (weights

at certain iteration) and .solverstate (all parameters and weights at certain itera-

tion). We define where to save the snapshots in the file ”solver.prototxt”, where

we also define the net parameters and the model.

All interesting scripts, tips or instructions not explicitly mentioned on this document

can be found in the path TFG/tools/scripts or TFG/utils/docs, respectively.

4.2.3 Net Parameters

In Caffe , the file ”solver.prototxt” has the following responsibilities:

1. To create the training network for learning and the validation network for testing

2. To optimize the net updating parameters

3. To evaluate the net periodically

4. To snapshot the learned model and the solver state periodically

It is really important to understand how to use the (hyper) parameters defined on this

file, in order to optimize the net, do it efficiently, test the net correctly and save the

learned model in the correct time. Let us explain how to deal with it by an example of

one of our solvers. The solver in particular is allocated in the path models/googlenet_

SR/solver.prototxt.



30

4.2.3.1 Net definition, evaluation and snapshoting

Set the net definition indicating the path to the file ”train val.prototxt” to the parameter

net in the solver. Set also the mode solver mode to CPU or GPU, depending on the

machine that we are using.

For that model our training dataset has N = 116248 images, and M = 14540 validation

images. As we explained in section 4.2.2, the files containing the path and class for

each image, are defined in this example in the file models/googlenet_SR/train_val.

prototxt for both data layers, train and validation. Also in that file, we define the

batch size for both layers as bsN = 32 for the training dataset, and bsM = 32 for the

validation dataset.

With this information, we need to define:

• test iter, as the number of forward steps that the net needs to test all validation

images.

• test interval, as the number of forward steps that the net needs to run over the

training set, to start the testing on the validation images.

• snapshot, as the number of forward steps that the net needs to run over the

training set, to save the the weights of the model in a .caffemodel file, and the

state of the solver, in a .solverstate file.

i.e. After every test interval training iterations, test iter ∗ bsM validation images are

fetched for testing.

The set up of test interval really depends on how much tracking we want, in terms to

see how the net works with data that is not being used for the training. We set this

parameter in order to evaluate the net, every time that it has made the forward pass

over the quarter of all training images. As the forward pass in the training it’s done in

a batch, the way to compute that is test interval = N/4/bsN .

It is really important to save the model and the solver state, at the same time that

performing a validation test. Otherwise we will not have the accuracy for the saved

models in our log file, and later will be hard to choose the final model as we do in

section 4.2.5. A way to do it, is setting up snapshot as a multiple of the value in

test interval. In our case, we set snapshot = test interval ∗ t, for some t ∈ N. We are

aware that those files are heavy, so we set t not too small, on this case, t = 6. After that,

we set also the path where we want to save this models, in the variable snapshot prefix.
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To set test iter, we just need to figure out how many forwards requires the validation

test if it is done in batches of bsM images out of M . i.e. test iter = M/bsM .

So, we define this values as follows:

net: "models/googlenet_SR/train_val.prototxt"

solver_mode: GPU

test_iter: 454 # Number validation images 14540/32 = 454

test_interval: 908 # Number train images 116248/4/32 = 908

snapshot: 5448 # Save after a test interval. So this value has to be

# a multiple of the variable ’test_interval ’ (e.g.

908*6=5448)

snapshot_prefix: "models/googlenet_SR/snapshots/ss_googlenet_SR"

Note that 32 ∗ 454 = 14528 < 14540, so the net will not test the entire validation set.

What can we do about that? Just set the bsM in the file models/googlenet_SR/

train_val.prototxt, to a value that has modulus zero with M , i.e. M%bsM = 0, as

for example, set bsM = 4. Then compute with the new value test iter = M/bsM . The

only issue with that, is that the testing step during the training will take longer, as

usually the new value of bsM will be lower. Otherwise we can just set test iter = 455

instead of 454, and the net will test couple of times 32 ∗ 455− 14540 = 20 images.

4.2.3.2 Hyper-Parameters

We set the hyper-parameters described in section 2.2.3, following the strategy used

by Krizhevsky et al. [16] in their famously winning CNN entry to the ILSVRC-2012

competition. This was exactly the parameters used to train the net googleNet, over the

dataset imageNet in Caffe , i.e. the model that we are using for fine-tuning. The only

differences in our definitions, is that we set η lower by a factor of 10, as we are not

training from scratch. So the parameters are defined as follows:

base_lr: 0.001 # lr for fine -tuning lower than from scratch

lr_policy: "step" # Learning rate policy: drop the learning rate in "steps"

# by a factor of gamma every stepsize iterations

gamma: 0.1 # drop the learning rate by a factor of 10

# (i.e., multiply it by a factor of gamma = 0.1)

stepsize: 20000 # drop the learning rate every 20K iterations

4.2.4 Train

After defining all files described above and setting the net parameters we perform the

training phase of our project. We will use the default command of Caffe , but adding a

pipeline to a file to save the output of the net, in order to plot the accuracy later. The
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required arguments for this command are, the solver, and the file .caffemodel containing

the weights of the model that we are fine-tuning. The following command is used to

execute the training phase and also to save the log, in the particular case of our model

”googlenet SR” from a snapshot of imageNet e.g. ”bvlc googlenet.caffemodel”:

~/TFG$ caffe train -solver models/googlenet_SR/solver.prototxt -weights models/

googlenet_SR/snapshots/bvlc_googlenet.caffemodel 2> models/googlenet_SR/LOGS/

log.log

4.2.5 Choosing the best model

The training phase saves several .caffemodel files, which contains the learned weights.

We use the best iteration, which is not necessarily the last one. Let us show how to

find the best saved iteration automatically, and how to plot the net accuracy, using

the default Caffe tools, gnuplot, and a script. We understand as best iteration or best

model, the saved snapshot by Caffe with better accuracy on the validation set.

1. Parse the log created by the training to the file ”log.log.test” into the current

folder:

~/TFG$ python $CAFFE_ROOT/tools/extra/parse_log.py log.log $(pwd)

2. Plot the log test file generated by step 1:

gnuplot

reset

set terminal png

set output "googlenetACCURACY.png"

set style data lines

set key right

set xlabel "iteratations"

set ylabel "accuracy"

set datafile separator ","

plot "log.log.test" using 1:12 title "top -5", ’’ using 1:11 title "top -1"

A chart like the one above contains too much information to let us choose the best itera-

tion. Also, as in the file models/googlenet_SR/solver.prototxt we set the parameter

’snapshot’, just the iteration that are multiple to this variable are saved by Caffe . Thus,

we choose the best .caffemodel based on the best iteration saved, following the script

that we defined. Three parameters are needed:

• The file created by step 1: ”log.log.test”.
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Figure 4.2: Example of how we show the accuracy vs the number of iterations per-
formed.

• The columns we are interested to plot in that file above. First, we define the x-axis,

that represents the number of iterations, and then a sorted y-axis, that defines the

top-1 and top-5 accuracies.

• The parameter ”snapshot”, specified in the file models/googlenet_SR/solver.

prototxt.

3. Get the best iteration. As an example we represent how we execute the script

for googlenet model; we use column 1 for the x-axis, columns 11 and 12 as tops

accuracies, and 2280 for the snapshot value.

~/TFG$ python tools/scripts/get_best_accuracy_iter.py ’log.log.test ’ 1

11 12 2280

This will prompt the best iteration that corresponds to the one used as a final

model. Also creates a .csv file that we can use to plot just the accuracies saved by

the net. To do that, we just need to repeat step 2, this time with the new .csv file.

4.2.6 New Test Approach

For testing we use a python wrapper and a new approach that avoids preprocessing

image manually and code duplication. The evaluation techniques are fully explained in

section 5.2.

Once we have a trained model ’trained model.caffemodel’ for deploy, e.g. to classify

an image or test the accuracy in our TEST dataset, so far, generally people create a

’deploy.prototxt’ file as a copy of the file ’train val.prototxt’. In that copy they switch

the ’SoftmaxWithLoss’ layer for a ’Softmax’, in order to get the maximum argument in
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the probabilities vector, which gives us the predicted class, and replace the data layers

for just a simple ’input’ definition or ’input’ layer3.

Then a Matlab or Python wrapper is used to load an image or set of images and to

run the net and classify. The obvious problem with it, is that we need to do the image

preprocessing manually, so we need to be very accurate and use a procedure following

exactly the parameters defined in the ’train val.prototxt’ file. Otherwise the results, for

example, on the TRAIN or VAL dataset, would be different than in the training phase,

and we do not want it to happen.

As we read so far, many people had many troubles with that. Also, we want to notice

that deploying with the explained way, we are duplicating unnecessary code in our

wrapper.

What we expose here is another variation to deploy the model that solves these problems:

We just need to modify the data layer with phase ’TEST’ in the ’train val.prototxt’ file,

making the ’source’ field pointing to our TEST dataset file ’test.txt’ (see tree in 4.2.2),

and rename this file to ’test.prototxt’. We can also remove the data layer with phase

”TRAIN”, but is not needed, because we are not using it.

Then we use a Python wrapper and we initialize the net with:

net = caffe.Net(’trained\_model.caffemodel ’, ’test.prototxt ’, caffe.TEST)

After that, we just need to run the net to classify the first batch by:

net.forward ()

And then we can get the probabilities vector for all the members of this batch using:

net.blobs[’nameProbsLayer ’]. data

Where ’nameProbsLayer’ is the name of the last inner product layer in our Net.

Finally, we want to let know to the reader, that the Caffe community is developing a

way to train and deploy a model with a single .prototxt file definition, instead of the

two described above. We can keep track of the issue in github4.

4.2.7 Test

Once we have a trained model, we test the net using the metrics defined in section 5.2,

with the new approach explained in section 4.2.6. To do so, we follow this instructions:

3https://github.com/BVLC/caffe/pull/3211
4https://github.com/BVLC/caffe/issues/3864

https://github.com/BVLC/caffe/pull/3211
https://github.com/BVLC/caffe/issues/3864
https://github.com/BVLC/caffe/pull/3211
https://github.com/BVLC/caffe/issues/3864
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1. Add the new model information to the dict ’allModels’ in the file caffeWrapper.

py, filling the dict parameters as follows:

"new_model":

{"caffemodel": ’models/new_model/snapshots/best_iter.caffemodel ’,

"netDefinition":

{"net_TEST": ’models/new_model/test.prototxt ’,

"net_TEST_just_foodCAT": ’models/new_model/test_just_foodCAT.

prototxt ’},

"nameLayer_AccuracyTop1": ’loss3/top -1’,

"nameLayer_AccuracyTop5": ’loss3/top -5’,

"nameLayer_innerProduct": ’loss3/classifier ’,

"solver": ’models/new_model/solver.prototxt ’}

2. Run the test indicating the model and the dataset that we want to use. In this

example we will use the model defined above and the balanced dataset (see section

2.1):

~/TFG$ python caffeWrapper.py -m ’new_model ’ -d ’net_TEST_balanced ’

4.2.8 Portable Project

If we want a portable project, i.e. a CNN that can run easily on each computer with

Caffe installed, we highly recommend using always relative paths in all files. If we do

not, i.e. if we use absolute paths, then, we must change the paths in all files if we want

to work with the net in another computer. Let us give a visual example about how to

do it:

Go to the main folder:

~/TFG$ pwd

/home/pedro/TFG

Fine-tuning Imagenet for food recognition on FoodCAT dataset:

~/TFG$ caffe train -solver models/googlenet_SR/solver.prototxt -weights models/

googlenet_SR/snapshots/bvlc_googlenet.caffemodel

This is how the parameters should look in ”solver.prototxt”:

~/TFG$ head -1 models/googlenet_SR/solver.prototxt

net: "models/googlenet_SR/train_val.prototxt"

This is how the parameters should look in ”train val.prototxt”:

~/TFG$ grep source models/googlenet_SR/train_val.prototxt

source: "foodCAT_SR/train.txt"

source: "foodCAT_SR/val.txt"
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This is how the file ”train.txt” should look:

~/TFG$ head -1 foodCAT_SR/train.txt

data/foodCAT_SR/panellets_de_codonyat/panellets_de_codonyat_354.jpg 0

As it is shown, everything is specified with relative paths from our main folder. It allow

us to move our folder TFG to another computer and run it without any changes. It was

spatially useful in this project, because we were working in local, but all computations

run into the Peregrine HPC cluster explained in section 4.1.2.

4.3 Increasing the quality of the images by Super-resolution

In this section we show how we increase the resolution of the images over FoodCAT

dataset using the method of SR [15]. To perform this task we use as a basis the python

script that authors provide in their web site5, and we change it to adapt it to our

necessity.

When we fine-tune one of the models that we are using in Caffe, all images are resized

to 256x256 as we explain in section 2.3. Therefore, we use SR to increase the size of

each image in proportion to the times n, that the minimum dimension of the image (in

width or height) needs to be increased to be bigger or equal to 256. n can be in the set

{1, 2, 3, 4}, where n = 1, if the minimum dimension is already bigger or equal to 256,

and n = 4, if the minimum dimension times 4 is equal or smaller than 256.

The script developed to do it is located in the path TFG/tools/+tools/python_iccv/

superresolution.py, and it requires two parameters:

• Path ’p’ to the dataset.

• The minimum dimension ’R’ of the image.

The script works applying the SR to all the images for each of the folders in the dataset.

Below, we show the example of how we used:

~/TFG$ unbuffer python tools /+tools/python_iccv/superresolution.py -p ’data/

images ’ -R 256 2>&1 | tee outfil

The commands ’unbuffer’ and ’tee’ are used to print the output of the script in the

terminal and in the file ’outfil’ at the same time. It was done like this, because we can

monitoring how the execution is going throw the terminal, and at the end, we can double

check for errors in the file.
5http://www.ifp.illinois.edu/~dingliu2/iccv15/

http://www.ifp.illinois.edu/~dingliu2/iccv15/
http://www.ifp.illinois.edu/~dingliu2/iccv15/
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Results and Discussion

In this chapter we explain how we set the experiments, the obtained results, and which

metrics are used for the evaluation, following the order of the objectives detailed in

section 1.2. The objective to build a dataset is not considered as an experiment, but

it is achieved and fully explained in section 3. In order to achieve the other objectives,

we have developed several different networks, and we applied several different methods

to the dataset, to improve the food recognizing task. The execution of each individ-

ual experiment and the evaluation of it, is just a particular case of the general method

explained in section 4.2. Therefore, to recreate them, we just need to change the pa-

rameters that we provide with each experiment below, and repeat the steps described

in section 4.2 with the new parameters.

5.1 Experiments Set Up

Each experiment explained below requires the specification of three sets of parameters:

1. The dataset, which we provide as folder containing the division in training, vali-

dation and test.

2. The model, which we provide as a folder containing the architecture of the net,

the solver, and other parameters explained in section 4.2.2.

3. The weights of the model from where we are making the fine-tuning.

An example of these requirements with the dataset FoodCAT, and the model ”googlenet SR”,

is detailed visually in the tree of section 4.2.2. In practice, providing just the model and

the weights, are enough to recreate the experiment, because the model itself is pointing

37
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to the dataset. In this section we provide the three set of parameters, in order to describe

exactly how the experiment is built.

5.1.1 Food classifier

Let us first recall and describe each dataset we use, in order to reference them easily for

each experiment. The given name, is also the folder name where we can find the dataset

in the path TFG. After this, we expose the composition of each experiment, naming them

as the real name we used, as a folder, inside the path TFG/models.

5.1.1.1 Datasets descriptions

All classes in the datasets below are extracted from the original datasets Food-101 and

FoodCAT, with the constraint that they must have at least 100 images. Otherwise, we

do not include the class for the dataset:

• foodCAT SR: consisting on the original dataset Food-101, and the dataset Food-

CAT with the SR technique applied on it.

• foodCAT SR balanced: consisting on the dataset foodCAT SR, but taking, at

most, 500 images per class.

• foodCAT resized: consisting on the dataset Food-101 with all images resized to

halved, and the original dataset FoodCAT

• foodCAT resized balanced: consisting on the dataset foodCAR resized, but tak-

ing, at most, 500 images per class.

• foodCAT OLD: consisting on the both original datasets Food-101 and FoodCAT.

• foodCAT 500: consisting on the dataset foodCAT OLD, but taking, at most, 500

images per class.

5.1.1.2 Experiments descriptions

The following experiments consist on fine-tuning the model specified below, with the

dataset indicated, from a snapshot of imageNet. In training, we use the weights with path

TFG/models/model_name/snapshots/bvlc_googlenet.caffemodel, where ”model name”

is the name of the experiment that we are reproducing. Just in the case of VGG models,

use the weights in path TFG/models/model_name/snapshots/VGG_ILSVRC_19_layers.

caffemodel:
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1. googlenet SR: googleNet model with foodCAT SR dataset.

2. googlenet SR balanced: googleNet model with foodCAT SR balanced dataset.

3. googlenet resized: googleNet model with foodCAT resized dataset.

4. googlenet resized balanced: googleNet model with foodCAT resized balanced dataset.

5. foodCAT VGG ILSVRC 19 layers: VGG model with foodCAT OLD dataset.

6. foodCAT VGG ILSVRC 19 layers 500: VGG model with foodCAT 500 dataset.

The following fine-tuning are made from the snapshot of, fine-tuning GoogleNet model

with Food-101 dataset, from a snapshot of imageNet. In training, we use the weights with

path TFG/models/model_name/snapshots/foodRecognition_googlenet_finetunning_

v2_1_iter_448000.caffemodel, where ”model name” is the name of the experiment

that we are reproducing:

7. googlenet resized: googleNet model with foodCAT resized dataset.

8. googlenet resized balanced: googleNet model with foodCAT resized balanced dataset.

9. foodCAT googlenet food101: googleNet model with foodCAT OLD dataset.

10. foodCAT googlenet food101 500: googleNet model with foodCAT 500 dataset.

Above-mentioned, we have eight experiments using fine-tuning from the GoogleNet [16]

model and just two from the VGG [17] model. Due to the lack of time, we decide to

try out the experiments first with the GoogleNet model, and in future work, we will

reproduce the experiments with the best performance, also with other models as VGG.

Note that experiment seven and eight are named equally as experiment three and four

respectively. This is because the models three and seven are allocated in the same folder

in the path TFG/models/googlenet_resized. The difference is that experiment three is

launched from a snapshot of imageNet dataset, and experiment seven from a snapshot of

Food-101 dataset. Thus, the name of the file ”solver.prototxt” is used for seven, and it is

replicated and named with ”solver from imagenet.prototxt” for experiment three, with

the only difference in the parameter ”snapshot”, that in this case it points to the path

TFG/models/googlenet_resized/snapshots_from_imagenet instead of TFG/models/

googlenet_resized/snapshots, just to save the snapshots of both models in different

folders. Same criterion is applied for experiment eight and four.
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5.1.2 Categories classifier

This section shows how we set up two different experiments using the dataset FoodCAT

in order to classify food dishes into one of the twelve categories defined in section 3.2.

The aim of these experiments is to build a model able to recognize food categories of

different dishes with a high accuracy. To do it, we will fine-tune the GoogleNet CNN

trained with the large dataset ImageNet. We will use this goal to study the network

performance depending on if we train all layers or only the last, the fully-connected

layer. The two experiments use:

• The dataset FoodCAT separated by categories located in the path TFG/categories.

• The GoogleNet model located in the path TFG/models/googlenet_categories.

• The weights from training GoogleNet model over the large dataset imageNet with

path TFG/models/googlenet_categories/snapshots/bvlc_googlenet.caffemodel.

Once again, in practice, providing just the model and the weights, are enough to recreate

the experiment, because the model itself is pointing to the dataset.

5.1.2.1 Fine-tuning just the fully-connected layer

The intuitive way to fine-tune a CNN only in the last layer (the fully-connected), is to

set the learning rate η for all the other layers to zero. This can be done by Caffe, the

framework that we are using, setting the parameter ”lr mult” to zero in all layers except

the last inner product, which is the fully-connected layer that we want to train. The

training model definition used for this experiment with these settings, can be found with

the path TFG/models/googlenet_categories/train_val_just_FC.prototxt.

5.1.2.2 Fine-tuning all layers

This is the common experiment done on this project. Therefore, the file contain-

ing this training definition has the default name that we use for the training phase,

”train.prototxt”, located inside the model folder.

5.2 Evaluation Metrics

Many metrics can be considered to measure the performance of a classification task. In

literature, mainly three methods are used: Accuracy Top-1, Accuracy Top-5, and the
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Confusion Matrix. In real-world applications, usually the dataset contains unbalanced

classes. The use of the above accuracies can hide the misclassification of the classes with

fewer samples. e.g. consider a classifier with the predictions

p = [”paella”, ”peix al forn”, ”paella”, ”paella”, ”peix al forn”, ”peix al forn”],

and the respectively true labels

t = [”paella”, ”peix al forn”, ”paella”, ”paella”, ”peix al forn”, ”sopa de rap”].

As we can see, the class ”sopa de rap” has just a single sample, and the classifier can not

predict it at all, while the accuracy Top-1 gives us 5
6 ∗ 100 = 83.33%. Thus, we consider

a Normalized Accuracy Top-1, explained below, that give us the information on how

good the classifier is no matter how many samples each class has. In this example, two

of the classes are perfectly predicted and one not at all, i.e. NAT1 = 2
3 ∗ 100 = 66.66%.

5.2.1 Formal definitions

Let us define formally each metric with the next notations:

Let N be the total number of classes with images to test, let Ni be the number of images

of the i-th class, and set n =
∑N−1

i=0 Ni, as the total number of images to test.

Let ŷki,j be the top-k predicted classes of the j-th image of the i-th class, and yi,j the

corresponding true class.

Let us also define 1A : X → {0, 1} as the indicator function by

1A(x) :=

1 if xi ∈ A, for some i,

0 if xi /∈ A, for all i.

Then, the definitions of the metrics are as follows:

5.2.1.1 Accuracy Top-1

AT1 =
1

n

∑
i,j

1yi,j (ŷ
1
i,j) (5.1)

5.2.1.2 Accuracy Top-5

AT5 =
1

n

∑
i,j

1yi,j (ŷ
5
i,j) (5.2)
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5.2.1.3 Normalized Accuracy Top-1

NAT1 =
1

N

N−1∑
i=0

1

Ni

Ni−1∑
j=0

1yi,j (ŷ
1
i,j) (5.3)

5.2.1.4 Confusion Matrix

By definition a confusion matrix CM is such that CMi,j is equal to the number of

observations known to be in class i but predicted to be in group j, where i are rows and

j columns.

Using the example of predictions p and true labels t introduced at the beginning of this

section, the associated CM looks as follow:

Figure 5.1: Visualizing a CM for a three classes classification

5.2.2 Metric relative to FoodCAT dataset

We are classifying food images from two datasets, Food-101 and FoodCAT. FoodCAT

dataset is not balanced and most of the classes have the half of images that Food-101

have. Thus, it is also interesting to measure how the CNN models works with just

the FoodCAT dataset. Therefore, we are using the measurements explained above with

the entire dataset, but also with just one of them; the FoodCAT dataset. Further-

more, this is the reason why all datasets described in section 5.1.1.1 have a file named

”test just foodCAT.txt”, and why all models described in section 5.1.1.2 have a file

named ”test just foodCAT.prototxt”. These files make possible this test.

We keep in mind that our balanced datasets have classes with 500 images at most, and

FoodCAT has in average 400. Then, when we balance FoodCAT, the resulting dataset
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is almost equal to the original. In fact, original FoodCAT has 44304 images and after

the balance 40852. Which makes it possible to compare the accuracy over the FoodCAT

dataset between models using balanced or not balanced datasets. On the other hand, we

can not compare the global accuracy, because in balanced datasets the testing is made

with half of the images than in a not balanced dataset, so it wont be a good measure.

5.3 Results

In this section we present the obtained results following the evaluation metrics described

in section 5.2 for each of the experiments developed and described in section 5.1.1.2. It

is divided in two sections: Food recognizer, and categories recognizer.

5.3.1 Food recognizer

In this section we present the arguments for the next two conclusions:

1. Balanced classes during the training phase are really important to recognize, with

similar accuracies, different datasets with a single CNN. Even if using balanced

classes means decrease the number of samples in each class in one of the datasets,

in order to balance with the one who has fewer images per class.

2. The Super-resolution method over the FoodCAT dataset improves the accuracy of

recognizing food dishes.

5.3.1.1 Effects of reducing the number of classes on the larger dataset Food-

101

Let us first present the table 5.1 summarizing all target results for each experiment from

seven until ten. We want to recall that each of these experiments are a CNN fine-tuning

for the datasets Food-101 and FoodCAT together, using the weights from a previous

fine-tuning for the dataset Food-101, which was self developed using the weights from a

CNN trained for the large imageNet dataset.

The performance of these tests is not used to measure how good our system is recognizing

food dishes. This is because the test dataset used for these experiments can contain

images used for the training of the CNN weights, which we are using for fine-tuning our

models. Nevertheless, these experiments were driven to test how the accuracy changes,

when we apply a balance for all classes.
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Experiment 7 8 9 10

Datasets A, B B A, B B A, B B A, B B

AT1 75.37 48.64 68.29 48.33 73.55 45.85 69.67 51.60

AT5 92.42 81.93 89.52 80.94 91.59 79.46 90.42 83.06

NAT1 63.44 42.70 62.91 44.06 61.06 39.19 64.33 46.84

Table 5.1: The results of the experiments from 7 to 10, described in section 5.1.1.2.
A=Food-101, B=FoodCAT. Best results are shown in boldface.

For experiments seven and eight in table 5.1, we use the original FoodCAT dataset,

and the dataset Food-101 with the resolution of all images halved. It is used like this,

because the average image resolution of Food-101 doubles the average in FoodCAT, and

after to have applied the resizing, the average gets closer (see section 3.1.4.2 for more

details). Experiment nine and ten are performed for the original datasets.

Table 5.1 is organized by the experiment combined columns and the dataset columns,

describing the used dataset (’A, B’ when it is over both datasets, and ’B’ it when is

just for FoodCAT ). We set the best AT1, AT5, and NAT1 in bold, for each of the

tested datasets (Food-101 +FoodCAT or FoodCAT ). We can see that the best results

for the dataset FoodCAT (columns ’B’), are better achieved by experiment ten, which

is ’foodCAT googlenet food101 500’, the CNN trained from the original datasets with

balanced classes. Thus, we can say that for recognize just the healthy dataset FoodCAT,

with less images than Food-101, it is better to reduce the Food-101 dataset to have a

similar number of classes than FoodCAT. On the other hand, the results of the test in

both datasets together (columns ’A, B’), are better when we use all samples in both

datasets (columns 7 and 9), because those compared with the balanced datasets, we are

getting twice as many samples in Food-101 during the learning epoch, which is what we

expected.

5.3.1.2 Effects of applying the super-resolution and other resizing methods

on the dataset FoodCAT

Motivated by the results of the previous section, where the best performance to recognize

the FoodCAT dataset is achieved, by the CNN trained reducing the number of samples

in the larger dataset Food-101. We compare how resizing methods change the capability

of the CNN to recognize all food dishes. Unlike in the previous section, all models here

are fine-tuning using the weights of the larger dataset imageNet. Therefore, all images

used for testing are the first time that the CNN classifies them. Hence, the results of

this section are finally used to measure the final accuracy of our system to recognize

food classes.
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Experiment 1 2 3 4 5 6

Datasets A, B B A, B B A, B B A, B B A, B B A, B B

AT1 68.07 50.02 62.41 48.94 67.16 49.66 61.28 48.85 67.74 48.12 65.16 50.59

AT5 89.53 81.82 86.81 81.63 89.27 82.07 86.52 80.92 89.28 81.03 88.94 83.40

NAT1 59.08 44.25 57.91 44.44 58.57 44.31 56.99 44.44 58.18 42.34 60.74 46.53

Table 5.2: The results of the experiments from 1 to 6, described in section 5.1.1.2.
A=Food-101, B=FoodCAT. Best results are shown in boldface.

Table 5.2 is organized by the experiment combined columns and the dataset columns, de-

scribing the used dataset (’A, B’ when it is over both datasets, and ’B’ it when is just for

FoodCAT ). We set the best AT1, AT5, and NAT1 in bold, for each of the tested datasets

(Food-101 +FoodCAT or FoodCAT ). Again, we can see that the best results for the

dataset FoodCAT (columns ’B’), are better achieved by a CNN trained from the original

datasets with balanced classes (experiment 6: ’foodCAT VGG ILSVRC 19 layers 500’).

Once again, it shows the importance of the balanced classes to recognize, with similar

accuracies, different datasets with a single CNN. Furthermore, the results of the test

in both datasets together (columns ’A, B’), are better when we use all samples in both

datasets during the training phase, with the method SR applied for FoodCAT. This

CNN is the one used in experiment 1, and it also achieves the second best result for the

AT1 over the FoodCAT dataset, with a score of 50.02, just 0.57 less than the balanced

datasets with VGG (experiment 6). Moreover, adding all scores for the accuracies AT1

and AT5, over the two tests ’A, B’ and ’B’, experiment 1 has the highest value with

289.44 followed by experiment 6 with 288.09. Experiment 1 has also the second best

AT1 over the FoodCAT dataset.

With all this data, we choose GoogleNet as the best model, trained from all samples of

both datasets, with the SR method applied for FoodCAT, corresponding to experiment

1. In our future work, we will train a mix over the two winners for these tests: the VGG

model with the SR method applied for FoodCAT and both balanced datasets.

We want to note these as the best models, the foodCAT VGG ILSVRC 19 layers 500

and googlenet SR, corresponding to experiments 1 and 6 respectively, during the training

phase, the models continued to learn the last iteration, i.e. the last iteration has the

best performance. Figure 5.4 shows the accuracies over the validation set during the

training phase. Therefore, if we let the models learn longer, the nets should get a better

performance.

Figure 5.5 shows the CM for googlenet SR model. Taking a closer look of the upper left

quarter (FoodCAT classes), we see that it is more diffuse than the bottom right (Food-

101 classes). That is because performance over Food-101 is better than FoodCAT.

Moreover, we observe that the net separates very well the two datasets, as there are not

many predictions from one dataset to the other. In the future work, we will deeply study
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Figure 5.2: Accuracy for googlenet SR model

Figure 5.3: Accuracy for VGG balanced model

Figure 5.4: The accuracy over the validation set during the training phase for models
googlenet SR and foodCAT VGG ILSVRC 19 layers 500, respectively. We can see that

the net was learning until the last iteration for both models.

this phenomena in order to know if the CNN is really understanding both datasets as

different food clusters, or if it is more related to the resolution of the images. Due to

that, Food-101 images always have weight or height equalling to 512.

5.3.2 Categories recognizer

In this section, we expose the best result obtained in this project. It is a novel way to

classify food dishes automatically into one of the twelve categories defined in section 3.2.

A complete net fine-tuning and a fine-tuning for only the last fully-connected layer are

compared.
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Figure 5.5: CM of googlenet SR model. We remark that the upper left quarter
(FoodCAT classes) is more diffuse than the bottom right (Food-101 classes). It is

because performance over the second is better than for the first.

5.3.2.1 Learning time comparative among training all layers or only the

fully-connected

As expected, training only the FC layer is faster and less effective than training all layers

of the CNN. theoretically, it is explained because in the case of all layers there are many

more parameters to learn. Figure 5.8 shows in practice how the AT1 evolves for each

iteration over the models trained for all layers (figure 5.6), and only on the FC (figure

5.7).

The training phase is executed on a cluster during a limited time, that for this case was

set to 24 hours (see section 4.1.2). Also, both experiments were configured to train at

most during 1.000.000 iterations. In Table 5.3, the last three columns show the number

of iterations that the models were training during a certain period of time, and the best

iteration, in terms of AT1 over the validation set during the training. The FC model

completed all training twice as fast than the ”All layers” model, and both models show

the best iteration twenty times faster than the maximum iterations, which gives us the

tip that not too many iterations were needed in order to learn this model.

Obviously, a result like this would not be possible without the fine-tuning. The time

required to train a model from scratch always depends on the used dataset, but is not

shorter than three days in a good GPU as we are using.
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Figure 5.6: GoogleNet training all layers

Figure 5.7: GoogleNet training only the fully-connected layer

Figure 5.8: Figures 5.6 and 5.7 show the accuracy top-1 over the validation set during
the training phase.

5.3.2.2 Performance classifying a food dish into a food category

In table 5.3 we provide the results obtained for this task. First, if we have a limited

machine or limited time, we show that fine-tuning just the fully-connected layer over

a model previously trained on a large dataset as imageNet [18], can give a good per-

formance. This is a good and interesting point because GoogleNet model trained on

ImageNet is able to classify 1.000 classes, where just two, ’snail’ and ’mushroom’, be-

long to our categories. As our propose is to use this work on a medical system with real

patients, we require better performance. Training all layers, we set the novel state of

the art recognizing food categories over Mediterranean food as it is shown in the table,

with AT1 = 72.29, and AT5 = 97.07. Taking care of the difference of samples on each

class, the normalized measure also gives a high performance, with NAT1 = 65.06.

Figure 5.9 shows the normalized confusion matrix for GoogleNet model trained over

all layers. It is not surprising that ’postres y dulces’ is the category that the net can

recognize better, as it is also the class with more samples in the dataset with 11933,
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AT1 AT5 NAT1 # Iterations Best iteration Time executing

FC 61.36 93.39 50.78 1.000.000 64.728 12h

All layers 72.29 97.07 65.06 900.000 49.104 24h

Table 5.3: Performance and learning time, fine-tuning the GoogleNet model over the
categories dataset. We show the results for two experiments done; training all layers,

and only training the last fully-connected. Best results are shown in boldface.

followed by ’carnes’ with 7373 (see section 3.2 for more information about this dataset).

The classes with less samples in our dataset are ’setas’ and ’caracoles’, but those specific

classes are respectively ’mushroom’ and ’snail’, the ones that also imageNet contains

(the dataset used for the pre-trained model that we are using). We believe that this is

the reason that makes this classifier still good for these classes.

Figure 5.9: Normalized CM of GoogleNet model trained over the all layers to recog-
nize food categories.

5.4 Discussion

In this section we explain the advantages and disadvantages that we found during the

implementation of the project. Mainly, we expose the hard work that to build a new

dataset represent, the benefits of fine-tuning pre-trained models, and the expensive cost

to use a CNN.
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5.4.1 Advantages and Disadvantages

When we want to face an image recognition problem with a specific topic, in our case,

food dishes, and we want to perform it using a supervised CNN, we need a clean and large

dataset. In our proposed, the target dataset is a food dataset related to Mediterranean

diet, and it was not built before, so we did. The first part, scrap websites and download

the images is funny and motivating. Later, as we did not have a system to know if

the downloaded images were truly related to the class that they were representing, we

checked all images for each class one by one manually, and this is really a boring and

exhausted step. The good news is that with this project we built a system that can do

this task automatically with a very high precision. In future work, to extend the dataset

we will use our CNN classifier to perform this task lighter.

Other disadvantages building the dataset is that the classes were not balanced and the

images present very different resolutions. This features shown to be relevant when we are

training a classifier as CNN, and our results shown that methods as the SR to increase

the resolution of the pictures, helps to get a better accuracy.

Once we have a dataset, probably it has many pictures per class, but not as many as

others datasets already public. When we are using a CNN to recognize classes, as many

pictures we have, better the accuracy will be. Our work shows, that using the weights

of a pre-trained model over a larger dataset, even if the datasets are different, we can

obtain very good accuracies recognizing our particular dataset. The disadvantage about

it, is that training a CNN requires a good GPU, and it is a expensive PC component.

5.4.2 Advices

We found that the way to enjoy more facing a image recognition problem, is to drive it

to a subject that has already available datasets to use. Therefore, we can put all our

effort just in the preprocessing and the recognition task.

Before start a project that involves a CNN, we found the constraint to have a good

computer with a good GPU, at least as described in section . At the beginning of

this project we just had a conventional laptob with a CPU Intel Pentium(R) Dual CPU

T3200@2.00GHzX2 , and a graphic card Mobile Intel GM45 Express Chipset. The GPU

did not support well Caffe, so we used on the CPU, and training only 3.000 iterations

took two days.
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Conclusion and Future Work

In this chapter we conclude the thesis. First, we summarize the project contributions

and later we expose the future roadmap.

6.1 Conclusions

Below, we list the contributions of the project to the field of food image classification:

• We present the novel and challenging multi-labeled dataset related to

Mediterranean diet called FoodCAT :

– For the first kind of labels, the dataset is divided into 115 food classes with

an average of 400 images per dish.

– For the second kind of labels, the dataset is divided into 12 food categories

with an average of 3800 images per dish.

• Recognizing food classes, the best model has been obtained training from the

datasets FoodCAT , after increase the resolution with the novel method

Super-resolution, and Food101 . This model achieves the highest accuracies:

– top-1 with 68.07% and top-5 with 89.53%, testing both datasets to-

gether.

– top-1 with 50.02% and top-5 with 81.82%, testing only FoodCAT .

• Recognizing food categories, we achieve the highest accuracies top-1 with

72.29% and top-5 with 97.07%.

• We had a relevant involvement with the Caffe community (see appendix A):

51
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– We introduced a new method to test the CNN avoiding code duplication and

manual image preprocessing.

– We uploaded the model definition for the Net VGG.

– We presented a friendly step-by-step guide to use the framework with devel-

oped scripts automating tasks.

6.2 Future work

Through all the research, we would like to emphasize the fact that the healthy dataset

FoodCAT could be enlarged, in order to publish it and let the people work with it,

with the common objective to improve people’s life regarding food problems. This

work is already started and we currently are using social networks as Instagram1 or

foodspotting2.

Secondly, we will integrate our food recognizer system into the start up Onfan3, who

requires it, from the beginning of the project. Onfan is a new gastronomic guide that

works as a social network, feeding on users contributions. It works like a mixture between

tripadvisor and Instagram, because it is a guide based on pictures, very visual and

intuitive. The food images are uploaded and tagged by the users with a giving name.

Now, with our new development, the users will enjoy with an automatic tagging for

more than 200 food dishes.

Once we enlarged the dataset, we will create a new model able to recognize a healthy

diet based on the Mediterranean food. For that task, as we had mentioned in section

5.1.1.2, we base our work on a set of models, such as googleNet, VGG, resNet [17], and

others.

Finally, we will integrate our system with the new accepted project ”Life-logging based

environment for holistic dietary pattern and lifestyle assessment for health status biomark-

ers identification and validation” of the CVUB research group, that belongs to the De-

partment of Mathematics and Computer Science of the University of Barcelona.

1https://www.instagram.com/
2http://www.foodspotting.com/find/in/The-World
3https://www.youtube.com/watch?v=jvb_DW2kL-w

https://www.instagram.com/
http://www.foodspotting.com/find/in/The-World
https://www.youtube.com/watch?v=jvb_DW2kL-w
https://www.instagram.com/
http://www.foodspotting.com/find/in/The-World
https://www.youtube.com/watch?v=jvb_DW2kL-w


Appendix A

Caffe contributions

On this appendix, we summarize our contributions to the Caffe community.

• New Test approach (see section 4.2.6). Link to caffe users. One month after the

publication, this is the traffic of the post:

Figure A.1: Traffic in Caffe Users of our new Test Approach

• VGG net definition (see section 2.3.2). Link to github. We can see our reference

at the end of the page. One month after the publication, this is the traffic of the

files:

Figure A.2: Traffic in GitHub of our VGG definition

• Question in Caffe users answered by us.

• Question in Caffe users answered by us.

• Question in Caffe users answered by us.
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https://groups.google.com/forum/#!topic/caffe-users/NzKEWAFPPfI
https://gist.github.com/ksimonyan/3785162f95cd2d5fee77
https://groups.google.com/forum/#!topic/caffe-users/Rd_3evmiYjg
https://groups.google.com/forum/#!topic/caffe-users/S7bbcwmqXTA
https://groups.google.com/forum/#!topic/caffe-users/A47ffHWzBTM
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[8] Institut Catalá de la Cuina. Corpus del patrimoni culinari catalá. Edicions de la
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