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Abstract

The main objective of this report is the study of the Logvinenko-Sereda sets for different
function spaces. It consists in characterizing the subsets G C 2 such that there is a
constant C' > 0 where

1712 <c /G 12 dm.

Following to the proof that appears in the book of V. Havin and B. Joricke we have
obtained the Logvinenko-Sereda theorem for the Paley-Wiener space. Moreover, for the
same function space we have found another argument based on the proof of Daniel H.
Luecking for the Bergman space in the ball B = {x € R" : |z| < 1}. In this case, we have
taken the same structure of the proof with the translations group and euclidean balls in-
stead of the automorphism group and hyperbolic balls. Next, considering the same idea
as for the Paley-Wiener space we have achieved the Logvinenko-Sereda theorem for the
Classic Fock space. Finally, we have finished with the analogous result for the space of
polynomials in the torus.

Keywords: Bergman space, Fock space, Functional analysis, Harmonic analysis, Harmonic
functions, Logvinenko-Sereda sets, Paley-Wiener space.
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Chapter 1

Motivation

First of all, we consider a function f € L?(T). We have that

1112 =/T|f12 =S I

neL

However, if we do not have information of the function on the all set T or Z, we need
to find sets A and B such that

12 ~ / @R ane)+ 3 17w

neZ\B

to determine the function f. So, our aim is to characterize these sets. We will say that
(A, B) is a strong a-pair.

Now, let us consider the particular case where B = [-N,N], N € N, and T \ 4 is
relatively dense, that is, there is a constant § > 0 and R > 0 such that

m(I(z, R) N (T\ A)) = om(I(z, R))

for all x € T.
We can decompose the functions f € L?(T) as the sum of orthogonal function f; and
f2 such that

suppfl CZ\[-N,N] and suppr C [-N, N].

Hence, let us see that (A, [—N, N]) is a strong a-pair. We only need to prove that

IF11* < /T\A!f(Z)I2 dm(z)+ Y |f(n)]%,

neZ\B

since the other inequality holds clearly. For this, we will use that ||f||? = ||f1||* + || f2]|*.
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AP =1A1P= > [AWP= > fm)P

n€Z\[-N,N] n€Z\[-N,N]

since suppfa C [~N, N].

(2) First of all, as suppfo C [=N, N] we have that f is a polynomial on T. Moreover,
as we will see in the Chapter 5, since T \ A is relatively dense we can use the
Logvinenko-Sereda Theorem and we obtain

Hf2||25/ |f22dm§/ |f|2dm+/ Al dm
T\A T\A T\A

< 2 2 < 2 R
N/T\A|f| am+ [ 1] dmN/T\Am am+ Y ),

nEZ\[—N,N]
where | fo|2 = |f — f1]* < |f* + | A%

Therefore, we have

Hf||2=||f1||2+||f2|!2§/T\A|f|2dm+ > ),

n€Z\[-N,N]

that is, (A,[—N, N]) is a strong a-pair, where T \ A is relatively dense and N € N.

Analogously, we consider a function f € L?(R™). Moreover, it verifies that

17 = [ VP dm = [ 17 dm.

As above, the aim is to find the sets A and B such that

9= [ AP [ |7 dm.
R™\ A R"\B

In such case, we will say also that (A, B) is a strong a-pair.

In this case, we consider a relatively dense set R™ \ A and a bounded set B.
Now, we decompose the function f € L?(R") as the sum of orthogonal functions f; and
f2 such that

suppfl CR"\ B and suppfg C B.

Let us see that (A, B) is a strong a-pair. Only we need to prove that

IS [ R AmE+ [ IFER dne),

n\B

since the other inequality holds clearly. For it, we will use that || f||? = || f1]> + || f2|/>.
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)
A=A = [ RGP mG) = [ 1R e

since suppfg C B.

(2) As supp fo C B we have that f2 is a Paley-Wiener function. On the other hand,
as we see will see in the Chapter 4, since R™ \ A is relatively dense we can use the
Logvinenko-Sereda Theorem and we obtain

||f2|!2§/ rfz|2dms/ |f|2dm+/ Al dm
R\ A R\ A R\ A

5/ P dm+/ AP dm,g/ It dm+/ P dm,
R\ A R® R7\A R™\B
where |fo|? = |f — f1I2 < |fI2 + | f1]%

Hence , we have
1F12 = 1722 + 11fell? < / P dm+ / P2 dm,
R\ A Rn\B

that is, (A, B) is a strong a-pair, where R™\ A is a relatively dense set and B is a bounded
set .

Notice that if we assume the pair (A, B), where B = supp f is bounded, is a strong
a-pair, we have

11 < /T e am

in the first case or

T / P dm
R\ A

in the second case. And as we will see in this work, this implies that T\ A and R\ A
must be relatively dense.



Chapter 2

Classic Proof of
Logvinenko-Sereda Theorem

In this chapter we will give a complete description of the pair (A, B) forming a strong
a-pair with any bounded spectrum B. For that, we have based on the classical proof of
the Logvinenko-Sereda Theorem that appears in [2, p. 112]. Notice that we have adapted
the given proof of the sufficiency in one dimension to several variables.

First of all, we need define the Poisson measure on R" as

n

[ +af)~tm,

=1

11 :

m being the Lebesgue measure on R™.

Remark 2.0.1. In this chapter, we will use the following notation:
R == {(z1,...,2n) €R" : ; >0,Vj € {1,...,n}}.

Now, we show the type of functions that we will use to prove the Theorem on Two
Constants, which is necessary in the proof of the Logvinenko-Sereda Theorem.

Definition 2.0.2. We call a distribution f € S'(R™) a plus-function if suppf C RY. A
distribution f € §'(T™) a plus-function if suppf C R? NZ™.

Definition 2.0.3. We denote by HP(R™) (HP(T") respectively), 1 < p < oo, the set of
the functions f € LP(R™) (f € LP(T™) respectively). It is called the Hardy class.

Now let us prove a the Jensen’s Inequality on T™ and R™ that we will use in the following
results.

Proposition 2.0.4. If f € H'(T") then
log | £(0)] S/T log | f| dm. (2.0.1)

4
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Proof. According with the classical inequality for geometric and arithmetic means,
exp [ log]fl du< [ 17] du

for any probability measure u and f € L'(u). We may apply it to u = m and f € L(T").
Hence, for f € H'(T") we have

loz|(0) < | 10g]] am.

Proposition 2.0.5. If f € L'(IT) with suppf C R™, then

/ log | f] dII > log / f dH’. (2.0.2)
R™ R™

Proof. Before to prove the Jensen’s inequality, we need the following lemma;:

Lemma 2.0.6. For f € HY(R") we have the following:
(i) f- 1l (zi +ia;)~t € HYR™) for all aj > 0.

(i) If w=[];_ 1?_;, then f-w € H'.

(1) [gn f(z) dz=0.
(W) [gn f-w dIl=0.
(v) fRnf-w” dll=0,n=1,2,...

(vi) If f € L*(IT) with suppf C R™, then for any e > 0 we have
n
H gjr;+i)2 e H'.

(vii) The equalities (v) are valid for any function f € L'(II) with suppf C R,

Proof. Now we will prove all the points.
(i)
. n n 1 o .
/ OR ) (R (0N || ( /0 ¢ i dm) e di

j=1 7=1

_ <2”> / € d =0

if §; <0 forall j € {1,...,n}, since § —n; <O0.
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. . —1 1
(i) First of all, let us see that f - % € H'. And as we have

T

Lo fo2if——

T +1 +i’

we only need to prove that f - — 1+1

f( ) () dt = /n f@) <1 /Ooo e e dn) et dt

]

— <27T> /0 e_nf(fl _771)525"'7571) d77 =0

]

if §; <0 forall je{l,...,n}, since & —m < 0.

xr1—1

o we obtain the result.

Therefore, iterating this for all

(ili) Since f is continuous, it vanishes in R™ \ R"} and

(iv)

g
1’:13
[
3

since it follows from (i) and (iii).
(v) It follows by induction from (ii) and (iv).

(vi) Clearly, f € L*(m). We only have to check that suppf. C R%. If h € S(R") is a
plus-function, then

fe(@)h(z) dv = f hHijjJrz =0
R

because h[[7_; (525 + i)~? is a plus-function and it is in S(R™) by (i).

(vii) By Lebesgue theorem on dominated convergence,

fow” dH—hm ferw™ dIl =0
R R~

according to (v) and (vi), since ’H?:l(Ejtj + i)—2’ <1 fort € R™.
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Now we assume that f € L'(II) is a plus-function. We put

F(e, ... ") = f(—cot 51, ..., —cot ?n), 6; € (0,2m).
The variables 6; and x; = — cot % are connected by the equalities:
1+ e
YT T
2dx;
de; = I
J 1 +.’L’2

J

Hence,

27 27 ) ) n 1
F(e,... en d@...d@n:Q”/ ]+ dt < +oo,
| [ me e a O] g < o
d

an

R 1 L
F(—k) = @ /n F(e?)e™? dp = . f-whdll=0, keN"

by (vii) in the previous lemma. Therefore, F € H'(T") and F verifies (2.0.1), which is
equivalent to (2.0.5).
O

As we have proved the Jensen inequalities, we proceed now with the proof of the
Theorem on Two Constants.

Theorem 2.0.7 (Theorem on Two Constants). Let p € [1,4+00), v > 0. Suppose S C R”
is Lebesque measurable and 11,(S) > ~, x € R™. If f € HP(R"™), then

Y
/ P(F) (@) dm < 2 (/ P dm> Tl (2.0.3)
n S
Proof. First, we put II,(A) :==1I(A — z), z € R", A C R". That is,
m (A)—l/ﬁldt z € R
! T Ja L (g =) '

Notice that II, is a probability measure on R™.

Before proving this theorem, we need the following two points.

e Let f € LY(IT). We put

P(f)(z) = Rnf dll, = . flz+1t) dll(t), zeR"™

If f € LY(II) is a plus-function, then the same is true for the function ¢t — f(z +t).
Hence,

log [P(f)(x)| < P(log|f])(x). (2.0.4)
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o If f >0 then

/nP(f)(:c) d;v:/n [ ferndean) = [ @ do

Rn

In particular, for any measurable set S C R"”
/ / fdll, de = P(xsf)(z) de = / f(z) du. (2.0.5)
nJS R S

Now, we fix z € R" and put k := I1,(9), k¥ = I1,(S°), A(4) := k7T, (AN S) and
N(A) := (k)" I, (A N S, where A C R". Notice that k¥’ > 0 since otherwise there is
nothing to prove. So we have two probability measures A and ). Using (2.0.4) and the
inequality for geometric and arithmetic means we obtain that

plog |P(f)(x)] < /S (log |fI?) dA+ K (log| fP) d

< klog </ b dA) + K (/ Fik dx>
S Se

1 1
:klogk—i-k'logk,—i—klog/ |fIP ngc—i—k’log/ |f|P dIl, (2.0.6)
S Se
<log2-+ ylog [ [fI7 dIL+ (b —)log [ | dIL, +Klog [ |7 diL.
s S se

We use the inequality k:log% + (1 —k)log ﬁ < log2. The sum of the last two numbers
in (2.0.6) is not greater than (k — v + k') log [o, [fP dIl; = (1 —v)log [gn [fIP dII,. Tt
follows from (2.0.6) that

|P(f)(x)P <2 (/S|f|7’ dﬂx)V (/Rn |fIP dﬂx)lﬂ, xz € R"™

Integrating this estimate over R™ with respect the measure m, applying the Hdélder
inequality and (2.0.5), we obtain the expression (2.0.3).
O

As we have the background necessary, we continue with the main result of this chapter.

Theorem 2.0.8 (The Logvinenko-Sereda Theorem). For a measurable subset G C R" the
following are equivalent:

(1) There a constant C > 0 such that

L am=<c [ 157 an

for every function f € L?*(R™) with bounded spectrum. We will say that G is a
norming Set.
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(2) There is a cube K C R™ and a constant v > 0 such that
(K +2)NG| >~y
for all x € R™.

Proof. Necessity:

As any subspace of functions of L?(R") with bounded spectrum is shift-invariant, we
only have to prove the following: if £ is a shift-invariant non-trivial subspace of L(R"),
then every set that satisfies (1) for every f € £ also verifies (2).

Assume f € € with || f||2 = 1. We put wy(6) =sup { [, |f|* dm : m(e) < d}. Moreover,
wg(6) L 0asd 0.

Now, we consider f(z) := f(z —h), h € R™. It is easy to see that

/ Ful? dm < wy(m(e)

for any Lebesgue measurable set e C R"™.
Suppose G satisfies (1) for every f € E. We can find a arge cube K satisfying

/ P dm < 1/2C,
KC

being C' the constant of (1). Then, we have
/ | ful? dm < 1/2C
(K+h)e

for any h € R™. By (1) and by the shift invariance of £ we obtain

1 1
s=¢ [ nEdm< [ 15 dn- s
Rn e GN(K+h) GN(K+h)e

< wi(m(G N (K +h))) + %

for h € R™.
Therefore, we(m(G N (K + h))) > % for any h € R™ and (m(G N (K + h)) is bounded
off zero by a constant depending on f and C, but not on h.

Sufficiency:
Here we use the information on the Poisson transform P and the measures II,.

Lemma 2.0.9. The following assertions are equivalent:
(a) G C R" satisfies (2).
(b) inf{II,(S) : x € R"} > 0.
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Proof. Assume (a) is true and take K and « in (2), where K = (—L, L)". So, for x € R"

1,(G 2/ I, = — / Gt tn S dtr . dt,
(K+z)NG " rn—L z1—L z:l 1 +
1 1
> " ————m(GN (K >t

Now we suppose that I1,(S) > o, z € R, where o is positive and not depending on x.
We put K := (—L,L)", K; := (=2/L,27L)", a(z) := m(G N (K + z)). Then, we obtain

0 [e's) n
"o < xa(ti,.. 5 dtp...dt
o oo paiey 1+ (2 — ;)2 + (x; — t;) "
= xa) || 77—~ dt+ / xa®) || =7 &
/K—l—x 21;[1 L+ (2 — t;)? ]Z:; Kj41\K; };[1 1+ (i — )2
) 9 22n
() 4+ 320 ML 1 (K + ) < a(@) + -
7=0
If L is large enough, then we have a(x) > 7.
O
Now, we will show some properties of the operator
1 - 1
P — O ———— dt, zeR™ 2.0.7
e = [ O g 0 @ (207)

(A) If p € L3(R"), then P(yp) is the convolution f x k, where

As follows from k(§) = ﬁexp(— S &), € € R for p € L*R") and for
m-almost all £ € R™

P(p) = ( exp( ZI&)
(B) If p € [1,40c], p € LP(R",m), then P(p) € LP(R",m) and [|P(¢)lp < [[l[p-
Proof. Suppose 1 < p < oo, q:=p/(p—1). Then

[P(p)(x)" < /(k(x—t))l/plw(t)\(k(w — 1)/ dt

< ([ atptwr ae) [ ra-o dt)p/q = P(lpl)(@), @ e R
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Integrating this estimate with respect to x and using the equality [ P(|¢|P) dm =
J lplP dm, we obtain the result. The proof is even simpler if p = 1 or +oc.

O

(C) From above ||P(p)||2 can be estimated by ||¢|l2. The inverse estimate is in general

false,A but it becomes true for plus-functions with bounded spectrum. If ¢ € H? and
sup f C (0,1)™, then

lellz < @2m)"e™ || P(#)ll2. (2.0.8)

Proof. If ¢ € H?, then (2.0.7) can be written as

o= 28 om (-3 k)
1=1

Hence, we obtain that

|B(6)] = (2m)" exp (Z |sz-|> IP()(€)] < 2m)"e | P(p)(€)] (2.0.9)
=1

for £ € R™. Now we obtain (2.0.8) by the inequality (2.0.9) and the Plancherel
theorem.

O

Assume that f € L?(R") with suppf C (a,b)", b—a = l. Now we consider the following
function

p:=f-exp (—Ziaaji> .

i=1

As we can see p C H? and || = |f|. By (C),

/ F[2 dm :/ o2 dm < (27)2%2”/ P()2 dm. (2.0.10)
Rn Rn n

Since G is relatively dense, we have II,(G) > o for all x € R™. Now, applying the
Theorem on Two Constants (Theorem 2.0.7), we obtain

1P <2 ([ 1eR) 1ol =2 ([ 157) 130,

This estimate combined with (2.0.10) gives

I1£115 < (2(271')2”62[)1/0/G]f|2 dm.



Chapter 3

Bergman spaces

In this chapter we will give a description of the norming set G for the Bergman space.
For that, we have used the proofs which appear in the articles [3] and [4] de Daniel H.
Luecking.

Hence, we start by defining the functions of the Bergman space.

Definition 3.0.1. Let D C C denote the open unit disk. If p > 0, AP denotes the Bergman
space of functions f which are analytic in D and | f|P is integrable on D.

In the following results we will need pass from the balls
D(a,R)={z€D: |z—al]<r(l—|a))}, 7e€(0,1),

to balls in terms of the pseudohyperbolic metric. So, we have to define the following:

A(a,r):{z€D| |2 = d <r}.

|1 —az|

Now, we show some properties of these pseudohyperbolic disks.
Proposition 3.0.2. (i) If z € D(a,R) and 2R/(1 + R?) <r < 1 then

D(a,R) C A(z,1).

(ii) There exist constants C(r) depending only on r such that

(1 — |a])?

iy S m(A(a,r)) < C(r)(1 —al)*.
Proof. (i) To prove (i) simply estimate

|2 — 2| 2R
1 —z2/| — 1+ R?

for z,2" € D(a, R). This estimate is simplified by the fact that the maximum occurs
at z=a+ R(1 —a) and 2’ =a— R(1 —a) when 0 < a < 1.

12
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(ii) The proof of (ii) is an estimate of the diameter of A(a,r).

The following lemma will be useful in th proofs.

Lemma 3.0.3. Given e > 0, there are constants C1,Cs > 0 and a radius R > 0 depending
on € such that for all pesudohyperbolic disk A(E, R) with & € D, there is a AP-function

I = fae,r) such that

° fD|f|p dm = C1,

3 fD\A(&R) |fIP dm < e,

® supyene,r) |/ (W) < Co/m(A(E, R)).
Proof. Given € > 0. We consider the function

(1= wf)??

p
(l—zw)‘l/p cAP, zeD

fuw(z) =

for some w € D fixed.
Let us see that the function satisfies all the properties.

N o A e T
J 1 @z = [ Tz = 0 wfR

since we use the property of the Bergman kernel:

J

2 1

1
dz=— .
T A wp)y

(1—zw)?

Moreover, if we take a disk D(a, R) and as (‘1111;;5212 < (l_fwl)g, we obtain
1 —|w?)? 4 D\ A
Ay N S LV VY. R
D\A(w,R) |1 — 20| D\A(w,r) (1 — |w]) (1—|wl)

So, for that € there is R such that

/ fu(2)IP dz < e,
D\D(w,R)

The last property is verified because

(1— |w|*)? 4 AC(R)
=z = (0= w)? = m(AR)

‘fw’p:

by Proposition 3.0.2. O

We continue with the main result of this section.
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Theorem 3.0.4 (The Logvinenko-Sereda Theorem). For a measurable subset G C D the
following are equivalent:

(1) There is a constant C > 0 such that

[uram<c [ \rpan
D G
for every f € AP. We will say that G is a norming set.

(2) There is a constant 6 > 0 and a radius R € (0,1) such that
m(G N D(a,R)) > édm(D(a, R))
for all a € D.

Remark 3.0.5. Using estimates like those we can show that (2) is equivalent to:
(27) There exist 6o > 0 and 0 < Ry < 1 such that

m(G N A(a, Ry)) > dom(A(a, Ro)), a€D.

Proof of the Theorem 3.0.4. The proof that (1) implies (2) is relatively simple. We will
prove that (1) implies (2’). So, given € < 5% and applying Lemma 3.0.3 there is a radius
R > 0 such that for all pseudohyperbolic disks A(€, R) there is a function fa (¢ g verifying
the properties of the lemma. Hence, we obtain that

m(GNA(E R)) 1 2
- C(R) /GmA(&R) |fB(e.r)(@)|” dm(z)

m(A(E,R)  ~ 4
1
~1C(R) ( /G [faer @) dm(z) - /D A | facer) (@) dm(fﬂ))
1 T T
= 10(R) CRUE 8CC(R)
where § = ch(R).

The proof that (2) implies (1) is the difficult one to prove. It requires the following
three lemmas. We assume that 6 and R are given by (2) and fixed. The constants used
only depends on R and p unless explicitly stated otherwise. In particular they do not
depend on the function f. As R is fixed we abbreviate D(a, R) by D(a). If the analytic
function f is given and A € (0,1) we define the set

Efi(a) ={z € D(a) : |f(2)| > Alf(a)}
and the operator

1 P dm
Bafla) = m(Ef(a)) /EfA(a) 77 dm.

Now, we will assume p = 1, the proof of the general case can be obtained with only minor
modifications on replacing |f| by |f|P.
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Lemma 3.0.6. Let f be analytic in D and a € D. Then

m(Efr(a)) log 5 '
m(D(a)) ~ log IT}(];()‘T) + log%

Proof. We consider w € D. Applying Jensen’s inequality and elementary estimates we
have

g £(w)] < s [ tosl sl dm

1
bgUde~%n¢D@m>/ghwo

m(E fy(w)) 1 o "
m(D(w)) m(E(w)) /Emw)l slfl
m(Ef(w))

log A f(w)| + “m(DW)) log By f(w).

In the last inequality, we use the concavity of the log. Now, we subtract log | f(w)| from
the both sides.

1 log | f| dm
m(D(w)) /D(w)\Ef)\(w) !

< MD(w)) = m(Efr(w))
- m(D(w))

m(D(w)) = m(Efy(w))
- m(D(w))

log Al f(w)] +

m(D(w)) — m(Efx(w)) m(Efx(w)) .  Byf(w)
P W) N ) Tl
As log A < 0 and log ?}(J;(SU') > 0, we have that
m(Efy(w)) _ gy
m(D(w)) ~ log ?}(ﬁﬁ) + 1og%

O

The aim of this lemma is to show eventually that Ef)(a) takes a large enough fraction

of D(a) to include some of G N D(a). This will no be true for all a € D because 1‘3}(’;()“')

may be very larger. Hence, we will use the following two lemmas to show that the set

where %a(ﬁ) is not very larger is sufficient.

Lemma 3.0.7. Let € > 0 and f € A'. Define the set

A={aeD: |f(a) < TM/D(G)|f| dm}.

There is a constant C depending only on R such that

/Af| deCe/U|f| dm.
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Proof. For a € A we have

0 <e / 1) )xm)( 2) din(z).

Integrating over A and using Fubini’s Theorem, we obtain

J @t am@) << [ 1) [ — e vow() dn(a) dm(o).

Using the Proposition 3.0.2 (i) with » = 2R/(1 + R?) we can write

XD(a) (2’) < XA(a,r) (2’) = XA(z,r) (a)

Therefore, we have that

1 1
/Am(D(a))XD(a)(z) dm(a) < /A(Zm) D) dm(a).

Moreover, if a € A(z,r), there is a constant C* such that

(1—[2)?
m(D(a)) > o

Combining this with Proposition 3.0.2 (ii) we have

/If )| dmf(a) < C(r /yf )| dim(2)

The only use made of Lemma 3.0.7 is in the proof of the following. If p # 1, we need
change |f| to |f|P and €3 to £'*2/P in the following lemma. We assume from now on than
A< 1/2.

O]

Lemma 3.0.8. Let ¢ € (0,1) and f € AL, Define the set
B={seD: |f(a)| <&’Brf(a)}.

Then there is a constant C' depending on R (and p) such that

/Blf! deCa/Dm dm.
Jitam=[ 1 dm+/B\A|f| dm.

Proof. We write
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The first integral can be estimated by Lemma 3.0.7. For the second integral we use the
Fubini’s Theorem as in the previous lemma.

3 ¥ z mia miz).
L am = [en [ e e (@) dm@) dn:)

Now, we need show that the inner integral is bounded. Since xgy, (a) < XD(a)(z), we use
the argument in Lemma 3.0.7 and we can show

1 < c
m(Efx(a)) ~ e2m(D(a))

whenever a ¢ A. We will do showing that any disk D centered at a contains a concentric
disk D’ of area (1/C)e?m(D) with the following property. Whenever f is analytic and

1
|ﬂwzsmeLMMm

Then |f(2) > 3|f(a)] > Alf(a)| on D".
Without of generality we take a =0, D =D, and

1/]f\dm—1.
™ JD

Our hypothesis then is |f(0)| > . There is a constant I'g > 1 (depending ony on p)
such that |f(z)| < T on the set |z| = 5. Assuming |z| <  we obtain

/|t|=1/2 I <t i z 1> “

Choosing |z| < £/8'g we have that

2r|f(z) = F(O)] <

< Ty - 87|z

FE > O] - £ > 117(0)

on a ball about zero of volume 7(¢/8T)%. Translating this to the ball D(a) we obtain
that Efy(a) contains a ball of area (¢2/C)m(D(a)) whenever a ¢ A. Therefore, we have
the following.

4Mmms&4mmmm.

Hence, we have proved the lemma.
O

Let F=D\B={a€D : |f(a)] >e*Byf(a)}. If we choose € such that eC' < 1/2, we

have
/ |fl dm < 2/ |f| dm. (3.0.1)
D F
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By f(a)

For a € F we have 7] < 8% Hence, if we choose A < 6/¢

, we obtain

m(E fi@) (2/9)log(1/%) 0

m(D(a) ~ Tog(1/e3) + (2/0)log(1/e%) ~ 2

Consequently, (2) implies, for a € F,
1
m(G N Ef\(a)) > §5m(D(a)) (3.0.2)

where the choice of A depends only on R, ¢ and p. As (3.0.2), we have

1

m(D(a)) /GXB@(Z)'J” (@) dm > SN f(@)], acF.

Integrating over F and using Fubini’s Theorem, we obtain
N [ dm < [ 1@ [ i (@) dmla) dm(z)
- < o (2 a
2" Jr G = m(B(a)) P
<c [ 5G] dm(z).
G
Hence, using the inequality (3.0.1) we have
1
¢ [ 1#G)] dm(z) = 367 [ |ldm.
G 4 Jp

So, this complete the proof. O



Chapter 4

Paley-Wiener space

In this chapter, we will give a complete description of the pair (A, B) forming a strong
a-pair with any bound spectrum B as in Chapter 2. However, here we will show an original
proof using the same structure as for Bergman spaces.

Now, we give a definition of the functions of Paley-Wiener space.

Definition 4.0.1. We say that f € PWy if f € L?(R") and suppf C K. That is,
PWg = {f e L2(R") | suppf C K}
Moreover, using the Paley-Wiener theorem we obtain that
PWy = {f € H(C) : f € L*(R"™) and 34, C € R* such that | f(2)| < CeA‘Zi} .

We will need the following property, which appears in [7, pp. 95-96], to prove the main
result of this chapter.

Proposition 4.0.2. If f € PWy then

[ 15+ i) dm@) <@ [ @) dno)

R”

Remark 4.0.3. If we integrate respect to the imaginary part ¢, we obtain that

2 do(z 2A dm(v) - 2 dim(z
[ R < [ ) [ 5 dnt

9AR 7(”/2R”

2
< T L @R dme).

Notice that we use the measure m on R" and the measure o on C".

The following lemmma will be useful to prove the necessity of Logvinenko-Sereda The-
orem.

19



20 Tanausu Aguilar Hernandez

Lemma 4.0.4. Given € > 0, there is a constant C' > 0 and a radius R > 0 depending on
e such that for all ball B(§, R) with § € R", there is a PW -function f = fp¢ ry on R"
such that

o fRn ‘f|2 dm = 17
° fRn\B(&R) |f|? dm < e,
® supep(er) [f(y)° < C".

Proof. Given £ > 0. We consider the function f(z) = 1(K) Xk (z — &) € PWgk. Let us
m

see that f verify the conditions.
Applying the Plancherel theorem, we obtain the first property

L@ am@) = —= [ cla = OF dmie) = s | @S am(e) = 1.

Moreover, as we can see

1
2 d - = . B 2 d
/RH\B(&R) |f(x)|" dm(z) (K /RH\B(g,R) Ik (2 — &) dm(x)
1 . )
- m(K) /R"\B(O,R) X% (y)|* dm(y) — 0 when R — oo.

So, for that ¢ there is R > 0 such that

1
fodx:/ Xi(x — &) dz < e.
/R"\B(am' ) m(K) R”\B(&R)‘ wle =9

The last property is verified because

1
1l < G ez L Do =€) i) = 5T,

O]

Now we will prove the Logvinenko-Sereda Theorem of the Paley-Wiener functions with
the balls of C™.

Theorem 4.0.5 (The Logvinenko-Sereda Theorem). For a measurable set G C R™ the
following are equivalent:

(1) There is a constant C > 0 such that

[ am<c [ 117 an

for every f € PWg. We will say that G is a norming set.
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(2) There is a constant 6 > 0 and a radius R > 0 such that
m(G N B(z, R)) > ém(B(z, R))
for all x € R™.

Proof. The proof that (1) implies (2) is the easiest. In this proof, we consider a function
with a certain properties.

So, given ¢ < % and applying Lemma 4.0.4 there is a radius R > 0 such that for all
balls B(§, R) there is a function fp( gy verifying the properties of the lemma. Hence, we
obtain that

m(G B R) > / e ot @) dm@)

GNB(£,R)
1
2 o (/ | fB(e,r)(@)]" dm(z) — /]R”\B(f . |fB(e,r)(7)] dm(m))
1 1 1
> rod (C’ — 6) > 500 — om(B(&, R))

_ 1
Where 6 = W

The proof that (2) implies (1) is the difficult one. We will use the followings lemmas
to facilitate the proof. We fix R as in (2). If f € PWg and A € (0,1) we define the set

Efx(a, R) = {z € B(a, R) CC" : [f(2)] > Alf(a)[}

and the operator

S B
Bxf(a, R) = m(Efx(a, R)) /Efx(aﬁR) i

Lemma 4.0.6. If f € PWg and a € R™, then

m(Efa(a,R)) _ log (57)
m(B(a, R)) — logW + log ()\—12)

Proof. As we will see the placement and the size of the ball do not matter in the proof
of the lemma. So, we consider a = 0 and m(B(a,R’)) = 1. Applying the mean value
inequality we have

log |£(0)] < / log |f]? do = /
B(0,R")

log 2 do+ [ log|P do
B(0,R")\Efx(0,R’)

EfA(OaR,)

< (L= m(E(O R g VLI +m(EROF) s [ gl o
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By the concavity of log
log [F(0)* < [1 = m(Ef5(0, R))]log A2|f (0)[* + m(Ef1(0, B)) log BAf (0, R).
Subtracting log | £(0)|? from both sides

B/\f(oa R/) ]

0.5 [ m(EA (0, B)]og ¥ + m(Bf5(0, B)) log =y

As log A < 0 and log |f(()‘ ) > 0 then

log (%)
m(Ef)\(OvR,)) >
log BTJZ‘((OOHE) + log (%)

(4.0.1)

Now, let us see that the lemma it is verifying for all @ € R™ and for all radius R > 0.
We know that

m(B(a, R)) = (5,)% m(B(0, R))) = (g)gn, VR > 0.

Moreover, knowing that we can deduce that
m(Efx(a,R)) =m({z € B(a,R) : [f*(2)] > Alf*(a)[})
R 2n
_ <R/> m({z € BO,R) : [f(=)] > MO}

R 2n
— (R/> m(Ef\(0,R")), VR >0,

and

X -t *(2)|? do(z
BRR) = ) o 1O )

~(%) semamn Lo () 0

1

R . /
-~ m(EfA(0,R")) /Emo,RI) | £(O)]7 do(¢) = BfA(0, ')

where f*(z) = f ((z - a)%).
So, using the equation (4.0.1) we obtain that

mEf@R) | Tor()
m(B(a,R)) — log jIBf”E §|2) +log (%)
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The goal of this lemma is to show that F f)(a, R) take a large enough fraction of B(a, R)

to include some of G N B(a, R). This will not be true for all a € R™ since Brszggif ) may
be larger. Therefore, we will use the following two lemmas to show that the set where

B|/\szf(;;i§ ) is not very larger is sufficient.

Lemma 4.0.7. Let € > 0 and f € PWyg. Define the set

—daeR": [f(a)f < —p s ey
A—{ eR":|f(a)] <m(B(a,R)) /B(a,R)|f| d}

Then there is a constant C depending on R such that

/|f|2dm<05/ 2 dm.
A R™

Proof. For a € A we have

FOF < gy foon VT 40 =< [ VO gy e (@) doto)

Integrating respect to a and applying the Fubini’s theorem
1
[ @ am@) <e [ 18 ( [ i e (@) dn(@) dots
_ 2 1
—ef ([ sty otem() (@) dot2)

Then, applying Remark (4.0.3), we obtain

n

/ F(@)]? dm(a) < <C(R) / @) dm(z).
A

The only use made of Lemma 4.0.7 is in the proof of the following.

Lemma 4.0.8. If A <1/2, ¢ €(0,1) and f € PWg. Define the set
B={aeR":|f(a)]* <""'Byf(a,R)}.

Then there is a constant C depending on R such that

/|f2 dm<Cs/ 2 dm.
B Rn



24 Tanausu Aguilar Hernandez

Proof. We write

/B\J"I2 dm—/BmA\f\Q dm+/B\Af\2 dm.

We estimate the first integral by the Lemma 4.0.7. For the second we use the Fubini’s
Theorem as in the Lemma 4.0.7.

2 dm < g™t # 2)|? do(z m(a
/B\Am dm < /B\A m(E fx(a)) ([Eh(a)U( ol )> e
= gntl - |f(2)]? (/B\A m(Ejf)\m))XEfA(a)(z) dm(a)) do(z).

Now we will show that any ball B(a, R) at a contains a concentric ball B’ of volume
Con(v/E/4/nT)?", where Cy,, = 7 /T(n + 1). If f € PWk and

1 2
—_— d
m(B(a, R)) /B(a,R) 71 do

then |f(2)| > 3|f(a)] > Alf(a)| on B".
Without loss of generality we can assume that ¢ = 0 and

[f@) > e

; 2 do =
m(B(0, ) /Bm,R) 7 do = 1.

Then |f(0)] > /e. Moreover, there is a constant I'g such that |f(z)| < T'gp on the set
|z| = %
Assuming |z| < 1/4 we have that

[f(2) = F(O)| < 2] - sup [V[(2)]

|z]<1/4
since

d

1
76 = £0) = [ st ar

Moreover, as f € PWg we have that f holomorphic in C". Then applying the Cauchy’s
formula to each component, we obtain that

1
/ -3 de
loxl=1/4 %

Thus, |V f| <2y/nl in |z| < 1/4 and so

of

0z

< 2I%.
S5 s 2l

SOl =1f )] < 1f(2) = F(O)] <2V/nlo|z|  for [2] < 1/4.
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Hence, if we consider |z| < y/g/4y/nTy we obtain that

[f(2)] = [f(0)] = ve/2 > |£(0)]/2
on a ball of volume Ca,(y/€/4y/nT0)?*", where Cy, = 7" /I'(n +1). Translating this to the

ball B(a, R) we obtain other ball of volume Ca,,(y/€/41/nl)?" contained in Ef)(a, R).
Therefore, we have that

2 dm < "t 2)|? -t z) dm(a o(z
/B\A|f! dm < /(cn|f( ) (/B\Am(EfA(CL,R))XEfA(a,R)( ) d ()) do(z)

ntl 2 (4y/nToR)*™
=< / M) </l’>’\A =m(B(a, B)) P ) dm<a>> do(z)

" z ? W z mia o\z
=€ /Im(z)<R|f( )| </B\A €nm(B<a,R))XB(a’R)( )d ( )) d ( )

< (4y/mToR)2Me / F(2)2 do(2).

| Im(z)|<R

Applying the Remark 4.0.3, we obtain that

/ Fik dm<Ce/ |f? dm.
B\A Rn

Hence, we have proved the lemma.

Let F =R\ B={a € R":|f(a)|* > " B)\f(a)}.
We choose ¢ such that eC' < 1/2 we have

/ |f|2dm<2/\f|2dm
Rn F
since

/ Fik dm:/ |f\2dm+/|f|2 dm</ |f|? dm—i—Ce/ |f]? dm

Rn F B F Rn

1
</ I dm+/ £12 dm
f 2 Rn

by lemma 4.0.8.
For a € F we have ﬁﬁ(égfg < 6,11“. So if we choose A < e("t1)/%0 e get

m(Efx(a, R)) (2/d0) log(1/e"*)
m(B(a, R)) = log(1/e"+1) 4 (2/d0) log(1/e"*1)

>1 —50/2.
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Consequently, (2) implies for a € F
0
m(G N Ef(a,R)) > 5'm(B(a, R))
where A depend of R and dy. So,
1
2 2 2
T L Yeen @I @) dn(@) > S0 @P, e F
because

2 a 2
Y Jy e @I dnto) > S [ xenen(e) ante)
L XU @PmEfH @ R)NG) | &N (@)P
n(Bla, B) >

Integrating over F

2 ; X mla m\x 1 2 a 2 mla
L8 ([ eten @ dn@) dn(a) = 300 [ 110 dma)

Analogous to previous lemmas

2 1 2 2
[ U@ dme) = 30002 [ 15(@)P ama)

L1 dm <2 [ 17 dm.

1 1
/ 2 dm > 250)\2/ 2 dm > 450)\2/ £[2 dm.
G F R™

As we know

Finally,



Chapter 5

Classical Fock space

In this chapter we will give a description of the norming set G for the Classical Fock space.
For that, we will show an original proof with the same structure of the previous chapter.
However, here we use the article [6] to understand the Classical Fock space.

Now, we define this functional space.

Definition 5.0.1. We say that f € .7-"22|Z|2 (C™) if f € H(C™) and

91 s= [ £GP am(z) < oc,
(Cn
That is, we define the Fock space as
Fa2(C") = {f € H(C™) : || f]| < oo}

Remark 5.0.2. The Fock space ]-'22‘Z|2(C") is a Hilbert space with reproductive kernel

K(zw) = Z Pa(2)pa(W) = Z (zaw!)a =W

a€eNg a€eNy

ZOé

Va!

where a ortonormal basis of this space is {Sﬁa}aeN'g = { } . Notice that we are
aeNp

using the multi-index notation.
We will need the following two results to prove the main theorem of this chapter.

Proposition 5.0.3. Let f € .7:22|Z‘2(C") and w € C. The translations
Tulf) = 7z — w)
act isometrically in ]:22|z|2(<C”).

27
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Proof. We consider a function f € }'22|Z|2 (C™) and we fix w € C". So, we have the function

guw(z) = e2w'zf|w|2f(z —w).

Now, let us compute ||gu||?.

ol = [ lau(@)PeF dm(z) = 2 [ e o w2 (e

n

— /n 672\w\2+4ﬂ?(ﬁ-z)72\z|2|f(z _ w)‘Q dm(z) — /(Cn ’f(Z _ w)|2672\z7w|2 dm(z)
= [ 7P dmt) = 117,

O

Lemma 5.0.4. Let f € ]-"22‘Z|2(C”) and a ball B(a,r) C C", then we have that there is a
constant Ty > 0 such that ]f(z)|2e*2|z‘2 < Ty for all z € 0B(a,r).

Proof. Let us consider the holomorphic function F(z) = e/**=22% £ () where w € dB(a, r).
So, applying the mean value inequality we obtain that

w)|2e 2 = | P(w))? _ 2)|? dm(z
7)) PP < gy [ G dn)
1

m(B(w.2r)) —2|z]2 2|z—w|?
m(B(w,2r)) /B(UJQT) |f(2)2e 22" e2 dm(2)
; — \z|2

: m(B(w,QT)) /B(w72r) ‘f(z)‘ge 2 dm(z) < 00

for w € 0B(a,r). O

The following lemma will be useful to prove the necessity of Logvinenko-Sereda Theo-
rem.

Lemma 5.0.5. Given € > 0, there is a constant C' > 0 and a radius R > 0 depending
on & such that for all ball B(§, R) with £ € C", there is a f22‘2|2(C”)—functi0n f = fBer)
such that

o Jou lfPe dm(z) =1,
o JemBer |f12e 2 dm(z) <ce,

o SUp,cp(en |f(y)2e 2 < C”.

Proof. Given € > 0 and fixed £ € C". We consider the function

ge(2) = v/ neX Kl K (2 — €,0) = /2r Tyre2Eelel
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where K is the reproductive kernel of the Fock space f22|z|2(cn) and £ € C".
Now, let us compute ||gel|?

—|2|? —1\n E.2—|€]2 —2z|?
ol = [ lac(@)Pe " am(z) = @ty [ (3R e

n

_ (27T1)n/n 672|z|272\§|2+4§ﬁ(ﬁ-£) dm(z) — (27T1)n/ e—2|z7§|2 dm(z)

n
=y [ ) = /mr ([ e am) = @/n /=1
where we use the change of variable n = z — £&. Hence, we have that ||ge[|? = 1.

Moreover, we can see that

/ ge(2) e dm(z) = (2)
C"\B(&,R) n

-(2)

/ o2l dm(z)
C™\B(¢,R)

/ e~ dm ()

Cm\B(0,R)

where we use the change of variable n = z — &.
So, if R — oo we have that

™

/ g2 dm(n) = (§>n —/ e 20l dm(n) — 0.
C"\B(0,R) B(0,R)

Hence, for that € > 0 there is R > 0 such that

/ |gg(z)|2ef‘z|2 dm(z)=1- <2> / e 20l dm(n) < e.
C™\B(&,R) g B(0,R)

The last property is verified because

2o _ (2)" oly-e? o (2
get)Pe 0 = (2] etes < (2
for y € B(&, R). O

Next, we will prove the Logvinenko-Sereda Theorem for the Fock space in several
variables.

Theorem 5.0.6 (The Logvinenko-Sereda Theorem). For a measurable set G C C™ the
following are equivalent:

(1) There is a constant C > 0 such that

/ S dm(z) < € /G F@)Pe " dm(z)

for every f € ]:22‘42(@”). We will say that G is a norming set.
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(2) There is a constant 6 > 0 and a radius R > 0 such that
m(G N B(z,R)) > ém(B(z, R))
for all z € C™.

Proof. First, we will start with (1) implies (2). So, given e < % and applying Lemma 5.0.5
there is a radius R > 0 such that for all balls B(§, R) there is a function fp )y verifying
the properties of the lemma. Hence, we obtain that

1 ol
m@OBER) 2 g [ aen(Ee dn)

)

1 o L
o ([1menGre s - [ e ants) )
G C"\B(&,R)

1 1 1
> el (C’ —5> > 200" = om(B(&, R))

1
where § = 5o tpE Ry

Now, let us prove that (2) implies (1). We will use the following lemma to prove this
implication. We fix R as in (2). If f € 73 P((C”) and A € (0,1) we define the set

|z
Efi(a,R) ={z € B(a,R) CC" : |f(2)]e”*" > A|f(a)]e™1"}
and the operator

a = ; 22e 2 dm(z
Buf(@F) = s | !

Lemma 5.0.7. If f € ]:22|Z‘2(C"), a€C" and A < e, then

m(Ef(a, R) _ tog (335 )
m(B(a, R)) _1Og<m)+log<#).

|f(a)|26—2\a\2 A2e2R2

Proof. Let us consider the holomorphic function F(z) = el*I’~22% f(3). So, applying the
mean value inequality we have

; O yA 2 mi\z
BT /B  s(F G dm )
N S /

m(B(w, R)) JB(w,R)\Ef\(w,R)

A — (0] V4 2 milz
t T /E o B(F G dm )

log \2|F(w)[2e2R”

log | F(w)]* <

log(|F(2)[?) dm(2)

IN

2
m(B(w, R)) m(Efx(w, R)) /Efx(w,R) log(|F(2)|%) dm(z).
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By the concavity of log

m(B(w, R)) —m(Efi(w, R))
log | F(w)[* < m(B(w, R))

m(E fa(w, R))

log \2|F 2 2R?

log(¢*™ By f(w, R)).

Subtracting log |F(w)|? from both sides

(& R? w
0 < [m(B(w, R)) — m(E fx(w, R))|log N2> + m(E f\(w, R))log e Byf(w, R)

|F(w)[?
2
As log(Aef®) < 0 and log % > 0 then
1
m(Ef)\(w7 R)) > log ()\262R2> (5 0 1)
B(w,R - e2R2 B, f(w,R’ ' o
B R) - log SRIGR 108 (k)
O

The aim of this lemma is to show that E fy(a, R) takes a large enough fraction of B(a, R)

2
to include some of G N B(a, R). This will be true for all a € C" because % may
be very larger. Hence, we will us the following two lemmas to show that the set where
2"’ B, f(a)
|f (@) 22l

Lemma 5.0.8. Lete >0 and f € ]:22‘Z|2((C"). Define the set

={aecC: |fla)e el « — = 2)[2e 27 dm(z) b .
A { €O @l < s [ @R g <>}

Then there is a constant depending on R such that

/ F(2) 22 dm(z) < Ce / 1£(2)2e=2 dmy(z).
A Cn

Proof. For a € A we have

is not very larger is sufficient.

a)fe < & 2)2e 2= dm(z
P < gy L FORTE )

= ) o T K )

Integrating respect to a and applying the Fubini’s theorem

a 26_2|Z|2 m(a z 26_2|Z‘2 ; z) dm(a m(z
[ @B iy <= [ 7R ([ b (@) dn@) ()
<e / IR dmz).
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The only use made of Lemma 5.0.8 is in the proof of the following.

Lemma 5.0.9. If A <1/2, € (0,1) and f € .FQQ‘ZP(C”). Define the set

B={aeC : |f(a)2e 2 < "B, f(a, R)}.

Then there is a constant C' depending on R such that

/ 1£(2)]2e 2 dm(z) < Ce / 1£(2)]2e 22 dm(z).
B

n

Proof. We write

2)2e 2 am(z) = 2) 26212 am(z 2222 am(2).
LR am(z) = [ @R am() + [ (7R am)

B\A

We estimate the first integral by the Lemma (5.0.8). Analogous to its proof we have
that

2)2e 2 dm(z) < ent? . 2)2e 2 dm(z m(a
[ pepe i an <ot [ s (/Emmm )22 a <>) ama)

=" 2)[2e 21 S z) dm(a m(z).
ot [ Jpepe (/B\Am(EfA(ajR))xEma,m(>d <>) ()

Now we will show that any ball B(a, R) at a contains a concentric ball B’ of volume
Con(v/2/8T0)*", where Co,, = /T (n +1). If f € ]:22‘Z|2((C”) and

f(2)2e 25 > ¢ f(2)2e 2% dm(z)

1
m(B(a, R)) /B(a,R)

then [f(z)|e” " > J|f(a)e71 > X[ f(a)le~ 1",
Without loss of generality we can assume that a = 0 and

T 2)[2e 2 dm(z) =
m(B(0, R)) /B(Q,R)W )| dm(z) = 1.

Then |f(0)| > /e. Moreover, applying the same idea of the Lemma 5.0.4 there is a
constant I'g such that |F(z)| < I'g on the set [z] = 3.
Fixing |w| < 1/4 and assuming |z| < 1/4 we have that

|£(0)] = e =25 £(2)] < [F(0) — F(2)] < 4Tol2].
So, we obtain

1£(0)] — e™1F f(w)| < 4Tg|w]
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for |w| < 1/4. Hence, if we consider |w| < 1/£/8 we obtain that

e P f(w)| > |£(0)] — VE/2 > |£(0)]/2

on a ball of volume Cy,(1/2/80)?", where Cy, = 7"/T'(n + 1). Translating this to the
ball B(a, R) we obtain other ball of volume Ca,,(1/€/8T9)?" contained in Efy(a, R).
Therefore, we have that

2)2e 2 dm(z) < et 2)|2e 2l _ z) dm(a m(z
[ @R amey <t [ g (/B\Am(EfA(a’R))xEma,Rx ) d <>) ()

2n
<ot [ paypei ( e (52) wwent) dm<a>> am(2)

< 5(8F0R)2"/ ]f(z)|2e*2|z|2 dm(z).

Cn

Let F=Cr\B={acC": |f(a)e 2" > e BAf(a, R)}.
We choose ¢ such that eC' < 1/2 we have

/ |f(2)2e 2 dm(z) < 2/ £ (2)]2e7 2= dm(z)
n F
2)[2e 277 dm(z) = 2)[2e 2 dm(z 2)[2e 2 am(z
/nlf()l dm(z) /Flf()l d()+/6|f()! dm(z)
2)2e 22 gm(z 2)2e 22 am(z
</B\f()| d()+08/!f()| dm(z)

n

A2e=22% dm(z 1 DN2e214 gm(2).
< [ 1R ame) 4 5 [ 7GR dm(e)

n 1/é0
For a € F we have |fi;|€(:j1\2 < €n1+1. So, if we choice A\ < e~ R <’z2—1;1> we get

m(Ef(a, R)) (2/80) log(e2* /e(n+D)
m(B(a, R)) log(e2f? /e(n+1)) 4 (2/80) log(e2B? /e(n+1))

>1—260/2.
Consequently, (2) implies for a € F
m(GN Ef\(a,R)) > %Om(B(a, R))
where A\ depend of R and dy. So,

2 1 )
T’M/GXB(“»R)(Z)U(Z)’%_Q'z dm(z) > 550)\2|f(a)|26_2|a‘ , a€F
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because
5 21 f(a 26—2|a\2
By e IR dm(e) > T [ ) dme

A2\f (@)%e 2 m(Efy(a, R) N G) _ o[ f(a)[2e2eF
- m(Bla, R)) > ;"

Integrating over F

922 1 1 —olal?
LR ([ ban (@) dn@)) dn(:) = 500 [ [f@Pe 2 dna)

Analogous to previous lemmas

/ ()P dm(z) > So0X2 / |f(a)?e 2 dm(a).

G 2 F
As we know

1£(2) 262 dmy < 2 / F(2) e~ dm.
cn F

Finally,

[ @R dm(z) = 30 [ (7))

G 2 F

> i%ﬁ/n 1£(2) e 22 dm(2).



Chapter 6

Space of polynomials

In this chapter we will give a description of the norming set G for the space of polynomials.
For that, we will use the same structure of the last chapters to give an original proof. Here
we use the article [5] to understand the space of polynomials.

So, we define this functional space.

Definition 6.0.1. We say that f € P,(C) if f € Clz| and deg f < n. That is,
Pn(C)={f €Clz] | degf<n}.
Remark 6.0.2. f € P,(C) is a Hilbert space with the norm

1l = / FP dm(z)

g d Lz A
and a orthonormal basis {\/ﬂ’\/ﬁ"”’\/ﬂ}'

The following two results will be useful in the proof the main theorem of this chapter.

Proposition 6.0.3. If f € P,(C), then there is a constant Ty > 0 such that |f| < Tq for
|z —a|l =r.

Proof. We consider the polynomial
n
f= Zakzk, aj € C.
k=0
As f is holomorphic in C, we can take the power series of f in a

n (k) (g
f:kzof k'( )(Z—(Z)k

So, we obtain that

35
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Notice that we will use the measure m on T and the measure o on C.

Proposition 6.0.4. If f € P,(C), then there is a constant C depending on n and R such
that

[ 11 dote) < (tom) [ 15 dm.
Ch T
Proof. We consider the polynomial

f= Zakzk, a; € C.

So, we obtain that

R/n s n R/n
/Cn |f(2)]? do(z /H /02 ]f(rei9)|2 dm(0) dm(r) = 271']‘28 ]aj]2 /1+ I dm(r)

R/n 1-R/n

+ Z a;ag

1+R/n 2
/ =R dm(r) (/ eti=k)0 dm(9)>
Tt 1-R/n 0
§2w<1+R> 2§ 2 = <1+R> 2R/m? d
n n = n n Jr

We will need the following lemma to prove the necessity of Logvinenko-Sereda Theorem.

O]

Lemma 6.0.5. Given e > 0, there is a constant C' > 0, a radius R > 0 and ng € N such
that there is for all arc I(§, R/n) with & € T where n > ng, there is polynomial fi(¢ gr/n)
on T such that

o Jplfl*dm =1,
o Jrvienm lI* dm <e,
o sup,cre.r/mlfW)F <C" - (n+1)
Proof. Given € > 0. We consider the reproducing kernel of the Hilbert space P, (C)
Tt — 1

_izj@j_i(zw)
CL— 2 2 w—1
7=0

for w € T fixed.
Let us see the first property.

/|sz|2dm Z|w|2 ntl
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by orthogonality of elements of the basis.
Now, we consider the new function

2

fw(z) = ﬁK(z7w)'

This function f,, verify the last property too, since

o <n+1)2n+1

2
<
[ ful “n+1\ 2r 2

Now, let us see the second property.
As we know that

1 1 Zn+l _ wn+1
fuw(z) = Iy
V2r(n+1)w zZ—w
So, we obtain that
1 bl bl 2
’fw(z)‘z =
2n(n+1) z—w

Without loss of generality, we assume that w = 1 since for other values of w we can
take rotations. So, we obtain

1

|fl(z)|2 = 277'(71—'— 1)

Hence, we have

2

1 2m—0g e(n+1)0i -1
Lo Ah@P dnt) = 5 [ S )
T\I(¢£,R/n) 27T(n + 1) 0o e’ — 1
where 6y = 2 arcsin (%) So,

[ nerane < gt [T e )
fi(z dng/ I
Tuenrs 2w+ 1) Jo, 1P

1 b
- m(n+1) /90 1 — cos(0) dm(f)

1 (90 2 — 00
= ————|cot | — | —cot
m(n+1) 2 2
i1z _ an 4

fn+ )R ~a(n+t DR 7R

€

where R = %. Notice that there is ng > % such that the last inequalities holds for n > ny.
O
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Now, we will prove the Logvinenko-Sereda Theorem of the space of polynomials.

Theorem 6.0.6 (The Logvinenko-Sereda Theorem). For a measurable set E, C T the
following are equivalent

(1) There is a constant C > 0 such that

/ ful? dm < c/ P dm
T En

for every f € P,(C). We will say that E,, is a norming set.
(2) There is a constant 6 > 0 and radius R > 0 such that
m(I(z,R/n) N E,) > om(I(x,R/n))

for all x € T.

Proof. The proof that (1) implies (2) is the easiest. In this proof, we consider a function
with a certain properties.

So, given £ < 1/2C and applying Lemma 6.0.5 there is a radius R > 0 and ng € N such
that for all arcs I(§, R/n) with n > ng there is a function f7(¢ r/n) verifying the properties
of the lemma. Hence, we obtain that

1
mlE, NI R/) = 4 [ ey ()P dmi2)
EnNI(§,R/n)

1
> 5 ( [ rerm@P amG) = [ il dm<z>>

- 1 /1 . 1 1 1 arcsin(R/2n)
- C\C - QCC’ + 1) 2CC"n + 1 arcsin(R/2n)

arcsin(R/2n)
= 20CIn <2+R> 2CC'r R+2)m(l(g’R/n))

where § = m
Notice that (2) holds for n < nyg.

Now, let us prove that (2) implies (1). We will use the following lemmas to facilitate
the proof. We fix R as in (2). If f € P,(C) and X € (0,1) we define the set

Efx(a, R/n) = {z € D(a, R/n) C Cn [ [f(2)| > Alf(a)[}
where C,, is the annulus C), = {z € C | 1 — R/n < |z| < 1+ R/n} and the operator

1 2
do.
m(Ef(a, R/n)) /JEfA(a,R/n) 71 do

B)\f(av R/TL) =
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Lemma 6.0.7. If f € P,(C) and a € T, then

m(Ef(a, R/n)) _ log (57)
- By f(a,R/n
m(I(a, R/n)) ~ log 2L log ({5)
Proof. Applying the mean value we have
1
logfw2§/ log | f|? do
TS DG, 7)) Sy

1 / 9

= log |f|* do

m(D(w, R/1)) Jpw,R/n)\Efr(w,R/n)

P — log | f]? do.
m(D(w7 R/”)) Efx(w,R/n)

By the concavity of the log
g ) < L) B RN oy 020
m(E fa(w, R/n))

m(D(w, R/n))

Subtracting log | f(w)|? from both sides

log Bf\(w, R/n).

0 < (m(D(w, R/n)) — m(Efr(w, R/n)))log A2 + m(E fx(w, B/n) log (W) |

As log A < 0 and log (M) > 0 then

[f(w)[?
m(Ef(w, R/n)) _ log (57)
m(I(w, Bfn)) = log BIWA/ g (L)’

O]

The goal of this lemma is to show that Efy(a, R/n) takes a large enough fraction

of I(a, R/n) to include some of G N I(a,R/n). This will be true for all a € T because

W may be very larger. Hence, we will us the following two lemmas to show that

the set where % is not very larger is sufficient.

Lemma 6.0.8. Let e > 0 and f € P,,(C). Define the set

—{q P < = oy
A—{ eT|[f(a)” < m(D(a, R/n))/aR/n)’f‘ d}

Then there is a constant C' depending on R and n such that

J 112 am < ce [ 17 am.
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Proof. For a € A we have

€ 1
|f(a)]* < m(D(a, Rjn) /I)(G7R/n) |fI? do = 5/Cn ‘f(z)PWXD(a,R/n)(Z) do(z).

Integrating respect to a and applying the Fubini’s theorem
1
2d / 2 / —_— d d
J @ dm@ <= [ F ([ gy ke @) dn@) do(:)

~ arcsin(/n) N2 do(s
<2 S [ 1R o).

n

Then, applying the Proposition 6.0.4, we obtain

/ F(@)? dm(a) < eC(R,n) / F)P dim().
A T

The only use made of Lemma 6.0.8 is in the proof of the following.

Lemma 6.0.9. If A <1/2, € (0,1) and f € P,(C). Define the set
B={acT||f(a)f <2Bf(a, R/n)}.
Then there is a constant C depending on R and n such that

/ FEP dm < cs/ .
B T

Proof. We write

Lt an= [ 1 dm+/B\Af|2 dm.

We estimate the first integral by the Lemma 6.0.8. Analogous to its proof we have that

2 m 2 ! z 2 m\z mia
/B\Am dm < < /B\Amwma,mn)) ([EMMW )2 d <>> dm(a)

= g2 z 2 1 z mia miz).
=¢ /Cn | f(2)] </;\Am(Ef)\(a7R/n))XEfA(a,R/n)( ) d ()) dm(z)

Now we will show that any disk D(a, R/n) at a contains a concentric disk D’ of area

77162%7221,25. If f € Pn(C) and
0

1
2
fa) > e—

(D(a /) /D@,R/n) 71
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then | f(2)| > 3|f(a)] > Alf(a)| on D".
Without loss of generality we can assume that a = 1 and

1 2
- do = 1.
m(D(, 7)) /Du,m) 17" do

Then |f(1)| > /2. Moreover, applying the Proposition 6.0.3 there is a constant Ty > 0
such that |f(z)| < T'¢p on the set |z — 1| < R/2n.
Assuming |z — 1| < R/4n we have that

1 1
2r(f(2) - F(V] <To [ - | dm(w)
lw—1|=R/2n |W — 2 w—1
—1 1
= 2nI |z =1 dm(w)
R Jjw—1j=r/2n lw — 2|
dmn
< FO*R |Z - ]_|
Hence, if we consider |z — 1| < Tl}o V€ we obtain

[f()] = [f ()] = Ve/2 > [f(1)]/2

on a disk of area 7r16§7221,25. Translating this to the disk D(a, R/n) we obtain other disk of
0

2

R . .
area 7 g, >yz€ contained in FE fy(a, R/n).

Therefore, we have that

2 2 2 1
/ R ) << [ el ( / ERG R e ) dm(a)) do(2)

16212
< E/n (=) </B\A WMXD(&R/M(Z) dm(a)> do(z)
2 arcsin(f/n) D do(s
< e s [ I dofa).

n

Applying the Proposition 6.0.4, we obtain that

/ 12 dmng/\f\z dm.
B\A T

Let F=T\B=1{acT:|f(a)]? >e*Bxrf(a, R/n).
We choose ¢ such that eC' < 1/2 we have

Lot am <2 [ 172 dm



since

s dm = [ 152 dmer [ 17 am < [ 1572 dmvce [ 157 am

1
< [P dme g [ 1117 am
F T
by Lemma 6.0.9.

For a € F we have BY}((‘;’)IFQ/R) < &. So if we choose A < £2/% we get
2
mER@R) | /E)os)

m(D(a, R/n)) = log(1/e%) + (2/d0)log(1/e?)

Consequently, (2) implies for a € F
0
m(G N Ef(a,R/n)) > Z'm(D(a, R/n))

where A depend of R, §yp and n. So,

W/E XD(a,r/m) (2| ()] dm(z) > %%Vlf(a)\% a€F

n

because

M| f(a)?
Bt oerm G dn(e) > s [ z) am)
U@ Pm(E 0, R/ 0 B 6o\ (@)
m(Dla, R/n)] >

Integrating over F

2 1 1 2 2
108 ([ gy oo @) dme)) dm2) > 3002 [ (@) dmfa)

Analogous to previous lemmas
1
¢ [ 15 dn(z) = 560 [ [7@P dno)
En 2 F

As we know

Lo am <2 [ 152 am.

Finally,

2 } 2 szz 1 2 szZ
¢ [ 1R )= gt [ 1R dm(z) > 15002 [If dm(:).
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