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Tanausú, Jordi, Dani and Andrés.

Thanks to my family for being the pillar of my days.

Thanks to all who have helped me to achieve this goal.





Abstract

We study the discretisation procedure of homogeneous polynomials in the unit
sphere S ∼= CP1. This can be seen as a basic model of a more general problem
of discretisation of sections of holomorphic line bundles over compact complex
manifolds.

Our aim is to obtain geometric necessary and sufficient conditions describing
the discretising sequences. An important model for such sequences are the
so-called Fekete arrays, which can be seen as nets adapted to the geometry of
the sphere.

The tools used in such description go back to the signal processing theory
pioneered by Beurling and Landau.

Key words: Interpolation Sequences, Sampling Sequences, Fekete Points,
Bergman Kernel, Beurling-Landau density.
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Prologue

The Shannon-Whittaker Theorem [6] states that a band limit signal f with
band-width τ , i.e., f ∈ L2(R) with spectrum in (−τ, τ), can be recovered from
its samples at the Nyquist rate f

(
k
2τ

)
, k ∈ Z, through the cardinal series

f(t) =

∞∑
k=−∞

f

(
k

2τ

)
sinc

[
2τ

(
t− k

2τ

)]
,

where sinc x = sin(πx)
πx . Moreover,

2τ

∫ ∞
−∞
|f(t)|2dt =

∞∑
k=−∞

∣∣∣∣f ( k

2τ

)∣∣∣∣2 .
This theorem was well-known in the engineering community as in the

Shannon’s theory of information in the 40’s. The use of the previous result is
discerning when a function in the preceding space PWτ can be recovered from
its samples. Landau in [11] gives an answer of the interpolation and sampling
problems in this setting in terms of density.

In this work we are focused in the interpolation and sampling problems in
the space of polynomials Pk over C. One aim is obtain necessary and sufficient
geometric conditions describing the appropiate discretising sequences.

The memoir is divided in five sections. The first one is an introduction to
the interpolation and sampling problems, the space where we set these questions
and the Bergman Kernel, which is essential for our purpose. The Fekete arrays
are defined in the second chapter. These can be seen as nets with a limit density,
so that can be perturbed to obtain sampling or interpolating arrays.

In the third one, a Landau’s technique is used to obtain necessary condi-
tions in terms of the Beurling-Landau densities. Besides, we get upper and lower
bounds for the Kantorovich-Wasserstein distance between the Fekete measure
and its limit measure.

Next, we study the connection between sampling and interpolation arrays
in our setting and the respective sequences in the Bargmann-Fock space. As a
consequence, we find that there are no arrays fot Pk which are simultaneously
interpolating and sampling. Finally, in the last chapter we find sufficient density
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conditions. The report ends with the bibliography and an index with the main
concepts.
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Introduction

1.1 Preliminaries

In this work we will study the sampling and interpolation problems for the space
Pk of holomorphic polynomials of degree k on the sphere S2 ' PC1. The metric
we consider is the usual Fubini-Study metric induced by φ(z) = log(1 + |z|2). In
particular, the volume form is

dV(z) =
i

2π
∂∂̄φ(z) =

dm(z)

(1 + |z|2)2
, z ∈ C (1.1)

where dm(z) denotes the Lebesgue measure normalised in C so that m(D) = 1.
As in [1, p. 18], the unit sphere with equation x2

1 + x2
2 + x2

3 = 1 can be seen as
the complex projective plane by taking

z =
x1 + ix2

1− x3

for every point except (0, 0, 1), the point at infinity, and this correspondence is
one to one. Indeed,

x1 =
z + z̄

1 + |z|2

x2 =
z − z̄

i(1 + |z|2)
.

This is the chart we will use through the work. The distance we consider is the
chordal distance, whose expression in the plane after the stereographic projection
is

d(z, w) =
2|z − w|

(1 + |z|2)1/2(1 + |w|2)1/2
.
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The group of isometries of the Riemann sphere with the Fubini-Study metric is
the projective special group PSU(2). If we denote the center of a group G by
Z(G), then

PSU(2) = SU(2)/Z(SU(2)) ∼= SO(3) = {A ∈ O(3) : det(A) = +1}

which can be seen as rotations of the sphere. Notice that for some calculations
we can use one of this rotations to move a point of the plane to 0, making the
computation easier. Given an ’invariant’ function, i.e., which depends on the
chordal distance, the equation∫

C
f(d(z, w))dV(w) =

∫
C
f(d(0, w))dV(w)

holds, since the Fubini-Study metric inherits the invariance.
The space (Pk, || · ||φ) is a Hilbert space, with the inner product

〈f, g〉 =

∫
C
f(z)ḡ(z)

dV(z)

(1 + |z|2)k
f, g ∈ P.

So the norm is

||pk||2 =

∫
C

|pk(z)|2

(1 + |z|2)k
dV(z), pk ∈ Pk.

We will denote the set of holomorphic functions in Ω by O(Ω), and the
set of harmonic function on Ω by H(Ω).

Note. An important result for many estimates is the measure of an annulus

V(a ≤ d(z, w) ≤ b) =

∫ b2

4−b2

a2

4−a2

dt

(1 + t)2
. (1.2)

In particular, for b not close to 2,

V(a ≤ d(z, w) ≤ b) ≈
[
− 1

1 + t

] b2

4−b2

a2

4−a2

' b2 − a2 = (b− a)(a+ b).

And in case b = a+ δ, with δ � a, then

V(a ≤ d(z, w) ≤ a+ δ) ' aδ.

Proof. We can assume that w = 0, by invariance, so that

V(a ≤ d(z, w) ≤ b) =

∫
a≤d(z,0)≤b

dm(z)

(1 + |z|2)2
.
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Since d2(z, 0) = 4|z|2
1+|z|2 , we have

a ≤ d(z, w) ≤ b⇔ a√
4− a2

≤ |z| ≤ b√
4− b2

,

and therefore

V(a ≤ d(z, w) ≤ b) =

∫
a√

4−a2
≤r≤ b√

4−b2

2rdr

(1 + r2)2
=

∫ b2

4−b2

a2

4−a2

dt

(1 + t)2
.

Notice that we can estimate of the measure of a disc of radius r as r2.

1.2 The Bergman Kernel

Many of the properties of the space Pk are coded in the reproducing kernel.
We may apply the Riesz representation theorem to see that there is an element
K(z, ·) ∈ Pk such that the linear functional φz : Pk → C, φz(f) = f(z) is
represented by inner product with K.

Definition 1.1. The Bergman Kernel is the function K(z, w) such that

p(z) =

∫
C
K(z, w)p(w)

dV(w)

(1 + |w|2)k
,

for all p ∈ Pk(C).

If {ej}kj=0 an orthonormal basis of Pk then

K(z, w) =

k∑
j=0

ej(z)ej(w), z, w ∈ C.

This kernel cannot be expressed explicitly in most occasions, nevertheless in

this case it is possible. We take the normalization of the monomials
{

zj

‖zj‖

}
as

orthonormal basis. Here

‖zj‖ =

∫
C

|z|2j

(1 + |z|2)k
dV(z) =

∫ ∞
0

r2j 2rdr

(1 + r2)k+2

=

∫ ∞
0

rj
dr

(1 + r)k+2
=
Γ (j + 1)Γ (k − j + 1)

Γ (k + 2)

= β(j + 1, k − j + 1).
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Hence, the kernel is

K(z, w) =

k∑
j=0

(zw̄)j

β(j + 1, k − j + 1)
= (k + 1)!

k∑
j=0

(zw̄)j

j!Γ (k − j + 1)

= (k + 1)(1 + zw̄)k. (1.3)

The Bergman Kernel is conjugate symmetric and, by the definition before,

K(z, z) =

∫
C
|K(z, w)|2 dV(w)

(1 + |w|2)k
.

A direct computation shows that

|K(z, w)|√
K(z, z)

√
K(w,w)

=
|1 + zw̄|k

(1 + |z|2)k/2(1 + |w|2)k/2
=

[
1−

(
d(z, w)

2

)2
]k/2

. (1.4)

The proof of the main theorems uses the good behaviour of the Bergman
Kernel that we can observe in the following lemma.

Lemma 1.2. It is satisfied

1.

sup
k

sup
z∈C

k

∫
C

|1 + zw̄|k

(1 + |z|2)k/2(1 + |w|2)k/2
dV(w) <∞,

and

sup
k

sup
z∈C

k3/2

∫
C
d(z, w)

|1 + zw̄|k

(1 + |z|2)k/2(1 + |w|2)k/2
dV(w) <∞.

2. If Ω = D(z′, r/
√
k), then

k2

∫∫
Ω×Ωc

|1 + zw̄|k

(1 + |z|2)k/2(1 + |w|2)k/2
dV(z)dV(w) . r,

and

k2

∫∫
Ω×Ωc

|1 + zw̄|2k

(1 + |z|2)k(1 + |w|2)k
dV(z)dV(w) . r.

where . denotes to be bounded by a constant which does not depend on k and r.
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Proof. 1. By the invariance before, we can consider z = 0, then∫
C

|1 + zw̄|k

(1 + |w|2)k/2
dm(w)

(1 + |w|2)2
=

∫
C

dm(w)

(1 + |w|2)2+k/2

=

∫ ∞
0

2ρdρ

(1 + ρ2)k/2+2
=

∫ ∞
0

dt

(1 + t)k/2+2
=

1

1 + k
2

,

and the result follows. The second integral is straightfoward when the dis-
tance is less or equal than 1/

√
k. For the other case, denote R = {w ∈ C :

d(z, w) ≥ 1/
√
k}. Then (by (1.4))

|1 + zw̄|k

(1 + |z|2)k/2(1 + |w|2)k/2
= e
− k2 log( 1

1−d2(z,w)
) ≤ e− k2C ,

where C = − log(1− 1/k). So∫
R

d(z, w)
|1 + zw̄|k

(1 + |z|2)k/2(1 + |w|2)k/2
dV(w) ≤ e− k2C

∫
R

d(z, w)dV(w)

. e−
k
2C

∫
R

dV(w) . e−
k
2C .

2. If d(z, w) ≤ 1/2 since et ' 1− t when t ≈ 0 then[
1− (

d(z, w)

2
)2

]k/2
' e− k8 d(z,w)2 , (1.5)

where d is the chordal distance.
For the third integral, assume Ω = D(0, r

√
k). We can take a partition of

Ωc into ’dyadic’ shells defined by

Ωcj =

{
w ∈ C : 2j−1 r√

k
≤ d(z, w) ≤ 2j

r√
k

}
(j = 1, . . . , J),

where J = E[1 + log2

√
k
r ], where E[x] is the integer part of x. Hence,

∫
Ωc

[
1−

(
d(z, w)

2

)2
] k

2

dV(w) ≤
∫
Ωc
e−

d(z,w)2

8 kdV(w)

≤
J∑
j=1

∫
Ωcj

e−4j−2 r2

2 dV(w) =

J∑
j=1

e−4j−2 r2

2 V(Ωcj )

.
J∑
j=1

e−4j−2 r2

2 4j
r2

k
' r2

k

J∑
j=1

e−4j−2 r2

2 4j .
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Therefore, the estimate is∫
Ω

r2

k
dV(z) =

r2

k

r2

k
=
r4

k2
,

as we take a small r, the result follows. The second estimate is similar, with
the change

∫
Ωc

[
1−

(
d(z, w)

2

)2
]k
dV(w) ≤

∫
Ωc
e−

d(z,w)2

4 kdV(w)

≤
J∑
j=1

∫
Ωcj

e−4j−2r2dV(w) =

J∑
j=1

e−4j−2r2V(Ωcj )

.
J∑
j=1

e−4j−2r24j
r2

k
' r2

k

J∑
j=1

e−4j−2r24j .

1.3 Interpolation and Sampling Problems

There exist general notions of sampling and interpolation for Hilbert spaces of
holomorphic functions with reproducing kernels.

On the one hand, we say that Λ is an interpolation set if {K̃λ}λ∈Λ is a
Riesz sequence, or equivalently, if for all {cλ}λ∈Λ ∈ l2 there exists f ∈ H such
that

〈f, K̃λ〉 = cλ, λ ∈ Λ.

On the other hand, we say that Λ is a sampling set if {K̃λ}λ∈Λ is a frame,
that is, if there exists C > 0 such that

1

C

∑
λ∈Λ

∣∣∣〈f, K̃λ〉
∣∣∣2 ≤ ‖f‖2 ≤ C∑

λ∈Λ

∣∣∣〈f, K̃λ〉
∣∣∣2 , f ∈ H.

Notice that

〈f, K̃λ〉 =
1√
k + 1

f(λ)e−
k
2φ(λ) =

1√
k + 1

f(λ)

(1 + |λ|2)k/2

and therefore, the precise definitions in our setting are

1.

Λ ∈ Int(Pk)⇔ ∀{cλ} ∈ l2, ∃f ∈ Pk : f(λ) =
√
k + 1(1 + |λ|2)k/2cλ, λ ∈ Λ.
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2.

Λ ∈ Samp(Pk)⇔ ∃C > 0 :

1

C

∑
λ∈Λ

1

k + 1

f(λ)2

(1 + |λ|2)k
≤ ‖f‖2 ≤ C

∑
λ∈Λ

1

k + 1

f(λ)2

(1 + |λ|2)k
, f ∈ H.

If instead of {cλ} ⊂ l2, we consider vλ =
√
k + 1(1 + |λ|2)k/2cλ, we get an

equivalent formulation of the interpolation

∀{vλ}λ∈Λ ∈ l2(Λ),∃f ∈ Pk : f(λ) = vλ, λ ∈ Λ.

Here

l2(Λk) =

{
{vλ}λ∈Λk : ‖vλ‖l2(Λk) =

1

k

∑
λ∈Λk

|vλ|2

(1 + |λ|2)k
<∞

}
.

A very basic intuition is that when the sequences are ’sparse’, they are
interpolating; and when they are ’dense’, they are sampling. Notice that the
interpolation and sampling problems are trivial for a fixed level k. If we have
a set Λk with less than k + 1 points we can find an interpolating polynomial.
Analogously, a sampling set is characterized by more than k + 1 points. The
point in our work is to perform the sampling and the interpolation uniformly in
k.

Definition 1.3. Let Λ = {Λk}k be a sequence of finite sets in C. We call Λ
a sampling array if there are k0 and positive constants A, B not depending on
k, such that Λk is a sampling set at each level k ≥ k0 with the same sampling
constants.

Analogously, Λ an interpolation array if there are k0 and a positive con-
stant C not depending on k, such that Λk is a interpolation set at each level
k ≥ k0 with the same interpolation constant.

Our aim is to obtain conditions for an array Λ to be sampling or interpo-
lating.

Now, we want to state a pointwise estimate for p ∈ Pk, so we need a local
control on φ.

Lemma 1.4. Given r > 0 and w ∈ C, for z ∈ D(w, r/
√
k) it holds that

|φ(z)− φ(w)− hw(z)| ≤ 2r2

k
(log 2 + 2)

where hw(z) ∈ H(D(w, r/
√
k)) and hw(w) = 0.
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Proof. From the first Green’s identity [8, p. 31], the Green-Riesz representation
of φ is

φ(z) =

∫
∂D(w,r/

√
k)

P (z, ζ)φ(ζ)dσ(ζ)+

∫
D(w,r/

√
k)

G(z, η)dV(η), z ∈ D(w, r/
√
k),

where G and P are the Green function and the Poisson kernel respectively. Then,

φ(z)− φ(w) = hw(z) +

∫
D(w,r/

√
k)

[G(z, η)−G(w, η)]dV(η)

where hw(z) ∈ H(D(w, r/
√
k)) and hw(w) = 0. Hence,

|φ(z)− φ(w)− hw(z)| ≤
∫
D(w,r/

√
k)

[G(z, η)−G(w, η)]dV(η)

≤ 2

∫
D(w,r/

√
k)

G(z, η)dm(η) ≤ 2r2

k
(log 2 + 2).

by the following estimates for the Green’s function in a disc.∫
D(w,r)

G(z, η)dm(z) =

∫
D(w,r)

log

∣∣∣∣∣r2 − (η − z)(z − w)

r(η − z)

∣∣∣∣∣ dm(z)

≤ r2 log 2 +

∫
D(η,2r)

log

(
r

|η − z|

)
dm(z)

= r2 log 2 + 4r2

∫
D

log
1

|ζ|
dm(ζ) = r2 log 2− 2r2

≤ r2(log 2 + 2).

ut

Lemma 1.5. Given r > 0, there exist constants A, B > 0 such that for all
f ∈ O(C), w ∈ C

1.
|f(w)|p

(1 + |w|2)p
k
2

. kC(r)

∫
D(w,r/

√
k)

|f(z)|2 dV(z)

(1 + |z|2)p
k
2

,

with C(r) = 1
r2 e
−pr2(2+log 2)

(
1 + r2

)2
.

2.

|∇(|f |2e−kφ)(w)|2 . kD(r)

∫
D(w,r/

√
k)

|f(z)|2 dV(z)

(1 + |z|2)k
,

with D(r) = 1
r2 (1 + r2)2e−2r(2+log 2).
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Proof. Take Hw ∈ O(D(w, r/
√
k)) such that <Hw = hw as in the previous

Lemma 1.4 and define
g(z) = f(z)e

k
2Hw(z),

notice that |g(w)| = |f(w)|. Then,

|f(w)|p

(1 + |w|2)p
k
2

=
|g(w)|p

(1 + |w|2)p
k
2

.
k

r2

∫
D(w,r/

√
k)

|g(ζ)|p

(1 + |w|2)p
k
2

dm(ζ)

=
k

r2

∫
D(w,r/

√
k)

|f(ζ)|pe−p k2 [φ(w)−hw(ζ)]dm(ζ)

≤ k

r2

∫
D(w,r/

√
k)

|f(z)|pe−p
k
2

[
2r2

k (2+log 2)+φ(z)
]
dm(z)

≤ k

r2
e−pr

2(2+log 2)(1 + r2)

∫
D(w,r/

√
k)

|f(z)|pe−p k2φ(z)dV(z).

For the second part, notice that

|∇(|f |e−kφ)(w)|2 = |f ′(w)− φ′(w)f(w)|2e−kφ(w)

and if g(z) = f(z)e
k
2Hw(z) this is equal to

|g′(w)|2e−kφ(w) .
k

r2

∫
D(w,r/

√
k)

|g(z)|2e−kφ(w)dm(z)

≤ k

r2
(1 + r2)2e−2r2(2+log 2)

∫
D(w,r/

√
k)

|f(z)|2e−kφ(z)dV(z).

ut

With the previous estimates, we can find a Plancherel-Polya inequality.

Definition 1.6. A family Λk is δ-separated at level k if

d(z, w) ≥ δ√
k
, z, w ∈ Λk, z 6= w.

Lemma 1.7. (Plancherel-Polya inequality) Let {λj}j be points in C such
that are δ-separated at level k, where 0 < δ < 1. Then

1

k

∑
j

|pk(λj)|p

(1 + |λj |2)p
k
2

. δ−2

∫
C
|pk(z)|p dV(z)

(1 + |z|2)
k
2 p

(1 ≤ p <∞)

for any pk ∈ Pk, where the constant does not depend on k.

Proof. It is enough to notice that for each λj we have

|pk(λj)|p

(1 + |λj |2)p
k
2

.
∫
D(λj ,δ/

√
k)

|pk(z)|p dV(z)

(1 + |z|2)
k
2 p
.

The separation implies the lemma.





2

The Fekete Points and Lagrange’s Polynomials

The Fekete arrays are models, or at least examples, of well-distributed sequences.
These arrays can be seen as nets, which, after rescaling, have a limit density.

2.1 Definition and properties

Definition 2.1. A configuration Fk of k + 1 points {λkj }kj=0 in C is called a
Fekete configuration if it maximizes the pointwise norm of the Vandermonde-
type determinant ∣∣∣∣∣∣∣

e0(λk0) · · · e0(λkk)
...

. . .
...

ek(λk0) · · · ek(λkk)

∣∣∣∣∣∣∣ e−kφ(λk0 ) · · · e−kφ(λkk)

where {ej(z)}kj=0 is a basis for Pk.

These points are related with the following polynomials, which have inter-
est for themselves.

Definition 2.2. The Lagrange polynomials {lj}kj=0 associated to {λkj } are de-
fined as

lj(z) =

∣∣∣∣∣∣∣
e0(λk0) · · · e0(z) · · · e0(λkk)

...
...

...
ek(λk0) · · · ek(z) · · · ek(λkk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e0(λk0) · · · e0(λkj ) · · · e0(λkk)

...
...

...
ek(λk0) · · · ek(λkj ) · · · ek(λkk)

∣∣∣∣∣∣∣
for a given basis {ej}kj=0 of Pk.



12 2 The Fekete Points and Lagrange’s Polynomials

They satisfy the following properties

a) For every level set k,
lj(λ

k
i )

(1 + |λki |2)
k
2

= δij .

b) The norm satisfies sup
z∈C

|lj(z)|
(1 + |z|2)

k
2

= 1.

The first property implies that this set {lj}j is linerly independent. By definition
]{lj}j = k + 1 = dimPk, then it spans the whole Pk.

Let us see that every Fekete configuration is a separated family.

Lemma 2.3. Let Fk be a Fekete configuration for Pk. Then, there exists δ > 0
such that

d(z, w) ≥ δ√
k
, z, w ∈ Fk+1 (z 6= w).

Proof. We proceed by contradiction. If that is not the case, there are points
zk, wk ∈ Fk such that

√
kd(zk, wk) → 0 and zk 6= wk. Now take Lagrange

polynomials lk, so that

lk(z)

(1 + |z|2)
k
2

=

{
0, z = zk,
1, z = wk.

As lk ∈ Pk, then

1 =

∣∣∣∣∣ lk(zk)

(1 + |zk|2)
k
2

− lk(wk)

(1 + |wk|2)
k
2

∣∣∣∣∣ ≤ sup
z∈C
|∇(lke

− k2φ)|d(zk, wk)→ 0,

by Lemma 1.5. ut

2.2 Fekete Arrays, Sampling and Interpolation

At this moment, we can prove that every set of Fekete points can be slightly
perturbed to get interpolation or sampling arrays, with control on the constants.
The use of F(1±ε)k as if (1 ± ε)k are integer is due to a simplification, we are
referring that we should replace (1 ± ε)k by its integer part. This notation is
maintened throughout the text.

Lemma 2.4. Let k be a positive integer, and let ε be a number satisfying 1/k .
ε . 1. The set

Λk = F(1+ε)k
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is a sampling set at level k with sampling constants A, B such that 1 . A <
B . 1/ε2. On the other hand, the set

Λk = F(1−ε)k

is an interpolation set at level k with interpolation constant C satisfying C .
1/ε2.

Proof. We take the notation e−kφ(x) = 1
(1+|x|2)2 for ease. Let us prove the in-

terpolation part, so let lj be Lagrange functions for Λk = Fk(1−ε) = {xj}j , so
that

a)
lj(xi)

(1+|xi|2)(1−ε)
k
2

= δij ,

b) supx∈C |lj(x)|2e−(1−ε)kφ(x) = 1.

Let

Qj(x) = lj(x)

(
K ε

2k
(x, xj)

K ε
2k

(xj , xj)

)2

,

where the second factor helps in the decay of Qj away form xj , and the nota-
tion Kα means the Bergman kernel for Pα. Given {vj} ⊂ l2, the interpolating
polynomial is

p(x) =
√
k + 1

∑
j

vjQj(xj)e
− 1

2kφ(xj)Qj(x)eεkφ(xj),

since p(xi) =
√
k + 1e−

k
2φ(xi)vi. Notice that p ∈ Pk since Λk = F(1−ε)k and K ε

2k

is a polynomial of degree less or equal than ε
2k, so we need to show that

‖p‖2 =

∫
C

|p(z)|2

(1 + |z|2)k
dV(z) ≤ C

∑
j

|vj |2,

with C independent of k. Notice that,

|p(x)| ≤
√
k + 1

∑
j

|vj ||lj(xj)|e−( 1
2−ε)kφ(xj)|Qj(x)|

.
√
k
∑
j

|vj |e
1
2 (1−ε)kφ(xj)e−( 1

2−ε)kφ(xj)|Qj(x)|

=
√
k
∑
j

|vj |e
ε
2kφ(xj)|Qj(x)|.

Then, by Cauchy-Schwarz

|p(x)|2 . k

∑
j

|vj |2e
ε
2kφ(xj)|Qj(x)|

∑
j

e
ε
2kφ(xj)|Qj(x)|

 . (2.1)



14 2 The Fekete Points and Lagrange’s Polynomials

By a pointwise estimate on |Qj(x)|, we can estimate the second part as
follows∑

j

e
ε
2kφ(xj)|Qj(x)| .

∑
j

1

(εk)2
e−εkφ(xj)e(1−ε) k2φ(x)|K ε

2k
(x, xj)|2e

ε
2kφ(xj)

.
1

(εk)2
e(1−ε) k2φ(x)

∑
j

|K ε
2k

(x, xj)|2e−
ε
2kφ(xj),

where the first estimation is due to the identityK ε
2k

(xj , xj) = ε
2ke

ε
2kφ(xj) and the

estimate 2.2. By the Plancherel-Polya inequality 1.7, and since {xj} is separated
δ/(
√
εk), the Lemma 2.3∑

j

e
ε
2kφ(xj)|Qj(x)| . 1

k2
e(1−ε) k2φ(x)k2eε

k
2φ(x) ' e k2φ(x).

With this

|p(x)|2e−kφ(x) . k
∑
j

|vj |2e
ε
2kφ(xj)|lj(x)|

|K ε
2k

(x, xj)|2

(kε)2ekεφ(xj)
e−

k
2φ(x)

.
1

k

∑
j

|vj |2e−
ε
2kφ(xj)|K ε

2k
(x, xj)|2e−

kε
2 φ(x).

Integrating∫
C
|p(x)|2e−kφ(x)dV(x) .

1

k

∑
j

|vj |2e−
ε
2kφ(xj)

∫
C
|K ε

2k
(x, xj)|2e−ε

k
2φ(x)dV(x)

=
1

k

∑
j

|vj |2e−
ε
2kφ(xj)K ε

2k
(xj , xj)

' 1

k

∑
j

|vj |2e−
ε
2kφ(xj)

ε

2
ke

ε
2kφ(xj)

'
∑
j

|vj |2.

For the sampling part, the set is Λk = F(1+ε)k = {xj}j .The inequality

‖p‖2 &
1

k

∑
j

|p(xj)|2e−kφ(xj)

follows from Plancherel-Polya (Lemma 1.7), since

d(xi, xj) &
1√

(1 + ε)k
&

1√
k

(i 6= j).
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To see the inequality

‖p‖2 .
1

k

∑
j

|p(xj)|2e−kφ(xj),

with constants independent of k let, given x ∈ C fix,

px(y) = p(y)

(
K ε

2k
(x, y)

K ε
2k

(x, x)

)2

.

Notice that px(x) = p(x) and that px ∈ P(1+ε)k. Let lj the Lagrange polynomials
associated to {xj}. Since they form a basis of the space P(1+ε)k, there exist cj
such that

px =
∑
j

cj lj .

Evaluating on xi, we obtain px(xi) = cili(xi), thus

ci =
px(xi)

li(xi)
= px(xi)e

−(1+ε) k2φ(xi),

by the property 2.2. Hence

px =
∑
j

px(xj)e
−(1+ε) k2φ(xj)lj ,

and

|p(x)| = |px(x)| ≤
∑
j

|px(xj)|e−(1+ε) k2φ(xj)e(1+ε) k2φ(x)

'
∑
j

|p(xj)|
|K ε

2k
(x, xj)|2

(kε)2eεkφ(x)
e−(1+ε) k2φ(xj)e(1+ε) k2φ(x)

≈ 1

(kε)2
e(1−ε) k2φ(x)

∑
j

|p(xj)|e−
k
2φ(xj)|K ε

2k
(x, xj)|2e−

ε
2kφ(xj).

By Cauchy-Schwarz,

|p(x)|2e−kφ(x) .
1

k4
e−εkφ(x)

∑
j

|p(xj)|2e−kφ(xj)|K ε
2k

(x, xj)|2e−
ε
2kφ(xj)


·
∑
j

|K ε
2k

(x, xj)|2e−
ε
2kφ(xj).

By the Plancherel-Polya inequality (Lemma 1.7), the second term is
bounded by k2e

ε
2kφ(xj), and therefore
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|p(x)|2e−kφ(x) .
1

k2
e−

ε
2kφ(x)

∑
j

|p(xj)|2e−kφ(xj)|K ε
2k

(x, xj)|2e−
ε
2kφ(xj).

Integrating,∫
C
|p(x)|2e−kφ(x)dV(x) .

1

k2

∑
j

|p(xj)|2e−kφ(xj)e−
ε
2kφ(xj)

∫
C
|K ε

2k
(x, xj)|2e−

ε
2kφ(xj)dV

=
1

k2

∑
j

|p(xj)|2e−kφ(xj)e−
ε
2kφ(xj)K ε

2k
(xj , xj) ≈

1

k

∑
j

|p(xj)|2e−kφ(xj),

as desired. ut



3

A Landau’s Classical Technique, Density and
Equidistribution

In [11] Landau introduced a method to obtain necessary density conditions for
sampling and interpolation. We shall see now how this method is adapted to our
setting.

We shall also see how the method is used to estimate from below and
above the number of Fekete points in a disc. Besides, we get an upper and lower
bounds for the Kantorovich-Wasserstein distance between the Fekete measure
and its limit measure.

3.1 Landau’s Technique

Let Ω be a measurable set of C. We will denote the restriction operator by TΩ ,
a linear operator on Pk defined by

(TΩp)(z) =

∫
C
K(z, w)p(w)χΩ(w)

dV(w)

(1 + |w|2)k
, p ∈ Pk,

where χΩ is the indicator function of Ω.
It is known that the previous operator is self-adjoint and non-negative,

that is, for all p ∈ Pk ,

〈TΩp, p〉 = 〈p, TΩp〉,

and
〈TΩp, p〉 = 0⇔ p = 0.

Moreover, by definition

〈TΩp, p〉 = 〈χΩp, p〉 =

∫
Ω

|p(z)|2 dV(z)

(1 + |z|2)k
,
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where the previous scalar product is defined on a ’bigger’ Hilbert space, i. e., f
belongs to the previous space if∫

C
|f(z)|2 dV(z)

(1 + |z|2)k
<∞

but it is not necessary to be holomorphic.
Let us see that ‖TΩ‖ ≤ 1. By duality, first

〈TΩp, f〉 =

∫
C

{∫
Ω

K(z, w)p(w)
dV(w)

(1 + |w|2)k

}
f(z)

dV(z)

(1 + |z|2)k∫
Ω

p(w)

{∫
C
K(z, w)f(z)

dV(z)

(1 + |z|2)k

}
dV(w)

(1 + |w|2)k

=

∫
Ω

p(w)f(w)
dV(w)

(1 + |w|2)k
.

Hence,

‖TΩp‖ ≤ sup
‖f‖≤1

(∫
Ω

|f(w)|2 dV(w)

(1 + |w|2)k

)1/2(∫
Ω

|p(w)|2 dV(w)

(1 + |w|2)k

)1/2

≤ sup
‖f‖≤1

‖f‖ · ‖p‖ ≤ ‖p‖.

Finally, this yields
‖TΩ‖ = sup

‖p‖≤1

‖TΩp‖ ≤ 1.

The spectral theorem allows to find an orthonormal basis {pj}kj=0 of Pk consist-
ing of eigenfunctions,

TΩ(pj) = λj(Ω)pj , (j = 0, . . . , k).

The eigenvalues λj(Ω) lie between 0 and 1, and we can order them in a
non-increasing way,

λ0(Ω) ≥ λ1(Ω) ≥ λ2(Ω) ≥ . . . ≥ λk(Ω) ≥ 0

Using that

K(z, z) =

k∑
j=0

|pj(z)|2,

we can compute the trace of the operator:

k∑
j=0

λj(Ω) =

k∑
j=0

〈TΩpj , pj〉 =

k∑
j=0

∫
Ω

|pj(z)|2
dV(z)

(1 + |z|2)k
=

∫
Ω

K(z, z)
dV(z)

(1 + |z|2)k
.
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By the same reason, the Hilbert-Schmidt norm of the operator can be expressed
as ∑

j≥1

λ2
j (Ω) =

∫∫
Ω×Ω

|K(z, w)|2 dV(z)

(1 + |z|2)k
dV(w)

(1 + |w|2)k
.

This follows from the identities∫
C
(TΩpj)(z)(TΩpj)(z)

dV(z)

(1 + |z|2)k

=

∫
C

(∫
Ω

K(z, ζ)pj(ζ)
dV(ζ)

(1 + |ζ|2)k

)(∫
Ω

K(z, η)pj(η)
dV(η)

(1 + |η|2)k

)
dV(z)

(1 + |z|2)k∫∫
Ω×Ω

pj(ζ)pj(η)

{∫
C
K(z, η)

dV(z)

(1 + |z|2)k

}
dV(ζ)

(1 + |ζ|2)k
dV(η)

(1 + |η|2)k∫∫
Ω×Ω

pj(ζ)pj(η)K(η, ζ)
dV(ζ)

(1 + |ζ|2)k
dV(η)

(1 + |η|2)k
.

Using that
∑
j pj(ζ)pj(η) = K(ζ, η) and λ2

j (Ω) = 〈TΩpj , TΩpj〉, we get
the result.

Lemma 3.1. Let 0 < γ < 1 and denote by n(Ω, γ) the number of eigenvalues
λj(Ω) which are strictly bigger than γ. Then we have the lower bound

n(Ω, γ) ≥
∫
Ω

|K(z, z)| dV(z)

(1 + |z|2)k
− 1

1− γ

∫∫
Ω×Ωc

|K(z, w)|2 dV(z)

(1 + |z|2)k
dV(w)

(1 + |w|2)k
,

and the upper bound

n(Ω, γ) ≤
∫
Ω

|K(z, z)| dV(z)

(1 + |z|2)k
+

1

γ

∫∫
Ω×Ωc

|K(z, w)|2 dV(z)

(1 + |z|2)k
dV(w)

(1 + |w|2)k
.

Proof. We have

χ(γ,1](z) ≥ z −
z(1− z)

1− γ
(0 ≤ z ≤ 1),

hence

n(Ω, γ) =
∑
j

χ(γ,1](λj(Ω)) ≥
∑
j

λj(Ω)− 1

1− γ
∑
j

(
λj(Ω)− λ2

j (Ω)
)
,

and by the previous calculations of the traces of TΩ and T 2
Ω , this is
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∫
Ω

|K(z, z)| dV(z)

(1 + |z|2)k
− 1

1− γ

[∫
Ω

|K(z, z)| dV(z)

(1 + |z|2)k

−
∫∫

Ω×Ω
|K(z, w)|2 dV(z)

(1 + |z|2)k
dV(w)

(1 + |w|2)k

]
≥
∫
Ω

|K(z, z)| dV(z)

(1 + |z|2)k
− 1

1− γ

[∫∫
Ω×C
|K(z, w)| dV(z)

(1 + |z|2)k
dV(w)

(1 + |w|2)k

−
∫∫

Ω×Ω
|K(z, w)|2 dV(z)

(1 + |z|2)k
dV(w)

(1 + |w|2)k

]
and this proves the first part.

The proof of the second statement is similar using the inequality

χ(γ,1](z) ≤ z +
z(1− z)

γ
(0 ≤ z ≤ 1).

ut
Lemma 3.2. Let Λk be a δ-separated sampling set at level k with sampling con-
stants A, B. Then for any z ∈ C and r > 0,

#(Λk ∩D(z,
r + δ√
k

)) ≥ n(D(z,
r√
k

), γ)

where λ is some constant lying between 0 and 1, such that 1/(1− γ) is bounded
by the sampling constant B times a constant which only may depend on δ.

Proof. Let {pj}j be the orthonormal basis of eigenvectors associated to the eigen-

values λ
(k)
j (Ω), where Ω = D(z, r√

k
). Let N = #(Λk ∩D(z, r+δ/2√

k
)). We study

the case when N < k + 1, so take

p =

N+1∑
j=1

cjpj ,

of the first eigenfunctions such that not all cj are 0 and

p(λ) = 0, λ ∈ Λk ∩D(z,
r + δ/2√

k
).

Since Λk is a sampling set, it holds that

‖p‖2 ≤ B

k

∑
λ∈Λ\D(z,

r+δ/2√
k

)

|p(λ)|2

(1 + |λ|2)k

≤ C(δ)B

∫
D(λ,

δ/2√
k

)

|p(z)|2 dV(z)

(1 + |z|2)k

≤ C(δ)B

∫
C\Ω
|p(z)|2 dV(z)

(1 + |z|2)k
.
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Hence, by the pythagorean and the spectral theorems

λN+1(Ω)‖p‖2 = 〈TΩp, p〉 =

∫
Ω

|p(z)|2 dV(z)

(1 + |z|2)k
≤
(

1− 1

C(δ)B

)
‖p‖2.

Therefore,
λN+1(Ω) ≤ γ′

and
nk(Ω, γ′) ≤ N.

ut

Lemma 3.3. Let Λk be a δ-separated interpolation set at level k with interpola-
tion constant C, then for any z ∈ C and r > 0,

#(Λk ∩D(z,
r − δ√
k

)) ≤ n(D(z,
r√
k

), γ)

where λ is some constant lying between 0 and 1, such that 1/γ is bounded by the
interpolation constant C times a constant which only may depend on δ.

Proof. Let W denote the orthonormal complement in Pk of the subspace of
polynomials vanishing in Λk. Since Λk is an interpolation set at level k, for any
set of values {vλ}λ∈Λk ⊂ C, there exist a polynomial p with p(λ) = λ, λ ∈ Λk
and

‖p‖2 ≤ C

k

∑
λ∈Λk

|p(λ)|2

(1 + |λ|2)k
.

If we take the projection of p onto W , this is another solution to the interpolation
problem with the same control in the norm, since the values of the projection
are null. Moreover, if p ∈ W then it is the unique interpolant in W , so every
polynomial in W satisfies the control in the norm.

Let {zk}Nj=1 the elements in Λk ∩ D(z, r−δ√
k

). For each one we can find a

polynomial such that
pi(zj)

(1 + |zj |2)
k
2

= δij ,

so they are linearly independent. Denote by F the linear subspace spanned by
the previous polynomials, and take a polynomial p ∈ F , then

‖p‖2 ≤ C

k

∑
λ∈Λk∩D(z, r−δ√

k
)

|p(λ)|2

(1 + |λ|2)k
< D(δ)C

∫
Ω

|p(z)|2 dV(z)

(1 + |z|2)k

where Ω = D(z, r√
k

). The last inequality comes from Plancherel-Polya (Lemma

1.7). Therefore,
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〈TΩp, p〉
‖p‖2

=
1

‖p‖2

∫
Ω

|p(z)|2 dV(z)

(1 + |z|2)k
>

1

D(δ)C
= γ,

for any polynomial of F . Finally, by the min-max theorem

λN = min max
pj(1≤j≤N−1)

{〈T (k)
Ω s, s〉 : s ∈ 〈pj〉 and ‖s‖ = 1} > λ,

it holds that nk(Ω, γ). ut

Finally, we have an estimate of the number of points of a sampling or in-
terpolation set in a disc in terms of the Bergman kernel. The proofs are straight-
foward and follow from the previous statements, so we omit them.

Lemma 3.4. Let Λk be a δ-separated sampling set at level k with sampling con-
stants A, B. Then for any z ∈ C and r > 0,

#(Λk ∩D(z,
r + δ√
k

)) ≥
∫
Ω

|K(z, z)| dV(z)

(1 + |z|2)k

−M
∫∫

Ω×Ωc
|K(z, w)|2 dV(z)

(1 + |z|2)k
dV(w)

(1 + |w|2)k
,

where Ω = D(z, r/
√
k) and the constant M is bounded by the sampling constant

B times a constant which only may depend on δ.

Lemma 3.5. Similarly, if Λk is a δ-separated interpolation set at level k with
interpolation constant C, then for any z ∈ C and r > 0,

#(Λk ∩D(z,
r − δ√
k

)) ≤
∫
Ω

|K(z, z)| dV(z)

(1 + |z|2)k

+M

∫∫
Ω×Ωc

|K(z, w)|2 dV(z)

(1 + |z|2)k
dV(w)

(1 + |w|2)k
,

where Ω = D(z, r/
√
k) and the constant M is bounded by the interpolation

constant C times a constant which only may depend on δ.

3.2 Density Conditions and Equidistribution

We can characterize the sampling and interpolating arrays in terms of the num-
ber of points of the array in a disc normalised by the measure of this disc. The
separation of the Fekete points can be interpreted in terms of density as follows.
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Lemma 3.6. If Fk+1 is a Fekete configuration, there is R > 0 so that for any
z ∈ C, D(z,R/

√
k) contains at least one point of the Fekete family.

The geometric conditions can be found in the following lemma.

Lemma 3.7. If Λk is a δ-separated sampling set at level k with sampling con-
stants A, B, then for any z ∈ C and r > 0,

#(Λk ∩Ω)

k
∫
Ω
dV(z)

> 1− M

r
,

where Ω = D(z, r/
√
k) and the constant M is bounded by the sampling constant

B times a constant which only may depend on δ.
Similarly, if Λk is a δ-separated interpolation set at level k with interpola-

tion constant C, then for any z ∈ C and r > 0,

#(Λk ∩Ω)

k
∫
Ω
dV(z)

< 1 +
M

r
,

where Ω = D(z, r/
√
k) and the constant M is bounded by the sampling constant

C times a constant which only may depend on δ.

Proof. Let us prove the sampling part, the other case is similar using the cor-
responding lemma. So assume that Λk is a δ-separated sampling set at level k,
and let Ω = D(z, r√

k
). We can estimate the measure of annuli as in (??), so the

separation condition with the estimate of the volume of annuli imply the bound

#(Λk ∩ (D(z,
r + δ√
k

)\D(z,
r√
k

))) ≤ rδ,

Hence by the estimate of the Bergman Kernel (Lemma 1.2) and the Lemma 3.4
for the estimate of the number of points in a disc, we have

#(Λk ∩Ω) ≥ (k + 1)

∫
Ω

dV(z)− δ2r,

as the integral is of order r2, since, by the invariance∫
D(z,r/

√
k)

dV(z) =

∫
D(0,r/

√
k)

dm(z)

(1 + |z|2)2
=

∫ r2/k

0

dt

(1 + t)2
≈ r2/k

the result follows. ut

In the case of the Fekete points we can say about the density of these in
any disc the following.
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Theorem 3.8. For every r > 0,

#(Fk ∩D(z, r))

#Fk
=

(
1 +O

((
r
√
k
)−1

))∫
D(z,r)

dV(w)

uniformly in z ∈ C.

Proof. Denote Ω = D(z, R√
k

), and let lλ be the Lagrange polynomial associated

to λ ∈ Fk, we are allowed to write

#(Fk ∩Ω)−
∫
Ω

|K(z, z)| dV(z)

(1 + |z|2)k
=

∑
λ∈Fk∩Ω

∫
C
lλ(z)

K(λ, z)

(1 + |λ|2)
k
2

dV(z)

(1 + |z|2)k

−
∫
Ω

∑
λ∈Fk

lλ(z)
K(λ, z)

(1 + |λ|2)
k
2

dV(z)

(1 + |z|2)k
=

∫
C\Ω

∑
λ∈Fk∩Ω

lλ(z)
K(λ, z)

(1 + |λ|2)
k
2

dV(z)

(1 + |z|2)k

−
∫
Ω

∑
λ∈Fk∩(C\Ω)

lλ(z)
K(λ, z)

(1 + |λ|2)
k
2

dV(z)

(1 + |z|2)k
= A1 −A2.

Let us estimate A1, then

|A1| ≤
∫
Ωc

∑
λ∈Fk∩Ω

|K(z, λ)|e−k/2φ(z)e−k/2φ(λ)dV(z).

By the sub-mean property (Lemma 1.5)

|K(λ, z)|
(1 + |λ|2)

k
2

.

(
δ√
k

)−2 ∫
D(λ,δ/

√
k)

|K(z, w)| dV(w)

(1 + |w|2)
k
2

,

taking δ the constant of separation of Fk, we get∑
λ∈Fk∩D(z,R−δ√

k
)

|K(λ, z)|
(1 + |λ|2)

k
2

≤ k
∫∫

Ωc×Ω
|K(z, w)| dV(z)

(1 + |z|2)
k
2

dV(w)

(1 + |w|2)
k
2

. R.

On the other hand, the estimate for annuli together with the separation
condition imply

#

(
Fk ∩

(
D(z,

R√
k

)\D(z,
R− δ√

k
)

))
. R,

hence by the estimates of the Bergman Kernel (Lemma 1.2)∫
Ωc

∑
Fk∩

(
D(z, R√

k
)\D(z,R−δ√

k
)
)
|K(λ, z)|

(1 + |λ|2)
k
2

. R sup
λ

∫
C
|K(z, λ)| dV(z)

(1 + |z|2)
k
2

. R.
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Then, |A1| . R and |A2| . R, which can be estimated in the same way.
By the form of the Bergman Kernel and the volume form we get

#(Fk ∩Ω) =

∫
Ω

|K(z, z)| dV(z)

(1 + |z|2)
k
2

+O(R) = (1 +O(R−1))k

∫
Ω

dV(z).

Moreover,

#Fk =

∫
C
|K(z, z)| dV(z)

(1 + |z|2)
k
2

= (1 +O(k−1))k

∫
Ω

dV(z),

these statements complete the proof. ut

Definition 3.9. Let ν−Λ (R), respectively ν+
Λ (R), denote the infimum, respectively

supremum, of the ratio
#(Λk ∩Ω)

k
∫
Ω
dV(z)

where Ω = D(z, r), over all z ∈ C, and all k, r such that R/
√
k ≤ r ≤ 2. The

lower and upper Beurling-Landau densities are defined by

D−(Λ) = lim inf
R→∞

ν−Λ (R) D+(Λ) = lim sup
R→∞

ν+
Λ (R).

Corollary 3.10. For any ε > 0, there exist

1. a sampling array Λ with D+(Λ) < 1 + ε,
2. an interpolation array Λ with D−(Λ) > 1 + ε.

We have two probability measures, the Fekete measure µk = 1
k+1

∑k
j=0 δλkj

and its weak limit measure V, which is called the equilibrium measure. This last
fact is due to the Theorem of Berman, Boucksom and Witt [7].

To metrize the weak convergence we use the following definition.

Definition 3.11. Given two probability measures µ and ν on a metric space X,
one defines the Kantorovich-Wasserstein distance W is defined as

W (µ, ν) = inf

{∫∫
X×X

d(x, y)dρ(x, y)

}
where the infimum is taken over all Borel probability measures ρ on X ×X with
marginals ρ(·, X) = µ and ρ(X, ·) = ν. Equivalently,

W (µ, ν) = sup
f∈Lip1,1(X)

{∣∣∣∣∫
X

fd(µ− ν)

∣∣∣∣} ,
where Lip1,1(X) is the collection of all functions f on X satisfying |f(x)−f(y)| ≤
d(x, y).
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We say that the measure µ converges weakly to v, µ
w→ v, if∫

X

f(x)dµ(x)→
∫
X

f(x)dv(x)

for every f ∈ L∞(X) ∩ C(X).
The next theorem gives us the testing of the Fekete points are in a sense

optimally distributed.

Theorem 3.12. Let µk the empirical measure associated to a Fekete sequence at
level k and W the Kantorovich-Wasserstein distance. Then, there exists C > 0
such that

1

C

1√
k
≤W (µk,V) ≤ C 1√

k

as k →∞.

Proof. To prove the lower bound we consider the function

fk(x) = dist(x,Fk),

which belongs to Lip1,1(C) and vanishes on the Fekete points. This last fact and
the use of the second definition imply

W (µk,V) ≥
∣∣∣∣∫

C
fk(dµk − dV)

∣∣∣∣ =

∫
C
fkdV.

On the other hand, by Lemma 2.3∫
C
fkdV ≥

δ√
k
· V(C \

⋃
λ∈Fk

D(λ, δ/
√
k)) ≥ δ√

k
(1− Cδ2#Fk

k
),

since fk is bounded below by the radius of the disc D(λ, δ), λ ∈ Fk. Being
#Fk = k + 1, we can choose δ such that Cδ2/k#Fk = 1/2, it holds that

W (µk,V) &
1√
k
.

For the upper estimate, we will use an alternative definition of the Kantorovich-
Wasserstein distance. If S is the set of complex measures on C×C with marginals
µ and V respectively, then

W (µ,V) = inf
ρ∈S

∫∫
C×C

d(x, y)|dρ(x, y)|.

This alternative definition coincides with the previous one since
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inf
ρ∈S

∫∫
C×C

d(x, y)|dρ(x, y)| ≤W (µ,V),

and for ρ ∈ S,∣∣∣∣∫
C
fd(µ− V)

∣∣∣∣ =

∣∣∣∣∫∫
C×C

(f(x)− f(y))dρ

∣∣∣∣ ≤ ∫∫
C×C

d(x, y)|dρ(x, y)|.

Hence

W (µ,V) ≤ inf
ρ∈S

∫∫
C×C

d(x, y)|dρ(x, y)|.

In order to get the upper bound for W (µk,V) consider the complex mea-
sure

dρ(x, y) =
1

k + 1

∑
λ∈Fk

δλ(x)lλ(y)
K(λ, y)

(1 + |λ|2)
k
2

dV (y),

where lλ are the Lagrange polynomials. Thus

W (µk,V) ≤
∫∫

C×C
d(x, y)|dρ(x, y)| = 1

k + 1

∑
λ∈Fk

∫
C
d(λ, y)lλ(y)

K(λ, y)

(1 + |λ|2)
k
2

dV (y)

≤
∑
λ∈Fk

∫
C
d(x, y)|1 + zλ̄|k dV(y)

(1 + |y|2)
k
2

. 1/
√
k

by the estimates of the Bergman kernel (Lemma 1.2). ut





4

Simultaneously Sampling and Interpolation
Arrays

In this section, we will prove that there are no arrays which are interpolating
and sampling at the same time. To see this we need to study a related result in
the Bargmann-Fock space, which can be seen as a limit space of Pk as k →∞.

4.1 The Bargmann-Fock Space BFp

Definition 4.1. Given p ∈ [1,∞), the Bargmann-Fock space BFp consists of
entire functions such that

‖f‖pp =

∫
C
|f(z)|pe−p|z|

2/2dm(z) <∞.

When p =∞, the norm is

‖f‖∞ = sup
C
|f |e−|z|

2/2.

We will relate sampling and interpolating arrays for Pk to sampling and
interpolating sequences for BF2. Notice that the Bergman kernel for this space
is

K(z, σ) = eσ̄z,

and the normalised kernel is

K(z, σ)√
K(σ, σ)

= eσ̄z−
1
2 |σ|

2

.

The general definitions of sampling and interpolation sequences for a Hilbert
space given in Section 1 take, for the Hilbert space BF2, the following form.
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Definition 4.2. A sequence Σ is sampling for BF2 if and only if there are A,
B > 0 such that

A‖f‖22 ≤
∑
σ∈Σ
|f(σ)|2e−|σ|

2

≤ B‖f‖22,

and it is interpolation for BF2 if given any values {νσ}σ∈Σ such that∑
σ∈Σ
|vσ|2e−|σ|

2

< +∞,

there is a function f ∈ BF2 such that f(σ) = νσ. In particular, there is a
constant C > 0 so that

‖f‖2 ≤ C
∑
σ∈Σ
|f(σ)|2e−|σ|

2

.

We shall see that the rescaled interpolation or sampling arrays

Σk = {
√
kλ : λ ∈ Λk}

tend to interpolating or sampling sequences of BF2.

Definition 4.3. Let Σk be a collection of separated sequences, with a uniform
separation constant for all k, and let Σ be another separated sequence. We say
that Σk converges weakly to Σ if the corresponding measures µk =

∑
σ∈Σk δσ

converge weakly to
∑
σ∈Σ δσ. If this is the case, we will write Σ ∈W (Σk).

Let ∂̄ denote the operator

∂̄ : C∞(C, Λp,q)→ C∞(C, Λp,q+1),

where C∞(C, Λp,q) is the space of smooth forms of bi-degree (p, q).
The following result by Hörmander will be used to solve the ∂̄-equation in

our setting (see [4, p. 7, Theorem 1.3]). Let Ω ⊂ C and ψ ∈ C2(Ω) with ∆ψ ≥ 0.
For any f ∈ L2

loc(Ω), there is a solution u of ∂u
∂z̄ = f , satisfying∫

|u(z)|2e−ψ(z)dm(z) ≤
∫
|f(z)|2

∆ψ(z)
e−ψ(z)dm(z). (4.1)

This will allow to verify that any weak limit of a partial subsequence of a
reescaled interpolating, or sampling, array on Pk is an interpolation, or sampling,
array on BF2.

Theorem 4.4. Let f ∈ C1
c (C̄) and z ∈ C then

f(z) = m

∫
C

(
1 + ζ̄z

1 + |ζ|2

)m−1

f(ζ)dV(ζ)−
∫
C

(
1 + ζ̄z

1 + |ζ|2

)m ∂f(ζ)

∂ζ̄

ζ − z
dm(ζ),

for all m ∈ N.



4.1 The Bargmann-Fock Space BFp 31

Proof. Fix z ∈ Ω where Ω is a big disc such the support of f is contanied there
and take ε > 0 such that the disc D = D(z, ε) ⊂ Ω. If we apply the Stokes
theorem [9, p. 2] to the form(

1 + ζ̄z

1 + |ζ|2

)m
f(ζ)

ζ − z
dζ

on the domain Ω \D with the boundary positively oriented, we get

∫
Ω\D

(
1 + ζ̄z

1 + |ζ|2

)m ∂f(ζ)

∂ζ̄

ζ − z
dm(ζ)−m

∫
Ω\D

(
1 + ζ̄z

1 + |ζ|2

)m−1

f(ζ)dV(ζ)

=

∫
Ω\D

∂̄

[(
1 + ζ̄z

1 + |ζ|2

)m
f(ζ)

ζ − z

]
dζ

=
i

2

∫
∂Ω

(
1 + ζ̄z

1 + |ζ|2

)m
f(ζ)

ζ − z
dζ − i

2

∫
∂D

(
1 + ζ̄z

1 + |ζ|2

)m
f(ζ)

ζ − z
dζ.

Observe that 1/(ζ − z) is holomorphic in the new domain. The result follows
from the fact that 1/(ζ − z) is locally integrable, taking ε→ 0 and extending Ω
to the whole plain, so the first integral is zero and the second is −πf(z), where
the sign is due to the orientation of the small disk D. ut

Theorem 4.5. Given f ∈ Pk, let

u(z) = −
∫
C

(
1 + zζ̄

1 + |ζ|2

)k
f(ζ)

z − ζ
dm(ζ).

Then u satisfies ∂u
∂z̄ = f , and∫

C
|u(z)|2 dV(z)

(1 + |z|2)k
≤ 1

2k + 8

∫
C
|f(z)|2 dV(z)

(1 + |z|2)k+2
. (4.2)

This is a refinement of Hörmander’s theorem due to M. Andersson and B.
Berndtsson. The proof of the theorem is a particular case of [3, Theorem 8]
and the previous theorem.

Proof. From the previous Theorem, we have the form of the solution.The es-
timate in terms of the data function is due to the Hörmander estimates (4.1).
Take ψ(z) = (k + 2) log(1 + |z|2), hence ∆ψ(z) = 4 (k + 2) 1

(1+|z|2)2 and∫
C
|u(z)|2 dV(z)

(1 + |z|2)k
≤ 1

2k + 8

∫
C
|f(z)|2 dV(z)

(1 + |z|2)k+2
.

Let us see now in what sense the space BF2 is the limit of the spaces Pk.
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Lemma 4.6. Given any function f ∈ BF2, and any big M > 0, there is a
k0 ∈ N such that for all k ≥ k0, there are polynomials pk ∈ Pk such that∫

|z|<M/
√
k

|f(
√
kz)− pk(z)|2e−k|z|

2

dm(z) .
1

k
‖f‖2

and ∫
|z|>M/

√
k

|pk(z)|2e−kφ(z)dV(z) .
1

k
‖f‖2,

where the previous norm ‖ · ‖ in L2 coincides with the norm in Pk. In particular
||pk||2 w ||f ||2/k for all k ≥ k0.

Proof. Let χ be a cutoff function supported in a disc of radius M centered at
the origin and equal to 1 in D(0,M/2), with M such that |∇χ| ≤ 4/M . We put
χk(z) = χ(z

√
k) and define gk(z) = f(

√
kz)χk(z), which is not holomorphic, but

grows like a polynomial of degree k in the disk.
We are looking for a modification of gk of the form pk = gk−uk. On the one

hand, for pk to be holomorphic we need ∂̄gk = ∂̄uk. On the other hand, we also
want that the modification does not affect greatly the value of gk in D(0,M/2),
i.e., pk grows like a polynomial of degree k. This is due to Hörmander’s estimates
(4.2).

Finally, let us see that pk is a holomorphic polynomial. The Cauchy formula
yields, for R sufficiently big

p
(j)
k (0)

j!
=

1

2πi

∫
|ζ|=R

pk(ζ)

ζj+1
dζ = − 1

2πi

∫
|ζ|=R

uk(ζ)

ζj+1
dζ.

Taking modulus, if supp ∂gk
∂z̄ = T , T compact,

1

2π

∫
|ζ|=R

∣∣∣∣∣
∫
C

(
1 + ζη̄

1 + |η|2

)k ∂gk(η)
∂η̄

ζ − η
dm(η)

∣∣∣∣∣ |dζ||ζ|j+1

.

(
max
T

∣∣∣∣∂gk∂z̄
∣∣∣∣) 1

Rj−k

{∫
C

|η|kdm(η)

(1 + |η|2)k|ζ − η|

}
,

and this goes to 0 when j > k and R → ∞. Thus p
(j)(0)=0
k , for all j > k, and

pk ∈ Pk.
We also want that∫

|z|<M/
√
k

|f(
√
kz)− pk(z)|2e−k|z|

2

dm(z)
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'
∫
|z|<M/

√
k

|f(
√
kz)− pk(z)|2 dV(z)

(1 + |z|2)k

≤
∫
M/
√

4k<|z|<M/
√
k

|f(
√
kz)|2 dV(z)

(1 + |z|2)k
+

∫
|z|<M/

√
k

|uk(z)|2 dV(z)

(1 + |z|2)k

.
‖f‖2

k
+

∫
M/
√

4k<|z|<M/
√
k

|∂̄gk(z)|2 dV(z)

(1 + |z|2)k

.
‖f‖2

k
+

∫
M/
√

4k<|z|<M/
√
k

|∂̄χ(z
√
k)f(
√
kz)|2 dV(z)

(1 + |z|2)k
.
‖f‖2

k
,

where last inequalities come from the estimates |∇χ| ≤ 4/M and the estimates
of Hörmander.

Finally, notice that∫
|z|>M/

√
k

|pk(z)|2 dV(z)

(1 + |z|2)k
=

∫
|z|>M/

√
k

|uk(z)|2 dV(z)

(1 + |z|2)k
.
‖f‖2

k
.

ut

4.2 Interpolation and Sampling arrays and Interpolation
and Sampling Sequences for BF2

Let us see now the relation between sampling and interpolating arrays for Pk
the sampling and interpolating arrays for BF2.

Theorem 4.7. Let Λk be a separated array for Pk and let Σ be any weak limit
of a partial subsequence of Σk.

1. If Λk is a sampling array, then Σ is a sampling sequence for BF2.
2. If Λk is an interpolation array, then Σ is an interpolation sequence for BF2.

Proof. Let us start with the interpolation part. Assume that Σ is the weak limit
of a partial subsequence of Σk still denoted by Σk. Take a sequence of values
{vσ}σ∈Σ ⊂ C with

∑
σ∈Σ |vσ|2e−|σ|

2

< ∞. We will construct a sequence of
functions fk ∈ O(D(0,Mk)), with Mk →∞, such that

sup
k

∫
|z|<Mk

|fk(z)|2e−|z|
2

dm(z) <∞

and limk fk(σ) = vσ for all σ ∈ Σ. Thus we will conclude by a normal family
argument that there is an interpolating function f ∈ BF2 with f(σ) = vσ. We
may assume without loss of generality that, except for a finite number of points,
vσ = 0, since
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lim sup
k→∞

∫
|z|<Mk

|fk(z)|2e−|z|
2

dm(z) ≤ C
∑
σ

|vσ|2e−|σ|
2

,

where C is a constant independent of the number of non-zero terms. We can find
an increasing sequence Mk such that Mk → ∞ and Mk/

√
k → 0. Take some

given values vσ and denote by Σ′ ⊂ Σ the finite set of points σ ∈ Σ such that
they do not vanish. For k big enough |σ/

√
k| < Mk for all σ ∈ Σ′, and there is

an associated λkσ ∈ Λk such that
√
kλkσ → σ since Σk → Σ weakly.

If we consider the interpolation problem with data vσ at the points λkσ,
σ ∈ Σ′, by hypothesis there is a polynomial pk ∈ Pk so that pk(λkσ) = vσ and

‖pk‖2 ≤
C

k

∑
σ∈Σ′

|vσ|2e−k|λ
k
σ|

2

, (4.3)

and thus∫
|z|≤Mk/

√
k

|pk(z)|2e−k|z|
2

dm(z) . ‖pk‖2 ≤
C

k

∑
σ∈Σ′

|vσ|2e−k|λ
k
σ|

2

.

The functions fk(z) = pk(
√
kz) are holomorphic in D(0,Mk) and satisfy, by

(4.3), ∫
|z|≤Mk

|fk(z)|2e−k|z|
2

dm(z) ≤ C
∑
σ∈Σ′

|vσ|2e−k|λ
k
σ|

2

,

and if we let k →∞, we obtain

lim sup
k→∞

∫
|z|≤Mk

|fk(z)|2e−k|z|
2

dm(z) .
∑
σ∈Σ′

|vσ|2e−|σ|
2

.

Finally, as fk ∈ O(D(0,Mk)) and we have seen that the family is uniformly
bounded, then by the Montel’s Theorem the family {fk} is normal, hence there
exists a subsequence {fkj} which converges uniformly to the desired function.

Let us prove now the sampling part. Given any function f in the Fock
space, take a large M > 0 so that∫

|z|>M
|f(z)|2e−|z|

2

dm(z) ≤ 0.1‖f‖2.

We can construct a sequence of polynomials pk such that the conclusions
of the previous Lemma 4.6 hold. For such pk the sampling property of Λk yields

‖pk‖2 .
1

k

∑
λ∈Λk

|pk(λ)|2

(1 + |λ|2)k
.

Since all pk have small L2 norm outside D(0,M/
√
k), the mean value property

(Lemma 1.5) implies
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‖pk‖2 .
1

k

∑
λ∈Λk∩D(0,M/

√
k)

|pk(λ)|2

(1 + |λ|2)k
,

and as k‖pk‖2 ' ‖f‖2 (Lemma 4.6), taking weak limits of Σk, it holds that

‖f‖2 .
∑
|σ|≤M

|f(σ)|2e−|σ|
2

.

ut

Theorem 4.8. There are no arrays for Pk which are simultaneously interpolat-
ing and sampling.

Proof. By reductio ad absurdum, we can suppose that there exists such array.
Then, by the previous theorem, there is an associated sequence Σ which is both
sampling and interpolating for BF2, and no such thing exists [12, p. 27]. ut





5

Sufficient Density Conditions

Finally, we find necessary and sufficient conditions for an array to be sampling or
interpolating. To get these conditions we will study such arrays with conditions
of type L∞ or L1. The characterizations we will use are only possible in the one
dimensional case, in fact, only the necessary conditions we have found work on
higher dimensions.

5.1 Conditions for Sampling

Definition 5.1. A separated array Λ = {Λk}k is an L∞-sampling array if there
is k0 and a constant 0 < C <∞ such that, for each k ≥ k0 and any polynomial
p ∈ Pk we have

sup
z∈C

|p(z)|
(1 + |z|2)

k
2

≤ C sup
λ∈Λk

|p(λ)|
(1 + |λ|2)

k
2

.

Proposition 5.2. If Λ = {Λk}k is an L∞-sampling array, then {Λ(1+ε)k}k is
L2-sampling.

Proof. We know by hypothesis that for any p ∈ Pk,

sup
z∈C

|p(z)|
(1 + |z|2)

k
2

≤ C sup
Λk

|p(λ)|
(1 + |λ|2)

k
2

,

so define for any y ∈ C and p ∈ Pk the polynomial in Pk(1+ε)

py(x) = p(x)

[
K ε

2k
(x, y)

K ε
2k

(y, y)

]2

.

Let us take y ∈ C a point where |p(z)|
(1+|z|2)

k
2

attains its maximum. Then
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sup
z∈C

|p(z)|
(1 + |z|2)

k
2

=
|p(y)|

(1 + |y|2)
k
2

=
|py(y)|

(1 + |y|2)
k
2

≤ C sup
Λk(1+ε)

|py(λ)|
(1 + |λ|2)

k
2

≤ C sup
Λk(1+ε)

|p(λ)|
(1 + |λ|2)

k
2

. (5.1)

Since Λk(1+ε) is sampling, for any z ∈ C,

|p(z)|
(1 + |z|2)

k
2

=
|pz(z)|

(1 + |z|2)
k
2

. sup
Λk(1+ε)

|p(λ)|
(1 + |z|2)

k
2

∣∣∣∣K ε
2k

(λ, z)

K ε
2k

(z, z)

∣∣∣∣2
≤
∑

Λk(1+ε)

|p(λ)|
(1 + |z|2)

k
2

∣∣∣∣K ε
2k

(λ, z)

K ε
2k

(z, z)

∣∣∣∣2 .
Thus, integrating both sides we get∫

C

|p(z)|
(1 + |z|2)

k
2

dV(z) .
1

εk

∑
Λk(1+ε)

|p(λ)|
(1 + |λ|2)

k
2

.

Hence, ∫
C

|p(z)|2

(1 + |z|2)k
dV(z) .

1

εk

∑
Λk(1+ε)

|p(λ)|2

(1 + |λ|2)k
.

ut

Theorem 5.3. Let Λ be a separated array. Then Λ is a sampling array for Pk
if and only if there are ε > 0, r > 0 and k0 > 0 such that for all k ≥ k0,

](Λk ∩Ω)

k
∫
Ω
dV(z)

> 1 + ε

where Ω = D(z, r/
√
k) and for all z ∈ C.

Proof. Consider arrays Λk ⊂ C and Σk ⊂ D(0,Mk) the corresponding dilated
sequences in the plane. Since Σk are separated there is a subsequence converging
weakly to Σ that for simplicity we keep denoting by Σk. The hypothesis implies
that

](Σ ∩D(y, r0))

r2
0

≥ (1 + ε) .

By a theorem of Seip and Wallsten [18, Theorem 1.1], Σ is sampling for the
space of functions BF∞. Those are entire functions f such that

sup
z∈C
|f |e− 1

2 |z|
2

<∞.
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On the other hand, we may extract a converging subsequence of polynomials fk
to f ∈ BF∞ such that |f(0)| = 1 and f|Σ = 0, and this is a contradition with
the fact that Σ is sampling for BF∞. We can conclude that actually {Λ(1−ε)k}
is L∞-sampling and therefore Λk is L2-sampling by Proposition 5.2.

We turn now to the necessity of the density condition, so we assume that
Λk is a sampling array. Thus, we know that the density of Λ is bigger or equal
than a critical level (Lemma 3.7). We will prove that there is ε > 0 so that
{Λ(1−ε)k} is still an L2-sampling array, so the inequality is strict.

We know that any weak limit Σ ∈ W (Λk) is a sampling sequence in
BF2(C) (Theorem 4.7), so by a characterization of Seip and Wallsten the lower
Beurling density D−(Σ) in [18], it is bounded below by 1. Let us show that then
there is an ε > 0 so that {Λ(1−2ε)k} is L∞-sampling.

By contradiction, suppose for any n and k very big, there are polynomials
pk ∈ Pk such that ‖pk‖∞ = 1 and ‖pk|Λ(1−1/n)k

‖∞ = o(1). We fix n and we
construct functions fn ∈ BF∞(C) of norm one such that fn(0) = 1 and fn|Σn ≡
0, where Σk is a weak limit of a subsequence of Λ(1−1/n)k as k →∞.

We take another subsequence of the functions fn of the separated se-
quences Σn in such a way that Σn converge weakly to Σ, fn → f with
f ∈ BF∞(C), norm one and f(0) = 1 and f|Σ ≡ 0. And this is a contradic-
tion with D−(Σ) > 1 (Theorem 5.1). Finally, the Proposition 5.2 implies the
result, since there should exist an L2 sampling array. ut

5.2 Conditions for Interpolation

Definition 5.4. A separated array Λ = {Λk} is an L1-interpolation array if
there is k0 and a constant 0 < C <∞ such that, for each k ≥ k0 and any set of
vectors {νλ}λ∈Λk , there is a polynomial p ∈ Pk so that

p(λ) = νλ, λ ∈ Λk,

and ∫
C
|p(z)|e−k/2φ(z)dV(z) ≤ C

k

∑
λ∈Λk

|νλ|e−k/2φ(z).

Proposition 5.5. The constant of L1 interpolation at level k is comparable to
the smallest constant Ak such that

sup
z∈C

1

k

∣∣∣∣∣∑
Λk

aλK(z, λ)

∣∣∣∣∣ e k2 ≤ Ak sup
Λk

|aλ|e−
k
2φ(λ),

where {aλ}λ∈Λk ⊂ C.
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Proof. The result will follow from a duality argument. The main fact is that a
linear operator and its dual have the same norm [16, Theorem 4.10, p. 93]. Let
us consider the restriction operator

R :P1
k → l1(Λk)

f 7→ {f(λ)e−
k
2φ(λ)}λ∈Λk

which is injective over the space Pk/N , where N = {f ∈ P1
k : f|Λk ≡ 0}. Then

the range of the adjoint R∗ is the whole (P1
k/N)∗ ' P∞k with same values on

Λk, this is
R∗ : l∞(λk)→ P∞k /N

is injective. For f ∈ P1
k and a ∈ l∞ we have

〈Rf, a〉 = 〈f,R∗a〉.

Let us check that R∗a =
∑
λ aλK̃λ, where K̃λ are the normalised reproductive

kernels:

1. 〈Rf, v〉 =
∑
λ∈Λk f(λ)e−

k
2φ(λ)āλ.

2. 〈f,R∗a〉 =
∑
λ∈Λk āλ〈f, K̃λ〉 =

∑
λ∈Λk āλf(λ)e−

k
2φ(λ).

Thus the condition ‖R∗a‖P∞k ≤ c‖a‖∞ is∥∥∥∥∥∑
λ∈Λk

aλK̃λ

∥∥∥∥∥
P∞k

≤ c‖a‖∞.

ut

Proposition 5.6. If Λ = {Λk} is an L1-interpolation array, then {Λ(1−ε)k} is
an L2-interpolation array.

Proof. If Λ is an L1 interpolation array then for each λ ∈ Λ(1−2ε)k we can

build a Lagrange polinomial lλ ∈ P(1−2ε)k so that lλ(λ′)e−
k
2φ(λ′) = δλλ′

and ‖lλ‖L1 ≤ C/k. Then by the sub-mean property (Lemma 1.5) we obtain

supC |lλ(z)|e− k2φ(z) ≤ Ck‖lλ‖L1 ≤ C2. Thus we can use the same argument as
in Theorem 4.7 and prove that {Λ(1−ε)k} is an L2-interpolation array. ut

Proposition 5.7. Let Λ be an L2-interpolation array, then there is ε > 0 such
that {Λ(1+ε)k} is L2-interpolating.

Proof. We know that any weak limit is an interpolating sequence in BF2(C)
(Theorem 4.7), and by a characterization of Seip [17], the upper Beurling density
D+(Σ) < 1. Let us show that then there is an ε > 0 such that {Λ(1+2ε)k} is
L1-interpolating.
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By contradiction, suppose that for any n the interpolation constants
at level k, Ck for Λ(1+1/n)k blow up. Thus, by the dual description of Ck
(Proposition 5.5) we can find sequences of vectors {aλ}λ∈Λ(1+1/n)k

so that
supΛ(1+1/n)k

|aλ| = 1 and

sup
x∈C

1

k

∣∣∣∣∣∣
∑

Λ(1+1/n)k

akK̃(x, λ)

∣∣∣∣∣∣ = o(1), as k →∞.

If we fix n and by passing to a subsequence in around the points λ∗k where |ak|
attains its maximum value, we can extract a subsequence of Λ(1+1/n)k as k →∞
that scaled appropriately converges weakly to the separated sequence Σn ⊂ C.
Morevover, after taking a subsequence again, there are subsequences akλ → anσ
for all σ ∈ Σn. We are going to prove in this case

fn(z) =
∑
σ∈Σn

anσe
σ̄z−1/2|σ|2 ≡ 0,

with |a0| = 1, and supσ |anσ| ≤ 1. To see this we will prove that for any ε > 0,

sup
|z|<1

|fn(z)|e−|z|
2

≤ ε.

Since Σn is separated and |anσ| ≤ 1, the decay of the Bargmann-Fock kernel away
from the diagonal implies that for any ε > 0 it is possible to find R > 0 such
that

sup
|z|<1

∣∣∣∣∣∣
∑

σ∈Σn,|σ|>R

anσe
σ̄z−1/2|σ|2

∣∣∣∣∣∣ e−1/2|z|2 ≤ ε.

Due to the Bargmann-Fock kernel is the limit of the Bergman kernel, both decay
away from the diagonal, this is

1

k + 1
K(z/

√
k,w/

√
k) =

(
1 +

zw̄

k

)k
→ ezw̄.

So we only need to care about the points σ ∈ Σn ∩D(0, R). It holds that

1

k

∑
Λ(1+1/n)k∩D(λ∗k,R/

√
k)

akK(x, λ) 7→ 1

π

∑
σ∈Σn,|σ|<R

anσe
σ̄z−1/2|σ|2−1/2|z|2

uniformly in |z| < 1. Thus,

1

k

∣∣∣∣∣∣
∑

Λ(1+1/n)k∩D(λ∗k,R/
√
k)

ak,K(x, λ)

∣∣∣∣∣∣ ≤ ε
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if k is big enough, because the global sum for all λ ∈ Λ(1+1/n)k converges to zero

and the terms λ outside the disc D(λ∗k, R/
√
k) are small when R is big since

Λ(1+1/n)k is separated and there is a fast decay of the normalized reproducing
kernel away from the diagonal.

Finally, we have to prove that fn ≡ 0 and {anσ} is uniformly bounded
sequence with a0 = 1. We can take a subsequence as n→∞ and we find Σn → Σ
weakly and there is a bounded sequence {aσ} such that f(z) =

∑
aσe

σ̄z−|σ|2/2 ≡
0 and |a0

σ| = 1. This is clear not possible since Σ is a weak limit and thus it has
D+(Λ) < 1, thus Λ is interpolating for the L1 Bargmann-Fock space and this
means that by duality

sup
σ
|aσ| ≤ C sup

z∈C

∣∣∣∑ aσe
σ̄z−|σ|2/2

∣∣∣ e−|z|2 .
Hence we have proved that {Λ(1+2ε)k} is L1-interpolation. We finish the proof
by observing that by a previous proposition (Porposition 5.6) this implies that
{Λ(1+ε)k} is L2-interpolation. ut

A simple sufficient condition for interpolation is the following

Lemma 5.8. If

sup
k

sup
λ∈Λk

1

k + 1

∑
λ′ 6=λ

|K(λ, λ′)|e−kφ(λ′) < 1,

then {Λk}k is an interpolation array.

Proof. Consider the restriction operator at level k

Rk : Pk −→ l2(Λk)

p 7→ {p(λ)}λ∈Λk .

In order to see that Rk is surjective, consider the approximate extension at level
k:

Ek : l2(Λk) −→ Pk

{vλ}λ∈Λk 7→ Ek(v)(z) =
1

k + 1

∑
λ∈Λk

vλe
−kφ(λ)K(λ, z).

We shall see that ‖I − RkEk‖ < 1, so that (RkEk)−1 is well-defined. Then the
operator Ek(RkEk)−1 solves the interpolation problem. We shall see also that
these estimates are uniform in k.

Let us see first that the norm of Ek is uniform in k. We have, by duality
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‖Ek‖ = sup
p∈Pk‖p‖≤1

|〈Ek, p〉| = sup
p∈Pk‖p‖≤1

1

k + 1

∣∣∣∣∣∑
λ∈Λ

vλe
−kφ(λ)〈Kλ, p〉

∣∣∣∣∣
= sup
p∈Pk‖p‖≤1

1

k + 1

∣∣∣∣∣∑
λ∈Λ

vλe
−kφ(λ)p̄(λ)

∣∣∣∣∣ .
By Cauchy-Schwarz

‖Ek‖ = sup
p∈Pk‖p‖≤1

(
1

k + 1

∑
λ∈Λ

|vλ|2e−kφ(λ)

) 1
2
(

1

k + 1

∑
λ∈Λ

|p(λ)|2e−kφ(λ)

) 1
2

. ‖v‖l2(Λk) sup
p∈Pk‖p‖≤1

(
1

k + 1

∑
λ∈Λ

|p(λ)|2e−kφ(λ)

) 1
2

.

Since Λk is separated, Plancherel-Polya guarantees the the second factor is uni-
formly bounded in k.

Let us estimates now ‖I −RkEk‖. Given v ∈ l2(Λk), we have

‖{Ek(v)(λ)− vλ}λ∈Λk‖2l2(Λk) =
1

k

∑
λ∈Λk

|Ek(v)(λ)− vλ|2e−kφ(λ),

where

Ek(v)(λ)− vλ =
1

k + 1

∑
λ′ 6=λ

vλ′e
−kφ(λ′)K(λ, λ′)

Let

σ = sup
k

sup
λ∈Λk

1

k + 1

∑
λ′ 6=λ

|K(λ, λ′)|e−kφ(λ′) < 1.

By Cauchy-Schwarz

‖(RkEk)(v)− v‖2l2(Λk) ≤
1

k

∑
λ∈Λk

1

(k + 1)2

∑
λ′ 6=λ

|vλ′ |2e−kφ(λ′)|K(λ, λ′)|

∑
λ′ 6=λ

e−kφ(λ′)|K(λ, λ′)|

 e−kφ(λ)
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≤ σ 1

k

1

k + 1

∑
λ∈Λk

∑
λ′ 6=λ

|vλ′ |2e−kφ(λ′)|K(λ, λ′)|e−kφ(λ)

=
σ

k

∑
λ′ 6=λ

|vλ′ |2e−kφ(λ′)

(
1

k + 1

∑
λ∈Λk

|K(λ, λ′)|e−kφ(λ)

)

=
σ2

k

∑
λ′ 6=λ

|vλ′ |2e−kφ(λ′) = σ2‖v‖2l2(Λk).

Thus
‖RkEk − I‖ ≤ σ < 1

as desired.

Theorem 5.9. Let Λ be a separated array, then Λ is an interpolation array for
Pk if and only if there are ε > 0, r > 0 and k0 > 0 such that for all k ≥ k0,

](Λk ∩Ω)

k
∫
Ω
dV(z)

< 1− ε

where Ω = D(z, r/
√
k) and for all z ∈ C.

Proof. The neccesity part is a straightfoward chain of propositions. If we have
that Λk is an L1 interpolation array, then by Proposition 5.6 Λ(1−ε)k is an L2

interpolation array. Then Proposition 5.7 implies that Λk is an L2 interpolation
array. Finally, Corollary 3.10 gives the result.

Let us indicate how to prove the sufficiency part. Since by hypothesis the
density is small the corresponding sequence Σk is an interpolation sequence for
the BF2 space in C. Actually since the separation constant is uniform and the
density is uniform then by a theorem of Seip and Wallstén, the constants of
interpolation for all the sequences Σk will be uniformly bounded, for k ≥ k0.
Thus we can construct functions fkλ such that |fkλ (0)| = 1, ‖fkλ‖ ≤ C and fkλ (σ) =
0 for all σ ∈ Σk \ {0}. Moreover, it holds that∫

C
|fkλ (z)|2e−(1−ε)|z|2dz <∞.

Now, we can define gλ = χλ,kf
k
λ +u, where χλ,k is a cutoff function around

λ such that gλ(z) = 0 if d(z, λ) > 2C/
√
k and gλ(z) = 1 if d(z, λ) < C/

√
k and

u is the solution to the equation ∂̄u = ∂̄χλ,kf
k
λ (z) provided by the Hörmander

theorem in our setting.

Finally, if we define pλ = gλ

(
K
ε k
2

(z,λ)

K
ε k
2

(λ,λ)

)2

, this polynomial has a property

similar to the condition of the Lemma 5.8. ut
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