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Abstract

In this project we study the pointwise convergence of Fourier series. Our main goal is
the proof of Carleson’s theorem, which states, roughly speaking, that the Fourier series of
any periodic and square integrable function converges to the function almost everywhere.
The proof will be based on that presented in the article Pointwise convergence of Fourier
series, by Charles Fefferman (see [4]). The structure and the notations will be similar to
those of the article, but the proofs and the concepts will be explained in much more detail.

In Chapter 1 we revise the history of Fourier series until the proof of Carleson’s theorem
by Fefferman [1] [3]. We also explain the structure of the project in detail. In Chapter
2 we relate the convergence problem of Fourier series to the boundedness of an operator.
In the third chapter, using dyadic grids, we decompose the mentioned operator in simpler
operators. In the fourth chapter we handle some technicalities concerning the dyadic grids
chosen. In Chapter 5 we give the intuition for the proof of Carleson’s theorem and we
specify the main goal. In the sixth chapter the main lemmas of the project are proved,
which give as a consequence the proof of Carleson’s theorem in the seventh chapter.

Keywords: Fourier series, pointwise convergence, Carleson’s theorem.
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Chapter 1

Introduction

In the first quarter of the 19th century, Joseph Fourier published works on the heat
diffusion equation. He solved the problem of the temperature distribution at any given
time from the distribution at the starting time. To that end, he invented the separation
of variables method. In order to describe the solution, he needed to write the function
given by the initial data as a sum of a trigonometric series. In general, if f is the function,
which is assumed to be 2π-periodic, the problem consists on finding a trigonometric series

a0

2
+

∞∑
k=1

(ak cos(kx) + bk sin(kx)) (1.1)

such that its sum coincides with f(x) at each x. Fourier correctly stated that

ak =
1

π

∫ π

−π
f(x) cos(kx) dx, bk =

1

π

∫ π

−π
f(x) sin(kx) dx. (1.2)

The trigonometric series (1.1) with coefficients (1.2) is called the Fourier series of f .
Fourier was convinced that (1.1) always converged to f . However, in his time, the concept
of function was not even well-defined: for instance, Fourier considered that every function
could be expressed as a power series. Moreover, he never asked himself the possibility of
defining the coefficients from (1.2), since for him every function was always integrable, in
the sense that there is always an area between the function and the abscissa axis. Thus,
Fourier did not give a result on the convergence of (1.1), but left a problem about the
representation of a function as a trigonometric series.

The trials to solve the problem immediately appeared. In 1829, Dirichlet gave the first
correct result on the convergence of (1.1): if a bounded function is piecewise continuous
and piecewise monotone, then its Fourier series converges at each point to the midpoint of
the lateral limits of the function. Dirichlet did not try to find a general result, but suffi-
cient conditions that guarantee the convergence of the series. He started the convergence
criteria.

A great portion of the mathematics developed from that time went towards the proof
of convergence criteria: for instance, the Riemann integral (1855) or the Lebesgue integral
(1902) owed part of their success to the application to Fourier series.

At the beginning of the 20th century, Hilbert spaces were born: the concept of ortho-
gonality, the `2 and L2 spaces, etc. Frigyes Riesz and Ernst Fischer, in 1907, proved that
the Fourier series of a function in L2([−π, π]) converges in the L2-norm to it. Thus, the
space L2 represented the correct setting to study Fourier series.
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Then, new questions on convergence in the Lp spaces and a.e. convergence began
to arise. In 1913, Nikolai Lusin conjectured that every function in L2([−π, π]) had an
a.e. convergent Fourier series. Banach and Steinhauss proved in 1918 that there is no
convergence in the L1-norm, and Marcel Riesz (the younger brother of Frigyes Riesz)
showed that there is convergence in the Lp-norm for 1 < p ≤ ∞. Kolmogorov, in 1923,
gave an example of a function in L1([−π, π]) with an a.e. divergent Fourier series. Soon
after, in 1926, he proved the divergence at every point.

From that moment, Lusin’s conjecture was trying to be proved or refuted. In 1959,
Calderon showed that, if the Fourier series of every function in L2([−π, π]) converged a.e.,
then

|{x : sup
n
|Snf(x)| > y}| ≤ C ‖f‖2

y2
.

Then many people started to think that Lusin’s conjecture should be false. This is why
Lennart Carleson started looking for a counterexample to Lusin’s conjecture. However, he
realized that no counterexample could exist, and that he should make every effort to prove
the convergence. In 1966, Carleson managed to prove what was an authentic surprise for
everybody: Lusin’s conjecture is true [2]. From that moment, the fact that the Fourier
series of a function in L2([−π, π]) converges a.e. was known as Carleson’s theorem.

The next year, Richard Hunt extended the a.e. convergence to Lp([−π, π]) for 1 < p ≤
∞ [5]. This supposed the culmination of a problem that had started a century and a half
before. In some way, the big questions about the convergence of Fourier series had been
solved.

The proof of Carleson was difficult to understand. Charles Fefferman, in 1973, proved
Carleson’s theorem again [4]. His methods were distinct to those of Carleson, but again
difficult. There is a recent proof of Carleson’s theorem (from 2000) by Lacey and Thiele,
based on the ideas of Fefferman [6].

In this work, our goal is to study the proof done by Fefferman in 1973 [4]. The work
is structured in six more chapters.

In the second chapter, we will relate the problem of convergence to the boundedness
of an operator T 0, defined as

T 0f(x) =

∫ π

−π

eiN(x)y

y
f(x− y) dy, x ∈ [0, 2π],

where the integral is understood in the principal value sense and N is a bounded and
measurable function with constant sign on [0, 2π].

In Chapter 3, we will consider dyadic grids in [0, 2π] and R and we will define pairs
of intervals of the form p = [ω, I], where ω and I are dyadic intervals in R and [0, 2π]
respectively, such that the length of ω is the inverse of the length of I. In this way, we
will decompose

T 0 =
∑
p

Tp,

where Tp will be constructed using the dyadic grids and will be bounded in L2. The key
will be to arrange the pairs in the correct way to transfer the boundedness of the Tp’s to
T 0.

In Chapter 4, we will deal with some technicalities concerning the dyadic intervals ω
in R. We will consider only central dyadic intervals ω (the dyadic intervals that verify
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that their double is contained in their grandfather), and the corresponding pairs will be
called admissible. Using admissible pairs we will construct another operator T =

∑
p Tp,

where p runs through the admissible pairs. We will see that the boundedness of T implies
the boundedness of T 0.

In Chapter 5, we will sketch the proof of the boundedness of T , rearranging the ad-
missible pairs in a suitable way. The idea will be to define an order relation between
the pairs and to build larger and larger sets of admissible pairs P such that

∑
p∈P Tp is

bounded. Also, in this Chapter 5 we will prove the Orthogonality Lemma, which will have
its application at the end of the work.

In Chapter 6 we will prove lemmas concerning the boundedness of
∑

p∈P Tp for sets of
pairs P with a determined structure: no two pairs in P are comparable, P is a tree, it is
a row, it is a forest, etc.

In Chapter 7 we will obtain, as a consequence of the lemmas, that T is bounded from
L2 to Lp,∞, 0 < p < 2, and by interpolation this will result in the boundedness of T from
L2 to L1. This will prove Carleson’s theorem.
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Chapter 2

Preliminaries

We start by recalling some basic definitions. Given f ∈ L1(T), we define the n-th Fourier
coefficient of f as

f̂(n) =
1

2π

∫ π

−π
f(t)e−int dt.

We define the N -th partial sum of the Fourier series of f as

SNf(x) =

N∑
n=−N

f̂(n)einx.

We say that f is the sum of its Fourier series at a point x0 if limN→∞ SNf(x0) = f(x0).

Our goal is to prove Carleson’s theorem:

Theorem 2.1 (Carleson’s theorem) Let f ∈ L2(T). Then

lim
N→∞

SNf(x) = f(x) a.e. (2.1)

Remark 2.1 In this work all integrals will be computed with respect to the Lebesgue mea-
sure.

Let f ∈ L2(T). Suppose that there is a constant C > 0 so that∥∥∥∥∥sup
N≥1
|SNf(·)|

∥∥∥∥∥
1

≤ C ‖f‖2 (2.2)

for all f ∈ L2(T). Let ε > 0. Since C∞(T) is dense in L2(T), there exists ϕ ∈ C∞(T) such
that ‖f − ϕ‖2 < ε. Now use the following trivial bounds:∥∥∥∥lim sup

n
|Snf(·)− f(·)|

∥∥∥∥
1

=

∥∥∥∥lim sup
n
|Snf(·)− Snϕ(·) + Snϕ(·)− ϕ(·) + ϕ(·)− f(·)|

∥∥∥∥
1

≤
∥∥∥∥lim sup

n
(|Snf − Snϕ|+ |Snϕ− ϕ|+ |ϕ− f |)

∥∥∥∥
1

≤
∥∥∥∥lim sup

n
|Snf − Snϕ|+ lim sup

n
|Snϕ− ϕ|+ |ϕ− f |

∥∥∥∥
1

≤
∥∥∥∥lim sup

n
|Sn(f − ϕ)|

∥∥∥∥
1

+

∥∥∥∥lim sup
n
|Snϕ− ϕ|

∥∥∥∥
1

+ ‖ϕ− f‖1.
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Since ϕ ∈ C∞(T), ∥∥∥∥lim sup
n
|Snϕ− ϕ|

∥∥∥∥
1

= 0.

On the other hand, by Cauchy-Schwarz inequality,

‖f − ϕ‖1 ≤ (2π)
1
2 ‖f − ϕ‖2 < (2π)

1
2 ε.

Finally, by assumption (2.2),∥∥∥∥lim sup
n
|Sn(f − ϕ)|

∥∥∥∥
1

≤
∥∥∥∥sup
n≥1
|Sn(f − ϕ)|

∥∥∥∥
1

≤ C‖f − ϕ‖2 < Cε.

Therefore, as ε > 0 is arbitrary,∥∥∥∥lim sup
n
|Snf(·)− f(·)|

∥∥∥∥
1

= 0,

which is equivalent to (2.1). Thus, our goal will be to show (2.2) for every f ∈ L2(T).
Notice that, although we have given a direct proof of the implication

(2.2)∀f ∈ L2(T) ⇒ (2.1)∀f ∈ L2(T),

this fact is easily deduced from the theory of maximal operators. Consider the linear
operators

Tn : L2(T)→ {measurable functions on T}
f 7→ Snf.

Consider the maximal operator

T ∗f(x) := sup
N≥1
|TNf(x)|.

Inequality (2.2) is equivalent to the fact that

T ∗ : L2(T)→ L1(T)

is bounded. By theory from the course of Harmonic Analysis, this implies that T ∗ is
continuous in measure at zero, therefore the set

E = {f ∈ L2(T) : f satisfies (2.1)}

is closed, so E = L2(T) because (2.1) holds for functions that belong to the dense space
C∞(T).

To sum up, we need to show (2.2) for every f ∈ L2(T). Take a large and arbitrary
M ∈ N. Suppose we prove that, for some C > 0 independent of M ,∥∥∥∥∥ sup

1≤N≤M
|SNf(·)|

∥∥∥∥∥
1

≤ C ‖f‖2 (2.3)

for all f ∈ L2(T). Since {
sup

1≤N≤M
|SNf(·)|

}∞
M=1
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is an increasing sequence of nonnegative measurable functions, the Monotone Convergence
Theorem applies:∥∥∥∥∥sup

N≥1
|SNf(·)|

∥∥∥∥∥
1

=

∥∥∥∥∥ lim
M→∞

sup
1≤N≤M

|SNf(·)|

∥∥∥∥∥
1

= lim
M→∞

∥∥∥∥∥ sup
1≤N≤M

|SNf(·)|

∥∥∥∥∥
1

≤ C‖f‖2,

so (2.2) holds for all f ∈ L2(T). Thus, our objective will be to prove that there exists
C > 0 such that for any M ∈ N (2.3) holds for all f ∈ L2(T).

Fix a large M∗ ∈ N for the rest of this work. Given x ∈ [0, 2π], choose n(x) ∈ N as
the least number such that

sup
1≤N≤M∗

|SNf(x)| = |Sn(x)f(x)|.

Our goal becomes
‖Sn(·)f(·)‖1 ≤ C||f ||2, (2.4)

where C does not depend either on M∗ or f .
Notice that, for (2.4) to make sense, we need to assure the measurability of n : [0, 2π]→

{1, . . . ,M∗}. This is what we proceed to show in the following lines. Consider the sets

E1 =

{
x ∈ [0, 2π] : sup

1≤N≤M∗
|SNf(x)| = |S1f(x)|

}
,

E2 =

{
x ∈ [0, 2π]\E1 : sup

1≤N≤M∗
|SNf(x)| = |S2f(x)|

}
,

· · ·

EM∗ =

{
x ∈ [0, 2π]\(E1 ∪ . . . ∪ EM∗−1) : sup

1≤N≤M∗
|SNf(x)| = |SM∗f(x)|

}
.

Each |SNf | is measurable, so sup{|SNf | : 1 ≤ N ≤ M∗} is also measurable. Then we
can use the following result: “if A is measurable in R and F,G : A → R are measurable
functions, then the set {x ∈ A : F (x) = G(x)} is measurable”. From this it follows that
the previous sets E1, . . . , EM∗ are measurable. To finish, note that the function n can
be written as a linear combination of the characteristic functions 1Ej : if x ∈ Ej , then

n(x) = j, and since {Ej}M
∗

j=1 is a partition of [0, 2π],

n(x) =
M∗∑
j=1

j 1Ej (x).

This equality shows that n is measurable, as wanted 1.

To demonstrate (2.4), we express Sn(·)f(·) in an alternative way, making use of the
representation of the partial Fourier sums by means of a convolution with the Dirichlet

1I posted and answered a question on the Internet site MathOverflow con-
cerning the measurability of n: http://mathoverflow.net/questions/229415/

pointwise-convergence-of-fourier-series-feffermans-article
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kernel. We start by estimating the difference

Sn(x)f(x)− 1

π

∫ π

−π
f(x− y)

sin(n(x)y)

y
dy

=
1

2π

∫ π

−π
f(x− y)

(
sin
((
n(x) + 1

2

)
y
)

sin
(y

2

) − 2
sin(n(x)y)

y

)
︸ ︷︷ ︸

hn(x)(y)

dy. (2.5)

Now we will show that, in terms of ‖ · ‖1, the right-hand side term in (2.5) is negligible.
For that purpose, we demonstrate that hn(x) is bounded with a bound independent of n.
Start by making the following bounds:

|hn(x)(y)| =

∣∣∣∣∣sin
((
n(x) + 1

2

)
y
)

sin
(y

2

) − 2
sin(n(x)y)

y

∣∣∣∣∣
=

∣∣∣∣∣sin(n(x)y) cos
(y

2

)
+ cos(n(x)y) sin

(y
2

)
sin
(y

2

) − 2
sin(n(x)y)

y

∣∣∣∣∣
≤ | sin(n(x)y)|

∣∣∣∣∣cos
(y

2

)
sin
(y

2

) − 1

y/2

∣∣∣∣∣+ | cos(n(x)y)|

≤

∣∣∣∣∣cos
(y

2

)
sin
(y

2

) − 1

y/2

∣∣∣∣∣+ 1 =

∣∣∣∣ y/2

sin(y/2)

∣∣∣∣
∣∣∣∣∣ 1

y/2

(
cos
(y

2

)
−

sin
(y

2

)
y/2

)∣∣∣∣∣+ 1.

Note that this last bound does not depend on n(x). By means of Taylor developments or
l’Hôpital’s rule, one can check that

lim
y→0

1

y/2

(
cos
(y

2

)
−

sin
(y

2

)
y/2

)
= 0.

Then ∣∣∣∣ y/2

sin(y/2)

∣∣∣∣
∣∣∣∣∣ 1

y/2

(
cos
(y

2

)
−

sin
(y

2

)
y/2

)∣∣∣∣∣ ∈ C([−π, π]),

so |hn(x)| ≤ K, for some constant K independent of n. Now it is easy to check that the
right-hand side term of (2.5) does not contribute anything when estimating ‖Sn(·)(·)‖1:

‖Sn(·)f(·)‖1 ≤
1

π

∥∥∥∥∫ π

−π
f(· − y)

sin(n(·)y)

y
dy

∥∥∥∥
1

+
1

2π

∫ π

−π

∣∣∣∣∫ π

−π
f(x− y)hn(x)(y) dy

∣∣∣∣ dx
≤ 1

π

∥∥∥∥∫ π

−π
f(· − y)

sin(n(·)y)

y
dy

∥∥∥∥
1

+
K

2π

∫ π

−π

(∫ π

−π
|f(x− y)| dx

)
dy

≤ 1

π

∥∥∥∥∫ π

−π
f(· − y)

sin(n(·)y)

y
dy

∥∥∥∥
1

+K‖f‖1

≤ 1

π

∥∥∥∥∫ π

−π
f(· − y)

sin(n(·)y)

y
dy

∥∥∥∥
1

+ (2π)
1
2K‖f‖2.

Hence, (2.4) will follow if we prove that there exists C > 0 independent of n so that∥∥∥∥∫ π

−π
f(· − y)

sin(n(·)y)

y
dy

∥∥∥∥
1

≤ C‖f‖2 (2.6)
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for all f ∈ L2(T). Actually, it is sufficient to demonstrate (2.6) for f ∈ C∞(T). Let us
show it. Assume that (2.6) holds for all functions in C∞(T). Let f ∈ L2(T). We want to
show that (2.6) is also satisfied by f . Take {fn}∞n=1 ⊆ C∞(T) with limn ‖f − fn‖2 = 0.
We have that∥∥∥∥∫ π

−π
f(· − y)

sin(n(·)y)

y
dy −

∫ π

−π
fn(· − y)

sin(n(·)y)

y
dy

∥∥∥∥
1

≤
∫ π

−π

∫ π

−π
|f(x− y)− fn(x− y)|

∣∣∣∣ sin(n(x)y)

y

∣∣∣∣ dy dx
≤
∫ π

−π

(∫ π

−π
|f(x− y)− fn(x− y)| dy

)
|n(x)| dx

≤ 2πM∗‖f − fn‖1 ≤ 2πM∗(2π)
1
2 ‖f − fn‖2.

Then∥∥∥∥∫ π

−π
f(· − y)

sin(n(·)y)

y
dy

∥∥∥∥
1

≤ 2πM∗(2π)
1
2 ‖f − fn‖2 +

∥∥∥∥∫ π

−π
fn(· − y)

sin(n(·)y)

y
dy

∥∥∥∥
1

≤ 2πM∗(2π)
1
2 ‖f − fn‖2 + C‖fn‖2

n→∞−→ C‖f‖2,

and (2.6) holds for f ∈ L2(T).
Thus, it is sufficient to demonstrate (2.6) for f ∈ C∞(T).
Fix f ∈ C∞(T). We can decompose the integral of (2.6) using principal values:∫ π

−π
f(x− y)

sin(n(x)y)

y
dy = lim

ε→0+

∫
ε≤|y|≤π

f(x− y)
sin(n(x)y)

y
dy

= lim
ε→0+

1

2i

(∫
ε≤|y|≤π

ein(x)y

y
f(x− y) dy −

∫
ε≤|y|≤π

e−in(x)y

y
f(x− y) dy

)
.

Does the limit of each of those integrals exist? Yes, due to the fact that f ∈ C∞(T). For
instance, for the first integral, note that∫

ε≤|y|≤π

ein(x)y

y
f(x− y) dy =︸︷︷︸

y←−y

∫
ε≤|y|≤π

e−in(x)y

−y
f(x+ y) dy,

so ∫
ε≤|y|≤π

ein(x)y

y
f(x− y) dy =

1

2

∫
ε≤|y|≤π

ein(x)yf(x− y)− e−in(x)yf(x+ y)

y
dy

=
1

2

∫
ε≤|y|≤π

f(x− y)
ein(x)y − e−in(x)y

y
dy

−1

2

∫
ε≤|y|≤π

e−in(x)y f(x+ y)− f(x− y)

y
dy. (2.7)

The integrands appearing in (2.7) belong to L1([−π, π], dy). Indeed, for the first one∣∣∣∣∣f(x− y)
ein(x)y − e−in(x)y

y

∣∣∣∣∣ ≤ 2

∣∣∣∣f(x− y)
sin(n(x)y)

y

∣∣∣∣
≤ 2|n(x)||f(x− y)| ≤ 2M∗|f(x− y)| ∈ L1([−π, π], dy), (2.8)
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and for the second one the key is the existence of

lim
y→0

f(x+ y)− f(x− y)

y
=

1

2
f ′(x),

which gives

e−in(x)y f(x+ y)− f(x− y)

y
∈ L1([−π, π], dy). (2.9)

Then there exists the principal value

lim
ε→0+

∫
ε≤|y|≤π

ein(x)y

y
f(x− y) dy

=
1

2

∫ π

−π
f(x− y)

ein(x)y − e−in(x)y

y
dy − 1

2

∫ π

−π
e−in(x)y

f(x+ y)− f(x− y)

y
dy.

Thus, we conclude that∫ π

−π
f(x− y)

sin(n(x)y)

y
dy

=
1

2i

(
lim
ε→0+

∫
ε≤|y|≤π

ein(x)y

y
f(x− y) dy − lim

ε→0+

∫
ε≤|y|≤π

e−in(x)y

y
f(x− y) dy

)
. (2.10)

From (2.10), it follows that to prove (2.6) it suffices to demonstrate that∥∥∥∥∥ lim
ε→0+

∫
ε≤|y|≤π

ein(x)y

y
f(x− y) dy

∥∥∥∥∥
1

≤ C||f ||2,∥∥∥∥∥ lim
ε→0+

∫
ε≤|y|≤π

e−in(x)y

y
f(x− y) dy

∥∥∥∥∥
1

≤ C||f ||2 (2.11)

for all f ∈ C∞(T). Let N : [0, 2π]→ R be any bounded measurable function that is either
negative on [0, 2π] or positive on [0, 2π]. Then (2.11) will follow if we prove that there
exists C > 0 independent of N such that∥∥∥∥∥ lim

ε→0+

∫
ε≤|y|≤π

eiN(x)y

y
f(x− y) dy

∥∥∥∥∥
1

≤ C||f ||2 (2.12)

for every f ∈ C∞(T).
This is our last reduction to prove (2.1). We will refer to the left-hand side of (2.12)

as a new operator:

T 0 : (C∞(T), ‖ · ‖2)→ {measurable functions on [0, 2π]}

f 7→

[
T 0(f) : [0, 2π]→ C, T 0(f)(x) = lim

ε→0+

∫
ε≤|y|≤π

eiN(x)y

y
f(x− y) dy

]
.

Equivalently to (2.12), our objective will be to show that there is a C > 0 independent
of N such that

‖T 0f‖1 ≤ C‖f‖2 (2.13)

for all f ∈ C∞(T). Notice that in this case T 0 will be defined in a more “natural” way,
in the sense that T 0 : L2(T)→ L1([0, 2π]) will be well-defined. Indeed, if g ∈ L2(T), take

10



{gn}∞n=1 ⊆ C∞(T) such that limn ‖g − gn‖2 = 0. Then {gn}∞n=1 is a Cauchy sequence in
L2(T), therefore {T 0gn}∞n=1 is a Cauchy sequence in L1([0, 2π]) by (2.13), and it is possible
to set

T 0(g) := ‖ · ‖1 − lim
n
T 0(gn).

This definition is well-set, in the sense that T 0(g) does not depend on the sequence chosen:

if limn ‖g − g(1)
n ‖2 = 0 and limn ‖g − g(2)

n ‖2 = 0, then

‖T 0(g(1)
n )− T 0(g(2)

n )‖1 = ‖T 0(g(1)
n − g(2)

n )‖1 ≤ C‖g(1)
n − g(2)

n ‖2
n→∞−→ 0.

In summary, our goal will be to prove (2.13) for all f ∈ C∞(T).

For technical reasons, instead of working with functions defined on T (that is, with
2π-periodic functions on the whole real line), we will work with (1 ≤ q <∞)

Lqr = {f : R→ C : support(f) ⊆ [−4π, 6π], f ∈ Lq([−4π, 6π])}

and
C∞r = {ϕ : R→ C : ϕ ∈ C∞(R), support(ϕ) ⊆ [−4π, 6π]}

(the subscript r stands for restricted). These technical reasons refer to the fact that we
will multiply by five intervals contained in [0, 2π], and it will be convenient to have them
contained in support(f), with support(f) being an interval of finite Lebesgue measure.
Note that Lqr is a Banach space with norm ‖f‖q =

∫
R |f |

q, which is equal to the norm in
Lq(R).

Thus, for the rest of this work our goal will be to prove (2.13) for all f ∈ C∞r (T 0 is
well-defined on C∞r , and the proof of this fact is the same as that for C∞(T)).
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Chapter 3

Decomposition of the operator T 0

We need to reduce and make simpler our problem (2.13). What we will do is to decompose
our operator T 0 in simpler operators.

For that purpose, we first decompose the 1/y term that appears in the integral ex-
pression of T 0(f). Let us see that there exists an odd C∞(R) function ψ(0), supported in
]− 2π, 2π[ \ [−π/2, π/2], such that |ψ(0)| < 1, ψ(0)|R+ ≥ 0, ψ(0)|R− ≤ 0 and

1

z
=
∞∑
j=0

ψj(z), ∀z ∈ [−π, π]\{0}, (3.1)

where ψj(z) = 2jψ(0)(2jz). The infinity smoothness and the bounded support makes
us think on a Uryshon function. Consider an even Uryshon function ϕ ∈ C∞(R) with
support(ϕ) ⊆ ] − 2π, 2π[ , 0 ≤ ϕ ≤ 1 and ϕ(x) = 1 for all x ∈ [−π, π]. Let ψ(x) =
ϕ(x) − ϕ(2x). Note that 0 ≤ ψ ≤ 1, support(ψ) ⊆ ] − 2π, 2π[ \ [−π/2, π/2], ψ ∈ C∞(R)
and ψ is even. In addition, for all x ∈ [−π, π]

∞∑
k=0

ψ(2kx) =︸︷︷︸
telescopic

sum

ϕ(x) = 1.

Since we would like something as 1/x, we consider

ψ(0)(x) =

{
0, if x = 0,
ψ(x)
x , if x 6= 0.

Then ψ(0) is C∞, because ψ is 0 around 0. Moreover, it is odd (because ψ is even), it has
support in ]− 2π, 2π[ \ [−π/2, π/2] and |ψ(0)| ≤ 1/(π/2) = 2/π < 1. Finally, (3.1) holds:

∀z ∈ [−π, π]\{0}
∞∑
j=0

2jψ(0)(2jz) =

∞∑
j=0

2j
ψ(2jz)

2jz
=

1

z

∞∑
j=0

ψ(2jz) =
1

z
.

Once we have decomposed the 1/y term that appears in the integral expression of
T 0(f), we decompose the domain [0, 2π] by means of dyadic intervals. Given P ∈ Z, a
dyadic interval of order m ∈ Z is defined as

[2π · P · 2m, 2π · (P + 1) · 2m[ .

13



A dyadic grid of order m ∈ Z is the family of dyadic intervals

{[2π · P · 2m, 2π · (P + 1) · 2m[ }P∈Z.

Here we present some examples of dyadic grids:

−4π −2π 0 2π 4π

m = 0

−4π −3π −2π −π 0 π 2π 3π 4π

m = −1

−4π 0 4π

m = 1

Notice that, if I and J are dyadic intervals of orders m and l respectively, with m 6= l,
then either I ⊆ J , or J ⊆ I or I ∩ J = ∅. This property is one of the key facts concerning
dyadic intervals.

Given dyadic intervals ω ⊆ R and I ⊆ [0, 2π], we will say that [ω, I] is a pair if

1 ≤ |ω|
2π

=
2π

|I|

(| · | represents the length of the interval computed with respect to the Lebesgue measure).

π
2

π

I = [π/2, π)

Example of a pair [ω, I]

8π 16π

ω = [8π, 16π)

We will denote the set of all pairs by B. Given [ω, I] ∈ B, we define

E(ω, I) = {x ∈ I : N(x) ∈ ω} ⊆ [0, 2π].

Let, for k ∈ N ∪ {0},

Bk = {[ω, I] ∈ B : |I| = 2π · 2−k and |ω| = 2π · 2k}.

For each k ∈ N ∪ {0} we have a partition

{E(ω, I) : [ω, I] ∈ Bk}
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of [0, 2π]. The partition is finite, because N is bounded.
Thus, we can proceed to decompose T 0. Given [ω, I] ∈ Bk, define a new operator

T[ω,I]f(x) =

∫ π

−π
eiN(x)yψk(y)f(x− y) dy · 1E(ω,I)(x)

for x ∈ R. With this new operator T[ω,I] there is no need to go down until C∞r , since it is
well-defined from L2

r to L2
r . Indeed, let f ∈ L2

r and denote by p = [ω, I]. At a first step,
we bound

|Tpf(x)| ≤
∫ π

−π
|ψk(y)||f(x− y)| dy · 1E(p)(x).

Now we distinguish two cases, depending on whether k = 0 or k > 0:

• Case k = 0. We have ψk = ψ(0), I = [0, 2π[ and

|Tpf(x)| ≤
∫ π

−π
|ψ(0)(y)||f(x− y)| dy · 1E(p)(x) ≤︸︷︷︸

|ψ(0)|<1

∫ π

−π
|f(x− y)| dy · 1E(p)(x)

≤
∫
R
|f(x− y)| dy · 1E(p)(x) = ‖f‖1 · 1E(p)(x) ≤︸︷︷︸

Cauchy-Schwarz

√
10π‖f‖2 · 1E(p)(x).

Now apply ‖ · ‖2:

‖Tpf‖2 ≤
√

20π

(
|E(p)|

2π

) 1
2

‖f‖2.

• Case k > 0. Recall that support(ψk) ⊆ ] − 2π/2k, 2π/2k[⊆ [−π, π]. Then we can
write

|Tpf(x)| ≤
∫ 2π

2k

− 2π

2k

|ψk(y)||f(x− y)| dy · 1E(p)(x) ≤︸︷︷︸
|ψ(0)|<1

2k
∫ 2π

2k

− 2π

2k

|f(x− y)| dy · 1E(p)(x)

= 2k
∫ x+ 2π

2k

x− 2π

2k

|f(y)| dy · 1E(p)(x) ≤ 2k
∫
I3
|f(y)| dy · 1E(p)(x), (3.2)

where I3 is formed by adding I to the left and to the right of I. Apply ‖ · ‖2:

‖Tpf‖2 ≤
2π

|I|

∫
I3
|f(y)| dy · |E(p)|

1
2 ≤︸︷︷︸

Cauchy-Schwarz

2π

|I|
‖f‖2|I3|

1
2 |E(p)|

1
2

=︸︷︷︸
|I3|=3|I|

√
3 · 2π

(
|E(p)|
|I|

) 1
2

‖f‖2.

Thus,
Tp : L2

r → L2
r

is well-defined, linear and continuous, with norm

‖Tp‖2 ≤ C
(
|E(p)|
|I|

) 1
2

. (3.3)
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In connection with this expression, we will denote

A0(p) =
|E(p)|
|I|

. (3.4)

For k ∈ N ∪ {0}, denote

Tkf(x) =
∑
p∈Bk

Tpf(x) =

{∫ π
−π e

iN(x)yψk(y)f(x− y) dy, x ∈ [0, 2π],

0, x /∈ [0, 2π]

(remember that {E(p) : p ∈ Bk} is a partition of [0, 2π]). The sum
∑

p∈Bk is finite
independently on x and f , because N is bounded.

Notice that
Tk : L2

r → L2
r (3.5)

is well-defined, linear and continuous, because

|Tkf(x)| ≤
∫ π

−π
|ψk(y)||f(x− y)| dy ≤ 2k‖f‖1 ≤ C · 2k · ‖f‖2 ⇒ ‖Tkf‖2 ≤ C · 2k · ‖f‖2.

Now we compute
∞∑
k=0

Tkf(x).

Intuitively, one should be able to interchange
∑∞

k=0 and
∫ π
−π and, using (3.1), arrive at

∞∑
k=0

Tkf(x) = T 0f(x) (3.6)

for all f ∈ C∞r and x ∈ R (remember: every time we work with T 0 we need to go down to
C∞r ; T 0f is understood to be 0 outside of [0, 2π]). We prove (3.6) formally. Let f ∈ C∞r
and x ∈ R. By (2.7), the principal value defining T 0f can be expressed as an integral:

T 0f(x) =
1

2

∫ π

−π
f(x− y)

eiN(x)y − e−iN(x)y

y
dy − 1

2

∫ π

−π
e−iN(x)y f(x+ y)− f(x− y)

y
dy. (3.7)

By (3.1),

T 0f(x) =
1

2

∫ π

−π
f(x− y)(eiN(x)y − e−iN(x)y)

( ∞∑
k=0

ψk(y)

)
dy

−1

2

∫ π

−π
e−iN(x)y(f(x+ y)− f(x− y))

( ∞∑
k=0

ψk(y)

)
dy.

By Lebesgue’s theorems, in order to interchange
∑∞

k=0 and
∫ π
−π, we have to check

(I) =

∞∑
k=0

∫ π

−π
|f(x− y)(eiN(x)y − e−iN(x)y)ψk(y)| dy

=︸︷︷︸
known

∫ π

−π

∞∑
k=0

|f(x− y)(eiN(x)y − e−iN(x)y)ψk(y)| dy <︸︷︷︸
to

check

∞
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and

(II) =
∞∑
k=0

∫ π

−π
|e−iN(x)y(f(x+ y)− f(x− y))ψk(y)| dy

=︸︷︷︸
known

∫ π

−π

∞∑
k=0

|e−iN(x)y(f(x+ y)− f(x− y))ψk(y)| dy <︸︷︷︸
to

check

∞.

From (3.1) and the fact that ψ(0)|R+ ≥ 0 and ψ(0)|R− ≤ 0, we have

∞∑
k=0

|ψk(y)| =

{
1
y , if 0 < y ≤ π
− 1
y , if − π ≤ y < 0

=
1

|y|
, ∀y ∈ [−π, π]\{0}.

Then

(I) =

∫ π

−π
|f(x− y)||eiN(x)y − e−iN(x)y|

( ∞∑
k=0

|ψk(y)|

)
dy

=

∫ π

−π
|f(x− y)|

∣∣∣∣∣eiN(x)y − e−iN(x)y

y

∣∣∣∣∣ dy <︸︷︷︸
by

(2.8)

∞

as well as

(II) ≤
∫ π

−π
|f(x+ y)− f(x− y)|

( ∞∑
k=0

|ψk(y)|

)
dy =

∫ π

−π

∣∣∣∣f(x+ y)− f(x− y)

y

∣∣∣∣ dy <︸︷︷︸
by

(2.9)

∞.

This justifies the interchange of
∑∞

k=0 and
∫ π
−π. Then

T 0f(x) =
1

2

∞∑
k=0

∫ π

−π
f(x− y)(eiN(x)y − e−iN(x)y)ψk(y) dy

−1

2

∞∑
k=0

∫ π

−π
e−iN(x)y(f(x+ y)− f(x− y))ψk(y) dy

=
1

2

∞∑
k=0

∫ π

−π
(f(x− y)eiN(x)y − f(x+ y)e−iN(x)y)ψk(y) dy

=︸︷︷︸
ψk
odd

∞∑
k=0

∫ π

−π
eiN(x)yf(x− y)ψk(y) dy =

∞∑
k=0

Tkf(x) (3.8)

and (3.6) is proved.
Could we express (3.6) in a natural way as

T 0f(x) =
∑
p∈B

Tpf(x), (3.9)

for f ∈ C∞r and x ∈ R? To answer this question, we need to study some sort of uncondi-
tional convergence.
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Remark 3.1 Given an integer k ≥ 0, let Ak be a finite set. Denote A = ∪∞k=0Ak.
Consider complex numbers ap, p ∈ A. Suppose that

∞∑
k=0

∑
p∈Ak

|ap| <∞.

Then ∑
n∈A

an

does not depend on the ordering of A and∑
n∈A

an =
∞∑
k=0

∑
p∈Ak

ap.

In the notation of the remark, take Ak = Bk, A = B and ap = Tpf(x). Since

∞∑
k=0

∑
p∈Bk

|Tpf(x)| =
∞∑
k=0

∣∣∣∣∫ π

−π
eiN(x)yf(x− y)ψk(y) dy

∣∣∣∣
≤︸︷︷︸
by

(3.8)

1

2

∞∑
k=0

∫ π

−π
|f(x− y)||eiN(x)y − e−iN(x)y||ψk(y)| dy

+
1

2

∞∑
k=0

∫ π

−π
|f(x+ y)− f(x− y)||ψk(y)| dy

=

∫ π

−π
|f(x− y)|

∣∣∣∣∣eiN(x)y − e−iN(x)y

y

∣∣∣∣∣ dy
+

∫ π

−π

∣∣∣∣f(x+ y)− f(x− y)

y

∣∣∣∣ dy <∞, (3.10)

the remark applies: ∑
p∈B

Tpf(x)

does not depend on the ordering of B, converges absolutely and∑
p∈B

Tpf(x) =
∞∑
k=0

∑
p∈Bk

Tkf(x) = T 0f(x),

so (3.9) is justified. This is the decomposition of T 0 we were looking for.

Now we are going to make a small change on the decomposition of T 0. Remember
that we are working with ψk’s, k ≥ 0. We do not like the case k = 0. Why? Because this
is a special case (look at the bound of ‖Tp‖2), in the sense that support(ψk) ⊆ [−π, π] for
k ≥ 1 but support(ψ0) = support(ψ(0)) 6⊆ [−π, π]. If we do not act, this will cause future
problems. What we are going to do then is to delete in some way ψ0. By (3.6), we have

T 0f(x) = T0f(x) +
∞∑
k=1

Tkf(x),
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and since by (3.5) T0 : L2
r → L2

r is bounded, what we just have to do is to bound∥∥∥∥∥
∞∑
k=1

Tkf

∥∥∥∥∥
1

by C‖f‖2 for all f ∈ C∞r . With some abuse of notation, we will denote

T 0f(x) =

∞∑
k=1

Tkf(x)

and
T 0f(x) =

∑
p∈B

Tpf(x),

where B stands for all the pairs [ω, I] with |I| = 2π ·2−k, k ≥ 1. To sum up, we will always
assume k ≥ 1 and the case k = 0 will not have to be considered.

In this case, the Tp’s will have a more easy and adequate form to handle:

Tpf(x) = ((eiN(x)·ψk(·)) ∗ f)(x) · 1E(p)(x),

where ∗ stands for the convolution in R.
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Chapter 4

Unfortunate technicalities

For any dyadic interval ω ⊆ R, let ω̃ be the next larger dyadic interval containing ω (ω̃ is
called the father of ω) and let ω∗ be the double of ω (that is, ω∗ is the interval with the
same center as ω but twice its length). We would like to say that ω∗ ⊆ ˜̃ω (˜̃ω is called the
grandfather of ω), but that is not true in general:

0 8π

˜̃ω

0 4π

ω̃

0 2π

ω

−π 3π

ω∗ ω∗ 6⊆ ˜̃ω

We will say that ω is central if ω∗ ⊆ ˜̃ω. We will say that [ω, I] ∈ B is admissible if ω
is central. Since we are interested on central intervals, we define a new operator

Tf(x) =
∑
p∈B

p admissible

Tpf(x)

for f ∈ C∞r and x ∈ [0, 2π]. That is, T is as T 0 but just considering the admissible pairs.
Notice that the sum defining T is unconditionally convergent because

∑
p∈B is.

We will see that, in order for (2.13) to hold, it suffices to show that there exists C > 0
independent of N such that

‖Tf‖1 ≤ C‖f‖2 (4.1)

for all f ∈ C∞r .
Which should be the problem when trying to prove that (4.1) implies (2.13)? The

problem should rely on the fact that we do not control the non-admissible pairs when
working with T . However, this may have a solution. When we have the dyadic grid on R,
there are central and non-central intervals. Our dyadic grid is centered around 0. If we
translate our dyadic grid, there will be new central and non-central intervals. We hope
that the central intervals of the new translated dyadic grids will give information about
the non-central intervals of our usual dyadic grid centered at 0. Let us put this intuition
into practice.
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Denote our usual dyadic grid on R centered at 0 as G0. We translate it by ξ ∈ R, in
order to have a new dyadic grid on R called Gξ. We have ω̄ ∈ Gξ if and only if ω̄ = ω + ξ,
ω ∈ G0. Now, in order to construct a new “interesting” operator Tξ on the new dyadic
grid, we follow the same procedure as in the decomposition of T 0. Denote by

Bk(ξ) = {[ω̄, I] : ω̄ ∈ Gξ, |ω̄| = 2π · 2k, |I| = 2π · 2−k}

(note that Bk(0) is our usual Bk). If p = [ω̄, I] ∈ Bk(ξ), we define

Tpf(x) =

∫ π

−π
eiN(x)yψk(y)f(x− y) dy · 1E(p)(x),

where
E(p) = {x ∈ I : N(x) ∈ ω̄} = {x ∈ I : N(x)− ξ ∈ ω}.

Thus, we are considering the same operators as usual but with a translated dyadic grid in
R. For k ≥ 0, define an operator

Tk,ξf(x) =
∑

p∈Bk(ξ)

Tpf(x) =

∫ π

−π
eiN(x)yψk(y)f(x− y) dy.

Now focus on admissible pairs:∑
p∈Bk(ξ)

p admissible

Tpf(x) = αk(N(x), ξ)

∫ π

−π
eiN(x)yψk(y)f(x− y) dy,

where

αk(N(x), ξ) =


1, if the unique dyadic interval ω̄ in Gξ of length 2π · 2k containing

N(x) is central,

0, if the unique dyadic interval ω̄ in Gξ of length 2π · 2k containing

N(x) is not central.

Notice that
αk(N(x), ξ) = αk(N(x)− ξ, 0) =: αk(N(x)− ξ). (4.2)

Hence, αk(N(x), ·) is like an infinite step function on R, more concretely, it is an infinite
sum of characteristic functions over intervals.

Let

B(ξ) =
∞⋃
k=0

Bk(ξ)

(note that B(0) is our usual B). This is the set of pairs in the new dyadic grid Gξ.
From all this we have the new operator Tξ on the dyadic grid Gξ:

Tξf(x) :=
∑
p∈B(ξ)

p admissible

Tpf(x) =

∞∑
k=0

αk(N(x), ξ)

∫ π

−π
eiN(x)yψk(y)f(x− y) dy.

The fact that the sum is unconditionally convergent is proved exactly equal as in the case
of B = B(0).

22



As we explained previously, we can assume without loss of generality that B(ξ) does
not contain the pairs corresponding to k = 0 and then denote (abusing of notation)

Tξf(x) :=
∑
p∈B(ξ)

p admissible

Tpf(x) =

∞∑
k=1

αk(N(x), ξ)

∫ π

−π
eiN(x)yψk(y)f(x− y) dy.

Once we have the operators created on the new dyadic grid Gξ for all ξ ∈ R, do these
operators provide any kind of information about T 0, that is, about the non-admissible
pairs of B? The answer is yes, and, more specifically, T 0f(x) is some sort of average of the
Tξf(x)’s. This will be due to the fact that half of the dyadic intervals in G0 are central.

Lemma 4.1 For all f ∈ C∞r and for all x ∈ R we have

T 0f(x) = lim
M→∞

1

M

∫ M

−M
Tξf(x) dξ.

Proof. We first need to proof the measurability of T·f(x) on R. Write

Tξf(x) =

∞∑
k=1

αk(N(x)− ξ)
∫ π

−π
eiN(x)yψk(y)f(x− y) dy.

Only αk(N(x)−ξ) depends on ξ. Since αk is an infinite sum of characteristic functions over
intervals, it is measurable on R, and since αk(N(x)−·) is just a translation of a measurable
function, it is measurable on R. Then T·f(x) is a pointwise limit of measurable functions,
therefore it is measurable on the real line.

Now act intuitively:

lim
M→∞

1

M

∫ M

−M
Tξf(x) dξ

= lim
M→∞

1

M

∫ M

−M

[ ∞∑
k=1

αk(N(x)− ξ)
∫ π

−π
eiN(x)yψk(y)f(x− y) dy

]
dξ

=
∞∑
k=1

[(
lim
M→∞

1

M

∫ M

−M
αk(N(x)− ξ) dξ

)∫ π

−π
eiN(x)yψk(y)f(x− y) dy

]
.

If half of the dyadic intervals on G0 were central, then in [−M,M ] there would be M
central dyadic intervals, therefore we could demonstrate that

lim
M→∞

1

M

∫ M

−M
αk(N(x)− ξ) dξ = 1. (4.3)

Then we would have

lim
M→∞

1

M

∫ M

−M
Tξf(x) dξ =

∞∑
k=1

[∫ π

−π
eiN(x)yψk(y)f(x− y) dy

]
= T 0f(x),

which is what we want.
This is the intuition, but there are several things to prove. We have to show that, for

any M ∈ R+, we can interchange
∑∞

k=1 and
∫M
−M . We also have to prove that we can
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interchange limM→∞ and
∑∞

k=1. Finally, we will need to check (4.3) by analyzing the
structure of the central dyadic intervals on G0.

Let us see that, for any M ∈ R+, we can interchange
∑∞

k=1 and
∫M
−M . Apply Lebesgue’s

theorems:

∞∑
k=1

∫ M

−M

∣∣∣∣αk(N(x)− ξ)
∫ π

−π
eiN(x)yψk(y)f(x− y) dy

∣∣∣∣ dξ
=

∞∑
k=1

∣∣∣∣∫ π

−π
eiN(x)yψk(y)f(x− y) dy

∣∣∣∣ ∫ M

−M
αk(N(x)− ξ)︸ ︷︷ ︸

≤1

dξ

≤ 2M

∞∑
k=1

∣∣∣∣∫ π

−π
eiN(x)yψk(y)f(x− y) dy

∣∣∣∣ <︸︷︷︸
by

(3.10)

∞.

Then the swap between
∑∞

k=1 and
∫M
−M is justified.

Let us check that we can exchange limM→∞ and
∑∞

k=1. We apply the Dominated
Convergence Theorem for series. Since for all M > 0

1

M

∣∣∣∣∣∣∣
∫ M

−M
αk(N(x)− ξ)︸ ︷︷ ︸

≤1

dξ

∫ π

−π
eiN(x)yψk(y)f(x− y) dy

∣∣∣∣∣∣∣
≤ 2

∣∣∣∣∫ π

−π
eiN(x)yψk(y)f(x− y) dy

∣∣∣∣
and

∞∑
k=1

∣∣∣∣∫ π

−π
eiN(x)yψk(y)f(x− y) dy

∣∣∣∣ <︸︷︷︸
by

(3.10)

∞,

the swap between limM→∞ and
∑∞

k=1 is fully justified.
Finally, we require a proof for (4.3). We first plot the graph of αk(·), that is, we first

do a study on the location of the central dyadic intervals on G0. Consider a dyadic interval
on G0 of the form

ω = [2π · 2k ·m, 2π · 2k · (m+ 1)[,

for an integer m. We want to analyze if αk is 0 or 1 on ω. Write

ω̃ = [2π · 2k+1 · m̃, 2π · 2k+1 · (m̃+ 1)[.

Note that ω ⊆ ω̃ if and only if 2m̃ ≤ m ≤ 2m̃+ 1. Write

˜̃ω = [2π · 2k+2 · ˜̃m, 2π · 2k+2 · ( ˜̃m+ 1)[.

We need again 2 ˜̃m ≤ m̃ ≤ 2 ˜̃m+ 1, that is, 4 ˜̃m ≤ m ≤ 4 ˜̃m+ 3. We have

ω∗ =

[
2π · 2k ·

(
m− 1

2

)
, 2π · 2k ·

(
m+

3

2

)[
.

Then ω∗ ⊆ ˜̃ω if and only if m ∈ {4 ˜̃m + 1, 4 ˜̃m + 2}, that is, if and only if m is congruent
with 1 or 2 modulo 4. Since there are four classes modulo 4, half of the dyadic intervals
on G0 are central. The graph of αk for a fixed k ∈ N ∪ {0} is the following:
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2π · 2k 2π · 2k · 3 2π · 2k · 5 2π · 2k · 7 2π · 2k · 9−2π · 2k−2π · 2k · 3−2π · 2k · 5−2π · 2k · 7−2π · 2k · 9
0

t

αk(t)

Once we know the shape of αk(·), we can prove (4.3). We will start by estimating

1

M

∫ M

−M
αk(ξ) dξ.

Let m = m(M) be the unique integer with 2π · 2k ·m ≤ M < 2π · 2k · (m + 1) (that is,
we are locating M in a dyadic interval). We distinguish cases depending on whether m
is congruent with 1 or 2 modulo 4 or is congruent with 0 or 3 modulo 4, that is to say,
we distinguish cases depending on whether the dyadic interval containing M is central or
not:

• Case m ∈ {4a+3, 4a+4} for some a ∈ Z (that is, M belongs to a non-central dyadic
interval):

2π · 2k 2π · 2k · 3 2π · 2k · 5 2π · 2k · 7 2π · 2k · 9−2π · 2k−2π · 2k · 3−2π · 2k · 5−2π · 2k · 7−2π · 2k · 9

M
a = 1

0
t

αk(t)

There are 4a + 4 squares of basis 2π · 2k and height 1 in [−M,M ] (in the above
example there are 8 squares). Then∫ M

−M
αk(ξ) dξ = (4a+ 4) · 2π · 2k,

which gives the following estimation for (1/M)
∫M
−M αk(ξ) dξ:

m

m+ 1
≤ (4a+ 4) · 2π · 2k

2π · 2k · (m+ 1)
<

1

M

∫ π

−π
αk(ξ) dξ ≤

(4a+ 4) · 2π · 2k

2π · 2k ·m
≤ m+ 1

m
.

• Case m ∈ {4a + 1, 4a + 2} for some a ∈ Z (that is, M belongs to a central dyadic
interval):

2π · 2k 2π · 2k · 3 2π · 2k · 5 2π · 2k · 7 2π · 2k · 9−2π · 2k−2π · 2k · 3−2π · 2k · 5−2π · 2k · 7−2π · 2k · 9

M
a = 1

0
t

αk(t)
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Then the area
∫M
−M αk(ξ)dξ is greater or equal than the area of 4a squares of basis

2π · 2k and height 1 and less or equal than the area of 4a+ 4 squares of basis 2π · 2k
and height 1. That is,

4a · 2π · 2k ≤ 1

M

∫ M

−M
αk(ξ)dξ ≤ (4a+ 4) · 2π · 2k.

This gives the desired estimation on (1/M)
∫M
−M αk(ξ)dξ:

m− 2

m+ 1
≤ 4k · 2π · 2k

2π · 2k · (m+ 1)
<

1

M

∫ M

−M
αk(ξ)dξ ≤

(4k + 4) · 2π · 2k

2π · 2k ·m
≤ m+ 3

m
.

Hence, for all M > 0 we have established

m(M)− 2

m(M) + 1
<

1

M

∫ M

−M
αk(ξ)dξ ≤

m(M) + 3

m(M)
. (4.4)

Write (1/M)
∫M
−M αk(N(x)− ξ)dξ as

1

M

∫ M

−M
αk(N(x)− ξ)dξ =

1

M

∫ M+N(x)

−M+N(x)
αk(ξ)dξ

=
1

M −N(x)

∫ M−N(x)

−(M−N(x))
αk(ξ)dξ ·

M −N(x)

M
+

1

M

∫ M+N(x)

M−N(x)
αk(ξ)dξ.

From (4.4) and 0 ≤ αk ≤ 1 one has(
m(M −N(x))− 2

m(M −N(x)) + 1

)(
M −N(x)

M

)
<

1

M

∫ M+N(x)

−M+N(x)

αk(ξ)dξ ≤ m(M −N(x)) + 3

m(M −N(x))
+

2N(x)

M
.

If M →∞ (which is equivalent to m(M −N(x))→∞), then

1

M

∫ M+N(x)

−M+N(x)
αk(ξ)dξ → 1,

and (4.3) holds, as wanted. This completes the proof of the lemma.
�

Thus, from the Tξ’s, we can recover T 0.
Suppose that (4.1) holds for all f ∈ C∞r . Then for the same C of (4.1) it holds

‖Tξf‖1 ≤ C‖f‖2 (4.5)

for all f ∈ C∞r and for every ξ ∈ R. Why? Because T and Tξ are really the same operator,
but on different (translated) grids. For the skeptic reader, substitute in all the future
proofs T by Tξ and G by Gξ and check that everything is completely equal. From (4.5) it
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is easy to show (2.13):

‖T 0f‖1 =

∫ 2π

0
|T 0f(x)| dx =︸︷︷︸

Lemma

4.1

∫ 2π

0

(
lim
M→∞

1

M

∣∣∣∣∫ M

−M
Tξf(x) dξ

∣∣∣∣) dx

≤︸︷︷︸
Fatou

lim inf
M→∞

1

M

∫ 2π

0

∣∣∣∣∫ M

−M
Tξf(x) dξ

∣∣∣∣ dx ≤ lim inf
M→∞

1

M

∫ 2π

0

∫ M

−M
|Tξf(x)| dξ dx

≤ lim inf
M→∞

1

M

∫ M

−M
‖Tξf(·)‖1 dξ ≤︸︷︷︸

by

(4.5)

2C‖f‖2.

Thus, from now on we will work with T , that is, with admissible pairs, and our objective
will be to prove (4.1). Henceforth, “pair” will mean “admissible pair” and B will refer to
the set of admissible pairs.

Remark 4.1 There is a fact concerning T which will be extremely useful for the future
proofs. The sum defining T takes into account the admissible pairs. On the other hand,
the function |N | is bounded by an M∗ > 0. Assume N > 0 (the case N < 0 is analogous).
Take K∗ as the least natural number verifying M∗ < 2π · 2K∗. Suppose x ∈ E(p), where
p = [ω, I] ∈ B is an admissible pair with |ω| = 2π · 2k and k ≥ K∗. Then it holds
ω = [0, 2π · 2k[, which is non central. Hence, all pairs p = [ω, I] ∈ B with x ∈ E(p) for
some x verify |ω| < 2π · 2K∗. This shows that the sum defining T is finite, independently
on the evaluated f and x (however, the number of terms in the sum obviously depends on
the bound for N , but this will not cause any problem).

From now on, our set of pairs B will be our latest B but having deleted all the pairs
that do not contribute in

∑
p∈B Tp. We have then a finite B. This will be very useful to

interchange operators concerning sums and integrals without applying Lebesgue’s conver-
gence results. Moreover, T is then well-defined on L2

r, and we will not have to deal with
C∞r anymore. Our goal will be to prove (4.1) for every f ∈ L2

r.
Note also that we can assume that ω ⊆ [0,∞[ for all [ω, ·] ∈ B (if N > 0) or ω ⊆]−∞, 0[

for all [ω, ·] ∈ B (if N < 0). Otherwise, the characteristic function 1E(ω,·) appearing in the
sum defining T would be 0. This assumption on B will be essential for the future Lemma
6.4.

We state and prove a property of nested central dyadic intervals which will be essential
in the proof of the future Main Lemma 6.6.

Lemma 4.2 Suppose that ω0 $ ω1 $ . . . $ ωM+1, with ω0, . . . , ωM+1 central, M ≥ 1.
Then

d(∂ωM+1, ω0) ≥ 2
M
2
−2|ω0|.

Proof. By centrality, ω∗0 ⊆ ˜̃ω0 ⊆ ω2, ω∗2 ⊆ ˜̃ω2 ⊆ ω4, etc. Hence,

ω∗
b(M+1)/2c )

··· ∗
0 ⊆ ωM+1.

Then

d(∂ωM+1, ω0) ≥ |ω0|
2

+ |ω0|+ 2|ω0|+ . . .+ 2b(M+1)/2c−2|ω0|

=

(
1

2
+ 2b(M+1)/2c−1 − 1

)
|ω0| =

(
2b(M+1)/2c−1 − 1

2

)
|ω0|.
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If M is odd, then 2b(M+1)/2c−1 − 1/2 = 2(M+1)/2−1 − 1/2 = 2(M−1)/2 − 1/2 ≥ 2M/2−2 for
M ≥ 1. If M is even, then 2b(M+1)/2c−1− 1/2 = 2M/2−1− 1/2 ≥ 2M/2−2 for every M ≥ 2.

�
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Chapter 5

Sketch of the proof of the basic
estimate (4.1)

We know that, for all f ∈ L2
r and a.e. x ∈ R,

Tf(x) =
∑′

k≥1

∑
p∈Bk

Tpf(x) =
∑′

k≥1

∑′

n≥0

∑
p∈Bk

2−n−1<A0(p)≤2−n

Tpf(x)

(
∑′ indicates that

∑
is finite). The a.e. comes from the fact that, if A0(p) = 0, then

|E(p)| = 0, so 1E(p) = 0 a.e. and Tpf = 0 a.e.. As we are dealing with norms in the
Lebesgue spaces, this a.e. will not have any significance. Thus, from now on, the “a.e.”
will be omitted.

We can interchange the sums:

Tf(x) =
∑′

n≥0

∑′

k≥1

∑
p∈Bk

2−n−1<A0(p)≤2−n

Tpf(x). (5.1)

Define
Pn =

⋃′
k≥1

{p ∈ Bk : 2−n−1 < A0(p) ≤ 2−n}

(again, ∪′ represents a finite union). Then∑
p∈Pn

Tpf(x) =
∑′

k≥1

∑
p∈Bk

2−n−1<A0(p)≤2−n

Tpf(x). (5.2)

Thus, using (5.1) and (5.2), we can express T as

Tf(x) =
∑′

n≥0

∑
p∈Pn

Tpf(x), (5.3)

for any f ∈ L2
r and x ∈ R.

Given a subset of pairs P ⊆ B, denote

TPf(x) =
∑
p∈P

Tpf(x),
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which is a finite sum independently on f ∈ L2
r and x ∈ R. With this new notation, we

have a compact expression for T :

Tf(x) =
∑′

n≥0

TPnf(x). (5.4)

Let us see why this decomposition of T is useful. We know, by (3.3), that for all p ∈ Pn

‖Tp‖2 ≤ CA0(p)1/2.

More or less, the idea would be to transmit this bound to TPn :

‖TPn‖2 ≤ C max
p∈Pn

A0(p)1/2 ≤ C2−
n
2 .

In this case,

‖Tf‖1 =

∫ 2π

0
|Tf(x)| dx =

∫ 2π

0

∣∣∣∣∣∣
∑′

n≥0

TPnf(x)

∣∣∣∣∣∣ dx ≤
∫ 2π

0

∑′

n≥0

|TPnf(x)|

 dx

=
∑′

n≥0

∫ 2π

0
|TPnf(x)| dx =

∑′

n≥0

‖TPnf‖1 ≤ C
∑′

n≥0

‖TPnf‖2 ≤ C
∞∑
n=0

2−
n
2 ,

so (4.1) would hold.
In the next chapter, we will make a systematic study of the sets P ⊆ B for which, if

A0(p) ≤ δ for all p ∈ P, then
‖TP‖2 ≤ Cδ1/2 (5.5)

(that is, we transmit the bound of ‖Tp‖2, p ∈ P, to ‖TP‖2). We will start with small
subsets of B verifying (5.5) and we will construct larger and larger P’s satisfying (5.5).
For that purpose, we need to specify what we mean by a “small” pair and a “large” pair,
that is to say, we need to establish an order relation in B. The order relation is the
following: given [ω, I], [ω′, I ′] ∈ B, we will write

[ω, I] < [ω′, I ′]

if and only if I ⊆ I ′ and ω′ ⊆ ω.

dyadic
intervals

in R

dyadic intervals
in [0, 2π]

[ω, I]

[ω′, I ′]

In the following chapter we will build up the P’s verifying (5.5).

Remark 5.1 Pictures as the last one will be very common through the rest of the project.
A pair [ω, I] is represented with a rectangle: the horizontal lines represent ω and the
vertical lines I. This type of pictures allow representing the order relation between the
pairs, without paying attention on lengths, scales or admissibility (unless we want to put
a specific example).
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We prove here a lemma that will be used in the future Main Lemma 6.6:

Lemma 5.1 (Orthogonality Lemma) Let {Ai}ni=1, n ∈ N, be bounded operators on a
Hilbert space H. Assume:

(a) A∗iAj = 0 for i 6= j,

(b) ‖AiA∗j‖ ≤ M2

|i−j|2+1
.

Then ∥∥∥∥∥
n∑
i=1

Ai

∥∥∥∥∥ ≤ C ·M,

where C = (π cothπ)1/2.

Proof. Call T =
∑n

i=1Ai. As ‖T‖2 = ‖T ∗T‖, one has by induction that ‖T‖2m =
‖(T ∗T )m‖. We have T ∗T =

∑n
i=1

∑n
j=1A

∗
iAj , so

(T ∗T )m =
∑

1≤i1,...,i2m≤n
A∗i1Ai2 · · ·A

∗
i2m−1

Ai2m .

Hence,

‖T‖2m ≤
∑

1≤i1,...,i2m≤n
‖(A∗i1Ai2) · · · (A∗i2m−1

Ai2m)‖

=︸︷︷︸
(a)

∑
1≤j1,...,jm≤n

‖A∗j1(Aj1A
∗
j2) · · · (Ajm−1A

∗
jm)Ajm‖.

Now we use ‖A∗j1‖ ≤M , ‖Ajm‖ ≤M and hypothesis (b):

‖T‖2m ≤M2m
∑

1≤j1,...,jm≤n

1

(j1 − j2)2 + 1
· · · 1

(jm−1 − jm)2 + 1
.

Now make the change of variables j1−j2 = t1, j2−j3 = t2, . . . , jm−1−jm = tm−1, jm = tm.
Then

‖T‖2m ≤M2m
∑

−n≤t1,...,tm≤n

1

t21 + 1
· · · 1

t2m−1 + 1
= 2n ·M2m

 n∑
j=−n

1

j2 + 1

m−1

.

Then

‖T‖ ≤ (2n)
1

2m ·M

 n∑
j=−n

1

j2 + 1

m−1
2m

.

Let m→∞:

‖T‖ ≤M

 n∑
j=−n

1

j2 + 1

 1
2

≤ C ·M,

where we use
∑∞

j=−∞
1

j2+1
= π cothπ.

�
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Chapter 6

Main sequence of lemmas

In the following lemmas we will build up P’s verifying (5.5). These lemmas are rather
technical and of substantial difficulty, so we advise the reader to study them with patience.

We will start in the first two lemmas by considering subsets P with the property that
no two of its pairs are comparable under <. The key of this assumption is that it implies
that the E(p)’s are pairwise disjoint for p’s in P. Indeed, assume that E(p)∩E(p′) 6= ∅ for
some distinct pairs p = [ω, I], p′ = [ω′, I ′] ∈ P. Then I ∩ I ′ 6= ∅ and ω ∩ ω′ 6= ∅. Assume
without loss of generality that |I| ≤ |I ′|. This gives |ω′| ≤ |ω|. Since the intervals are
dyadic, I ⊆ I ′ and ω′ ⊆ ω, so p < p′, which is a contradiction.

dyadic
intervals

in R

dyadic intervals
in [0, 2π]

Example of a set of pairs
P={p,p′,p′′} with

no two pairs comparable.

p

p′p′′

Instead of working with the A0 expression defined in (3.4), we will work with

A([ω, I]) = sup
p′=[ω′,I′]∈B

I⊆I′

|E(p′)|
|I ′|

(
d(ω, ω′) + |ω|

|ω|

)−2000

for technical reasons.

Remark 6.1 Throughout the lemmas we will make use of maximal operators in order
to prove the boundedness of our operators. In concrete, we will deal with two maximal
operators:

• Let {Ij}Jj=1 be a partition of [0, 2π]. Define the maximal operator

M0f(x) =

J∑
j=1

(
sup
Ij⊆I

1

|I|

∫
I
|f(y)| dy

)
1Ij (x).
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As it happens with the Hardy-Littlewood maximal operator, M0 : L1
r → L1,∞

r and
M0 : Lqr → Lqr, 1 < q < ∞, where L1,∞

r = {h : R → C : support(h) ⊆
[−4π, 6π], supt>0 t|{x ∈ R : |h(x)| > t}| <∞}.

• The second maximal operator is

f∗q (x) = sup
x∈I

(
1

|I|

∫
I
|f(y)|q dy

) 1
q

for x ∈ [0, 2π] (and 0 outside). It holds ‖f∗q ‖2 ≤ Cq‖f‖2 for all 1 ≤ q < 2.

When q = 1, we will denote f∗ = f∗1 .

Remark 6.2 We will use the maximal operators to bound convolutions: if f ∈ L1
loc(R)

and 0 ≤ ϕ ∈ L1(R) is radially decreasing, then

|(f ∗ ϕ)(x)| ≤ C‖ϕ‖1
(

sup
h>0

1

2h

∫ x+h

x−h
|f(y)| dy

)
≤ C‖ϕ‖1f∗(x).

Indeed,∫
R
ϕ(y)|f(x− y)| dy =

∞∑
m=−∞

∫
{2m≤|y|≤2m+1}

ϕ(y)|f(x− y)| dy

≤
∞∑

m=−∞
ϕ(2m)

∫
{2m≤|y|≤2m+1}

|f(x− y)| dy ≤
∞∑

m=−∞
ϕ(2m)

2m+2

2m+2

∫ 2m+1

−2m+1

|f(x− y)| dy

≤
∞∑

m=−∞
ϕ(2m)

2m+2

2m+2

∫ x+2m+1

x−2m+1

|f(y)| dy ≤
(

sup
h>0

1

2h

∫ x+h

x−h
|f(y)| dy

) ∞∑
m=−∞

2m+2ϕ(2m)

≤ 8

(
sup
h>0

1

2h

∫ x+h

x−h
|f(y)| dy

) ∞∑
m=−∞

∫
{2m−1≤|y|≤2m}

ϕ(y) dy

= 8‖ϕ‖1
(

sup
h>0

1

2h

∫ x+h

x−h
|f(y)| dy

)
≤ 8‖ϕ‖1f∗(x).

In general, we will deal with a ϕ of the form

ϕ(x) =
a

x2 + a2
, a > 0.

In this case, ‖ϕ‖1 = π does not depend on a.

In fact, this procedure of relating a convolution with a maximal operator is more or less
a particular case of the following theorem (or better said, of the idea of its proof): “Let f ∈
L1
loc(Rn) and 0 ≤ ϕ ∈ L1(Rn). Denote ϕt(x) = (1/tn)ϕ(x/t), t > 0, and define Ttf(x) =

(f ∗ ϕt)(x). If ϕ is radially decreasing, then T ∗f(x) = supt>0 |Ttf(x)| ≤ Cn‖ϕ‖1Mf(x),
where M denotes the Hardy-Littlewood maximal operator”. To bound convolutions, use
this theorem with t = 1.

Lemma 6.1 Let P be a set of pairs, no two of which are comparable under <. Let
0 < η < 1/44004, n0 ∈ R and 0 < ε < 1/5000. Suppose that A(p) ≤ η and d(n0, ω) ≤ η−ε|ω|
for all p = [ω, I] ∈ P. Then TP : Lqr → Lqr has norm

‖TP‖q ≤ Cqη
1−5000ε

q , ∀q > 1.
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Proof. We start with some technicalities. Call δ = 42002η. Then for all p = [ω, I] ∈ P
we have d(n0, ω) ≤ η−ε|ω| = (1/η)ε|ω| = 42002εδ−ε|ω| < δ−2ε|ω| (because (42002δ)ε =
(44004η)ε < 1).

The idea to prove the lemma is to bound TP by a suitable maximal operator. Let
{Ij}Jj=1 be a partition of [0, 2π]. Consider {Ej}Jj=1 such that Ej ⊆ Ij for all j = 1, . . . , J ,
with

|Ej |
|Ij |
≤ 2δ1−5000ε.

Define

Mf(x) =

J∑
j=1

(
sup
Ij⊆I

1

|I|

∫
I
|f(y)| dy

)
1Ej (x)

for x ∈ [0, 2π] (and outside of [0, 2π] is 0). Define the maximal operator

M0f(x) =

J∑
j=1

(
sup
Ij⊆I

1

|I|

∫
I
|f(y)| dy

)
1Ij (x)

for x ∈ [0, 2π] (and outside of [0, 2π] is 0). By Remark 6.1, M0 : Lqr → Lqr for q > 1, so we
can estimate ‖Mf‖q:

‖Mf‖q =

J∑
j=1

(
sup
Ij⊆I

1

|I|

∫
I
|f(y)| dy

)
|Ej |1/q

≤ 21/qδ
1−5000ε

q

J∑
j=1

(
sup
Ij⊆I

1

|I|

∫
I
|f(y)| dy

)
|Ij |1/q = 21/qδ

1−5000ε
q ‖M0f‖q

≤ Cqδ
1−5000ε

q ‖f‖q ≤ Cq42002/qη
1−5000ε

q ‖f‖q = Cqη
1−5000ε

q ‖f‖q. (6.1)

Thus, to prove the lemma, it suffices to dominate |TPf(x)| by |Mf(x)| for all x ∈ [0, 2π]
and f ∈ Lqr, with the Ej ’s and Ij ’s to be constructed.

We make a partition {Ij}Jj=1, J ∈ N, as follows. We will say that a dyadic interval
I ⊆ [0, 2π] is good if

|{x ∈ I : |N(x)− n0| ≤ δ−2ε · 2 · 4π2 · |I|−1}|
|I|

> δ1−5000ε.

Since N(·) is bounded by an M > 0 in [0, 2π], we have |N(x) − n0| ≤ M + |n0| for all
x ∈ [0, 2π], so if the length of I satisfies M + |n0| ≤ δ−2ε · 2 · 4π2/|I|, then {x ∈ I :
|N(x)−n0| ≤ δ−2ε · 2 · 4π · |I|−1} = I. Thus, for any sufficiently small I (more specifically,
|I| ≤ δ−2ε · 2 · 4π2/(M + |n0|)), I is good. To construct the partition, start with [0, 2π].
If it is good, our partition is {[0, 2π]}. Otherwise, subdivide it into two halves: [0, π] and
[π, 2π]. If any of them is good, keep it for the partition; if not, subdivide it again into
two halves. This process will end up in a finite number of steps (since once we consider
intervals of length less than δ−2ε · 2 · 4π2/(M + |n0|), we will have surely a good dyadic
interval), and we obtain a partition {Ij}Jj=1 of maximal dyadic intervals (in the sense that
if we take an interval Ij of the partition and we then take the smallest bigger dyadic
interval Ĩj containing it, then Ĩj will not be good).

Define Ẽj = {x ∈ Ĩj : |N(x) − n0| ≤ δ−2ε · 2 · 4π2 · |Ĩj |−1} (we will show in part
(a) below that Ij is never the whole [0, 2π], therefore Ĩj ⊆ [0, 2π] for all j = 1, . . . , J
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and the definition of Ẽj makes sense). By maximality, Ĩj is not good, therefore |Ẽj | ≤
δ1−5000ε|Ĩj | = 2δ1−5000ε|Ij |. Define Ej = {x ∈ Ij : |N(x) − n0| ≤ δ−2ε · 2 · 4π2 · |Ĩj |−1}.
Then Ej ⊆ Ij and |Ej | ≤ |Ẽj | ≤ 2δ1−5000ε|Ij |.

Consider the corresponding

Mf(x) =
J∑
j=1

(
sup
Ij⊆I

1

|I|

∫
I
|f(y)| dy

)
1Ej (x).

We show that there is a C > 0 such that |TPf(x)| ≤ C|Mf(x)| for all x ∈ [0, 2π] and
f ∈ Lqr, since in this case the lemma will be a consequence of (6.1). This amounts to
proving that

|TPf(x)| ≤ C sup
Ij⊆I

1

|I|

∫
I
|f(y)| dy, ∀x ∈ Ej , (6.2)

TPf(x) = 0, ∀x ∈ Ij\Ej . (6.3)

Recall that TPf(x) =
∑

p∈P Tpf(x). As p 6< p′ for all distinct p, p′ ∈ P, it follows that
the E(p)’s are pairwise disjoint. Then, for each x ∈ [0, 2π], the sum

∑
p∈P Tpf(x) contains

a single term:

|TPf(x)| = max
p=[ω,I]∈P
x∈E(p)

|Tpf(x)| ≤︸︷︷︸
by

(3.2)

max
p=[ω,I]∈P
x∈E(p)

2π

|I|

∫
I3
|f(y)| dy. (6.4)

We will show:
(a) [ω, I] ∈ P, I ∩ Ij 6= ∅ ⇒ Ĩj ⊆ I.
(b) [ω, I] ∈ P, I ∩ Ij 6= ∅ ⇒ Ij ∩ E(ω, I) ⊆ Ej .
Notice that, from (a), if some Ij is [0, 2π], then for any pair [ω, I] ∈ P it holds I∩Ij 6= ∅,

so Ĩj ⊆ I ⊆ [0, 2π], and we arrive at a contradiction. Hence, none of the Ij ’s is [0, 2π], as
we stated previously when defining the Ẽj ’s.

Using (a) and (b), both (6.2) and (6.3) easily follow. Let x ∈ [0, 2π]. We distinguish
two cases:

• Case x ∈ Ij\Ej . Suppose by contradiction that x ∈ E(p) for some p = [ω, I] ∈ P.
Then x ∈ I, so I ∩ Ij 6= ∅. By (b), Ij ∩E(p) ⊆ Ej , which implies x ∈ Ej , which is a
contradiction. Hence, x does not lie in any of the E(p)’s, so TPf(x) = 0 and (6.3)
follows.

• Case x ∈ Ej . If x ∈ E(p), p = [ω, I] ∈ P, then x ∈ I ∩ Ij , so by (a) Ĩj ⊆ I. In
particular, Ij ⊆ I3, therefore

1

|I3|

∫
I3
|f(y)| dy ≤Mf(x).

Then by (6.4) |TPf(x)| ≤ 6πMf(x), and (6.2) holds with C = 6π.

Thus, to finish the proof of the lemma, we just need to verify (a) and (b).
Proof of (a). We have I∩Ij 6= ∅, where both I and Ij are dyadic intervals. Then either

I ⊆ Ij or Ij $ I, that is to say, either I ⊆ Ij or Ĩj ⊆ I. Assume by contradiction that
I ⊆ Ij . Consider the dyadic intervals ω satisfying |ω| = 4π2/|Ij | and d(n0, ω) ≤ 2δ−2ε|ω|.
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As d(n0, ω) ≤ 2δ−2ε · 4π2/|Ij |, there is a finite number of such ω’s, call it Kj . Let ω′ with
|ω′| = 4π2/|Ij |, d(n0, ω

′) ≤ 2δ−2ε · 4π2/|Ij | and

|E(ω′, Ij)| = max

{
|E(ω, Ij)| : |ω| =

4π2

|Ij |
, d(n0, ω) ≤ 2δ−2ε 4π

2

|Ij |

}
.

Then

δ1−5000ε|Ij | < |{x ∈ Ij : |N(x)− n0| ≤ 2δ−2ε · 4π2 · |Ij |−1}| ≤ Kj |E(ω′, Ij)|,

which gives
|E(ω′, Ij)|
|Ij |

>
δ1−5000ε

Kj
.

We can, in fact, bound Kj ≤ 2(2δ−2ε + 1) ≤ 16δ−2ε, therefore

|E(ω′, Ij)|
|Ij |

>
δ1−4998ε

16
.

By hypothesis, we have

d(ω, n0)

|ω|
≤ δ−2ε,

d(ω′, n0)

|ω′|
≤ 2δ−2ε,

where [ω, I] ∈ P. Since I ⊆ Ij , then |I| ≤ |Ij |, and taking inverses |ω′| ≤ |ω|. We have(
d(ω, ω′) + |ω|

|ω|

)−2000

≥
(
d(ω, n0) + d(ω′, n0) + |ω|

|ω|

)−2000

=

(
d(ω, n0)

|ω|
+
|ω′|
|ω|

d(ω′, n0)

|ω′|
+ 1

)−2000

> (3δ−2ε + 1)−2000 > 4−2000δ4000ε.

Then, since I ⊆ Ij ,

A(ω, I) ≥ |E(ω′, Ij)|
|Ij |

(
d(ω, ω′) + |ω|

|ω|

)−2000

>
δ1−998ε

42002
>

δ

42002
= η,

and this is a contradiction.
Proof of (b). We have that Ij ∩ E(ω, I) = {x ∈ Ij : N(x) ∈ ω}, since by (a) Ij ⊆ I. If

N(x) ∈ ω, then

|N(x)− n0| ≤ |N(x)− ξn0 |+ |ξn0 − n0|︸ ︷︷ ︸
d(ω,n0)

≤ |ω|+ δ−2ε|ω| = (1 + δ−2ε)|ω| < 2δ−2ε|ω|

(ξn0 is the nearest endpoint of ω to n0). Thus,

Ij ∩ E(ω, I) ⊆ {x ∈ Ij : |N(x)− n0| < 2δ−2ε|ω|}.

By (a), Ĩj ⊆ I, so |Ĩj | ≤ |I|, that is, |ω| = 4π2/|I| ≤ 4π2/|Ĩj |. This implies

Ij ∩ E(ω, I) ⊆ {x ∈ Ij : |N(x)− n0| < 2δ−2ε · 4π2 · |Ĩj |−1} = Ej ,

so (b) is proved.
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Remark 6.3 We know that Tp : L2
r → L2

r is a bounded operator, so we can compute its
adjoint operator T ∗p : L2

r → L2
r. Let f, g ∈ L2

r. Then

(Tpf, g) =

∫
R
Tpf(x)g(x) dx

=

∫
R

(∫
R
eiN(x)yψk(y)f(x− y) dy

)
1E(p)(x)g(x) dx

=

∫
R

(∫
R
eiN(x)(x−y)ψk(x− y)f(y) dy

)
1E(p)(x)g(x) dx

=

∫
R

(∫
R
eiN(x)(x−y)ψk(x− y)1E(p)(x)g(x) dx

)
f(y) dy

=

∫
R

(∫
E(p)

e−iN(x)(x−y)ψk(x− y)g(x) dx

)
f(y) dy.

Suppose y /∈ I3. If, given x ∈ E(p), we had x− y ∈ [−2π · 2−k, 2π · 2k], then it would hold
y ∈ [x−2π·2−k, x+2π·2−k] ⊆ I3, which is a contradiction. Then, x−y /∈ [−2π·2−k, 2π·2k],
which implies ψk(x− y) = 0. Then

(Tpf, g) =

∫
R

(∫
E(p)

e−iN(x)(x−y)ψk(x− y)g(x) dx

)
1I3(y)f(y) dy.

Thus,

T ∗p g(y) =

∫
E(p)

e−iN(x)(x−y)ψk(x− y)g(x) dx · 1I3(y),

or, with our usual variables,

T ∗p f(x) =

∫
E(p)

e−iN(y)(y−x)ψk(y − x)f(y) dy · 1I3(x) (6.5)

for all f ∈ L2
r and x ∈ R.

A useful inequality for the adjoint operator, using the fact that |ψk| ≤ 2k, is

|T ∗p f(x)| ≤ C

|I|

∫
E(p)
|f(y)| dy · 1I3(x) (6.6)

(here C = 2π).

Lemma 6.2 Let P be a set of pairs, no two of which are comparable under <. Assume
that A(p) ≤ δ for all p ∈ P (0 < δ ≤ 1). Then TP : L2

r → L2
r has norm

‖TP‖2 ≤ Cηδ
1
4
−η, ∀η > 0. (6.7)

Proof. We will deal with the case 0 < δ < 1/44004 until further notice. This bound will
allow us to apply Lemma 6.1.
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Fix f ∈ L2
r . We have

‖TPf‖22 = ‖TP∗f‖22 =

∥∥∥∥∥∥
∑
p∈P

T ∗p f

∥∥∥∥∥∥
2

2

=

∑
p∈P

T ∗p f,
∑
p′∈P

T ∗p′f

 =
∑
p,p′∈P

∫
R
T ∗p f(x)T ∗p′f(x) dx

≤
∣∣∣∣ ∑

[ω,I],[ω′,I′]∈P
|I|≤|I′|

∫
R
T ∗[ω,I]f(x)T ∗[ω′,I′]f(x) dx

∣∣∣∣+

∣∣∣∣ ∑
[ω,I],[ω′,I′]∈P
|I′|≤|I|

∫
R
T ∗[ω,I]f(x)T ∗[ω′,I′]f(x) dx

∣∣∣∣.
We want to estimate both terms. Let us look at the first:

∑
[ω,I],[ω′,I′]∈P
|I|≤|I′|

∫
R
T ∗[ω,I]f(x)T ∗[ω′,I′]f(x) dx =

∑
p′=[ω′,I′]

∫
R
T ∗[ω′,I′]f(x)

 ∑
p=[ω,I]
|I|≤|I′|

T ∗p f(x)

 dx

=
∑
p′∈P

∫
R
T ∗p′f(x)

 ∑
p∈A(p′)

T ∗p f(x)

 dx (6.8)

+
∑
p′∈P

∫
R
T ∗p′f(x)

 ∑
p∈B(p′)

T ∗p f(x)

 dx, (6.9)

where

A(p′) =

{
p = [ω, I] ∈ P, |I| ≤ |I ′| : d(ω, ω′) ≤ 1

2
δ−ε|ω| and I ⊆ (I ′)5

}
,

B(p′) =

{
p = [ω, I] ∈ P, |I| ≤ |I ′| : d(ω, ω′) >

1

2
δ−ε|ω| or I 6⊆ (I ′)5

}
.

We estimate both (6.8) and (6.9). We start with the terms of (6.8):∣∣∣∣ ∫
R
T ∗p′f(x)

 ∑
p∈A(p′)

T ∗p f(x)

 dx∣∣∣∣ ≤ ∫
R
|T ∗p′f(x)|

∣∣∣∣∣∣
∑

p∈A(p′)

T ∗p f(x)

∣∣∣∣∣∣ dx
≤︸︷︷︸
by

(6.6)

(
C

|I ′|

∫
E(p′)

|f(y)| dy

)∫
(I′)3

∣∣∣∣∣∣
∑

p∈A(p′)

T ∗p f(x)

∣∣∣∣∣∣ dx
≤︸︷︷︸

C←5C

(
C

|(I ′)5|

∫
E(p′)

|f(y)| dy

)∫
(I′)5

∣∣∣∣∣∣
∑

p∈A(p′)

T ∗p f(x)

∣∣∣∣∣∣ dx
≤︸︷︷︸

Hölder
q>1, 1

q
+ 1
q′ =1

(
C

|(I ′)5|

∫
E(p′)

|f(y)| dy

)
|(I ′)5|

1
q′

∫
(I′)5

∣∣∣∣∣∣
∑

p∈A(p′)

T ∗p f(x)

∣∣∣∣∣∣
q

dx


1
q

= C

(∫
E(p′)

|f(y)| dy

) 1

|(I ′)5|

∫
(I′)5

∣∣∣∣∣∣
∑

p∈A(p′)

T ∗p f(x)

∣∣∣∣∣∣
q

dx


1
q

≤ C

(∫
E(p′)

|f(y)| dy

) 1

|(I ′)5|

∫
R

∣∣∣∣∣∣
∑

p∈A(p′)

T ∗p f(x)

∣∣∣∣∣∣
q

dx


1
q

,
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Notice that, by definition of T ∗p , we have T ∗p f = T ∗p (1E(p)f) for all f ∈ L2
r , and since

E(p) ⊆ I ⊆ (I ′)5 if p ∈ A(p′), it holds that T ∗p f = T ∗p (1(I′)5f), so

∫
R

∣∣∣∣∣∣
∑

p∈A(p′)

T ∗p f(x)

∣∣∣∣∣∣
q

dx


1
q

=

∫
R

∣∣∣∣∣∣
∑

p∈A(p′)

T ∗p (1(I′)5f)(x)

∣∣∣∣∣∣
q

dx


1
q

=

(∫
R

∣∣∣TA(p′)∗(1(I′)5f)(x)
∣∣∣q dx) 1

q

=︸︷︷︸
1
q

+ 1
q′=1

sup

g∈Lq
′
r

‖g‖q′=1

∣∣∣∣∫
R
TA(p′)∗(1(I′)5f)(x)g(x) dx

∣∣∣∣ . (6.10)

Take 1 < q < 2. This implies q′ > 2, so if g ∈ Lq
′
r , then g ∈ L2

r , so we can evaluate the
adjoint operator on g:

(6.10) = sup

g∈Lq
′
r

‖g‖q′=1

∣∣∣∣∫
R
1(I′)5(x)f(x)TA(p′)g(x) dx

∣∣∣∣
≤︸︷︷︸

Hölder

sup

g∈Lq
′
r

‖g‖q′=1

(∫
(I′)5
|f(x)|q dx

) 1
q

‖TA(p′)g‖q′ .

Note that the set of pairs A(p′) satisfies the hypotheses of Lemma 6.1. Indeed, let n0 =
midpoint of ω′. Then for all p = [ω, I] ∈ A(p′) we have d(n0, ω) = d(ω, ω′) + |ω′|/2 ≤
(1/2) · δ−ε|ω|+ |ω|/2 = (1/2) · (δ−ε + 1)|ω| ≤ δ−ε|ω| (δ ≤ 1). Thus, by Lemma 6.1,

‖TA(p′)g‖q′ ≤ Cq′δ
1−5000ε

q′

(recall that ‖g‖q′ = 1). This gives∫
R

∣∣∣∣∣∣
∑

p∈A(p′)

T ∗p f(x)

∣∣∣∣∣∣
q

dx


1
q

≤ Cq′δ
1−5000ε

q′

(∫
(I′)5
|f(x)|q dx

) 1
q

.

Hence, we have an estimate for (6.8):

∣∣∣∣ ∫
R
T ∗p′f(x)

 ∑
p∈A(p′)

T ∗p f(x)

 dx∣∣∣∣
≤ Cq′δ

1−5000ε
q′

(∫
E(p′)

|f(y)| dy

)(
1

|(I ′)5|

∫
(I′)5
|f(x)|q dx

) 1
q

.

Consider the maximal operator

f∗q (x) = sup
x∈I

(
1

|I|

∫
I
|f(y)|q dy

) 1
q
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for x ∈ [0, 2π] (and 0 outside). By Remark 6.1, ‖f∗q ‖2 ≤ Cq‖f‖2 for all 1 ≤ q < 2.
Using this maximal operator, we can make a new bound for the terms of (6.8):∣∣∣∣∣∣

∫
R
T ∗p′f(x)

 ∑
p∈A(p′)

T ∗p f(x)

 dx
∣∣∣∣∣∣ ≤ Cq′δ 1−5000ε

q′

∫
E(p′)

|f(y)|f∗q (y) dy, (6.11)

for 1 < q < 2.
To estimate the addends of the second term (6.9), we write∣∣∣∣∣
∫
R
T ∗p′f(x)

 ∑
p∈B(p′)

T ∗p f(x)

 dx∣∣∣∣∣ =

∣∣∣∣∣∣
 ∑
p∈B(p′)

T ∗p f, T
∗
p′f

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

p∈B(p′)

(
T ∗p f, T

∗
p′f
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

p∈B(p′)

(
Tp′T

∗
p f, f

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
 ∑
p∈B(p′)

Tp′T
∗
p f, f

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
R
f(x)

 ∑
p∈B(p′)

Tp′T
∗
p f(x)

 dx
∣∣∣∣∣∣ .

As support(Tp′(T
∗
p f)) ⊆ E(p′) by definition of Tp′ , the last expression is

=

∣∣∣∣∣∣
∫
E(p′)

f(x)

 ∑
p∈B(p′)

Tp′T
∗
p f(x)

 dx
∣∣∣∣∣∣ ≤

∫
E(p′)

|f(x)|
∑

p∈B(p′)

|Tp′T ∗p f(x)| dx. (6.12)

It would be good to estimate |Tp′T ∗p f(x)| for p ∈ B(p′). In fact, let us see that

Tp′T
∗
p f ≡ 0 if I 6⊆ (I ′)5, (6.13)

|Tp′T ∗p f(x)| ≤ Cεδ
10

|(I ′)5|

∫
E(p)
|f(y)| dy if d(ω, ω′) > δ−

ε
2 |ω|. (6.14)

We have

Tp′T
∗
p f(x) =

∫
R
eiN(x)yψk′(y)T ∗p f(x− y) dy · 1E(p′)(x)

=

∫
R
eiN(x)yψk′(y)

(∫
E(p)

e−iN(z)(z−x+y)ψk(z − x+ y)f(z) dz

)
dy · 1E(p′)(x)

=

∫
E(p)

f(z)eiN(z)(x−z)
(∫

R
ei(N(x)−N(z))yψk′(y)ψk(z − x+ y) dy

)
dz · 1E(p′)(x).

(6.15)

Call φz(y) = ψk′(y)ψk(z − x+ y). Bound

|Tp′T ∗p f(x)| ≤
∫
E(p)
|f(z)|

∣∣∣∣∫
R
ei(N(x)−N(z))yφz(y) dy

∣∣∣∣ dz · 1E(p′)(x),

and note that the inside integral is a Fourier transform1:

φ̂z(N(z)−N(x)) =

∫
R
ei(N(x)−N(z))yφz(y) dy.

1If F ∈ L1(R), we define its Fourier transform as F̂ (ξ) =
∫
R F (x)e−ixξ dx. The inverse Fourier transform

theorem says that if F is Schwartz on R or F, F̂ ∈ L1(R), then F (x) = 1/(2π)
∫
R F̂ (ξ)eixξ dξ. We stress

this definition because there are some others accepted.
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Suppose d(ω, ω′) > (1/2)δ−ε|ω|. Let x ∈ E(p′) and z ∈ E(p). Then N(x) ∈ ω′ and
N(z) ∈ ω. Therefore,

|N(x)−N(z)| ≥ d(ω, ω′) >
1

2
δ−ε|ω| = 1

2
δ−ε · 2π · 2k.

We want to estimate |φ̂z(N(z) −N(x))|. Can we use the previous estimation of |N(z) −
N(x)|? Yes, because the Fourier transform of the derivative relates a point ξ with its

image φ̂z(ξ) (m ∈ N):

|φ̂(m)
z (ξ)| =

∫
R
φ(m)
z (y)e−iyξ dy =︸︷︷︸

parts

iξ

∫
R
φ(m−1)
z (y)e−iyξ dy = . . . = (iξ)mφ̂z(ξ),

which implies

|φ̂z(ξ)| =
|φ̂(m)
z (ξ)|
|ξ|m

≤ ‖φ
(m)
z ‖1
|ξ|m

.

We center on the estimation of ‖φ(m)
z ‖1 in order to bound φ̂z(N(z)−N(x)). By Leibniz’s

rule,

φ(m)
z (y) =

m∑
j=0

(
m

j

)
ψ

(j)
k′ (y)ψ

(m−j)
k (z − x+ y).

Then

|φ(m)
z (y)| ≤

m∑
j=0

(
m

j

)
2k
′(j+1)2k(m−j+1)|(ψ(0))(j)(2k

′
y)||(ψ(0))(m−j)(2k(z − x+ y))|

≤ Cm · 2k
′ · 2k ·

m∑
j=0

2k
′j2k(m−j)|(ψ(0))(j)(2k

′
y)||(ψ(0))(m−j)(2k(z − x+ y))|.

Now integrate:

‖φ(m)
z ‖1 ≤ Cm · 2k

′ · 2k ·
m∑
j=0

2k
′j2k(m−j)

∫
R
|(ψ(0))(j)(2k

′
y)||(ψ(0))(m−j)(2k(z − x+ y))| dy

≤︸︷︷︸
derivatives

of ψ(0)

bounded

Cm · 2k
′ · 2k ·

m∑
j=0

2k
′j2k(m−j)

∫
R
|(ψ(0))(m−j)(2k(z − x+ y))| dy

≤︸︷︷︸
|I|≤|I′|
so k′≤k

Cm · 2k
′ · 2k · 2km ·

m∑
j=0

∫
R
|(ψ(0))(m−j)(2k(z − x+ y))| dy

= Cm · 2k
′ · 2km ·

m∑
j=0

∫
R
|(ψ(0))(m−j)(u)| du ≤︸︷︷︸

derivatives

of ψ(0)

bounded

Cm · 2k
′ · 2km.

Thus,

|φ̂z(N(z)−N(x))| ≤ ‖φ(m)
z ‖1

|N(z)−N(x)|m
≤ Cmδεm

2k
′
2km

2km
= Cmδ

εm2k
′
.
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Choose m ∈ N such that εm > 10 and take the corresponding Cm = Cε (m depends on ε).
Then

|φ̂z(N(z)−N(x))| ≤ Cεδ102k
′
.

Then

|Tp′T ∗p f(x)| ≤ Cεδ102k
′
∫
E(p)
|f(z)| dz · 1E(p′)(x) = Cε

δ10

|I ′|

∫
E(p)
|f(z)| dz · 1E(p′)(x),

and (6.14) follows. It remains to see (6.13) under the assumption of I 6⊆ (I ′)5. Let
x ∈ E(p′) ⊆ I ′ and z ∈ E(p) ⊆ I. By the properties of dyadic intervals, I ∩ (I ′)5 = ∅, so
there are two intervals I ′ between x and z:

(I ′)5I

Then |x − z| > 2|I ′| = 2π · 2−k′+1. In the inside integral of (6.15), we have y ∈
support(ψk′) ⊆ [−2π ·2−k′ , 2π ·2−k′ ], so |y| ≤ 2π ·2−k′ . Therefore |z−x+y| ≥ |x−z|−|y| >
2π · 2−k

′+1 − 2π · 2−k
′

= 2π · 2−k
′ ≥ 2π · 2−k (recall: |I| ≤ |I ′|). This means that

z − x+ y /∈ support(ψk), so the inside integral of (6.15) is 0 and (6.13) is proved.
With (6.13) and (6.14) we can continue bounding from (6.12):∫
E(p′)

|f(x)|
∑

p∈B(p′)

|Tp′T ∗p f(x)| dx = ≤︸︷︷︸
by

(6.13),

(6.14)

Cε

∫
E(p′)

|f(x)| δ
10

|(I ′)5|
∑

p∈B(p′)
I⊆(I′)5

∫
E(p)
|f(y)| dy dx

=︸︷︷︸
disjoint

Cε

∫
E(p′)

|f(x)| δ
10

|(I ′)5|

∫
∪{E(p): p∈B(p′), I⊆(I′)5}

|f(y)| dy dx

≤︸︷︷︸
E(p)⊆I

Cεδ
10

∫
E(p′)

|f(x)|

(
1

|(I ′)5|

∫
(I′)5
|f(y)| dy

)
dx

≤ Cεδ10

∫
E(p′)

|f(x)|f∗1 (x) dx.

This last expression gives the bound for the addends of (6.9):

∑
p′∈P

∫
R
T ∗p′f(x)

 ∑
p∈B(p′)

T ∗p f(x)

 dx ≤ Cεδ10

∫
E(p′)

|f(x)|f∗1 (x) dx. (6.16)

Thus, using (6.11) and (6.16),

∣∣∣∣ ∫
R
T ∗p′f(x)

 ∑
p∈P, |I|≤|I′|

T ∗p f(x)

 dx∣∣∣∣
≤ Cq′δ

1−5000ε
q′

∫
E(p′)

|f(y)|f∗q (y) dy + Cεδ
10

∫
E(p′)

|f(x)|f∗1 (x) dx.

We want to mix in some way these two last addends. Regarding the δ’s, note that δ10 ≤
δ(1−5000ε)/q′ because (1 − 5000ε)/q′ ≤ 10. Concerning the maximal operators, it is trivial
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that f∗1 (x) ≤ f∗q (x). Therefore,

∣∣∣∣ ∫
R
T ∗p′f(x)

 ∑
p∈P, |I|≤|I′|

T ∗p f(x)

 dx∣∣∣∣ ≤ Cq′,ε δ 1−5000ε
q′

∫
E(p′)

|f(y)|f∗q (y) dy.

Hence, summing over p′ ∈ P,∣∣∣∣ ∑
p′∈P

∫
R
T ∗p′f(x)

 ∑
p∈P, |I|≤|I′|

T ∗p f(x)

 dx∣∣∣∣
≤
∑
p′∈P

∣∣∣∣ ∫
R
T ∗p′f(x)

 ∑
p∈P, |I|≤|I′|

T ∗p f(x)

 dx∣∣∣∣
≤ Cq′,ε δ

1−5000ε
q′

∫
∪{E(p′): p′∈P}

|f(y)|f∗q (y) dy

≤ Cq′,ε δ
1−5000ε

q′

∫ 2π

0
|f(y)|f∗q (y) dy

≤ Cq′,ε δ
1−5000ε

q′ ‖f‖2‖f∗q ‖2 ≤︸︷︷︸
proved

Cq,q′,ε δ
1−5000ε

q′ ‖f‖22.

The estimation of the second term∑
[ω,I],[ω′,I′]∈P
|I′|≤|I|

∫
R
T ∗[ω,I]f(x)T ∗[ω′,I′]f(x) dx

is analogous, interchanging the roles of I and I ′.
Thus, ∑

p,p′∈P

∫
R
T ∗p f(x)T ∗p′f(x) dx ≤ Cq,q′,ε δ

1−5000ε
q′ ‖f‖22.

Let η > 0. Choose q = q(η) and ε = ε(η) so that

1

2
− 2η <

1− 5000ε

q′
.

Indeed, if η ≥ 1/4, the left-hand side of the inequality is nonpositive and there is nothing
to do. If 0 < η < 1/4, write q′ = 2/(1 − ν), 0 < ν < 1, and the problem reduces to
finding ν and ε with ν/2 + 5000ε/q′ < 2η, which is obviously possible by first taking
0 < ν < 1 with ν/2 < η, then taking the corresponding q′ and finally choosing 0 < ε <
min{1/5000, ηq′/5000}. For those q, q′ and ε, let Cη = Cq,q′,ε. Then∑

p,p′∈P

∫
R
T ∗p f(x)T ∗p′f(x) dx ≤ Cηδ

1
2
−2η‖f‖22,

and since η > 0 is arbitrary, this holds for all η > 0, as wanted.

Now we deal with the case 1/44004 ≤ δ ≤ 1. This is by far the easiest case. We will
just show that there is a C > 0 such that for any set of pairs P for which no two pairs
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are comparable it holds ‖TP‖2 ≤ C. This is enough, as in such a case there is a constant
D > 0 for which ‖TP‖2 ≤ D/44004 ≤ D(1/44004)1/4−η ≤ Dδ1/4−η for all η > 0.

Thus, our goal is to prove that ‖TP‖2 ≤ C. Let p = [ω, I] ∈ P. By (3.2) and the fact
that the E(·)’s are disjoint, for all x ∈ E(p)

|TPf(x)| = |Tpf(x)| ≤ 2π

|I|

∫
I3
|f(y)| dy.

Use the maximal operator

f∗1 (x) = sup
x∈J

1

|J |

∫
J
|f(y)| dy

to conclude that |TPf(x)| ≤ C · f∗1 (x). This inequality holds for all x ∈ [0, 2π], therefore
‖TPf‖2 ≤ ‖f∗1 ‖2 ≤ C‖f‖2, as desired.

�

We keep dealing with larger sets:

Definition 6.1 A tree P with top p0 = [ω0, I0] is a set of pairs with the properties:
(a) if p < p′ < p′′, with p′ admissible and p, p′′ ∈ P, then p′ ∈ P;
(b) p < p0 for every p ∈ P.

Example of a tree P:

[ ω1︷ ︸︸ ︷
[8π, 12π),

I1,1︷ ︸︸ ︷
[π, 2π)

]
>
[ ω2︷ ︸︸ ︷

[8π, 16π),

I2,1︷ ︸︸ ︷
[π, 3π/2)

]
>

P: top=
[
[10π,12π),[0,2π)

]
> [

[8π, 12π)︸ ︷︷ ︸
ω1

, [0, π)︸ ︷︷ ︸
I1,2

]
>
[

[8π, 16π)︸ ︷︷ ︸
ω2

, [0, π/2)︸ ︷︷ ︸
I2,2

]

[ω2, I2,2]

[ω2, I2,1]

[ω1, I1,2]

[ω1, I1,1] top

Lemma 6.3 Let P be a tree with top p0 = [ω0, I0]. Suppose that A(p) ≤ δ for all p ∈ P
(0 < δ < 1). Then ‖TP‖2 ≤ Cδ

1
2 (as usual, the norm ‖ · ‖2 is understood in L2

r).

Proof. Let us see how TP really looks like. We are going to prove that

TPf(x) =
∑

K0(x)≤k≤K1(x)
k∈J

(eiN(x)·ψk(·)) ∗ f(x)

or TPf(x) = 0, depending on x. K0(x) and K1(x) are finite functions of x and J is a set
of positive integers.

Pick ξ0 ∈ ω0. Let I ⊆ [0, 2π] with |I| = 2π · 2−k. Let ωI = ω(k) be the dyadic
interval in R of length 2π · 2k containing ξ0. If [ω, I] ∈ P, then [ω, I] < [ω0, I0], so
ξ0 ∈ ω0 ⊆ ω, therefore ω = ωI . Thus, P consists entirely of pairs [ωI , I]. Let J = {k ≥ 1 :
ω(k) is central}. Let

A(x) = {k ≥ 1 : [ωI , I] ∈ P, x ∈ I, |I| = 2π · 2−k}
= {k ∈ J : [ωI , I] ∈ P, x ∈ I, |I| = 2π · 2−k}
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(P consists of admissible pairs) and

B(x) = {k ≥ 1 : N(x) ∈ ω(k)}.

Then
TPf(x) =

∑
k∈A(x)∩B(x)

(eiN(x)·ψk(·)) ∗ f(x)

(it could be A(x)∩B(x) = ∅). Fixed x, all the pairs [ωI , I] with x ∈ I can be comparable,
so by definition (a) of tree A(x) = {k ∈ J : K(x) ≤ k ≤ K ′(x)}. Since B(x) clearly has
the form {k ≥ K ′′(x)} (because if N(x) and ξ0 are in a dyadic interval, they will be in all
larger dyadic intervals containing the previous one), it follows that A(x) ∩ B(x) has the
form {k ∈ J : K0(x) ≤ k ≤ K1(x)} or ∅. This gives the stated form for TP .

If ξ0 ≥ 0 and N < 0, then E(ωI , I) = ∅ for all [ωI , I] ∈ P, so TPf ≡ 0 for all f ∈ L2
r .

Thus, we can assume that either ξ0 < 0 and N < 0 or ξ0 ≥ 0 and N > 0. In this case, if I
is any dyadic interval in [0, 2π] which is large enough, ωI will be of the form [a, 0[ (a < 0)
if ξ0 < 0 (and N < 0) and [0, a[ (a > 0) if ξ0 ≥ 0 (and N > 0), with |a| large, and since
N is bounded, E(ωI , I) = I. Thus, we can consider a partition of I0, {Ij}Jj=1, defined by

means of the maximal dyadic subintervals of I0 for which

|E(ωI , I)|
|I|

> δ

(start with I0; if it does not satisfy the bound, divide it into two halves; if some of the
halves satisfies the bound, keep it for the partition, otherwise divide it again into two
new halves; etc. The process is finite since for every sufficiently small interval I it holds
E(ωI , I) = I by the reasoning above).

Set
Ẽj = E(ωĨj , Ĩj) = {x ∈ Ĩj : N(x) ∈ ωĨj}

and
Ej = {x ∈ Ij : N(x) ∈ ωĨj}.

By (α) below, Ĩj ⊆ I0, and by maximality |Ẽj |/|Ĩj | ≤ δ, therefore |Ej | ≤ |Ẽj | ≤ δ|Ĩj | =
2δ|Ij |. Let us see that:
(α) p = [ω, I] ∈ P, I ∩ Ij 6= ∅ ⇒ Ĩj ⊆ I;
(β) p = [ω, I] ∈ P, I ∩ Ij 6= ∅ ⇒ E(p) ∩ Ij ⊆ Ej .

Proof of (α). As I ∩ Ij 6= ∅, either I ⊆ Ij or Ĩj ⊆ I. Suppose by contradiction that
I ⊆ Ij . We have, by construction of the partition, |E(ωIj , Ij)|/|Ij | > δ. On the other hand,
ω = ωI , so ξ0 ∈ ωIj ∩ ω, and since |I| ≤ |Ij |, necessarily ωIj ⊆ ω, therefore d(ωIj , ω) = 0.
This gives (using I ⊆ Ij)

A(p) ≥ |E(ωI , I)|
|I|︸ ︷︷ ︸
>δ

(
d(ω, ωIj ) + |ω|

|ω|

)−2000

︸ ︷︷ ︸
=1

> δ,

which is a contradiction.
Proof of (β). By (α), E(p) ∩ Ij = {x ∈ Ij : N(x) ∈ ω = ωI}. As ξ0 ∈ ω ∩ ωĨj , we have

ωI ∩ω∩ωĨj 6= ∅. Since Ĩj ⊆ I by (α), ωI ⊆ ωĨj . Then E(p)∩ Ij ⊆ {x ∈ Ij : N(x) ∈ ωĨj} =

Ej and (β) is proved.

46



Write

TPf(x) =

( ∑
K0(x)≤k≤K1(x)

k∈J

ψk

)
∗ f(x) +

( ∑
K0(x)≤k≤K1(x)

k∈J

(eiN(x)·ψk(·)− ψk)

)
∗ f(x). (6.17)

Suppose that the sum is nonempty. Recall

A(x) ∩B(x) = {k ∈ J : [ωI , I] ∈ P, x ∈ I, N(x) ∈ ωI , |I| = 2π · 2−k}
= {k ∈ J : K0(x) ≤ k ≤ K1(x)}.

Then x ∈ E(ωIx , Ix) for some [ωIx , Ix] ∈ P with |Ix| = 2π · 2−K0(x). As N(x), ξ0 ∈ ωIx , we
have |N(x) − ξ0| ≤ |ωIx | = 2π · 2K0(x). With this, we can bound the second sum of the
right-hand side of (6.17): call g(t) = e−iξ0tf(t) ∈ L2

r , then∣∣∣∣( ∑
K0(x)≤k≤K1(x)

k∈J

(eiN(x)·ψk(·)− ψk)
)
∗ f(x)

∣∣∣∣
=

∣∣∣∣( ∑
K0(x)≤k≤K1(x)

k∈J

(ei(N(x)−ξ0)·ψk(·)− ψk)
)
∗ g(x)

∣∣∣∣
≤︸︷︷︸
|f |=|g|

( ∑
K0(x)≤k≤K1(x)

k∈J

|ei(N(x)−ξ0)· − 1||ψk|
)
∗ |f |(x)

= 2

( ∑
K0(x)≤k≤K1(x)

k∈J

∣∣∣∣sin((N(x)− ξ0)y

2

)∣∣∣∣ |ψk|) ∗ |f |(x)

≤︸︷︷︸
| sinx|≤|x|

|N(x)− ξ0|
[
| · |
( ∑
K0(x)≤k≤K1(x)

k∈J

|ψk(·)|
)]
∗ |f |(x)

≤ |N(x)− ξ0|
[
| · |
( ∞∑
k=K0(x)

|ψk(·)|
)]
∗ |f |(x)

≤ |N(x)− ξ0|
(
| · | 1

| · |
1[−2π·2−K0(x),2π·2−K0(x)](·)

)
∗ |f |(x)

= |N(x)− ξ0|
∫ 2π·2−K0(x)

−2π·2−K0(x)
|f(x− y)| dy ≤ 2π · 2K0(x)

∫ 2π·2−K0(x)

−2π·2−K0(x)
|f(x− y)| dy

≤ C 1

|Ix|

∫ 2π·2−K0(x)

−2π·2−K0(x)
|f(x− y)| dy ≤ C 1

|Ix|

∫
(Ix)3
|f(y)| dy.

On the hand, if x ∈ Ij , then x ∈ Ij ∩ Ix, and by (α) above Ĩj ⊆ Ix. Let, as in Lemma 6.1,

M0f(x) =

J∑
j=1

(
sup
Ij⊆I

1

|I|

∫
I
|f(y)| dy

)
1Ij (x).

If x ∈ Ij , then Ij ⊆ Ix ⊆ (Ix)3, so

C
1

|Ix|

∫
(Ix)3
|f(y)| dy = C

1

|(Ix)3|

∫
(Ix)3
|f(y)| dy ≤ CM0f(x).
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Thus, the final bound for the second sum of the right-hand side of (6.17) is the following:∣∣∣∣( ∑
K0(x)≤k≤K1(x)

k∈J

(eiN(x)·ψk(·)− ψk)

)
∗ f(x)

∣∣∣∣ ≤ CM0f(x).

We go on the estimation of the first sum of the right-hand side of (6.17).
Let

R(x, y) =
∑

1≤k≤K1(x)

ψk(y), x, y ∈ R,

R(y) =
∑

1≤k≤K∗
ψk(y), y ∈ R,

where K∗ (see Remark 4.1) depends only on the function N and satisfies |ω| ≤ 2π · 2K∗

for all [·, ω] ∈ B (don’t worry, the constants that will appear will not depend on K∗).
It will be convenient not to have J on the sum, since we will need at some moment to

have consecutive numbers in the subscript of the sum. Then we apply some sort of trick:∣∣∣∣( ∑
K0(x)≤k≤K1(x)

k∈J

ψk

)
∗ f(x)

∣∣∣∣ =

∣∣∣∣ ∑
K0(x)≤k≤K1(x)

k∈J

∫
R
ψk(y)f(x− y) dy

∣∣∣∣
≤

∑
K0(x)≤k≤K1(x)

k∈J

∫
R
|ψk(y)|︸ ︷︷ ︸

ψk(y)sign(y)

|f(x− y)| dy

≤
∑

1≤k≤K1(x)

∫
R
ψk(y)sign(y)|f(x− y)| dy

=

∫
R
R(x, y)sign(y)|f(x− y)| dy.

Then, if we define g(x, y) = sign(x− y)|f(y)|,∣∣∣∣( ∑
K0(x)≤k≤K1(x)

k∈J

ψk

)
∗ f(x)

∣∣∣∣ ≤ (R(x, ·) ∗ g(x, ·))(x).

Let us see that∣∣∣∣R(x, y)− 2K1(x)−1

∫ 2π·2−K1(x)

−2π·2−K1(x)
R(x, y + z) dz

∣∣∣∣ ≤ C 2−K1(x)

y2 + 2−2K1(x)
(6.18)

for all y ∈ R. We distinguish two cases:

• Case 16π · 2−K1(x) ≤ |y|. We start with the trivial bound∣∣∣∣R(x, y)− 2K1(x)−1

∫ 2π·2−K1(x)

−2π·2−K1(x)
R(x, y + z) dz

∣∣∣∣
≤ 2K1(x)−1

∫ 2π·2−K1(x)

−2π·2−K1(x)

∑
1≤k≤K1(x)

|ψk(y)− ψk(y + z)| dz.
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It is important to demonstrate that the number of terms in the sum does not depend
on K1(x), and this will be done using the bound 16π · 2−K1(x) ≤ |y| and the fact
that support(ψk) ⊆ {π/2 · 2−k ≤ |t| ≤ 2π · 2−k}.
We have 16π ·2−K1(x) = 2π ·2−K1(x)+3 ≤ |y|. There is a natural number k0 such that
π/2 · 2−k0 ≤ |y| ≤ 2π · 2−k0 . By the definition of the support of the ψk’s, it holds
ψk(y) = 0 for all k /∈ {k0 − 1, k0, k0 + 1}.
On the other hand, 2π · 2−K1(x)+3 ≤ |y| ≤ 2π · 2−k0 , so k0 ≤ K1(x)− 3.

Let |z| ≤ 2π · 2−K1(x). Then |z| ≤ 2π · 2−k0−3, that is, z ∈ [−2π · 2−k0−3, 2π · 2−k0−3].
Thus,

if y > 0 ⇒ y + z ∈
[π

2
· 2−k0 , 2π · 2−k0

]
+ [−2π · 2−k0−3, 2π · 2−k0−3]

=

[
π

4
· 2−k0 , 9π

4
· 2−k0

]
;

if y < 0 ⇒ y + z ∈
[
−2π · 2−k0 ,−π

2
· 2−k0

]
+ [−2π · 2−k0−3, 2π · 2−k0−3]

=

[
−9π

4
· 2−k0 ,−π

4
· 2−k0

]
.

We want to analyze for which k’s it is verified

support(ψk) ∩
([
−9π

4
· 2−k0 ,−π

4
· 2−k0

]
∪
[
π

4
· 2−k0 , 9π

4
· 2−k0

])
6= ∅.

This last condition implies π/2 · 2−k ≤ 9π/4 · 2−k0 and 2π · 2−k ≥ π/4 · 2−k0 , which
are equivalent to 2−k ≤ 9/2 · 2−k0 and 2−k0 ≤ 8 · 2−k = 2−k+3. The first condition
implies 2−k ≤ 8 · 2−k0 = 2−k0+3, that is, k0 − 3 ≤ k. The second one is equivalent
to k − 3 ≤ k0. We conclude that k0 − 3 ≤ k ≤ k0 + 3. Hence, ψk(y + z) = 0 for all
k /∈ {k0 − 3, . . . , k0 + 3}.
Thus, ∣∣∣∣R(x, y)− 2K1(x)−1

∫ 2π·2−K1(x)

−2π·2−K1(x)
R(x, y + z) dz

∣∣∣∣
≤ 2K1(x)−1

∫ 2π·2−K1(x)

−2π·2−K1(x)

∑
1≤k≤K1(x)

|ψk(y)− ψk(y + z)| dz

= 2K1(x)−1

∫ 2π·2−K1(x)

−2π·2−K1(x)

k0+3∑
k=k0−3

|ψk(y)− ψk(y + z)| dz

= 2K1(x)−1

∫ 2π·2−K1(x)

−2π·2−K1(x)

k0+3∑
k=k0−3

2k|ψ(0)(2ky)− ψ(0)(2ky + 2kz)| dz.

By the mean value theorem, ψ(0)(2ky)− ψ(0)(2ky + 2kz) = (ψ(0))′(2kξy,z)2
kz, where

ξy,z ∈ [y, y + z]. We have |ξy,z| ≥ min{|y|, |y + z|} ≥ min{|y|, |y| − |z|} = |y| − |z| ≥
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|y|−2π ·2−K1(x) ≥ |y|−(2/3)|y| = |y|/3. Since (ψ(0))′ is Schwartz, there is a constant
C > 0 with |(ψ(0))′(t)| ≤ C/t2 for all t ∈ R. Then

|ψ(0)(2ky)− ψ(0)(2ky + 2kz)| ≤ C

22ky2
2k|z| = C

2ky2
|z|.

Hence, ∣∣∣∣R(x, y)− 2K1(x)−1

∫ 2π·2−K1(x)

−2π·2−K1(x)
R(x, y + z) dz

∣∣∣∣
≤ 2K1(x)−1

∫ 2π·2−K1(x)

−2π·2−K1(x)

k0+3∑
k=k0−3

2k
(

C

2ky2
|z|
)
dz

= 2K1(x)−1

(
2

∫ 2π·2−K1(x)

0
z dz︸ ︷︷ ︸

C·2−2K1(x)

)
C

y2

( k0+3∑
k=k0−3

1︸ ︷︷ ︸
=7

)
≤ C 2−K1(x)

y2
.

Finally, use the fact that

2−K1(x)

y2
≤
(

1 +
1

162π2

)
2−K1(x)

y2 + 2−2K1(x)

(this is equivalent to 16π · 2−K1(x) ≤ |y|).

• Case 0 ≤ |y| ≤ 16π · 2−K1(x). We have∣∣∣∣R(x, y)− 2K1(x)−1

∫ 2π·2−K1(x)

−2π·2−K1(x)
R(x, y + z) dz

∣∣∣∣
≤

∑
1≤k≤K1(x)

|ψk(y)|+ 2K1(x)−1

∫ 2π·2−K1(x)

−2π·2−K1(x)

 ∑
1≤k≤K1(x)

|ψk(y + z)|

 dz

≤
∑

1≤k≤K1(x)

2k + 2π
∑

1≤k≤K1(x)

2k

≤ 2K1(x)+1 + 2π · 2K1(x)+1 ≤ C · 2K1(x).

Finally, use the fact that

2K1(x) ≤ (1 + 162π2)
2−K1(x)

y2 + 2−2K1(x)

(this is a consequence of |y| ≤ 16π · 2−K1(x)).

Decompose

|(R(x, ·) ∗ g(x, ·))(x)| ≤

∣∣∣∣∣
∫
{|y|≤2π·2−K1(x)}

R(x, y)g(x, x− y) dy

∣∣∣∣∣
+

∣∣∣∣∣
∫
{|y|≥2π·2−K1(x)}

R(x, y)g(x, x− y) dy

∣∣∣∣∣ .
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To estimate the first integral, note that |g(s, t)| = |f(t)|. Thus, the module allows us to
avoid the dependence on x. We have∣∣∣∣∣

∫
{|y|≤2π·2−K1(x)}

R(x, y)g(x, x− y) dy

∣∣∣∣∣ ≤
∫
{|y|≤2π·2−K1(x)}

|R(x, y)||f(x− y)| dy

≤ 2K1(x)+1

∫
{|x−y|≤2π·2−K1(x)}

|f(y)| dy.

Suppose that x ∈ Ij . By definition of K1(x), x ∈ E(ωI(x), I(x)) for some [ωI(x), I(x)] ∈ P,

|I(x)| = 2π · 2−K1(x). Since x ∈ I(x) ∩ Ij , by (α) it holds Ĩj ⊆ I(x), so |Ĩj | ≤ |I(x)| =
2π · 2−K1(x). Then Ij ⊆ [x− 2π · 2−K1(x), x+ 2π · 2−K1(x)], so by definition of the operator
M0,

2K1(x)+1

∫
{|x−y|≤2π·2−K1(x)}

|f(y)| dy ≤ CM0f(x).

Thus, ∣∣∣∣∣
∫
{|y|≤2π·2−K1(x)}

R(x, y)g(x, x− y) dy

∣∣∣∣∣ ≤ CM0f(x).

To estimate |(R(x, ·) ∗ g(x, ·))(x)|, it remains to bound∫
{|y|≥2π·2−K1(x)}

R(x, y)g(x, x− y) dy =

∫
R
R(x, y)G(x, x− y) dy = (R(x, ·) ∗G(x, ·))(x),

where
G(x, y) := g(x, y) · 1]−∞,x−2π·2−K1(x)[∪ ]x+2π·2−K1(x),∞[(y).

We will use the result given in (6.18). Write∣∣∣∣(R(x, ·) ∗G(x, ·))(x)− 2K1(x)−1

∫ 2π·2−K1(x)

−2π·2−K1(x)
[R(x, ·) ∗G(x, ·)](x+ z) dz

∣∣∣∣
=

∣∣∣∣ ∫
R
G(x, x− y)R(x, y) dy − 2K1(x)−1

∫ 2π·2−K1(x)

−2π·2−K1(x)

∫
R
R(x, y + z)G(x, x− y) dy dz

∣∣∣∣
≤
∫
R

∣∣∣∣R(x, y)− 2K1(x)−1

∫ 2π·2−K1(x)

−2π·2−K1(x)
R(x, y + z) dz

∣∣∣∣|G(x, x− y)| dy

≤
∫
R

2−K1(x)

y2 + 2−2K1(x)
|G(x, x− y)| dy =

∫
{|y|≥2π·2−K1(x)}

2−K1(x)

y2 + 2−2K1(x)
|g(x, x− y)| dy

=

∫
{|y|≥2π·2−K1(x)}

2−K1(x)

y2 + 2−2K1(x)
|f(x− y)| dy

≤︸︷︷︸
Remark

6.2

C sup
h>0

1

2h

∫ h

−h
|f(x− y)|1{|y|≥2π·2−K1(x)}(y) dy = C sup

h≥2π·2−K1(x)

1

2h

∫ h

−h
|f(x− y)| dy

≤︸︷︷︸
as

before

CM0f(x).

On the other hand, using the fact that

|R(x, y)| =
∑

1≤k≤K1(x)

|ψk(y)| ≤
∑

1≤k≤K∗
|ψk(y)| = |R(y)|
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(remember that ψk(y) = sign(y)|ψk(y)|), we obtain∣∣∣∣2K1(x)−1

∫ 2π·2−K1(x)

−2π·2−K1(x)
[R(x, ·) ∗G(x, ·)](x+ z) dz

∣∣∣∣
≤ 2K1(x)−1

∫ 2π·2−K1(x)

−2π·2−K1(x)
(|R| ∗ |f |)(x+ z) dz ≤︸︷︷︸

as
before

CM0(|R| ∗ |f |)(x).

To sum up,

first sum in (6.17) =

∣∣∣∣( ∑
K0(x)≤k≤K1(x)

k∈J

ψk

)
∗ f(x)

∣∣∣∣ ≤ CM0(|R| ∗ |f |)(x) +M0(f)(x).

Combining our estimates for the sums in (6.17), we obtain

|TPf(x)| ≤ CM0f(x) + CM0(|R| ∗ |f |)(x).

On the other hand, TPf is supported in

⋃
p∈P

E(p) =

J⋃
j=1

⋃
p∈P

(E(p) ∩ Ij)

 ⊆ J⋃
j=1

Ej ,

where the last inclusion is reasoned as follows: given j ∈ {1, . . . , J} and p = [ω, I] ∈ P,
either I ∩ Ij = ∅, in which case E(p) ∩ Ij = ∅ ⊆ Ej , or I ∩ Ij 6= ∅, which implies
E(p) ∩ Ij ⊆ Ej by (β).

Thus, TPf(x) = 0 for all x ∈ Ij\Ej and j = 1, . . . , J , so

|TPf(x)| ≤ CMf(x) + CM(|R| ∗ |f |)(x)

for all x. Hence,

‖TPf‖2 ≤ C‖Mf‖2 + C‖M(|R| ∗ |f |)‖2 ≤︸︷︷︸
as in

Lemma 6.1

Cδ
1
2 (‖f‖2 + ‖|R| ∗ |f |‖2)

≤︸︷︷︸
Young

Cδ
1
2 (‖f‖2 + ‖R‖2‖f‖1) =︸︷︷︸

Plancherel

Cδ
1
2 (‖f‖2 + ‖R̂‖2‖f‖1)

≤︸︷︷︸
compact
support

Cδ
1
2 (‖f‖2 + C‖R̂‖∞‖f‖1) ≤︸︷︷︸

Hölder

Cδ
1
2 (‖f‖2 + C‖R̂‖∞‖f‖2).

To finish the proof of the lemma, it remains to demonstrate that R̂ is bounded. We have

R̂(ξ) =
∑

1≤k≤K∗
ψ̂k(ξ) =

∑
1≤k≤K∗

ψ̂(0)

(
ξ

2k

)
.

Now, in the notation of the construction of ψ(0), we can write

ψ(0)(x) =
ϕ(x)− ϕ(2x)

x
.
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We would like to apply transforms, put (̂ϕ/x)(ξ) and ̂(ϕ(2x)/x)(ξ) and in some way obtain
a telescoping sum to compute R̂(ξ). However, things are not so easy, because ϕ/x /∈ L1

(because ϕ ≡ 1 in [−π, π]). However, we can turn to principal values, which allow splitting
the integral that defines the transform:

ψ̂(0)(ξ) =

∫
R

ϕ(x)− ϕ(2x)

x
e−ixξ dx = lim

ε→0+

∫
|x|≥ε

ϕ(x)− ϕ(2x)

x
e−ixξ dx

= lim
ε→0+

∫
|x|≥ε

ϕ(x)

x
e−ixξ dx− lim

ε→0+

∫
|x|≥ε

ϕ(2x)

x
e−ixξ dx.

Note that, if a ∈ {1, 2},∫
|x|≥ε

ϕ(ax)

x
e−ixξ dx =

∫ ∞
ε

ϕ(ax)

x
e−ixξ dx+

∫ −ε
−∞

ϕ(ax)

x
e−ixξ dx

=︸︷︷︸
ϕ even

∫ ∞
ε

ϕ(ax)

x
e−ixξ dx−

∫ ∞
ε

ϕ(ax)

x
eixξ dx

= − 2i

∫ ∞
ε

ϕ(ax)
sin(xξ)

x
dx.

Hence,

ψ̂(0)(ξ) = − 2i

∫ ∞
0

ϕ(x)
sin(xξ)

x
dx+ 2i

∫ ∞
0

ϕ(2x)
sin(xξ)

x
dx

= 2i

∫ ∞
0

(ϕ(2x)− ϕ(x))
sin(xξ)

x
dx

(these integrals exist as Lebesgue integrals). This gives

ψ̂(0)

(
ξ

2k

)
= 2i

∫ ∞
0

(ϕ(2x)− ϕ(x))
sin(xξ/2k)

x
dx

=︸︷︷︸
y=x/2k

2i

∫ ∞
0

(ϕ(2k+1y)− ϕ(2ky))
sin(yξ)

y
dy.

We have achieved our telescopic sum:

R̂(ξ) =

K∗∑
k=1

ψ̂(0)

(
ξ

2k

)
= 2i

∫ ∞
0

(ϕ(2K
∗+1y)− ϕ(2y))

sin(yξ)

y
dy.
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To bound uniformly R̂, we use the following trick: given any a > 0 and ξ ∈ R,∫ ∞
0

ϕ(ay)
sin(yξ)

y
dy = sign(ξ)

∫ ∞
0

ϕ(ay)
sin(y|ξ|)

y
dy =

sign(ξ)

2

∫
R
ϕ(ay)

sin(y|ξ|)
y

dy

=
sign(ξ)

2

∫
R
ϕ(ay)

∫ |ξ|
0

cos(yt) dt dy =
sign(ξ)

2

∫ |ξ|
0

(∫
R
ϕ(ay) cos(yt) dy

)
dt

=
sign(ξ)

2

∫ |ξ|
0

(∫
R
ϕ(ay)

eiyt + e−iyt

2
dy

)
dt

=
sign(ξ)

4

∫ |ξ|
0

(∫
R
ϕ(ay)eiyt dy +

∫
R
ϕ(ay)e−iyt dy

)
dt

=
sign(ξ)

4

∫ |ξ|
0

1

a

(∫
R
ϕ(y)eiy

t
a dy +

∫
R
ϕ(y)e−iy

t
a dy

)
dt

=
sign(ξ)

4

∫ |ξ|
0

1

a

(
ϕ̂

(
− t
a

)
+ ϕ̂

(
t

a

))
dt =

sign(ξ)

4

∫ |ξ|/a
0

(ϕ̂(−t) + ϕ̂(t)) dt

=︸︷︷︸
ϕ even

sign(ξ)

2

∫ |ξ|/a
0

ϕ̂(t) dt.

Define, for s ≥ 0, F (s) =
∫ s

0 ϕ̂(t) dt. Since F is continuous on [0,∞[ and

lim
s→∞

F (s) =

∫ ∞
0

ϕ̂(t) dt =
1

2

∫
R
ϕ̂(t) dt =

ϕ(0)

2
=

1

2
,

F is bounded: there exists C > 0 such that |F (s)| ≤ C for all s ≥ 0. Then∣∣∣∣∫ ∞
0

ϕ(ay)
sin(yξ)

y
dy

∣∣∣∣ ≤ C
for all a > 0 and ξ ∈ R. We conclude that |R̂(ξ)| ≤ 4C for all ξ ∈ R, and the lemma is
proved.

�

Corollary 6.1 If P is a tree, then ‖TP‖2 ≤ C (C does not depend on the tree P).

Proof. The proof is more or less a consequence of the above proof. We just need to simplify
it. In the previous proof, we essentially bound TP by means of a maximal operator. Then
one needs to construct a partition {Ij}Jj=1 of I0 and {Ej}Jj=1 verifying (α) and (β) above.

For the Ej ’s, just take Ej = Ij and Ẽj = Ĩj . As (β) is trivial (because Ej = Ij), it
just remains to construct {Ij}Jj=1 such that (α) holds. Since P is finite, we may consider

d = min{|I| : [ω, I] ∈ P}. Take {Ij}Jj=1 as the dyadic partition of I0 with |Ij | = d/2 for

all j = 1, . . . , J . If p = [ω, I] ∈ P and I ∩ Ij 6= ∅, then either Ĩj ⊆ I or I ⊆ Ij , and since
|Ij | = d/2 < d ≤ |I|, necessarily Ĩj ⊆ I, so (α) holds. With this partition {Ij}Jj=1, just
copy the proof of Lemma 6.3.

Notice that we do not use A(p) ≤ 1, because A(p) ≤ 1 always holds by definition of
A(p). Thus, this corollary is Lemma 6.3 with δ = 1.

�

Remark 6.4 From Lemma 6.3, we see that (5.5) holds for trees.
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Fix 0 < δ ≤ 1 and K > 0 large (for instance, a good choice is K > 10).

Definition 6.2 A tree P with top p0 = [ω0, I0] is normal if for [ω, I] ∈ P we have
|I| ≤ (δ1000/K2)|I0| and d(I, ∂I0) > 3(δ100/K2)|I0|.

To make an intuitive idea of what a normal tree is, it is a tree such that the I’s are
small compared to I0 and are contained far from the endpoints of I0.

Example of a normal tree P with δ = 1/2 and K = 100:

P:

/∈P︷︸︸︷
top =

[
[(22001+1)·2π,(22001+2)·2π),[0,2π)

]
>

>
[

[2 · 22000 · 2π, 3 · 22000 · 2π)︸ ︷︷ ︸
ω1

, [21950 · 2π/22000, (21950 + 1) · 2π/22000)︸ ︷︷ ︸
I1

]
>

>
[

[22001 · 2π, 2 · 22001 · 2π)︸ ︷︷ ︸
ω2

, [21951 · 2π/22001, (21951 + 1) · 2π/22001)︸ ︷︷ ︸
I2

]

[ω2, I2]

[ω1, I1]

top

We have |I1|=2π/22000<(1/21000·10000)|I0| and d(I1,∂I0)=2π/250>3·2π/(2100·10000).
Also |I2|=2π/22001<(1/21000·10000)|I0| and d(I2,∂I0)=2π/250>3·2π/(2100·10000).

An example of a non-normal tree is given in the picture immediately
after the definition of tree: with that same notation, d(I1,1, ∂I0) = 0.

A key fact of normal trees is that, for any f ∈ L2
r , T

P∗f lives in I0. An intuition for
this is that, as we said, the I’s are small and contained in I0 far from ∂I0, therefore I3,
which is the support of T ∗p f (p = [ω, I]), will be contained in I0. We prove this formally.
The finite sum of the adjoints is the adjoint of the sum:

TP
∗
f(x) =

∑
p=[ω,I]∈P
|I|=2π·2−k

∫
E(p)

e−iN(y)(y−x)ψk(y − x)f(y) dy · 1I3 .

Then
support(TP

∗
f) ⊆

⋃
[ω,I]∈P

I3.

Since

d(I5, ∂I0) = d(I, ∂I0)− 2|I| > 3
δ100

K2
|I0| − 2

δ1000

K2
|I0| ≥ 3

δ100

K2
|I0| − 2

δ100

K2
|I0| = δ100

K2
|I0|,

this gives support(TP
∗
f) ⊆ I0, as desired.

In fact, more can be said about support(TP
∗
f): support(TP

∗
f) ⊆ {x ∈ I0 : d(x, ∂I0) >

(δ100/K2)|I0|}. That is, the support of TP
∗
f is not only contained in I0, it is a set of

points in I0 far from its endpoints.
The choice of I5 when computing d(I5, ∂I0) will be necessary to prove Lemma 6.5.
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Definition 6.3 Two trees, P with top [ω0, I0], and P ′ with top [ω1, I1], are separated if
either I0 ∩ I1 = ∅ or:
(α) [ω, I] ∈ P, I ⊆ I1 ⇒ d(ω, ω1) > 1

δ |ω|,
(β) [ω′, I ′] ∈ P ′, I ′ ⊆ I0 ⇒ d(ω′, ω0) > 1

δ |ω
′|.

This condition is stronger than saying that no two p ∈ P and p′ ∈ P ′ are comparable
under <.

Example of two separated trees P and P ′ with δ = 1/2:

[ ω1︷ ︸︸ ︷
[8π, 12π),

I1,1︷ ︸︸ ︷
[π, 2π)

]
>
[ ω2︷ ︸︸ ︷

[8π, 16π),

I2,1︷ ︸︸ ︷
[π, 3π/2)

]
>

P: top=
[
[10π,12π),[0,2π)

]
> [

[8π, 12π)︸ ︷︷ ︸
ω1

, [0, π)︸ ︷︷ ︸
I1,2

]
>
[

[8π, 16π)︸ ︷︷ ︸
ω2

, [0, π/2)︸ ︷︷ ︸
I2,2

]

[ω2, I2,2]

[ω2, I2,1]

[ω1, I1,2]

[ω1, I1,1] top

P ′: top=
[
[52π,56π),[π,2π)

]
>
[

[48π, 56π)︸ ︷︷ ︸
ω′1

, [π, 2π)︸ ︷︷ ︸
I′1

]

[ω′1, I
′
1]

top

In the following lemma we study condition (b) of the Orthogonality lemma for two
separated trees.

Lemma 6.4 Let P and P ′ be separated trees with tops [ω0, I0] and [ω1, I0]. Then

‖TP ′TP∗‖2 ≤ CMδM , ∀M > 0.

Proof. First of all, note that the statement of the lemma is equivalent to

|(TP∗f, TP ′
∗
g)| ≤ CMδM‖f‖2‖g‖2 (6.19)

for all f, g ∈ L2
r . Indeed, ‖TP ′TP∗‖2 ≤ CMδ

M if and only if ‖TP ′TP∗f‖2 ≤ CMδ
M‖f‖2

for every f ∈ L2
r , but

‖TP ′TP∗f‖2 = sup
g∈L2

r
‖g‖2=1

|(TP ′TP∗f, g)| = sup
g∈L2

r
‖g‖2=1

|(TP∗f, TP ′∗g)| = sup
g∈L2

r
g 6=0

|(TP∗f, TP ′∗g)|
‖g‖2

.

Then ‖TP ′TP∗f‖2 ≤ CMδ
M‖f‖2 if and only if (6.19) holds for all g ∈ Lr2, as desired.

Then the proof of (6.19) for all f, g ∈ L2
r will be our goal in the rest of the demonstration

of this lemma.
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Let d = min{|I| : [ω, I] ∈ P} and d′ = min{|I ′| : [ω′, I ′] ∈ P ′}. Consider ϕ ∈ C∞c (R)
such that
(i) support(ϕ) ⊆ {x ∈ R : |x| ≤ δ

1
2d} and ‖ϕ‖1 ≤ CM .

(ii) |ϕ̂(ξ)| ≤ CM (δ
1
2d|ξ − ξ0|)−2M for all ξ ∈ R (ξ0 is the midpoint of ω0).

(iii) |ϕ̂(ξ)− 1| ≤ CM (δ
1
2d|ξ − ξ0|)2M for all ξ ∈ R.

To construct such a ϕ, look at the coming Remark 6.5. Analogously, pick a ϕ′ corre-
sponding to P ′ (ξ1 = midpoint of ω1).

Let us see that from the fact that P and P ′ are separated, one can deduce that

|ϕ̂(ξ)ϕ̂′(−ξ)| ≤ CMδM , ∀ξ ∈ R. (6.20)

Take [ω, I] ∈ P such that |I| = d. By definition of top, I ⊆ I0, therefore by (α) in the
definition of separated tress we have d(ω, ω1) > 4π2/(δd). By definition of top again,
ω0 ⊆ ω, so d(ω0, ω1) ≥ d(ω, ω1) > (4π2)/(δd). Taking [ω′, I ′] ∈ P ′ such that |I ′| = d′,
we obtain as before that d(ω0, ω1) > 4π2/(δd′). To sum up, d(ω0, ω1) > 4π2/(δd′′),
d′′ = min{d, d′}. On the other hand, note that, if ξ ∈ R, then |ξ − ξ0| > 4π2/(2δd′′)
or |ξ − ξ1| > 4π2/(2δd′′) (indeed, if there is ξ ∈ R satisfying |ξ − ξ0| ≤ 4π2/(2δd′′) and
|ξ − ξ1| ≤ 4π2/(2δd′′), then d(ω0, ω1) ≤ |ξ0 − ξ1| ≤ |ξ − ξ0| + |ξ − ξ1| ≤ 4π2/(δd′′), which
is not true).

Suppose that our function N is positive (the case N < 0 is analogous). Then ξ0, ξ1 > 0
by the last part of Remark 4.1 (if N < 0, then ξ0, ξ1 < 0). Suppose that ξ0 < ξ1 (the case
ξ1 < ξ0 is completely analogous). Let

A0 = [ξ0 − 4π2/(2δd′′), ξ0 + 4π2/(2δd′′)],

A1 = [ξ1 − 4π2/(2δd′′), ξ1 + 4π2/(2δd′′)].

Pick ξ /∈ A0, that is, |ξ − ξ0| > 4π2/(2δd′′) > 1/(2δd). By (ii), |ϕ̂(ξ)| ≤ CM (δ1/2d|ξ −
ξ0|)−2M ≤ CM (δ1/2/(2δ))−2M = CMδ

M . By (i), |ϕ̂′(−ξ)| ≤ ‖ϕ′‖1 ≤ CM . Then

|ϕ̂(ξ)ϕ̂′(−ξ)| ≤ CMδM .

Now take ξ ∈ A0. By (i), |ϕ̂(ξ)| ≤ ‖ϕ‖1 ≤ CM . Note that −ξ /∈ A1, which is a direct
consequence of the fact that 0 < ξ0 < ξ1. Indeed, call Ã0 = A0∩ ]−∞, 0[ (which could be

empty) and let ˜̃A0 = A0\Ã0. As − ˜̃A0 ⊆] −∞, 0] and ]−∞, 0] ∩ A1 = ∅, we just have to

deal with Ã0. As ξ0 is the midpoint of A0 and ξ0 /∈ Ã0, then −Ã0 ⊆ ˜̃A0, so −Ã0 ∩A1 = ∅.
Then we have proved that −A0 ∩A1 = ∅, therefore −ξ /∈ A1, as claimed.
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ξ0 ξ1

bM

bM := CMδ
M ϕ̂

ϕ̂′

Ã0
˜̃A0

A0

A1

As −ξ /∈ A1, | − ξ − ξ1| > 4π2/(2δd′′) > 1/(2δd′). By (ii),

|ϕ̂′(−ξ)| ≤ CM (δ1/2d| − ξ − ξ1|)−2M ≤ CM (δ1/2/(2δ))−2M = CMδ
M .

This gives |ϕ̂(ξ)ϕ̂′(−ξ)| ≤ CMδM . Thus, (6.20) is true.

Now define, for f ∈ L2
r ,

ε(f) = TP
∗
f − ϕ̃ ∗ (TP

∗
f)

and
ε′(f) = TP

′∗
f − ϕ̃′ ∗ (TP

′∗
f),

where ϕ̃(x) := ϕ(−x), ϕ̃′(x) := ϕ′(−x) and ∗ stands for the convolution on R. We want
to show that

‖ε‖2 ≤ CMδM (6.21)

and
‖ε′‖2 ≤ CMδM . (6.22)

where the norm ‖ · ‖2 is taken, as usual, in the sense of L2
r (ε and ε′ have their image with

support contained in [−4π, 6π]). We will prove (6.21), and (6.22) will follow by analogy.
Notice that, given g ∈ L2

r ,

(ϕ̃ ∗ (TP
∗
f), g) =

∫
R

(ϕ̃ ∗ (TP
∗
f))(x)g(x) dx =

∫
R

∫
R
ϕ̃(x− y)TP

∗
f(y) dy g(x) dx

=

∫
R

(∫
R
ϕ̃(x− y)g(x) dx

)
TP
∗
f(y) dy =

∫
R

(∫
R
ϕ(y − x)g(x) dx

)
TP
∗
f(y) dy

= (TP
∗
f, ϕ ∗ g) = (f, TP(ϕ ∗ g)).
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Hence, by duality,

‖ε(f)‖2 = sup
g∈L2

r
‖g‖2=1

(TP
∗
f − ϕ̃ ∗ (TP

∗
f), g) = sup

g∈L2
r

‖g‖2=1

{(TP∗f, g)− (ϕ̃ ∗ (TP
∗
f), g)}

= sup
g∈L2

r
‖g‖2=1

{(TP∗f, g)− (f, TP(ϕ ∗ g)) = sup
g∈L2

r
‖g‖2=1

(f, TPg − TP(ϕ ∗ g))

≤ ‖f‖2 sup
g∈L2

r
‖g‖2=1

‖TPg − TP(ϕ ∗ g)‖2.

Thus, it suffices to show that for all f ∈ L2
r we have

‖TPf − TP(ϕ ∗ f)‖2 ≤ CMδM‖f‖2. (6.23)

Write, using convolutions,

|TPf(x)− TP(ϕ ∗ f)(x)|

=

∣∣∣∣ ∑
p=[ω,I]∈P

|I|=2π·2−k, x∈E(p)

((eiN(x)·ψk(·)) ∗ f)(x)−
∑

p=[ω,I]∈P
|I|=2π·2−k, x∈E(p)

((eiN(x)·ψk(·)) ∗ (ϕ ∗ f))(x)

∣∣∣∣
≤

∑
p=[ω,I]∈P

|I|=2π·2−k, x∈E(p)

∣∣∣[(eiN(x)·ψk(·)) ∗ f ](x)− [((eiN(x)·ψk(·)) ∗ ϕ) ∗ f ](x)
∣∣∣

≤
( ∑

p=[ω,I]∈P
|I|=2π·2−k, x∈E(p)

∣∣∣eiN(x)·ψk(·)− (eiN(x)·ψk(·)) ∗ ϕ
∣∣∣ ) ∗ |f |(x).

If p = [ω, I] ∈ P and x ∈ E(p), then N(x) ∈ ω, and since ξ0 ∈ ω0 ⊆ ω, we have

|N(x)− ξ0| ≤ |ω| = 2π · 2k. (6.24)

This bound will be essential to deal with |eiN(x)·ψk(·) − (eiN(x)·ψk(·)) ∗ ϕ|. Indeed, call
h(t) = eiN(x)tψk(t). Then

|h(y)− (h ∗ ϕ)(y)| = C

∣∣∣∣∫
R

(ĥ(ξ)− (̂h ∗ ϕ)(ξ))eiyξ dξ

∣∣∣∣
≤ C

∫
R
|ĥ(ξ)− ĥ(ξ)ϕ̂(ξ)| dξ = C

∫
R
|ĥ(ξ)||1− ϕ̂(ξ)| dξ.

By (iii), |1− ϕ̂(ξ)| ≤ CM (δ1/2d|ξ − ξ0|)2M . On the other hand,

|ĥ(ξ)| = |ψ̂k(ξ −N(x))| =
∣∣∣∣ψ̂(0)

(
ξ −N(x)

2k

)∣∣∣∣ .
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Then

|h(y)− (h ∗ ϕ)(y)| ≤ CM (δ
1
2 d)2M

∫
R
|ξ − ξ0|2M

∣∣∣∣ψ̂(0)

(
ξ −N(x)

2k

)∣∣∣∣ dξ
=︸︷︷︸

(ξ−N(x))/2k=z

CM (δ
1
2 d)2M2k

∫
R
|2kz +N(x)− ξ0|2M |ψ̂(0)(z)| dz

=︸︷︷︸
(a+b)n≤2n−1(an+bn),

a,b≥0

CM (δ
1
2 d)2M2k

(∫
R
|N(x)− ξ0|2M |ψ̂(0)(z)| dz + 22kM

∫
R
z2M |ψ̂(0)(z)| dz

)

≤︸︷︷︸̂
ψ(0)

Schwartz,
(6.24)

CM (δ
1
2 d)2M2k(22kM + 22kM )

= CM (δ
1
2 · 2kd)2M · 2k.

We can be sharper in the estimate of |h(y) − (h ∗ ϕ)(y)| by studying its support. As
support(h) ⊆ [−2π · 2−k, 2π · 2−k] and support(ϕ) ⊆ [−δ1/2d, δ1/2d] ⊆ [−2π · 2−k, 2π · 2−k],
we have

support(h− h ∗ ϕ) ⊆ [−2π · 2−k+1, 2π · 2−k+1],

therefore

|h(y)− (h ∗ ϕ)(y)| ≤ CM (δ
1
2 · 2kd)2M · 2k · 1[−2π·2−k+1,2π·2−k+1](y).

This gives

sup
x∈R

∑
p=[ω,I]∈P

|I|=2π·2−k, x∈E(p)

∣∣∣eiN(x)yψk(y)− [(eiN(x)·ψk(·)) ∗ ϕ](y)
∣∣∣ ≤ R(y),

where
R(y) =

∑
k≥1, d≤2π·2−k

CM (δ
1
2 · 2kd)2M · 2k · 1[−2π·2−k+1,2π·2−k+1](y),

therefore
|TPf(x)− TP(ϕ ∗ f)(x)| ≤ (R ∗ |f |)(x).

In order for (6.23) to hold, we need ‖R‖1 ≤ CMδ
M , because ‖R ∗ |f |‖2 ≤ ‖R‖1‖f‖2. We

have

‖R‖1 ≤ CMd2MδM
blog2(2π/d)c∑

k=1

(4M )k ≤ CMd2MδM
4M(blog2(2π/d)c+1)

4M − 1

≤ CMd2MδM
4M

4M − 1
22Mblog2(2π/d)c,

and since d2M22Mblog2(2π/d)c = (d · 2blog2(2π/d)c)2M ≤ (2π)2M , it follows ‖R‖1 ≤ CMδ
M .

As a consequence, (6.23) is true and so are (6.21) and (6.22), as wanted.
From both (6.21) and (6.22) the proof of (6.19) is easy. Write

(TP
∗
f, TP

′∗
g) = (ε(f) + ϕ̃ ∗ (TP

∗
f)) + (ε′(g) + ϕ̃′ ∗ (TP

′∗
g))

= (ϕ̃ ∗ (TP
∗
f), ϕ̃′ ∗ (TP

′∗
g)) + (ε(f), ϕ̃′ ∗ (TP

′∗
g))

+(ϕ̃ ∗ (TP
∗
f), ε′(g)) + (ε(f), ε′(g)).
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We have∣∣∣(ε(f), ϕ̃′ ∗ (TP
′∗
g))
∣∣∣ ≤ ‖ε(f)‖2‖ϕ̃′ ∗ (TP

′∗
g)‖2 ≤ ‖ε(f)‖2‖ϕ̃′‖1‖TP

′∗
g‖2 ≤ CMδM‖f‖2‖g‖2,∣∣∣(ϕ̃ ∗ (TP

∗
f), ε′(g))

∣∣∣ ≤ ‖ϕ̃ ∗ (TP
∗
f)‖2‖ε′(g)‖2 ≤ ‖ϕ̃‖1‖TP

∗
f‖2‖ε′(g)‖2 ≤ CMδM‖f‖2‖g‖2,

|(ε(f), ε′(g))| ≤ ‖ε(f)‖2‖ε′(g)‖2 ≤ CMδ2M‖f‖2‖g‖2 ≤ CMδM‖f‖2‖g‖2
(we have used Lemma 6.3 with δ = 1). For the remaining term we will make use of (6.20).
First write

(ϕ̃ ∗ (TP
∗
f), ϕ̃′ ∗ (TP

′∗
g)) =

∫
R

(∫
R
ϕ̃(x− y)TP

∗
f(y) dy

)(∫
R
ϕ̃′(x− z)TP′∗g(z) dz

)
dx

=

∫
R

(∫
R

(∫
R
ϕ̃(x− y)ϕ̃′(x− z) dx

)
TP
∗
f(y) dy

)
TP′∗g(z) dz

=︸︷︷︸
x=z+u

∫
R

(∫
R

(∫
R
ϕ̃(z + u− y)ϕ̃′(u) du

)
TP
∗
f(y) dy

)
TP′∗g(z) dz

=︸︷︷︸
u←−u

∫
R

(∫
R

(∫
R
ϕ̃(z − u− y)ϕ′(u) du

)
TP
∗
f(y) dy

)
TP′∗g(z) dz

=
(

(ϕ′ ∗ ϕ̃) ∗ (TP
∗
f), TP

′∗
g
)
.

Then

|(ϕ̃ ∗ (TP
∗
f), ϕ̃′ ∗ (TP

′∗
g))| ≤︸︷︷︸

C-S

‖(ϕ′ ∗ ϕ̃) ∗ (TP
∗
f)‖2‖TP

′∗
g‖2

=︸︷︷︸
Plancherel

‖ ̂(ϕ′ ∗ ϕ̃)T̂P∗f‖2‖TP
′∗
g‖2

≤ ‖ϕ̂′ ∗ ϕ̃‖∞‖T̂P∗f‖2‖TP
′∗
g‖2 ≤︸︷︷︸

(6.20)

CMδ
M‖T̂P∗f‖2‖TP

′∗
g‖2

=︸︷︷︸
Plancherel

CMδ
M‖TP∗f‖2‖TP

′∗
g‖2 ≤︸︷︷︸

Corollary 6.1

CMδ
M‖f‖2‖g‖2.

It follows (6.19), and we are done.
�

Remark 6.5 The idea to construct the function ϕ from Lemma 6.4 is the following: for
(i) and (ii) to hold, it suffices to take a bump function, and (ii) will hold because the
Fourier transform of a Schwartz function is Schwartz. In order to have (iii), the idea will
be to have ϕ(ξ0) = 1 (which is achieved by having

∫
ϕ = 1 plus a modulation) and the

Taylor development of ϕ of order 2M , which is achieved by imposing the first 2M moments
of ϕ to be zero.

We start the formal construction of ϕ. Suppose for the moment that there is φ ∈
C∞c (R) with support ⊆ [−1, 1],

∫
R φ(x)dx = 1 and

∫ 1
−1 x

kφ(x)dx = 0 for all k = 1, . . . , 2M−
1. Call a = δ

1
2d > 0. Let

ϕ(x) =
eixξ0

a
φ
(x
a

)
.
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Then ϕ ∈ C∞c (R) and support(ϕ) ⊆ [−a, a], so (i) holds. For (ii), use the fact that
φ ∈ C∞c (R) ⊆ S (S is the Schwartz space on R) implies φ̂ ∈ S, so by definition of S there
exists CM > 0 such that |φ̂(t)| ≤ CM t−2M for all t ∈ R. As

ϕ̂(ξ) =
1

a

∫
R
φ
(x
a

)
e−ix(ξ−ξ0) dx =

∫
R
φ(x)e−iax(ξ−ξ0) dx = φ̂(a(ξ − ξ0)),

we have directly (ii). Finally, for (iii), use the Taylor development of φ̂: since

φ̂(n)(ξ) =

∫
R

(−ix)nφ(x)e−ixξ dx,

we have φ̂(0) = 1 and φ̂(n)(0) = 0 for n = 1, . . . , 2M − 1, and since φ(2M) is bounded on
R, |φ̂(ξ)− 1| ≤ CMξ2M . Changing to ϕ, |ϕ̂(ξ)− 1| ≤ CM (a(ξ − ξ0))2M , which is (iii).

Hence, to have ϕ, we need to construct the assumed φ. The condition on the moments
of φ makes us think on some sort of orthogonality in the Hilbert space L2. If M =
1, just take a usual bump function φ ∈ C∞c (R) with support(φ) ⊆ [−1, 1], φ even and∫
R φ(x)dx = 1 (since φ is even, the required condition for the 2M − 1 = 1 moment

holds). Suppose M ≥ 2. Take 0 6= g ∈ L2([1/4, 1/2]) such that
∫
R x

kg(x)dx = 0 for
all k = 0, . . . , 2M − 2 and

∫
R g(x)/(x + 1/4) dx 6= 0. We can find such a function g

because 〈1, x, . . . , x2M−2〉 < 〈1/(x+ 1/4), 1, x, . . . , x2M−2〉 < L2([1/4, 1/2]) and because of
the property saying “let F ≤ H, H Hilbert, then F is dense if and only if F⊥ = {0}”. Take
any h ∈ C∞c (R) with support(h) ⊆ [1/4, 1/2]. Let G = g∗h. Then for all k = 0, . . . , 2M−2∫

R
xkG(x) dx =

∫
R
xk
(∫

R
g(x− y)h(y) dy

)
dx =

∫
R
h(y)

(∫
R
xkg(x− y) dx

)
dy

=

∫
R
h(y)

(∫
R

(x+ y)kg(x) dx

)
dy =

k∑
l=0

(
k

l

)∫
R
yk−lh(y)

(∫
R
xlg(x) dx

)
dy = 0.

Also, G ∈ C∞c (R) and support(G) ⊆ support(g) + support(h) ⊆ [1/2, 1]. Let φ(x) =
G(x)/x ∈ C∞c (R), with support(φ) ⊆ [1/2, 1]. Then for all k = 1, . . . , 2M − 1 the
k-th moments of φ are 0:

∫
R x

kφ(x)dx =
∫
R x

k−1G(x)dx = 0. It remains to see that∫
R φ(x)dx 6= 0. We will use our freedom when choosing h. Suppose that for all h ∈ C∞c (R)

with support(h) ⊆ [1/4, 1/2] we have
∫
R φ(x)dx = 0 for the corresponding φ. Then

0 =

∫
R

(g ∗ h)(x)

x
dx =

∫
R

∫
R
h(y)g(x− y) dy

1

x
dx

=

∫
R
h(y)

(∫
R

g(x)

x+ y
dx

)
dy =

∫ 1/2

1/4
h(y)

(∫ 1/2

1/4

g(x)

x+ y
dx

)
dy

for all h ∈ C∞c (R) with support in [1/4, 1/2]. Note that

y 7→
∫ 1/2

1/4

g(x)

x+ y
dx

is C∞([1/4, 1/2]). Consider {hn}∞n=1 ⊆ C∞c (R) with support contained in [1/4, 1/2] and

lim
n
hn(y) =

∫ 1/2

1/4

g(x)

x+ y
dx
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for all y ∈ (1/4, 1/2) (for each n, take a Uryshon function ρn ∈ C∞c (R) with 0 ≤ ρn ≤ 1,

ρn|[1/4+1/n,1/2−1/n] = 1 and support in (1/4, 1/2), and define hn = ρn ·
∫ 1/2

1/4 g(x)/(x+y)dx).
By dominated convergence,

0 =

∫ 1/2

1/4

(∫ 1/2

1/4

g(x)

x+ y
dx

)2

dy,

which gives ∫ 1/2

1/4

g(x)

x+ y
dx = 0

for all y ∈ [1/4, 1/2]. Put y = 1/4:

0 =

∫ 1/2

1/4

g(x)

x+ 1/4
dx,

which is a contradiction by the construction of g. Thus, there exists h ∈ C∞c (R) with
support(h) ⊆ [1/4, 1/2] so that the φ constructed is C∞c (R), with support in [1/2, 1],∫
R φ(x)dx 6= 0 and

∫
R x

kφ(x)dx = 0 for all k = 1, . . . , 2M − 1. Now change φ by φ/
∫
R φ

to have the sought φ. Then the existence of ϕ is fully justified.

Definition 6.4 A row is a union P = ∪kPk of normal trees Pk with tops [ωk0 , I
k
0 ], where

the Ik0 ’s are pairwise disjoint.

Note that the union is finite, because we are considering B finite.

In the following lemma we extend Lemma 6.4 to a union of normal trees.

Lemma 6.5 Let P be a row as above, let P ′ be a normal tree with top [ω′0, I
′
0], and

suppose that, for each k, Ik0 ⊆ I ′0 and Pk,P ′ are separated. Then ‖TP ′TP∗‖2 ≤ CMδ
M

(any M > 0).

Proof. We will prove ∑
k

|(TP ′∗g, TPk∗f)| ≤ CMδM‖f‖2‖g‖2. (6.25)

We examine each term (TP
′∗
g, TP

k∗
f). Write the tree P ′ as P ′ = P ′k ∪P ′′k ∪P ′′′k , where

P ′′k = {[ω′, I ′] ∈ P ′ : |I ′| > (δ1000/K2)|Ik0 |},

P ′k = {[ω′, I ′] ∈ P ′ : |I ′| ≤ (δ1000/K2)|Ik0 |, I ′ ⊆ Ik0 , d((I ′)5, ∂Ik0 ) > (δ100/K2)|Ik0 |},

P ′′′k = {all other p′ ∈ P ′}.

Let us see that, if P̃ is a normal tree with top [·, Ik0 ], then

support(TP
′′′∗
k g) ∩ support(T P̃

∗
f) = ∅, ∀f, g ∈ L2

r .

Pick p′′′ = [ω′′′, I ′′′] ∈ P ′′′k and p′ = [ω, I ′] ∈ P̃. By definition of the adjoint operator, it
suffices to see that (I ′′′)3∩(I ′)3 = ∅. Let us write first what I ′′′ and I ′ verify. By definition
of P ′′′k ,

|I ′′′| ≤ δ1000

K2
|Ik0 | &

[
I ′′′ 6⊆ Ik0 or d((I ′′′)5, ∂Ik0 ) ≤ δ100

K2
|Ik0 |

]
.
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The definition of normal tree implies

I ′ ⊆ Ik0 , d((I ′)5, ∂Ik0 ) >
δ100

K2
|Ik0 |.

Suppose that d((I ′′′)5, ∂Ik0 ) ≤ (δ100/K2)|Ik0 |. This gives directly (I ′)5∩(I ′′′)5 = ∅. Suppose
that d((I ′′′)5, ∂Ik0 ) > (δ100/K2)|Ik0 |. Then I ′′′ 6⊆ Ik0 . Since Ik0 6⊆ I ′′′ (because |I ′′′| < |Ik0 |),
we have Ik0 ∩ I ′′′ = ∅. In fact, Ik0 ∩ (I ′′′)5 = ∅: as d((I ′′′)5, ∂Ik0 ) > (δ100/K2)|Ik0 | > 0, it
is not possible for (I ′′′)5 to intersect Ik0 . On the other hand, as P̃ is normal, we saw that
(I ′)5 ⊆ Ik0 . Hence, (I ′)5 ∩ (I ′′′)5 = ∅ again, and we are done (we have proved the stronger
fact (I ′)5 ∩ (I ′′′)5 = ∅ rather than (I ′′′)3 ∩ (I ′)3 = ∅ because we will need it later on).

Write each term of the sum in (6.25) as

(TP
′∗
g, TP

k∗
f) = (TP

′∗
k g, TP

k∗
f) + (TP

′′∗
k g, TP

k∗
f) + (TP

′′′∗
k g, TP

k∗
f)

= (TP
′∗
k g, TP

k∗
f) + (TP

′′∗
k g, TP

k∗
f),

where the last term disappears because Pk is a normal tree with top [ωk0 , I
k
0 ]. On the other

hand, we can substitute f and g by f1Ik0
and g1Ik0

, because in the definition of adjoint

operator we integrate over E(pair), which is a subset of the second component of the top.
Thus,

(TP
′∗
g, TP

k∗
f) = (TP

′∗
(g1Ik0

), TP
k∗

(f1Ik0
))

= (TP
′∗
k (g1Ik0

), TP
k∗

(f1Ik0
)) + (TP

′′∗
k (g1Ik0

), TP
k∗

(f1Ik0
)).

We estimate first (TP
′∗
k (g1Ik0

), TP
k∗

(f1Ik0
)). Note that P ′k is a tree with top [ω′k, I

k
0 ],

for some ω′k containing ω′0. But P ′k is also a tree with top [ω′0, I
′
0]. Notice that P ′k, with

top [ω′0, I
′
0], and Pk are separated trees (because P ′ and Pk are separated). The proof of

Lemma 6.4 also applies in this case (the only problematic step is the proof of (6.20), since
for it one uses the fact that the second components of the tops are equal, but the proof in
this case is actually the same because [ω′k, I

k
0 ] is also a top for P ′k). Hence,

|(TP ′∗k (g1Ik0
), TP

k∗
(f1Ik0

))| ≤ CMδM‖f‖L2(Ik0 )‖g‖L2(Ik0 ).

For each Pk, take as in Lemma 6.4 a ϕk and an εk. Using the definition of εk, which
gives TP

k∗
f = εk(f) + ϕk ∗ (TP

k∗
f), we obtain:

(TP
′′∗
k (g1Ik0

), TP
k∗

(f1Ik0
)) = (TP

′′∗
k (g1Ik0

), ϕk ∗ (TP
k∗

(f1Ik0
))) + (TP

′′∗
k (g1Ik0

), εk(f1Ik0
))

= (g1Ik0
, TP

′′
k (ϕk ∗ (TP

k∗
f1Ik0

))) + (TP
′′∗
k (g1Ik0

), εk(f1Ik0
))

= (g1Ik0
, TP

′′
k (ϕk ∗ (TP

k∗
f1Ik0

))) + (TP
′∗

(g1Ik0
), εk(f1Ik0

))

−(TP
′∗
k (g1Ik0

), εk(f1Ik0
))− (TP

′′′∗
k (g1Ik0

), εk(f1Ik0
)).

Now, (TP
′′′∗
k (g1Ik0

), εk(f1Ik0
)) = 0. Indeed, to prove this, note that

(TP
′′′∗
k (g1Ik0

), TP
k∗

(g1Ik0
)) = 0
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because of the disjoint supports (proved above with P̃ = Pk). On the other hand, if
dk = min{|I| : [ω, I] ∈ Pk} and p = [ω, I] ∈ Pk, then

support(ϕk ∗ (T ∗p (g1Ik0
))) ⊆ [−δ1/2dk, δ

1/2dk] + I3 ⊆ [−|I|, |I|] + I3 = I5.

As (I ′′′)3 ∩ I5 = ∅ for all [·, I ′′′] ∈ P ′′′k (look at the above proof), we have

(TP
′′′∗
k (g1Ik0

), ϕk ∗ (T ∗p (g1Ik0
))) = 0.

This gives (TP
′′′∗
k (g1Ik0

), εk(f1Ik0
)) = 0, as desired. Then

(TP
′′∗
k (g1Ik0

), TP
k∗

(f1Ik0
)) = (g1Ik0

, TP
′′
k (ϕk ∗ (TP

k∗
(f1Ik0

)))) + (TP
′∗

(g1Ik0
), εk(f1Ik0

))

−(TP
′∗
k (g1Ik0

), εk(f1Ik0
)) = A+B − C.

Both B and C are easy to estimate:

|B| ≤ ‖TP ′∗(g1Ik0 )‖2‖εk(f1Ik0 )‖2 ≤ CMδM‖f‖L2(Ik0 )‖g‖L2(Ik0 ),

|C| ≤ ‖TP ′∗k (g1Ik0
)‖2‖εk(f1Ik0 )‖2 ≤ CMδM‖f‖L2(Ik0 )‖g‖L2(Ik0 ),

where we have used Lemma 6.3 with δ = 1 and (6.21). It remains to bound |A|. We will
show that for every F ∈ L2

r

|TP ′′k (ϕk ∗ F )(x)| ≤ CMδM (Φk ∗ |F |)(x), (6.26)

where

Φk(y) =
|Ik0 |δ1000/K2

y2 + (|Ik0 |δ1000/K2)2
.

Put F = TP
k∗

(f1Ik0
) ∈ L2

r . Note that F lives in Ik0 , because Pk is a normal tree with top

[ωk0 , I
k
0 ]. Then

|A| ≤ (|g|1Ik0 , |T
P ′′k (ϕk ∗ (TP

k∗
(f1Ik0

)))|) ≤
∫
R
|g(x)|(Φk ∗ |F |)(x) dx

=

∫
R
|g(x)|

∫
Ik0

Φk(x− y)|F (y)| dy dx =︸︷︷︸
Φk even

∫
Ik0

(∫
R

Φk(y − x)|g(x)| dx
)
|F (y)| dy

≤︸︷︷︸
Remark

6.2

C

∫
Ik0

g∗(y)|F (y)| dy ≤ C‖g∗‖L2(Ik0 )‖T
Pk∗(f1Ik0

)‖2 ≤ CMδM‖f‖L2(Ik0 )‖g
∗‖L2(Ik0 ),

where in the last inequality we have used again Lemma 6.3 with δ = 1.
From the estimates for A, B and C, we get:

|(TP ′′∗k (g1Ik0
), TP

k∗
(f1Ik0

))| ≤ CMδM‖f‖L2(Ik0 )(‖g
∗‖L2(Ik0 ) + ‖g‖L2(Ik0 )),

which also gives the bound for each addend of (6.25):

|(TP ′∗g, TPk∗f)| ≤ CMδM‖f‖L2(Ik0 )(‖g
∗‖L2(Ik0 ) + ‖g‖L2(Ik0 )).
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Now, summing over k and using the fact that the Ik0 ’s are disjoint,

|(TP ′∗g, TP∗f)| ≤ CMδM
∑
k

‖f‖L2(Ik0 )(‖g
∗‖L2(Ik0 ) + ‖g‖L2(Ik0 ))

≤ CMδM
(∑

k

‖f‖2
L2(Ik0 )

) 1
2

(∑
k

‖g∗‖2
L2(Ik0 )

) 1
2

+

(∑
k

‖g‖2
L2(Ik0 )

) 1
2


≤ CMδM‖f‖2(‖g‖2 + ‖g∗‖2) ≤ CMδM‖f‖2‖g‖2,

where we have used the estimates for the maximal operators done in Lemma 6.2.

Thus, it remains to prove (6.26). Write

|TP ′′k (ϕk ∗ F )(x)| =
∣∣∣∣ ∑

[ω′,I′]∈P ′′k such that

x∈E(ω′,I′), |I′|=2π·2−j≥(δ1000/K2)|Ik0 |

(eiN(x)·ψj(·)) ∗ (ϕk ∗ F )(x)

∣∣∣∣.
It suffices to show that∣∣∣∣ ∑

[ω′,I′]∈P ′′k such that

x∈E(ω′,I′), |I′|=2π·2−j≥(δ1000/K2)|Ik0 |

(eiN(x)·ψj(·)) ∗ ϕk(z)
∣∣∣∣ (6.27)

is bounded by CMδ
MΦk(z) for all z ∈ R. We distinguish two cases:

• Case |z| ≤ |Ik0 |δ1000/K2. In this case K2/(δ1000|Ik0 |) ≤ 2Φk(z). Using the fact that
|ψj | ≤ 2j , support(ϕk) ⊆ [−dkδ1/2, dkδ

1/2] and |ϕk(t)| ≤ CM |t|2M−1, we have:

(6.27) ≤
∑

2j≤2π K2

δ1000|Ik0 |

2j
∫ δ1/2

−δ1/2
|ϕk(t)| dt ≤ CM

∑
2j≤2π K2

δ1000|Ik0 |

2j
∫ δ1/2

−δ1/2
|t|2M−1 dt

= CMδ
M

∑
2j≤2π K2

δ1000|Ik0 |

2j = CMδ
M K2

δ1000|Ik0 |
≤ CMδMΦk(z).

• Case |z| ≥ |Ik0 |δ1000/K2. In this case, |Ik0 |δ1000/(z2K2) ≤ 2Φk(z). Fix [ω′, I ′] ∈ P ′′k
such that x ∈ E(ω′, I ′), |I ′| = 2π · 2−j ≥ δ1000|Ik0 |/K2. We have:

|(eiN(x)·ψj(·)) ∗ ϕk(z)| ≤ 2j
∫ dkδ

1/2

−dkδ1/2
|ϕk(t)| dt ≤ CM2j

∫ dkδ
1/2

−dkδ1/2
|t|2M−1+4000 dt

≤︸︷︷︸
dk≤|Ik0 |

CM |Ik0 |2M+4000δM+20002j .

Due to the fact that P ′ is normal, we can upper-bound K2: by definition of normal
tree, |I ′| ≤ δ1000|I ′0|/K2, whence K2 ≤ δ1000|I ′0|/|I ′| = C2jδ1000|I ′0|. On the other
hand, support((eiN(x)·ψj(·)) ∗ ϕk) ⊆ support(ψj) + support(ϕk). We know that
support(ψj) ⊆ {t : |t| ≤ 2π · 2−j} and support(ϕk) ⊆ {t : |t| ≤ dkδ

1/2}. As
Pk is normal, dk ≤ δ1000|Ik0 |/K2 ≤ 2−j , so support((eiN(x)·ψj(·)) ∗ ϕk) ⊆ {t : |t| ≤
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2π ·2−j+1}. Thus, we may assume that |z| ≤ C ·2−j , consequently 22j ≤ C/z2. From
K2 ≤ C2jδ1000|I ′0| we obtain K4 ≤ C22jδ2000|I ′0|2 ≤ Cδ2000|I ′0|2/z2 ≤ Cδ2000/z2

(because |I ′0| ≤ 2π). Therefore K2 ≤ Cδ2000/(z2K2). We can conclude:

(6.27) ≤ CM |Ik0 |2M+4000δM+2000
∑

2j≤C δ2000

z2K2
1

δ1000|Ik0 |

2j

= CM |Ik0 |2M+4000δM+2000 δ
2000

z2K2

1

δ1000|Ik0 |
≤ CMδM

δ1000|Ik0 |
z2K2

≤ CMδMΦk(z).

�

Corollary 6.2 Let P = P1 ∪ P2 ∪ · · · and P ′ = P ′1 ∪ P ′2 ∪ · · · be rows, with tops [ω0
k, I

0
k ]

for Pk and [ω1
k, I

1
k ] for P ′k. Suppose that each I0

k is contained in some I1
k′, with Pk and P ′k′

separated. Then
‖TP ′TP∗‖2 ≤ CMδM , ∀M > 0.

Proof. Let f ∈ L2
r . By definition of row, the I1

k ’s are pairwise disjoint, therefore we can
write

f =
∑
k

fk + F,

where fk = f · 1I1k and F = f −
∑

k fk. Note that ‖f‖22 =
∑

k ‖fk‖22 + ‖F‖22.

At a first step, note that, given g ∈ L2
r , T

P ′kg has its support contained in I1
k , by

definition of TP
′
kg. Since {I1

k}k are pairwise disjoint, (TP
′
kg, TP

′
lg) = 0 for k 6= l. We can

then apply Pythagoras:

‖TP ′TP∗f‖22 =

∥∥∥∥∥∑
k

TP
′
kTP∗f

∥∥∥∥∥
2

2

=
∑
k

‖TP ′kTP∗f‖22.

Let Qk = ∪{Pj : I0
j ⊆ I1

k}. By hypothesis,

P =
⋃
·
k

Qk

(∪· denotes disjoint union). Note that, maybe, Qk = ∅ for some k.
If Qk 6= ∅, then TP

′
kTP∗ = TP

′
kTQk∗ (indeed, if l 6= k, then, given g ∈ L2

r , T
Ql∗g

lives in I1
l by normality and definition of Ql, and TP

′
k∗g lives in I1

k by normality, therefore
TP
′
kTQl∗ = 0 since I1

l ∩ I1
k = ∅). Note that, if Qk = ∅, then TP

′
kTP∗ = 0. We can write

‖TP ′TP∗f‖22 =
∑
k

‖TP ′kTP∗f‖22 =
∑
k

‖TP ′kTQk∗f‖22.

Now use the definition of the adjoint operator:

TQk∗f =
∑
p∈Qk

T ∗p f =
∑

p=[ω,I]∈Qk
|I|=2π·2−m

∫
E(p)

e−iN(y)(y−x)ψm(y − x)f(y) dy

=︸︷︷︸
E(p)⊆I⊆I1k

∑
p=[ω,I]∈Qk
|I|=2π·2−m

∫
E(p)

e−iN(y)(y−x)ψm(y − x) f(y) · 1I1k (y)︸ ︷︷ ︸
fk(y)

dy = TQk∗fk.
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Hence,

‖TP ′TP∗f‖22 =
∑
k

‖TP ′kTQk∗fk‖22.

By Lemma 6.5 (thanks to the construction of Qk the hypotheses of Lemma 6.5 are satis-
fied), ‖TP ′kTQk∗fk‖2 ≤ CMδM‖fk‖2. Now sum over k:

‖TP ′TP∗f‖22 ≤ CMδ2M
∑
k

‖fk‖22 ≤ CMδ2M‖f‖22,

and we are done.
�

Corollary 6.3 Let P = P1 ∪P2 ∪ · · · be a row, with tops [ω0
k, I

0
k ] for Pk. If A(p) ≤ δ for

all p ∈ P, then ‖TP‖2 ≤ Cδ1/2.

Proof. Write, similarly to the previous corollary, f =
∑

k fk + F , where fk = f · 1I0k and

F = f −
∑

k fk (we can do this because {I0
k}k are pairwise disjoint). As Pk is a normal

tree, TPk
∗
f has its support in I0

k , so TPk
∗
f and TPl

∗
f have disjoint supports for k 6= l,

which implies their orthogonality. Then, by Pythagoras theorem,

‖TP∗f‖22 =

∥∥∥∥∥∑
k

TPk
∗
f

∥∥∥∥∥
2

2

=
∑
k

‖TPk
∗
f‖22.

We have

TPk
∗
f(x) =

∑
p=[ω,I]∈Pk
|I|=2π·2−j

∫
E(p)

e−iN(y)(y−x)ψj(y − x)f(y) dy

=︸︷︷︸
E(p)⊆I⊆I0k

∑
p=[ω,I]∈Pk
|I|=2π·2−j

∫
E(p)

e−iN(y)(y−x)ψj(y − x) f(y) · 1I0k (y)︸ ︷︷ ︸
fk(y)

dy = TPk
∗
fk(x).

Thus,

‖TP∗f‖22 =
∑
k

‖TPk
∗
fk‖22.

Now apply Lemma 6.3 and Corollary 6.1: ‖TPk∗fk‖2 ≤ Cδ1/2‖fk‖2. We arrive at

‖TP∗f‖22 ≤ Cδ
∑
k

‖fk‖22 ≤ Cδ‖f‖22,

as wanted.
�

Remark 6.6 From Corollary 6.3, we see that (5.5) holds for rows.

Lemma 6.6 (Main Lemma) Let {Pj}j be a family of trees with tops [ω0
j , I

0
j ]. Assume

that [ω0
j , I

0
j ] ∈ Pj for each j and that:

(a) A(p) ≤ δ for all p ∈ Pj and for all j.
(b) Two pairs belonging to two different trees are not comparable.
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(c) No point of [0, 2π] belongs to more than Kδ−20 of the I0
j ’s.

Then there is a set F ⊆ [0, 2π] with |F | ≤ Cδ80/K such that∥∥∥∥∥∥
∑
j

TPjf

∥∥∥∥∥∥
L2(F c)

≤ Cη(logK)δ
1
4
−η‖f‖2

for all f ∈ L2
r and η > 0.

Proof. We will take

F =
⋃
j

{x ∈ I0
j : d(x, ∂I0

j ) ≤ 3
δ100

K2
|I0
j |}︸ ︷︷ ︸

Fj

.

To see that |F | ≤ Cδ80/K we will use (c):

|F | ≤
∑
j

|Fj | ≤ 2 · 3δ
100

K2

∑
j

|I0
j | = 6

δ100

K2

∑
j

∫ 2π

0
1I0j

(x) dx

= 6
δ100

K2

∫ 2π

0

∑
j

1I0j
(x)

 dx = 6
δ100

K2

∫ 2π

0
(number of I0

j containing x) dx

≤︸︷︷︸
(c)

6
δ100

K2
Kδ−202π ≤ C δ

80

K
,

as desired.

Call P = ∪jPj . Fix M = log(K10000/δ10000), where log = log2. We claim that
M ≤ Cε(logK)δ−ε for all 0 < ε < 1, where Cε = (1/ε) · 10000. Indeed, first of all rewrite
the desired inequality as follows:

log

(
K

δ

)
≤ 1

ε
(logK)δ−ε ⇔ log

(
1

δ

)
≤
(

1

ε

(
1

δ

)ε
− 1

)
logK ⇔ 1

δ
≤ K( 1

ε (
1
δ )
ε−1).

Define F (a) = K
1
ε
aε−1 − a. We have F ′(a) = aε−1(logK)K

1
ε
aε−1 − 1 and F ′′(a) =

(logK)[(ε − 1)aε−2K
1
ε
aε−1 + (aε−1)2(logK)K

1
ε
aε−1]. Note that F ′′(a) ≥ 0 if and only if

aε logK ≥ 1 − ε, which is true for a ≥ 1. Then F ′ is increasing in [1,∞[, so F ′(a) ≥
F ′(1) = (logK)K

1
ε
−1 − 1 ≥ logK − 1 ≥ 0, that is, F is increasing in [1,∞[ and F (a) ≥

F (1) = K
1
ε
−1 − 1 ≥ 0 for all a ≥ 1. Put a = 1/δ to have finally M ≤ Cε(logK)δ−ε.

Let

P+ = {p ∈ P : there are no ascending sequences p � p1 � . . . � pM , all pj ∈ P}.

Put
P+

(1) = {p ∈ P : there is no p1 ∈ P with p � p1},

P+
(i) = {p ∈ P : there are p1, . . . pi−1 ∈ P with p � p1 � . . . � pi−1, and for

every such a sequence, pi−1 is not strictly smaller than p for any p ∈ P},
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for i = 2, . . . ,M . Then

P+ =

M⋃
·
i=1

P+
(i),

and, moreover, no two distinct pairs living in P+
(i) are comparable for all i = 1, . . . ,M .

Indeed, suppose that p � p′ for p, p′ ∈ P+
(i). By definition of P+

(i), there are p′1, . . . , p
′
i−1 ∈ P

with p′ � p′1 � . . . � p′i−1, so p � p′ � p′1 � . . . � p′i−1 contradicts p ∈ P+
(i).

Since A(p) ≤ δ for all p ∈ P+
(i) (hypothesis (a)), by Lemma 6.2

‖TP
+
(i)‖2 ≤ Cη′δ

1
4
−η′

for all η′ > 0. Then

‖TP+‖2 ≤
M∑
i=1

‖TP
+
(i)‖2 ≤M · Cη′δ

1
4
−η′ ≤ CεCη′(logK)δ

1
4
−η′−ε,

for all η′ > 0 and 0 < ε < 1. Given any η > 0, choose η′ = η/2 and ε < min{1, η/2} to
obtain

‖TP+‖2 ≤ Cη(logK)δ
1
4
−η.

Thus, it is enough to prove the lemma for P0 = P\P+. Similarly to P+, define

P− = {p ∈ P : there are no ascending sequences p1 � . . . � pM � p, all pj ∈ P0}.

As above,

‖TP−‖2 ≤ Cη(logK)δ
1
4
−η.

Hence, it is enough to prove the lemma for P] = P0\P−. Write P] = ∪jP0
j , where

P0
j = Pj ∩ P] is a tree with top [ω0

j , I
0
j ]. Let us study P0

j . We claim that:

(i) [ω, I] ∈ P0
j implies |I| ≤ (δ/K)10000|I0

j |;
(ii) For j 6= j′, P0

j and P0
j′ are separated. In fact, (α) and (β) from the definition of

separated trees hold with δ replaced by K−4000δ.
Proof of (i): if [ω, I] ∈ P0

j , then [ω, I] /∈ P+, so [ω, I] < p1 � . . . � pM = [ωM , IM ]
for certain pi ∈ P. By hypothesis (b), all pi’s have to belong to the same tree, say Pj , so
by definition of top [ωM , IM ] < [ω0

j , I
0
j ]. If we denote by [ωi, Ii] = pi for i = 1, . . . ,M , we

have |I| ≤ (1/2)|I1| ≤ . . . ≤ (1/2M )|I0
j | ≤ (δ/K)10000|I0

j |, as wanted.
Proof of (ii): We will prove condition (α) of the definition of separated trees. Suppose

that [ω, I] ∈ P0
j , I ⊆ I0

j′ . Since [ω, I] /∈ P−, we have [ω1, I1] = p1 � p2 � . . . � pM � [ω, I]
for certain pi ∈ P. Again, by hypothesis (b), all pi’s must live in the same tree, and it
has to be Pj because P0

j ⊆ Pj . We have I1 ⊆ I ⊆ I0
j′ . As [ω1, I1] ∈ Pj and [ω0

j′ , I
0
j′ ] ∈ Pj′

and no two pairs from distinct trees are comparable, necessarily ω1 ∩ ω0
j′ = ∅. We have

ω $ ωM $ . . . $ ω1, so by Lemma 4.2, d(ω, ω0
j′) ≥ 2(M−1)/2−2|ω| = 2−5/2(K/δ)5000|ω| ≥

(K/δ)4000|ω|, and (ii) is proved.

Decompose P0
j = P]j ∪ P[j , where

P]j = {[ω, I] ∈ P0
j : I 6⊆ Fj}
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and
P[j = {[ω, I] ∈ P0

j : I ⊆ Fj}.

Given f ∈ L2
r , T

P[j f is supported in Fj , therefore

TP
]
f =

∑
j

TP
]
j f on F c,

so the lemma reduces to proving∥∥∥∥∥∥
∑
j

TP
]
j

∥∥∥∥∥∥
2

≤ Cη(logK)δ
1
4
−η

for all η > 0.
Note that P]j is a normal tree: given [ω, I] ∈ P]j , by (i) we know |I| ≤ δ10000/K10000|I0

j |,
and since I 6⊆ Fj , d(I, ∂I0) > 3(δ100/K2)|I0

j |.
Take ∪jP]j and decompose it as a union of at most Kδ−20 rows, R1, . . . , RKδ−20 . Let

us see that this decomposition does exist. Let I1, I2, . . . be the maximal dyadic intervals
among {I0

j }j . For each Is, pick [ω0
j(s), I

0
j(s)] with I0

j(s) = Is. Set R1 = ∪sP]j(s). This R1 is

indeed a row: it is a union of normal trees with {Is}s disjoint by maximality. Delete all

the P]j(s)’s from {P]j}j , and perform the same procedure to construct R2. The maximal

dyadic intervals taken to form R2 are contained in the previous I1, I2, . . ., therefore, by (c),

we will not use more than Kδ−20 steps to construct the Ri’s. Denote Ri = P(i)
1 ∪P

(i)
2 ∪ . . .,

where P(i)
k is a normal tree with top [ω

(i)
k , I

(i)
k ].

As ∥∥∥∥∥∥
∑
j

TP
]
j

∥∥∥∥∥∥
2

=

∥∥∥∥∥∑
i

TRi

∥∥∥∥∥
2

,

we prepare to apply the Orthogonality Lemma to the operators TRi :
(A) ‖TRi‖2 ≤ Cδ1/2 by hypothesis (a) and Corollary 6.3.
(B) ‖TRiTRi′∗‖2 ≤ CqK

−qδq for i > i′ and q > 0 by (ii) and Corollary 6.2, because

each I
(i)
k is contained in some I

(i′)
l by construction via maximal intervals. Since for any

bounded operators H and G on a Hilbert space it holds (G ◦ H)∗ = H∗ ◦ G∗, we have
‖TRiTRi′∗‖2 ≤ CqK

−qδq for i 6= i′. Note that |i − i′|2 + 1 ≤ K2δ−40 + 1 ≤ 2K2δ−40,
so K−qδq ≤ δ/(2K2δ−40) ≤ δ/(|i − i′|2 + 1) taking q ≥ 41. Then condition (b) of the
Orthogonality Lemma holds.

(C) TRi∗TRi′ = 0 for i 6= i′, because TRif and TRi′g have disjoint supports for

f, g ∈ L2
r : if p ∈ Ri and p′ ∈ Ri′ , then p ∈ P]j ⊆ Ri and p′ ∈ P]j′ ⊆ Ri′ , certain j 6= j′

(distinct by construction of the Rk’s). By hypothesis (b), p and p′ are not comparable,
therefore E(p) ∩ E(p′) = ∅. Thus, condition (a) of the Orthogonality Lemma holds.

By the Orthogonality Lemma,∥∥∥∥∥∥
∑
j

TP
]
j

∥∥∥∥∥∥
2

=

∥∥∥∥∥∑
i

TRi

∥∥∥∥∥
2

≤ Cδ1/2 ≤ Cδ1/4 ≤ Cδ1/4(logK)δ−η

for every η > 0. This finishes the proof of the Main Lemma.
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Corollary 6.4 Let P be a set of pairs. Suppose that:
(a) A(p) ≤ δ for all p ∈ P.
(b) If p, p′′ ∈ P and p < p′ < p′′, with p′ admissible, then p′ ∈ P.
(c) If p, p′, p′′ ∈ P and p < p′, p < p′′, then p′ < p′′ or p′′ < p′.
(d) For any x ∈ [0, 2π], there are at most Kδ−20 mutually incomparable [ωi, Ii] ∈ P

with x ∈ Ii.
Then there is a set F ⊆ [0, 2π] with |F | ≤ Cδ80/K and

‖TPf‖L2(F c) ≤ Cη(logK)δ
1
4
−η‖f‖2

for all f ∈ L2
r and η > 0.

Proof. Let {[ω0
j , I

0
j ]}j be the maximal pairs in P, and let Pj = {p ∈ P : p < [ω0

j , I
0
j ]}.

By hypothesis (b), Pj is a tree with top [ω0
j , I

0
j ]. Moreover, [ω0

j , I
0
j ] ∈ Pj .

Note that P = ∪jPj . Indeed, suppose that there is a p ∈ P with p � [ω0
j , I

0
j ] for all

j. Then p is not maximal (if it were, it would be an [ω0
j , I

0
j ]), therefore there is a p′ ∈ P

with p � p′. This p′ cannot be maximal by supposition, so there is another another p′′

with p � p′ � p′′. Continuing in this way, and by the finiteness of the number of pairs, we
arrive at p � some maximal pair, which contradicts our supposition.

Suppose that p ∈ Pj and p′ ∈ Pj′ with j 6= j′ and p < p′. Then p < p′ < [ω0
j′ , I

0
j′ ]

and p < [ω0
j , I

0
j ], so by (c) [ω0

j′ , I
0
j′ ] < [ω0

j , I
0
j ] or [ω0

j , I
0
j ] < [ω0

j′ , I
0
j′ ], which is impossible by

maximality. Hence, no two pairs coming from two distinct trees are comparable.
Thus, the union of trees P satisfies (a) and (b) from the Main Lemma. For (c), suppose

by contradiction that x ∈ [0, 2π] belongs to more than Kδ−20 of the I0
j ’s. Then {[ω0

j , I
0
j ]}j

are mutually incomparable and x belongs to more than Kδ−20 of the I0
j ’s. This contradicts

hypothesis (d).
Hence, P satisfies all the hypotheses from the Main Lemma, so as a consequence

‖TPf‖L2(F c) =

∥∥∥∥∥∥
∑
j

TPjf

∥∥∥∥∥∥
L2(F c)

≤ Cη(logK)δ
1
4
−η‖f‖2

for every f ∈ L2
r and η > 0.

�

Definition 6.5 A set P satisfying (a)-(d) above is called a forest.

An example of a forest is the tree drawn immediately after the definition of tree with
N ≡ 70 in [0, 2π], δ = 1/2 and K = 100. Indeed, (b) and (c) are directly checked, (d)
holds because Kδ−20 = 104, 857, 600 is really big, and (a) also holds because A(p) = 0,
since E(p) = ∅ for every p of our picture due to the fact that N ≡ 70.
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Chapter 7

Proof of the pointwise convergence

Our goal is to prove (4.1): ‖Tf‖1 ≤ C‖f‖2 for all f ∈ L2
r . Decompose, more or less as in

Chapter 5, B = ∪nPn, where

Pn = {p ∈ B : 2−n−1 < A(p) ≤ 2−n}.

Then T =
∑

n T
Pn (the sum is finite because B is finite).

Let {p̄k = [ω̄k, Īk]}k be the set of maximal pairs with

|E(ω, I)|
|I|

≥ 2−n−1. (7.1)

Denote, similarly to the Main Lemma,

P+
n = {p ∈ Pn : there are no ascending chains p � p1 � . . . � pn+6, all pi ∈ Pn}.

Similarly to the Main Lemma, we set

P+
n1 = {p ∈ Pn : there is no p1 ∈ Pn with p � p1},

P+
ni = {p ∈ Pn : there are p1, . . . , pi−1 ∈ Pn with p � p1 � . . . � pi−1, and for

every such a sequence, pi−1 is not strictly smaller than p for any p ∈ Pn},

for i = 2, . . . , n + 6. We have P+
n expressed as a disjoint union: P+

n = P+
n1 ∪ P

+
n2 ∪

. . . ∪ P+
n(n+6). Moreover, as in the Main Lemma, no two pairs from the same P+

ni are

comparable, for all i = 1, . . . , n+ 6. Since A(p) ≤ 2−n, by Lemma 6.2

‖TP
+
ni‖2 ≤ Cη(2−n)

1
4
−η = Cη2

−n( 1
4
−η)

for every η > 0. Then

‖TP
+
n ‖2 ≤

n+6∑
i=1

‖TP
+
ni‖2 ≤ Cη(n+ 6)2−n(

1
4
−η). (7.2)

Now consider P0
n = Pn\P+

n . We claim that every p = [ω, I] ∈ P0
n satisfies p < p̄j for

some j. The proof of the claim is presented in what follows. First, let p = [ω, I] ∈ Pn. As
A(p) > 2−n−1 by definition of Pn, there is a p′ = [ω′, I ′] with I ⊆ I ′ and

2−n−1 <
|E(ω′, I ′)|
|I ′|

(
d(ω, ω′) + |ω|

|ω|

)−2000

.
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Since (d(ω, ω′) + |ω|)/|ω| ≥ 1, we have

2−n−1 <
|E(ω′, I ′)|
|I ′|

(
d(ω, ω′) + |ω|

|ω|

)−2000

≤ |E(ω′, I ′)|
|I ′|

.

Also, (
d(ω, ω′) + |ω|

|ω|

)2000

< 2n+1 |E(ω′, I ′)|
|I ′|

≤ 2n+1,

therefore d(ω, ω′) < (2(n+1)/2000 − 1)|ω|. Notice that p′ must satisfy p′ < p̄j for some j.
Otherwise, in particular p′ 6= p̄j for all j, that is, p′ is not a maximal pair verifying (7.1),
so there exists p′′ satisfying (7.1) and p′ � p′′; if p′′ is not maximal we can continue and
by finiteness of the set of pairs the process will end up at some moment, which says that
p′ is strictly less than a maximal pair satisfying (7.1), and this is a contradiction. We
have I ⊆ I ′ ⊆ Īj and ω̄j ⊆ ω′. This second condition gives us d(ω, ω̄j) ≤ d(ω, ω′) + |ω′| ≤
d(ω, ω′) + |ω| ≤ 2(n+1)/2000|ω|. Now let p = [ω, I] ∈ P0

n. This condition says p /∈ P+
n , that

is, there is a chain p � p1 � p2 � . . . � pn+6 = [ωn+6, In+6], certain pi ∈ Pn. As pn+6 ∈ Pn,
the same procedure above can be applied to pn+6 instead of the old p to conclude that
there exists a p̄j such that In+6 ⊆ Īj and d(ωn+6, ω̄j) ≤ 2(n+1)/2000|ωn+6|. Then we have a
chain ωn+6 $ . . . $ ω1 $ ω with d(ωn+6, ω̄j) ≤ 2(n+1)/2000|ωn+6| < 2(n+5)/2−2|ωn+6| (this
is why we work with subscripts until n + 6: to have this last inequality for all n ≥ 0).
There exists ξ ∈ ω̄j with d(ξ, ωn+6) < 2(n+5)/2−2|ωn+6|. By Lemma 4.2, ξ ∈ ω, which
implies that ω ∩ ω̄j 6= ∅, and this together with the fact that I ⊆ Īj yields ω̄j ⊆ ω. We
have then demonstrated that p < p̄j , and the claim is done.

The p̄j ’s are not pairwise comparable, which tells us that {E(p̄j)}j are mutually dis-
joint. Hence, ∑

j

|E(p̄j)| ≤ |[0, 2π]| = 2π.

Since p̄j verifies (7.1), we obtain that

∫ 2π

0
(number of Īj containing x) dx =

∫ 2π

0

∑
j

1Īj
(x)

 dx

=
∑
j

|Īj | ≤ 2n+1
∑
j

|E(p̄j)| ≤ C2n+1.

Let
Gn = {x ∈ [0, 2π] : x is contained in more than K22n of the Īj}.

Since

Gn =
∞⋃
m=1

{x ∈ [0, 2π] :
∑
j

1Īj
(x) = K22n +m}

is measurable, we can express its Lebesgue measure as an integral over the Gn, so

C2n+1 ≥
∫ 2π

0
(number of Īj containing x) dx

≥
∫
Gn

(number of Īj containing x) dx ≥ K22n|Gn|.
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Hence,

|Gn| ≤ C
1

K · 2n
.

We decompose again P0
n. Write

P]n = {[ω, I] ∈ P0
n : I 6⊆ Gn}.

If [ω, I] ∈ P0
n\P

]
n, T[ω,I]f lives on I ⊆ Gn, therefore

TP
]
nf(x) = TP

0
nf(x), ∀x ∈ Gcn ∀f ∈ L2

r . (7.3)

From now on, consider only the p̄j ’s such that Īj 6⊆ Gn. We have that P]n is a set of pairs
for which:

• A(p) ≤ 2−n,

• every p ∈ P]n satisfies p < p̄j ∈ P]n for some j,

• no x ∈ [0, 2π] belongs to more than K22n of the Īj ’s.

We decompose P]n as a disjoint union of at most M = 2n + logK + 1 forests, Pn0 ∪
Pn1 ∪ . . . ∪ Pn(M−1), and we will apply the Corollary of the Main Lemma to each of
these forests. Let us see that this decomposition is certainly possible. Let B(p) =

(number of j’s for which p < p̄j), for each p ∈ P]n. Then 1 ≤ B(p) ≤ 22nK < 2M . Define

Pns = {p ∈ P]n : 2s ≤ B(p) < 2s+1},

s = 0, . . . ,M − 1. Then P]n = Pn0 ∪ Pn1 ∪ . . . ∪ Pn(M−1), and we just need to check
that each Pns is a forest. From the second and third previous points, condition (d) of the
definition of forest holds. From the first point, (a) also holds. It remains to check (b)
and (c). Condition (b) is easy. Indeed, suppose that p, p′′ ∈ Pnu and p < p′ < p′′ with

p′ being admissible. As p < p′ and p ∈ P]n, it follows that p′ ∈ P]n. Also 2u ≤ B(p′′) ≤
B(p′) ≤ B(p) < 2u+1, which gives condition (b). It remains condition (c), which requires
a little bit more work. Suppose that p, p′, p′′ ∈ Pnu with p < p′ and p < p′′, but p′ and p′′

not comparable. We want to arrive at a contradiction. Write B(p′) = s and B(p′′) = t.
Then p′ < p̄j1 , . . . , p̄js and p′′ < p̄k1 , . . . , p̄kt . Now, p̄jl 6= p̄km (otherwise we would have
p = [ω, I] < p′ = [ω′, I ′] < p′′′ = [ω′′′, I ′′′] and p = [ω, I] < p′′ = [ω′′, I ′′] < p′′′ = [ω′′′, I ′′′],
where p′′′ = p̄jl , so I ⊆ I ′, I ′′ and ω′′′ ⊆ ω′, ω′′, therefore I ′ ∩ I ′′ 6= ∅ 6= ω′ ∩ ω′′ and p′ < p′′

or p′′ < p′). Then p < p̄j1 , . . . , p̄js , p̄k1 , . . . , p̄kt , so B(p) ≥ s + t = B(p′) + B(p′′), but in
such a case B(p) ≥ B(p′) +B(p′′) ≥ 2u + 2u = 2u+1, which contradicts p ∈ Pnu. Thus, (c)
holds.

Since Pns is a forest, by the Corollary of the Main Lemma there is a set Fns ⊆ [0, 2π]
with |Fns| ≤ C · 2−80n/K and

‖TPnsf‖L2(F cns)
≤ Cη(logK)2−n(

1
4
−η)‖f‖2.

Then

‖TP
]
n‖L2(F cn) ≤

2n+logK∑
s=0

‖TPnsf‖L2(Fns) ≤ Cη(n+ 6)(logK)22−n(
1
4
−η)‖f‖2,
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where

Fn =

2n+logK⋃
s=0

Fns

and

|Fn| ≤
2n+logK∑
s=0

|Fns| ≤ C
(n+ 6) logK

280nK
.

By (7.3),

‖TP0
nf‖L2(Ecn) ≤ Cη(n+ 6)(logK)22−n(

1
4
−η)‖f‖2, (7.4)

where En = Fn ∪Gn and

|En| ≤ |Fn|+ |Gn| ≤ C
(n+ 6) logK

2nK
.

As TPn = TP
0
n + TP

+
n , both estimates (7.2) and (7.4) give

‖TPnf‖L2(Ecn) ≤ Cη(n+ 6)(logK)22−n(
1
4
−η)‖f‖2.

Put η = 1/8:
‖TPnf‖L2(Ecn) ≤ C(n+ 6)(logK)22−n/8‖f‖2.

Sum over n:
‖Tf‖L2(Ec) ≤ C(logK)2‖f‖2,

where

E =
∞⋃
n=0

En

and

|E| ≤
∞∑
n=0

|En| ≤ C
logK

K
.

For α > 0, we estimate |{|Tf | > α}| as in the proof of Chebychev’s inequality:

|{|Tf | > α}| =
∫
{|Tf |>α}

1 =

∫
{x∈E: |Tf(x)|>α}

1 dx+

∫
{x∈Ec: |Tf(x)|>α}

1 dx

≤
∫
E

1 dx+

∫
Ec

|Tf(x)|2

α2
dx = |E|+

‖Tf‖2L2(Ec)

α2

≤ C(logK)4 ‖f‖22
α2

+ C
logK

K
.

We would like to show that

|{|Tf | > α}| ≤ Cp
(
‖f‖2
α

)p
for all 0 < p < 2, that is, T : L2

r → Lp,∞r bounded for all 0 < p < 2, and then apply the
result on interpolation of operators given by the following lemma to arrive at T : L2

r → Lpr
bounded for every 0 < p < 2, which proves estimate (4.1) and Carleson’s theorem.
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Lemma 7.1 Let 0 < p0 < p < p1 < ∞ and write p = (1 − α)p0 + αp1, for certain
α ∈ (0, 1). Then for any measurable function g : Ω ⊆ R→ R we have

‖g‖p ≤ Cp,p1,p0
(
‖g‖p0(1−α)

Lp0,∞ ‖g‖p1αLp1,∞

) 1
p
.

As a consequence, for g = Tf , Ω = [−4π, 6π] and 0 < p0 < p < p1 < 2, we obtain

‖Tf‖p ≤ Cp,p1,p0
(
‖Tf‖p0(1−α)

Lp0,∞ ‖Tf‖p1αLp1,∞

) 1
p ≤ Cp,p1,p0

(
‖f‖p0(1−α)

2 ‖f‖p1α2

) 1
p

= Cp,p1,p0‖f‖2.

Proof. We will denote the distribution function of g by λg : (0,∞) → [0,∞], where
λg(t) = |{x ∈ Ω : |g(x)| > t}|.

Call B0 = ‖g‖Lp0,∞ and B1 = ‖g‖Lp1,∞ . The idea of the proof is to show that

λg(t) ≤
Bp,p1,p0
tp

min

{
t0
t
,
t

t0

}ηp,p1,p0
, (7.5)

where Bp,p1,p0 = B
p0(1−α)
0 Bp1α

1 , and then conclude by using the equality

‖g‖pp = p

∫ ∞
0

tp−1λg(t) dt.

In order to prove (7.5), the trick is to consider the t0 satisfying

Bp0
0

tp00

=
Bp1

1

tp10

.

Consider an ε > 0 which we will specify later on. Then

B
p0(1−α)
0

tp0(1−α)

(
t

t0

)−p0ε
=

(
Bp0

0

tp0

)1−α+ε(
Bp0

0

tp00

)−ε
=

(
Bp0

0

tp0

)1−α+ε(
Bp1

1

tp10

)−ε
,

Bp1α
1

tp1α

(
t

t0

)p1ε
=

(
Bp1

tp1

)α−ε(Bp1
1

tp10

)ε
,

whence

Bp,p1,p0
tp

(
t

t0

)(p1−p0)ε

=

(
Bp0

0

tp0

)1−α+ε(
Bp1

tp1

)α−ε
≥︸︷︷︸
if

0<ε<α

λg(t)
1−α+ελg(t)

α−ε = λg(t).

On the other hand,

B
p0(1−α)
0

tp0(1−α)

(
t0
t

)−p0ε
=

(
Bp0

0

tp0

)1−α−ε(
Bp0

0

tp00

)ε
=

(
Bp0

0

tp0

)1−α−ε(
Bp1

1

tp10

)ε
,

Bp1α
1

tp1α

(
t0
t

)p1ε
=

(
Bp1

1

tp1

)α+ε(
Bp1

1

tp10

)−ε
,

whence

Bp,p1,p0
tp

(
t0
t

)(p1−p0)ε

=

(
Bp0

0

tp0

)1−α−ε(
Bp1

1

tp1

)α+ε

≥︸︷︷︸
if

0<ε<1−α

λg(t)
1−α−ελg(t)

α+ε = λg(t).
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This proves (7.5) for ηp,p1,p0 = (p1 − p0)ε for all 0 < ε < min{α, 1− α}.
To conclude, note that

‖g‖pp = p

∫ ∞
0

tp−1λg(t) dt ≤ p ·Bp,p1,p0 ·
∫ ∞

0

1

t
min

{
t0
t
,
t

t0

}(p1−p0)ε

dt

= p ·Bp,p1,p0 ·

[∫ t0

0

1

t

(
t

t0

)(p1−p0)ε

dt+

∫ ∞
t0

1

t

(
t0
t

)(p1−p0)ε

dt

]

= p ·Bp,p1,p0 ·
1

t
(p1−p0)ε
0

∫ t0

0

1

t1−(p1−p0)ε
dt+ p ·Bp,p1,p0 · t

(p1−p0)ε
0

∫ ∞
t0

1

t1+(p1−p0)ε
dt

= p ·Bp,p1,p0 ·
1

t
(p1−p0)ε
0

· t
(p1−p0)ε
0

(p1 − p0)ε
+ p ·Bp,p1,p0 · t

(p1−p0)ε
0

t
−(p1−p0)ε
0

(p1 − p0)ε

=
2p

(p1 − p0)ε︸ ︷︷ ︸
Cp,p1,p0

Bp,p1,p0 .

�

Thus, if we demonstrate that

|{|Tf | > α}| ≤ Cε
(
‖f‖2
α

)2−ε
(7.6)

for all 0 < ε < 2, we will be done. For simplicity, call A = |{|Tf | > α}| and B = ‖f‖2/α.
We will show that

(logK)4B2 +
logK

K
≤ CεB2−ε (7.7)

holds for a K > 10 (which will depend on f and α). Inequality (7.7) is in principle difficult
to show, because on the left-hand side we have a term depending on B and the other one
not. We will see that a good choice is obtained by taking K > 10 such that

(logK)4B2 =
logK

K
, (7.8)

because in such a case the two addends from the left-hand side of (7.7) are equal (note the
similarity of this idea and the choice of t0 in the proof of the last lemma). Can we obtain
K > 10 satisfying (7.8)? Well, if B2 < (log 10)/(10 · (log 10)4), as limK→∞(logK)/(K ·
(logK)4) = 0, by the Weierstrass intermediate value theorem we can choose such a K.
What about B being big, in the sense that B2 ≥ (log 10)/(10 · (log 10)4)? Then we merely
notice that A ≤ 2π, so we need 2π ≤ CεB2−ε, which is achieved if 2π ≤ Cε · [(log 10)/(10 ·
(log 10)4)]2−ε, so just define Cε = 2π[(log 10)/(10 · (log 10)4)]−(2−ε).

Thus, we may assume B2 < (log 10)/(10 · (log 10)4). Take K > 10 verifying (7.8). In
such a case

(logK)4B2 +
logK

K
= 2B2(logK)4.

As K(logK)3 = 1/B2, we have K ≤ 1/B2, therefore

(logK)4B2 +
logK

K
= 2B2(logK)4 ≤ 2B2

(
log

1

B2

)4

.
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That is ≤ CεB2 ·B−ε if and only if

Bε

(
log

1

B2

)4

≤ Cε,

and this can be achieved for all ε > 0 because B is bounded by the number (log 10)/(10 ·
(log 10)4) and

lim
x→0+

xε
(

log
1

x2

)4

= 0.

Hence, inequalities (7.7) and (7.6) hold and by previous comments Carleson’s theorem
follows.
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List of notations

N: Set of natural numbers: 1, 2, 3, . . ..
Z: Set of integers: . . . ,−3,−2− 1, 0, 1, 2, 3, . . ..
R: Set of real numbers.
R+: Set of positive real numbers.
C: Set of complex numbers.
∅: Empty set.
log, log2: Both mean logarithm in base 2.
a: Conjugate of a ∈ C.
|a|: Modulus of a ∈ C.
A ∪B: Union of the sets A and B.
A ∪· B: Union of the disjoint sets A and B.
∪′: Finite union.
A ∩B: Intersection of the sets A and B.
A\B: Set of points in A but not in B.
Ac: Complementary of a set A in R, that is, R\A.
[a, b]: Closed interval.
[a, b[, [a, b): Semiopen interval.
d(a,A), d(A,B): Distance from a point a to a set A, distance between two sets A and B.
A: Closure of the set A in R with the usual distance.
∂A: Boundary of the set A in R with the usual distance.
Ĩ: Given a dyadic interval, the next larger dyadic interval that contains I.
I∗: The double of an interval I: interval with its same center but twice its length.
I3: The triple of an interval I: add I to the right and to the left of I.
I5: Five times an interval I: add twice I to the right and to the left of I.
|I|: Length of an interval, that is, the distance between its endpoints.
[ω, I]: A pair of dyadic intervals, that is: ω ⊆ R, I ⊆ [0, 2π] and |ω|/(2π) = (2π)/|I|.
〈f1, . . . , fn〉: Vector space spanned by a set of vectors f1, . . . , fn.
A ≤ B: The vector space A is a vector subspace of B.
ker f : Kernel of the linear map f .
rangef : Image of f .
A⊕B: Direct sum of the vector spaces A and B.
sign: The sign function.
1E : Characteristic function on the set E.
bac: Integer part of a ∈ R.∑′: A finite sum.
C: Any positive constant (its value is not important).
Ca: Any positive constant (its value is not important) depending on a.
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T: Unit circle.
Lq(T): Functions from R to C, 2π-periodic, in Lq([0, 2π]).
C∞(T): Functions from R to C, 2π-periodic, in C∞(R).
C∞c : Functions from R to C, with compact support, in C∞(R).
S: Schwartz class in R.
Lqr: Functions from R to C, with support in [−4π, 6π], in Lq(R).
C∞r : Functions from R to C, with support in [−4π, 6π], in C∞(R).
L1

loc(Rn): Space of functions from Rn to C that are integrable over compact sets.
‖f‖∞: Supremum of f .
‖f‖q: In Chapter 2,

∫ 2π
0 |f |

q; from Chapter 3,
∫
R |f |

q.

f̂ : Fourier transform in T: f̂(k) = 1/(2π)
∫ π
−π f(x)e−ikx dx; or in R: f̂(ξ) =

∫
R f(x)e−iξx dx.

Snf : n-th partial sum of the Fourier series: Snf(x) =
∑n

k=−n f̂(k)eikx.
|A|: Lebesgue measure of the set A.
λf (t): Distribution function of f at t: λf (t) = |{|f | > t}|.
Lq,∞: Weak Lq space: functions f from R to C such that ‖f‖q,∞ := supt>0 tλf (t)1/q <∞.
(f, g): Inner product between f and g:

∫
R fg; or inner product in a general Hilbert space.

f ∗ g: Convolution in R: (f ∗ g)(x) =
∫
R f(x− y)g(y) dy.

a.e.: Almost everywhere, almost every (with respect to the Lebesgue measure).
L1(A, dy): Set of functions in L1(A) with respect to the variable y.
A ⊥ B: The sets A and B are orthogonal in a pre-Hilbert space.
A⊥: Orthogonal of a set A in a pre-Hilbert space.
T ∗: Adjoint operator of a bounded operator T between two Hilbert spaces.
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