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The tear film lipid layer is heterogeneous among the population. Its classification depends on its thickness and can be done using
the interference pattern categories proposed by Guillon. The interference phenomena can be characterised as a colour texture
pattern, which can be automatically classified into one of these categories. From a photography of the eye, a region of interest
is detected and its low-level features are extracted, generating a feature vector that describes it, to be finally classified in one of
the target categories. This paper presents an exhaustive study about the problem at hand using different texture analysis methods
in three colour spaces and different machine learning algorithms. All these methods and classifiers have been tested on a dataset
composed of 105 images from healthy subjects and the results have been statistically analysed. As a result, the manual process done
by experts can be automated with the benefits of being faster and unaffected by subjective factors, with maximum accuracy over
95%.

1. Introduction

The ocular surface is covered with the tear film, which
was classically described by Wolff [1] as a three-layered
structure, comprising an anterior lipid layer, an intermediate
aqueous layer, and a deep mucin layer. The tear film
provides a smooth optical surface by compensating for the
microirregularities of the corneal epithelium and plays an
essential role in the maintenance of ocular integrity by
removing foreign bodies from the front surface of the eye.

The lipid layer is an essential component of the tear film
and its principal function is to prevent the evaporation of
tears during the interblink period and enhance the stability
of the tear film. Thus, a deficiency of this layer, in the absence
of an adequate increase of tear production by lachrymal
glands gives rise to the evaporative dry eye syndrome [2],
a disease which affects a wide sector of the population,
especially among contact lens users, and worsens with
age.

The lipid layer thickness can be evaluated through the
observation of the interference phenomena, since the colour
and shape of the observed patterns reflect the layer thickness.
Thicker lipid layers (≥90 nm) show colour and wave patterns
while thinner lipid layers (≤60 nm) are more homoge-
neous. The Tearscope-plus [3], designed by Guillon, is an
instrument which enables tear film assessment within the
clinical and the laboratory setting and provides qualitative
and semiquantitative information regarding the thickness
and behaviour of the lipid layer in normal, pathological,
and contact lens-wearing eyes. The lipid structure was
categorised by Guillon based on the appearance of the
specularly reflected lipid layer. Guillon defined five main
grades of lipid layer interference patterns in increasing
thickness [4]: open meshwork, closed meshwork, wave,
amorphous, and colour fringe. The amorphous category has
not been included in this study due to the lack of images
from this category in the clinical image dataset used for
validation. The four categories considered are illustrated in
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Figure 1: Lipid layer interference patterns: (a) Open meshwork. (b) Closed meshwork. (c) Wave. (d) Colour fringe.

Figure 1. Open meshwork pattern (Figure 1(a)) represents a
13–15 nm lipid layer thickness with a grey appearance of low
reflectivity, sparse, meshwork pattern faintly visible following
the blink. It means a very thin, poor, and minimal lipid
layer stretched over the ocular surface. Closed meshwork
pattern (Figure 1(b)) refers to a lipid layer thickness of 30–
50 nm. This is a more compact meshwork pattern with grey
appearance of average reflectivity and more lipid than open
meshwork. This pattern represents a normal lipid layer that
could be suitable for contact lens wear. The wave pattern
(Figure 1(c)) is the most common lipid layer which is related
to a 50–80 nm lipid layer thickness. Its appearance is of verti-
cal or horizontal grey waves of good visibility between blinks.
It means an average tear film stability suitable for contact
lens wear. Finally, the colour fringe pattern (Figure 1(d))
represents a thicker lipid layer with a mix of colour fringes
well spread out over the surface. Its appearance is of discrete
brown and blue well-spread lipid layer interference fringes
superimposed on a whitish background. The thickness ranks
90–140 nm and represents a regular, very full lipid layer.
This pattern indicates a good candidate for contact lens wear
but with possible tendency for greasing problems or lipid
deposits if a contact lens is fitted.

The classification of the lipid layer thickness is a difficult
clinical technique, especially with thinner lipid layers that
lack colour fringes and other morphological features, and
is affected by the subjective interpretation of the observer.
Some techniques have been designed to objectively calculate
the lipid layer thickness, where a sophisticated optic system
was necessary [5] or an interference camera evaluated the
lipid layer thickness by analysing only the interference
colour [6]. In a previous paper [7], we have demonstrated
that the interference phenomena can be characterised as a
colour texture pattern with classification rates over 95%.

The classification is automatic, saving time for experts, who
do this time-consuming task by hand, and eliminating the
subjectivity of the manual process.

In that previous work, we generated a wide set of feature
vectors using different texture analysis methods in three
colour spaces and we classified them using support vector
machines (SVMs). In this study, we perform several experi-
ments using a wide set of machine learning algorithms and
analyse their behaviour, in order to statistically determine
which classifier works better in the problem at hand and use
it in our future work.

This paper is organised as follows: Section 2 explains
the methodology for the automatic classification of the lipid
layer; Section 3 compares the experimental results; finally,
Section 4 exposes our conclusions and future work.

2. Methodology

Our methodology for the tear film classification consists of
four stages. The first stage entails the acquisition of the input
image and has been carried out with the Tearscope-plus [3]
attached to a Topcon SL-D4 slit lamp [8] and a Topcon
DV-3 digital video camera [9]. The slit lamp’s magnification
was set at 200X and the images were stored via the Topcon
IMAGEnet i-base [10] at a spatial resolution of 1024 × 768
pixels per frame in RGB. Since the tear lipid film is not static
between blinks, a video has been recorded and analysed by an
optometrist in order to select the best images for processing.
Those images were selected when the tear lipid film was
completely expanded after the eye blink.

The input images, as depicted in Figure 1, include several
areas of the eye that do not contain relevant information for
the classification; such as the sclera, eyelids, and eyelashes.
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Figure 2: (a) Input image in RGB. (b) Luminance component L of the input image transformed to the Lab colour space. (c) Template used
to locate the region of interest. (d) Subtemplate and region of interest. (e) ROI of the input image.

Experts that analyse these images usually focus on the bottom
part of the iris, because this is the area where the tear can
be perceived with better contrast. This forces a preprocessing
step [11], which corresponds to the second stage of the
methodology, aimed at extracting the region where the
lipid tear film classification takes place, called region of
interest (ROI). Our acquisition procedure guarantees that
this region corresponds to the most illuminated area of
the image. Thus, in order to restrict our analysis to the
illumination, we transform the input image in RGB to the
Lab colour space [12] and only use its luminance component
L. Then, we select the region of the image with maximum
normalised cross-correlation between the L component and
a template from a previously generated set, composed of
several templates that cover the various shapes the ROI can
have (see Figure 2 for an example of this stage).

After extracting the regions of interest, the next step
entails analysing their low-level features. Colour and texture
seem to be two discriminant features of the Guillon cate-
gories. Thick lipid layers show clear patterns while thinner
layers are more homogeneous. Also, since some categories
show distinctive colour features, we have analysed the low-
level texture features not only in grayscale but also in Lab [12]
and in RGB, making use of the opponent colour theory [13].
Finally, the last stage classifies the images into the categories
previously mentioned. In the following sections, we explain
these two main stages in detail.

2.1. Texture Analysis. Our textural features are extracted
by applying five popular texture analysis methods [14]:
Butterworth filters, the discrete wavelet transform, cooccurrence
features, Markov random fields, and Gabor filters. First, we

explain all these methods in depth using grayscale images,
then we introduce the two colour spaces considered.

2.1.1. Butterworth Filters. A Butterworth bandpass filter [15]
is defined as

f (ω) = 1

1 + ((ω − ωc)/ω0)2n , (1)

where n is the order of the filter, ω the angular frequency, ω0

the cutoff frequency, and ωc the centre frequency. The order
n of the filter defines the slope of the decay; the higher the
order, the faster the decay.

In the present work, we have used a bank of Butterworth
bandpass filters composed of 9 second-order filters, with
bandpass frequencies covering the whole frequency spectrum
[16]. The filter bank maps each input image into 9 result
images, one per frequency band.

In order to classify the input images, we must assign each
of them a feature vector. To generate this vector, we have first
normalised each frequency band results separately and the
computed histograms of its output images. Those histograms
concentrated most of the information in the lower bins,
which made their comparison difficult. In order to increase
the relevance of the differences among lower values, we com-
puted uniform histograms with nonequidistant bins [16].

Since we are using 16 bin histograms, our feature vectors
contain 16 components.

2.1.2. The Discrete Wavelet Transform. Mallat [17] was the
first to show that wavelets formed a powerful basis for
multiresolution theory, defining a mathematical framework
which provides a formal, solid, and unified approach to
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Figure 3: (a) Distance d = 1, 4 orientations. (b) Distance d = 2, 8 orientations.

multiresolution representations. This wavelet paradigm has
found many applications in signal and image processing,
such as texture analysis.

The discrete wavelet transform generates a set of wavelets
by scaling and translating a mother wavelet, which is a
function defined both in the spatial and frequency domain,
that can be represented in 2D as [18]

φa,b(x, y
) = 1√axay φ

(
x − bx
ax

,
y − by
ay

)

, (2)

where a = (ax, ay) governs the scale and b = (bx, by) the
translation of the function. The values of a and b control the
bandpass of the filter, generating highpass (H) or lowpass (L)
filters.

The wavelet decomposition of an image consists of apply-
ing these wavelets horizontally and vertically, generating 4
images (LL, LH, HL, HH). The process is repeated iteratively
on the LL subimage resulting in the standard pyramidal
wavelet decomposition.

One of the key steps when using wavelets is the selection
of the mother wavelet. There are numerous alternatives like
Haar, Daubechies, or Symlet wavelets. In this paper, we used
the Haar wavelets because they outperform the other wavelet
families tested. Concretely, we applied a generalised Haar
algorithm [17] using 2 scales, obtaining 8 result subimages.

The descriptor of an input image is constructed calculat-
ing the mean μ and the absolute average deviation aad of the
input and LL images, and the energy e of the LH, HL, and
HH images. Since we use 2 scales, our feature vectors contain
12 components.

2.1.3. Co-Occurrence Features. Haralick et al. introduced co-
occurrence features [19], a popular and effective texture
descriptor based on the computation of the conditional joint

probabilities of all pairwise combinations of grey levels, given
an interpixel distance d and an orientation θ. This method
generates a set of grey level co-occurrence matrices and
extracts several statistics from their elements Pθ,d(i, j).

For a distance d = 1, a total of 4 orientations must be
considered (0◦, (45◦, 90◦ and 135◦) and 4 matrices are
generated (see Figure 3(a)). For a distance d > 1, the number
of orientations increases and, therefore, so does the number
of matrices. In general, the number of orientations for a
distance d is 4d. As an example, Figure 3(b) depicts the
orientations considered for the distance d = 2.

From each co-occurrence matrix, we compute a set of
14 statistics proposed by Haralick et al. in [19], representing
features such as homogeneity or contrast. Next, we compute
their mean and range across matrices obtaining a set of
28 features which will be the descriptor of the input
image.

2.1.4. Markov Random Fields. Markov random fields (MRFs)
are model based texture analysis methods that construct
an image model whose parameters capture the essential
perceived qualities of texture. An MRF [20] is a 2D lattice
of points where each point is assigned a value that depends
on its neighbouring values. Thus, MRFs generate a texture
model by expressing the grey values of each pixel in an image
as a function of the grey values in a neighbourhood of the
pixel.

Let X(c) be a random variable which denotes the
grey value of the pixel c on an N × M image I ,
where c = 1, 2, 3, . . . ,N ×M. Therefore, if m is a neighbour
of c, p(X(c)) depends on X(m).

We need first to define the concept of neighbourhood
as a previous step to create the MRF model. In this case,
we consider the neighbourhood of a pixel as the set of
pixels within a Chebyshev distance d. We have modelled
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Table 1: Butterworth filters: categorisation accuracy (%) in grayscale, Lab, and opponent colours using 16 bin histograms.

Frequency bands

Classifiers 1 2 3 4 5 6 7 8 9 Avg.

NB
50.48 59.05 65.71 60.00 59.05 55.24 48.57 46.67 43.81 54.29

65.71 71.43 79.05 77.14 74.29 70.48 66.67 46.67 44.76 66.24

59.05 60.95 57.14 57.14 59.05 53.33 50.48 48.57 44.76 54.50

LMT
62.86 53.33 58.10 62.86 64.76 66.67 58.10 54.29 43.81 58.31

60.95 72.38 77.14 75.24 81.90 73.33 72.38 60.00 57.14 70.05

58.10 54.29 66.67 76.19 74.29 61.90 64.76 58.10 51.43 62.86

RT
47.62 41.90 54.29 55.24 60.95 65.71 53.33 52.38 32.38 51.53

48.57 65.71 75.24 75.24 67.62 72.38 67.62 50.48 45.71 63.17

48.57 53.33 61.90 67.62 53.33 60.00 62.86 58.10 55.24 57.88

RF
42.86 48.57 62.86 60.00 66.67 64.76 60.00 50.48 48.57 58.09

63.81 76.19 79.05 80.00 75.24 78.10 74.29 61.90 56.19 71.64

54.29 65.71 68.57 65.71 68.57 69.52 61.90 53.33 57.14 62.75

SVM
61.90 57.14 73.33 72.38 72.38 66.67 68.57 61.90 53.33 62.59

63.81 80.95 85.71 88.57 89.52 80.00 75.24 64.76 70.48 77.67

60.00 70.48 82.86 77.14 84.76 74.29 73.33 66.67 61.90 72.38

Table 2: ANOVA results, Butterworth filters in the three colour
spaces. SS: sum of squared deviations about the mean. df: degrees
of freedom. MS: variance.

Grayscale

Source SS df MS F P-value

Between 976.06 4 244.02 3.74 <0.05

Within 2611.87 40 65.30

Total 3587.93 44

Lab

Source SS df MS F P-value

Between 1097.44 4 274.36 2.56 >0.05

Within 4287.01 40 107.18

Total 5384.45 44

Opponent colours

Source SS df MS F P-value

Between 1640.57 4 410.14 8.16 < 0.05

Within 2009.93 40 50.25

Total 3650.50 44

the Markov process for textures using a Gaussian Markov
random field defined as

X(c) = βTQc + ec, (3)

where ec is the zero mean Gaussian distributed noise and β
coefficients describe the Markovian properties of the texture
and the spatial interactions. Consequently, the β coefficients
can be estimated using a least squares fitting.

Table 3: The discrete wavelet transform: categorisation accuracy
(%) in grayscale, Lab, and opponent colours.

Classifiers
μ and aad of image and LL;

e of LH, HL, and HH

NB
67.62

66.67

62.86

LMT
67.62

80.95

76.19

RT
73.33

71.43

65.71

RF
75.24

86.67

70.48

SVM
85.71

88.57

84.76

In the present work, we have used the directional
variances proposed by Çesmeli and Wang [21] to generate
the image descriptor, defined as

fi = 1
N ×M

∑

c∈I

[
X(c)− βiQci

]2
. (4)

For a distance d, the descriptor is composed of 4d
features.

2.1.5. Gabor Filters. Gabor filters are complex exponential
signals modulated by Gaussians widely used in texture
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Table 4: Co-occurrence Features: categorisation accuracy (%) in grayscale, Lab, and opponent colours.

Distances

Classifiers 1 2 3 4 5 6 7 Avg.

NB
68.57 69.52 72.38 75.24 75.24 72.38 70.48 71.97

75.24 83.81 81.90 83.81 85.71 86.67 86.67 83.40

67.62 73.33 72.38 73.33 74.29 74.29 75.24 72.93

LMT
75.24 78.10 76.19 77.14 77.14 80.00 82.86 78.09

80.00 82.86 80.00 83.81 86.67 86.67 82.86 83.27

70.48 80.95 78.10 81.90 76.19 79.05 80.95 78.23

RT
74.29 63.81 75.24 74.29 78.10 71.43 71.43 72.66

68.57 76.19 76.19 80.95 71.43 71.43 76.19 74.42

63.81 65.71 74.29 64.76 71.43 77.14 62.86 68.57

RF
71.43 74.29 83.81 84.76 82.86 80.00 76.19 79.05

83.81 87.62 81.90 88.57 86.67 90.48 83.81 86.12

77.14 81.90 73.33 82.86 78.10 82.86 82.86 79.86

SVM
80.00 84.76 87.62 89.52 91.43 90.48 92.38 88.03

89.52 90.48 94.29 94.29 95.24 96.19 95.24 93.60

85.71 89.52 90.48 89.52 90.48 90.48 91.43 89.66

Table 5: ANOVA results, co-occurrence features in the three colour
spaces. SS: sum of squared deviations about the mean. df: degrees
of freedom. MS: variance.

Grayscale

Source SS df MS F P-value

Between 1165.72 4 291.43 18.29 <0.05

Within 477.98 30 15.93

Total 1643.71 34

Lab

Source SS df MS F P-value

Between 135.20 4 331.30 29.18 <0.05

Within 340.63 30 11.35

Total 1665.83 34

Opponent colours

Source SS df MS F P-value

Between 1778.14 4 444.53 31.13 <0.05

Within 428.42 30 14.28

Total 2206.56 34

analysis. A two-dimensional Gabor filter [22], using cartesian
coordinates in the spatial domain and polar coordinates in
the frequency domain, is defined as

gx0,y0, f0,θ0 = exp
{
i
[
2π f0

(
x cos θ0 + y sin θ0

)
+ φ
]}

gauss
(
x, y

)
,

(5)

where

gauss
(
x, y

) = a · exp
{
−π
[
a2(x cos θ0 + y sin θ0

)2

+b2(x sin θ0 − y cos θ0
)2
]}

,

(6)

a and b model the shape of the filter, while x0, y0, f0, and θ0

represent the location in the spatial and frequency domains,
respectively.

In the present work, we have created a bank of 16 Gabor
filters centred at 4 frequencies and 4 orientations. The filter
bank maps each input image to 16 result images, one per
frequency-orientation pair.

Using the same idea as in Butterworth Filters, the descrip-
tor of each output image is its uniform histogram with non-
equidistant bins. Specifically, we have used 3, 5, 7, and 9 bin
histograms as our feature vectors.

2.2. Colour Analysis. As previously mentioned, we have
analysed both the texture and the colour of the tear film
lipid layer. In the previous section, we introduced different
texture extraction methods that operate in grayscale, after
transforming the input image in RGB to grayscale. Now,
we present two colour spaces and explain how the texture
extraction methods operate in them.

The CIE 1976 L∗a∗b colour space [12] (Lab) is a chro-
matic colour space that describes all the colours that the
human eye can perceive. Its use is recommended by CIE
in images with natural illumination and its colorimetric
components are differences of colours, which makes this
colour space appropriate in texture extraction. In order to
analyse the texture in this colour space, we transform the
input image in RGB to the Lab colour space and analyse
each component separately, generating three descriptors per
image corresponding to the luminance component L, and the
chromatic components a and b. Next, we concatenate these
three descriptors to generate the final descriptor.

The RGB colour space [23] is an additive colour space
defined by three chromaticities: red, green, and blue. It is not
perceptually uniform and, in texture measuring, it is better
to use differences of colours than the independent colours of
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Table 6: Markov random fields: categorisation accuracy (%) in grayscale, Lab, and opponent colours.

Distances

Classifiers 1 2 3 4 5 6 7 8 9 10 Avg.

NB
38.10 37.14 38.10 36.19 36.19 36.19 35.24 35.24 34.29 33.33 36.00

45.71 42.86 39.05 31.43 31.43 30.48 32.38 31.43 30.48 30.48 34.57

58.10 38.10 33.33 34.29 37.14 33.33 34.29 33.33 37.14 38.10 37.72

LMT
51.43 65.71 60.00 55.24 59.05 53.33 60.95 53.33 52.38 64.76 57.62

59.05 60.00 67.62 62.86 67.62 60.00 60.00 51.43 49.52 55.24 59.33

78.10 66.67 68.57 65.71 67.62 64.76 60.95 60.95 64.76 60.00 65.80

RT
52.38 55.24 52.38 47.62 54.29 55.24 57.14 52.38 54.29 60.00 54.10

42.86 56.19 52.38 57.14 51.43 48.57 52.38 42.86 39.05 57.14 50.00

67.62 58.10 57.14 52.38 59.05 52.38 49.52 50.48 50.48 58.10 55.23

RF
57.14 71.43 63.81 59.05 58.10 60.95 60.00 60.95 60.00 68.57 62.00

51.43 59.05 66.67 55.24 60.00 55.24 60.95 61.90 55.24 62.86 58.89

80.00 66.67 60.95 59.05 66.67 65.71 61.90 54.29 60.95 54.29 63.05

SVM
61.90 78.10 78.10 83.81 81.90 80.00 75.24 76.19 73.33 77.14 76.57

66.67 78.10 83.81 80.00 80.95 80.00 82.86 80.00 79.05 74.29 78.57

84.76 80.00 84.76 82.86 80.00 84.76 77.14 80.00 76.19 73.33 80.38

Table 7: ANOVA results, Markov random fields in the three colour
spaces. SS: sum of squared deviations about the mean. df: degrees
of freedom. MS: variance.

Grayscale

Source SS df MS F P-value

Between 8574.66 4 2143.67 109.52 <0.05

Within 880.82 45 19.57

Total 9455.48 49

Lab

Source SS df MS F P-value

Between 4352.63 3 1450.88 47.11 <0.05

Within 1108.76 36 30.8

Total 5461.39 39

Opponent colours

Source SS df MS F P-value

Between 3251.16 3 1083.72 33.36 <0.05

Within 1169.32 36 32.48

Total 4420.47 39

the RGB model. Thus, to analyse this colour space, we have
used the opponent process theory of human colour proposed
by Hering [13]. This theory states that the human visual
system interprets information about colour processing three
opponent channels: red versus green, green versus red, and
blue versus yellow. More precisely,

RG = R− p ∗G,

GR = G− p ∗ R,

BY = B − p ∗ (R + G),

(7)

where p is a lowpass filter.
In the opponent colour space, we use the input image in

RGB and calculate the three opponent channels, analysing

the texture in each one separately. The final descriptor is the
concatenation of the RG, GR, and BY descriptors.

2.3. Classification. Finally, we must classify the region of
interest into one of the four categories proposed by Guillon.
The classification task will be performed using five popular
machine learning algorithms [24]: Naive Bayes (NB), a
statistical classifier based on the Bayesian theorem and
the maximum posteriori hypothesis that can predict class
membership probabilities; Logistic Model Tree (LMT), an
algorithm for supervised learning tasks which combines the
logistic regression models with tree induction; Random Tree
(RT), a tree drawn at random from a set of possible trees,
where at random means that each tree in the set of the trees
has an equal chance of being sampled; Random Forest (RF),
a combination of tree predictors where each tree depends
on the values of a random vector sampled independently
and with the same distribution for all trees in the forest;
Support Vector Machine (SVM) that based on the statistical
learning theory performs classification by constructing an N-
dimensional hyperplane that optimally separates the data in
categories.

In Section 3, we will show the results, obtained by these
algorithms, in terms of percentage accuracy. We will also
compare the algorithms statistically, in order to determine
which one performs best for the problem at hand.

3. Experimental Results

We have tested our methodology on a dataset composed of
105 images acquired from healthy patients with ages ranging
from 19 to 33 years. These images have been annotated by
optometrists from the School of Optics and Optometry of
the Universidade de Santiago de Compostela. The dataset
includes 29 open meshwork, 29 closed meshwork, 25 wave,
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Table 8: Gabor Filters: categorisation accuracy (%) in grayscale, Lab and opponent colours.

Number of bins

Classifiers 3 5 7 9 Avg.

NB
60.00 59.05 58.10 60.00 59.29

81.90 82.86 82.86 82.86 82.62

62.86 60.00 62.86 64.76 62.62

LMT
80.95 77.14 74.29 75.24 76.91

78.10 81.90 79.05 78.10 79.29

70.48 71.43 71.43 79.05 73.10

RT
67.62 71.43 67.62 68.57 68.81

73.33 80.95 68.57 65.71 72.14

64.76 65.71 66.67 61.90 64.76

RF
73.33 66.67 72.38 69.52 70.48

78.10 76.19 81.90 75.24 77.86

78.10 72.38 70.48 80.00 75.24

SVM
88.57 87.62 86.67 86.67 87.38

92.38 94.29 95.24 95.24 94.29

86.67 88.57 88.57 88.57 88.10

Table 9: ANOVA results, Gabor filters in the three colour spaces. SS:
sum of squared deviations about the mean. df: degrees of freedom.
MS: variance.

Grayscale

Source SS df MS F P-value

Between 1732.62 4 433.15 95.67 <0.05

Within 67.92 15 4.53

Total 1800.53 19

Lab

Between 1071.28 3 357.09 24.58 <0.05

Within 174.31 12 14.53

Total 1245.59 15

Opponent colours

Between 457.58 3 152.52 13.68 <0.05

Within 133.81 12 11.15

Total 591.39 15

and 22 colour fringe images. In order to analyse the
generalisation of our results to larger dataset, a 10-fold cross-
validation [25] has been performed.

In order to test the significance of the differences among
classifier accuracies, we have performed several experiments
with each texture analysis method using the five classifiers
previously mentioned. The process is common in all the
experiments: first, we applied the Lilliefors test for normality
[26] and then an ANOVA test [27]. The ANOVA test
compares the means of several distributions by estimating
the variances among distributions and within a distribution.
The null hypothesis, that all population means are equal, is

tested and a P-value is computed. If the null hypothesis is
rejected, we apply the Tukey’s method, a multiple compar-
ison procedure that tests all means pairwise to determine
which ones are significantly different.

We have performed several experiments, the results of
which appear in tables in terms of percentage accuracy.
From top to bottom, each cell shows the results obtained in
grayscale, Lab, and opponent colours. We have highlighted
the best results in each colour space.

Our first experiment was performed using Butterworth
filters and analysing each frequency band separately. Table 1
shows the results obtained. The Lilliefors test for normality
accepted the null hypothesis that the data came from a
normal distribution in all the colour spaces. Therefore, we
performed the ANOVA test obtaining the results depicted
in Table 2. In grayscale, the ANOVA test rejected the null
hypothesis and the Tukey’s test concluded that there are
significant differences among SVM, NB, and RT but not
among SVM, LMT, and RF; so, SVM, LMT, and RF are
the best classifiers in this case. Regarding Lab, the ANOVA
test accepted the null hypothesis so no classifier performs
significantly different from the others. Finally, the ANOVA
test in opponent colours rejected the null hypothesis and the
multiple comparison test concluded that there are significant
differences among SVM and all the classifiers but LMT.

We did no experiment related to the discrete wavelet
transform because there are not enough data to perform the
statistical tests. Table 3 shows the results obtained with all the
classifiers using this method.

Our second experiment analyses the co-occurrence fea-
tures and considers 7 distances separately, obtaining the
results in Table 4. In the three colour spaces, the Lilliefors test
accepted the null hypothesis and the ANOVA test rejected
the null hypothesis in the three colour spaces, as Table 5
shows. The Tukey’s test also concluded the same in the three
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Table 10: Best classifiers using different texture extraction methods in the three colour spaces considered.

Grayscale Lab Opponent colours

Butterworth filters SVM, LMT, RF No significant differences SVM, LMT

The discrete wavelet transform No data No data No data

Co-occurrence features SVM SVM SVM

Markov random fields SVM SVM SVM

Gabor filters SVM SVM LMT, RF

colour spaces: there are significant differences among the
SVM, which is the method that performs best, and the other
four classifiers.

The next experiment consisted of analysing the Markov
random fields method with 10 different neighbourhoods. Its
results are depicted in Table 6. In grayscale, the Lilliefors test
accepted the null hypothesis and the ANOVA test rejected
it as we can see in Table 7. Finally, the multiple comparison
test concluded that the SVM has significant differences with
all the classifiers. In Lab and opponent colours, the results
obtained with the NB classifier are not normally distributed.
The NB classifier produced the poorer results in terms
of percentage accuracy so we have eliminated it from the
experiment. Using the other four classifiers, the ANOVA test
produced the results in Table 7, rejecting the null hypothesis
in both colour spaces. Finally, the multiple comparison test
concluded that SVM has significant differences with the
other classifiers.

Our last experiment analyses the Gabor filters using 4
different histogram sizes. Table 8 shows its results in the three
colour spaces. In grayscale, the Lilliefors test accepted the null
hypothesis and then, the ANOVA test concluded that there
are significant differences among the classifiers (see Table 9).
Again, the SVM is significantly different from the others
classifiers according to the Tukey’s test. Regarding Lab, the
Lilliefors test rejected the null hypothesis for the NB classifier,
which was not included in the ANOVA test. As we can see in
Table 9, the ANOVA test rejected the null hypothesis and the
multiple comparison test selected the SVM as the classifier
with significant differences with respect to the others. In
opponent colours, the SVM did not pass the normality
test and was not considered in the ANOVA test. This
test concluded that there are significant differences among
classifiers, as we can see in Table 9, and the Tukey’s test
selected the RF and LMT as the statistically different ones.

As a summary, Table 10 shows the best classifiers for
each texture extraction method in the three colour spaces,
according to the experiments performed. Analysing these
results, we can see that SVM outperforms the other classifiers
in most cases. This outperforming is because the SVM fits
better the boundaries between classes.

Regarding colour analysis, the use of colour information
improves the results compared to grayscale because some
lipid layers contain not only morphological features, but
also colour features. On the other hand, all texture analysis
methods perform quite well providing results over 80%
accuracy, but co-occurrence features generate the best result.
Although Markov random fields use information of the

pixel’s neighbourhood, as the co-occurrence features do,
this method does not work so well because the statistics
proposed by Haralick et al. provide much more information.
In short, the combination of co-occurrence features and
the Lab colour space produces the best classification result
with maximum accuracy over 96%. We should also consider
Gabor filters because, in combination with the Lab colour
space too, it is the second best method with maximum
accuracy over 95% and it is computationally faster than co-
occurrence features.

Finally, we would like to emphasise the clinical signif-
icance of these experimental results. Using the Tearscope,
lipid layer thickness can be assessed based on interference
phenomena produced over the whole surface. In [28], it
was compared the performance of two observers with that
obtained by an observer experienced in lipid layer pattern
grading, designed as reference examiner. For thinner patterns
(meshwork), observer 1 showed an agreement of 96% with
the reference observer, whereas observer 2 showed an agree-
ment of 91%. Better agreement with the reference observer
was obtained for thicker patterns, easier than meshwork
patterns; being 100% and 96% for observer 1 and observer
2, respectively. When considering colour fringe pattern, the
agreement was even better, reaching a value of 100% for both
observers. The results indicate that, after training, subjective
observers can obtain good similarity among them. Therefore,
although the Tearscope has proved its validity, some amount
of training is needed to interpret the lipid layer patterns. This
difficulty in interpreting the patterns and the lack of a huge
bank of images for reference purposes has meant that many
eye care professionals have abandoned this test. Our results
show that it is possible to correctly categorise lipid layer
patterns and eliminate the subjectivity of the test, through
a completely automatic process which provides maximum
accuracy over 95%.

4. Conclusions and Future Work

In this paper, we have presented a study of different machine
learning algorithms to classify the tear film lipid layer, using
the feature vectors extracted by different texture analysis
methods in three colour spaces.

In general, the SVM classifier produces the best results
independently of the texture extraction method and the
colour space, compared with four other machine learning
algorithms. The objective of this work was to show if the
differences among classifiers were significant and we could
establish SVM as the most suitable method. We first applied
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the Lilliefors test to assess the normality of the results in
terms of percentage accuracy. Based on the conclusions of
this test, we applied the ANOVA test in order to check
whether the differences among classifiers were significant or
not. If they were significant, the Tukey’s test was applied
to decide which classifier or classifiers were significantly
different from the others.

The SVM classifier obtains the best results and is signifi-
cantly different to the other classifiers so we should consider
it in future works as the most competitive method. We
should also consider the LMT because it is the second most
competitive method according to the results obtained and
it has an advantage compared to SVM: it does not need
parameter tuning.

In many cases, the tear film lipid layer is very hetero-
geneous and makes its classification into a single Guillon
category impossible. This heterogeneity is a sign of meibo-
mian gland abnormality and leads us to our future work:
performing local analysis and classifications, allowing the
detection of several categories in a single photograph.
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