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palabra

“Bees... by virtue of a certain geometrical forethought... know that
the hexagon is greater than the square and the triangle and will
hold more honey for the same expenditure of material in
constructing each.”

Pappus of Alexandria
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1. INTRODUCTION

The history of projective geometry is a very complex one. Most of the more formal developments
on the subject were made in the 19th century as a result of the movement away from the
geometry of Euclid. If one digs a little deeper, however, one can see that the basic concepts
upon which this branch of geometry is based can be traced back as far as the fourth century,
where a theorem of Pappus of Alexandria appears as Proposition 139 of Book VII of the
Mathematical Collection. These very early discoveries along with Euclid’s Elements are the
building blocks for the foundations that were laid down by the projective geometers of the 17th
century. It is here that the history of the subject becomes more interesting. Great strides were
made in the 17th century, but for some reason projective geometry did not become popular
among mathematicians until the 19th century. From this moment, very important results on
this subject were made by great mathematicians as Max Noether or David Hilbert.
In particular, the base of these notes is the study of the theory of plane algebraic curves.
Willing to know more about the geometry behind the plane algebraic curves, I began to work
with the Algebraic Curves of William Fulton [1]. Introducing myself with the algebraic sets
and its ideals, and with its properties as well, I venture on the theory of intersection of plane
algebraic curves, studying them on the affine plane and on the projective plane. To doing so, I
had to apprehend so importants results such that the intersection number at points on curves,
the Bézout’s Theorem or the Max Noether Fundamental Theorem. As an application, I proved
some problems of the algebraic geometry, from the classics to the most contemporary, begining
with the Pappu’s Theorem and ending with the addition on the Elliptic Law. Moreover, I state
some ideas of plane algebraic curves from a more modern point of view, talking about the
divisors on smooth curves and the concepts that derive from them.
Once with all this baggage, I had to come back some years ago. In 1640’s, Blaise Pascal dis-
covered a remarkable property of a hexagon inscribed in a conic, the Pascal’s Theorem (or
Hexagrammum Mysticum Theorem). This result states that given a non necessarily regular
(or even convex) hexagon inscribed in a conic section, the three pairs of the continuations of
opposite sides meet on a straight line, called the Pascal line.

Its generalization have a glorious history, it has been a subject of active and exciting research.
As generalizations of the Pascal’s Theorem we have the Chasles-Cayley-Bacharach Theorem and
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the Cayley-Bacharach theorems in various versions. An article written by Zhongxuan Luo [7],
states one more generalization of the Pascal’s Theorem, called the Pascal’s Type Theorem, using
a tool which the author defines as an invariant of plane algebraic curves. This article consists
basically of an extension of the cross ratio and a result attributed to Menelaus d’Alexandria,
called the Menelaus’ Theorem, which stablishes the sufficient and necessary condition for which
three different points laying each one on a different side of a triangle (or on the extensions of
them) are collinear. With modern lenguage, the theorem could be stated as following: given a
triangle O1O1O3 and three different points A1 ∈ O2O3, A2 ∈ O3O1, A3 ∈ O1O2 distinct from
the vertexs, A1, A2 and A3; then O1, O2, O3 are collinear if and only if

(O2, O3, I1, A1)(O3, O1, I2, A2)(O1, O2, I3, A3) = −1,

where I1, I2, I3 are the projection from a point not in any side of the triangle and a vertex,
over its opposite side.

O1

O2 O3

O
I3 I2

I1

A3

A2

A1

At this point appears our first aim on these notes. It was interesting to see if that final theorem
of the article could be proved using only the Max Noether Fundamental Theorem. So that, my
work on this article consisted of two parts: one of them was to understand the article and all
its way to get the proof of the Pascal’s Type Theorem, and the other was to make my own
proof using the tools which I suppose to get on [1]. However, when I began to read the paper,
together with my advisor, we realized that the article lacked stringency and basis, since the
author worked on the projective plane as he was on the affine plane. Moreover, the theory which
the author had developed had some gaps, i.e., it needed some concepts and results that gave it
consistency. Also, most of the proofs were maid using the theory of B-splines and the theory of
duality, which were not the goal of these notes.
Therefore, although it wasn’t the target of the thesis, I first had to rewrite all the article:
giving sense to the concepts by changing some of the notions to give them coherence, finding
news results to supply all the gaps, and proving rigorously all the results. Fortunately, doing
so we develop an interesting theory that with simple calculations of the cross ratio, gets some
importants results such that the addition on the Elliptic Law or the Pascal’s Type Theorem.
That is because once fixed a reference, then that 3n points of the projective plane lie on a
plane algebraic curve of degree n is related with the number (−1)n, thus many problems that
seems to have a very difficult proof or that seems to need so many knowledgs on plane algebraic
curves, are easly proved with a simple calculation.
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At this point, the logical question was to ask ourselves if there was more extensions or generali-
zations related with the Pascal’s Theorem. Since we know about the Chasles-Cayley-Bacharach
Theorem, for which Pascal’s Theorem is a particular case, we sought for researches that were
about this subject. So that, we found an article [8] of three great mathematicians: David Ei-
senbud, Mark Green and Joe Harris, which indeed was about of what we were looking forward.
From a more geometric point of view, that article begins with an study of the conditions on the
coefficients of polynomials imposed by sets of points. Then, step by step, extends the Chasles-
Cayley-Bacharach Theorem using the theory of linear series to get a theorem attributed to
Bacharach, which it is generalized to the projective space. Finally, explains one of the modern
developments arising from it, a series of conjectures about the linear conditions imposed by a
set of points in projective space on the forms that vanish on them. Then, the most interesting of
this article was to understand the geometric methods which they use (e.g. the Hilbert Function)
and reference results relative current.
To finish, thanks are due to Joan Carles Naranjo for leading me and watching that I did not
deviate much from the way by giving me advice of the best method on each case. Moreover, he
gave me a great range of bibliography and helped me to understand some concepts which were
far from me knowledges.
Thereby, I will begin introducting some concepts on the affine space. One important thing is
that in all the thesis I will suppose k = k to be an algebraically closed field. Moreover, I will
denote An = An(k) and Pn = Pn(k).
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2. AFFINE ALGEBRAIC CURVES

2.1. Affine Varieties

In this section, there are some useful results which basically foment the bijection between al-
gebraic sets and their ideals. All of them have been collected from subjects of the degree of
mathematics in the Universitat de Barcelona, such that Commutative Algebra and Algebraic
Varieties. Because of that, I will skip most of the proofs.

First, I introduce the notions of algebraic sets and its ideals, and I state some important
properties of them.

Definition 2.1.1. Let F ∈ k[X1, . . . , Xn], a point P = (a1, a2, . . . , an) ∈ An is called a zero of
F if F (P ) = 0. If F is not a constant, the set of zeros of F is called the hypersurface defined
by F , and is denoted by V = V (F ).

Definition 2.1.2. Let S ⊆ k[X1, . . . , Xn] be any set of polynomials, we let

V (S) = {P ∈ An; F (P ) = 0 for all F ∈ S} =
⋂
F∈S

V (F ).

A subset X ⊂ An is an affine algebraic set, or simply an algebraic set, if X = V (S), for
some S ⊆ k[X1, . . . , Xn].

Properties 2.1.3. Let S ⊆ k[X1, . . . , Xn], I, J ideals of k[X1, . . . , Xn]:

(i) V (S) = V (〈S〉), where 〈S〉 is the ideal of k[X1, . . . , Xn] generated by S.
(ii) If I ⊂ J , then V (J) ⊂ V (I).
(iii) V (FG) = V (F ) ∪ V (G) for any polynomials F,G ∈ k[X1, . . . , Xn] and V (I) ∪ V (J) =
V ({FG; F ∈ I,G ∈ J}), so any finite union of algebraic sets is an algebraic set.

Definition 2.1.4. For any subset X of An, we call

I(X) = {F ∈ k[X1, ..., Xn]; every P ∈ X is a zero of F}

the ideal of X.

Properties 2.1.5. Let X, Y ⊂ An:

(i) If X ⊂ Y , then I(Y ) ⊂ I(X).
(ii) S ⊂ I(V (S)) for any set S of polynomials and X ⊂ V (I(X)).
(iii) V (S) = V (I(V (S))) for any set S of polynomials and I(X) = I(V (I(X))). So if V is an
algebraic set, V = V (I(V )), and if I is the ideal of an algebraic set, I = I(V (I)).
(iv) I(X) is a radical ideal.

Theorem 2.1.6. (Hilbert Basis Theorem) If R is a Noetherian ring, then R[X1, . . . , Xn] is
a Noetherian ring.
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Corollary 2.1.7. Every algebraic set is the intersection of a finite number of hypersurfaces.

Proof. Due to k is a field, k is Noetherian. Hence, k[X1, . . . , Xn] is Noetherian. Therefore,
every ideal I in k[X1, . . . , Xn] is finitely generated. Then, I = (F1, . . . , Fr) and

V (I) = V (F1, . . . , Fr) = V (F1) ∩ · · · ∩ V (Fr).

�

Definition 2.1.8. An algebraic set V ⊂ An is reducible if V = V1 ∪ V2, where V1, V2 are
algebraic sets in An, and Vi 6= V , i = 1, 2. Otherwise, V is irreducible. An irreducible affine
algebraic set V ⊂ An(k) is called affine variety.

Proposition 2.1.9. An algebraic set V is irreducible if and only if I(V ) is prime.

Proof. (⇒) Suppose V is irreducible. Let FG ∈ I(V ), where F and G are homogeneous
polynomials. Then,

FG ∈ I(V )⇒ ∀P ∈ V , FG(P ) = 0⇒ ∀P ∈ V , F (P )G(P ) = 0⇒

⇒ ∀P ∈ V , F (P ) = 0 or G(P ) = 0⇒ ∀P ∈ V , P ∈ V (F ) or P ∈ V (G).

Therefore, V ⊆ V (F )∪ V (G). As V is irreducible, V ⊆ V (F ) or V ⊆ V (G), thus, F ∈ I(V ) or
G ∈ I(V ) and I(V ) is prime.
(⇐) Suppose I(V ) is prime and V ⊆ Z1∪Z2, where Z1, Z2 closed algebraic sets. If V * Z1 and
V * Z2, then, I(Z1) * I(V ) and I(Z2) * I(V ). Therefore, ∃F ∈ I(Z1), G ∈ I(Z2) such that
F,G /∈ I(V ) but FG ∈ I(Z1 ∪ Z2) ⊆ I(V ).
But I(V ) is prime, so we reach a contradiction with supposing V * Z1 and V * Z2. Thus, V
is irreducible. �

Theorem 2.1.10. Let V be an algebraic set in An. Then, there are unique irreducible algebraic
sets V1, . . . , Vm such that V = V1 ∪ · · · ∪ Vm and Vi * Vj for all i 6= j.

Definition 2.1.11. The Vi are called the irreducible components of V and V = V1∪· · ·∪Vm
is the decomposition of V into irreducible components.

Theorem 2.1.12. (Weak Hilbert’s Nullstellensatz) If I is a proper ideal in k[X1, . . . , Xn],
then V (I) 6= ∅.

Theorem 2.1.13. (Hilbert’s Nullstellensatz) Let I be an ideal in k[X1, . . . , Xn]. Then,
I(V (I)) = rad(I).

Corollary 2.1.14. If I is a prime ideal, then V (I) is irreducible. Moreover, I = rad(I) =
I(V (I)). Hence, there is a one-to-one correspondence between prime ideals and irreducible
algebraic sets. The maximal ideals correspond to points.

Corollary 2.1.15. Let I be an ideal in k[X1, . . . , Xn]. Then, V (I) is a finite set if and only if
k[X1, . . . , Xn]/I is a finite dimensional vector space over k.
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Definition 2.1.16. Let V ∈ An be a nonempty variety, then I(V ) is a prime ideal in k[X1, ..., Xn],
so k[X1, ..., Xn]/I(V ) is a domain. We let

Γ(V ) = k[X1, ..., Xn]/I(V ),

and call it the coordinate ring of V .

Definition 2.1.17. Let V be a nonempty variety in An, Γ(V ) its coordinate ring. Since Γ(V )
is a domain, we may form its quotient field. This field is called the field of rational functions
on V , and is written k(V ). An element of k(V ) is a rational function on V . If f is a rational
function on V , and P ∈ V , we say that f is defined at P if for some g, h ∈ Γ(V ), f = g/h, and
h(P ) 6= 0.

Definition 2.1.18. Let P ∈ V . We define OP (V ) to be the set of rational functions on V that
are defined at P . It is easy to verify that OP (V ) forms a subring of k(V ) containing Γ(V ).
The ring OP (V ) is called the local ring of V at P . The set of points P ∈ V where a rational
function f is not defined is called the pole set of f .

Definition 2.1.19. The ideal mP (V ) = {f ∈ OP (V ); f(P ) = 0} is called the maximal ideal
of V at P . It is the kernel of the evaluation homomorphism f 7→ f(P ) of OP (V ) onto k, so
OP (V )/mP (V ) is isomorphic to k.

Proposition 2.1.20. Let I be an ideal in k[X1, ..., Xn] (k algebraically closed), and suppose
V (I) = {P1, ..., PN} is finite. Then, there is a natural isomorphism of k[X1, ..., Xn]/I with

N∏
i=1
OPi

(An)/IOPi
(An).

Proof. (see [1], §2.9 Proposition 6 ).

Corollary 2.1.21. dimk(k[X1, . . . , Xn]/I) = ∑N
i=1 dimk(OPi

/IOPi
).

Proposition 2.1.22. Let V be a variety in An, I = I(V ) ⊂ k[X1, . . . , Xn], P ∈ V , and let J
be an ideal of k[X1, . . . , Xn] that contains I. Let J ′ be the image of J in Γ(V ). Then, there is
a natural homomorphism ϕ from OP (An)/JOP (An) to OP (V )/J ′OP (V ), and it holds that ϕ
is an isomorphism. In particular,

OP (An)/IOP (An) ∼= OP (V ).

Proof. Let π : Γ(An) = k[X1, . . . , Xn] −→ Γ(V ) be the canonical map. Then, J ′ = π(J). As
k(V ) ⊂ k(An), we can extend π to the quotient field of the rings

π : k(An) −→ k(V ).

Let f be a rational function in k(V ) that is defined at P , then f ∈ OP (An). So we can restrict
the previous map to

π
∣∣∣
OP (An)

: OP (An) −→ OP (V ).
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Take now the natural map σ : OP (V ) −→ OP (V )/J ′OP (V ). Then,

Φ = σ ◦ π
∣∣∣
OP (An)

: OP (An) −→ OP (V )/J ′OP (V )

is a well-difined map. Moreover, it is an epimorphism.
Let’s find now the ker(Φ). If f ∈ OP (An) is such that Φ(f) = 0, then, Φ(f) ∈ J ′OP (V ), hence,
by the definiton of our morphism, f ∈ JOP (An). Conversly, for all g ∈ JOP (An), Φ(g) = 0.
Therefore, ker(Φ) = JOP (An) and by the First Isomorphism’s Theorem, exists an isomoprhism
ϕ from OP (An)/JOP (An) to OP (V )/J ′OP (V ). �

To end this section, let’s see a some algebraic results and concepts that will play an important
role on these notes.

Definition 2.1.23. A ring R satisfying
(1) R is Noetherian and local, and the maximal ideal is principal,
(2) there is an irreducible element t ∈ R such that every nonzero z ∈ R may be written uniquely
in the form z = utn, u a unit in R, n a nonnegative integer,
is called a discrete valuation ring, written DVR. The irreducible element t is called a uni-
formizing parameter for R; any other uniformizing parameter is of the form ut, u a unit in
R. Let K be the quotient field of R. Then (when t is fixed) any nonzero element z ∈ K has a
unique expression z = utn, where u is a unit in R, n ∈ Z. The exponent n is called the order
of z, and is written n = ord(z); we define ord(0) =∞.

Definition 2.1.24. Let F = ∑
aiX

(i) ∈ k[X1, ..., Xn], where ai ∈ k and X(i) are monomials
of degree i. We call F homogeneous, or a form, of degree d, if all coefficients ai are zero
except for monomials of degree d (i.e., ∀λ ∈ k \ {0}, P = (a1, . . . , an) ∈ An, it is satisfied
that F (λa1, . . . , λan) = λdF (a1, . . . , an)). Any polynomial F has a unique expression F =
F0 + F1 + ...+ Fd, where Fi is a form of degree i. If Fd 6= 0, then d is the degree of F , written
deg(F ).

Definition 2.1.25. If F ∈ k[X1, ..., Xn+1] is a form, we define F∗ ∈ k[X1, ..., Xn] by setting
F∗ = F (X1, ..., Xn, 1). Conversely, for any polynomial f ∈ k[X1, ..., Xn] of degree d, write
f = f0 + f1 + ...+ fd, where fi is a form of degree i, and define f ∗ ∈ R[X1, ..., Xn+1] by setting

f ∗ = Xd
n+1f(X1/Xn+1, ..., Xn/Xn+1)

then, f ∗ is a form of degree d. These processes are often described as dehomogenizing and
homogenizing polynomials with respect to Xn+1.

Proposition 2.1.26. If F 6= 0, F ∈ k[X1, . . . , Xn+1], and r is the highest power of Xn+1 that
divides F , then Xr

n+1(F∗)∗ = F .

Proof. Let d be the degree of F and let F = Xr
n+1G, where 0 ≤ r ≤ d, is the highest power of

Xn+1 that divides F , and G is an homogenus polynomial of degree d− r ≥ 0.
Case 1: Suppose r = 0 (i.e. Xn+1 doesn’t divide F ), then, f = F∗ = F (X1, ..., Xn, 1) ∈
k[X1, . . . , Xn] is a polynomial of degree d. So, f = f0 + f1 + ...+ fd, where fi is a form of degree
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deg(fi) = i. Therefore,

f ∗ = Xd
n+1

d∑
i=0

fi(X1/Xn+1, ..., Xn/Xn+1) =
d∑
i=0

Xd−i
n+1fi(X1, ..., Xn) = F.

Case 2: Suppose now that r > 0, then,

F∗ = F (X1, ..., Xn, 1) = G(X1, ..., Xn, 1) = G∗,

where G is still a polynomial of degree d− r ≥ 0. Since Xn+1 doesn’t divide G, as we see in the
Case 1,

(F∗)∗ = (G∗)∗ = Xd−r
n+1G(X1/Xn+1, ..., Xn/Xn+1) = G.

Thus,
Xr
n+1(F∗)∗ = Xr

n+1(G∗)∗ = Xr
n+1G = F.

�

Definition 2.1.27. A finite exact sequence (or simply exact sequence) of finite-dimensional
vector spaces {Vi}1≤i≤n, n ≥ 2, is a sequence of maps

ϕi : Vi+1 −→ Vi,

i = 1, . . . , n− 1, which satisfies
Im(ϕi) = Ker(ϕi−1).

Moreover, ϕn−1 is injective and ϕ1 is surjective. It is usually denoted by

0→ Vn
ϕn−1−−−→ Vn−1

ϕn−2−−−→ · · · ϕ1−→ V1 → 0.

When n = 3, it is known as short exact sequence.

Proposition 2.1.28. Let

0→ Vn
ϕn−1−−−→ Vn−1

ϕn−2−−−→ · · · ϕ1−→ V1 → 0

be an exact sequence of finite-dimensional vector spaces, n ≥ 2. Then
n∑
i=1

(−1)idim(Vi) = 0.

Proof. Let’s see it by induction. If n = 2, then, ϕ1 is bijective. Hence,

dim(V2) = dim(Im(ϕ1)) = dim(V1).

If n = 3, then ϕ2 is injective and ϕ1 is surjective. Hence, dim(V1) = dim(Im(ϕ1)) and dim(V3) =
dim(Im(ϕ2)). As V2 is a vector space, dim(V2) = dim(Im(ϕ1)) + dim(ker(ϕ1)). Moreover, due
to the exactness of the sequence, Im(ϕ2) = ker(ϕ1). Therefore,

dim(V3)−dim(V2)+dim(V1) = dim(Im(ϕ1))−[dim(Im(ϕ1))+dim(ker(ϕ1))]+dim(Im(ϕ2)) = 0.
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Suppose now that the sentence is true for every exact sequence with length k, such that k < n.
Let

0→ Vn
ϕn−1−−−→ Vn−1

ϕn−2−−−→ . . .
ϕ1−→ V1 → 0

be an exact sequence of length n, then, we can deduce the following sequences:

0→ Vn
ϕn−1−−−→ Vn−1

ϕn−2−−−→ . . .
ϕ3−→ V3

ϕ2−→ Im(ϕ2)→ 0,

0→ Im(ϕ2) ↪→ V2
ϕ1−→ V1 → 0.

The first sequence is obviosuly exact, because ϕ2 is surjective over its image. The second
sequence is also exact, due to the inclusion of Im(ϕ2) over V1 is injective, and ϕ1 is surjective
by hypothesis.
Therefore, there are two exact sequences of length n−1 and 3 respectively. Hence, dim(Im(ϕ2))−∑n
i=3 (−1)i+1dim(Vi) = 0 and dim(V1)− dim(V2) + dim(Im(ϕn−2)) = 0. Thus,

dim(V1)− dim(V2) +
n∑
i=3

(−1)i+1dim(Vi) =

=
n∑
i=1

(−1)i+1dim(Vi) = 0.

�

2.2. Affine Plane Curves and the Intersection Number

From this section, there are shown the new results that I have been gathering for my thesis. So
we start talking about the affine plane curves. We have seen that an hypersurface correspond to
a set of zeros of a nonconstant polynomial F ∈ k[X1, . . . , Xn] without multiple factors, where
F is determined up to multiplication by a nonzero constant. An hypersurface in the coordi-
nate ring k[X, Y ] is called an affine plane curve. For some purposes, it is useful to allow
F ∈ k[X, Y ] to have multiple factors, so we modify our definition slightly:

Definition 2.2.1. We say that two polynomials F,G ∈ k[X, Y ] are equivalent if F = λG for
some nonzero λ ∈ k. We define an affine plane curve to be an equivalence class of nonconstant
polynomials under this equivalence relation. The degree of a curve is the degree of a defining
polynomial for the curve. Observe that we admit non-reduced algebraic sets.

Observation 2.2.2. We often will ignore this equivalence distinction, and say, e.g., “the plane
curve F”, where F ∈ k[X, Y ].

Observation 2.2.3. If F is irreducible, V (F ) is a variety in A2. We will usually write Γ(F ),
k(F ), and OP (F ) instead of Γ(V (F )), k(V (F )), and OP (V (F )).

Definition 2.2.4. Let F be a curve, P ∈ F . The point P is called a simple point of F if
either derivative FX(P ) 6= 0 or FY (P ) 6= 0. A point that isn’t simple is called multiple (or
singular). A curve with only simple points is called a nonsingular curve.
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Example 2.2.5. If the curve is F k, k ≥ 2, all points are singular.

Definition 2.2.6. Let F be any curve, P = (a, b). Let T be a translation that takes (0, 0) to
P , i.e., T (x, y) = (x+a, y+b). Then, F T = F (X+a, Y +b). Write F T = Gm+Gm+1 + · · ·+Gn,
where Gi is a form in k[X, Y ] of degree i and Gm 6= 0. We define m to be the multiplicity of F
at P , denoted by mP (F ) := m. If Gm = ∏

Li
ri , Li = αiX+βiY , the lines αi(X−a)+βi(Y − b)

are defined to be the tangent lines to F at P , and ri is the multiplicity of the tangent.

Observation 2.2.7. P is a simple point in a irreducible curve F if and only if mp(F ) = 1.
Note the importance of allowing multiple factors of the polynomial F on the definition of the
multiplicity.

Definition 2.2.8. Suppose P is a simple point on an irreducible curve F . We let ordFP be the
order function on k(F ) defined by the DVR OP (F ). If G ∈ k[X, Y ] is another curve, and g
is its image in OP (F ), then ordFP (G) = dimk(OP (F )/(g)). If L is any line through P , then
ordFP (L) = 1 if L is not tangent to F at P , and ordFP (L) > 1 if L is tangent to F at P .

Definition 2.2.9. We say that F and G intersect properly at P if F and G have no common
component that passes through P .

Definition 2.2.10. Two curves F and G are said to intersect transversally at P if P is
a simple point both on F and on G, and if the tangent line to F at P is different from the
tangent line to G at P .

Proposition 2.2.11. Let F,G ∈ k[X, Y ] be polynomials with no common factors. Then
V (F,G) = V (F ) ∩ V (G) is a finite set of points.

Proof. F and G have no common factors in k[X, Y ] ∼= k[X][Y ], so they also have no common
factors in k(X)[Y ]. Since k(X)[Y ] is a PID (k(X) is a field), (F,G) = (1) in k(X)[Y ]. So,
exists C,D ∈ k(X)[Y ] such that CF +DG = 1. Then, there is a nonezero H ∈ k[X] such that
HC = A ∈ k[X][Y ] and HD = B ∈ k[X][Y ]. Therefore, AF + BG = H. If (a, b) ∈ V (F,G),
then H(a) = 0. But H has only a finite number of zeros. Thus, V (F,G) has only a finite number
of points in the X-coordinates. Since the same reasoning applies to the Y-coordinates, there
can be only a finite number of points. �

Proposition 2.2.12. Two plane curves F and G with no common components intersect in a
finite number of points.

Proof. It is a direct consequence of the Proposition 2.2.11. �

Definition 2.2.13. Let F and G be plane curves, P ∈ A2. We want to define the intersection
number of F and G at P , which it will be denoted by I(P, F ∩ G). We shall first list seven
properties we want this intersections number to have, and then we will prove that there is only
one possible definition that satisfies such properties.

Our first requirements are:
(1) I(P, F ∩ G) is a nonnegative integer for any F , G, and P such that F and G intersect
properly at P . If F and G do not intersect properly at P , I(P, F ∩G) =∞.
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(2) I(P, F ∩G) = 0 if and only if P /∈ F ∩G. That is to say, I(P, F ∩G) depends only on the
components of F and G that pass through P. Moreover, I(P, F ∩G) = 0 if F or G is a nonzero
constant.
(3) If T is an affine change of coordinate on A2, Q ∈ A2 and T (Q) = P , then I(P, F ∩ G) =
I(Q,F T ∩GT ).
(4) I(P, F ∩G) = I(P,G ∩ F ), i.e, the intersection number is symmetric.
(5) I(P, F ∩ G) = 1 when F and G meet transversally at P . More generally, I(P, F ∩ G) ≥
mP (F )mP (G), with equality occuring if and only if F and G have not tangent lines in common
at P .
(6) If F = ∏

F ri
i and G = ∏

G
sj

j , where Fi and Gj are forms in k[X, Y ] of degree i and j
repectively and ri, si ∈ Z≥0, then, I(P, F ∩G) = ∑

i, j risjI(P, Fi ∩Gj).
(7) I(P, F ∩G) = I(P, F ∩ (G+ AF )) for any A ∈ k[X, Y ].

Theorem 2.2.14. There is a unique intersection number I(P, F ∩ G) defined for all plane
curves F , G, and all points P ∈ A2, satisfaying properties (1)-(7). It is given by the formula

I(P, F ∩G) = dimk(OP (A2)/(F,G)).

Proof of uniqueness. Assume we have a number I(P, F ∩ G) defined for all F , G, and P ,
satisfaying (1)-(7). We will give a constructive procedure in order to compute I(P, F ∩G) using
only these seven properties, which is stronger than the required uniqueness. We may suppose
that I(P, F ∩G) is finite (by (1)), i.e, F and G have no common component that passes through
P . Let T be a translation that takes (0, 0) to P , by (3), we can suppose P = (0, 0).
If I(P, F ∩ G) = 0, then P /∈ F ∩ G, so for this case it has been already calculated. Thus,
let’s proceed by induction. Assume I(P, F ∩ G) = n > 0, and I(P, F ∩ G) can be calculated
whenever I(P, F ∩G) < n.
Let F (X, 0), G(X, 0) ∈ k[X] be two homogeneus polynomials of degree r, s respectively, where
r or s is taken to be zero if the polynomial vanishes. We may suppose r ≤ s due to the symmetry
of the intersection number.
Case 1 : r = 0. Then Y divides F , so F = Y H, and by (6),

I(P, F ∩G) = I(P, Y ∩G) + I(P,H ∩G).

If G(X, 0) = Xm(a0 + a1X + · · · + asX
s−m), a0 6= 0, then G(X, Y ) = G(X, 0) + Y A(X, Y ),

where A(X, Y ) ∈ k[X, Y ]. So, by (7),

I(P, Y ∩G) = I(P, Y ∩ (G(X, 0) + Y A)) = I(P, Y ∩G(X, 0)).

Moreover, by (6),

I(P, Y ∩G(X, 0)) = I(P, Y ∩Xm) + I(P, Y ∩ (a0 + a1X + · · ·+ asX
s−m)).

Due to P /∈ (a0 + a1X + · · ·+ asX
s−m), then, by (2),

I(P, Y ∩ (a0 + a1X + · · ·+ asX
s−m)) = 0.
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Besides, as Xm and Y have no tangent lines in common, by (5),

I(P, Y ∩Xm) = deg(Y ) · deg(Xm) = 1 ·m = m.

Since P ∈ G and, by (1), m > 0, we get that I(P,H ∩ G) = n −m < n and by induction, it
can be computed. Consequently, I(P, F ∩G) can be calculated.

Case 2 : r > 0. Let’s multiply F and G by constants that make F (X, 0) and G(X, 0) monic (as
F,G ∈ k[X, Y ], and k is a field). Let H = G−Xs−rF . Then, by (7),

I(P, F ∩G) = I(P, F ∩ (H +Xs−rF )) = I(P, F ∩H),

and deg(H(X, 0)) = t < s. Repeating this process (interchanging the order of F and H if t < r)
a finite number of times, we eventually reach a pair of curves A, B that fall under Case 1, and
with I(P, F ∩G) = I(P,A ∩B). This concludes the proof. �

Proof of existence. (Idea) Define I(P, F ∩ G) to be dimk(OP (A2)/(F,G)). We must show
that properties (1)− (7) are satisfied.
As (F,G) = (G,F ) = (F,G + AF ) for any A ∈ k[X, Y ], properties (4) and (7) are clearly
satisfied. Moreover, due to an affine change of coordinates on A2 is an isomorphism, (3) is
obvious. Besides, as dimk(OP (A2)/(F,G)) depends only on the ideal OP (A2) generated by F
and G, property (2) is, as well, direct.
Then, we may assume that P = (0, 0) and that all the components of F and G pass through
P .
For seeing (1): if F and G have no common components, by Proposition 2.2.12, I(P, F ∩ G)
is finite. If F and G have a common component H, then (F,G) ⊂ (H), so I(P, F ∩ G) ≥
dimk(OP (A2)/(H)). Thus, it’s sufficient to see that OP (A2)/(H) ∼= OP (H), due to Γ(H) ⊂
OP (H) and Γ(H) is infinite-dimensional (as V (F,G) is infinite dimensional).
To prove (6), it is enough to show that I(P, F ∩ GH) = I(P, F ∩ G) + I(P, F ∩ H) for any
F,G,H. If F and GH have no common components (since is clear otherwise) then the idea is
to see that the following sequence

0→ OP (A2)/(F,H) ψ−→ OP (A2)/(F,GH) ϕ−→ OP (A2)/(F,G)→ 0

is a short exact sequence.
In order to see all the details of the proof, see [1], §5.3. �

Now, let’s see an example of the intersection number between two curves that intersect properly
at P = (0, 0):

Example 2.2.15. Given the curves A = Y −X2, C = Y 2 −X3 and the point P = (0, 0), let
us calculate I(P,A ∩ C).
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A = Y −X2 C = Y 2 −X3

Figure 1: Intersection number of curves A and C

First, by (7),
I(P,A ∩ C) = I(P,A ∩ (C − AX)) = I(P,A ∩ Y (Y −X)).

Then, using the property (6),

I(P,A ∩ Y (Y −X)) = I(P,A ∩ Y ) + I(P,A ∩ (Y −X)).

Next, choosing the plane curves H = A− Y and G = A− (Y −X), by (7) and (4),

I(P,A ∩ Y ) + I(P,A ∩ (Y −X)) = I(P, Y ∩ A) + I(P, (Y −X) ∩ A) =

= I(P, Y ∩H) + I(P, (Y −X) ∩G) = I(P, Y ∩ (−X2)) + I(P, (Y −X) ∩X(1−X)).

Finnaly, using the properties (5) and (2),

I(P,A ∩ C) = I(P, Y ∩ (−X2)) + I(P, (Y −X) ∩X(1−X)) = mP (Y )mP (−X2)+

+I(P, (Y −X) ∩X) + I(P, (Y −X) ∩ (1−X)) = 1 · 2 + I(P, Y ∩X) + 0 =

= 2 +mP (Y )mP (X) = 2 + 1 · 1 = 3.

Proposition 2.2.16. There are two more properties of the intersection number:
(8) If P is a simple point on F , then I(P, F ∩ G) = ordFP (G) (where ordFP (G) is the order
function on k(F ) defined by the DVR OP (F )).
(9) If G and F have no components in common, then∑

P

I(P, F ∩G) = dimk(k[X, Y ]/(F,G)).

Proof. (8) We may assume that F is irreducible. Let g be the image of G at OP (F ). Then,
ordFP (G) = dimk(OP (F )/(g)). Since OP (F )/(g) is isomoprhic to OP (A2)/(F,G) (Proposition
2.1.22 ),

ordFP (G) = dimk(OP (F )/(g)) = dimk(OP (A2)/(F,G)) = I(P, F ∩G).

�
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(9) Due to G and F have no common components, then they intersect in a finite number of
points (Proposition 2.2.12 ). So, let I = (F,G) ⊂ k[X, Y ] be the ideal of the two curves, then
V (I) = {P1, . . . , PN} is finite.
We know by Proposition 2.1.20 that there exists a natural isomoprhism of k[X, Y ]/I with

N∏
i=1
OPi

(An)/IOPi
(An).

Therefore, dimk(k[X, Y ]/I) = ∑N
i=1 dimk(OPi

(An)/IOPi
(An)) = ∑N

i=1 I(Pi, F ∩G). �

3. PROJECTIVE ALGEBRAIC CURVES

3.1. Projective Varieties

In this section we develop the idea of algebraic sets in Pn. Since the concepts and most of the
proofs are enterely similar than the affine algebraic sets, I will skipe most of them.

Definition 3.1.1. A point P ∈ Pn is said to be a zero of a polynomial F ∈ k[X0, . . . , Xn] if
F (a0, . . . , an) = 0, for every choice of homogeneous coordinates (a0, . . . , an) for P .

Definition 3.1.2. For any set S of polynomials in k[X0, ..., Xn], we let

V (S) = {P ∈ Pn; P is a zero of each F ∈ S},

which is called an algebraic set in Pn, or a projective algebraic set. If I = 〈S〉 is the ideal
generated by S, V (I) = V (S).

Definition 3.1.3. For any set X ⊂ Pn, we let

I(X) = {F ∈ k[X0, ..., Xn]; every P ∈ X is a zero of F}.

The ideal I(X) is called the ideal of X. An ideal I ⊂ k[X0, ..., Xn] is called homogeneous if
for every F = ∑m

i=0 Fi ∈ I, Fi a form of degree i, we have also Fi ∈ I. For any set X ⊂ P n,
I(X) is a homogeneous ideal.

Observation 3.1.4. The projective algebraic sets and the ideals of projective sets, satisfies the
same properties as in the affine case (Properties 2.1.3 and Properties 2.1.5 ).

Proposition 3.1.5. An ideal I ⊂ k[X0, ..., Xn] is homogeneous if and only if it is generated by
a finite set of forms.

Definition 3.1.6. An algebraic set V ⊂ Pn is irreducible if it is not the union of two smaller
algebraic sets. An irreducible algebraic set in Pn is called a projective variety. Any projective
algebraic set can be written uniquely as a union of projective varieties, wich are called its
irreducible components.

Proposition 3.1.7. An algebraic set V ⊂ Pn is irreducible if and only if I(V ) is prime.
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Theorem 3.1.8. (Projective Nullstellensatz) Let I ⊂ k[X0, ..., Xn] be an homogeneous
ideal, then:

(1) V (I) = ∅ if and only if (X0, . . . , Xn) = rad(I).
(2) If V (I) 6= ∅, I(V (I)) = rad(I).

Definition 3.1.9. Let V be a nonempty projective variety in Pn. Then, I(V ) is a prime ideal,
so the residue ring

Γ(V ) = k[X0, ..., Xn]
is a domain. It is called the homogeneous coordinate ring of V .

Definition 3.1.10. We call the homogeneous function field of a nonempty projective va-
riety V the quotient field of Γ(V ), which is denoted by k(V ). In contrast with the case of affine
varieties, f/g (f, g ∈ Γ(V )) defines a function, at least where g is not zero, if f, g are both forms
of the same degree. In that case, we say that f/g is defined at P ∈ V if g(P ) 6= 0. Moreover, if
f/g, f ′/g′ ∈ k(V ),

f/g ∼ f ′/g′ ⇔ fg′ − f ′g ∈ I(V ).

Definition 3.1.11. We let

OP (V ) = {h = f/g ∈ k(V ); h is defined at P},

be the local ring of V at P . We define its maximal ideal as

mP (V ) = {h = f/g ∈ k(V ); g(P ) 6= 0, f(P ) = 0}.

Proposition 3.1.12. Let U0 = {(a0, . . . , an) ∈ Pn; a0 6= 0}, we consider An as a subset of Pn
by means of the map ϕ0 : An −→ U0 such that ϕ0(a1, . . . , an) = (1, a1, . . . , an). Let V ⊂ An be
an algebraic set, I = I(V ) ⊂ k[X1, . . . , Xn]. Let I∗ = {F ∗; F ∈ I} ⊂ k[X0, ..., Xn]. This I∗ is
an homogeneous ideal, and we define V ∗ = V (I∗) ⊂ Pn. Then, it is satisfied:

(i) ϕ0(V ) = V ∗ ∩ U0, and (V ∗)∗ = V ({G∗; G ∈ I∗} = V .
(ii) If V ⊂ W ⊂ An, then V ∗ ⊂ W ∗ ⊂ Pn.
(iii) If V is irreducible in An, then V ∗ is irreducible in Pn.
(iv) If V = ∪iVi is the irreducible decomposition of V in An, then V ∗ = ∪iV ∗i is the irreducible
decomposition of V ∗ in Pn.
(v) If V ( An is not empty, then no component of V ∗ lies in or contains H∞ = Pn \ U0.

3.2. Projective Plane Curves and the Intersection Number

Let F ∈ k[X0, ..., Xn] be an homogeneus polynomial, we refer to the projective set V (F ) as a
hypersurface on Pn. Note that in the definition of projective sets, we are not allowing multiple
factors on F . So, we deffine a projective plane curve to be a hypersurface in P2 except that,
as with affine curves, we want to allow multiple components:
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Definition 3.2.1. We say that two nonconstant forms F , G ∈ k[X, Y, Z] are equivalent if
there is a nonzero λ ∈ k such that G = λF . A projective plane curve is an equivalence class
of forms. The degree of a curve is the degree of a defining form. Curves of degree 1, 2, 3 and
4 are called lines, conics, cubics, and quartics respectively.

Definition 3.2.2. Two curves F and G are said to be projectively equivalent if there is a
projective change of coordinates T such that G = F T . Everything we will say about curves will
be the same for two projectively equivalent curves.

Definition 3.2.3. If F ∈ k[X0, ..., Xn] is a projective curve, then we define the multiplicity of
F at P ∈ Ui = {(a0, ..., an) ∈ Pn; ai 6= 0} as mP (F ) = mP (F∗), where F∗ is a dehomogenization
of F respect to Xi. The multiplicity is independent of the choice of Ui, and invariant under
projective change of coordinates.

Definition 3.2.4. Let F , G be projective plane curves, P ∈ P2. We define the intersection
number I(P, F ∩G) to be dimk(OP (P2)/(F∗, G∗)). This is independent of the way that F∗ and
G∗ are formed, and it satisfies properties (1)-(9) of the intersection number in the affine case.
In (3), however, T should be a projective change of coordinates, and in (7), A should be a form
of degree deg(A) = deg(G)− deg(F ).

Definition 3.2.5. We say that a line L is tangent to a curve F at P if I(P, F ∩L) > mp(F ).
A point P in F is an ordinary multiple point of F if F has mp(F ) distinct tangents at P .

Proposition 3.2.6. Two projective plane curves F and G with no common components inter-
sect in a finite number of points.

Proof. Using that k(X1, X2)[X3] is a DIP, this proof is an extension of the proof of the Propo-
sition 2.2.11. �

3.3. Bézout’s Theorem

The projective plane was constructed so that any two distinct lines would intersect at one point.
The famous theorem of Bézout tells us that much more is true. Of course, here the hypothesis
of k = k is crucial.

Theorem 3.3.1. (Bézout’s Theorem) Let F and G be projective plane curves of degree m
and n respectively. Assume F and G have no common component. Then∑

P

I(P, F ∩G) = mn.

Proof. By Proposition 3.2.6, as F and G have no common component, F ∩G is finite. So we
may assume, by a projective change of coordinates if necessary, that none of the points in F ∩G
is on the line at infinity Z = 0.
Then, ∑P I(P, F ∩G) = ∑

P I(P, F∗ ∩G∗) = dimkk[X, Y ]/(F∗, G∗), by property (9) of inter-
section number. Let

γ∗ = k[X, Y ]/(F∗, G∗), γ = k[X, Y, Z]/(F,G), R = k[X, Y, Z],
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and let γd (resp. Rd) be the vector space of forms of degree d in γ (resp. R). The theorem will
be proved if we can show that dimkγ∗ = dimkγd and dimkγd = mn for some large d.
Step 1: dimkγd = mn for all d ≥ m+ n.
Let π : R → γ be the natural map (or canonical map), let φ : R ⊕ R → R be defined by
φ(A,B) = AF +BG, and let ψ : R→ R⊕R be defined by ψ(C) = (GC,−FC). Using the fact
that F and G have no common factors, it is not difficult to check the exactness of the following
sequence:

0→ R
ψ−→ R⊕R φ−→ R

π−→ γ → 0.

(i) π, by the definition of the canonical map, it is an epimorphism.
(ii) ker(π) = Im(φ):

(⊆) Let H ∈ ker(π), then, π(H) = 0̄, so, H ∈ (F,G). Therefore, H = AF +BG = φ(A,B),
where A,B ∈ R. Thus, H ∈ Im(φ).

(⊇) Let H ∈ Im(φ), then, H = AF + BG, for some A,B ∈ R. So, π(H) = π(AF + BG) =
π(AF ) + π(AG) = 0̄. Thus, H ∈ ker(π).
(iii) ker(φ) = Im(ψ):

(⊆) Let (A,B) ∈ ker(φ), then, φ(A,B) = 0, so, AF = −BG. Due to F and G have no com-
mon factors, thus, A = GC and B = −FC, where C ∈ R. Therefore, (A,B) = (GC,−FC) =
ψ(C), and (A,B) ∈ Im(ψ).

(⊇) Let (A,B) ∈ Im(ψ), then, exists C ∈ R such that ψ(C) = (GC,−FC) = (A,B). So,
φ(A,B) = φ(GC,−FC) = (GC)F + (−FC)G = 0. Thus, (A,B) ∈ ker(φ).
(iv) ψ injective:
Let C1, C2 ∈ R such that ψ(C1) = ψ(C2). Then, (GC1,−FC1) = (GC2,−FC2) if and only if
for some λ, µ ∈ C \ {0}, {

GC1 = λGC2
FC1 = µFC2

⇔
{
C1 = λC2
C1 = µC2

Therefore, C1 = λC2, λ = µ and ψ is injective.
Now, if we restrict these maps to the forms of various degrees, we get the following exact
sequence:

0→ Rd−m−n
ψ−→ Rd−m ⊕Rd−n

φ−→ Rd
π−→ γd → 0.

Since R = k[X, Y ], dimkRd−λ =
(
d+2−λ

2

)
, and it follows from Proposition 2.1.28 that

dimkγd = dimk(Rd)− dimk(Rd−m ⊕Rd−n) + dimk(Rd−m−n) =
(
d+ 2

2

)
−
(
d+ 2−m

2

)

−
(
d+ 2− n

2

)
+
(
d+ 2−m− n

2

)
= (d+ 2)(d+ 1)

2 − (d+ 2−m)(d+ 1−m)
2

−(d+ 2− n)(d+ 1− n)
2 + (d+ 2−m− n)(d+ 1−m− n)

2 = mn,

if d ≥ m+ n.
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Step 2: The map α : γ → γ defined by α(H) = ZH (where the bar denotes residue modulo
(F,G)) is one-to-one:
We must show that if ZH = AF + BG, then H = A′F + B′G for some A′, B′. For any
J ∈ k[X, Y, Z], denote J0 = J(X, Y, 0). Since F,G, and Z have no common zeros, F0 and G0
are relatively prime forms in k[X, Y ].
If ZH = AF +BG, then A0F0 = −B0G0, so B0 = F0C and A0 = −G0C for some C ∈ k[X, Y ].
Let A1 = A + CG, B1 = B − CF . Since (A1)0 = (B1)0 = 0, we have A1 = ZA′, B1 = ZB′ for
some A′, B′. Then, since ZH = A1F +B1G, it follows that H = A′F +B′G, as claimed.
Step 3: Let d ≥ m+ n, and choose A1, ..., Amn ∈ Rd whose residues in γd forms a basis for γd.
Let Ai∗ = Ai(X, Y, 1) ∈ k[X, Y ], and let ai be the residue of Ai∗ in γ∗. We will se that a1, ..., amn
forms a basis for γ∗.
First notice that if d ≥ m + n, the map α of Step 2 restricts to an isomorphism from γd onto
γd+1, due to dimk(γd) = dimk(γd+1) = mn and a one-to-one linear map of vector spaces of the
same dimension is an isomorphism. Then, it follows that the residues of ZrA1, ..., Z

rAmn form
a basis for γd+r for all r ≥ 0.
Now let’s see that the ai generate γ∗. If h = H ∈ γ∗, H = b1F∗+b2G∗ ∈ k[X, Y ], by Proposition
2.1.26, some ZNH∗ is a form of degree d + r, so ZNH∗ = ∑mn

i=1 λiZ
rAi∗ + BF + CG for some

λi ∈ k, B, C ∈ k[X, Y, Z]. Then H = (ZNH∗)∗ = ∑
λiAi∗ +B∗F∗ + C∗G∗, so h = ∑

λiai, as
desired.
Finally, we will see that the ai are independent. If ∑λiai = 0, then ∑

λiAi∗ = BF∗ + CG∗.
Therefore, by Proposition 2.1.26,

Zr
∑

λiAi = ZsB∗F + ZtC∗G,

for some r, s, t. But then ∑λiZrAi = 0 in γd+r, and the ZrAi form a basis, so each λi = 0.
Therefore,∑

P

I(P, F ∩G) =
∑
P

I(P, F∗ ∩G∗) = dimkk[X, Y ]/(F∗, G∗) = dimkk[X, Y ]/(F,G) = mn.

This ends the proof. �

Corollary 3.3.2. If F and G have no common component, then∑
P

mP (F )mP (G) ≤ deg(F ) · deg(G).

Proof. By Bézout’s Theorem, ∑P I(P, F ∩G) = deg(F ) · deg(G). Using the property (5) of
the intersection number, deg(F ) · deg(G) = ∑

P I(P, F ∩G) ≥ ∑P mP (F )mP (G). �

Corollary 3.3.3. If F and G meet in mn distinct points, m = deg(F ), n = deg(G), then these
points are all simple points on F and on G, and they have not a component in common.

Corollary 3.3.4. If two curves F and G of degrees m and n respectively, have more than mn
points in common, then they have a common component.
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Theorem 3.3.5. (Pascal’s Theorem) Given an hexagon inscribed in a conic section, the
three pairs of the continuations of the opposite sides meet on a straight line (called the Pascal
line).

Proof. Let P1, . . . , P6 be the six vertex of the hexagon and let Q be the conic section that
have the hexagon inscribed. Suppose F is the cubic homogeneous polynomial that defines the
union of the three lines P1P2, P3P4, P5P6 (consisting on three sides of the hexagon that are not
adjacents between them) and G is the cubic homogeneous polynomial that defines the union of
the other three lines P2P3, P4P5, P6P1. Let’s denote by C1 and C2 the cubics defined by F and
G respectively. From Bézout’s Theorem follows that the two cubics intersects in 9 points (C1
and C2 have no common factors), so let P1, P2, P3, P4, P5, P6, R1, R2, R3 be these nine points.
Let P be another point of the conic, different from Pi (i = 1, . . . , 6), and let λ, µ ∈ C such
that the polynomial H = µG + λF vanishes on P. Let C be the cubic defined by H. Then, C
has seven points in common with the conic. Since deg(Q) · deg(C) = 6 < 7, we conclude, by
Corollary 3.3.4, that the conic and the cubic C have a common component. For degree reasons
and because and hexagon have no three collinear point, the only possibility of this is that the
cubic C is reducible and contains the conic as a factor. Therefore, C = Q∪L, where L is a line.
Finally, as P1, P2, P3, P4, P5, P6, R1, R2, R3 lie on C1 and C2, then lie on C. Thus, as R1, R2, R3
are not in Q, then R1, R2, R3 ∈ L. �

3.4. Max Noether’s Fundamental Theorem

Max Noether’s Theorem is a useful tool in order to prove some important results in algebraic
geometry, from the classics to the more contemporary. This theorem is concerned with the
following situation: suppose F,G are curves with no common factors, and H is another curve
satisfying G∩F ⊂ H ∩F counted with multiplicity, i.e, if P has multiplicity m in G∩F , then
it has mutiplicity m′ ≥ m in H ∩ F . So, when is there a curve B such that B intersects with
F in the points of H ∩ F that are not in G ∩ F?
Let’s see first some definitions that will make easier and more understandable the writting of
the statement:

Definition 3.4.1. A zero-cycle on P2 is a formal sum ∑
P∈P2 nPP , where nP ’s are integers,

and all but a finite number of them are zero. The degree of a zero cycle ∑nPP is defined to
be ∑nP . The zero cycle is positive if each np ≥ 0. We say that ∑nPP is bigger than ∑ rPP ,
and write ∑nPP ≥

∑
rPP , if each np ≥ rp.

Definition 3.4.2. Let F , G be projective plane curves of degrees m, n respectively, with no
common components. We define the intersection cycle F ·G by

F ·G =
∑
P∈P2

I(P, F ∩G)P .

Observation 3.4.3. Bézout’s Theorem says that F ·G is a positive zero-cycle of degree mn.

20



Properties 3.4.4. (1) F ·G = G · F .
(2) F ·GH = F ·G+ F ·H.
(3) F · (G+ AF ) = F ·G, if A is a form and deg(A) = deg(G)− deg(F ).

Definition 3.4.5. Let P ∈ P2, F , G curves with no common component through P , H another
curve. We say that Noether’s Conditions are satisfied at P (with respect to F , G, and
H), if H∗ ∈ (F∗, G∗) ⊂ OP (P2), i.e., if there are a, b ∈ OP (P2) such that H∗ = aF∗ + bG∗.

Theorem 3.4.6. (Max Noether’s Fundamental Theorem) Let F ,G,H be projective plane
curves. Assume F and G have no common components. Then there is an equation H = AF+BG
(with A, B forms of degree deg(H) − deg(F ), deg(H) − deg(G) respectively) if and only if
Noether’s conditions are satisfied at every P ∈ F ∩G.

Proof. (⇒) If H = AF +BG, then H∗ = A∗F∗ +B∗G∗ at any P .
(⇐) By Proposition 3.2.6, as F and G have no common components, they intersect in a finite
number of points. Then, we may assume, by a projective change of coordinate if necessary, that
none of the points in F ∩G is on the line at infinity Z = 0. That means V (F,G, Z) = 0.
We may take F∗ = F (X, Y, 1), G∗ = G(X, Y, 1), H∗ = H(X, Y, 1). Noether’s conditions say that
the residue of H∗ in OP (P2)/(F∗, G∗) is zero for each P ∈ F ∩G.
It follows from Proposition 2.1.20 that the residue of H∗ in k[X, Y ]/(F∗, G∗) is zero, i.e., H∗ =
aF∗ + bG∗, a, b ∈ k[X, Y ].
Moreover, let r1 and r2 be the highest power of Z that divides F and G respectively, and let
r = r1 + r2. By Proposition 2.1.26,

ZsH = Zr(H∗)∗ = Zr(aF∗)∗ + Zr(bG∗)∗ = AF +BG,

for s ≤ r, A = Zr2(a)∗, B = Zr1(b)∗.
Besides, we see in the step 2 of the proof of the Bézout’s Theorem that

α : k[X, Y, Z]/(F,G)→ k[X, Y, Z]/(F,G)

defined by α(H) = ZH is one-to-one. So the multiplication by Z on k[X, Y, Z]/(F,G) is one-
to-one. Then,

H = A′F +B′G

for some A′, B′.
If A′ = ∑

A′i, B′ = ∑
B′i, A′i, B′i forms of degree i, as F and G have no common components,

then
H = A′sF +B′tG,

with s = deg(H)− deg(F ), t = deg(H)− deg(G). �

Max Noether’s Fundamental Theorem is also known as Af + Bϕ Theorem. Of course,
the usefulness of this theorem depends on finding criteria that ensure that Noether’s conditions
are satisfied at P .
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Proposition 3.4.7. Let F , G, H be plane curves, P ∈ F ∩G. Then Noether’s conditions are
satified at P if P is a simple point on F and I(P,H ∩ F ) ≥ I(P,G ∩ F ).

Proof. I(P,H ∩ F ) ≥ I(P,G ∩ F ) implies that ordFP (H) ≥ ordFP (G) (Property (9) of the
intersection number), so

H∗ ∈ (G∗) ⊂ OP (F ).
Since OP (F )/(G∗) ∼= OP (P 2)/(F∗, G∗) (Proposition 2.1.22 ), the residue of H∗ is zero in
OP (P 2)/(F∗, G∗). �

Corollary 3.4.8. If all the points of F ∩ G are simple points of F , and H · F ≥ G · F , then
there is a curve B such that B · F = H · F −G · F .

Proof. If H · F ≥ G · F , then, ∀P ∈ F ∩ G, P ∈ H ∩ G. Moreover, by the intersection
cycles properties, ∀P ∈ F ∩G, I(P,H ∩ F ) ≥ I(P,G∩ F ). So, by Proposition 3.4,7, Noether’s
conditions are satified at every P ∈ F ∩G. Therefore, using Max Noether’s Theorem, there is
an equation H = AF + BG (with A, B forms of degree deg(H) − deg(F ), deg(H) − deg(G)
respectively).
Finally,

H · F = (AF +BG) · F = BG · F = B · F +G · F.
�

Observation 3.4.9. B has to be a curve of degree deg(B) = deg(H)− deg(G).

3.5. Applications of Af +Bϕ Theorem

We indicate in this section a few of the many interesting consequences of the Max Noether’s
Theorem. We will begin with the proof of one of the classical algebraic geometry problems, the
Pappus Theorem. It appears as Proposition 139 of Book VII of the Mathematical Collection of
Pappus d’Alexandria in the fourth century A.D.

Theorem 3.5.1. (Pappus theorem) Let L1, L2 be two lines and P1, P2, P3 ∈ L1, Q1, Q2, Q3 ∈
L2 six points (none of these points in L1 ∩L2). Let Lij be the line between Pi and Qj. For each
i, j, k with {i, j, k} = {1, 2, 3}, let Rk = Lij · Lji (i 6= j). Then R1, R2 and R3 are collinear.

P1

Q1

P2

P3

Q2
Q3

R1 R2 R3i

Figure 2: Pappus theorem
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Proof. Let Q the conic formed by L1 and L2. Let C1, C2 be cubics, where C1 = L12L13L23 and
C2 = L21L31L32. Then, C1 · C2 = P1 + P2 + P3 + Q1 + Q2 + Q3 + R1 + R2 + R3 ≥ C1 · Q =
P1+P2+P3+Q1+Q2+Q3. By Corollary 3.4.8, there is a curve L such that L·C1 = C2·C1−Q·C1,
satisfying deg(L) = deg(C2)− deg(Q) = 1. Therefore, R1, R2 and R3 are collinear. �

In Theorem 3.3.5, we saw a proof of one implication of the Pascal’s Theorem using the Bézout’s
Theorem. Now, with the Max Noether’s Theorem, we will see the reciprocal as well.

Theorem 3.5.2. (Pascal’s Theorem) An hexagon with vertices P1, P2, . . . , P6 is inscribed in
an irreducible conic, if and only if, the opposite sides meet in three collinear points Q1, Q2, Q3.

P1

P2

P3

P4

P5

P6

Q3

Q2

Q1

Figure 3: Pascal’s Theorem

Proof. Let C1 be the union of three non adjacent sides of the hexagon, and let C2 be the union
of the other three sides. Then, C1 and C2 are cubics. Suppose Q is the conic which has the
hexagon inscribed. Then,

C1 · C2 ≥ C1 ·Q.
Using the Corollary 3.4.8, as all the points on the conic are simple, there is a curve L such that
L · C1 = C2 · C1 −Q · C1, satisfying deg(L) = deg(C2)− deg(Q) = 1. Thus, the opposite sides
meet in collinear points. �

Observation 3.5.3. Pappu’s Theorem becomes a special case of Pascal’s Theorem if we allow
a conic to be degenerated, i.e, the union of the two lines L1 and L2. Then, the six points Pi
must be taken with P1, P2, P3 ∈ L1 and P4, P5, P6 ∈ L2, and Pi 6= L1 ∩ L2 for every i.

The following theorem is known as Cayley-Bacharach Theorem. However, in a papers written
by the mathematicians David Eisenburd, Mark Green and Joe Harris, the name of the theorem
is atributted to Chasles, so in order to be impartial, I will denote the theorem as Chasles-
Cayley-Bacharach Theorem.

Theorem 3.5.4. (Chasles-Cayley-Bacharach Theorem) Let C1, C2 be cubic plane curves
meeting in nine points P1, . . . , P9. If C is any cubic containing P1, . . . , P8, then C contains P9
as well.
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a = 1

b = 1

f

P1 P2
P3

P9

P6

P5

P8

P7

P4

Figure 4: Chasles-Cayley-Bacharach Theorem

Proof. Suppose that
C1 · C = P1 + · · ·+ P8 +R.

Let L be a line through P9 that doesn’t pass through R. Then,

L · C1 = P9 + S1 + S2.

Consequently,

LC2 · C1 = L · C1 + C2 · C1 = P1 + · · ·+ P9 +R + S1 + S2.

As C2 · C1 < LC2 · C1, using Corollary 3.4.8, there is a curve L1 such that

L1 · C1 = LC2 · C1 − C2 · C1 = R + S1 + S2

and deg(L1) = deg(LC2)− deg(C2) = 1.
So, L1 is a line passing through S1 and S2. Since two points spans a line, L = L1 and R = P9.
�

Observation 3.5.5. Pascal’s Theorem follows if we take the cubics C1 and C2 to be the
triangles formed by alternate edges of the hexagon, C1 = P1P2 ∪ P3P4 ∪ P5P6 and C2 =
P1P6 ∪ P2P3 ∪ P4P5, and take C to be the union of the conic Q and the line R1R2, where
R1 = P1P2 ∩ P4P5 and R2 = P3P4 ∩ P6P1. The point R3 = P5P6 ∩ P2P3 also lies on C1 ∩ C2,
so Chasles-Cayley-Bacharach Theorem says it must lie on C, i.e, it must lie on the union of Q
and R1R2. Since it does not lie on Q, it must lie on R1R2.
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A point P of a nonsingular cubic C is called a flex if I(P,C ∩ L) = 3, where L is the tangent
of C at P . It is known that a nonsingular cubic has always 9 different flexes. The following
theorem tells us much more:

Theorem 3.5.6. A line joining two different flexes of a cubic passes through a third flex.

Figure 5: Three flexes of a cubic

Proof. Let C be the cubic and let P , Q be the two flexes of the cubic. By Bézout’s Theorem,
the line PQ and the cubic meet in three points. Let R be the third point where they meet,
then,

C · PQ = P +Q+R.

Let L be the tangent of C at R, hence, C · L = 2R + S. Let now L1 be the tangent of C at P
and L2 be the tangent of C at Q. Then, C · L1 = 3P i C · L2 = 3Q.
Let C1 be the union of L, L1, L2 and let 2PQ be the two times union of PQ then

C · C1 = 3P + 3Q+ 2R + S ≥ 2P + 2Q+ 2R = 2PQ · C.

Therefore, using Corollary 3.4.8, exists a curve B such that deg(B) = deg(C1)−deg(2PQ) = 1
and

B · C = P +Q+ S.

Thus, B = PQ, R = S and R is a flex. �

Observation 3.5.7. Notice the importance of k = k, because since the number of flexes in a
cubic is finite, the theorem is false in the Real Euclidean plane (Sylveser-Gallai Theorem):

Theorem 3.5.8. (Sylveser-Gallai Theorem) Given a finite number of points in the Eucli-
dean plane, either all the points are collinear, or there is a line which contains exactly two
points.
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Proof. Suppose by contradiction that we have a finite set of points not all collinear but such
that at least each three points are collinear. Call it S. Let’s define a connecting line to be a line
which contains at least three points of S. Let’s choose the pair (P,L) where P ∈ S and L is a
connecting line which not contains P , satisfying that they have the smallest positive distance
apart among all point-line pairs. That is to say that if there are another pair (Q,M) such that
Q ∈ S and M is a connecting line that not contains Q, then dist(Q,M) ≥ dist(P,L).
By hypothesis, the connecting line L goes through at least three points of S. So dropping a
perpendicular M ′ from P to L, there must be at least two points on one side of the perpendicular
(allowing that one could be exactly on the intersection of the perpendicular with L). Of those
two points, call P1 the point closer to the perpendicular, and call the other point P2. Draw the
line L′ connecting P to P2. By hypothesis, L′ is a connecting line because we suppose that a
line through two points of S passes through a third. Moreover, dist(P1, L

′) ≤ dist(M ′∩L,L′) ≤
dist(P,L) (the hypotenuse of a right triangle T is always grater or equal than the two other
sides of T).
Therefore, we have found a pair (P1, L

′) which have smaller distance than (P,L). Thus, there
cannot be a smallest positive distance between point-line pairs, i.e, every point must be distance
0 from every line. In other words, every point must lie on the same line if each connecting line
has at least three points.

P

L

M ′

P1 P2

P3

L′

Figure 6: Sylveser-Gallai Theorem

�

Finally, an important result on the elliptic curves theory, its structure as an abelian group, it
can be easly proved by the Max Noether’s Fundamental Theorem.

Definition 3.5.9. (Addition on a cubic) Let C be a nonsingular cubic. For any two points
P , Q ∈ C, there is a unique line L such that L · C = P + Q + R, for some R ∈ C. (If P = Q,
L is the tangent to C at P ). Define ϕ : C × C → C by setting ϕ(P,Q) = R. This ϕ is like an
addition on C, but there is no identity. To remedy this, choose a point O on C. Then define an
addition ⊕ on C as follows:

P ⊕Q = ϕ(O,ϕ(P,Q)).

Theorem 3.5.10. C, with the opperation ⊕, forms an abelian group, with the point O being
the identity.
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O

S′

U

U ′

S

Q

P

R

T ′ = T ′′

Figure 7: Addition on a cubic

Proof of associativity. Suppose P,Q,R ∈ C. Let L1 ·C = P +Q+S ′, L2 ·C = S+R+T ′ and
M1 ·C = O+S ′+S. Also, let M2 ·C = Q+R+U ′, L3 ·C = O+U ′+U and M3 ·C = P +U+T ′′.
Since

(P ⊕Q)⊕R = ϕ(O,ϕ(P,Q))⊕R = ϕ(O, S ′)⊕R = S ⊕R = ϕ(O,ϕ(S,R)) = ϕ(O, T ′),
and
P ⊕ (Q⊕R) = P ⊕ ϕ(O,ϕ(Q,R)) = P ⊕ ϕ(O,U ′) = P ⊕ U = ϕ(O,ϕ(P,U)) = ϕ(O, T ′′),

it suffices to show that T ′ = T ′′.
Let C ′ = L1L2L3, C ′′ = M1M2M3 be cubics. Then

C ′ · C = P +Q+ S ′ + S +R +O + U ′ + U + T ′

and
C ′′ · C = P +Q+ S ′ + S +R +O + U ′ + U + T ′′.

So, we have two cubics that met another cubic in eight equal points. Then, by Chasles-Cayley-
Bacharach Theorem, they meet also at the ninth point. Therefore, T ′ = T ′′. �

3.6. Theory of Curves

On this section, I will give a brief introduction on Theory of Curves. The most of the results
form a part of the subject Algebraic Varieties, so I will not lay much in the details and I will
skip most of the proofs.
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Definition 3.6.1. If X ⊂ P2 is a nonsingular algebraic plane curve of degree d, then we define
a divisor D on X as a formal linear combination, with integer coefficients, of the points of X,
i.e.,

D =
∑
Pi∈X

niPi

where ni ∈ Z. By the degree of D we will mean the sum of its coefficients. The divisor is
called effective if all of its coefficients are nonnegative. For a homogeneous polynomial F we
will define its divisor as

(F ) =
∑
Qi∈C

mQi
(F )Qi.

Then, any rational function f ∈ k(X) determines a divisor (f) := (f)0 − (f)∞ on X called
principal divisor, where

(f)0 =
∑

Pi ∈ C
f(Pi) = 0

mPi
(f)Pi

and
(f)∞ =

∑
Pi ∈ C
1

f(Pi) = 0

mPi
(1/f)Pi.

Two divisors D and D′ are said to be linearly equivalent, written D ∼ D′, if they differ by
the divisor of a rational function.

Theorem 3.6.2. If X is a smooth projective curve, then every principal divisor on C has
degree 0.

Observation 3.6.3. If C and C ′ are plane curves defined by homogeneous polynomials F and
G, with no common components, then the intersection cycle (or divisor cut) C ·C ′ := F ·G =∑
P∈P2 I(P, F ∩G)P is an effective divisor. Moreover, if X is a nonsingular plane curve defined

by the homogeneous polynomial H, not contained neither in C nor in C ′, and we suppose that
C and C ′ satisfies deg(C) = deg(C ′), then the divisors F ·H and G ·H are linearly equivalent:
their differ by the principal divisor defined by the rational function F/G restricted to X, i.e.,

(F/G) = (F/G)0 − (F/G)∞ = (F )− (G) =
∑
Pi∈X

mPi
(F )Pi −

∑
Qi∈C

mQi
(G)Qi =

=
∑
P∈P2

I(P, F ∩H)P −
∑
Q∈P2

I(Q,G ∩H)Q = F ·H −G ·H.

In this context, we may give a new version of the Bézout’s Theorem using this concepts, which
we will use in the last chapter of these notes:

Theorem 3.6.4. (Bézout’s Theorem) Let X be a nonsingular algebraic plane curve X of
degree d. If C is a plane curve of degree e not containing any component of X, the degree of
the divisor cut on X by C is d · e.
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Proof. As X is a nonsingular curve, for each P in C ∩ X, I(P,X ∩ C) = mP (C). Moreover,
since C and X have no component in common, the two curves meet in d · e points (counted
with multiplicity), thus the degree of C ·X is∑

P∈C∩X
I(P,C ∩X) =

∑
P∈C∩X

mP (C) = d · e.

�

Definition 3.6.5. Let X ⊂ P2 be a nonsingular curve, the divisor class group (or Picard
group) of X is defined by

Cl(X) := Div(X)/ ∼,
where Div(X) is the group of the divisors on X.

Now I will introduce the regular and rational differential forms on a smooth curve, in order
to define the canonical divisor and to state the Riemann-Roch Theorem but without
proof.
A Riemann surface is a 1-dimensional complex manifold. The group of divisors on a compact
Riemann surface X is the free abelian group on the points of X. On a compact Riemann surface,
the degree of a principal divisor is zero; that is, the number of zeros of a meromorphic function
is equal to the number of poles, counted with multiplicity. As a result, the degree is well-defined
on linear equivalence classes of divisors.
We shall now define regular and rational differential forms on a smooth curve X. First, for each
open set U ⊂ X, we consider the vector space

φ(U) :=
{
ϕ : U → ∪P∈U

mP

m2
P

; ϕ(x) ∈ mP

m2
P

}

where mP is the maximal ideal of X at P . For a regular function f ∈ OX(U) := {f ∈
k(X); f is regular on U}, we define an element df ∈ φ(U) by

df(P ) := f − f(P ) mod(m2
P ).

Definition 3.6.6. An element ϕ ∈ Φ(U) is called a regular differential form on U if for
every point P ∈ U , there are a variety V and regular functions f1, . . . , fl, g1, . . . , gl ∈ OX(V )
such that

ϕ
∣∣∣
V

=
l∑

i=1
fidgi.

We shall now define rational differential forms. For this we consider pairs (U, ω), where U ⊂ X
is open and nonempty, and w is a regular differential form on U . We define an equivalence
relation by

(U, ω) ∼ (U ′, ω′)⇔ ω
∣∣∣
V

= ω′
∣∣∣
V

for some nonempty open V ⊂ U .

Definition 3.6.7. A rational differential form on X is an equivalence class of pairs (U, ω),
where U is a nonempty open set in X and ω is a regular differential form on U .
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From now, we will denote by H = ∑d
i=1 Pi the divisor cut on a nonsingular plane curve X of

degree d by a line L ⊂ P2.

Definition 3.6.8. We call the canonical divisor class, denoted by KX , as the divisor of zeros
minus the divisor of poles of any rational funtion on X. Abusing notation in a traditional way,
we shall also denote by KX any divisor in this class. Now, for a plane curve it is not hard to
compute KX by writting down a specific rational differential form. The result is a special case
of what algebraic geometers call the adjunction formula, and it tells us that

KX ∼ (d− 3) ·H =
d∑
i=1

(d− 3)Pi,

i.e., KX is the representator of the class consisting on divisors linearly equivalent to X · C,
where C is any curve of degree d− 3.

Observation 3.6.9. Notice that if Hj = ∑d
i=1 Pi is the divisor cut on a nonsingular plane

curve X of degree d by a line Lj = V (fj) (j = 1, 2), then H1 − H2 = (f1/f2). Thus, KX ∼
(d − 3) ·H1 ∼ (d − 3) ·H2, so not depend on the line choosen. Moreover, if C is any curve of
degree e defined by the homeogeneous polynomial F and L is a line defined by the homogeneous
polynomial G. Then, Le ·X − C ·X = (F/G). Thus,

e ·H ∼ Le ·X ∼ C ·X,

i.e., for any curve C of degree d, C is linearly equivalent to e ·H.

Definition 3.6.10. The genus of X is the integer g that satisfies deg(KX) = 2g − 2.

Observation 3.6.11. For a nonsingular plane curve X, if the ground field is C, then g is equal
to the topological genus of the compact Riemann surface C. Thus, since P1 is homeomorphic
to a sphere, if C is isomorphic to the projective line, then g = 0.

Now, we define a partial ordering on divisors on curves as follows. For divisors D1 = ∑
nPP

and D2 = ∑
mPP , we write

D1 ≥ D2 ⇔ nP ≥ mP for all P ∈ X.

Definition 3.6.12. For any divisor D on X, we shall denote by L(D) the vector space of
rational functions f such that D plus the divisor of f is effective. We denote the vector space
dimension of L(D) by l(D). For example, the only rational functions with no zeros or poles are
the constant functions, so l(0) = 1.

Observation 3.6.13. If D is a divisor on X such that deg(D) < 0, then, deg(−D) > 0 and if
there is f ∈ L(D) such that D plus the divisor of f is effective, then f would have more zeros
than poles on X, but the degree of a principal divisor is always zero. Thus, L(D) = {0} and
l(D) = 0.

Proposition 3.6.14. If D1 ∼ D2, then L(D1) ∼= L(D2). Hence, for every divisor D, exists
an effective divisor D′ such that L(D) ∼= L(D′) (if L(D) 6= 0, then ∃f ∈ L(D) such that
D′ := (f) +D ≥ 0 and D′ ∼ D).
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Observation 3.6.15. By Bézout’s Theorem, the degree of the divisor (d− 3) ·H is d(d− 3),
so we get 2g − 2 = d(d− 3)⇒ g = (d− 1)(d− 2)/2.

Definition 3.6.16. Let D be a divisor, we define a complete linear system (or complete
linear serie) as ∣∣∣D∣∣∣ := {D′ ≥ 0; D′ ∼ D} = {Df := D + (f); 0 6= f ∈ L(D)}.

Proposition 3.6.17. There is a natural bijection between the complete linear system
∣∣∣D∣∣∣ and

the projective space P(L(D)).

Proof. For any nonzero f ∈ L(D), let Df := (f) + D. Then, Df ≥ 0 and Df ∼ D. Moreover,
for λ ∈ k∗, we have (λf) = (λ) + (f) = (f) (so P(L(D)) it’s well defined). Thus, we obtain a
map

P(L(D)) →
∣∣∣D∣∣∣ ,

f 7→ Df .

Let’s see that is surjective. Suppose that D′ ≥ 0 and D′ ∼ D. Let f be a rational function with
(f) = −D + D′, since D′ ≥ 0, it follows that f ∈ L(D). To show injectivity, suppose that f
and g are rational functions with (f) = (g). Then, f/g is an everywhere regular function. By
Theorem 2.1.6, f/g is constant, i.e, f = µg for some µ ∈ k∗. �

Theorem 3.6.18. (Riemann-Roch Theorem) For any divisorD of degree n on a nonsingular
plane curve X of degree d,

l(D) = n− g + 1 + l(KX −D).

Example 3.6.19. For D = KX , l(KX) = (2g − 2)− g + 1 + l(0) = g.

Observation 3.6.20. We could also define the genus of a nonsingular curve X as g := l(KX).
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4. A GENERALIZATION OF PASCAL’S THEOREM

From now until the end of this chapter, we suppose to be on the projective complex plane CP2.
Moreover, we set a projective reference R = {A1, A2, A3;O}, so that A1 = (1 : 0 : 0), A2 = (0 :
1 : 0), A3 = (0 : 0 : 1) and O = (1 : 1 : 1). Observe that then A2,3 = OA1 ∩ A2A3 = (0 : 1 : 1),
A3,1 = OA2 ∩ A3A1 = (1 : 0 : 1), A1,2 = OA3 ∩ A1A2 = (1 : 1 : 0).

A1

A2 A3
A2,3

A3,1A1,2

O

Figure 8: Projective reference

4.1. An Extension of the Menelaus’ Theorem

Using a natural extension of the Menelaus’ Theorem and the cross ratio, on this section we
develop some concepts and find some results which we will use to prove some of the problems
of algebraic geometry in a simple way. First, we introduce the notion of characteristic ratio,
which will play an important role in all this chapter.

Definition 4.1.1. Let P1, . . . , Pk ∈ AiAj, i, j ∈ {1, 2, 3}, i 6= j, where Pr 6= Ai, Aj, ∀r ∈
{1, · · · , k}. We define the characteristic ratio of P1, · · · , Pk with respect to the reference R
as

[Ai, Aj;P1, . . . , Pk]R =
k∏
r=1

(Ai, Aj, Ai,j, Pr),

where (Ai, Aj, Ai,j, Pr) denotes the cross ratio.

Example 4.1.2. Let P ∈ A2A3, then, with the notation above, P = (0 : λ : 1). So,

[A2, A3;P ]R = (A2, A3, A2,3, P ) = λ

1 = λ.

In this context, we may give a different version of the Menelaus’ Theorem using the characte-
ristic ratio.

Proposition 4.1.3. (Menelaus’ Theorem) Let P1 ∈ A2A3, P2 ∈ A3A1 and P3 ∈ A1A2 be
three simple and different points such that Pi 6= Aj (∀i, j ∈ {1, 2, 3}). Then,

[A2, A3;P1]R[A3, A1;P2]R[A1, A2;P3]R = −1,
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if and only if, P1, P2 and P3 are collinear.

Proof. With the notation above, we can suppose that P1 = (0 : a1 : 1), P2 = (1 : 0 : b1) and
P3 = (c1 : 1 : 0). A necessary and suficient condition to the points of being alligned is that∣∣∣∣∣∣∣

0 1 c1
a1 0 1
1 b1 0

∣∣∣∣∣∣∣ = 0⇔ a1b1c1 = −1.

Therefore,
[A2, A3;P1]R[A3, A1;P2]R[A1, A2;P3]R =

= (A2, A3, A2,3, P1)(A3, A1, A3,1, P2)(A1, A2, A1,2, P3) = a1

1
b1

1
c1

1 = −1,

if and only if, P1, P2 and P3 are collinear. �

A natural question is if there is an equivalent of Menelaus’ Theorem but with conics. The
following theorem gives conditions for which six different points lie on a conic.
Theorem 4.1.4. Let P1, P2 ∈ A2A3, P3, P4 ∈ A3A1, P5, P6 ∈ A1A2 be six different points such
that Pi 6= Aj (i ∈ {1, 2, 3, 4, 5, 6} and j ∈ {1, 2, 3}). Then, P1, P2, P3, P4, P5, P6 lie on a conic, if
and only if,

[A2, A3;P1, P2]R[A3, A1;P3, P4]R[A1, A2;P5, P6]R = 1.

Proof. With the notation above, we can suppose that P1 = (0 : a1 : 1), P2 = (0 : a2 :
1), P3 = (1 : 0 : b1), P4 = (1 : 0 : b2), P5 = (c1 : 1 : 0), P6 = (c2 : 1 : 0). Let F (X, Y, Z) =
AX2 +BXY +CXZ+DY 2 +EY Z+GZ2 be a general conic. We know that 5 points determine
a conic, so we will see what condition imposes the sixth point over the conics.
We want to see for which coefficients F vanishes on P1, . . . , P6, i.e., F (0, ai, 1) = F (1, 0, bi) =
F (ci, 1, 0) = 0, for i = 1, 2. Therefore, with an easy calculation, we get the following conditions
on the coefficents of F : 

G = −Da2
1 − Ea1,

E = −D(a1 + a2),
A = −Gb2

1 − Cb1,
C = −G(b1 + b2),
D = −Ac2

1 −Bc1,
B = −A(c1 + c2).

So, it follows that G = Da1a2, A = Gb1b2 = Da1a2b1b2 and D = Ac1c2 = Da1a2b1b2c1c2.
Notice that if D = 0 in such conditions, then F = 0. Thus, if D 6= 0, F vanishies on P1, . . . , P6
if and only if a1a2b1b2c1c2 = 1 if and only if

[A2, A3;P1, P2]R[A3, A1;P3, P4]R[A1, A2;P5, P6]R = (A2, A3, A2,3, P1)(A2, A3, A2,3, P2)

(A3, A1, A3,1, P3)(A3, A1, A3,1, P4)(A1, A2, A1,2, P5)(A1, A2, A1,2, P6) =

= a1

1
a2

1
b1

1
b2

1
c1

1
c2

1 = 1.

�

Now, we see a concept that will help us with the notation. Moreover, I will state some properties
deriving from it.
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Definition 4.1.5. Let σi,j : AiAj → AiAj be the involution on the projective line AiAj that
keeps fixed Ai,j and swaps Ai with Aj (i.e, σ(Ai) = Aj and σ(Aj) = Ai). We call P ∈ AiAj to
be the characteristic mapping point of Q ∈ AiAj with respecte AiAj, if Q = σi,j(P ).

Observation 4.1.6. If P is the characteristic mapping point of Q with respecte AiAj, then

[Ai, Aj;P,Q]R = (Ai, Aj, Ai,j, P )(Ai, Aj, Ai,j, Q) = 1.

Proof. Let’s restrict in the projective line AiAj. Then, we can suppose Ai,j = (1 : 1), Ai = (1 :
0) and Aj = (0 : 1). So, the involution that keeps fixed Ai,j and swaps Ai with Aj is defined by

the matrix
(

0 1
1 0

)
.

Therefore, if P = (λ : µ) ∈ AiAj, then Q = σi,j(P ) = (µ : λ). Thus,

[Ai, Aj;P,Q]R = (Ai, Aj, Ai,j, P )(Ai, Aj, Ai,j, Q) = λµ

µλ
= 1.

�

Notice that taking Ai, Aj, Ai,j as a projective reference on the line AiAj, if P = (λ : µ) ∈ AiAj,
then, σi,j(P ) = (µ : λ).

Proposition 4.1.7. Any three points P1 ∈ A2A3, P2 ∈ A3A1, P3 ∈ A1A2 are collinear if and
only if σ2,3(P1), σ3,1(P2), σ1,2(P3) are collinear.

Proof. With the notation above, we can suppose that P1 = (0 : a : 1), P2 = (1 : 0 : b) and
P3 = (c : 1 : 0). Then, σ2,3(P1) = (0 : 1 : a), σ3,1(P2) = (b : 0 : 1) and σ1,2(P3) = (1 : c : 0). So,
P1, P2, P3 are collinear if and only if

[A2, A3;P1]R[A3, A1;P2]R[A1, A2;P3]R = abc = −1.

Moreover, σ2,3(P1), σ3,1(P2), σ1,2(P3) are collinear if and only if

[A2, A3;σ2,3(P1)]R[A3, A1;σ3,1(P2)]R[A1, A2;σ1,2(P3)]R = 1
abc

= −1.

Thus, P1, P2, P3 are collinear if and only if σ2,3(P1), σ3,1(P2), σ1,2(P3) are collinear. �

Proposition 4.1.8. Let P1, P2 ∈ A2A3, P3, P4 ∈ A3A1, P5, P6 ∈ A1A2 be any six distinct
points. Then, P1, P2, P3, P4, P5, P6 lie on a conic if and only if their characteristic mappings lie
on a conic as well.

Proof. With the notation above, we can suppose that P1 = (0 : a1 : 1), P2 = (0 : a2 : 1), P3 =
(1 : 0 : b1), P4 = (1 : 0 : b2), P5 = (c1 : 1 : 0), P6 = (c2 : 1 : 0). Then, by Theorem 4.1.4, the six
points lie on a conic, if and only if,

[A2, A3;P1, P2]R[A3, A1;P3, P4]R[A1, A2;P5, P6]R = a1a2b1b2c1c2 = 1.

Due to the images of the points by the characteristic mapping are σ2,3(P1) = (0 : 1 : a1),
σ2,3(P2) = (0 : 1 : a2), σ3,1(P3) = (b1 : 0 : 1), σ3,1(P4) = (b2 : 0 : 1), σ1,2(P5) = (1 : c1 : 0),
σ1,2(P6) = (1 : c2 : 0), then, the six characteristic mappings lie on a conic, if and only if

[A2, A3;σ2,3(P1), σ2,3(P2)]R[A3, A1;σ3,1(P3), σ3,1(P4)]R[A1, A2;σ1,2(P5), σ1,2(P6)]R =
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= 1
a1a2b1b2c1c2

= 1⇔ a1a2b1b2c1c2 = 1.

Thus, the six images by the characteristic mapping lie on a conic, if and only if, P1, P2, P3,
P4, P5, P6 lie on a conic. �

Theorem 4.1.9. Let l1 = A2A3, l2 = A3A1, l3 = A1A2 and let Pi ∈ li such that Pi 6= Aj for
i, j ∈ {1, 2, 3}. Then, it is satisfied that the points P1, P2, P3, σ2,3(P1), σ3,1(P2), σ1,2(P3), lie on
a conic.

Proof. With the notation above, we can suppose that P1 = (0 : a1 : 1), P2 = (1 : 0 : b1), P3 =
(c1 : 1 : 0). So, their characteristic mapping are σ2,3(P1) = (0 : 1 : a1), σ3,1(P2) = (b1 : 0 : 1),
σ1,2(P3) = (1 : c1 : 0).
By Theorem 4.1.4 it is enough to see that

[A2, A3;σ2,3(P1), P1]R[A3, A1;σ3,1(P2), P2]R[A1, A2;σ1,2(P3), P3]R = 1,

i.e, 1
a1
a1
1

1
b1
b1
1

1
c1
c1
1 = 1, which is obvious. �

Once we have seen the Menelaus’ Theorem and its extension to the conics, we will see a natural
extension of that theorem for curves of arbitrary degree n. The following theorem, gives us
conditions for which 3n different points lie on an algebraic curve of degree n.

Theorem 4.1.10. (Menelaus’ Type Theorem) Let l1 = A2A3, l2 = A3A1, l3 = A1A2 and
let P (l1)

1 , . . . , P (l1)
n ∈ l1, P (l2)

1 , . . . , P (l2)
n ∈ l2, P (l3)

1 , . . . , P (l3)
n ∈ l3, 3n different and simple points,

satisfying P (lk)
i 6= A1, A2, A3, for every i ∈ {1, . . . , n} and k ∈ {1, 2, 3}. Then, it is satisfied that

[A2, A3;P (l1)
1 , . . . , P (l1)

n ]R[A3, A1;P (l2)
1 , . . . , P (l2)

n ]R[A1, A2;P (l3)
1 , . . . , P (l3)

n ]R = (−1)n,

if and only if, the 3n points lie on an algebraic curve of degree n.

Proof. With the notation above, we can suppose that P (l1)
i = (0 : ai : 1), P (l2)

i = (1 : 0 : bi),
P

(l3)
i = (ci : 1 : 0), for every i = 1, . . . , n. Note that the cas n = 1 and n = 2 have been already

done in Theorem 4.1.3 and Theorem 4.1.4 respectively. So let’s proved for n ≥ 3.
Let C[X, Y, Z]n = {F ∈ C[X, Y, Z];F homogeneus polynomial of degree n} and let En :=
C[X, Y, Z]n/(XY Z). We deffine the map

ϕ : En → En/(X)× En/(Y )× En/(Z),

where ϕ([F (X, Y, Z)]) = ([F (0, Y, Z)], [F (X, 0, Z)], [F (X, Y, 0)]).
Then, ϕ is defined and is lineal. Let’s see that is injective:
If [F ] ∈ ker(ϕ), ϕ([F (X, Y, Z)]) = ([F (0, Y, Z)], [F (X, 0, Z)], [F (X, Y, 0)]) = ([0], [0], [0]). The-
refore, X, Y and Z divides F . Thus, [F ] = [0].
Therefore, ϕ is an isomorphism over its image. If we define

Mn :=


 ∑

i+j=n
Bi,jY

iZj

 ,
 ∑
i+j=n

Ci,jX
iZj

 ,
 ∑
i+j=n

Di,jX
iY j

 ; Bn,0 = D0,n,
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B0,n = C0,n, Cn,0 = Dn,0} ⊂ En/(X)× En/(Y )× En/(Z),

the inclusion Im(ϕ) ⊂Mn is obvious and

dimC(En) = 3n = dimC(En/(X)) + dimC(En/(Y )) + dimC(En/(Z))− 3 = dimC(Mn).

Since dimC(Im(ϕ)) = dimC(En) and Im(ϕ) ⊆Mn, it folows that Im(ϕ) = Mn.

Hence, there exists a curve of degree n passing through P
(l1)
i , P

(l2)
i , P

(l3)
i (i = 1, . . . , n), if and

only if, ([
λ1

n∏
i=1

(aiZ − Y )
]
,

[
λ2

n∏
i=1

(biX − Z)
]
,

[
λ3

n∏
i=1

(ciY −X)
])
∈ Im(ϕ),

for λ1, λ2, λ3 ∈ C \ {0}. According with the deffinition of Im(ϕ), it is necessary that
λ1
∏n
i=1 ai = (−1)nλ2,

(−1)nλ1 = λ3
∏n
i=1 ci,

λ2
∏n
i=1 bi = (−1)nλ3,

what it follows ∏n
i=1 aibici = (−1)n.

Therefore, there exists a curve of degree n passing through P
(l1)
i , P

(l2)
i , P

(l3)
i (∀i = 1, . . . , n), if

and only if,

[A2, A3;P (l1)
1 , . . . , P (l1)

n ]R[A3, A1;P (l2)
1 , . . . , P (l2)

n ]R[A1, A2;P (l3)
1 , . . . , P (l3)

n ]R =

=
n∏
i=1

aibici = (−1)n.

�

We will see on the next section that Menelaus’ Type Theorem has many applications on pro-
blems of intersection of two plane curves when one of them is the union of three general lines
and the other is an arbitrary curve of degree n. Due to the simplicity of computation of the
cross ratio, we will find an easy proofs for all of its applications.
Finally, to end this section we see one more concept which will be useful in order to state the
final theorem of this chapter, the Pascal’s Type Theorem.

Definition 4.1.11. Let l1 = A2A3, l2 = A3A1 and l3 = A1A2. Following the notation as [7],
we define the pascal mapping as Ψ = (σ2,3 × σ3,1 × σ1,2) ◦ Φ, where

Φ : (l1 \ {A2, A3})2 × (l2 \ {A3, A1})2 × (l3 \ {A1, A2})2 → l1 × l2 × l3,

is a map satisfying,

Φ((P1, P2), (P3, P4), (P5, P6)) = (P1P2 ∩ P4P5, P3P4 ∩ P6P1, P5P6 ∩ P2P3).

If we denote Q1 = P1P2 ∩ P4P5, Q2 = P3P4 ∩ P6P1 and Q3 = P5P6 ∩ P2P3, then,

Ψ((P1, P2), (P3, P4), (P5, P6)) = (σ2,3(Q1), σ3,1(Q2), σ1,2(Q3)).
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Theorem 4.1.12. Let P1, P2 ∈ A2A3, P3, P4 ∈ A3A1 and P5, P6 ∈ A1A2 be six different points
such that are all different of Ai (i = 1, 2, 3). Then, P1, . . . , P6 lie on a conic, if and only if, the
three images of the pascal mapping applied to P1, . . . , P6 are collinear.

Proof. With the notation above, we can suppose that P1 = (0 : a1 : 1), P2 = (0 : a2 : 1), P3 =
(1 : 0 : b1), P4 = (1 : 0 : b2), P5 = (c1 : 1 : 0) and P6 = (c2 : 1 : 0). Hence, Q1 = P1P2 ∩ P4P5 =
(0 : −1 : b2c1), Q2 = P3P4 ∩ P6P1 = (a1c2 : 0 : −1) and Q3 = P5P6 ∩ P2P3 = (−1 : b1a2 : 0).
Notice that by Proposition 4.1.7, it is just necessary and sufficient seeing that P1, . . . , P6 lie on
a conic, if and only if, Q1, Q2, Q3 are collinear, which is obvious, because P1, . . . , P6 lie on a
conic, if and only if,

[A2, A3;P1, P2]R[A3, A1;P3, P4]R[A1, A2;P5, P6]R = a1a2b1b2c1c2 = 1,

and Q1, Q2, Q3 are collinear, if and only if,

[A2, A3;P1]R[A3, A1;P2]R[A1, A2;P3]R = −1
b2c1

−1
a1c2

−1
b1a2

= −1.

�

4.2. Applications of the Characteristic Ratio

In this section, there is a collection of some problems of algebraic geometry. All of them can be
proved by the Max Noether’s Fundamental Theorem (which I have already done with some of
them). However, it is interesting to prove them using the results about the characteristic ratio
that we just saw.
By the moment, we have seen two different proofs about the Pascal’s Theorem; one using the
Bézout’s Theorem and the other from Af +Bϕ Theorem. Now, we will prove it again in order
to see the easiness of the use of the characteristic ratio and the powerful of the Menelaus’ Type
Theorem.

Theorem 4.2.1. (Pascal’s Theorem) Let P1, P2 ∈ A2A3, P3, P4 ∈ A3A1 and P5, P6 ∈ A1A2
six different points such that not three points are collinear. Suppose that Pi 6= Aj (i ∈
{1, 2, 3, 4, 5, 6} and j ∈ {1, 2, 3}). Then, the six points lie on a conic, if and only if, the th-
ree points Q1 = P1P2 ∩ P4P5, Q2 = P2P3 ∩ P5P6, Q3 = P3P4 ∩ P6P1 are collinear.

Proof. With the notation above, we can suppose that P1 = (0 : a1 : 1), P2 = (0 : a2 : 1), P3 =
(1 : 0 : b1), P4 = (1 : 0 : b2), P5 = (c1 : 1 : 0), P6 = (c2 : 1 : 0). The points lie on a conic, if and
only if,

[A2, A3;P1, P2]R[A3, A1;P3, P4]R[A1, A2;P5, P6]R = a1a2b1b2c1c2 = (−1)2 = 1.

Moreover, the points
Q1 = P1P2 ∩ P4P5 = (0 : −1 : b2c1)
Q2 = P2P3 ∩ P5P6 = (−1 : a2b1 : 0)
Q3 = P3P4 ∩ P6P1 = (c2a1 : 0 : −1)

37



are collinear if and only if∣∣∣∣∣∣∣
0 −1 c2a1
−1 a2b1 0
b2c1 0 −1

∣∣∣∣∣∣∣ = −a2b1c2a1b2c1 + 1 = 0⇔ a1a2b1b2c1c2 = 1.

�

As we have seen with Max Noether’s Theorem, just with a simple computing, we can prove:

Theorem 4.2.2. A line joining two flexes of a cubic passes through a third flex.

Proof. Let P1, P2 be the two flexes of a cubic Γ3 and let’s define P3 = Γ3 ∩ P1P2. Suppose
l1, l2, l3 are three tangents passing through P1, P2, P3, respectively, where l1 = A2A3, l2 = A3A1
and l3 = A1A2. As P1, P2 are flexes, they have multiplicity 3 at the intersection of its tangent
with the cubic.
We just can ensure that P3 has multiplicity two at the intersection of l3 with the cubic. By the
Bézout’s Theorem, l3 intersects in a third point with the cubic. Let Q be that point. With the
notation above, P1 = (0 : a1 : 1), P2 = (1 : 0 : b1), P3 = (c1 : 1 : 0), Q = (c2 : 1 : 0).
Hence, P1, P2, P3 are collinear, if and only if,∣∣∣∣∣∣∣

0 1 c1
a1 0 1
1 b1 0

∣∣∣∣∣∣∣ = 0⇔ a1b1c1 = −1.

Moreover, using that P1, P2, P3 are collinear, P1, P2, P3 and Q lie on a cubic (each point with
its multiplicity at the intersection of li with Γ3, i = 1, 2, 3), if and only if,

[A2, A3;P1, P1, P1]R[A3, A1;P2, P2, P2]R[A1, A2;P3, P3, Q]R =

= (a1b1c1)2(a1b1c2) = (a1b1c2) = −1.

Now, a sufficient and necessary condition of P1, P2, Q being alligned is that∣∣∣∣∣∣∣
0 1 c2
a1 0 1
1 b1 0

∣∣∣∣∣∣∣ = a1b1c2 + 1 = 0,

if and only if, a1b1c2 = −1.
Then, P1, P2, Q are collinear, therefore, P3, Q ∈ P1P2. Due to they are the third intersection
point of P1P2 with Γ3, it follows that P3 = Q. Thus, P3 has multiplicity 3 at the intersection of
Γ3 with l3 and, consequently, P3 is a flex. �

Now we see two results of the residual intersections between curves: one between a line with a
cubic and the other between a conic with a cubic.

Theorem 4.2.3. If a line cuts a cubic in three distinct points, the residual intersections of the
tangents at these points are collinear.
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Proof. Let Γ3 be that cubic, and let L be the line that cuts the cubic in three distinct points
P1, P2, P3. Let l1 = A2A3, l2 = A3A1, l3 = A1A2 be the tangents at P1, P2, P3, respectively.
As l1, l2, l3 are lines, by the Bézout’s Theorem, they intersect with Γ3 in three points. Due
to the lines l1, l2, l3 are tangents at P1, P2, P3 respectively, these points have multiplicity
2 at the intersection of its tangent with Γ3. So, let Γ3 ∩ l1 = {P1, Q1}, Γ3 ∩ l2 = {P2, Q2},
Γ3 ∩ l3 = {P3, Q3} the six intersections of the cubic with these three lines.
With the notations above, P1 = (0 : a1 : 1), Q1 = (0 : a2 : 1), P2 = (1 : 0 : b1), Q2 = (1 :
0 : b2), P3 = (c1 : 1 : 0), Q3 = (c2 : 1 : 0). Hence, P1, P2, P3, Q1, Q2, Q3 lie on a cubic (Pi with
multiplicity 2, i = 1, 2, 3), if and only if,

[A2, A3;P1, P1, Q1]R[A3, A1;P2, P2, Q2]R[A1, A2;P3, P3, Q3]R =

= (a1)2a2(b1)2b2(c1)2c2 = −1.

Besides, a sufficient and necessary condition of P1, P2, P3 being collinear is that∣∣∣∣∣∣∣
0 1 c1
a1 0 1
1 b1 0

∣∣∣∣∣∣∣ = 0⇔ a1b1c1 = −1.

Therefore, P1, P2, P3 lie at the intersection of a cubic with a line, if and only if, (a1)2a2(b1)2

b2(c1)2c2 = a2b2c2 = −1.
Thus, Q1, Q2, Q3 are collinear, if and only if,∣∣∣∣∣∣∣

0 1 c2
a2 0 1
1 b2 0

∣∣∣∣∣∣∣ = 0⇔ a2b2c2 = −1,

if and only if, P1, P2, P3 lie at the intersection of a cubic with a line. �

Theorem 4.2.4. If a conic is tangent to a cubic at three distinct points, the residual intersec-
tions of the tangents at these points are collinear.

Proof. Let Γ2 and Γ3 be the conic and the cubic respectively. Let Γ2 ∩ Γ3 = {P1, P2, P3}.
Suppose l1, l2, l3 be the tangents at P1, P2, P3 respectively, where l1 = A2A3, l2 = A3A1 and
l3 = A1A2. Then, with the notation above, P1 = (0 : a1 : 1), P2 = (1 : 0 : b1), P3 = (c1 : 1 : 0).
Due to a line cuts a cubic in three points and P1, P2, P3 have multiplicity 2 at the intersection
of the cubic and the tangents, there exists Q1 = (0 : a2 : 1), Q2 = (1 : 0 : b2), Q3 = (c2 : 1 : 0)
such that l1 ∩ Γ3 = {P1, Q1}, l2 ∩ Γ3 = {P2, Q2}, l3 ∩ Γ3 = {P3, Q3}.
Then, P1, P2, P3 lie on a conic, if and only if,

[A2, A3;P1, P1]R[A3, A1;P2, P2]R[A1, A2;P3, P3]R = (a1b1c1)2 = 1.

Moreover, P1, P2, P3, Q1, Q2, Q3 lie on a cubic, if and only if,

[A2, A3;P1, P1, Q1]R[A3, A1;P2, P2, Q2]R[A3, A1;P3, P3, Q3]R = (a1b1c1)2(a2b2c2) =

= (a2b2c2) = −1.
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Therefore, due to the fact that ∣∣∣∣∣∣∣
0 1 c2
a2 0 1
1 b2 0

∣∣∣∣∣∣∣ = a2c2b2 + 1 = 0,

consequently, Q1, Q2, Q3 are collinear. �

We have already proved the Chasles-Cayley-Bacharach Theorem for any two cubics meeting in
nine different points. Now, we will see a reduced version, restricting in the case when one of
the cubics is the union of three general lines, which is just what we will use in order to prove
the addition of the opperation ⊕ of the abelian group of a cubic using this news concepts.
Theorem 4.2.5. (Chasles-Cayley-Bacharach Type Theorem) Let C1, C2 = l1l2l3 be two
different cubics, where l1 = A2A3, l2 = A3A1, l3 = A1A2. If C1, C2 meet in nine points P1, . . . , P9
different of A1, A2, A3 such that P1, P2, P3 ∈ l1, P4, P5, P6 ∈ l2, P7, P8, P9 ∈ l3, and C is any
cubic containing P1, . . . , P8, then C contains P9 as well.

Proof. Suppose that C ∩ C1 = {P1, . . . , P8, Q}. With the notation above, P1 = (0 : a1 : 1),
P2 = (0 : a2 : 1), P3 = (0 : a3 : 1), P4 = (1 : 0 : b1), P5 = (1 : 0 : b2), P6 = (1 : 0 : b2),
P7 = (c1 : 1 : 0), P8 = (c2 : 1 : 0), P9 = (c3 : 1 : 0), Q = (c : 1 : 0).
Hence, P1, . . . , P9 lie on a cubic, if and only if,

[A2, A3;P1, P2, P3]R[A3, A1;P4, P5, P6]R[A1, A2;P7, P8, P9]R = a1a2a3b1b2b3c1c2c3 = −1.

Similarly, P1, . . . , P8, R lie on a cubic, if and only if,

[A2, A3;P1, P2, P3]R[A3, A1;P4, P5, P6]R[A1, A2;P7, P8, Q]R = a1a2a3b1b2b3c1c2c = −1.

Since a1a2a3b1b2b3c1c2c = −1 = a1a2a3b1b2b3c1c2c3, it follow that c = c3. Therefore, P9 = Q. �

Theorem 4.2.6. A cubic C, with the opperation ⊕, forms an abelian group, with the point O
being the identity.

Proof. With the same notation of the proof given in the Theorem 3.5.10, it is a consequence
of the Chasles-Cayley-Bacharach Type Theorem. �

4.3. Pascal’s Type Theorem

In this section, we achieve the first motivation of this thesis: can be Pascal’s Type Theorem
proved by Af+Bϕ Theorem? A priori, it is not a trivial theorem, but the answer is affirmative.
However, we will give an alternative proof using the characteristic ratio and the Menelaus’ Type
Theorem.
Theorem 4.3.1. (Pascal’s Type Theorem.) Let l1 = A2A3, l2 = A3A1, l3 = A1A2 and let
{P (l1)

i }ni=1, {P (l2)
i }ni=1, {P (l3)

i }ni=1, n points on each line, different of A1, A2, A3. Then, those 3n
points lie on an algebraic curve of degree n, if and only if, the 3(n− 1) points consisting of the
three points determined by the pascal mapping applied to any six points among those 3n (no
three points of which are collinear) as well as the remaining 3(n− 2) points, lie on an algebraic
curve of degree n− 1.
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Figure 9: Pascal’s Type Theorem for n = 3

Proof by the Max Noether’s Fundamental Theorem. Without loss of generality, let’s
choose the points P (l1)

1 , P (l1)
2 , P (l2)

1 , P (l2)
2 , P (l3)

1 , P (l3)
2 , in order to apply the Pascal mapping.

Let’s denote
Φ((P (l1)

1 , P
(l1)
2 ), (P (l2)

1 , P
(l2)
2 ), (P (l3)

1 , P
(l3)
2 )) = (Q1, Q2, Q3).

Then,
Ψ((P (l1)

1 , P
(l1)
2 ), (P (l2)

1 , P
(l2)
2 ), (P (l3)

1 , P
(l3)
2 )) = (σ2,3(Q1), σ3,1(Q2), σ1,2(Q3)).

We know by Theorem 4.1.9 that σ2,3(Q1), σ3,1(Q2), σ1,2(Q3) and Q1, Q2, Q3 lie on a conic. Let
Γ2 be that conic.
Let’s deffine the cubic C = (P (l1)

2 P
(l2)
1 )(P (l2)

2 P
(l3)
1 )(P (l3)

2 P
(l1)
1 ) generated by the three opposites

sides, different of l1, l2, l3, of the hexagon deffined by the six points P (l1)
1 , P (l1)

2 , P (l2)
1 , P (l2)

2 , P (l3)
1 ,

P
(l3)
2 .

(⇒) Suppose that {P (l1)
i }ni=1, {P (l2)

i }ni=1, {P (l3)
i }ni=1 lie on an algebraic curve Γn of degree n.

Let Γn+2 = Γ2Γn be an algebraic curve of degree n+ 2. Then,

Γn+2 · l1l2l3 =
n∑
i=1

(P (l1)
i + P

(l2)
i + P

(l3)
i ) +Q1 +Q2 +Q3 + σ2,3(Q1) + σ3,1(Q2) + σ1,2(Q3),

and
C · l1l2l3 =

2∑
i=1

(P (l1)
i + P

(l2)
i + P

(l3)
i ) +Q1 +Q2 +Q3.
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So,

Γn+2 · l1l2l3 − C · l1l2l3 =
n∑
i=3

(P (l1)
i + P

(l2)
i + P

(l3)
i ) + σ2,3(Q1) + σ3,1(Q2) + σ1,2(Q3).

Using Corollary 3.4.8, exists a curve Γ of degree deg(Γn+2)− deg(C) = n+ 2− 3 = n− 1 such
that, Γ · l1l2l3 = Γn+2 · l1l2l3 − C · l1l2l3. �

(⇐) Suppose that {P (l1)
i }ni=3, {P (l2)

i }ni=3, {P (l3)
i }ni=3, σ2,3(Q1), σ3,1(Q2), σ1,2(Q3), lie on an alge-

braic curve Γ′n−1 of degree n− 1.
Let Γ′n+2 = CΓ′n−1 be an algebraic curve of degree n+ 2. Then,

Γ′n+2 · l1l2l3 =
n∑
i=1

(P (l1)
i + P

(l2)
i + P

(l3)
i ) +Q1 +Q2 +Q3 + σ2,3(Q1) + σ3,1(Q2) + σ1,2(Q3),

and
Γ2 · l1l2l3 = Q1 +Q2 +Q3 + σ2,3(Q1) + σ3,1(Q2) + σ1,2(Q3).

So,
Γ′n+2 · l1l2l3 − Γ2 · l1l2l3 =

n∑
i=1

(P (l1)
i + P

(l2)
i + P

(l3)
i ).

Using Corollary 3.4.8, exists a curve Γ′ of degree deg(Γ′n+2) − deg(Γ2) = n + 2 − 2 = n, such
that, Γ′ · l1l2l3 = Γ′n+2 · l1l2l3 − Γ2 · l1l2l3. �

Proof by the Menelaus’ Type Theorem. With the notation above, we can suppose P (l1)
i =

(0 : ai : 1), P (l2)
i = (1 : 0 : bi), P (l3)

i = (ci : 1 : 0) for every i = 1, . . . , n.

Whitout loss of generality, let’s choose the points P (l1)
1 , P (l1)

2 , P (l2)
1 , P (l2)

2 , P (l3)
1 , P (l3)

2 , to apply
the pascal mapping. So, Φ((P (l1)

1 , P
(l1)
2 ), (P (l2)

1 , P
(l2)
2 ), (P (l3)

1 , P
(l3)
2 )) = (Q1, Q2, Q3), where

Q1 = P1P2 ∩ P4P5 = (0 : −1 : c1b2),

Q2 = P3P4 ∩ P6P1 = (c2a1 : 0 : −1),
Q3 = P5P6 ∩ P2P3 = (−1 : a2b1 : 0).

Then, Ψ((P (l1)
1 , P

(l1)
2 ), (P (l2)

1 , P
(l2)
2 ), (P (l3)

1 , P
(l3)
2 )) = (R1, R2, R3), where,

R1 = σ2,3(Q1) = (0 : c1b2 : −1),

R2 = σ3,1(Q2) = (−1 : 0 : c2a1),
R3 = σ1,2(Q3) = (a2b1 : −1 : 0).

Now, {P (l1)
i }ni=1, {P (l2)

i }ni=1, {P (l3)
i }ni=1 lie on an algebraic curve of degree n, if and only if,

[A2, A3;P (l1)
1 , . . . , P (l1)

n ]R[A3, A1;P (l2)
1 , . . . , P (l2)

n ]R[A1, A2;P (l3)
1 , . . . , P (l3)

n ] =

=
n∏
i=1

(A2, A3, A2,3, P
(l1)
i )(A3, A1, A3,1, P

(l2)
i )(A1, A2, A1,2, P

(l3)
i ) =

n∏
i=1

ai
1
bi
1
ci
1 =
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=
n∏
i=1

aibici = (−1)n.

Moreover, {P (l1)
i }ni=3, {P (l2)

i }ni=3, {P (l3)
i }ni=3, R1, R2, R3, lie on an algebraic curve of degree n−1,

if and only if,

[A2, A3;P (l1)
3 , . . . , P (l1)

n , R1]R[A3, A1;P (l2)
3 , . . . , P (l2)

n , R2]R[A1, A2;P (l3)
1 , . . . , P (l3)

n , R3]R =

= (A2, A3, A2,3, R1)(A3, A1, A3,1, R2)(A1, A2, A1,2, R3)
n∏
i=3

(A2, A3, A2,3, P
(l1)
i )

n∏
i=3

(A3, A1, A3,1, P
(l2)
i )

n∏
i=3

(A1, A2, A1,2, P
(l3)
i ) = c1b2

−1
c2a1

−1
a2b1

−1

n∏
i=3

ai
1
bi
1
ci
1 =

= −
n∏
i=1

aibici = (−1)n−1.

Observe that the two expressions are equivalent. Thus, {P (l1)
i }ni=1, {P (l2)

i }ni=1, {P (l3)
i }ni=1 lie on

an algebraic curve of degree n, if and only if, {P (l1)
i }ni=3, {P (l2)

i }ni=3, {P (l3)
i }ni=3, R1, R2, R3, lie

on an algebraic curve of degree n− 1. �

Hence, a theorem that seems to have a difficult proving or seems to need so much knowledges
in algebraic geometry, it is easy proved with a simply theory that does not requiere so much
familiarity with a lot of concepts. Taking a good reference and choosing correctly the coordinates
of the points, all jointly with an easy computation, it leads us to the solution without going
further neither in the properties of the curve nor the points.
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5. CAYLEY-BACHARACH THEOREM AND CONJEC-
TURES

In all the thesis, we have been asking about the polynomials functions that vanish on a set of
points. On this section, we will study it from a new point of view.
Suppose that Γ is a set of γ distinct points in Rn (or Cn). Let f ∈ R[X0, . . . , Xn], then the
condition that f(P ) = 0 for P ∈ Γ becomes a non trivial linear conditions on the coefficients
on f . Thus, the vanishing of f on Γ is ensured by γ linear conditions on these coefficients of f .
We are interested in the space of polynomials of degree at most a given number d. In this
case, the γ conditions are generally not independent. As a trivial example, consider the three
conditions imposed by three collinear points in R2, and choose d ≤ 1. A linear polynomial
vanishing on any two of the points vanishes on the line joining them and hence, automatically
vanishes on the third point. Thus, the three points impose only two independent conditions on
the polynomials of degree ≤ 1. Conversely, following the same example, if the three points are
not collinear, then it doesn’t exist a polynomial of degree ≤ 1 passing through them, so the
three points impose three independent conditions on the polynomials of degree ≤ 1.
In general, if λ of the γ conditions imposed by Γ suffice to imply all of them, and λ is the
least such number, then we say that Γ imposes λ independent conditions on polynomials
of degree ≤ d. Since λ ≤ γ, we concentrate on the difference γ − λ, “the failure of Γ to impose
independent conditions on polynomials of degree ≤ d”. There are of course many variants of
this question, perhaps, the most useful is to take points in projective space and to ask about
homogeneous forms of degree d instead of polynomials of degree almost d.

5.1. Chasles, Cayley and Bacharach

Let k be an algebraically closed field. We will talk about polynomials of degree d meaning
homogeneous polynomials of degree d.
Definition 5.1.1. If Γ = {P1, . . . , Pm} ⊂ P2 is any collection of m distinct points, we shall
say that Γ imposes l conditions on polynomials of degree d if in the vector space of poly-
nomials of degree d in P2 the subspace of thoses vanishing at P1, . . . , Pm has codimension l, or
equivanlently if in the projective space of curves of degree d, the subspace of those containing
Γ has codimension l. If l = m, then we say that Γ imposes independent conditions on
polynomials of degree d. Conversely, we say that the points of Γ fail to impose independent
conditions on polynomials of degree d if Γ imposes l < m conditions on such polynomials, and
we write m − l as the failure of Γ to impose independent conditions on polynomials of degree
d. We denote the number of conditions imposed by Γ on forms of degree d by hΓ(d), and call
hΓ(d) the Hilbert function of Γ.

Since the Hilbert function is studied on the Alegbraic Varieties subject, I will used without
entering in further details.
Observation 5.1.2. (1) Let Γ ⊂ P2 and I(Γ) = {f1, . . . , fr}, then

hΓ(d) = dimk((k[X0, X1X2]/I(Γ))d) =
(
d+ 2

2

)
− dimk(I(Γ)d).

44



(2) If Γ = P2, hΓ(d) = dimk((k[X0, X1, X2])d) =
(
d+2

2

)
.

Example 5.1.3. Suppose fixed a projective reference R = {P1, P2, P3;P4} in P2. Let Γ =
{P1, P2, P3, P4, P5, P6}, where P5 = (1 : 1 : 0) and P6 = (1 : 2 : 1). We want to know how many
conditions imposes Γ on polynomials of degree 2.
A conic is determined by 5 points, so at least Γ imposes 5 independent conditions on polynomials
of degree 2. Moreover, the conic passing through P1, . . . , P5 is F (X, Y, Z) = XZ − Y Z, and
F (P6) = −1 6= 0, hence Γ imposes independent conditions on polynomials of degree 2 (there is
no conic that vanishing on 5 points of Γ, vanishes on the sixth).
Moreover, since I({P1, . . . , P6})2 = {F ∈ k[X0, X1, X2]2; F (Pi) = 0, ∀i ∈ {1, . . . , 6}} = (0), Γ
imposes

hΓ(2) = dimk((k[X, Y, Z]/I(Γ))2) =
(

2 + 2
2

)
− 0 = 6

independent conditions on polynomials of degree 2.

Proposition 5.1.4. Let Γ = {P1, . . . , Pn} ⊂ P2 be any collection of n ≤ 2d+ 2 distinct points.
The points of Γ fail to impose independent conditions on curves of degree d if and only if, either
d+ 2 of the points of Γ are collinear or n = 2d+ 2 and Γ is contained in a conic.

Proof. (⇐) Suppose that d + 2 points of Γ lie on a line L and let C be any curve of degree
d containing Γ. If L and C have no common components, by the Bézout’s Theorem, the two
curves intersect in d · 1 = d points (counted with multiplicity). Since L and C meet in d + 2
different points, then, by Corollary 3.3.4, the two curves have a component in common (that
is, the equations defining them have a common factor). As a line is irreducible, C must contain
L. Hence, if F is the defining polynomial of degree 1 of L, then, the polynomial of degree d
that defines C must be G = FH, where H is an polynomial of degree d− 1.
Thus, the subset of curves of degree d that contains L has the same dimension as the set of
curves of degree d − 1, which is

(
2+(d−1)

2

)
. Therefore, the codimension of the set of curves of

degree d containing L is (
2 + d

2

)
−
(
d+ 1

2

)
= d+ 1.

The remaining n− (d+ 2) points of Γ impose at most n− d− 2 conditions on curves of degree
d. Then, Γ imposes at most d + 1 + n − d − 2 = n − 1 conditions, so the points of Γ fail to
impose independent conditions on curves of degree d.
Suppose now that n = 2d + 2 and Γ is contained in a conic Q. Let C ′ be any curve of degree
d containing Γ. If Q and C ′ have no common components, by the Bézout’s Theorem, the two
curves intersect in d · 2 = 2d points (counted with multiplicity). Since Q and C ′ meet in 2d+ 2
different points, then, by Corollary 3.3.4, the two curves have a component in common.
If Q is irreducible, then Q is contained in the curve of degree d. Conversely, if Q is the product
of two lines L1, L2, then L1 lie on m points of Γ and L2 lie on the remaining n − m points.
Notice that if m 6= d+ 1, then either m ≥ d+ 2 or n−m ≥ d+ 2, i.e. at least d+ 2 points of
Γ are collinear, and we are in the first case, so we are done. Thus, we can suppose that each
line lie on d + 1 different points of Γ. With the same arguments as below, we see that L1 and
L2 are contained in C ′. Hence, we conclude that Q is contained in C ′.
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Therefore, any curve of degree d containing Γ must contain Q. Let F ′ be the defining polynomial
of degree 2 of Q, then the polynomial of degree d that defines C ′ must be G′ = F ′H ′, where H ′
is a polynomial of degree d− 2. Thus, the subset of curves of degree d that contains Q has the
same dimension as the set of curves of degree d− 2, which is

(
2+(d−2)

2

)
. Hence, the codimension

of the set of curves of degree d containing Q is(
2 + d

2

)
−
(
d

2

)
= 2d+ 1.

Then, Γ imposes at most 2d+ 1 conditions and 2d+ 1 < 2d+ 2 = n, so the points of Γ fail to
impose independent conditions on curves of degree d.
(⇒) For the more serious direction, we do induction first on the degree d and second on the
number n of points. By the induction hypothesis on the number n of points we may assume that
any proper subset of Γ does impose independent conditions on curves of degree d. Therefore, if
Γ fails to impose independent condition and we denote by Γ′ the set of all but one of the points
of Γ, then hΓ(d) = hΓ′(d) (i.e., dimk(I(Γ)d) = dimk(I(Γ′)d)) because Γ′ imposes independent
conditions. So, since I(Γ)d ⊆ I(Γ′)d, it follows that I(Γ)d = I(Γ′)d. Thus, the statement that Γ
itself fails to impose independent conditions amounts to saying that any plane curve of degree
d containing all but one of the points of Γ contains Γ.
To start the inductions, we note first that the Proposition 5.1.4 is trivial for d = 1: any set
Γ of n ≤ 4 points in the plane fails to impose independent conditions on lines if and only if
n = 3 = d+ 2 and the points of Γ are all collinear (then the three points impose 2 independent
conditions), or n = 4 > 3 =

(
2+1

2

)
= dimk(k[X0, X1, X2])1 (and of course the four points lie on

a conic).
Second, for arbitrary d, we will see that for n ≤ d+1, the points of Γ always impose independent
conditions on curves of degree d. To doing so, it suffices to find a curve of degree d containing
all but one point of Γ. If we take the union of general lines Li through Pi for i = 1, . . . , n − 1
but not for Pj with j 6= i, and an arbitrary plane curve C of degree d − n + 1 not passing
through Pn, we get a curve C ′ = (⋃i Li)⋃C of degree d such that contains all but one of the
points of Γ. So in this case, the result is trivial without imposing any conditions on the points
of Γ. Hence, we will suppose n > d+ 1 and d arbitrary.
Suppose first that Γ contains d+ 1 points lying on a line L. Assume that no further point of Γ
lies on L, and let Γ′ be the complementary set of n− d− 1 ≤ (2d + 2)− d− 1 = d + 1 points
of Γ. If Γ′ imposes independent conditions on curves of degree d− 1, then we can find a curve
X of degree d− 1 containing all but any one point of Γ′, and then the union X ∪ L would be
a curve of degree d containing all but one point of Γ. Since we are supposing that Γ fails to
impose independent conditions on curves of degree d, we reach a contradiction. Therefore, Γ′
fails to impose independent conditions on polynomials of degree d− 1, and by induction, either
(d− 1) + 2 = d + 1 of the points of Γ′ lie on a line M or either n− d− 1 = 2(d− 1) + 2 = 2d
and Γ′ is contained in a conic. In the first case, Γ′ has at least d+ 1 points, and since d+ 1 ≤
n−d−1 ≤ (2d+2)−d−1 = d+1, implies that Γ′ has exactly d+1 points, so n−d−1 = d+1.
Hence, n = 2d + 2 and Γ lies on the conic L ∪M . In the second case, n − d − 1 = 2d implies
that n = 3d+ 1 ≤ 2d+ 2, hence, d ≤ 1 and this case is already done.
Next, suppose only that some line L′ contains l ≥ 3 points of Γ. By the same argument as in
the last paragraph, the remaining n− l points of Γ must fail to impose independent conditions
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on curves of degree d− 1. Let Γ′ be the complementary set of n− l points, by induction, either
(d − 1) + 2 = d + 1 of the points of Γ′ lie on a line M ′ or n − l = 2(d − 1) + 2 = 2d and Γ′
is contained in a conic. In the first case, since d + 1 points of Γ are collinear we are back in
the case considered in the preceding paragraph. In the second case, n − l = 2d implies that
n = 2d+ l ≤ 2d+ 2, hence, 3 ≤ l ≤ 2, which is absurd.
We are now done except in the case where Γ contains no three collinear points. Choose any
three points P1, P2, P3 ∈ Γ, and let Γ′ = Γ \ {P1, P2, P3}. If for any i ∈ {1, 2, 3} the points of
Γ′ ∪ {Pi} impose independent conditions on curves of degree d − 1, we can find a curve C of
degree d− 1 containing Γ′ but not Pi, and the union of this curve with the line joining the two
points of the set {P1, P2, P3} \ Pi is a curve of degree d containing all but exactly one point of
Γ. Hence, Γ would not fail to impose independent conditions on polynomials of degree d. Thus,
we may assume that Γ′∪{Pi} fails to impose independent conditions on curves of degree d− 1.
Since it cannot contain d+ 1 collinear points (just in the case d = 1 which is already done), we
have by induction n− 2 = 2(d− 1) + 2 (⇒ n = 2d + 2) and Γ′ ∪ {Pi} is contained in a conic.
Note that in the case d = 2 we are done, since six points fail to impose independent conditions
on conics if and only if they lie all on a conic. On the other hand, if d ≥ 3, then Γ′ contains at
least five points (n− 3 = (2d+ 2)− 3 ≥ 5 ), no three collinear, and since five points determine
a conic, there may be at most one conic containing Γ′. Notice that we have 3 conics C1, C2 and
C3 containing Γ′ ∪ {P1}, Γ′ ∪ {P2} and Γ′ ∪ {P3} respectively. Since the three contains Γ′, they
must be equal to a single conic curve Q, which then contains all of Γ. �

Theorem 5.1.5. (Chasles-Cayley-Bacharach Theorem) If Γ = {P1, . . . , P9} is the inter-
section of two plane cubics C1 and C2, and Γ′ = Γ \ Pi is any subset of Γ omitting one point,
then Γ and Γ′ impose the same number of conditions on cubics.

Proof. We shall prove it without making any assumptions about the smoothness or the irre-
ducibility of C1 and C2. Moreover, we shall actually prove the stronger statement, that Γ and
Γ′ each impose exactly eight conditions on cubics; that is, that the eight points of Γ′ impose
independent conditions on cubics and the Pi ∈ Γ imposes a condition dependent of these eight.
Part of this is obvious: the nine points of Γ visibly fail to impose independent conditions on
cubics, since the 10-dimensional vector space of cubic polynomials

(k[X0, X1, X2])3 = 〈X3
0 , X

2
0X1, X

2
0X2, X

3
1 , X

2
1X0, X

2
1X2, X

3
2 , X

2
2X0, X

2
2X0, X0X1X2〉

contains at least a two-dimensional subspace of polynomials vanishing on Γ, 〈F1, F2〉, such that
F1 and F2 are the definig polynomials of C1 and C2 respectively. So Γ imposes at most 10−2 = 8
conditions on cubics.
Now we will see that Γ′ impose exactly 8 independent conditions on cubics. Suppose that Γ′
fails to impose independent conditions on cubics. We know that Γ′ consists of 8 points of Γ, so
taking n = 8 and d = 3 on the Proposition 5.1.4, either 3 + 2 = 5 of the points of Γ′ lie on a
line L or Γ′ is contained in a conic Q.
Suppose that 5 of the points of Γ′ lie on a line L. Then, by the Bézout’s Theorem, if C1
and C2 have no component in common with L respectively, then C1 and C2 must intersect
with L in 3 points (counted with multiplicity) respectively. Hence, since ∑P I(C1 ∩ L, P ) =∑
P I(C2 ∩ L, P ) = 5, C1 and C2 must contain L as a component, but we have supposed that

C1 and C2 have no component in common.
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Similarly, if Γ′ is contained in a conic Q, since a conic meets a cubic in 6 points (counted with
mutiplicity) if they have no components in common, we get that C1 and C2 contains Q as a
component, but we have supposed that C1 and C2 have no component in common.
Thus, Γ and Γ′ impose 8 independent conditions on cubics. �

In 1843, Arthur Cayley, when he was twenty-two, he published a note stating an extension of
Chasles-Cayley-Bacharach Theorem to the case of intersection of curves of degree higher than
3. The basis of this extension was again the idea of counting conditions imposed by sets of
points. His first observation was:

Proposition 5.1.6. (Cayley Theorem) If two curves X1 and X2 of degrees d and e respec-
tively meet in a collection Γ of d · e points, then for any λ, the number hΓ(λ) of conditions
imposed by Γ on forms of degree λ is independent of the choice of the curves X1 and X2; it can
be written down explicity as

hΓ(λ) =
(
λ+ 2

2

)
−
(
λ+ 2− d

2

)
−
(
λ+ 2− e

2

)
+
(
λ+ 2− d− e

2

)
,

where the binomial coefficent
(
a
2

)
is to be interpreted as 0 if a < 2.

Proof. If the two curves meet exactly in a collection of d ·e points, then the two curves have not
a component in common. Let F and G be the defining polynomials of X1 and X2 respectively
such that deg(F ) = d and deg(G) = e. By hypothesis, F and G have no factor in common.
Let R = k[X, Y, Z], on the Step 1 of the Bézout’s Theorem’s proof, we saw that the following
sequence

0→ Rλ−d−e
ψ−→ Rλ−d ⊕Rλ−e

φ−→ Rλ
π−→ (R/(F,G))λ → 0,

was exact, where
φ(A,B) = AF +BG, ∀A,B ∈ Rλ−d ⊕Rλ−e,

ψ(C) = (GC,−FC), ∀C ∈ Rλ−d−e,

and π is the natural map.
Thus, for λ ≥ d+ e− 2,

hΓ(λ) = dimk((R/(F,G))λ) = dimk(Rλ)− dimk(Rλ−d ⊕Rλ−e) + dimk(Rλ−d−e) =

=
(
λ+ 2

2

)
−
(
λ+ 2− d

2

)
−
(
λ+ 2− e

2

)
+
(
λ+ 2− d− e

2

)
.

We have the same identity when λ < d + e− 2 interpreting the binomial coefficent
(
a
2

)
as 0 if

a < 2. �

Observation 5.1.7. Cayley Theorem is equivalent to the Max Noether Fundamental Theorem:
any curve X passing through all the points of the intersection of X1 and X2 is defined by a
polynomial that is the linear combination (with polynomials coefficients) of the polynomials
defining X1 and X2. That is, if F = 0, G = 0 and H = 0 are the equations of X1, X2 and X
respectively, then there exists polynomials A and B such that H = AF +BG.
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Arthur Cayley went on to conclude that if Γ′ is any subset of hΓ(λ) points of Γ such that imposes
independent conditions on forms of degree λ, then a form of degree λ vanishing on the points
of Γ′ must vanish on Γ. Observe that the case d = e = λ = 3 is Chasles-Cayley-Bacharach
Theorem. Unfortunately, this is false in general. For example, let L be a line on the projective
plane, and let Γ′ = {P1, P2, P3} be three points on L. Let X1 and X2 be two nonsingular cubic
curves containing Γ′ and let Γ be the set consisting on the nine points where X1 and X2 meet.
Hence, X1 and X2 have no components in common and we have by Proposition 5.1.6 that
hΓ(1) =

(
2+1

2

)
= 3 (that is, Γ does not lie on any lines). By the Arthur Cayley statement, if the

points of Γ′ impose independent conditions on lines, every line containing them would contain
all of Γ. This is of course nonsense: the points of Γ′ do lie on the line L, and none of the other
points of Xi lie on L, or L would be a component of Xi (i = 1, 2) and X1, X2 would meet in
more than nine points.

Proposition 5.1.8. Let X1, X2 be two nonsingular cubic curves and let Γ be the set consisting
on the nine points where X1 and X2 meet. Let Γ′ be the subset of Γ consisting in any three
points of it. Then, that Γ′ imposes dependent conditions on lines is equivalent to the statement
that the “residual” set Γ′′ := Γ− Γ′ imposes dependent conditions on conics.

Proof. (⇒) Let L be a line that contains Γ′, and let Q be a conic containing five points of
Γ′′. Then, by Chasles-Cayley-Bacharach Theorem, since the cubic C = L ∪ Q contains all but
one point of Γ (call it P ), it has to contains all of them. Hence, since L is not a component of
neither X1 nor X2, the point P must lie on the conic.
(⇐) Similarly, we construct a cubic with the union of a conic that contains Γ′′ and a line that
contains two points of Γ′ and since the conic is not a component of neither X1 nor X2, it follows
that the three points of Γ′ lies on such line. �

Observation 5.1.9. Pascal’s Theorem is a particular case of Proposition 5.1.8.

It may be illuminating to see the ideas of the linear series in order to correct Cayley’s error.
A paper written by Alexander von Brill and Max Noether, which appeared in 1874, helped
Bacharach to state an important result which we will see at the end of this section. Thus, the
aim from now will be to proof what we call the Bacharach Theorem. First, we will see one
of the central results proved by Brill and Noether, but first let’s make an observation which is
a consequence of the Max Noether Fundamental Theorem:

Observation 5.1.10. If there is a curve Y with equation H such that Y ·X ≥ C ·X, as X is
nonsingular, then by the Af + Bϕ Theorem, H must be written as H = AF +BG, where F and
G are the equations of C and X respectively, and A, B are forms of degree deg(H) − deg(F )
and deg(H)−deg(G) respectively. Since (H−BG) ·G = H ·G (Properties 3.4.4 (3)), it follows
that the curve Y ′ with equation H − BG meets X in the same way that Y does; that is,
Y ′ ·X = Y ·X. Moreover, Y ′ has equation H −BG = AF , so Y ′ contains C as a component.

Now we can state the result of Brill and Noether. The original version takes the curve X to be
irreducible, but the difference is mostly a matter of how the definitions are formulated:

Theorem 5.1.11. (Brill-Noether Theorem) If X is a plane curve, then the linear series cut
on X by plane curves of any degree d is complete.
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Proof. First notice that for every curves C1 and C2 of the same degree with equations F1 and
F2, then if we restrict on X,

(F1/F2) = C1 ·X − C2 ·X.
Thus, C1 · X ∼ C2 · X. Hence, it suffices to see that given a plane curve C of degree d not
containing any component of X and a divisor D linearly equivalent to C ·X, there is a plane
curve C ′ of degree d not containing any component of X such that C ′ ·X = D.
So that, given a divisor D linearly equivalent to C ·X, then exists a rational function ϕ such
that C ·X −D = (ϕ). The rational function ϕ must be expressed as ϕ = f/g where f and g
are polynomials in three variable of the same degree. Let Y and Z be the curves defined by f
and g respectively, we have

C ·X −D = (ϕ) =
(
f

g

)
= (f)− (g) = Y ·X − Z ·X.

Multiplying together the equations of C and Z, we get the equation of a curve Z ′ such that
Z ′ ·X = C ·X+Z ·X = D+Y ·X. In particular, Z ′ contains Y ·X, hence, using the Observation
5.1.10 that we have done above, there is a curve Z ′′ containing Y such that Z ′′ ·X = Z ′ ·X.
If h is the equation of Z ′′, then, since Z ′′ contains Y , it follows that f divides h. If we write C ′
as the curve defined by h/f , then C ′ ·X = Z ′′ ·X − Y ·X = Z ′ ·X − Y ·X = D. Moreover,
deg(C ′) = deg(h)− deg(f) = (deg(C) + deg(g))− deg(f) = deg(C) = d. �

Given this, the proof of Chasles-Cayley-Bacharach Theorem, and even its generalization beco-
mes trivial:

Corollary 5.1.12. If X is a plane curve of degree e ≥ 3 and C, C ′ are plane curves of
some degree d meeting X in divisors D and D′ that differ by at most one smooth point, say,
D −D′ = P −Q, then P = Q.

Proof. First notice that if F and F ′ are the polynomials that define C and C ′ respectively.
Then, D = ∑

P∈X mP (F ) = (F ) and D′ = ∑
P∈X mP (F ′) = (F ′), where mP denotes the

multiplicity at P on X. Then, P −Q = D −D′ = (F )− (F ′) = (F/F ′) and thus P ∼ Q.
Now, let L be a general line that passes through P . By the Brill-Noether Theorem there is
some line L′ that cuts out the divisor L · X − P + Q, i.e., L′ · X = L · X − P + Q and such
that L′ · X ∼ L · X. Since e ≥ 3, the effective divisor L · X − P contains at least two points
which spans L. Hence, since L′ and X meet in e points (counted with multiplicity), it follows
that L′ ·X contains at least two points that spans L. Thus, L = L′ and P = Q. �

Observation 5.1.13. Chasles-Cayley-Bacharach Theorem is the special case when d = e = 3.

In fact a much stronger statement, still short of the full version of Bacharach Theorem, can be
derived by related methods and will play a role in the sequel, so we pause to examine it. To
doing so, let’s see first some interesting results:
As in the Theory of Curves section, we will denote by H = ∑d

i=i Pi the divisor cut on a
nonsingular plane curve X of degree d by a line L ⊂ P2. Now, we will state a surprising
property of the divisor (d− 3) ·H = ∑d

i=i (d− 3)Pi ∼ KX .

Proposition 5.1.14. Let X ⊂ P2 be a nonsingular plane curve of degree d, and let P be a
point of X. Every effective divisor linearly equivalent to (d− 3) ·H + P actually contains P .
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Proof. Since KX ∼ (d− 3) ·H, we will us that L(KX) ∼= L((d− 3) ·H). Let P be a point of X.
The degree of the divisor KX + P is (2g − 2) + 1, so by the Riemann-Roch Theorem we have

l(KX + P ) = (2g − 1)− g + 1 + l(−P ) = g + l(−P ).

Clearly, the degree of −P is −1, so no effective divisor can be equivalent to −P because if
there is 0 6= f ∈ K(X) such that the divisor defined by (f) plus −P is effective, then, f would
have more zeros than poles and 0 = deg((f)) = deg((f)0) − deg((f)∞) > 0. Thus, l(−P ) = 0.
Therefore, l(KX + P ) = g = l(KX).
Observe now that ifD is any effective divisor linearly equivalent toKX , thenD+P is an effective
divisor linearly equivalent to KX + P . Then, for every effective divisor D linearly equivalent
to KX , let f ∈ L(D) ∼= L(KX), so (f) + D ≥ 0 ⇒ (f) = D′ − D, where D′ ≥ 0. Hence, let
D′′ := D′+P ⇒ (f) = D′′−D−P ⇒ (f) +D+P = D′′ ≥ 0, so f ∈ L(D+P ) ∼= L(KX +P ).
Since l(D) = l(KX) = l(KX + P ) = l(D + P ) and L(D) ⊆ L(D + P ), they must be equal. So,
if P /∈ D and 0 6= f ∈ L(D+P ), then (f) +D+P ≥ 0, so since D+P ≥ 0, f has P as a pole
and thus (f) +D � 0, i.e, L(D) ( L(D + P ). Thus, P ∈ D. �

Theorem 5.1.15. Let X1, X2 ⊂ P2 be plane curves of degrees d and e respectively, meeting
in a collection of d · e distinct points Γ = {P1, . . . , Pde}. If C ⊂ P2 is any plane curve of degree
d+ e− 3 containing all but one point of Γ, then C contains all of Γ.

Proof. We will see the result under the assumption that X1 is nonsingular. Suppose C ⊂ P2

is a plane curve of degree d+ e− 3 containing all of X1 ∩X2 except for the point Pde. We can
write the divisor cut on X1 by C as

C ·X1 = P1 + · · ·+ Pde−1 +Q1 + · · ·+Qd(d−3)+1.

Let f be the defining polynomial of a line L ⊂ P2 such that H = X ·L, and let g and h be the
defining polynomials of X2 and C respectively. Since

X1 ·X2 −X1 · Le = (g)− (f e) =
(
g

f e

)
, with deg(g) = e = deg(f e)

and

C ·X1 −X1 · Ld+e−3 = (h)− (fd+e−3) =
(

h

fd+e−3

)
, with deg(h) = d+ e− 3 = deg(fd+e−3),

we have
X1 ·X2 = P1 + · · ·+ Pde ∼ e ·H = X1 · Le

and
C ·X1 ∼ (d+ e− 3) ·H = X1 · Ld+e−3.

Thus, we can rewrite the equation as

(d+ e− 3) ·H ∼ e ·H − Pde +Q1 + · · ·+Qd(d−3)+1

or, equivalently,
Q1 + · · ·+Qd(d−3)+1 ∼ (d− 3) ·H + Pde ∼ KX + Pde.
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By Proposition 5.1.15, we get that the divisor Q1 + · · ·+Qd(d−3)+1 = C ·X1− P1− · · · − Pde−1
contains Pde. As P1 + · · ·+Pde−1 don’t include Pde, necessarily, C ·X1 contains Pde. In particular,
Pde ∈ C. �

The version of Bézout’s Theorem on the Theory of Curves’ section says that by counting each
point with an appropiate multiplicity, we may regard the intersection of C and X as a divisor
on X of degree d · k. The fact we want is a corollary of Brill-Noether Theorem:

Corollary 5.1.16. Let X be a nonsingular plane curve, and let C be any plane curve not
containing any component of X. Let D be any effective divisor on X. The family of plane
curves containing D cuts out on X the complete linear series of divisors linearly equivalent to
C ·X −D.

Proof. First note that if C ′ is a plane curve of the same degree than C, then C ′ ·X ∼ C ·X,
hence, C ′ ·X −D ∼ C ·X −D, for any divisor D on X.
Now, let D′ be an effective divisor such that D′ ∼ C ·X −D, then D′ +D ∼ C ·X. Using the
Brill-Noether Theorem, exists a plane curve C ′′ of the same degree than the curve C satisfying

C ′′ ·X = D′ +D.

Therefore,
C ′′ ·X −D = D′ ∼ C ·X −D.

�

Observation 5.1.17. Since for any divisor D on a nonsingular plane curve X,
∣∣∣D∣∣∣ ∼= P(L(D)),

it follows that
dimk(

∣∣∣D∣∣∣) = dimk(P(L(D))) = l(D)− 1.

We shall exploit the previous corollary to express the number of conditions imposed on forms
of degree m by a set of points of X in terms that are accessible to the Riemann-Roch Theorem.
The precise result is the following:

Proposition 5.1.18. Let X be a smooth plane curve of degree d, and let Λ ⊂ X be a set of
λ points, regarded as a divisor on X. The number of linear conditions imposed by Λ on forms
of degree m is equal to l(m · H) − l(m · H − Λ). In particular, the “failure of λ to impose
independent conditions on forms of degree m” is λ− [l(m ·H)− l(m ·H − Λ)].

Proof. First observe that if X is a smooth plane curve, then X must be irreducible, because if
there exists two plane curves X1 and X2 such that X = X1 ∪X2, then the multiplicity of the
points at X1 ∩X2 is greater or equal than 2 on X. Once knowing that:
The “number of linear conditions imposed by Λ on forms of degree m” is the dimension t of
the vector space of forms of degree m modulo those vanishing on Λ, i.e.,

t = hΛ(m) = dimk((k[X0, X1, X2]/I(Λ))m).

The number l(m·H) = dimk(
∣∣∣m ·H∣∣∣)+1 is the dimension of the vector space L(m·H). Using the

Corollary 5.1.16 (applied in the case when D = 0) we get that dimk(
∣∣∣m ·H∣∣∣) is the dimension
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of the space of forms of degree m modulo those vanishing on X (since X is irreducible, if a
curve have no common component with X means that doesn’t contains all of X). Hence,

l(m ·H) = dimk((k[X0, X1, X2]/I(X))m) + 1.

Similarly, the number dimk(
∣∣∣m ·H − Λ

∣∣∣) is by the Corollary 5.1.16, the dimension of the space
of forms of degree m vanishing on Λ modulo those vanishing on all of X, i.e.,

l(m ·H − Λ) = dimk((I(Λ)/I(X))m) + 1.

Thus,

t = dimk((k[X0, X1, X2]/I(Λ))m) = dimk(k[X0, X1, X2]m)− dimk(I(Λ)m) =

= dimk(k[X0, X1, X2]m)− dimk(I(Λ)m) + dimk(I(X)m)− dimk(I(X)m) =
= l(m ·H)− 1− [l(m ·H − Λ)− 1] = l(m ·H)− l(m ·H − Λ).

The “failure of Λ to impose independent conditions on forms of degree m” is simply the number
of points λ of Λ (the maximal number of conditions that Λ could impose) minus the number
of conditions actually imposed, i.e.,

λ− [l(m ·H)− l(m ·H − Λ)].

�

Finally, using Proposition 5.1.18 follows the Bacharach Theorem:

Theorem 5.1.19. (Bacharach Theorem) Let X1, X2 ⊂ P2 be plane curves of degrees d and
e respectively, intersecting in d · e points Γ = X1 ∩X2 = {P1, . . . , Pde}, and suppose that Γ is
the disjoint union of subsets Γ′ and Γ′′. Set s = d+e−3. If m ≤ s is a nonnegative integer, then
the dimension of the vector space of forms of degree m vanishing on Γ′ modulo those containing
all of Γ is equal to the failure of Γ′′ to impose independent conditions on forms of degree s−m.

Proof. We will suppose that X1 is nonsingular. As before, denote by H the hyperplane divisor
on X1; we shall consider Γ, Γ′, and Γ′′ as divisors on X1 as well (where Γ = Γ′ + Γ′′). Suppose
that the number of points on Γ′′ is γ.
The dimension of the vector space of forms of degree m vanishing on Γ′ modulo those containing
all of Γ is equal to dimk(I(Γ′)m) − dimk(I(Γ)m) = dimk((k[X0, X1, X2])m) − dimk(I(Γ)m) −
[dimk((k[X0, X1, X2])m)− dimk(I(Γ′)m)] = hΓ(m)− hΓ′(m). By Theorem 5.1.18,

hΓ(m)− hΓ′(m) = [l(m ·H)− l(m ·H − Γ)]− [l(m ·H)− l(m ·H − Γ′)] =

= l(m ·H − Γ′)− l(m ·H − Γ).
Using the Riemann-Roch Theorem and the equivalence Γ = X1 ·X2 ∼ e ·H, we get

l(m ·H−Γ′)− l(m ·H−Γ) = l((m−e) ·H+Γ′′)− l((m−e) ·H) = deg((m−e) ·H+Γ′′)+1−g+

+l(KX − ((m− e) ·H + Γ′′))− [deg((m− e) ·H) + 1− g + l(KX − (m− e) ·H)] =
= (m− e)d+ γ+ 1− g+ l((d+ e− 3−m) ·H −Γ′′)− (m− e)d− 1 + g− l((d+ e− 3−m) ·H)).
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Since s = d + e − 3, the dimension of the vector space of forms of degree m vanishing on Γ′
modulo those containing all of Γ is equal to

γ − [l((s−m) ·H)− l((s−m) ·H − Γ′′)] = γ − hΓ′′(s−m),

which is the failure of Γ′′ to impose independent conditions on curves of degree s−m. �

Observation 5.1.20. Note that if we choose m = s and let Γ′′ be a simple point P = Pde, then
γ− [l((s−m) ·H)− l((s−m) ·H−Γ′′)] = 1−1 = 0. Hence, by Theorem 5.1.19, the dimension of
the vector space of forms of degree m = d+e−3 vanishing on Γ′ modulo those containing all of
Γ is 0, i.e., Γ and Γ′ impose the same conditions on forms of degree d+ e−3. That is, if C ⊂ P2

is any other plane curve of degree d+ e− 3 containing all but one point of Γ, then contains Γ.
Therefore, Theorem 5.1.15 is a consequence of the Bacharach Theorem. Thus, the conclusion
is that there are no hypersurfaces of degree m containing Γ \ {P} except those containing Γ.
The previous theorem says further that any curve of degree s− 1 = d+ e− 4 containing all but
two points of Γ contains Γ (because two points impose independent conditions on polynomials
of degree s− 1). Moreover, there exists a curve of degree s− 1 containing all but three points
P,Q,R ∈ Γ but not containing Γ if and only if P,Q and R are collinear (if the three points are
collinear, the failure to impose independent conditions is 1, hence the dimension of the vector
space of forms of degree m vanishing on Γ′ modulo those containing all of Γ is also 1), and so
on.

There is an immediate generalization of Theorem 5.1.19 to a statement about the transverse
intersection of n hypersurfaces Xi of degrees di in Pn. Before seeing it, let’s stop to see the idea
of a result involving the canonical divisor on hypersurfaces (which I will not define):
Proposition 5.1.21. If X1, . . . , Xr are nonsingular hypersurfaces meeting transversaly in Pn
of degrees d1, . . . , dr respectively, then KX1∩···∩Xr ∼ (∑r

i=1 di − n− 1) ·H.

Proof. Since the knowledgs needed for that proposition are far from these notes, I will give
just the idea of the proof. Moreover, I have not defined the canonical divisor on hypersurfaces,
for that I want to insist that this is just an idea of the proof, due to the following theorem only
needs the consequence of this result, not the concepts involved on them, since I will just us the
notion of the canonical divisor on a nonsingular curve.
By the adjunction formula, for the nonsingular hypersurface X1 it is satisfied

KX1 ∼ (d1 − n− 1) ·H

(notice that a plane curve X is an hypersurface on the plane, and if deg(X) = d, we have
KX ∼ (d− 3) ·H = (d− 2− 1) ·H).
Then, for the transversal intersection of two nonsingular hypersurfaces X1, X2 (which is non-
singular as well) the adjunction formula says that

KX1∩X2 ∼ (d1 + d2 − n− 1) ·H.

Doing an induction of the number of hypersurfaces, we get that

KX1∩···∩Xr ∼
(

r∑
i=1

di − n− 1
)
·H.

�
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Theorem 5.1.22. (Generalization of Bacharach Theorem) Let X1, . . . , Xn by hyper-
surfaces in Pn of degrees d1, . . . , dn respectively, meeting trasnversaly, and suppose that the
intersection Γ = X1∩· · ·∩Xn is the disjoint union of subsets Γ′ and Γ′′. Set s = ∑n

i=1 di−n−1.
If m ≤ s is a nonnegative integer, then the dimension of the family of forms of degree m con-
taining Γ′ modulo those containing all of Γ is equal to the failure of Γ′′ to impose independent
conditions on forms of “complementary” degree s−m.

Proof. (In the case where X1, . . . , Xn are nonsingular). Let H be the hyperplane divisor on X.
Then, Γ = Xn ·X ∼ dn ·H. Since the transversal intersection of n−1 nonsingular hypersurfaces
defines a nonsingular plane curve, we have that X = X1∩· · ·∩Xn is a nonsingular plane curve.
Moreover, by Proposition 5.1.21 we have that

KX ∼
(
n−1∑
i=1

di − n− 1
)
·H ∼ (s− dn) ·H.

Hence, replacing e and d−3 in the proof of Theorem 5.1.19 with dn and s−dn respectively, we
get that the dimension of the family of forms of degree m containing Γ′ modulo those containing
all of Γ is equal to the failure of Γ′′ to impose independent conditions on forms of degree s−m.
�

Observation 5.1.23. If n = 2, d1 = d and d2 = e, then s = d + e − 3 and it clearly follows
Bacharach Theorem.

5.2. Conjectures

The statement of the Theorem 5.1.22 represents a good understanding on the extensions of
the Chasles-Cayley-Bacharach Theorem, which express the result as a relationship between the
Hilbert functions of residual subsets of sets of points. What I would like to propose instead the
Theorem 5.1.22 are some conjectures which you can find on [8] which are a new extension of
the Chasles-Cayley-Bacharach Theorem that takes a different direction over the others toward
a collection of inequalities on the Hilbert Function of a set of points of a complete intersection.
On the original paper [8] the conjecctures are stated by the theory of schemes. For the more
expert, I will say that they used the scheme theory in order to avoid the hypothesis that
the hypersurfaces intersect transversaly and replaced with the weaker one that they intersect
in isolated points; that is, in modern lenguage, that it is not necessary to assume that the
scheme Γ = X1 ∩ · · · ∩ Xn (where X1, . . . , Xn are hypersurfaces of Pn) is reduced, only that
is zero-dimensional. There is an interesting book of Joe Harris and David Eisenbud, called
The Geometry of Schemes [6], which introduce the reader to that theory. Since at this point I
don’t have much time to introduce myself to that theory, I will suppose that the hypersurfaces
intersect transversaly and I will avoid the schemes. So that, first I give some concepts and some
results necessaries for the conjectures. Due to the idea of this section is only to see one possible
future study of the theory developed on these notes, and the many of the results require some
knowledge which at this moment I don’t have, I will skip most of the proofs.

Definition 5.2.1. A projective algebraic variety V is a complete intersection if its vanishing
ideal can be generated by n − dim(V ) homogeneous polynomials in k[X0, . . . , Xn]. That is, if

55



V has dimension m, there should exist n −m homogeneous polynomials F1(X0, . . . , Xn), . . . ,
Fm(X0, . . . , Xn) such that I(V ) = 〈F0, . . . , Fm〉.

Observation 5.2.2. Note that if I(V ) = 〈F0, . . . , Fm〉, then V = V (I(V )) = ⋂m
i=1 V (Fi). Since

V (Fi) = Hi defines an hypersurface in Pn, if V is a complete intersection, V = ⋂m
i=1Hi for some

hypersurfaces Hi ⊂ Pn.

Theorem 5.2.3. (General Bézout’s Theorem) Let X and Y ⊂ Pn be varieties of dimension
d and e with d+ e ≥ n, and suppose they intersect transversaly. Then,

deg(X ∩ Y ) = deg(X) · deg(Y ).

In particular, if d+ e = n, this says that X ∩ Y will consist of deg(X) · deg(Y ) points.

Observation 5.2.4. If Γ ⊂ Pn is a complete intersection of n hypersurfaces X1, . . . , Xn meeting
transversaly of degrees d1, . . . , dn, then, since X = X1 ∩ · · · ∩Xn−1 is a plane curve, by an easy
induction on n and using the General Bézout’s Theorem it follows that

deg(X) =
n−1∏
i=1

deg(Xi) =
n−1∏
i=1

di.

Thus, since dim(X) + dim(Xn) = 1 + (n − 1) = n, X1 ∩ · · · ∩ Xn = X ∩ Xn will consist of∏n
i=1 di points.

Now, I can state the conjectures. Although I am not proving any of them, I will see that indeed
the first and the second are equivalent.

Conjecture 5.2.5. Let Γ be a complete intersection of n quadrics in Pn that intersect trans-
versaly (i.e., Γ consist on 2n points). If X ⊂ Pn is any hypersurface of degree k ∈ {1, . . . , n}
containing a subset Γ0 that include at least 2n− 2n−k + 1 points of Γ, then X contains all of Γ.

Note that this conjecture is sharp, if true: for any k < n, we can find a complete intersection
Γ ⊂ Pn containing a complete intersection Ω ⊂ Pn−k ⊂ Pn; then by Therorem 5.1.22, the
residual set of points Γ0 to Ω in Γ will then lie on a hypersurface of degree k not containing
Γ. On the article, the authors also make the further conjecture that if X is a hypersurface of
degree k that contains exactly 2n − 2n−k points of Ω, then the residual set of points to X ∩ Ω
in Ω is a complete intersection of quadrics in a subspace Pn−k.

Conjecture 5.2.6. Let Γ be any subset of a complete intersection of n quadrics in Pn that
intersect transversaly. If Γ fails to impose independent conditions on hypersurfaces of degree
m, then Γ contains at least 2m+1 points.

Here again this statement is sharp, if true: a complete intersection in Pm+1 provides examples
of equality for each m. Moreover, on the article, the authors conjecture further that equality
holds if and only if Γ is itself a complete intersection of quadrics in Pm+1.

Theorem 5.2.7. For all n, the following are equivalent:
(i) Conjecture 5.2.5 for all k.
(ii) Conjecture 5.2.6 for all m.
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Proof. (ii) ⇒ (i). Assume that Conjecture 5.2.6 is true for a given value of m. Let’s take
k = n−m− 1 and let Γ be a complete intersection of n quadrics meeting transversaly. Let X
be any hypersurface of degree k not containing Γ and let Γ′ = Γ \ Γ0, where Γ0 = X ∩ Γ. Since
each quadric has degree 2, we have m = n−k−1 ≤ s = ∑n

i=1 2−n−1 = n−1. Moreover, exists
an hypersurface of degree k containing Γ0 but not containing Γ, hence, hΓ0(k) − hΓ(k) > 0.
Therefore, by Theorem 5.1.22, Γ′ must fail to impose independent conditions on hypersurfaces
of degree s − k = n − 1 − k = m. Thus, from Conjecture 5.2.6 it follows that the number of
points on Γ′ is greater or equal than 2m+1 = 2n−k. Therefore, the number of points of Γ0 is less
or equal than 2n − 2n−k.
(i) ⇒ (ii). Now assume that Conjecture 5.2.5 is true for all k. Let Γ be any subset of points of
a complete intersection of n quadrics meeting transversaly, and suppose that Γ fail to impose
independent conditions on hypersurfaces of degree m = n− k− 1. Take Ω to be a set of points
that contains Γ, and let Γ′ ⊂ Ω be the residual set of points to Γ. Since each quadric has degree
2, we have m = n−k−1 ≤ s = ∑n

i=1 2−n−1 = n−1. By Theorem 5.1.22, hΓ′(m)−hΩ(m) > 0,
hence, exists a hypersurface X of degree s−m = n− 1−m = k such that X contains Γ′ but
not contains Ω. It follows then by Conjecture 5.2.5 that the number of point of Γ′ is less or
equal than 2n − 2n−k. Thus, the number of points of Γ is greater or equal than 2n−k = 2m+1.�
On the original paper, and with its original hypothesis, the Conjecture 5.2.5 and Conjecture
5.2.6 are proved for n ≤ 7. To doing so, the authors prove that the Conjecture 5.2.6 is true
when m ≤ 4 and correspondingly Conjecture 5.2.5 when n ≤ 7.
To end this chapter, I will formulate a general version of the Conjecture 5.2.5 that does not
require quadrics. Once again, to adapt to these notes, I skip the theory of schemes replacing it
by the hypothesis of hypersurfaces meeting transversaly.

Conjecture 5.2.8. Let Γ be any subset of a complete intersection of n hypersurfaces of degrees
d1 ≤ d2 ≤ · · · ≤ dn that intersect transversaly in a projective space Pn. If Γ fails to impose
independent conditions on hypersurfaces of degree m, then Γ contains at least e ·ds ·ds+1 · · · · ·dn
points, where e and s are defined by the relations

n∑
i=s

(di − 1) ≤ m+ 1 <
n∑

i=s−1
(di − 1)

and
e = m+ 1−

n∑
i=s+1

(di − 1).

Observation 5.2.9. If we restrict these hypersurfaces to be quadrics, then the s that satisfies
such relation is s = n−m. Moreover,

n∑
i=s+1

(di − 1) =
n∑

i=n−m+1
1 = m,

then e = 1 and it follows Conjecture 5.2.6. Indeed, it may it turn be translated, by an argument
generalizing Theorem 5.2.7, into a statement analogous to Conjecture 5.2.5.
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6. CONCLUSIONS

From a more objective point of view, I can ensure that working with these notes have exceeded
my expectations. Not only I have achieved to get what motivates me to begin on this subject
(proving the Pascal Type Theorem using the Max Noether Fundamental Theorem), but I have
had the oportunity to introduce myself to the theory of plane algebraic curves. Begining with a
classical problem, the Hexagramme Mystique, I have had to learn and understand some results
related with plane algebraic curves in order to study its generalizations.
Moreover, the fact of having to rewrite the article [1], forces myself to be able of make definitions
or writing the results with the best coherence and rigor with which I could. I know that writting
may not be difficult (in the strict literally meaning), however, to make it understandable for
the reader require to the writer to read it more than twice to give the nod. A big part of the
work of a mathematician is to make articles about its results or its knowledges over a subject,
hence I could say that in some way these notes give to me the first approach into the real world
of a mathematician (even the complex one, since to explain something on the best way require
that you first have apprehended it). Making some research by reading articles of a great range
of distinct mathematicians, each one with its own style and with its own strengths, and trying
to follow its studies, is the best way of preparing myself to my mathematical career.
By the other side, I will say that which I really regret is not have had more time in order to
deepen in some aspects of these notes. I have encountered with some subjects that I would have
liked to study and to be introduced to them as well. For example, an interesting theory with
a lot of applications in the algebraic geometry is the theory of schemes, objects which enlarges
the concept of algebraic varieties and with which there are multiple extensions of the Pascal
Theorem. Besides, what it could be so interesting is to see particular cases of the conjectures
that I have stated with my hypothesis, and ilustrated with examples where the conjectures
work.
Finally, for further reading, I recommend two books (a part from those which are in the bi-
bliography) both written by William Fulton. The first, “Adjoints and Max Noether’s Funda-
mentalsatz”, which gives an exposition of the theory of adjoints and conductors for curves on
nonsingular surfaces (which may be regarded as a ninth chapter of [1]); and the second, “Intro-
duction to Intersection Theory in Algebraic Geometry”, which extends most of the results on
these notes of plane algebraic curves to hypersurfaces in Pn.
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