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Abstract

Background: Cancer patients often show no or only modest benefit from a given therapy. This major problem in
oncology is generally attributed to the lack of specific predictive biomarkers, yet a global measure of cancer cell
activity may support a comprehensive mechanistic understanding of therapy efficacy. We reasoned that network
analysis of omic data could help to achieve this goal.

Methods: A measure of “cancer network activity” (CNA) was implemented based on a previously defined network
feature of communicability. The network nodes and edges corresponded to human proteins and experimentally
identified interactions, respectively. The edges were weighted proportionally to the expression of the genes
encoding for the corresponding proteins and relative to the number of direct interactors. The gene expression data
corresponded to the basal conditions of 595 human cancer cell lines. Therapeutic responses corresponded to the
impairment of cell viability measured by the half maximal inhibitory concentration (IC50) of 130 drugs approved or
under clinical development. Gene ontology, signaling pathway, and transcription factor-binding annotations were
taken from public repositories. Predicted synergies were assessed by determining the viability of four breast cancer
cell lines and by applying two different analytical methods.

Results: The effects of drug classes were associated with CNAs formed by different cell lines. CNAs also differentiate
target families and effector pathways. Proteins that occupy a central position in the network largely contribute to
CNA. Known key cancer-associated biological processes, signaling pathways, and master regulators also contribute
to CNA. Moreover, the major cancer drivers frequently mediate CNA and therapeutic differences. Cell-based assays
centered on these differences and using uncorrelated drug effects reveals novel synergistic combinations for the
treatment of breast cancer dependent on PI3K-mTOR signaling.
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Conclusions: Cancer therapeutic responses can be predicted on the basis of a systems-level analysis of molecular
interactions and gene expression. Fundamental cancer processes, pathways, and drivers contribute to this feature,
which can also be exploited to predict precise synergistic drug combinations.

Keywords: Cancer, Network, Therapy, Synergy

Abbreviations: CNA, Cancer network activity; DCI, Drug combination index; GO, Gene ontology HPRD, Human
protein reference database; IC50, Half maximal inhibitory concentration; PCC, Pearson’s correlation coefficient;
TF, Transcription factor

Background
Understanding of the molecular determinants of cancer
therapeutic response has been greatly enhanced in re-
cent years [1, 2]. For instance, defined transcriptional
profiles have proved to be good predictors of treatment
benefit [3]. In turn, specific alterations have been dem-
onstrated to mediate the existence and/or promote the
acquisition of resistance [4]. Globally, the integration of
molecular data has been shown to be useful in predict-
ing therapeutic sensitivity versus resistance [5–9]. How-
ever, despite these advances, cancer patients all too
frequently show no or only modest benefit from a given
therapy. The persistence of this fundamental clinical
problem is partially attributed to the lack of specific
biomarkers [10, 11]; nonetheless, the identification of a
comprehensive measure of cancer cell activity could
complementarily support the interpretation of therapy
efficacy [12].
Cancer mutations portray cellular phenotypes reliant

on the coordinated activity of specific biological pro-
cesses and signaling pathways embedded in complex
molecular networks [13–16]. During carcinogenesis, mo-
lecular networks show extensive rewiring and increased
signaling entropy [17–19], which likely contribute to
the characteristic robustness of the disease [20, 21].
Interestingly, increased signaling entropy has been as-
sociated positively with node connectivity and negatively
with cancer survival and therapeutic benefit [22–24]. In
parallel, cellular responses to combinations of molecular
perturbations can be predicted based on how the corre-
sponding targets are connected in the network [25, 26].
Thus, prediction of therapeutic response may be com-
plemented by the inclusion of a potentially compre-
hensive cellular measure that integrates diverse levels
of molecular data. In addition, searching for maximal
systems-level perturbations induced by drugs may help
to identify synergistic therapeutic combinations. Such
analyses could help to identify combinations that are
more effective than single-compound approaches. This
study assesses these hypotheses using a weighted net-
work measure based on the feature of network com-
municability [27, 28].

Methods
Interactome network analyses
Release #9 of the Human Protein Reference Database
(HPRD) [29], which contains 9670 proteins and 39,172
interactions (9267 and 36,893 in the main interactome
network component, respectively), and a high-quality
human protein interaction network derived from the
combination of reliable literature-curated binary interac-
tions and well-verified high-throughput yeast two-hybrid
interactions (7401 proteins and 20,614 interactions; 6993
and 19,009 in the main component, respectively) [30]
were analyzed in this study. The corresponding main
components were used for subsequent analyses, exclud-
ing proteins with no assigned Entrez identifier and
homodimers. The significance of the results was also
assessed using a random undirected network that was
constructed applying the latmio_und function (Brain
Connectivity Toolbox in Python), which preserves the
node degree distribution and network connectedness.

Gene expression, therapeutic responses, and cancer cell
line data
Normalized expression data from 595 cancer cell lines,
for which the associated drug sensitivity data were avail-
able, were obtained from the corresponding repository
[8]. If > 1 microarray probes represented a given gene,
the probe with the highest standard deviation was used
in subsequent analyses. For gene products not repre-
sented in the microarray (n = 1428 in HPRD), the aver-
age expression value for all measured genes was
assigned. The normalized IC50 for 130 unique drugs,
together with information on the mutational status of
given proto-oncogenes and tumor suppressor genes,
were obtained from the original study [8]. Additionally,
each drug was categorized as “single node” or “multiple
node” perturbations, on the basis of current knowledge of
the respective mechanisms of action (Additional file 1).
Genetic, genomic, and molecular alterations identified in
cancer cell lines were taken from the same repository [8];
the alterations examined for global correlation with
CNA were of ERBB2 or MYC amplification, and BRAF,
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EGFR, PIK3CA, PTEN, RB1, or TP53 mutation. CNA
was also evaluated for its global correlation with pro-
tein expression using normalized reverse phase protein
array (RPPA) data for 81 cell lines obtained from The
Cancer Proteome Atlas [31].

Cancer network activity algorithm
CNA was defined following the concept of “weighted
communicability” [28]. First, for each network edge
(i.e. protein-protein interaction in the network) a
weighted expression-based value was obtained as follows:
wij ¼ xjP

k∈Ui

xk �xi þ
xiP
k∈Uj

xk �xj , where wij is the weighted

value of the edge that connects nodes (i.e. gene prod-
ucts or proteins) i and j, xi, xj are the expression values
of the corresponding genes, and Ui and Uj are the sets
of their corresponding direct interactors (k). Therefore,
the ratio xjP

k∈Ui

xk computes the relative expression of

interactor j in the direct neighborhood of i (Ui) and the
product xjP

k∈Ui

xk �xi computes the expression of i pro-

portional to the expression of j in Ui. The distribution
of the expression of i according to its interactors (Ui)

satisfies that
X

j∈Ui

xjX
k∈Ui

xk
¼

X
j∈Ui

xjX
k∈Ui

xk
¼ 1 and therefore

X
j∈Ui

xjX
k∈Ui

xk
�xi ¼ xi . The preprocessed and normal-

ized gene expression values were obtained from the ori-
ginal cancer cell line study [8]. Subsequently, a matrix (W)
of weighted edges was generated by compiling all wij

values, where (i,j) belong to the complete set of edges
(E) in the main network component. In this analysis,
wij values were normalized by row and column weights
using the product of

ffiffiffiffiffiffiffiffi
didj

p
, where di = ∑jwij, which

therefore corrects for the potential bias introduced by
nodes with many interactors and large weights [28, 32].
In W, the centrality measure of a given node i was
defined by computing all paths that start and finish at

i; C(i) = (eW)ii, where eW ¼
X
k≥0

Wk

k!
. Thus, Wk represents

the kth-power of the weighted adjacency matrix given
all paths of length k and longer paths are penalized by
including the factorial 1/k!. Finally, a global measure of
network (G) activity (CNA) can be defined by the sum

of node centralities, as follows: CNA Gð Þ ¼
X
i∈V

C ið Þ .

The normalized x ∈ (0, 1) CNA score (HPRD-based,
Additional file 2) was obtained by computing x−aþ1

b−aþ1 ,
where a and b are the minimum and maximum of
observed CNA values, respectively. The significance of
the CNA-drug/therapeutic feature associations was

computed empirically by performing 1000 permuta-
tions of the CNA-cell line identities.

Gene ontology and pathway annotation analyses
The Gene Ontology (GO) Biological Processes term
annotations were downloaded from the Open Biological
Ontologies release 2012/06 (MySQL version). Genes
annotated at level 5 or lower in the hierarchy were
assigned to level 4, but those also occurring at level 3 were
excluded. Only those terms with a frequency of ≥ 5 % in
the analyzed protein sets were evaluated. REACTOME
pathway annotations were downloaded from the corre-
sponding repository (www.reactome.org). Statistical sig-
nificance of term/pathways was assessed using 2 × 2
contingency tables and Fisher’s exact tests. Values of
p < 0.05 after false-discovery rate (FDR) [33] correction
were considered significant.

Transcription factor analyses
Professional TRANSFAC predictions (version December
2014) for 599 TF were used for the enrichment analysis.
In the HRPD dataset, 4661 genes were regulated by any
TF and 836 nodes corresponded to the “high centrality”
set. Each TF was tested for its enrichment in this set
using Fisher’s exact test. If > 1 microarray probe was
present for a given TF in the cancer cell lines dataset
[8], the average expression value was used for the correl-
ation analysis with the drug IC50 values.

Cell culture
All cell lines used in this study were cultured following
standard protocols and cellular viability was evaluated
by performing assays based on methylthiazol tetrazo-
lium (MTT, Sigma-Aldrich). The human mammary
epithelial cell line MCF10A (ATCC) was used as the
non-tumorigenic control. The drugs were purchased from
Sigma-Aldrich (metformin) and from LC Laboratories.
The reported results to at least four independent assays
for each drug/combination and to quadruplicates for each
data point.

Synergism analysis
The non-additive effects of drug combinations were
assessed using two methods: the Drug Combination
Index (DCI) of the Chou-Talalay method [34] and a
two-parameter algorithm based on Newton-Raphson’s
methodology [35]. The DCI was defined as follows:
CI ¼ D1

D50ð Þ1 þ
D2
D50ð Þ2 , where D1 and D2 are the effects of

drugs 1 and 2 in the combination causing 50 %
viability, respectively, and (D50)1 and (D50)2 are the
effects in the corresponding single-drug assays. Thus,
the DCI was computed for a range of viability effects and
values of ≤ 0.85 and ≥ 1.20 correspond to synergism and
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antagonism, respectively. The two-parameter algorithm
was implemented as follows: given n drug doses x = (x0,…,
xn-1) and n cellular responses y = (y0,…, yn-1), the method
was applied to compute responses ŷ = (ŷ0, …, ŷn − 1),
ŷi = fu(xi), which minimize ‖y − ŷ‖2, where fu is the
unaffected ratio of cells, f u xð Þ ¼ 1

1þ x
D50

� �m , and D50

and m (slope) are free parameters.

Results
An integrative analytical strategy
Genes and proteins are functionally organized within
complex networks [14]. In cancer, biological processes
and signaling pathways in such networks are often robust
to perturbations [7, 17–19, 36, 37]. We hypothesized that
a measure that integrates molecular interactions and ex-
pression levels could, at least partially, predict cancer
therapeutic responses. We tested the hypothesis by
first integrating the known human interactome net-
work (i.e. network of protein-protein-interactions) with
basal gene expression measurements in 595 cancer cell
lines whose sensitivity (i.e. IC50 values) to 130 cancer
drugs was determined [8]. In this approach (Fig. 1),
starting with an undirected interactome network and
for each node (protein) and edge (interaction), a weight is
assigned to an edge as proportional to the expression level
of the corresponding interaction partner and relative to
the expression levels of the direct interactors (see
“Methods”). Subsequently, the weighted adjacency matrix
is used to apply the concept of network “communicability”
[27, 28] as a prediction of cancer cell activity that may, in
turn, be associated with specific cancer features and differ-
ences in therapeutic responses.
While whole-genome expression measurements in a

single sample assume uncertainties in the values of some
genes, the integrated gene expression-IC50 profiling
dataset showed strong correlation with the tissue of
origin, as well as with established cancer drivers [8]. To
further evaluate the properties of this dataset at the

systems level, we computed the expression correlations
between any two genes that encode interacting pro-
teins; thus, consistent with previous observations in
health and disease [38], and compared to randomly
chosen gene pairs, the genes that encode interacting
proteins tend to be positively co-expressed (Pearson’s
correlation coefficient (PCC) = 0.12; Wilcoxon rank test
p = 6.0 × 10−300; Additional file 3). This validation sup-
ported the established framework for assessing the rele-
vance of the newly defined measure of CNA.

Associations between CNA and type of therapies
First, we determined the correlations between the CNA
values and IC50 profiles of different classes of drugs.
While the overall distribution of PCCs was centered on
zero (Fig. 2a), significant differences (p < 0.05 based on
1000 permutations of cell line identities) were found be-
tween distinct drug types or therapeutic strategies. The
IC50 of drugs that target broad processes, such as those
used in chemotherapy, tended to correlate negatively
with CNA; that is, higher activity is associated with
higher therapeutic sensitivity (i.e. lower IC50; Fig. 2b, top
panel). Drug classification between single- and multiple-
node perturbations is detailed in Additional file 1 and all
other classifications were obtained from the original study
[8]. This result appears to be consistent with the known
association between cell proliferation and response to
chemotherapy [39].
In contrast to chemotherapies, the IC50 of drugs that

define targeted therapies tended to correlate positively
with CNA, and significant differences were observed
among drugs of this type; for example, between drugs
that target cytoplasmic (non-receptor) tyrosine kinases
(CTKs) and S/T kinases (STKs) (Fig. 2b, bottom panel).
Importantly, the results were replicated with a high-
quality human protein interaction network (Additional
file 4), but the association disappeared using a random
network model that preserved the original degree distri-
bution and connectedness (Additional file 5). Overall,
significant differences (empirical p < 0.05) were found in

Fig. 1 Strategy analysis. The basal gene expression of hundreds of cancer cell lines is integrated into the interactome network and a CNA score is
then assigned to each cell line by computing a weighted adjacency matrix. Next, CNA measures are evaluated for their correlations with types of
drugs or therapies, network topology, biological processes and signaling pathways, cancer drivers, and drug synergies
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terms of previously defined Compound Class, Target
Family, and Effector Pathway (Fig. 2c) and, remarkably,
none of these associations was detected using the null
model (p values > 0.05). Together, these observations
indicate that CNA captures biologically relevant infor-
mation linked to cancer therapeutic responses.

Biological processes and pathways influencing CAN-
therapeutic associations
To determine which biological processes and signaling
pathways were contributing to the associations observed
above, we examined the distribution of node centrality
in CNAs from all cell lines. This was done using the
measure of all possible weighted network paths starting
and ending at the corresponding node (i.e. protein).
The highest tertile of centrality included nodes that
showed an over-representation of Gene Ontology (GO)
terms related to a range of biological processes, includ-
ing apoptosis, gene expression, and immune response
(Fig. 3a). Furthermore, this set of edge-weighted central
nodes showed significant over-representation of mem-
bers of the TGFβ signaling pathway (Fig. 3a).
Interestingly, the set of central nodes was found to be

responsible for the differential correlations between CNA
and IC50 profiles. For example, in the case of drugs target-
ing CTKs or STKs, skewed distributions were evident only
when the high-centrality node set remained “active” (node
“inactivation” was achieved by assigning an average value
of centrality from the complete main network component;
Fig. 3b, right panel). The mid-centrality node set showed a

trend for differences, but statistical significance was
not reached (Fig. 3b, middle panel). Therefore, key
cancer-associated biological processes and pathways
that occupy central positions in the network contribute to
the association between CNA and therapeutic responses.
The above observations are similar to independent

results obtained using an analogous network measure,
signaling entropy [37, 40]. This measure is derived from
a sample-specific integration of gene expression profiles
in protein interactome data and provides an estimation
of signaling promiscuity [37, 40]. Interestingly, high
entropy has been associated with over-expression of hub
proteins, over-expression of common pathways to above
(e.g. immune response), and poor prognosis and thera-
peutic resistance [17, 18, 22–24]. Given these observa-
tions, we assessed the correlation between CNA and
entropy [24] and detected a strong negative correlation
(PCC = –0.58, p = 1.5 × 10−54; Fig. 3c).
Consistent with the negative correlation with entropy,

and using the complete cell line collection, CNA was
found to be negatively correlated with MYC amplifica-
tion (Spearman’s correlation coefficient (SCC) = –0.13,
FDR-adjusted p = 0.049) and with annexin 1 (ANXA1)
and caveolin 1 (CAV1) protein expression detected in
RPPA assays (SCCs = –0.50 and –0.67, FDR-adjusted
p = 0.003 and 0.0001, respectively). Notably, over-
expression of ANXA1 and CAV1 has been associated
with therapeutic resistance in different cancer settings
[41, 42]. Overall, these observations are coherent with
CNA-drug associations and further suggest that CNA

Fig. 2 CNA-IC50 correlation discriminates drugs and therapies. a Global distribution of PCCs between CNA values and IC50 profiles for all cancer
cell lines and drugs, respectively. b Top panel, distribution of PCCs for drugs that target a single network node (i.e. targeted therapies) versus
drugs that target multiple nodes and/or broad processes. The Wilcoxon test p values for the comparison of distributions are shown; gray
distributions correspond to random permutations of CNA and cancer cell line correspondences. Bottom panel, distribution of PCCs for drugs that
target CTKs or STKs. c Significant differences (PCCs, empirical p < 0.05) between drugs originally assigned to a different Class, Targeted Family, or
Effector Pathway [8]
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captures biologically meaningful information for the com-
prehensive understanding of therapeutic responses.

Cancer drivers influence CNA-therapeutic associations
Since CNA discriminates types of cancer drugs and key
cancer processes/pathways mediate the observed differ-
ences, we next assessed associations according to the
mutational status of known proto-oncogenes and tumor
suppressors. The comparison of wild-type and mutated
settings revealed differential distributions of CNA-IC50

correlations for the CTNNB1, EGFR, ERBB2, and
PIK3CA (analyzed jointly with PIK3R1) proto-oncogenes
and for the PTEN, RB1, TSC1/2, and VHL tumor
suppressors (Fig. 4a shows results for PIK3CA/PIK3R1
status; and Additional files 6 and 7).
Several observations support the systems-level rele-

vance of the observed differences by cancer driver gene
type and its mutational status. First, most (26/28, 93 %)
of the CNA-IC50 differential associations were concord-
ant with the corresponding gene expression-IC50 corre-
lations (PCC p values < 0.05; Fig. 4b, left panel);
therefore, CNA frequently captures the global network
impact of a precise cancer driver. Interestingly, among

these drugs, nilotinib IC50 was found to represent the
strongest positive correlation with EGFR expression,
but the CNA-nilotinib IC50 correlation in EGFR mu-
tants was negative (Additional file 6) and there is pre-
clinical evidence of synergism between this drug and
anti-EGFR targeted therapy [43]. In addition, CNA was
found to be correlated with the expression (probe level)
of 21/28 (75 %) of the specific drug targets (Additional
file 8). Further supporting the proposed influence of
key processes/pathways, the drugs identified using the
CNA measure (i.e. drugs linked to differential distribu-
tions of CNA-IC50 correlations by driver mutational
status, Additional file 6) were not the highest ranked
when gene expression-IC50 correlations were analyzed
(Fig. 4b, right panel). Second, there were indications of
signaling pathway coherence. While the mutation pro-
files of PIK3CA/R1 and PTEN were not correlated
across cancer cell lines (as expected, PCC = −0.05), two
significant CNA-IC50 concordances were found between
the gene mutation settings: for AZD-2281 (olaparib),
which targets PARP1/2 and the DNA damage response;
and for AZD-8055, which targets mTORC1/2 (Additional
file 6). Third, there were also indications of biological

Fig. 3 Specific biological processes and high-centrality network nodes contribute to CNA-associated differences. a Tertile distributions of network
nodes according to standardized centrality measure. The GO biological processes and REACTOME pathways significantly enriched (FDR < 5 %) in
the tertile with the highest centrality are listed in the right panels. b Panels showing the distribution of PCCs for drugs that target CTKs or STKs,
when the lowest, middle, or highest tertiles of centrality are active (i.e. nodes for the remaining tertiles are “deactivated” by assigning the average
network centrality value). The empirical p values for the comparison of distributions are shown; distributions are only different when the highest
tertile of centrality is active, as seen for the complete dataset. c Correlation between signaling entropy and CNA measures in the same cancer cell
lines dataset

Serra-Musach et al. Genome Medicine  (2016) 8:88 Page 6 of 12



process coherence; the drugs targeting (based on CNA)
the mutational status of proto-oncogenes were frequently
found to alter metabolism (as Effector Pathway [8], Fish-
er’s exact test p = 0.014), whereas the drugs targeting the
mutational status of tumor suppressor genes were fre-
quently found to alter transcription (p = 0.001). Fourth,

the drugs that target the mutation status of tumor suppres-
sors were more frequently correlated with one another (for
their IC50) than randomly expected (empirical p= 2.6 × 10−4),
whereas an opposite trend (p = 0.095) was observed
for drugs that target proto-oncogene mutations (Fig. 4c).
There were target or effector pathway redundancies in the

Fig. 4 Assessment of CNA-drug IC50 associations. a Distributions of PCCs for cancer cell lines with mutated or wild-type PIK3CA/R1. The drugs
contributing to the negative correlation bias for PIK3CA/R1-mutated cell lines are listed. b Left panel, heatmap showing the results of the PCC
analysis between the IC50 profiles of the identified drugs (based on differential CNA-IC50 correlations and mutational status) and the expression
profiles of proto-oncogenes and tumor suppressors (by microarray probe; the results for nilotinib are marked). The significant (empirical p < 0.05)
correlations are shown. Drugs are color-coded according to the corresponding molecular or biological process target. Right panel, results for the
EGFR 201983_s_at probe correlation with all drug IC50 values (distribution) or with nilotinib IC50 (brown lane), originally identified as associated
with CNA. c Left panel, heatmap showing the unsupervised clustering of PCCs between the IC50 profiles of associated drugs (based on CNA) with
the mutational status of proto-oncogenes or tumor suppressors, or both. Right panels, comparison of the observed number of correlated effects
(vertical lines) against equivalent random sets of drugs (distributions). The empirical p values are shown. d Left panel, graph showing the targets of
CNA-IC50-based drugs that are differentially expressed between mutated and wild-type cancer cell lines for each of the proto-oncogenes or tumor
suppressors analyzed. Red and green indicate over-expression and under-expression in the corresponding mutated setting, respectively. Right
panels, comparison of the observed number of differentially expressed targets in PTEN or RB1 mutated cell lines (vertical lines) against equivalent
random sets of cancer cell lines. The empirical p values are shown. e Left panel, heatmap showing the results of the PCC analysis between the
expression of cancer driver TFs and the IC50 profiles of drugs associated (based on CNA) with the mutational status of proto-oncogenes and/or
tumor suppressors. Right panel, PCC distributions for cancer driver TFs (excluding CTNNB1 and PTEN) and the rest of human TFs according to
TRANSFAC annotations. The p value of the Wilcoxon rank test is shown
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previous drug sets that could have produced bias in the
analysis; however, while the number of drugs analyzed is
relatively small, the effect is clearly different for tumor
suppressors (Fig. 4c). Finally, the analyses of PTEN and
RB1 captured most of the differential CNA-IC50 associa-
tions, and the corresponding drug targets (i.e. the targets
of the analyzed drug IC50) were frequently found to be dif-
ferentially expressed in cancer cell lines harboring PTEN
or RB1 mutations (empirical p values < 0.05; Fig. 4d).
The above observations support that CNA captures

biologically relevant information across different cancer
settings. To characterize this link at a complementary
network level, we examined whether known transcription
factors (TFs) that act as cancer drivers [44] commonly
regulate the set of nodes that determines CNA. Overall,
there was a significant enrichment for predicted binding
sites of the cancer driver TFs in the promoters of genes
encoding the high-centrality set (odds ratio = 1.89, p =
0.007). Specifically, three of the 17 cancer driver TFs were
found to be over-represented (as predicted binding sites:
BRCA1, CBFP and EP300; Fisher’s test p values < 0.05).
Next, an analysis of correlations between the expression
of all cancer driver TFs and the drugs identified above
(as linked to the mutational status of proto-oncogenes
or tumor suppressors) revealed significant differences
relative to non-cancer driver TFs (Wilcoxon rank test
p = 3.7 × 10−10, excluding the coincident CTNNB1 and
PTEN; Fig. 4e). Collectively, these data further illustrate
key system-level features captured by the CNA measure
and linked to cancer therapeutic response.

Using CNA evidence to predict synergism
Given the CNA associations involving specific drugs and
therapeutic approaches, and key processes/pathways and
cancer drivers, we hypothesized that this information
could identify the combination of drugs that maximizes
the perturbation of the cancer network. In turn, since
interplay of cancer hallmarks is involved, maximizing
the perturbation will potentially increase the likelihood
of a synergistic effect. With this aim, we predicted that
those pairs of drugs whose individual IC50 profiles were
not correlated (in the specific mutated context) could
provide greater network perturbation, thus achieving
synergistic effects. An analogous rationale has recently
been tested using multidimensional data modeling [45].
Following on from the above premises, the study was

centered on PI3K-mTOR signaling, as this pathway
plays a key role in carcinogenesis and therapy response
[46, 47]. Of the drugs targeting the PIK3CA/R1 status
(Additional file 6), we selected metformin because its
IC50 was not correlated (in PIK3CA/R1 mutated cell
lines) with AZD-8055, olaparib, or SL-0101 (ribosomal
S6 kinase (RSK) inhibitor). The following cell lines were
used to evaluate these combinations: MDA-MB-453

and HCC-1954, both of which harbor an oncogenic
PIK3CA mutation; and MDA-MB-231 and SK-BR3,
which harbor molecular alterations linked to increased
AKT activity and PI3K-inhibition sensitivity [48]. Thus,
the assessment of the inhibitory effect of each metfor-
min combination revealed significant synergism in nine
of 12 instances when compared to single-drug assays
(DCI < 0.85; Fig. 5a). Consistent results were obtained
in three independent assays of each combination and
using an alterative analytical method based on two pa-
rameters (see “Methods”). In addition, assays with the
non-tumorigenic breast cancer MCF10A cell line did
not show synergisms (Fig. 5b shows results for the
combination of two approved drugs: metformin and
olaparib). Moreover, using the same cell lines, the as-
sessment of drugs with positively correlated IC50 pro-
files did not reveal any synergism, but four of eight
combinations/cell lines showed an antagonistic effect
(Fig. 5c). Thus, the proportions of the observed effects
between uncorrelated and correlated drug pairs were
significantly different (Z-score p = 0.001). Finally, the
identified synergistic combinations were tested in two
additional breast cancer cell lines harboring oncogenic
PIK3CA mutations: BT-474 and MCF7. The results
showed similar trends as above except for two combi-
nations in MCF7 (Additional file 9). Of note, BT-474
and HCC-1954 correspond to HER2-positive cancer
subtype, and the efficacy of combining of metformin
and olaparib would be consistent with PARP-inhibition
leading to an increase of glycolysis by rising NAD+ and
metformin counteracting this activity [49, 50]. In
addition, the synergistic results are consistent with and
expand on recent observations of the effect of combin-
ing PI3K/mTOR and PARP inhibitors in the treatment
of BRCA1-related breast cancer [51, 52].

Discussion
The understanding of cancer cell response to current
standard therapies is fundamental for developing effect-
ive novel and/or combined approaches and, therefore,
for improving the clinical management of cancer pa-
tients [1]. Since carcinogenesis is reliant on the interplay
of several biological processes and signaling pathways
[53], the understanding of therapeutic response may be
improved by taking into account all of the potential mo-
lecular measures in a given cancer model [12]. In this
study, we addressed this question by computing a
weighted network score for hundreds of cancer cell lines
and assessing its association with the cancer cell sensi-
tivity profiles to more than one hundred experimental or
approved drugs [8]. The results show that the newly de-
fined measure of “cancer network activity” correlates
with differences in the mode of action of the drug types.
In turn, these differences are likely to be mediated by
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topologically central proteins and key cancer-associated
biological processes and pathways. Complementarily,
these observations may lead to additional studies fo-
cused on local topological network features that could
detect cancer cell activity to some extent. However, the
present study presents certain limitations that should
be acknowledged. In particular, more accurate results
may be obtained by including information on the
correspondence between gene and protein expression
levels, and by taking into account protein isoforms and
key functional post-transcriptional and post-translational
modifications. Interestingly, CNA is found to be nega-
tively correlated with a global measure of signaling
entropy [22–24, 40], which collectively may depict
complementary systems-level views of cancer status.
This observation is further extended by the negative
correlation between CNA and biomarkers therapeutic
resistance in different cancer settings (i.e. ANXA1 and
CAV1) [41, 42].

The study goes beyond the novel observation of the
relevance of CNA, suggesting that this property may be
useful in predicting synergistic drug combinations. Given
the existence of > 30,000 possible pair combinations
among those drugs currently approved for cancer ther-
apy, the value of data integration has previously been
proposed [54]. Importantly, network topology can pre-
dict subtype-specific therapeutic targets [55] and, in
turn, the cellular response to a given combination of
compounds can predict the connectivity of the targets
[26]. Critically, however, synergistic effects appear to be
more dependent on the molecular context than single
drug activities [56]. This observation is reminiscent of
the complexity of genetic interactions [57] and might be
expected if it is considered that the overall effect of
combinations is mediated by the interplay of different
processes and/or pathways. In our study, guided
by differences in the correlation between CNA and
IC50profiles, and based on the premise that drug IC50

Fig. 5 Assessment of the effect of drug pairs based on CNA evidence. a Left panel, heatmap showing the DCIs obtained by assessing metformin
combinations with non-correlated (in the original dataset [8]) drugs in four breast cancer cell lines. Right panel, graph showing the results for
metformin and/or olaparib in HCC-1954 cells. b Graph showing the results for metformin and/or olaparib in MCF10A cells. c Heatmap showing
the DCIs obtained by assessing AZD-8055 combinations with correlated drugs
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profiles should not be correlated in order to likely reveal
synergisms, we suggest that CNA is useful for identifying
effective drug combinations. A recent comprehensive
study has used a similar rationale to identify synergistic ef-
fects in a specific cancer context [45]. While our study
was primarily aimed at evaluating the systems-level influ-
ence of cancer therapies, several algorithms specifically
intended to predict synergism have been developed and
evaluated [58, 59]. Some of these algorithms use pathway
information and/or dissimilarity gene expression profiles
for inference, but the integration of this information is not
used for network modeling and the premise of dissimilar
IC50 profiles for potential drug combinations is not con-
sidered. Larger analyses of drug pairs may be warranted to
corroborate the established premises.

Conclusions
Cancer therapeutic response can be partially predicted
on the basis of a network communicability measure that
integrates gene expression and protein interaction data.
This measure is influenced by central proteins in the
interactome network, cancer-associated biological pro-
cesses and pathways, and cancer drivers. Centered on
CNA differences and by combining drugs with uncorre-
lated effects may help to identify on the identification
of synergistic results.

Additional files

Additional file 1: Table S1. Drugs classified as “single node” or
“multiple node” perturbation. (XLSX 46 kb)

Additional file 2: Table S2. Normalized CNA values for all cancer cell
lines. (XLSX 55 kb)

Additional file 3: Figure S1. Biological coherence of the integrated
dataset. Graph showing the distributions of expression correlations for
random gene pairs or genes that encode for physically interacting
proteins. The empirical p value is shown. (PDF 418 kb)

Additional file 4: Figure S2. Corroboration of CNA-IC50 correlations
using a high-quality interactome dataset. The PCC distribution difference
between drugs that target CTKs or STKs is maintained when the network
is based on a high-quality dataset derived from the combination of
reliable literature-curated binary interactions and well-verified high-
throughput yeast two-hybrid interactions. (PDF 162 kb)

Additional file 5: Figure S3. The CNA-IC50 correlation differences are
not observed when a random, null network model that preserves degree
distribution and connectedness is analyzed. (PDF 148 kb)

Additional file 6: Table S3. Drugs with their IC50 negatively correlated
with CNA values. (XLSX 46 kb)

Additional file 7: Figure S4. Evaluation of CNA-IC50 correlations by
known cancer driver mutations. Distributions of PCCs for cancer cell lines
with mutated or wild-type proto-oncogenes or tumor suppressors as
depicted in each figure. The rank position of negatively correlated drugs
(p < 0.10) is shown. (EPS 975 kb)

Additional file 8: Table S4. Correlations of drug target gene expression
and CNA values. (XLSX 42 kb)

Additional file 9: Figure S5. Top panel, heatmap showing the DCIs
obtained by assessing metformin combinations in two additional breast

cancer cell lines. Bottom panels, graphs showing the results for metformin
and/or AZD-8055. (EPS 495 kb)

Acknowledgements
We thank the Genomics of Drug of Sensitivity in Cancer consortium for
making their processed data publicly available and Peter Cottee for his
professional writing advice.

Funding
This study was supported by Generalitat de Catalunya AGAUR SGR 2014
grant 364, Spanish Ministry of Health ISCIII grants PI12/01528, PI15/00854,
RTICC RD12/0036/0007 and 0008, and PIE13/00022-ONCOPROFILE, Spanish
Ministry of Science and Innovation “Fondo Europeo de Desarrollo Regional
(FEDER), una manera de hacer Europa”, and the Telemaraton 2014 “Todos
Somos Raros, Todos Somos Únicos” grant P35.

Availability of data and material
All data generated or analyzed during this study are included in this
published article and its supplementary information files. The original
datasets used in this study are available from the corresponding
repositories or publications (see “Methods”).

Authors’ contributions
JS-M and MAP conceived of the study and study design, and carried out figure
generation and manuscript preparation. MF and PA provided guidance with
analyses and assisted in figure generation. FM, EC-B, XZ, RG, CJT, JG, GRG, AV,
MV, HP, AC, EG-S, ME, GM-B, CL, VS, and JA provided support with the
experimental design and data interpretation. SJ, HH, AT, MB, and MG
provided support with analytical approaches. All authors contributed to
manuscript revisions and read and approved the final version.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The study received the approval of the Ethics Committee of the Bellvitge
Institute for Biomedical Research (IDIBELL).

Author details
1Breast Cancer and Systems Biology Lab, Program Against Cancer
Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO),
Bellvitge Institute for Biomedical Research (IDIBELL), Gran via 199, L’Hospitalet
del Llobregat, Barcelona 08908, Catalonia, Spain. 2Joint IRB-BSC-CRG Program
in Computational Biology, Institute for Research in Biomedicine (IRB
Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac
10, Barcelona 08028, Catalonia, Spain. 3Division of Preclinical Innovation,
National Center for Advancing Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Dr. Rockville, Bethesda, MD 20850,
USA. 4Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology
(VHIO), Cellex Center, Natzaret 115-117, Barcelona 08035, Catalonia, Spain.
5Cancer Epigenetics and Biology Program (PEBC), IDIBELL, Gran via 199,
L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain. 6Department of
Physiological Sciences II, School of Medicine, University of Barcelona, Feixa
Llarga s/n, L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain.
7Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís
Companys 23, Barcelona 08010, Catalonia, Spain. 8Department of
Biochemistry, Autonomous University of Madrid (UAM), Biomedical Research
Institute “Alberto Sols” (Spanish National Research Council (CSIC)-UAM),
Hospital La Paz Institute for Health Research (IdiPAZ), Arzobispo Morcillo 4,
Madrid 28029, Spain. 9MD Anderson International Foundation, Arturo Soria
270, Madrid 28033, Spain. 10The Centre for Individualized Medicine,
Department of Clinical and Experimental Medicine, Linköping University,
Linköping 58183, Sweden. 11Hereditary Cancer Program, ICO, IDIBELL, Gran
via 199, L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain.
12Preclinical Research Program, VHIO, Cellex Center, Natzaret 115-117,
Barcelona 08035, Catalonia, Spain. 13Department of Biochemistry and

Serra-Musach et al. Genome Medicine  (2016) 8:88 Page 10 of 12

dx.doi.org/10.1186/s13073-016-0340-x
dx.doi.org/10.1186/s13073-016-0340-x
dx.doi.org/10.1186/s13073-016-0340-x
dx.doi.org/10.1186/s13073-016-0340-x
dx.doi.org/10.1186/s13073-016-0340-x
dx.doi.org/10.1186/s13073-016-0340-x
dx.doi.org/10.1186/s13073-016-0340-x
dx.doi.org/10.1186/s13073-016-0340-x
dx.doi.org/10.1186/s13073-016-0340-x


Molecular Biology, Medical School Building M, Autonomous University of
Barcelona, Bellaterra 08193, Catalonia, Spain.

Received: 7 May 2016 Accepted: 1 August 2016

References
1. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug

resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26.
2. Garraway LA, Janne PA. Circumventing cancer drug resistance in the era of

personalized medicine. Cancer Discov. 2012;2:214–26.
3. Chibon F. Cancer gene expression signatures - the rise and fall? Eur J

Cancer. 2013;49:2000–9.
4. McCarthy N. Drug resistance: making a point. Nat Rev Cancer. 2014;14:6.
5. Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification of

breast cancer metastasis. Mol Syst Biol. 2007;3:140.
6. Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, et al.

Dynamic modularity in protein interaction networks predicts breast cancer
outcome. Nat Biotechnol. 2009;27:199–204.

7. Serra-Musach J, Aguilar H, Iorio F, Comellas F, Berenguer A, Brunet J, et al.
Cancer develops, progresses and responds to therapies through restricted
perturbation of the protein-protein interaction network. Integr Biol (Camb).
2012;4:1038–48.

8. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, et al.
Systematic identification of genomic markers of drug sensitivity in cancer
cells. Nature. 2012;483:570–5.

9. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al.
The Cancer Cell Line Encyclopedia enables predictive modelling of
anticancer drug sensitivity. Nature. 2012;483:603–7.

10. Yaffe MB. The scientific drunk and the lamppost: massive sequencing efforts
in cancer discovery and treatment. Sci Signal. 2013;6:pe13.

11. Sawyers CL. The cancer biomarker problem. Nature. 2008;452:548–52.
12. Werner HM, Mills GB, Ram PT. Cancer Systems Biology: a peek into the

future of patient care? Nat Rev Clin Oncol. 2014;11:167–76.
13. Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based

approach to human disease. Nat Rev Genet. 2011;12:56–68.
14. Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional

organization. Nat Rev Genet. 2004;5:101–13.
15. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell.

2011;144:646–74.
16. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.
17. Breitkreutz D, Hlatky L, Rietman E, Tuszynski JA. Molecular signaling network

complexity is correlated with cancer patient survivability. Proc Natl Acad Sci
U S A. 2012;109:9209–12.

18. van Wieringen WN, van der Vaart AW. Statistical analysis of the cancer
cell's molecular entropy using high-throughput data. Bioinformatics.
2011;27:556–63.

19. Zadran S, Remacle F, Levine RD. miRNA and mRNA cancer signatures
determined by analysis of expression levels in large cohorts of patients.
Proc Natl Acad Sci U S A. 2013;110:19160–5.

20. Kitano H. Cancer robustness: tumour tactics. Nature. 2003;426:125.
21. Westin JR. Busting robustness: using cancer’s greatest strength to our

advantage. Future Oncol. 2015;11:73–7.
22. Teschendorff AE, Banerji CR, Severini S, Kuehn R, Sollich P. Increased

signaling entropy in cancer requires the scale-free property of protein
interaction networks. Sci Rep. 2015;5:9646.

23. Banerji CR, Severini S, Caldas C, Teschendorff AE. Intra-tumour signalling
entropy determines clinical outcome in breast and lung cancer. PLoS
Comput Biol. 2015;11:e1004115.

24. Banerji CR, Miranda-Saavedra D, Severini S, Widschwendter M, Enver T, Zhou
JX, et al. Cellular network entropy as the energy potential in Waddington’s
differentiation landscape. Sci Rep. 2013;3:3039.

25. Lehar J, Krueger A, Zimmermann G, Borisy A. High-order combination
effects and biological robustness. Mol Syst Biol. 2008;4:215.

26. Lehar J, Zimmermann GR, Krueger AS, Molnar RA, Ledell JT, Heilbut AM, et al.
Chemical combination effects predict connectivity in biological systems. Mol
Syst Biol. 2007;3:80.

27. Estrada E, Hatano N. Communicability in complex networks. Phys Rev E Stat
Nonlin Soft Matter Phys. 2008;77:036111.

28. Crofts JJ, Higham DJ. A weighted communicability measure applied to
complex brain networks. J R Soc Interface. 2009;6:411–4.

29. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S,
Mathivanan S, et al. Human Protein Reference Database–2009 update.
Nucleic Acids Res. 2009;37:D767–72.

30. Wang X, Wei X, Thijssen B, Das J, Lipkin SM, Yu H. Three-dimensional
reconstruction of protein networks provides insight into human genetic
disease. Nat Biotechnol. 2012;30:159–64.

31. Li J, Lu Y, Akbani R, Ju Z, Roebuck PL, Liu W, et al. TCPA: a resource for
cancer functional proteomics data. Nat Methods. 2013;10:1046–7.

32. Higham DJ, Kalna G, Kibble M. Spectral clustering and its use in
bioinformatics. J Comput Appl Math. 2007;204:25–37.

33. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J Roy Statist Soc Ser B.
1995;57:289–300.

34. Chou TC. Drug combination studies and their synergy quantification using
the Chou-Talalay method. Cancer Res. 2010;70:440–6.

35. Zhao W, Yang H. Statistical methods in drug combination studies. London:
Chapman and Hall/CRC; 2014.

36. Shiraishi T, Matsuyama S, Kitano H. Large-scale analysis of network bistability
for human cancers. PLoS Comput Biol. 2010;6:e1000851.

37. Teschendorff AE, Severini S. Increased entropy of signal transduction in the
cancer metastasis phenotype. BMC Syst Biol. 2010;4:104.

38. Rolland T, Tasan M, Charloteaux B, Pevzner SJ, Zhong Q, Sahni N, et al.
A proteome-scale map of the human interactome network. Cell.
2014;159:1212–26.

39. Bottini A, Berruti A, Bersiga A, Brizzi MP, Bruzzi P, Aguggini S, et al. Relationship
between tumour shrinkage and reduction in Ki67 expression after primary
chemotherapy in human breast cancer. Br J Cancer. 2001;85:1106–12.

40. Teschendorff AE, Sollich P, Kuehn R. Signalling entropy: A novel network-
theoretical framework for systems analysis and interpretation of functional
omic data. Methods. 2014;67:282–93.

41. Rohwer N, Bindel F, Grimm C, Lin SJ, Wappler J, Klinger B, et al. Annexin A1
sustains tumor metabolism and cellular proliferation upon stable loss of
HIF1A. Oncotarget. 2016;7:6693–710.

42. Wang Z, Wang N, Liu P, Peng F, Tang H, Chen Q, et al. Caveolin-1, a stress-
related oncotarget, in drug resistance. Oncotarget. 2015;6:37135–50.

43. Smaglo BG, Wang H, Steadman K, Murray J, Pishvaian M, He AR, et al. A
phase I study of the BCR-ABL tyrosine kinase inhibitor nilotinib and
cetuximab in patients with solid tumors that can be treated with
cetuximab. J Clin Oncol. 2013;31:TPS2624.

44. Tamborero D, Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Kandoth C,
Reimand J, et al. Comprehensive identification of mutational cancer driver
genes across 12 tumor types. Sci Rep. 2013;3:2650.

45. Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, Coletti ME, et al.
Harnessing connectivity in a large-scale small-molecule sensitivity dataset.
Cancer Discov. 2015;5:1210–23.

46. Lai K, Killingsworth MC, Lee CS. Gene of the month: PIK3CA. J Clin Pathol.
2015;68:253–7.

47. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and
opportunities. Nat Rev Drug Discov. 2014;13:140–56.

48. She QB, Chandarlapaty S, Ye Q, Lobo J, Haskell KM, Leander KR, et al. Breast
tumor cells with PI3K mutation or HER2 amplification are selectively
addicted to Akt signaling. PLoS One. 2008;3:e3065.

49. Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer
treatment. Oncogene. 2006;25:4633–46.

50. Pierotti MA, Berrino F, Gariboldi M, Melani C, Mogavero A, Negri T, et al.
Targeting metabolism for cancer treatment and prevention: metformin, an
old drug with multi-faceted effects. Oncogene. 2013;32:1475–87.

51. Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmana J, et al.
Combining a PI3K inhibitor with a PARP inhibitor provides an effective
therapy for BRCA1-related breast cancer. Cancer Discov. 2012;2:1048–63.

52. Mo W, Liu Q, Lin CC, Dai H, Peng Y, Liang Y, et al. mTOR inhibitors suppress
homologous recombination repair and synergize with PARP inhibitors via
regulating SUV39H1 in BRCA-proficient triple-negative breast cancer. Clin
Cancer Res. 2016;22:1699–712.

53. Kreeger PK, Lauffenburger DA. Cancer systems biology: a network modeling
perspective. Carcinogenesis. 2010;31:2–8.

54. Al-Lazikani B, Banerji U, Workman P. Combinatorial drug therapy for cancer
in the post-genomic era. Nat Biotechnol. 2012;30:679–92.

55. Zaman N, Li L, Jaramillo ML, Sun Z, Tibiche C, Banville M, et al. Signaling
network assessment of mutations and copy number variations predict
breast cancer subtype-specific drug targets. Cell Rep. 2013;5:216–23.

Serra-Musach et al. Genome Medicine  (2016) 8:88 Page 11 of 12



56. Lehar J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, et al.
Synergistic drug combinations tend to improve therapeutically relevant
selectivity. Nat Biotechnol. 2009;27:659–66.

57. Bellay J, Atluri G, Sing TL, Toufighi K, Costanzo M, Ribeiro PS, et al. Putting
genetic interactions in context through a global modular decomposition.
Genome Res. 2011;21:1375–87.

58. Bansal M, Yang J, Karan C, Menden MP, Costello JC, Tang H, et al. A
community computational challenge to predict the activity of pairs of
compounds. Nat Biotechnol. 2014;32:1213–22.

59. Bulusu KC, Guha R, Mason DJ, Lewis RP, Muratov E, Kalantar Motamedi Y, et al.
Modelling of compound combination effects and applications to efficacy and
toxicity: state-of-the-art, challenges and perspectives. Drug Discov
Today. 2016;21:225–38.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Serra-Musach et al. Genome Medicine  (2016) 8:88 Page 12 of 12


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Interactome network analyses
	Gene expression, therapeutic responses, and cancer cell line data
	Cancer network activity algorithm
	Gene ontology and pathway annotation analyses
	Transcription factor analyses
	Cell culture
	Synergism analysis

	Results
	An integrative analytical strategy
	Associations between CNA and type of therapies
	Biological processes and pathways influencing CAN-therapeutic associations
	Cancer drivers influence CNA-therapeutic associations
	Using CNA evidence to predict synergism

	Discussion
	Conclusions
	Additional files
	Acknowledgements
	Funding
	Availability of data and material
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

