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Abstract

The molecular classification of glioblastoma (GBM) based on gene expression might better

explain outcome and response to treatment than clinical factors. Whole transcriptome

sequencing using next-generation sequencing platforms is rapidly becoming accepted as a

tool for measuring gene expression for both research and clinical use. Fresh frozen (FF) tis-

sue specimens of GBM are difficult to obtain since tumor tissue obtained at surgery is often

scarce and necrotic and diagnosis is prioritized over freezing. After diagnosis, leftover tissue

is usually stored as formalin-fixed paraffin-embedded (FFPE) tissue. However, RNA from

FFPE tissues is usually degraded, which could hamper gene expression analysis. We com-

pared RNA-Seq data obtained from matched pairs of FF and FFPE GBM specimens. Only

three FFPE out of eleven FFPE-FF matched samples yielded informative results. Several

quality-control measurements showed that RNA from FFPE samples was highly degraded

but maintained transcriptomic similarities to RNA from FF samples. Certain issues regarding

mutation analysis and subtype prediction were detected. Nevertheless, our results suggest

that RNA-Seq of FFPE GBM specimens provides reliable gene expression data that can be

used in molecular studies of GBM if the RNA is sufficiently preserved.
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Introduction

Genomic profiling studies of glioblastoma (GBM) have established that GBM can be sub-clas-

sified into different intrinsic subtypes according to gene expression. Molecular classifications

of GBM might better explain differences in outcome and response to treatment rather than

morphological or clinical factors [1–3]. Gene expression studies have traditionally been per-

formed using RNA extracted from fresh-frozen (FF) tissue. However, the availability of FF

GBM tumour samples is very low as tumor tissue obtained from surgery is often scarce and

necrotic. Moreover, the preservation of FF tissue is usually hampered by the priority task of

obtaining a pathological diagnosis, performing an immunohistochemical study, and assessing

O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. Residual tis-

sue, if existing, is routinely stored as formalin-fixed paraffin-embedded tissue (FFPE). Therefore,

FFPE tissues represent an exploitable source of tumour material that can be used to perform the

molecular studies in relation to clinicopathological information and known prognostic factors

that are especially valuable in low-incidence diseases like GBM. RNA extracted from archival

FFPE tissues has often suffered chemical modification, cross-linking, and degradation over time

as a result of the fixation and archiving methods. Nevertheless, FFPE RNA has been successfully

extracted from stored specimens [4, 5] and used for next-generation sequencing with successful

results [6, 7]. Recent reports have demonstrated the feasibility of RNA-Seq in FFPE samples of

several solid tumours, including glioblastoma [8–17]. However, whether the information gath-

ered from RNA-Seq in FFPE GBM tissues is similar to that obtained from FF samples is still an

open question.

We have performed a pilot study to determine whether gene expression data obtained from

FFPE GBM tumour samples was comparable to that obtained from paired FF samples from

the same tumour when assessed by RNA-Seq using the Illumina platform.

Materials and Methods

Patients and samples

This study was approved by the Institutional Review Board of the Hospital Germans Trias i

Pujol (PI-14-016) and by the Ethics Committees of all the participating institutions and con-

ducted in accordance with the Declaration of Helsinki.

We selected eleven cases from a database of 432 GBM patients for whom we had both FFPE

and FF tumour samples. All patients had primary glioblastomas, as confirmed by pathological

review (FA, SB, CC, TR, RL). Two samples had been obtained from the same tumour from

each patient, one of which had been stored as FFPE and one as FF.

RNA extraction and assessment of quality

The RNA extraction of FF and FFPE tumor specimens was performed on five 15μm-deep tissue

cuts using the RNeasy Mini Kit (Qiagen), according to the manufacturer’s recommendations.

RNA quantity and purity were measured with the NanoDrop ND-1000 spectrophotometer

(Thermo Scientific). RNA integrity, determined by the RNA integrity number (RIN), was deter-

mined with the 2100 Bioanalyzer (Agilent).

RNA library construction and sequencing

Samples were sequenced at Centro Nacional de Análisis Genómico (CNAG-CRG, Barcelona,

Spain). A modified TruSeq™ Stranded Total RNA kit protocol (Illumina Inc.) was used to pre-

pare the RNA-Seq libraries from FFPE samples. Ribosomal RNA (rRNA) was depleted from

0.5–1.0 ug of total RNA using the RiboZero Magnetic Gold Kit (Human/Mouse/Rat, Epicentre).
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rRNA-depleted RNA samples were purified using Agencourt RNA Clean XP beads (Beckman

Coulter Genomics) and RNA was eluted with the Elute, Prime, Fragment Mix from the TruSeq

Stranded Total RNA kit. The RNA fragmentation time was shortened to 2.5 minutes due to the

low quality of the initial total RNA (assessed by Eukaryote Total RNA Nano Bioanalyzer assay,

Agilent). Following the fragmentation, first and second strand synthesis, the Illumina bar-

coded adapters were ligated at 1/10 dilution of the recommended concentration. Libraries were

enriched with 15 cycles of PCR. The size and quality of the libraries were assessed in a High Sen-

sitivity DNA Bioanalyzer assay (Agilent).

The starting input material for the libraries construction was DNA free total RNA from FF

using the TruSeq™ Stranded Total RNA kit protocol (Illumina Inc.), according to the manufac-

turer’s protocol with some modifications for the FFPE samples, and the final library was qual-

ity controlled in Agilent DNA 7500 Bioanalyzer assay (Agilent).

Each library was sequenced using TruSeq SBS Kit v3-HS (Illumina), in paired-end mode

with a read length of 2x76bp. We generated minimally 65 million paired-end reads passing fil-

ter for each FFPE RNA-Seq library or at least 54 million paired-end reads passing filter for

each FF RNA-Seq library in a fraction of a sequencing lane on HiSeq2000 (Illumina) following

the manufacturer’s protocol. Image analysis, base calling and base quality scoring of the run

were processed by integrated primary analysis software—Real Time Analysis (RTA 1.13.48)

and followed by generation of FASTQ sequence files by CASAVA 1.8.

Bioinformatics

The bioinformatic analyses included alignment and quantification, sample quality metrics,

differential gene expression analysis, gene variant calling, and prediction of GBM molecular

subtype.

Alignment and quantification. RNA-Seq reads were aligned to the human reference

genome (GRCh38) using STAR (version 2.5.1b) [18] with ENCODE parameters for long

RNA. The Y chromosome was removed from the reference genome to map the female sam-

ples. Genes were quantified using RSEM (version 1.2.28) [19] with default parameters. Human

gene annotation file was downloaded from gencode release 24.

Sample quality metrics. Several quality metrics were calculated to evaluate the differences

within each FF-FFPE pair and across the different preservation conditions. For categorical

data,a Fisher’s exact test was applied for each pair. For differences in means between the two

conditions, a t-test was applied. PCR duplicates were calculated with sambamba [20]. The

number of detected genes was calculated taking into account genes with at least one paired-

end read mapped. The number of genes consuming 25% of the reads was calculated by ranking

the genes according to expression values (read counts) and then computing the cumulative

sum until the number of reads was equal to 25% of the total sum. Mapping statistics were cal-

culated with the tool ‘gtfcounts’ using GEMtools (http://gemtools.github.io/). Gene body cov-

erage, GC content, paired-end inner distances, median transcript integrity number (TIN)

across all the transcripts and distribution of mismatches across reads were computed with

RSeQC [21, 22]. The percent spliced index (PSI) values were calculated with Spladder [23].

Correlation plots and principal component analysis were done with custom R scripts.

Differential gene sampling. RSEM read counts were used as input for DESeq2 (version

1.10.1) [24, 25]. The cut-off for considering a gene significantly up-sampled or down-sampled

in the FFPE-derived samples was FDR<5%. Gene ontology enrichment analysis of the down-

sampled FFPE genes was performed with DAVID database beta version 6.8 [26].

Gene variant calling. We counted the number of mismatches with respect to the refer-

ence genome for each GBM-associated gene directly from the mpileup generated by samtools
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without any filter [27, 28]. Variant calling was done with samtools with minimum base quality

of 13, mapping quality >20, PCR duplicates removal, and minimum read depth of 10.

Prediction of GBM molecular subtype. The glmnet R package [29] was used to fit a mul-

tinomial logistic regression model with alpha = 1 lasso penalty. The cross-validation RNA-seq

dataset was downloaded from the The Cancer Genome Atlas (TCGA) repository using the

RTCGAToolbox R package (http://mksamur.github.io/RTCGAToolbox/). The core function

‘getFirehoseData’ with ‘dataset = GBM’ and ‘runDate = 20151101” was used to access and

download the data. The associated clinical annotation for each sample was downloaded using

the cgdsr R package (https://github.com/cBioPortal/cgdsr). The TCGA RNA-seq dataset com-

prised 145 RNA-seq samples grouped into the five established GBM molecular subtypes (Clas-

sical, Mesenchymal, Neural, Proneural and G-CIMP). Prediction was made for the four FF

and the three informative FFPE samples (excluding FFPE_AA6365) using the largest value of

lambda such that error was within 1 standard error of the minimum. Read counts were trans-

formed with the variance stabilizing transformation using DESeq2.Batch effect correction

between the RNA-seq datasets was carried out with the sva R package [30]. Genes with non-

zero coefficient estimates were selected as best predictors.

Data access

All data underlying the findings described in the manuscript are fully available without restric-

tion from the BioProject database: https://www.ncbi.nlm.nih.gov/bioproject/342811.

Results

Quality and abundance of RNA

We had paired FF and FFPE samples from 11 patients. Of the 11 FF samples, only four met the

requirements to ensure informative results from RNA-Seq (RIN�6 and>50ng/μl or�1μg of

total RNA). All analyses were carried out in the samples from these four patients. All FFPE

RNAs had very low RIN values (�2.6), but interestingly, RIN values were not related to storage

time (Table 1).

Table 1. Characteristics of samples and sample selection.

FF samples FFPE samples

Year Pre-selection Pre-selection

ng/μl RIN SAMPLE CODE ng/μl RIN SAMPLE CODE

2009 7.09 1.1 UNSELECTED 163.47 2.5 UNSELECTED

2008 155.72 4.7 83.63 1.1

2011 2.79 N/A 282.43 2.4

2009 372.25 7.1 FF_AA6360 95.31 2.5 FFPE_AA6364

2009 489.17 8 FF_AA6361 321.86 2.4 FFPE_AA6365

2007 145.64 6.8 FF_AA6362 48.69 N/A FFPE_AA6366

2006 549 7.3 FF_AA6363 1452.14 1.9 FFPE_AA6367

2008 66.3 2.4 UNSELECTED 115.3 1 UNSELECTED

2008 225.13 4.7 322.91 2.5

2009 211.98 1.9 53.97 2.4

2010 154.31 3.8 37.55 N/A

All 11 paired samples were from patients with pathologically confirmed GBM. Gray shading indicates samples that were selected for analyses.

doi:10.1371/journal.pone.0170632.t001
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Gradual degrees of degradation in FFPE samples

RNA fragmentation is a major effect of FFPE environments. A good proxy to evaluate if the

RNA molecule length is affected is to calculate the paired-end inner distances for each RNA-

seq experiment. As expected, FFPE specimens disclosed smaller distances between read pairs

than FF samples (Fig 1A, P<0.001). In addition, the level of RNA degradation for each FFPE

sample could be assessed by computing the transcript integrity number (TIN) [21]. Smaller

TIN values were found for FFPE samples (P<0.001). Whereas FF samples had similar TIN val-

ues (mean TIN>60), the degree of degradation of FFPE RNA was very different among sam-

ples (Table 2). The most degraded FFPE sample (AA6365) had an extremely low value (mean

TIN = 4), followed by a moderately degraded sample (AA63634, mean TIN = 29) and two less

degraded samples (AA6366, mean TIN = 50; AA6367, mean TIN = 53). Degradation occurred

more rapidly in regions with certain percentages of GC content (Fig 1B) and at the 5’ end of

the transcripts (Fig 2A and 2B).

Inferior library diversity in FFPE samples

Investigating the library diversity captured by sequencing FFPE material can help identify any

loss of informative RNA-Seq reads due to poor sampling of the RNA molecules [31, 32]. We

first examined library diversity based on the duplication rate. As expected and as described

elsewhere [6, 10], FFPE samples presented higher percentages of duplicates than their matched

FF samples (all pairs P<2.2x10-16, Table 3, S1 File). Consistent with these findings, there was a

greater decrease in the number of uniquely mapped reads in the more degraded samples (all

Fig 1. Degradation quality metrics in FF and FFPE tumour samples. (A) Paired-end distance distributions. Negative values correspond to overlapping

paired-end reads. Blue lines represent FF samples and red lines represent FFPE samples. (B) Read GC content distributions. The more degraded the

sample, the sharper the distribution. Regions with 40% of GC content are more conserved. A small peak at 80% of GC content can be clearly observed for the

most degraded FFPE sample (AA6365). Blue lines represent FF samples and red lines represent FFPE samples.

doi:10.1371/journal.pone.0170632.g001
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pairs P<2.22x10-16 except pair 3, Fig 3, S1 File). We also examined library diversity by deter-

mining the number of genes needed to consume 25% of the sequencing effort. In general,

fewer genes were needed for FFPE samples than for their matched FF samples (all pairs

P<2.2x10-16 except pair 3, Table 3, S1 File). Interestingly, this number was extremely low for

the most degraded FFPE sample (AA_6365), where onegene accounted for 25% of the

sequencing effort. Not surprisingly, the number of genes in this sample was much lower

(~8000 genes) than in the other samples (~25,000–30,000), and it also harboured the highest

percentage (>90%) of ambiguously mapped reads (Fig 3). These results suggest that the most

Table 2. Transcript integrity number (TIN) for paired FF and FFPE tumour samples.

median mean standarddeviation

pair 1 FF_AA6360 72 63 27

FFPE_AA6364 23 29 25

pair 2 FF_AA6361 72 64 27

FFPE_AA6365 1 4 11

pair 3 FF_AA6362 73 64 27

FFPE_AA6366 54 50 27

pair 4 FF_AA6363 72 64 27

FFPE_AA6367 60 53 27

doi:10.1371/journal.pone.0170632.t002

Fig 2. Degradation quality metrics. (A) Gene coverage heatmap. More degraded regions are depicted blue. All samples were affected at the 5’ end of the

gene body but this effect was more prominent for FFPE samples. The most degraded FFPE sample (AA6365) also showed degradation at the 3’ end and

across the gene body. (B) Line graphs (FF, blue; FFPE, red) showing the mean per-base coverage of RNA transcripts for all paired samples. Strong coverage

unevenness was observed for the most degraded sample (FFPE_AA6365).

doi:10.1371/journal.pone.0170632.g002
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highly degraded FFPE libraries are enriched with a few extremely dominant genes and are

therefore less diverse.

RNA molecules are better preserved in the mitochondria and nucleus

than in the cytosol of FFPE samples

As previously reported [15], mapping quality metrics showed slightly higher percentages of

unmapped reads and lower percentages of splice-mapped reads in FFPE samples than in the

matched FF samples (all pairs P<2.2x10-16, Fig 4A, S1 File). All FFPE and FF samples showed

Table 3. Library diversity quality metrics.

percentage of duplicates number of genes detected number of genes consuming 25% of sequencing

pair 1 FF_AA6360 12.62 28763 109

FFPE_AA6364 45.41 25900 11

pair 2 FF_AA6361 19.37 27511 64

FFPE_AA6365 29.36 8239 1

pair 3 FF_AA6362 13.83 29771 56

FFPE_AA6366 27.29 28676 66

pair 4 FF_AA6363 15.36 28394 98

FFPE_AA6367 20.85 28518 75

doi:10.1371/journal.pone.0170632.t003

Fig 3. Mapped reads in FF and FFPE tissue samples. Percentages of uniquely mapped paired-reads, ambiguously mapped paired-end reads, paired-end

reads mapping into a single gene, and paired-end reads mapping into multiple genes. Note that the most degraded FFPE sample (AA_6365) had very high

percentages of ambiguous reads (>90%) and reads mapping to multiple genes (>80%), whereas the second most degraded FFPE sample (AA_6364) had

intermediate percentages (25% and ~30% respectively). The remaining samples had low percentages of ambiguities (~10%).

doi:10.1371/journal.pone.0170632.g003
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a higher number of reads mapping to introns than to exons, a common result with RiboZero

RNA-Seq protocols [10], but this effect was even more pronounced in FFPE samples (all pairs

P<2.2x10-16, Fig 4B, S1 File). We speculated that this might be due to the fact that spliced tran-

scripts in the cytosol are more susceptible to degradation, while intron-rich features, such as

pre-mRNA or lincRNA, in the nucleus remain protected. To test this hypothesis, we calculated

the percent spliced index (PSI) for each sample and observed a higher median value for FFPE

samples (Fig 5), confirming that we were dealing with higher fractions of pre-mRNA with

unspliced introns.

Fig 6 displays the annotated paired-end reads mapping to different gene biotypes in the

matched FF and FFPE tumor samples. In both FF and FFPE samples, the majority of the anno-

tated paired-end reads mapped to the protein-coding gene biotype (~90%), though with a

slightly higher percentage in FF samples (all pairs P<2.2x10-16, S1 File). In contrast, the non-

coding RNA biotypes, such as lincRNA and snRNA, showed higher percentages of reads in

FFPE than FF samples. Interestingly, however, in the most degraded FFPE sample (AA_6365)

only 5% of reads mapped to protein-coding genes, while 90% mapped to mitochondrial rRNA,

which may be due to a better preservation of mitochondria organelles in the context of a degra-

dation-prone FFPE environment. (Related statistical analyses are shown in S1 File.)

Differential gene expression analysis revealed 2133 differentially sampled genes with

FDR<0.05 (S2 File). In FFPE samples, 908 protein-coding genes and 26 non-coding RNAs

were down-sampled, whereas 169 protein-coding genes and 1030 non-coding RNAs were

over-sampled (Table 4). Over-sampled FFPE genes were either non-coding genes transcribed

in the nucleus and not transported in the cytosol, such as RNU, SCARNA, SNORA, and LINC

Fig 4. Mapping results in FFPE and matched FF tissue samples. (A) Percentages of unmapped reads and split-mapped reads in FFPE and FF samples.

(B) Percentages of paired-end reads mapping to exonic, intronic or intergenic regions.

doi:10.1371/journal.pone.0170632.g004
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families, or those transcribed in the mitochondria, such as MT-ATP, MT-ND, MT-CO fami-

lies and many MT pseudogenes. Importantly, the majority of these protected genes have no

functional annotation. In contrast, down-sampled FFPE genes were nuclear-encoded and

actively translated mRNA in the cytosol. The biological processes enriched in down-sampled

Fig 5. Boxplots of PSI values for intron retention events. Results for FF samples are shown in blue and those for FFPE samples in red. The PSI value

was defined as the number of reads supporting the inclusion divided by the number of reads supporting the inclusion or the exclusion. The median PSI value

for intron retention events was higher in FFPE samples, suggesting a greater abundance of transcripts with unspliced introns, such as pre-mRNAs or linc-

RNAs.

doi:10.1371/journal.pone.0170632.g005
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FFPE RNAs included translation (RPL and RPS ribosomal genes), generation of precursor

metabolites and energy (nuclear-encoded MT genes), DNA packaging (HIST genes), RNA

processing (POLR and SNRP genes), proteosomal catabolic process (PSM genes), cell cycle

(TUBB) and protein folding (HSP and CTT genes) (S2 File).

High similarities in gene expression between FF and less degraded

FFPE samples

In spite of several differences in the quality metrics between FF and FFPE samples, the correla-

tion of gene expression within each pair was high (R2~0.9), with the exception of

FFPE_AA6365, the most highly degraded sample (R2~0.35) (Fig 7A). A principal component

analysis showed that paired samples clustered closely together, thus indicating conserved simi-

larities in gene expression (Fig 7B).

Distinct mismatch profiles in FFPE and FF samples

The FFPE mismatch profiles diverged substantially from their paired FF samples (Fig 8). Spe-

cifically, G>A and C>T transitions were much more frequent in FFPE samples. These two

nucleotide changes have already been reported in other FFPE studies [15] and have been

described as a chemical artefact caused during the paraffin fixation process. The six commonly

mutated GBM genes (IDH1, IDH2, NF1, PTEN, PDGFRA and TP53) [1, 3, 33] also harboured

many of these mutational artefacts (S1 Table). Although Graw et al [15] reported that these

Fig 6. Annotated paired-end reads mapping to different gene biotypes. The majority of annotated reads mapped to protein-coding genes for all samples

except FFPE_AA6365, which showed extremely high amounts of ribosomal MT RNA. The percentage of reads mapping to non-coding RNA was higher for

FFPE than FF samples.

doi:10.1371/journal.pone.0170632.g006
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paraffin mutations appear at low frequencies, affecting few RNA molecules, in some cases we

only found the mutated allele. Single nucleotide polymorphisms (SNPs) called in GBM-associ-

ated genes with G>A and C>T transitions are shown in S2 Table. In addition to FFPE chemical

artefacts, differences in SNPs between the paired samples (S3 Table) may be due to differential

read depth. For example, the gene may be partially degraded in FFPE, making it impossible to

recover the SNP.

Heterogeneity in GBM molecular subtypes

The prediction of molecular subtype with Lasso regularization showed that all but one FFPE

sample (AA6365) could be classified in one of the five GBM molecular subtypes [3] (Table 5).

However, the predictive ability of the model was quite low (mean cross-validated error 33.7%

+/- SD 3.9%), which might be due to the high degree of heterogeneity of GBM tumors [34]. The

mesenchymal subtype was assigned with a slightly higher level of confidence (prob = 0.40–0.49)

than the proneural (prob = 0.28–0.36) and classical subtypes (prob = 0.33). As the GBM samples

were extracted from different locations within the tumour, not unexpectectly, there was one dis-

crepancy in one FF-FFPE pair. None of the samples were assigned to the neural or G-CIMP

subtypes. From the 38 predictors selected by the model, ten overlapped with the Verhaak

840-gene signature [1] (S4 Table).

Discussion

GBM is a rare disease (http://www.rarecancerseurope.org//About-Rare-Cancer, https://www.

ncbi.nlm.nih.gov/pmc/articles/PMC2789814/) with an incidence in adults of 3.19 per 100,000

inhabitants and a high mortality rate[35]. Genomic investigation is crucial to improving

patient outcome, but there are a number of obstacles to overcome in the investigation of GBM.

Table 4. Number of over-sampled and down-sampled gene biotypes in FFPE specimens.

Gene biotype Over-sampled Down-sampled

protein-coding 169 908

sense-intronic 167 1

lincRNA 161 3

processed pseudogene 137 9

TEC 133 0

antisense 115 2

miscellaneous_RNA 89 0

snoRNA 56 1

snRNA 44 0

processed transcript 30 1

unprocessed_pseudogene 24 2

transcribed_unprocessed_pseudogene 23 2

sense-overlapping 18 0

transcribed_processed_pseudogene 15 3

miRNA 6 0

scaRNA 6 0

mitochondrial_rRNA 2 0

unitary_pseudogene 2 0

non-coding 1 0

rRNA 1 0

ribozyme 0 2

doi:10.1371/journal.pone.0170632.t004
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First of all, in GBM, as in all rare cancers, it is difficult to obtain an appropriate number of

samples with sufficient follow-up to enable investigators to draw reliable conclusions on prog-

nosis and treatment outcomes. Multi-institutional collaboration can increase the number of

subjects with available samples and is the key to obtaining dependable statistical results. A fur-

ther problem in glioblastoma is that tissue obtained from surgery is scarce and histologic diag-

nosis is prioritized to fresh tissue storage, which reduces the number of FF specimens available

for investigation. In addition, only 50% of patients receive standard treatment–often due to

low performance status or older age–which further reduces the possibility of obtaining com-

prehensive data on disease progression and patient outcome [36]. In this setting, FFPE tissues

can provide a large volume of biospecimens and may thus represent an opportunity to investi-

gate genetic changes that drive clinical outcome. However, it is not clear whether genomic

data obtained from FFPE tissue is as reliable as that obtained from FF tissue. In the present

study, we have found that although many FFPE samples were highly degraded and thus could

not be included in the study, RNA from those FFPE samples that were not degraded main-

tained transcriptomic similarities to that obtained from FF samples.

The GLIOCAT project recruited patients with GBM who had all been treated with the stan-

dard treatment of radiotherapy with concomitant and adjuvant temozolomide, who had clini-

cal information available, and for whom there was sufficient FFPE tumour tissue to perform

genomic studies. Of 432 patients included in the GLIOCAT project, 247 had sufficient RNA

extracted from FFPE samples to proceed with Illumina RNA-Seq. Nevertheless, before launch-

ing the RNA-Seq analyses in the entire cohort, we performed the present pilot feasibility study

Fig 7. Comparison of gene expression between FF and FFPE samples. (A) Correlation plots of gene expression in FF-FFPE pairs. In general, the

correlation was high (R2~0.9), with the exception of the FF_AA6361-FFPE_AA6365 pair, where the FFPE sample was highly degraded. Higher variability was

observed for more degraded samples. (B) Results of the principal component analysis. FF-FFPE pairs clustered together. The most degraded sample

(FFPE_AA6365) was not included in the plot.

doi:10.1371/journal.pone.0170632.g007
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to determine if results obtained by RNA-Seq of FFPE samples would be completely reliable.

We therefore selected those patients for whom we had both FF and FFPE samples from the

same tumour. Only 11 patients met these criteria, all of whom were from six university hospi-

tals, each of which had its own biobank.

Other studies have examined the correlation between FF and FFPE samples. Graw et al [15]

compared matched FF and FFPE ovarian tumour samples with Illumina RNA-Seq. In line

with our results, they also found the FFPE mutational artefacts G>A and C>T, but at low

allele frequencies (AF<0.5) and they applied an AF filter to remove them. In contrast, we

found some of these artefacts at very high frequencies (AF = 0.5–1). Moreover, the artefacts

Fig 8. Number of mismatches across the read length. Mismatch profiles changed dramatically mainly due to G>A and C>T changes, which were

substantially more frequent in FFPE samples (top pink and blue lines). Sample FFPE_AA6365, which was highly degraded, showed a totally different pattern,

not matching with any other sample.

doi:10.1371/journal.pone.0170632.g008

Table 5. Prediction of GBM molecular subtypes.

Predicted Classical G-CIMP Mesenchymal Neural Proneural

pair 1 FF_AA6360 Proneural 0.23 0.09 0.27 0.08 0.32

FFPE_AA6364 Mesenchymal 0.20 0.06 0.43 0.11 0.21

pair 2 FF_AA6361 Classical 0.33 0.04 0.31 0.11 0.21

FFPE_AA6365 NA NA NA NA NA NA

pair 3 FF_AA6362 Proneural 0.16 0.13 0.18 0.16 0.36

FFPE_AA6366 Proneural 0.20 0.10 0.23 0.18 0.28

pair 4 FF_AA6363 Mesenchymal 0.25 0.02 0.49 0.09 0.15

FFPE_AA6367 Mesenchymal 0.22 0.05 0.40 0.15 0.17

Numbers represent probabilities. The predicted GBM molecular subtype is based on fitted class probabilities. The highest class probability is depicted in

bold.

doi:10.1371/journal.pone.0170632.t005
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observed in our study affected GBM-associated genes, which would pose a problem for detect-

ing somatic mutations in the FFPE samples. In addition, the differences reported on gene cov-

erage, GC content, read mapping, and quality metrics could be due to the different protocols

they used to analyze the samples (mRNA-Seq for FF samples and RiboZero total RNA for

FFPE samples) [15]. Nevertheless, in the present study, the differences can be attributable only

to inherent differences in FFPE compared to FF, as the protocol used for RNA-Seq was the

same in both types of samples. Gravendeel et al [37] performed expression profiling on 55

paired FF-FFPE glioma samples using HUI 33 plus 2.0 arrays in FF samples and Human Exon

1.0 ST arrays in FFPE samples. Although in general, the correlation between FF and FFPE

expression was poor, when they selected the most variable probe sets on FFPE expression pro-

files, concordance improved. Moreover, with the selected probe sets, they were able to cor-

rectly assign 87% of the FFPE samples to one of the seven glioma subtypes they had previously

identified using FF samples [2]. They attribute variability in their findings to tumour heteroge-

neity REF. In a third study, Erdem-Eraslan et al [17] performed RNA-Seq in FF and matched

FFPE GBM samples and were able to correctly assign 100% of their 114 samples to a molecular

subgroup–either Gravendeel’s [2] or Verhaaak’s [1]–using the ClusterRepro R package. Previ-

ously, they had run a series of tests to determine the suitability of DASL arrays and RNA-Seq

on RNA isolated from FFPE tissues, comparing technical and biological replicates with those

obtained from paired FF samples. They found that both FFPE and FF tissues could be used to

perform gene expression profiling, although they did not provide details on how many samples

were uninformative or on whether the two types of tissue provided similar information [17].

To the best of our knowledge, our study provides the first in-depth comparison of information

obtained with RNA-Seq in paired FF and FFPE GBM samples. In our experience, the RNA iso-

lated from FFPE samples was highly degraded. In fact, RNA quantity and quality was low even

in FF samples, as only four of eleven samples met the requirements to ensure informative

results with RNA-Seq. We can conclude that even in FF GBM samples, RNA can only be

extracted in low amounts with low integrity levels, which further impedes genomic sequencing

in GBM.

In our study, we found high variability in the degree of RNA degradation in FFPE samples.

Nevertheless, once the more degraded samples were excluded by transcriptomic quality con-

trol, FFPE samples showed transcriptomic similarities and high correlation of gene expression

with FF samples. Differences in gene expression did not preclude the classification of the speci-

mens into established GBM molecular subtypes, albeit at a low confidence level. In fact,

tumour heterogeneity is a major issue for molecular classification [34, 38]. The study of

somatic mutations remains a challenge in both FF and FFPE tissues, as healthy tissue is needed

to identify them in FF samples and, conversely, it is difficult to identify them beyond a doubt

in FFPE samples due to the presence of artefacts. Nevertheless, the RNA molecules inside the

nucleus and the mitochondria seem to be protected in FFPE tissues, indicating that FFPE sam-

ples can be useful for investigating the non-coding part of the genome.

Conclusion

Our results suggest that archival FFPE material can be used for RNA-Seq analysis of GBM

specimens if the RNA is sufficiently preserved, but the majority of samples are too degraded to

provide fully informative results. This issue underscores the need for multi-institutional col-

laboration in order to gather a sufficient number of samples, especially in rare diseases like

GBM, to draw reliable conclusions from genomic analyses. Moreover, in an era of genomic-

based studies, efforts are warranted to improve methods of tissue storage in order to preserve

genomic information.
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Supporting Information

S1 File. Statistical results. Results of statistical analyses of quality metrics. A one-tailed Fish-

er’s exact test was applied to each FF and FFPE pair.

(XLSX)

S2 File. Excel sheets. There are five tabs: (A) Results of the differential gene sampling analysis.

Genes are sorted by significance. (B) List of differentially sampled genes with FDR<0.05. (C)

List of over-sampled genes in FFPE samples sorted by gene name. The majority are non-cod-

ing RNA belonging to specific gene families and have no functional annotation. (D) List of

down-sampled genes in FFPE sorted by gene name. The majority are protein-coding genes.

(E) Gene ontology enrichment

(XLSX)

S1 Table. mpileup changes in GBM associated genes. Number of mpileup substitutions with

respect to the reference genome. Gray shaded areas indicate C>T and G>A changes.

(DOCX)

S2 Table. C>T and G>A FFPE artefacts in GBM-associated genes. Number of SNP artefacts

originated by C>T and G>A changes. We counted cases that were CC (GG) homozygous in

the FF sample and CT (GA) or TT (AA) in the paired FFPE sample.

(DOCX)

S3 Table. Overlapping and non-overlapping SNPs in FF-FFPE pairs. Number of overlap-

ping SNPs (shaded) and non-overlapping SNPs (non-shaded) for each FF-FFPE pair and each

gene. 0/1 indicates a heterozygous SNP. 1/1 indicates a homozygous alternative. NA indicates

not assessed.

(DOCX)

S4 Table. Best gene predictors of GBM molecular classification. Grey shaded areas indicate

genes included in Verhaak’s gene signature.

(DOCX)
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