PHYSICAL REVIEW B

VOLUME 49, NUMBER 20

15 MAY 1994-11

Parity violation in Aharonov-Bohm systems: The spontaneous Hall effect
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We show how macroscopic manifestations of P (and 7T') symmetry breaking can arise in a simple
system subject to Aharonov-Bohm interactions. Specifically, we study the conductivity of a gas of
charged particles moving through a dilute array of flux tubes. The interaction of the electrons with
the flux tubes is taken to be of a purely Aharonov-Bohm type. We find that the system exhibits a
nonzero transverse conductivity, i.e., a spontaneous Hall effect. This is in contrast to the fact that
the cross sections for both scattering and bremsstrahlung (soft photon emission) of a single electron
from a flux tube are invariant under reflections. We argue that the asymmetry in the conductivity
coefficients arises from many-body effects. On the other hand, the transverse conductivity has the
same dependence on universal constants that appears in the quantum Hall effect, a result that we
relate to the validity of the mean-field approximation.

I. INTRODUCTION

More than 30 years after it was first studied, the
interaction of flux tubes and charged particles—the
Aharonov-Bohm (AB) problem!-—continues to show a
tantalizing richness. In recent years it has received re-
newed attention due mainly to its intimate relation with
Chern-Simons (CS) field theory and the occurrence of
fractional statistics in planar physics. One can imple-
ment intermediate statistics on particles by attaching
to them appropriate “statistical” (i.e., fictitious) electric
charge and magnetic flux.2 Two such particles are then
subject to AB scattering, and acquire a statistical phase
when moving around each other. Varying the values of
the charge and flux one can continuously interpolate be-
tween bosons and fermions. Hence their generic name,
anyons.

On the other hand, CS field theory provides a very
convenient way to implement AB interactions between
particles. The CS field strength vanishes outside isolated
singularities; thus, there are no classical forces among
particles. However, it is expected that a mean-field ap-
proximation, in which the particle is regarded as moving
in an average uniform magnetic field, should be valid
provided the flux per particle is small and that clas-
sical trajectories enclose a large number of flux tubes.
This approach has been successfully employed to calcu-
late various properties of the anyon gas.®% In Ref. 4 a
self-consistency argument is given to support the mean-
field approximation.

An important issue in fractional statistics and AB sys-
tems is that of discrete (parity and time reversal) sym-
metry breaking. This problem becomes of notorious rel-
evance when one considers the possible presence of any-
onic excitations in high-T. superconductors, which are
believed to present time reversal noninvariance. Having
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these ideas in mind, March-Russell and Wilczek® sought
for manifestations of P and T violation in CS theories.
They found that the scattering cross section of identical
anyons (which is directly related to the AB cross section)
shows an asymmetry provided an additional, nonstatis-
tical interaction is included. The parity-violating term
arises from the interference between the amplitudes of
AB scattering and additional interaction. Caenepeel and
MacKenzie® have used these results to test further the
validity of the mean-field approximation. They consider
the motion of one anyon as the incoherent sum of two-
particle scattering processes. They find that, whenever
there is an additional interaction switched on, a typical
trajectory is curved, its radius of curvature being large
for anyons near either bosons or fermions. In this regime,
they conclude, the mean-field approximation can be jus-
tified. However, the need for an additional interaction to
show asymmetries remains somewhat obscure. The re-
sults of Kiers and Weiss” suggest that one can do without
it and nevertheless find a handedness in the scattering:
particles are deflected by a regular lattice of flux tubes
if the full coherent scattering is taken into account. As
we shall see, these are not the only ways to make parity
breaking manifest.

As was already remarked in Ref. 5, broken T invariance
should lead to asymmetries in transport coefficients. A
thorough investigation of the experimentally observable
consequences of T and P violation in high-T, supercon-
ductors was carried out by Halperin, March-Russell, and
Wilczek.® The standard Onsager reciprocity relations do
not apply when P or T are broken, and anomalous trans-
port phenomena are expected. Working in the framework
of an effective London Lagrangian, they find that anyon
systems should exhibit a Hall conductivity in the absence
of an applied magnetic field.

In this paper we set out to study a simpler model which
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can be expected to capture some essential aspects of P
(and T) violation in macroscopic magnitudes. Specifi-
cally, the model we analyze consists of a gas of charged
particles moving through a dilute random array of flux
tubes. We shall work with a pure AB interaction, not
imposing ab initio an asymmetry in the scattering cross
sections. We shall explicitly compute the electrical (dc)
conductivity of the system, expecting to find a sponta-
neous Hall effect. From the viewpoint of mean-field the-
ory the graininess of the array should be unimportant.
In this case one would expect to find a transverse con-
ductivity similar to that of the quantum Hall effect.

The outline of this paper is as follows: In Sec. II we
set up our model, in which flux tubes are regarded as im-
purities distributed randomly, each acting independently
on electrons. After presenting the formalism for calcu-
lating transport coefficients using field theory, we use it
to compute the longitudinal conductivity of the system.
This is essentially a calculation of vertex corrections ex-
pressed in the form of a ladder equation. In Sec. III,
the parity-violating, transverse conductivity is computed
along these lines. Although divergent terms appear in the
calculations, all physical quantities are finite. Section IV
contains a discussion of the results.

II. LONGITUDINAL CONDUCTIVITY
THROUGH AN ARRAY OF FLUX TUBES

A. The model

We start from a Lagrangian describing a free electron
gas interacting with an ensemble of flux tubes:
L= LFermi—j'A_pqs_pAz/zm ) (21)
where Lgeim; is the free electron Lagrangian, and j and
p its corresponding current and density.
The flux tubes are located at points x,, each being the
source of a vector potential (x is the flux per tube)

A,-(x — xa) = |x — xa|2 (2.2)
and a scalar potential
o(x —x4) = gé(z)(x — Xg) - (2.3)

Then A(x) = >, A(x —X4), ¢(x) = X, d(x — Xa).
The flux tube density will be denoted n;, and the electron
density 7n,.

It is known that the presence of the contact interaction,
Eq. (2.3), is needed whenever one treats the AB problem
within the framework of CS theory.%'® When its strength
g is properly adjusted, the AB scattering amplitude is
reproduced.® We stress that this interaction has nothing
to do with the additional interaction introduced in Ref.
5. In our model, the right value for g is

g==k/2m . (2.4)

This is half the value found in Refs. 9 and 10. The
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FIG. 1. Vertex for interaction between an electron (con-
tinuous line) and a flux tube (square). The amplitude is

u(p+q,p) =g+iB5%.

difference is due to the fact that we are considering the
flux tubes to be infinitely massive. Therefore the reduced
mass of the electron/flux tube system is twice that of a
pair of identical anyons. The choice of sign for g deter-
mines the “hand” of the interaction.

The vertex for interaction of flux tubes and electrons in
momentum space is depicted in Fig. 1. The correspond-
ing amplitude is

KPpXq
m q2

u(p+q,p)=g+i (2.5)

When g is given by Eq. (2.4), this corresponds (apart
from a kinematical factor) to the AB scattering ampli-
tude in the Born approximation. Flux tubes are as-
sumed to be fixed objects with no internal excitations, so
the electrons scatter from them elastically. This means
that no frequency is carried by the interaction lines. As
we shall show explicitly below, the ‘seagull’ interaction
pA?/2m can be consistently neglected since it contributes
higher orders in perturbation theory.

We expect that this simple model serves to approx-
imate several many-body systems where some kind of
AB interaction is present. Of course, more realistic in-
teractions should be taken into account before it can be
subject to experimental verification (for a detailed study
see Ref. 8). In this paper, it will be used as a toy model
for the study of the macroscopic effects that we expect to
arise reflecting the presence of the underlying AB inter-
action. In particular, can we make parity breaking show
up anyhow in transport coefficients? Our answer to this
question will be in the affirmative.

B. Computation of the longitudinal conductivity

We shall regard flux tubes as impurities randomly dis-
tributed with density n; < 1. The first effect one expects
is the appearance of a finite longitudinal conductivity.
This calculation will be done in this section, following
the treatment of Ref. 11. Having checked the validity of
the method for this model, we shall use it in the next
section to find the transverse conductivity.

Consider then applying an external electric field E**t =
—O8A®** /Bt to the system. A longitudinal conductivity
will be induced, the (linear) response being characterized
by the conductivity tensor

J,' = O‘ijE;Xt = iwo,-jA;"t . (2.6)

On the other hand, linear response theory yields the fol-
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lowing relation for the current induced in an electron gas
by an applied vector potential:

ij ij(Cva))A(;’Xt - (2.7)
From (2.6) we see that the dc conductivity can be ob-
tained from (2.7) computing to O(w) with q = 0.
II;j(q,w) is the (retarded) current-current correlation
function. It is best calculated in the imaginary time for-

malism. This means that frequencies will be discrete,

w 2rn/B for bosons,
& 2n(n+1)/B for fermions,

(2.8)
(2.9)

while real frequency integrals (27)™! [ dw are replaced
by discrete sums 371}~ . In imaginary time,

ﬂ .
H,-j(q,wn) = / dr ezwn"'l'[l-j(q, T) y (210)
0

IL;(q,7) = —(T j}(q,7)5;(q,0)) ,

which can be calculated using standard diagrammatic
techniques. After performing the frequency sums one can
analytically continue to real retarded time by replacing
iw, = w +107.

The free electron propagator (no impurities present) is

Go(wmp) = (iwn - §p)_1 ,

where £, = p2?/2m — eF is the electron energy above the
Fermi level.

The effect of impurities is that the electron propagator
acquires an imaginary part corresponding to the finite
lifetime of excitations above the Fermi level. The Dyson
equation for the propagator leads to

(2.11)

(2.12)

1

G(wn,p) = 5o £p — ilmS(wn,p)

(2.13)

The real part of the self-energy, ReX(w,,p) has been
absorbed in a renormalization of the Fermi level.

Since flux tubes are randomly distributed, we must av-
erage over the position of each tube. After averaging, the
Green’s function in the presence of impurities becomes
translationally invariant: (G(p,p’)) = G(p)é®(p — p').
On the other hand, we shall be interested in excitations
very near the Fermi surface. This will help us simplify
many calculations, since all momenta will be strongly
peaked around the Fermi value, pg.

Our task now is to compute Im¥. Diagrams with only
one impurity line give (using translation invariance) a
constant which represents a shift of the Fermi energy, ir-
relevant for our purposes. Now, under the assumptions
that (a) the impurity density n; is low enough, and (b)
scattering by impurities is weak (small x, Born approx-
imation), then the main contribution to the imaginary
part of the self-energy is the one shown in Fig. 2. For low
densities the interference between scattering from differ-
ent impurities is negligible, i.e., the scattering is incoher-
ent. Summing over the position of the impurities gives
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FIG. 2. Main contribution to the imaginary part of the
self-energy. The impurity lines give a contribution |u(k, p)|?.

then a factor n;. On the other hand, the seagull vertex,
although of the same order as the diagrams in Fig. 2,
does not contribute to the imaginary part.

These considerations lead to

(wn, k)[u(k, p)|?

d’k
Im¥® n =N,
m¥(w,,p) =n Im/ )

de wn  [d
_n,m/ 25: w2°’+ = /2—f|u(<p)|2. (2.14)

Here we have used |p|, k| ~ pr and assumed that, for
k near the Fermi surface, |u(k,p)|? is a slowly varying
function. This term is

K2 1

2m21—cosyp

u(k, p)|* = |u(p)|* = (2.15)

This is (up to a factor m/2mvp) the differential cross
section do/dp for AB scattering! in the Born approxi-
mation. It is even in the scattering angle.

Values of € far from the Fermi surface give negligible
contributions to the integral over energies. Therefore we
can extend the range of integration from (—ep, +00) to
(—00,400). One finds

Sgn Wy,

Im ¥(wn,p) = - , 2.16
m 5(wn, p) = B2 (2.16)
where
d
1= n,-m/ 2_<p (2.17)
The integrated cross section is ¢ = (n;vpT)~!. Accord-

ing to this, 7 is the mean time between collisions in the
Born approximation (27 is the lifetime for an excitation
near the Fermi surface). Observe that 7—! is divergent,
reflecting the long range of the AB interaction. The inte-
gral in Eq. (2.17) has to be considered as regularized with
a cutoff for small ¢, which eventually has to be sent to
zero. We do not write it explicitly since we shall find that
it disappears from physical macroscopic magnitudes.
Substitution of (2.16) into (2.13) yields,

1
twp — €p + isgn wy /27

The computation of the polarization tensor must take
into account the fact that the average (over positions of
flux tubes) of two propagators does not equal the prod-
uct of the separate averages. The resulting terms can
be conveniently included in the form of a vertex term,
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as in Fig. 3. The vector vertex I' takes account of dia-
grams where an impurity interacts with both the upper
and lower electron lines in Fig.3. Although it may seem
at first that these terms contain higher powers in the flux
tube concentration n;, this is not the case since they also
contain higher powers of Im¥. The seagull vertex can
J

d2pl , 2 K
C(p.p-+a) =20+ a+m [ 50 Glopp) {lue e +ig 2

K (p' xp)ax(p-p)

T lp —p'|*

(We are not writing the explicit frequency dependence
of I'.) In general, this equation is very difficult to solve.
However, we know that to compute the longitudinal con-
ductivity we must take @ = 0. The resulting equation
1s

2./

r(p) = 2p -+ [ (‘;T’; G (wp, B)u(p, P)?

xI'°(p')G(wp + w,p’) . (2.20)
Now, it is clear that I'°(p) o< p. Write then I'’(p) = (2+
A)p , where, for |p| ~ pr, A can be taken as independent
of |p|. Equation (2.20) gives then the following equation
for A:

ey

A=nm(2+A) / %G(wp,p')G(wp + w,p’)
do 2P P

« [ Sem B

The integral over energies can be easily performed ex-
tending the limits to (—oo, +00), and using contour inte-
gration. We quote the result since it will be used repeat-
edly:

(2.21)

de, o
/%G(%’P')G(%er,rl’) _ QZ)_F(;)/"T+ W)

(2.22)

for w > 0 (considering w < 0 does not affect our final
results). Then

_ 20(—wp)b(wp + w)
A= T1(w + 1/7¢;)

(a) (b)
i 5’ 0 ¥
g A P

FIG. 3. (a) Current-current correlation function II;;. (b)
Parity-violating density-current correlation function IT§;. The
electron lines correspond to the propagator G(wn,, p) dressed
by the interaction with impurities (Fig. 2).

(w>0), (2.23)

14 463

be easily seen to yield a contribution of higher order in
K, and therefore will be neglected. Under the same as-
sumptions made above in the computation of ImX, the
main contribution comes from the ladder diagrams (see
Fig.4), and can be found by solving the following integral
equation:

ax(p—p)
p-p?
IR P+ a)Glp + 0,0+ (2.19)
[
with
-1 dy 2
T =nm | —|u(p)|*cose , (2.24)
27
-1 -1 —1_ MiK?
T =T '~ —T] = —— (2.25)

2m

Ter 18 the “transport time” between collisions. The diver-
gence in 7, ' is of the same kind as the one in 771, so
that their difference is finite. Therefore, the dependence
on the regularization of integrals disappears from ;.

Now we are ready to compute II;;(w) = II;;(q = 0,w).
From Fig.3(a) we read

_ e? d?p
1) = g 2 | Gy

x2p; G(wp, p)l";-’(p)G(wp +w,p) . (2.26)

Equation (2.26) can now be solved. Calculations are
quite standard (see Ref. 11). The longitudinal conduc-
tivity is eventually found to be

2

- Ne€2Tyy o Tee
L= —— = .
m n;k?

(2.27)
Remarkably, this is a nonzero, finite quantity, in spite
of the long-range interaction. In contrast, if the inter-
action with impurities were Coulombian, 7,;' would be
divergent, and therefore oy — 0. However, the trans-
verse nature of the AB interaction makes the divergence
in |u(p)|? milder.

FIG. 4. Ladder equation for the vector vertex I.
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III. THE TRANSVERSE CONDUCTIVITY

Here we shall use the techniques developed in the previ-
ous section to make the presence of a transverse conduc-
tivity manifest. A current perpendicular to the applied
field must satisfy a relation of the form

Ji = O'_LeijE;:Xt . (31)

Here, the presence of a transverse conductivity o, is
a signal of P and T spontaneous symmetry breaking.
The relation J; = o Ef** already breaks T symmetry,
but this is naturally expected since dissipative effects are
present. However, T breaking is qualitatively different in
(3.1) because the transverse current does not dissipate
energy (J - E®* = 0).

We find it convenient to choose a gauge in which the ex-

ternal field takes the form E** = —V¢$***, or, in Fourier
components, E** = —iq¢*t. Therefore
Ji = —Z'O'J_Cijq]‘(ﬁeXt B (32)

2./

(2m)
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This means that, since J; = —IIp;¢°*t, it will suffice to
compute the density-current correlation function Ilg; to
O(q), and then take the limit w — 0 [Fig. 3(b)].

The vertex I'(p, p + q) can be expanded in powers of
q as follows:

F(p,p+aq) =T%p,p)+T(p,p +q)

+I*9(p,p+a) +0(¢*) . (3.3)

We have computed the zeroth-order term I'° in the pre-
vious section. The first-order contribution has been split
into a part I'* containing the vector q gdeﬁned to
have components €;;¢;), and another r'(®e e contain-
ing q. We shall be interested only in I'*. The inte-
gral equation for it can be obtained from Eq. (2.19)
[observe that the last term inside the brackets in Eq.
(2.19) does not contribute to I'¢, but to I'™°€) since

(axp)(p' xp) =p*’q-p' - (q-p)(p' - p)]:

m  |p—p'?

€ . K -P)-
r (p,p+q) = n1/J3 G(wp’p’){_lg_(_p_i),_qi; I‘O(p/’p/)

+|u(p, p")’T(p’,p' + Q)} G(wp +w,p’) -

Changing the sign of g [Eq. (2.4)] would reverse the
flow of the transverse current.

The ansatz that allows us to solve (3.4) is not very hard
to guess. After some examination, one is led to write

1
I'‘(p,p+4q) = p—zp(p ‘qr)A1 +qiAs, (3.5)
F

where, again, A; and A, are independent of |p|.
The following integrals are needed to solve Eq. (3.4) (¢
is the angle between p and p’):

d
mm [ SE1u(e) B (6 1)
™

1 1 2
- (* _ —) pp o)+ Lar.  (39)

T1 Ttr

nik? fdp (P—P')-aL
m J 2r |p—p|

= % (ép(p ‘qL) — q¢> .
(3.7)

Calculations are now straightforward, and lead (again for
w > 0) to

(A +2) 0(—wp)d(wp +w)

_ 3.8

A ¢ 2 WTer + 2 ’ (3.8)
(A +2) B(—wp)B(wp + w) 1

= 1-— . (39

A2 ! 2 WTtr WTer + 2 ( )

Now we can use the vertex I'® to find the part of IT =

(3.4)

f

(IIp;) that yieids parity violation. This is [see Fig. 3(b)],

« 62 dzp
=555 | Gy

X G(wp, P)T*(P, P+ q)G(wp +w,p +q) .

(3.10)

The ansatz (3.5) gives the following expression for II¢
after integrating the angles:

o = iz S
—-CIJ_2,8w 2 2

x / dzi;a(w,,,p)c(w,, +w,p) . (3.11)
Substituting the results above, one finds
2
8
s AL (3.12)
1 — wwT,

We have made the continuation w — —iw. Highly non-
trivial cancellations of 7=, 7, ! have concurred again to
yield a finite result. Taking w — 0 we find the transverse
conductivity

o, =e?/8m, (3.13)
which is independent of n., n;, and k. At first sight,
this seems to lead to the nonsensical result that taking
either n; or k to be zero, one still finds a finite transverse
conductivity. Of course, this is wrong: these limits must
be taken in Eq. (3.12) before w — 0, and then one obtains
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o, = 0. Also, one can check that choosing g = —k/2m
reverses the sign of the conductivity.

IV. DISCUSSION

There are two aspects of this result that deserve some
explanation: first, the appearance of the transverse con-
ductivity; second, its dependence on universal constants.

It may seem somewhat surprising to find a nonzero
transverse conductivity. Consider the motion of a single
electron in the presence of a flux tube. The differential
scattering cross section (2.15) is invariant under ¢ — —o,
i.e., a typical electron trajectory is not deflected. In
order to make asymmetries appear, March-Russell and
Wilczek® were forced to introduce an additional interac-
tion (in the form of a generic phase shift). Then parity is
broken through interference terms. This is explicitly il-
lustrated by Suzuki et al. in Ref. 12, where the additional
interaction is taken to be a hard-disk repulsion. The sit-
uation here is different, since the interaction with the
flux tubes is purely AB. Of course, one could argue that
we actually have another interaction, namely, that with
the external electromagnetic field. But we have reasons
to believe that this by itself is not the origin of parity
breaking. We have analyzed a closely related problem:
the bremsstrahlung for emission of soft photons in the
presence of a flux tube. Vertex corrections have been
taken into account. It turns out that, after summing
over the scattering angle of the emitted photon, the cor-
responding cross section for electrons is invariant under
parity. It seems that an electron interacting with a flux
tube emits photons in a left-right symmetric way.

There is however another difference between our prob-
lem and that of the scattering of a single electron from a
single flux tube: it is essential in our calculation to take
into account the many-body effects. Apart from yield-
ing a damping of excited electrons, many-body effects
are present in the ladder resummation that we perform
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to find the vertices. One can check that if only the first
term in the series is included, the transverse conductivity
turns out to be zero. Of course, it is not consistent to
do so, as we have argued before. We need to sum all the
terms and it is then that the asymmetry appears. There-
fore parity breaking does arise at the macroscopic level,
although its microscopic origin is hidden.

The universal dependence of the transverse conductiv-
ity is less surprising once it is noticed that it is of the kind
familiar from the quantum Hall effect. This seems to pro-
vide support to the mean-field approximation, since we
find a behavior analogous to that of an electron gas in
the presence of a magnetic field. However, we are dealing
with a perturbative approximation, so we do not expect
to find the Landau level structure responsible for the inte-
ger spacing in the Hall conductivity. Nor, evidently, can
our model take into account the null longitudinal resis-
tivity that appears simultaneously with it. Nevertheless,
it is remarkable to find in this simple model such a semi
quantitative agreement with mean-field theory.

The procedure we have described above can be modi-
fied to compute other transport coeflicients, such as ther-
mal conductivities; these will also show parity violation.
However, it seems more interesting to take one step fur-
ther and consider the conductivity of a gas of anyons with
the full CS interaction taken into account. Calculations
with this model are much more difficult, but the outcome
would be a full description of transport phenomena in
anyonic systems.
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