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Shot-noise suppression by Fermi and Coulomb correlations in ballistic conductors
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We investigate the injection of degenerate Fermi-Dirac electrons into a multimode ballistic conductor under
the space-charge-limited regime. The nonequilibrium current fluctuations were found to be suppressed by both
Coulomb and Fermi correlations. We show that the Fermi shot-noise-suppression factor is limited below by the
value 2kBT/«F , whereT is the temperature and«F the Fermi energy of the injected electrons. The Coulomb
noise suppression factor may attain much lower values«F/2qU, because of its dependence on the applied bias
U@kBT/q. The asymptotic behavior of the overall shot-noise suppression factor in a high degenerate limit was
found to bekBT/qU, independent of the material parameters.
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I. INTRODUCTION

Nonequilibrium fluctuations of the electric current~shot
noise! in mesoscopic conductors have received recently
nificant attention.1,2 In particular, the shot noise in scatterin
free orballistic conductors has been studied extensively b
theoretically3–5 and experimentally,6–9 by focusing mainly
on the suppression of noise by Fermi correlations in quan
point contacts under low temperatures, i.e., conductors w
a small number of quantum modes.

On the other hand, when the ballistic transport is limit
by a space charge, Coulomb correlations may also result
shot-noise suppression. If the electron density injected in
ballistic conductor is low, the electron gas is nondegener
and Fermi statistical correlations are not efficient. For t
case the Coulomb correlations are the main source of
shot-noise suppression, as has been demonstrated by M
Carlo simulations,10,11 and subsequently analytically in
framework of the Vlasov system of equations.12 In nanoscale
devices, however, the injected carriers are usually dege
ate, which is due to a high level of contact doping and
elevated position of the Fermi level in the contact emitt
Therefore, it is of interest to consider the situation when b
mechanisms, Fermi and Coulomb correlations,
together—the case that is important not only from a fun
mental, but also from an applied point of view13 and has
attracted less attention so far.14,15 In Ref. 14 the problem for
a multimode degenerate conductor in the presence o
nearby gate has been posed, and the numerical results
been presented for a two-dimensional field-effect-transi
geometry. Monte Carlo simulations in a two-terminal geo
etry, which take into account the degenerate injection fr
the contacts and Coulomb correlations in the ballistic regi
have been performed.15 The relative significance of eac
mechanism in the shot-noise suppression and the limi
values for the noise suppression factors of each mecha
still remain unclear, since the analytical theory has not b
proposed.

It is the objective of the present paper to address the p
lem of shot-noise suppression under the conditions of
interplay between Fermi and Coulomb correlations in tw
terminal multimode ballistic conductors. To this purpose,
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apply the recently developed analytical theory16 for a space-
charge-limited~SCL! ballistic conductors to the case of
Fermi-Dirac degenerate injection. Since we address the
of thick ~in transversal dimensions! samples, the number o
transversal modes~quantum channels! is large and the di-
mensionality of a momentum space of electrons is thr
dimensional~3D!, which makes a difference with the prev
ous considerations of a one-channel or a few-chan
quantum ballistic conductor~1D or quasi-1D momentum
space!.2–5 Our analysis goes beyond the linear-response
gime and zero-temperature limit—the assumptions typica
used to study few-channel conductors.2–5 In a semiclassical
framework, for a multimode ballistic conductor, we have d
rived analytical formulas that determine thenonlinear I-V
characteristics, the current-noise spectral density, and
shot-noise suppression factors for each suppression me
nism in the limit of high biases. We show that the Fer
shot-noise-suppression factor is limited below by the va
determined by the properties of the injecting contact~the
ratio between the temperature and the Fermi ener!,
whereas the Coulomb noise suppression may be enha
arbitrarily strong by extending the length of the ballist
sample with a simultaneous increase of bias~provided the
transport remains ballistic!. Therefore, the Coulomb suppre
sion may be achieved much stronger even in samples wi
high degree of an electron degeneracy.

The paper is organized as follows. In Sec. II we descr
the semiconductor structure under consideration and dis
the main assumptions concerning the model. In Sec. III
introduce the electron distribution function over the longit
dinal injection energy, found by integrating over the tran
versal modes. The analytical expression for the mean cur
is derived as a function of the self-consistent potential bar
height. Then, in the limit of high biases, the current-volta
characteristics beyond the Child approximation is obtain
which takes into account the degenerate Fermi-Dirac in
tion. In Sec. IV the analytical expression for the suppres
value of the shot-noise power is derived, in which the Ferm
and Coulomb-correlation contributions are distinguish
The results for a particular GaAs semiconductor SCL dio
are presented in Sec. V. Finally, Sec. VI summarizes
main conclusions of the paper.
©2001 The American Physical Society07-1
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II. THE PHYSICAL MODEL

We consider a two-terminal semiconductor ballis
sample with plane-parallel heavily doped contacts atx50
and x5 l . The structure may be considered as an-i -n SCL
homodiode12 in which the current is determined by a char
injection from the contacts rather than by intrinsic carriers
the ballistic region. The applied biasU between the contact
is assumed to be fixed by a low-impedance external cir
and does not fluctuate. In order to simplify the problem,
assume that due to the large difference in the carrier den
between the contacts and the sample, and hence in the
responding Debye screening lengths, all the band ben
occurs in the ballistic base, and the relative position of
conduction band and the Fermi level does not change in
contacts. Therefore, when the bias is changed, the pote
can vary exclusively inside the ballistic base, and the c
tacts are excluded from the consideration.10–12 The electron
gas inside the contacts is assumed to be in thermal equ
rium. However, in contrast to the previous works,10–12 the
Fermi level in respect to the bottom of the conduction ba
denoted here«F , may take not only negative, but positiv
values as well, i.e., the injected electrons may be either
generate or nondegenerate, and follow, in general, the Fe
Dirac distribution. Assuming the transversal size of the c
ductor sufficiently thick and high enough electron dens
the electrostatic problem is considered in a one-dimensio
plane geometry.12

III. DISTRIBUTION FUNCTION AND MEAN CURRENT

To describe the steady-state transport and low-freque
noise, we use a semiclassical Vlasov system of equati
which consists of the collisionless Boltzmann transport eq
tion for the distribution function and the Poisson equation
the self-consistent electrostatic potential.12,16 Due to a sto-
chastic nature of the injection, the distribution function an
consequently, the self-consistent potential both fluctuate
time. The nonuniform distribution of the injected carrie
leads to the creation of the potential minimumwm at a posi-
tion x5xm . The potential minimum acts as a barrier for t
electrons by reflecting a part of them back to the conta
thereby affecting the transport and noise properties. It is
potential minimum fluctuations that induce the long-ran
Coulomb interactions and lead to the suppression of the
jected current fluctuations.12 We assume that the applied bia
qU.5kBT, whereq is the electron charge andT is the tem-
perature. From this follows that the current is determined
only one injecting contact~at x50 for definiteness!, and the
electrons from this contact that are able to pass over
barrier and arrive at the receiving contact atx5 l are all
absorbed with probability 1, since the corresponding ene
states are empty. All the electrons injected from the receiv
contact are reflected back because of the high-bias condi
Their contribution to the current and noise is negligible. A
other assumption on the bias isUm!U,Ucr , whereUm[
2wm is the potential barrier height, andUcr is the bias at
which the potential barrier vanishes.12 In this limit ~‘‘virtual-
cathode approximation’’!, only the electrons that are able
04530
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pass over the fluctuating barrier contribute to the current
noise. The nonhomogeneous electron density along the
listic region is determined by16

N~x!5E
Fc

`

Fc~«!
d«

2A«1F~x!2Fc

, ~1!

whereF(x)5qw(x)2qwm is the mean potential reference
to the minimum, with the valueFc[F(0) at the injecting
contact. It is clear that in such a definition the contact pot
tial is equal to the potential barrier height,Fc5qUm . Note
that Fc(«) is the distribution function over the longitudina
kinetic energy« at the injecting contact. Since during th
ballistic motion only the longitudinal electron momentu
may vary, the injection distribution function is averaged ov
the transversal momentumk' :

Fc~«!52
A2m

\ E dk'

~2p!d
f ~«,k'!, ~2!

whered is the dimension of a momentum space,m the elec-
tron effective mass,\ the Planck constant,f («,k') the oc-
cupation number of a quantum state, the factor 2 takes
account the spin variable, and the additional factorA2m/\
has been introduced for normalization convenience. Ass
ing that the number of transversal modes is large, the dim
sion of a momentum spaced53, and we can perform inte
gration over the transversal states. Changing the variabl
integrationdk'5(2pm/\2)d«' , where«' is the transverse
electron energy, and taking into account thatf («,«')
5 f F(«1«'), with f F(«)5$11exp@(«2«F)/kBT#%21 the
Fermi-Dirac distribution, one gets

Fc~«!5
Nc

ApkBT
ln$11exp@~«F2«!/kBT#%, ~3!

where Nc52(2pmkBT)3/2/(2p\)3 is the effective density
of states. Integrating the distribution function~3! over the
energy, one obtains the electron density injected from
contact,

N05E
0

`

Fc~«!
d«

2A«
5

Nc

Ap
E

0

`

ln~11ej2z2
!dz, ~4!

wherej[«F /kBT is the reduced Fermi energy. The injecte
electron density may also be expressed in a more fam
form

N05
1

2
NcF1/2~j!, ~5!

whereF1/2 is the Fermi-Dirac integral of index 1/2. Since th
Fermi-Dirac integralsFj of different indexesj will be fre-
quently used throughout the paper, their properties are s
marized in the Appendix. Note thatN0 is half of the contact
electron densityNcF1/2(j), since only the electrons with
positive momenta are injected into the sample.
7-2
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SHOT-NOISE SUPPRESSION BY FERMI AND COULOMB . . . PHYSICAL REVIEW B64 045307
Substituting the distribution~3! into Eq. ~1! taken atx
5xm , one obtains the electron density at the potential m
mum:

Nm5E
Fc

`

Fc~«!
d«

2A«2Fc

5
1

2
NcF1/2~a!, ~6!

wherea5(«F2Fc)/kBT is the parameter characterizing th
position of the Fermi energy with respect to the poten
barrier. The densityNm is an important parameter for com
puting the current noise, as will be seen below.

The steady-state current is obtained by16

I 5
qA

A2m
E

Fc

`

Fc~«!d«, ~7!

whereA is the cross-sectional area. Substituting the distri
tion function ~3!, one gets

I 5I FE
0

`

ln~11ea2y!dy5I FF1~a!, ~8!

where I F54pqAm(kBT)2/(2p\)3 and F1 is the Fermi-
Dirac integral~see the Appendix!. It is seen that under the
ballistic SCL conduction, the current is determined by t
relative position of the Fermi energy and the potential bar
through the parametera. This is in contrast to the case o
diffusive conductors, in which the current is determined
scattering strength. The parametera summarizes the depen
dence of the current on the applied bias and the length of
conductor, since they both affect the potential barrier heig
whereas the factorI F is independent of those characteristic

Figure 1 illustrates the electric current as a function ofa
given by Eq.~8!. When the Fermi energy is sufficiently be
low the potential barrier,a,23, only the exponential tail of
the contact distribution function is injected~nondegenerate
injection limit!. Under this condition, according to the a
proximate formulas for the Fermi-Dirac integrals~A5!, the
current becomes

I'I Fea. ~9!

FIG. 1. Current as a function of the positiona of the Fermi
energy «F in respect to the potential barrierFc , a5(«F

2Fc)/kBT. The asymptotic approximations for nondegenerate
degenerate limits are plotted.
04530
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When the Fermi energy is above the potential barrier
severalkBT, it is the degenerate injection limit and, by usin
Eq. ~A6!, one gets the approximate formula for the curren

I'
1

2
I FS a21

p2

3 D . ~10!

It is seen from Fig. 1, that formula~10! is accurate ata.2.
Note that the case of nondegenerate injectiona,23, may
occur when the contact electron density is either nondeg
erate or degenerate, depending on the position of the Fe
energy with respect to the conduction band edge charac
ized by the parameterj. For j,23, the contact electron
density is nondegenerate, and this is the case of the Maxw
Boltzmann injection, analyzed in detail in Ref. 12. Let
demonstrate that our formulas are in agreement with
case. Equation~5! gives the injected electron densityN0
5 1

2 Nc ej, and the current~9! is expressed as

I 5I MB e2Um /kBT, ~11!

whereI MB5I F(2N0 /Nc)5qAN0A2kBT/pm is the emission
current for the Maxwell-Boltzmann distribution@compare
with Eq. ~46! of Ref. 12#. For j.23 anda,23, the in-
jected electrons that pass over the barrier are nondegene
but the contact electrons are degenerate; hence the app
mate formula~11! for the current is no longer valid, and on
has to use a more general relation, Eq.~9!.

It should be also noted that in the general case of a Fe
Dirac injection, the contact emission current isI 05I FF1(j).
This is the maximum~saturation! current that is achieved
when the applied biasU>Ucr , the barrier vanishes (Fc
50, a5j!, and the conduction is no longer space-cha
limited. The current in units of its saturation value is simp

I

I 0
5

F1~a!

F1~j!
. ~12!

It was shown in a previous paper16 that the asymptotic
behavior of the current in SCL ballistic conductors obeys
Child law in the leading-order terms independently of t
injection distribution:

I Child5
4

9
kAA2q

m

U3/2

l 2
, ~13!

wherek is the dielectric permittivity, andl is the length of
the ballistic conductor. However, this formula is only acc
rate at very high biases, in the range where the SCL cond
tion is difficult to maintain. This is a consequence of a rou
approximation, in which the velocity spread of electrons
the potential minimum is neglected. To obtain a satisfact
good approximation at lower biases, it is necessary to k
the next-order terms that are specific with respect to the
jection distribution. The general formula for an arbitrary i
jection function has been recently derived:16

d
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I 5I ChildS 11
3

AqU

E
0

`

Fc~e1Fc!e
1/2 de

E
0

`

Fc~e1Fc!de
D . ~14!

In our case of the injection distribution function~3!, one
finds the following expression:

I 5I ChildS 11
3Ap

2
AkBT

qU

F3/2~a!

F1~a!
D . ~15!

In the nondegenerate limit,a,23, one obtains (F3/2/F1)
→1, and Eq.~15! leads to the Langmuir formula for th
Maxwell-Boltzmann injection.12 In the opposite limit of high
degeneracy,a@1, one gets

I'I ChildS 11
8

5
A«F2qUm

qU D , ~16!

which can be used to estimate the current for Fermi balli
conductors beyond the Child approximation. Here, we
mark that in the degenerate limit and at«F@qUm , the cur-
rent ~16! is independent of temperatureT in both terms. For
an arbitrary degree of degeneracy, the general expres
~15! can be used.

IV. CURRENT NOISE

To calculate the current noise, one has to define the pa
injection currentI c(«) at the contact and its fluctuation prop
erties. From Eq.~8! it follows that

I c~«!5
I F

kBT
ln@11e(«F2«)/kBT#, ~17!

which corresponds to the current carried by electrons w
injection ~longitudinal! energies between« and«1d«, giv-
ing after the integration the total emission currentI 0

5*0
`I c(«)d«.

The correlation function for the fluctuations of the part
injection currents may be written generally as

^dI c~«!dI c~«8!&5K~«!~D f !d~«2«8!, ~18!

whereD f is the frequency bandwidth~we assume the low
frequency limit!. For the particular case of Fermi 3D injec
tion, the functionK(«) is determined by17,18

K~«!52q
2qA

\ E dk'

~2p!d
f ~«,k'!@12 f ~«,k'!#. ~19!

The integration over the transversal states may be perfor
explicitly by taking into account that f F(12 f F)5
2kBT(] f F /]«) and *0

`d«' f F(«1«')@12 f F(«1«')#
5kBT fF(«). This gives a simple expression:

K~«!5
2qIF

kBT
f F~«!. ~20!

We remind the reader that« is the longitudinalenergy com-
ponent. The Fermi factor 12 f F has disappeared after th
04530
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integration,19 but the Fermi noise-suppression effect
present in Eq.~20!. Indeed, in the degenerate limit«F
@kBT, the partial current~17! is a linear function of energy
I c(«);(«F2«), at «→0 @see Fig. 2~a!#. This occurs be-
cause of the increase of the number of transversal state
the longitudinal energy« decreases. Despite the increasi
of the number of states, the shot-noise power per unit ene
represented by the function~20! is constant at«!«F @Fig.
2~a!#. As a result,K(«)/2qIc(«)'1/j!1 at«→0, indicating
the noise suppression effect. In contrast, for nondegene
case, both functions}exp@(«F2«)/kBT# and K(«)/2qIc(«)
'1 @Fig. 2~b!#, which leads to the Poisson noise. Additio
ally, we note that, sinceI F;T2, the injection noise vanishes
K(«)→0, in the limit T→0.

The current-noise spectral density for the electron flo
when Coulomb correlations are disregarded, is given by16

SI
uncor5E

Fc

`

K~«!d«. ~21!

Here, the integration is performed over the energies ab
the barrier heightFc , since only the electrons transmitte
over the barrier contribute to the current noise at high bias
Substitution of expression~20! yields

SI
uncor52qIF ln~11ea!52qIFF0~a!. ~22!

From this result we find the shot-noise-suppression fac
caused by Fermi correlations

GF5
SI

uncor

2qI
5

F0~a!

F1~a!
. ~23!

This function is plotted in Fig. 3. It is clear that in the no
degenerate limit, one gets (F0 /F1)→1, and obviouslyGF
→1. An important feature is thatGF is a decreasing function
of a. In the degenerate limit,a@1, it approaches the
asymptotic behavior:

GF'
2

a1~p2/3a!
. ~24!

FIG. 2. Shot-noise power per unit energyK(«) and partial cur-
rent I c(«) for injected electrons for two cases:~a! degenerate,j55;
~b! nondegenerate,j523. Here, Knorm52qIF /kBT, I norm

5I F /kBT.
7-4
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SHOT-NOISE SUPPRESSION BY FERMI AND COULOMB . . . PHYSICAL REVIEW B64 045307
It is seen from Fig. 3 that formula~24! is accurate ata.3.
The limiting minimal value forGF occurs when the barrie
vanishes (a5j),

GF
min5

2

j
5

2kBT

«F
. ~25!

The numerical factor in Eq.~25! depends on the dimension
ality of a momentum space. By taking different values od
in Eqs. ~2! and ~19!, one can getGF

min5c kBT/«F with c52
(d53), 3/2 (d52), and 1 (d51). In all the cases, the sho
noise Fermi suppression is determined by the ratio betw
the temperature of the injected electronsT and their Fermi
energy«F . For a fixed«F , the suppression may be enhanc
by decreasing the temperatureT→0, but it is independent o
the bias, the ballistic length and the other parameters of
conductor.

The current noise, which takes into account both Fe
and Coulomb correlations, is determined by16

SI5E
Fc

`

g2~«!K~«!d«, ~26!

where the energy-resolved shot-noise-suppression facto

g~«!5
3

AqU
@A«2Fc2y#, ~27!

and the constanty for an arbitrary injection distribution is
given by16

y5
Nm

Fc~Fc!
. ~28!

By using Eqs.~3! and~6!, we find for the Fermi 3D injection

y5
ApkBT

2

F1/2~a!

F0~a!
. ~29!

Thus, for the current-noise power~26!, after using Eqs.~20!,
~27!, and~29!, we find

FIG. 3. Fermi shot-noise-suppression factorGF and shot-noise
parameterb as functions of the position of the Fermi energya. The
asymptotic approximations for nondegenerate and degenerate l
are shown.
04530
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SI5b 2qI
kBT

qU
. ~30!

In this formula, the constantb is determined only bya:

b~a!59S 12
p

4

@F1/2~a!#2

F0~a!F1~a! D . ~31!

To distinguish the noise suppression caused by differ
mechanisms, one can define the shot-noise-suppression
tor due to a pure Coulomb suppression

GC5
SI

SI
uncor

5b
kBT

qU

F1~a!

F0~a!
, ~32!

whereas the overall shot-noise-suppression factor becom

G5GCGF5
SI

2qI
5b

kBT

qU
. ~33!

It is seen that the current noise may be suppressed by
the temperatureT and the biasU. This is in contrast to the
pure Fermi suppression~25!, which is sensitive toT, but
independent of the bias. The dependence onU comes from
the Coulomb correlations and originates from the funct
g(«). The coefficientb is a parameter that depends on t
degree of degeneracy, as follows from Eq.~31!. For the
Fermi 3D injection,b is a decreasing function ofa ranging
between two limiting values~see Fig. 3!: bmin,b,bMB ,
wherebMB59(12p/4)'1.9314 is a limiting value in the
nondegenerate limit~Maxwell-Boltzmann injection!, and
bmin51 is a limiting value in the degenerate limit. For hig
degeneracy, the approximate formula forb may be obtained
by using the expansions for the Fermi-Dirac integrals~A6!,
one gets

b'11
2

3

p2

a2
, a@1. ~34!

Figure 3 demonstrates the validity of such an approximati
The asymptotic behavior of the Coulomb suppression fac
GC in a high degenerate limit is obtained as

GC'
1

2

«F2Fc

qU
, «F2Fc@kBT, ~35!

which takes the minimal value atU5Ucr :

GC
min'

«F

2qUcr
. ~36!

It should be emphasized that the difference between the
noise-suppression mechanisms is fundamental: WhileGF
cannot be decreased further by varying the parameters o
conductor, since its minimal value is fixed by the conta
properties@by the parameterj as follows from Eq.~25!#. In
contrast, the factorGC may be decreased by increasing t
ballistic lengthl of the conductor, since for longer condu
tors the critical biasUcr under which the barrier disappears
higher, andGC may drop deeper. As a consequence,G may
also attain much lower values. It is important to highligh

its
7-5
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O. M. BULASHENKO AND J. M. RUBÍ PHYSICAL REVIEW B 64 045307
that in both nondegenerate and degenerate limits, the
shot-noise suppression factor}kBT, and can therefore be
reduced by decreasing the temperature.

V. EXAMPLE

To illustrate the results, consider the GaAsn-i -n ballistic
diode of lengthl 50.5 mm at T54 K. For this temperature
and m50.067m0, the effective density of states isNc
'6.731014 cm23. Assuming the contact doping 1.
31016 cm23, the reduced Fermi energyj'10, and the con-
tact electrons are degenerate. For this set of parame
the Debye screening length associated with the con
degenerate electron density is approximatelyLD

5AkkBT/@q2NcF21/2(j)#'14 nm. SinceLD! l , the space-
charge effects and, therefore, the Coulomb shot-noise
pression are important in a wide range of biases.

Let us introduce the normalized biases:V5qU/kBT and
Vm5qUm /kBT. The calculation of the steady-state potent
profile for different biasesV shows that the potential barrie
varies fromVm'11.2 atV510 to Vm50 at V5Vcr'705
(Ucr'243 mV) ~see Fig. 4!. In this range, the charge
limited conduction is controlled by the barrier heightVm ,
and by increasing the bias, one can observe the cross
from nondegenerate (a5j2Vm,21) to degenerate (2
,a,10) injection. This crossover is illustrated in Fig.
where the shot-noise suppression factorsG, GF , andGC are
plotted as functions of bias. Indeed, the Fermi suppres
factor GF varies from 1 at low biases to 2/j'0.2 at high
biases, in agreement with formulas~23!–~25!. Moreover, the
factorG lies between two asymptotic lines:bMB(kBT/qU) at
low biases~nondegenerate limit! andkBT/qU at high biases
~degenerate limit!, in agreement with Eq.~33! and the varia-
tion of b in Fig. 3. The Coulomb correlation factorGC de-
creases with bias up to the lowest value'0.0078 atU
5Ucr . After that value it increases sharply to 1 due to t
disappearance of the potential barrier. The sharp increas
GC at U5Ucr is discontinuous in this asymptotic theor
which neglects the high-order terms in the expansions.
exact calculations20 give a smoother behavior. Note that bo

FIG. 4. Shot-noise-suppression factors:GF ~Fermi!, GC ~Cou-
lomb!, and G5GFGC ~total!, and potential barrier heightVm as
functions of applied biasU. The asymptotic limiting lines
bMB(kBT/qU) andkBT/qU for G are shown by dashes.
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mechanisms essentially suppress shot noise at largeU, but
GC is always much lower thanGF under SCL conditions.

VI. SUMMARY

In conclusion, we have derived the analytical formul
that describe the mean current and the shot-noise powe
degenerate space-charge-limited ballistic conductors. In
framework of a semiclassical Vlasov system of equatio
which takes into account the fluctuations of the poten
profile self-consistently, we have obtained a deep shot-n
suppression of more than two orders of magnitude cause
two independent mechanisms: Fermi and Coulomb corr
tions. The derived formulas clearly distinguish the shot-no
suppression factors caused separately by Fermi correla
~23!, Coulomb correlations~32!, and by the joint action of
both @Eq. ~33!#.

We show that the Fermi shot-noise-suppression facto
limited below by the ratio between the temperature a
Fermi energy of the contact electrons. The Coulomb no
suppression factor, however, may attain much lower val
«F/2qU, because of its dependence on the applied biasU
@kBT/q. The asymptotic behavior of the overall shot-nois
suppression factor in a high degenerate limit was found to
kBT/qU, independently of the material parameters. Fina
for the degenerate Fermi-Dirac injection, the asymptotic f
mula for the mean current beyond the Child approximation
proposed.21
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APPENDIX: FERMI-DIRAC FUNCTIONS
AND THEIR APPROXIMATIONS

The Fermi-Dirac functions are encountered, whene
one wants to describe the electronic transport in degene
semiconductor or metallic systems, and they are defined22

Fj~a!5
1

G~ j 11!
E

0

` yj dy

11ey2a
, ~A1!

where G( j ) is the gamma function of the indexj. For the
expressions of this paper, theG functions take the values

G( 3
2 )5Ap/2, G( 5

2 )53Ap/4, G(1)5G(2)51.
For positive indexesj, the Fermi-Dirac integrals can als

be rewritten@obtained by integrating by parts~A1!#:

Fj~a!5
j

G~ j 11!
E

0

`

yj 21 ln~11ea2y!dy. ~A2!

A simple relation between the integrals of different orde
is

Fj~a!5dFj 11 /da. ~A3!
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Unfortunately, these integrals cannot be resolved analytic
except for the trivial cases:

F0~a!5 ln~11ea!, j 50

F21~a!5~11e2a!21, j 521. ~A4!

However, for small and largea, one may use the approx
mate formulas22 for the nondegenerate limit, a,22,
W

s.

e,

eg

04530
ly Fj~a!5ea ; j , ~A5!

and for thedegenerate limit, a@1,

Fj~a!5
a j 11

~ j 11!G~ j 11! F11
p2

6

j ~ j 11!

a2
1OS 1

a4D G .

~A6!
B

d a

to
low
nge
f

nd

ses
1M.J.M. de Jong and C.W.J. Beenakker, inMesoscopic Electron
Transport, edited by L.P. Kowenhoven, G. Scho¨n, and L.L.
Sohn~Kluwer, Dordrecht, 1997!, p. 225.

2Ya.M. Blanter and M. Bu¨ttiker, Phys. Rep.336, 1 ~2000!.
3G.B. Lesovik, Pis’ma Zh. E´ksp. Teor. Fiz.49, 513 ~1989! @JETP

Lett. 49, 592 ~1989!#.
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