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Abstract

The Michelson system is a three dimension autonomous ODE system that arises in the context
of studying the travelling waves solutions of the Kuramoto-Sivashinsky equation. Nonetheless,
this system has its own relevance in itself, as it possesses some rich dynamics. In particular, the
Michelson system is an interesting system to study since it is non-Hamiltonian, volume preserving
and has a time reversing symmetry. In this work we will study the main properties of the system
from a theoretical and a numerical point of view.

More precisely, in the theoretical part we introduce the properties mentioned above and study
the equilibrium points stability and their invariant manifolds. Moreover, some results on the
existence of some type of orbits are also given. For the numerical part, we implement an algorithm
to integrate orbits and give detailed methods to �nd periodic orbits. However, the main result of
this block is the implementation of an algorithm to �nd the heteroclinic orbits of the Michelson
system.

Structure

This work structured in four sections. The �rst is just an introduction to the Michelson system
deriving it from the context of the Kuramoto-Sivashinsky equation.

In the the second part the main properties of the system are introduced in a general sense and
then they we relate them to the Michelson system. Such properties are the analyticity of solutions,
the preservation of volume and the existence of a time reversing symmetry. This part is more on
line of general ODE theory.

The third part has a more dynamical systems approach. This part is completely focused on the
Michelson systems, and we study the stability of equilibrium points and invariant manifolds, and
the existence of some types of orbits using index theory and perturbation theory.

For the forth and last part, we explain algorithms for numerical experimentations. The �rst two
are implemented and consists of a custom made Taylor method to integrate the solutions of the
Michelson system and a method to locate heteroclinic orbits using �rst hit maps. At last we
explain how to explicitly use Poincaré maps to locate periodic orbits. Still this last method could
not be implemented.

Finally, there are four appendices containing information on notation, useful material related to
some of the proofs of the system, and the C code of all the programmes designed in this project.
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INTRODUCTION

1. INTRODUCTION

1.1. The Kuramoto Sivashinky Equation. The Michelson system arises from the context
of �nding travelling waves solutions of the Kuramoto-Shivashinsky equation (abbreviated as KSe
hereafter). Thus it is only natural that we start by introducing this equation. The KSe in its
most general form is de�ned as

u(x, t)t +∇4u(x, t) +∇2u(x, t) + u(x, t)∇u(x, t) = 0.

where x ∈ Rn and t ∈ R. Nonetheless, the most popular and deeply studied version of the KSe
is in the one dimensional spacial case with periodic boundary conditions. Under this conditions
the equation is

ut + uxxxx + uxx + uux = 0, (1.1)

for which u = u(x, t), x ∈ R, t ∈ R and u(x + L, t) = u(x, t). Note that the subscripts indicate
the partial derivative with respect to the variable indicated.

The KSe was �rst obtained by Kuramoto and Tsuzuki in modelling turbulence for a reaction-
di�usion system for a Belouzov-Zabotinski chemical reaction. Independently, Sivashinsky derived
the same equation in the context of instabilities in laminar �ame fronts. This equation also appear
in models of perturbations of liquid �lms falling down an inclined plane. However in this last
case the equation appear as

Ut + Uxxxx + Uxx +
1

2
(U2)x = 0 (1.2)

Note that this equation is related to (1.2) by integration, U(x, t) =

ˆ x

0
u(ξ, t)dξ.

Besides its relevance in modelling several physical phenomenon, the KSe is regarded as a paradigm
of low-dimension dynamics PDEs and as one of the simplest models exhibiting spatio-temporal
chaos.

To conclude this brief introduction on the KSe, we just state that there are many PDEs which
hasve a similar structure to the KSe. In particular, they are of the form

∂tu+B(u, u) +Au = 0 (1.3)

where A denotes a linear operator and B represents a non linear term. Comparing with (1.1),
A = ∂2x + ∂3x + ∂4x and B(u, u) = uux. Some other important known equations with same
structure are the viscous Burgers equation (1.4) (the one dimension Navier-Stokes equation), the
Korteweg-de Vries equation (1.5), the Kawahara equation (1.6), and the Benney-Lin equation
(1.7).

ut + uux + uxx = 0, (1.4)

ut + uux + uxxx = 0, (1.5)

ut + uux + uxxx + uxxxxx = 0, (1.6)

ut+uux+uxx+uxxx+uxxxx+uxxxxx = 0. (1.7)
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INTRODUCTION

1.2. The Michelson system. The �rst issue is to tackle is to derive the Michelson system
from the KSe. Hence we attempt to �nd the travelling waves solutions of the which are of the
form u(ψ) = u(x− vt). Replacing this ansatz into (1.1) gives the following ODE,

−vuψ + uψψψψ + uψψ + uuψ = 0.

Integrating once the previous equation

−vu+ uψψψ + uψ +
1

2
u2 = 0,

were we have set to zero the integration constant. Then considering linear change of variables
u = y1 − v, ψ = x we obtain

y′′′1 + y′1 +
1

2
y21 = −1

2
v2. (1.8)

which is already the Michelson system. This system is name after Michelson which was the one
to �rst derive this system in [6].

The �rst time the Michelson derived this system was done in a complete di�erent context. He
was trying to �nd the steady state solutions (solutions such that ut = 0) of the KSe in the form
(1.2). According to numerical experiments, he assumed that the steady solutions had to be of
the form u(x, t) = −c2t+y0(x) where c was the speed of the wave. Therefore replacing his ansatz
in (1.2) he obtained

d4y0
dx4

+
d2y0
dx2

+
1

2

(
dy0
dx

)2

= c2.

Considering the change of variables variables y1 = y′0 gives

y′′′
1

+ y′
1

+
1

2
y21 = c2, (1.9)

where in this ODE equation the spatial component x ∈ R takes the role of the traditional time
variable in ODE theory. Note that (1.8) and (1.9) are the same equation for v =

√
2c.

The Michelson system properly speaking is the resulting system after the change of variables
y′1 = y2 and y

′
2 = y3, to render the equation a �rst order ODE system. Thus,

y′1 = y2,

y′2 = y3,

y′3 = c2 − y2 −
y21
2
.

(1.10)

Note that with this notation, the subindex help in bookkeeping the order of the derivative of y0
that each variable correspond. Also take into account that according derivation of Michelson,
the solutions of the system and in particular y0 =

´ x
0 y1(z)dz yield waves of the KSe that move

at constant speed.
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GENERAL PROPERTIES OF THE MICHELSON SYSTEM

2. GENERAL PROPERTIES OF THE MICHELSON SYSTEM

This objective of this section is to discuss some general characteristics of the �ow and solutions for
the Michelson system. By general we mean that these results rely on generic properties of vectors
�elds, hence they are applicable to any other ODE systems withholding the same conditions.

More precisely, it will be shown that the solutions exist, are unique and analytic, and that the
�ow is volume preserving and has a time reversing symmetry. Besides giving de�nitions, we
examine how this properties succeed in organizing the dynamics of the system with some indirect
results.

2.1. Existence, Uniqueness & Analyticity of the Solutions. In the upcoming part we
are essentially devoted to prove the Cauchy theorem, which essentially states that if the vector
�eld of an ODE system is analytic, then the solution to any initial value problem exists, is unique
and analytic [9]. Note that this theorem directly applies to the Michelson system, which has an
analytic vector �eld, thus leading to the existence, uniqueness and analyticity of its solutions.

The Cauchy theorem is similar to Picard-Lindelöf theorem. This latter theorem require Lipschitz
continuity in the vector �eld to prove existence an uniqueness of solutions. Note that analyticity
is a stronger condition than Lipschitz continuity (i.e. analyticity implies Lipschitz continuity),
thus the existence and uniqueness of solutions in the Cauchy theorem may be seen as consequence
of the Picard-Lindelöf theorem. Nevertheless, in our proof we are not assuming existence and
uniqueness which are proven independently.

Regarding this theorem, bear in mind that it is the key to section 4 and sets the foundations to
the numerical integration methods for the solutions, which is by the way the basic tool in all the
numerical experiments and simulations performed.

Before getting started, we shall make some comments concerning the outline of the theorems
and proofs that will be seen. For starters, the upcoming theorems are formulated in the case
of autonomous systems for simplicity. Generalizing these results to the non-autonomous case is
not complicated since a non autonomous system can be transformed into an autonomous one
by considering the time (recall that we are considering x to be the time variable) as a variable
of the phase space an the equation dx/dx = 1. Second, the main theorem is proven in two
steps, �rst locally for complex variables, then it is extended globally to maximal solutions for
real variables. This approach was taken to avoid the complications of taking Riemann surfaces,
since the Michelson system is real valued. Finally, point out that the line of proof chosen is the
method of majorants. A shorter alternative proof may be obtained considering Picard operators
acting on Cω spaces with an appropriate metric and applying the �xed point theorem. However,
the line of proof chosen has been successful in generalizing the local version of this theorem in
EDP theory in the known as Cauchy-Kovalevskaya theorem.

Note: The following proofs, require the use of formal power series in several variables. In order
to keep the notation as simple and short as possible, we resort to multi-indices. It may be useful
to check A.1 to keep up with such nomenclature.

3



GENERAL PROPERTIES OF THE MICHELSON SYSTEM

I 2.1.1. De�nition (Majorant). Let f(x), g(x) ∈ C[[x]], with x ∈ Cn, be two formal series. Say
each is given explicitly by

f(x) =
∑
l

alx
l, g(x) =

∑
l

blx
l,

where l ∈ Nn are multi-indices, and a
l
∈ C, b

l
∈ R

+
are the coe�cients. Then, g(x) is said to be

a majorant of f(x), symbolically written as f ≺ g, if

|al| ≤ bl, ∀l ∈ Nn,

where, from now on, | · | stands for the modulus of a complex number.

I 2.1.2. Formula. Let g(x) ∈ C[[x]], with x ∈ Cn, be the following formal series restricted to
the open poly-disk D1(0) = {z ∈ Cn | |zi| < 1, 1 ≤ i ≤ n}, (i.e. the Cartesian product of disks
in the complex space),

g(x) =
∑
l

xl, (2.1)

then, the previous series is equivalent to

g(x) =

(
n∏

m=0

1

(1− xm)

)
. (2.2)

Proof: Majorly the proof consists in expanding the expression (2.1) from the multi-index notation
as follows

g(x) =
∑
l

xl =
∑

(l1,...,ln)

xl11 ... x
ln
n =

∑
l1

xl1

∑
l2

xl2 ...

∑
ln

xln

 .

Note that the series is restricted to D1(0), which imply that for each component xi ∈ D1(0)
and consequently |xi| < 1. Hence, each summation is a convergent geometrical series, and by
inductively replacing the value of each sum 1/(1−xi) starting with the inner parenthesis (2.2) is
obtained. �

I 2.1.3. Formula (Composition of formal series). Let f(y) ∈ C[[y]], with y ∈ Cn, be a formal
series, and y(x) ∈ Cn[[x]], with x ∈ C, another series. Say each is given by

f(y) =
∑
l

aly
l, y(x) =

∑
q

cqx
q,

where al ∈ C and cq ∈ Cn. Then the composition of series (f ◦ y)(x) can be expressed as

f(y) =
∑
q

∑
l

al

∑
q1+...+qn=q

(∑
q1

d(1)q1

)
...

(∑
qn

d(n)qn

)
xq, (2.3)

4



GENERAL PROPERTIES OF THE MICHELSON SYSTEM

where the coe�cients are

d
(j)
0 = c

lj
j,0, d(j)q =

1

q · cj,0

q∑
p=0

(p · lj − q + p) c
lj
j,p d

(j)
q−p. (2.4)

Proof: Directly replacing directly one series into the other gives

f(y) =
∑
l

aly
l =

∑
l

al y
l1
1 ... y

ln
n =

∑
l

al

(∑
q

c1,qx
q

)l1
...

(∑
q

cn,qx
q

)ln
.

Using the formula for the powers of series with one indeterminate for each power gives

f(y) =
∑
l

al

(∑
q1

d(1)q1 x
q1

)
...

(∑
qn

d(1)qn x
qn

)
,

where each power would have coe�cients

d
(j)
0 = c

lj
j,0, d(j)q =

1

q · cj,0

q∑
p=0

(p · lj − q + p) c
lj
j,p d

(j)
q−p.

Thus summing all possible combinations of q1, ..., qn yield

f(y) =
∑
l

al

∑
q

∑
q1+...+qn=q

(∑
q1

d(1)q1

)
...

(∑
qn

d(1)qn

)
xq. �

I 2.1.4. Lemma (Cauchy Estimates). Let f(x) ∈ Cw(Dr(ξ)) be an analytic function de�ned
on Dr(ξ) = Dr1

(ξ1) × ... × Drn
(ξn) ⊆ Cn, an open poly-disk. Suppose f(x) is bounded in the

poly-disk by a real positive constant M , that is supx∈Dr(ξ)
|f(x)| < M . Then all the coe�cients

of the corresponding Taylor series of f(x) in a neighbourhood of ξ, say it is

f(x) =
∑
l

al(x− ξ)l,

are bounded by

|al| ≤
M

rl11 ... r
ln
n

. (2.5)

Proof: From expression (A.5) in the appendix, the coe�cients of the Taylor series are given by

al =
1

l1! ... ln!
∂lxf(ξ). (2.6)

The major theorem of complex analysis asserts that holomorphic functions are analytic and vice-
versa. Hence f(x) is holomorphic and it is possible to consider the Cauchy integral formula in
several variables for a smaller concentric poly-diskDρ(ξ) = Dρ1

(ξ1)× ...×Dρn
(ξ1), where ρi < ri.

Therefore ∀x ∈Dρ(ξ),

f(x) =
1

(2πi)n

˛
∂Dρ1 (ξ1)

· · ·
˛
∂Dρn (ξn)

f(z1, ..., zn)

(z1 − x1)...(zn − xn)
dz1...dzn.

5
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Di�erentiating the previous formula with respect to ∂l
x
, gives the known as Cauchy di�erentiation

formula, for the case of several variables and partial derivatives,

∂lxf(x) =
1

(2πi)n

˛
∂Dρ1 (ξ1)

· · ·
˛
∂Dρn (ξn)

f(z1, ..., zn)

[
∂l1x1

(
1

z1 − x1

)
... ∂lnxn

(
1

zn − xn

)]
dz1...dzn

=
1

(2πi)n

˛
∂Dρ1 (ξ1)

· · ·
˛
∂Dρn (ξn)

l1! ... ln! f(z1, ..., zn)

(z1 − x1)l1+1...(zn − xn)ln+1
dz1...dzn.

(2.7)

Comparing this last formula (2.7) with (2.6), the coe�cients of the Taylor series can be computed
as

al =
1

(2πi)n

˛
∂Dρ1 (ξ1)

· · ·
˛
∂Dρn (ξn)

f(z1, ..., zn)

(z1 − ξ1)l1+1...(zn − ξn)ln+1
dz1...dzn.

Taking modulus in the previous expression for the coe�cients, using the triangle inequality (1),
that |zi − ξi| = ρi (2) and supx∈Dr(ξ)

|f(x)| < M (3), it follows that

|al| =

∣∣∣∣∣ 1

(2πi)n

˛
∂Dρ1 (ξ1)

· · ·
˛
∂Dρn (ξn)

f(z1, ..., zn)

(z1 − ξ1)l1+1...(zn − ξn)ln+1
dz1...dzn

∣∣∣∣∣
(1)

≤
∣∣∣∣ 1

(2πi)n

∣∣∣∣ ˛
∂Dρ1 (ξ1)

· · ·
˛
∂Dρn (ξn)

|f(z1, ..., zn)|
|z1 − ξ1|l1+1...|zn − ξn|ln+1

dz
1
...dz

n

(2)

≤ 1

(2π)n ρl1+1
1 ...ρln+1

n

˛
∂Dρ1 (ξ1)

· · ·
˛
∂Dρn (ξn)

|f(z1, ..., zn)| dz1...dzn

(3)

≤ M

(2π)n ρl1+1
1 ...ρln+1

n

˛
∂Dρ1 (ξ1)

· · ·
˛
∂Dρn (ξn)

dz1...dzn

=
M (2πρ1)...(2πρn)

(2π)n ρl1+1
1 ...ρln+1

n

=
M

ρl11 ...ρ
ln
n

.

The previous inequality is valid for 0 < ρi < ri. Considering the limit ρi → ri yields (2.5). �

I 2.1.5. Lemma. Let dy/dx = f(y) and dy/dx = g(y) be two initial value problems, with same
initial conditions y(0) = 0. Suppose additionally that f(y), g(y) ∈ Cω(U) are analytic in a open
domain U ⊆ Cn and the Taylor series of g have real positive coe�cients. If the corresponding
Taylor series of the vector �elds majorate, this is f ≺ g, then the formal solutions of the systems
(i.e. solutions as a formal series convergent or not) also majorate, yf ≺ yg. Moreover, if yg
converges in some domain V ⊆ Cn, then yf converges too in V.

Proof: First consider the Taylor series expansion of both vector �elds in U,

f(y) =
∑
l

aly
l, g(y) =

∑
l

bly
l. (2.8)

where bk,l ∈ R+ since it is a majorant series. Then generate two general expressions for formal
series,

yf (x) =
∑
q

αqx
q, yg(x) =

∑
q

βqx
q. (2.9)

6
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and compute their derivatives,

y′f (x) =
∑
q

(q + 1)αq+1x
q, y′g(x) =

∑
q

(q + 1)βq+1x
q. (2.10)

The point is to make these two series yf and yg formal solutions of the �rst and second system

receptively. If the series are to be solutions, then each must satisfy that dyf/dx = f(yf ) and

dyg/dx = g(yg). This way it is possible to determine the relation between coe�cients.

The right hand side of the systems are the composition of the vector �elds Taylor series (2.8)
with the formal solutions (2.9), which is a composition of series. Thus using formula (2.3),

f(yf (x)) =
∑
q

∑
l

al

∑
q1+...+qn=q

(∑
q1

c(1)q1

)
...

(∑
qn

c(n)qn

)
xq,

g(yg(x)) =
∑
q

∑
l

bl

∑
q1+...+qn=q

(∑
q1

d(1)q1

)
...

(∑
qn

d(n)qn

)
xq,

where the coe�cients d(j) and e(j) are computed according to (2.4). In the left hand side of the
systems there are the derivatives (2.11). Equalizing each side of the systems gives an equality of
series. Considering that the terms of the same order q in x in either side have to be equal, the
following recursive formula for the coe�cients is obtained

αq+1 =
1

q + 1

∑
l

al

∑
q1+...+qn=q

(∑
q1

c(1)q1

)
...

(∑
qn

c(n)qn

)
,

βq+1 =
1

q + 1

∑
l

b
l

∑
q1+...+qn=q

(∑
q1

d(1)
q1

)
...

(∑
qn

d(n)
qn

)
,

(2.11)

where the �rst terms have to be α0 = 0 and β0 = 0, so that the formal solutions satisfy the
initial condition. This assembly to �nd the formal solutions and recursive the formula it leads
to, is of utmost importance and basic in the proof of the main theorem.

(*) A consequence of (2.11) for the second expression where bk,l were real positive, is that each
coe�cient βk,q is real positive as well. Using induction it is easy to check. For the initial case,

β0 = 0, hence real positive. Then as from (2.10), βq+1 is computed as sums and products of the
previous coe�cients, which are all real positive by induction hypothesis, and the terms bl, which
are also real positive by de�nition, it implies that the coe�cient is real positive.

Now, applying induction in q it will be proven that |αk,q| < βk,q. The �rst case α0 = β0 = 0

is trivial. Taking modulo on the �rst equation in (2.11), using the triangular inequality (2), the
induction hypothesis and the de�nition of majorat |ak,l| < bk,l (3),

7
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|αk,q| =

∣∣∣∣∣ 1

q + 1

∑
l

al

∑
q1+...+qn=q

(∑
q1

c(1)q1

)
...

(∑
qn

c(n)qn

)∣∣∣∣∣
(2)

≤ 1

q + 1

∑
l

|al|
∑

q1+...+qn=q

(∑
q1

|c(1)q1 |

)
...

(∑
qn

|c(n)qn
|

)
(3)

≤ 1

q + 1

∑
l

al

∑
q1+...+qn=q

(∑
q1

|e(1)q1 |

)
...

(∑
qn

|e(n)qn
|

)
(1)
=

1

q + 1

∑
l

al

∑
q1+...+qn=q

(∑
q1

e(1)q1

)
...

(∑
qn

e(n)qn

)
= βk,q.

Thus, we have actually proven that the de�nition of majorant holds, yf ≺ yg. Finally, suppose
yg converges in V, then applying the comparison test for convergence of series it follows that yf
also converges in V, which concludes the last part. �

I 2.1.6. Local Cauchy Theorem. Let U ⊆ Cn be an open subset and f : U→ Cn be a function.
Consider the �rst order autonomous ODE system in the variable y ∈ U, given by

dy

dx
= f(y), x ∈ C.

Given a poly-diskDr(y0) ⊆ U, suppose the vector �eld is analytic, f(y) ∈ Cω(Dr(ξ)), and is also
bounded*, supy∈Dr(y0)

|f(y)| < M , in that poly-disk. Then, given initial conditions y(x0) = y0,
there exists a unique solution to the initial value problem and such solution is analytical on a
disk Dρ(x0), where the radius is

ρ =
min(ri)

(n+ 1)
M.

Proof: Applying the following changes of variables

yk −→ y0,k + rkyk,

f −→Mf ,

x −→ x0 +M−1(min ri)x,

the parameters in the theorem are set to y0 = 0, r = 1, M = 1 and x0 = 0. Therefore, the
proof is completed by �nding an ODE system whose vector �eld majorates f(x) and has analytic
solutions that can be solved explicitly, for these particular parameters, D1(0) and y(0) = 0.
Then Lemma 2.1.5 concludes the demonstration.

* This assumption is made for commodity but is actually super�uous. If f is globally analytic in
larger domain containing the poly-disk then f is bounded in cl(Dr(ξ)) which is a compact. In
case such larger domain does not exist we would just take a slightly smaller poly-disk and apply
the same reasoning.
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GENERAL PROPERTIES OF THE MICHELSON SYSTEM

Consider the ODE system dy/dx = g(y) with vector �eld g(y) de�ned on D
1
(0), which consists

of n copies of (2.2) from formula 2.1.2, and initial conditions y(0) = 0, namely

y′k =
n∏
k

(1− yk)
−1, yk(0) = 0, 1 ≤ k ≤ n. (2.12)

In formula 2.1.2 it was shown that this vector �eld is analytic in D1(0), actually its Taylor series
are n copies of (2.1). According to Lemma 2.1.4, al, the coe�cients of the Taylor series of f(y),
de�ned on D1(0), are bounded by

|ak,l| ≤ 1, 1 ≤ k ≤ n.

Since coe�cients of the Taylor series of g(y) are all 1, it follows that f ≺ g. Now, it only remains
to solve explicitly the initial value problem for (2.12) and �nd the radius of convergence for the
solution.

All equations of (2.12) are decoupled and the same, which means that all component of the
solutions yk are the same, hence the initial value problem is analogous to

y′k = (1− yk)
−n, yk(0) = 0, 1 ≤ k ≤ n.

The previous initial value problem is solvable explicitly by separation of variables, and has solution

ˆ yk

0
(1− yk)

ndyk =

ˆ x

0
dx ⇒ yk = 1− [1− (n+ 1)x]

1
n+1 . (2.13)

At x0 = 0, the derivatives of each component of the (2.13) are

yk(0) = 1− [1− (n+ 1)x]
1

n+1

∣∣∣
x=0

= 0,

y′k(0) = [1− (n+ 1)x]
1

n+1
−1
∣∣∣
x=0

= 1

y′′k(0) = [(n+ 1)− 1] · [1− (n+ 1)x]
1

n+1
−2
∣∣∣
x=0

= [(n+ 1)− 1]

y′′′k (0) = [(n+ 1)− 1][2(n+ 1)− 1] · [1− (n+ 1)x]
1

n+1
−3
∣∣∣
x=0

= [(n+ 1)− 1][2(n+ 1)− 1]

...

y
(p)
k (0) =

p−1∏
j=1

(j[n+ 1]− 1)

...

Then, the coe�cients of the Taylor series of (2.13), in a neighbourhood of x0 = 0, are n copies of
the previous derivatives divided by the corresponding factorial. Hence, the radius of convergence
of each each component of the Taylor series of (2.13) is ρ = 1/(n+ 1).

ρ−1 = limp→∞

 1

p!

p−1∏
j=1

(j[n+ 1]− 1)

 1
p

= limp→∞

 1

p!

p−1∏
j=1

j[n+ 1]

 1
p

= limp→∞

(
1

p!
p![n+ 1]p)

) 1
p

.
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Calling upon Lemma 2.1.6 the formal solution (as a formal series) of the original initial value
problem converges to a solution on Dρ(0). This proves the existence of an analytic solution. By
undoing the change or variables the ρ in the theorem is obtained.

Uniqueness of this solution is a consequence of the recursive formula (2.10), which give a unique
way of computing the coe�cients, and the Taylor theorem, which states that an analytic function
is univocally determined by its Taylor series. �

I 2.1.7. De�nition (Maximal Solutions). It has already been proven that there exist a unique
analytical solution to an initial value problem of a system with analytical vector �eld. At this
point we consider our variables to be in R. In order to extend these results the following de�nition
is required.

A solution of an initial value problem ϕ : I ⊆ R → Rn is a maximal solution if for any other
solution ψ : J → Rn such that I ⊆ J and ψ|I = ϕ, then I = J and consequently ϕ = ψ.

I 2.1.8. Global Cauchy Theorem. Let Ω ⊆ Rn be an open subset and f : Ω → Rn analytic,
f ∈ Cω(Ω). Consider the �rst order autonomous ODE system in the variable y ∈ Cn, given by

dy

dx
= f(y), x ∈ R.

Then for a given initial value problem y(x0) = y0, there exists a unique maximal solution which
is analytic in Ω.

Proof: The proof of this theorem is threefold. To prove the existence of a maximal solution
consider the union of all the solutions for that same initial value problem. Since locally there
exist local solutions this union is not the empty set and the for resulting curve De�nition 2.1.7
holds.

Uniqueness and analyticity is proven in the same way. Suppose there is a time x1 for which the
solution splits into other solutions (or in which the solution is no longer analytic), then applying
the local theorem at that point we reach a contradiction. �

2.2. Volume Preserving Flow. Roughly speaking a system is volume preserving if any volume
under the action of the �ow remains constant. Note in many articles, such as [7], the �ow is
treated as family of operators {ϕx : Ω → Ω |x ∈ R} mapping points of the phase space into
itself. In this section we are not taking this approach. However, this point of view of the �ow
is quite convenient since most of the theory regarding measure preserving applications is focused
on maps. The subject that study these measure preserving applications is ergodic theory.

Volume preserving �ows are of signi�cant important in physics mainly in modelling of incom-
pressible �uid dynamics.
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Most of the discussion in this section is aimed to prove the Liouville theorem which establishes
the relation between measure preserving �ows and divergence free vector �elds. It is this theorem
which allow us to assert that the Michelson system, which has divf = 0, preserves volume.

Regarding applications we will only be commenting on the following simple result of systems
bearing this property. The result is that the sum of the eigenvalues of the linearised system is zero,
which is quite trivial (see the last part of De�nition 2.2.1). A consequence of this fact the �xed
points, whose stability is studies linearising the system, can not be neither completely attracting
nor completely repelling and the attracting and repelling directions must compensate. This also
imply that, since the stability of periodic orbits is given by the stability of their corresponding
�xed points in the Poincaré map, and the Poincaré map of a volume preserving �ow is area
preserving, then there are no completely attracting or repelling periodic orbits either.

I 2.2.1. De�nition. Consider an autonomous ODE system with vector �eld f : Ω→ Rn, in which
Ω ⊆ Rn is the phase space. The �ow is measure preserving if for any �xed time x, ϕx : Ω → Ω
where ϕx(y) = ϕ(x,y) and any given D relative compact in Ω, then V (D) = V (ϕx(D)), where
V is a de�ned as

V (D) =

ˆ
V

dy

I 2.2.2. De�nition. An autonomous ODE system is said to be divergence free if the vector �eld
satis�es divf = 0. For any function the de�nition of gradient implies that divf = tr(Dyf),

where tr(·) is the trace of a matrix. Consequently since the trace of a matrix is the sum of its
eigenvalues, the sum of eigenvalues of the linearisation of a divergence free system is zero.

I 2.2.3. De�nition. Given a linear ODE system y′ = Axy in Rn and a base {ei}1≤i≤n of Rn,
the solutions of the system form a vector space and the solutions ϕi(x) for initial conditions
y(0) = (ei) for a base of such vector space. (For a proof of this fact see [13]). The Wronskian of
the linear system is de�ned as

W (x) = det(ϕ1(x)|..., |ϕn(x)),

the determinant of the matrix whose columns a base of solutions of the linear system. [1]

I 2.2.4. Abel's Identity or Liouville's Formula. The Wronskian of linear ODE system with vector
�eld A(x), is a solution of the di�erential equation

Ẇ = tr(A(x))W, (2.14)

where tr(A(x)) stands for the trace. Integrating (2.13), W (x) = exp
(´ x

x0
tr(A(x̂)dx̂

)
W (x0). [13]

Proof: The proof is obtained deriving with respect to x the de�nition of Wronskian

W (x)′ =
d

dx
det(ϕ1(x)|...|ϕn(x)).
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Using Leibniz formula for the derivative of a determinant gives

W (x)′ =
n∑
i

det(ϕ1(x)|...|ϕ′i(x)|...|ϕn(x)).

Since each ϕi(x) are solutions they must satisfy ϕ′i(x) =
∑n

j ai,j(x)ϕi(x), where ai,j(x) are the

coe�cients of A(x). Hence

W (x)′ =

n∑
i

det(ϕ1(x)|...|
n∑
j

ai,j(x)ϕi(x)|...|ϕn(x)) =

n∑
i

ai,i(x) det(ϕ1(x)|...|ϕi(x)|...|ϕn(x)),

where this is already (2.14). �

I 2.2.5. Liouville Theorem. Let f : Ω → Rn, with Ω ⊆ Rn and f ∈ C1, be a vector �eld of an
autonomous ODE system. Say D ∈ Ω is a bounded subset, and V (D) denotes its volume. Then,

d

dx
V (Dx) =

ˆ
Dx

divf(y)dy, (2.15)

where, Dx = ϕx(D) = {ϕx(ŷ) | ŷ ∈ D} is the image of D under the action of a given �ow.

Proof. Considering the de�nition of the the volume and changing variables we obtain

V (Dx) =

ˆ
Dx

dy =

ˆ
ϕx(D)

dy =

ˆ
D

∣∣∣det(Dyϕx(ŷ))
∣∣∣ dŷ.

Note that the term det(Dyϕx(ŷ)) which appear due to the change of variables in nothing else

but the Wronskian W of the linearised system dv/dx = Dyf(y) v. Di�erentiating the previous

expression with resp. to x, using Liouville formula (*) and undoing the change of variables (**),

d

dx
V (Dx) =

d

dx

ˆ
D
|W | dŷ =

ˆ
D
|Ẇ | dŷ

∗
=

ˆ
D
|tr(Dyf(y))| |W | dŷ

∗∗
=

ˆ
Dx

|tr(Dyf(y))| dy. �

I 2.2.6. Corollary. A �ow is volume preserving if and only if it is divergence free (∇f = 0). �

2.3. Time Reversible Flow. First of all, we give the following simple example on what a
system with a time reversing symmetry would be. Imagine a �lm of pendulum swinging and then
play the �lm backward in time. In doing so the motion observed is another plausible movement
(another orbit in the phase space) with the only di�erence that the initial velocity is of opposite
sign. Hence the transformation of the momentum p → −p is a time reversing symmetry for the
system. Needless to say the importance of this property in physics where these symmetries arise
in many contexts such as classical mechanics, quantum mechanics or thermodynamics. [7]
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The following discussion is aimed to introduce the formal de�nition of time reversing symmetries
and symmetric orbits, and some results concerning them. Bear in mind that the development
of this theory is taken from the prespective of autonomous systems. Still, these de�nitions and
results also exist for maps and non autonomous systems. For such cases one should refer to [7].

In point 2.3.7 a time reversing symmetry for the Michelson system is given. The fact that the
Michelson system has such symmetry is not surprising in itself. It is well known that in many
wave propagation PDEs (as our in case), the equations governing the steady state solutions have
time reversible symmetries.

For a complete discussion on time reversing symmetries and the de�nitions for maps and non
autonomous systems refert to [7].

I 2.3.1. De�nition (Reversing Symmetry). Let dy/dx = f(y) be an autonomous ODE system,
where f : Ω → Rn is the vector �eld and Ω its phase space. An invertible C1 map, R : Ω → Ω
is a reversing symmetry if for any solution of the system ϕ(x;y0), then R ◦ ϕ(−x;y0) is also a
solution. In the particular case R2 = Id the reversing symmetry is called an involution.

Notation: The set of all the �xed points of R is denoted as Fix(R) = {y ∈ Ω | R(y) = y}. [7]

I 2.3.2. De�nition (R-Symmetric Orbits). Let o(y) = {ϕ(x;y) | x ∈ I} be an orbit a certain
autonomous ODE system with a reversing symmetry R, where I is the maximal domain in which
the solution is de�ned. Then, the orbit is R-symmetric if it is invariant under the action of R,
i.e. R(o(y)) = o(y). [7]

Observations: Note that given an a non R-symmetric orbit, by applying the reversing symmetry
we obtain a second orbit with the same behaviour for negative time. This means that �nding a
non R-symmetric equilibrium point yield a second equilibrium point, �nding a non R-symmetric
periodic orbit yield a second periodic orbit of the same period, and so on.

An interesting case is when the the R-symmetric orbits are homoclinic or heteroclinic. Recall
that these orbits are those which lay in the intersections of the stable and unstable manifolds of
hyperbolic �xed points, being homoclinic if the �xed point is the same and heteroclinic otherwise.
Formally, given �xed points ŷ1 and ŷ2, the solutions ϕ(x;y0) such that satisfy

lim
x→∞

ϕ(x;y0) = ŷ1, lim
x→−∞

ϕ(x;y0) = ŷ2,

are called homoclinic if ŷ1 = ŷ2 and heteroclinic if ŷ1 6= ŷ2.

Intuitively, we can assert that the presence of a R-symmetric �xed point imply the possibility
of a R-symmetric homoclinic orbit but not a R-symmetric heteroclinic orbit connecting that
point to another �xed point. Moreover, the presence of a pair of R-symmetric �xed points imply
the possibility of a R-symmetric heteroclinic orbit connecting them but not of R-symmetric
homoclinic orbits.
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Under some conditions, the presence of R-symmetric homoclinic and heteroclinic orbits imply the
existence of certain types of global bifurcations. In fact, this occurs in the case of the Michelson
system which actually has R-symmetric heteroclinic orbits for all c > 0.

I 2.3.3. Lemma (Equivalent De�nition of Revering Symmetry). The previous de�nition is not
practical to check given a system. Under the same assumptions as in de�nition 2.3.1, an invertible
C1 map R : Ω→ Ω is a reversing symmetry if and only if,

(DyR)(y) · f(y) = −f ◦R(y).

Beware that the left hand side is an inner product while the right-hand side is the composition.

Proof: Assume ϕ(x;y0) is a solution, then in order to be R ◦ϕ(−x;y0) a solution it must satisfy
the system, namely,

d

dx

(
R ◦ ϕ(−x;y0)

)
= f

(
R ◦ ϕ(−x;y0)

)
.

Using the chain rule

DyR
(
ϕ(−x;y0)

)
·
(

dϕ(−x;y0)

d(−x)

)(
d(−x)

dx

)
= f ◦R(ϕ(−x;y0)),

−DyR
(
ϕ(−x;y0)

)
· f
(
ϕ(−x;y0)

)
= f ◦R(ϕ(−x;y0)).

Thus we have proven that (DyR)(y) · f(y) = −f ◦R(y). �

I 2.3.4. Theorem (Characterization of R-symmetric orbits). Given an orbit o(y) of the �ow of
an autonomous ODE system with reversing symmetry R. Then, if the orbit is not a �xed point

• The orbit is R-symmetric if and only if o(y) intersects Fix(R), in which case the orbit
intersects Fix(R) in no more than two points.

• The orbit is an R-symmetric periodic orbit if and only if it intersects Fix(R) in precisely
two points.

Observation: This theorem gives a way to �nd R-symmetric periodic orbits and in particular it
will be used to design methods to track R-symmetric periodic orbits.

Proof: First it will be proven that an orbit is R-symmetric if an only if it intersects Fix(R).

Assume that o(y0) intersects Fix(R) in y0 (since the system is autonomous we can move the
initial condition so that it coincides with the intersection), then the orbit is R-symmetric. This
comes from the fact that R(o(y0)) = {ϕ(x;R(y0)) | x ∈ I ⊆ R}, and since R(y0) = y0 as it is a
point of Fix(R), the de�nition of R-symmetry holds.
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Conversely suppose the orbit o(y
0
) is R-symmetric, then o(y

0
)∩Fix(R) 6= ∅. This is because the

solutions are the same under the symmetry, thus ϕ(x;y0) = ϕ(τ − x;R(y0)) this solutions are
the same except for the di�erent parametrizations of time x. Then in the time τ/2 lays a point
invariant under R.

For the next part we will use that the solutions of autonomous ODE systems, are either �xed
points, close orbits, or have no self intersections. [1]

To prove that the R-symmetric orbits only intersect at maximum twice, suppose that a given
R-symmetric orbit, ϕ(x;y0) with x ∈ I, intersect Fix(R) in minimum three points y0, y1, y2 in
times 0, x1, x2 respectively, with x1, x2 > 0. Applying the symmetry R to the solution ϕ and the
fact that it is R-symmetric gives that the solution also intersect y1 and y2 in −x1 and −x2. This
imply that the solution that has self intersections, which is a not valid in autonomous systems,
thus yields contradiction.

Proving, that if the R-symmetric orbit intersects twice Fix(R) then the orbit is periodic, is done
in a similar way. We should assume that the orbit intersects in Fix(R) in time 0 and x1, and use
the symmetry to see that it also intersects in time −x1. Therefore the only acceptable behaviour
for an autonomous system is if the orbit is periodic. �

I 2.3.5. A Reversing Symmetry for the Michelson System. The following C1 an invertible linear
map R : R3 → R3, de�ned as

(y1, y2, y3) −→ (−y1, y2,−y3),

is a time reversing symmetry for the Michelson system. In particular, R is an involution and its
invariant set Fix(R) is the y2 axis.

Veri�cation: The analogous de�nition in lemma 2.3.3. holds, hence it is a reversing symmetry.

(DyR) · f(y) =

−1 0 0
0 1 0
0 0 −1




y2
y3

c2 − y2 −
y21
2

 =


−y2
y3

−c2 + y2 +
y21
2

 ,

−f ◦R(y) = −f

−y1y2
−y3

 = −


y2
−y3

c2 − y2 −
(−y1)

2

2

 =


−y2
y3

−c2 + y2 +
y21
2

 . �
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3. DYNAMICS OF THE MICHELSON SYSTEM

In this section we will put aside the general properties and focus on giving proofs concerning
only the dynamics of the Michelson system. In general, dynamical system as a subject makes
a high level use of other branches of mathematics such as algebra, topology, number theory
or probability to give insight of the systems in question. The approach taken in this work is
from an undergraduate standpoint and perhaps the results lacks the relevance of other more
cutting edge results. Nonetheless the analysis performed give a good small sample of the kind of
demonstrations preformed in dynamical systems.

There are three distinct topics which comprise section. The �rst one is the local analysis of
equilibrium points, in which we include the study of the stability, local bifurcations with respect
to the parameter c2, and the invariant manifolds. In the second topic, we will be proving by means
of index theory that the �xed points are not isolated for c2 > 0, which imply that there is always
at least one heteroclinic or homoclinic orbit. Finally, there is a third topic where employing a
perturbation theorem it is shown that for small values of c2 there exists a 2π-periodic orbit.

Recall that the Michelson system is given by
y′1 = y2,
y′2 = y3,

y′3 = c2 − y2 −
y2
1

2

where y′i = dyi/dx and the parameter c ≥ 0.

3.1. Equilibrium Points Analysis. As stated before the point of this subsection is to study
the equilibrium points of the Michelson system. Equilibrium points (often called critical or �xed
points) are points of the phase space which are invariant under the �ow. This imply that the phase
velocity at such points is zero and therefore equilibrium points are those for which f(y) = 0.
Hence, in the case of the Michelson system the equilibrium points are the solutions of

y2 = 0,
y3 = 0,

c2 − y2 −
y21
2

= 0.

⇒


y1 = 0,
y2 = 0,

y0 = ±
√

2c.

Depending on the value of the parameter c we may have one or two equilibrium points. For c 6= 0
there are two such points which we shall denote by P+ = (

√
2c, 0, 0) and P+ = (−

√
2c, 0, 0). On

the other hand, when c = 0 (the degenerate case) there is only one equilibrium point at the origin
which we shall denote by P0 = (0, 0, 0).

See that both P+ and P− are related by the symmetry of the Michelson system mentioned in
point 2.3.5. and the degenerate case P0 is an R-symmetric �xed point.

Note as well that for c < 0, the dynamics and the equilibrium points are essentially the same.
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I 3.1.1. Stability of Equilibrium Points. The �rst approach to study the nature of an equilibrium
point can be determined by considering the linearised system at such point. The linearisation
may give a local approximation of the dynamics of the system in a neighbourhood of the equi-
librium point. This comes from the fact that expanding the vector�eld in a neighbourhood of an
equilibrium point ŷ gives

ẏ = ���f(ŷ) +Dyf(ŷ)(y − ŷ) +���O(2).

To keep for the moment things as general as possible we will denote by ŷ = (ŷ1, ŷ2, ŷ3) any
equilibrium point of the Michelson system. Thus, to obtain the linearised system we are required
to compute the di�erential Dyf(ŷ) which is the Jacobian matrix of the vector �eld, hence from

now on J(ŷ) for simplicity,

J(y) =

 0 1 0
0 0 1
−ŷ1 −1 0

 .

The stability of the linearised system is found by studying the eigenvalues of the matrix vector
�eld, i.e. characteristic equation of the Jacobian system at ŷ,

det (J(ŷ)− zId) =

∣∣∣∣∣∣
−z 1 0
0 −z 1
−ŷ1 −1 −z

∣∣∣∣∣∣ = 0 ⇔ z3 + z + ŷ1 = 0. (3.1)

To discuss the form of the roots of the characteristic equation we will use the concepts explained
in Appendix B.

Since the discriminant of (3.1) is ∆ = −4− 27ŷ21, it follows that ∆ is always strictly negative and
(3.1) always has a real root, and two complex conjugated roots for any equilibrium point. Say
for a given equilibrium point ŷ these roots are

λ, µ = a+ ib, ν = a− ib, with λ, a, b ∈ R.

Using Vieta's formula and imposing that the roots have the previous form, it is possible to express
the two complex roots in terms of the real one,

λ+ µ+ ν = 0 ⇒ λ+ 2a = 0 ⇒ a = −λ
2
,

λµ+ µν + νλ = 1 ⇒ 2λa+ a2 + b2 = 1 ⇒ b =

√
1 +

3λ2

4
,

λµν = −ŷ1 ⇒ λ(a2 + b2) = ŷ1 ⇒ λ3 + λ+ ŷ1 = 0.

Obviously the third equation is super�uous since λ is a root of (3.1). Nevertheless, from the other
two we may write the roots of (3.1) as

λ, µ = −λ
2

+ i

√
1 +

3λ2

4
, ν = −λ

2
− i
√

1 +
3λ2

4
. (3.2)
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Recall that an equilibrium point is hyperbolic if non of the eigenvalues of the linearised system
have real part zero, and elliptic or parabolic otherwise. From (3.2), it follows the only non
hyperbolic equilibrium point of the Michelson system is P0 when c = 0 and in such case the
eigenvalues are 0 which yield a parabolic part and ,+i,−i which yield an elliptic part. Conversely,
for c 6= 0 the equilibrium points P+ and P− are hyperbolic. At this point we will study both
cases separately.
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Figure 1: Diagram showing the possible real an imaginary parts of the eigenvalues with respect
to the parameter c computed using a Newto method in (3.1) and using (3.2).

In the case of the hyperbolic equilibrium points, the Harman-Grobman theorem states that the
linearised system give an really good approximation of the stability of such points. This means
that the stability of the linearised system is the same as the original in a neighbourhood of
the equilibrium point. More precisely, what the theorem says is that in a neighbourhood of an
hyperbolic equilibrium point the �ow can be seen as an slightly deformed version of �ow for the
linearised system.

Next we state the theorem which will not be proved. This theorem and its proof can be found
in [10] in section 9.3.

I 3.1.2. Hartman-Grobman Theorem. Suppose f ∈ C1 is a vector �eld of a continuous ODE
system that has an equilibrium point in 0. Denote by ϕ(x,y) the corresponding �ow and J the
Jacobian of the matrix of the vector �eld at 0. Then there is an homeomorphism h(y) = y+g(y)
with g bounded such that the �ow is topologically conjugated to the linearised system

h ◦ exJ = ϕ ◦ h,

in a su�ciently small neighbourhood of 0.
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I 3.1.3. Stability of Hyperbolic Equilibrium Points: This case correspond to values of c > 0.

We have already seen that in this case there are two equilibrium points given by P+ = (
√

2c, 0, 0)

and P− = (−
√

2c, 0, 0). Using the Hartman-Grobman we will determine the stability of the
equilibrium points by determining the stability of the linearised system.

From now on we shall denote by λ+, µ+, ν+ and λ−, µ−, ν− the set of eigenvalue of P+ and P−
respectively.

For P+, replacing the real eigenvalue λ+ into (3.1) gives λ3+ +λ+ = −
√

2c, thus since c > 0 yields

λ+ < 0. Similarly, for P− we have λ3− + λ− =
√

2c hence since c > 0 yields λ− > 0. From (3.2)
we can summarize

• P+ has λ+ < 0, Re(µ+) > 0, Re(ν+) > 0, Im(µ+) > 0, Im(ν+) < 0.

• P− has λ− > 0, Re(µ−) < 0, Re(ν−) < 0, Im(µ−) > 0, Im(ν−) < 0.

Then according to the classi�cation of hyperbolic linear systems,

• The two equilibrium points are saddle-focus type. Furthermore, the orbits close to P+ spiral
outwards in positive time and the orbits close to P− spirals inwards.

Elliptic Equilibrium Points: This case correspond to c = 0. In general, the center manifold
theorem asserts that in equilibrium points the eigenvalues with positive real part spawn a unique
unstable manifold, the eigenvalues with negative real part spawn a unique stable manifold and
the eigenvalues with zero real part spawn center manifold which may not be unique.

Since for P0, there are three real part eigenvalues 0, +i, −i, there are many possibilities for this
invariant manifolds. In the following part we will try to shed light on which type on manifold is.

One should expect the center manifolds, at least locally, to be tangent to the eigenvectors which
are (1, 0, 0), (1, 0,−1) and (0, 1, 0). Thus we have performed the following numerical simulation
which is displayed in �gure 2. Some points were taken in the direction of the eigenvectors at a
distance close enough to the P0 (of 10−7) and then they were integrated numerically with the
Taylor method developed in the next section. (See Figure 2.)

It seems that near P0 there is a family of periodic orbits laying in the plane spawned by the
eigenvectors (1, 0,−1) and (0, 1, 0) which correspond eigenvalues i, −i and there is a semi-stable
1D manifold spawned by the eigenvector (1, 0, 0) which correspond to 0. Nevertheless, this is no
rigorous proof of behaviour of the system, but it will motivate the following analysis.

The idea is to apply a cylindrical-type change of variables to render the clear the existence of
periodic orbits.

19



DYNAMICS OF THE MICHELSON SYSTEM

-2e-007
-1.5e-007

-1e-007
-5e-008

 0
 5e-008

 1e-007
 1.5e-007

 2e-007-1.5e-008

-1e-008

-5e-009

 0

 5e-009

 1e-008

 1.5e-008

-1.5e-008

-1e-008

-5e-009

 0

 5e-009

 1e-008

 1.5e-008

y3

W
c
(P0)

y1

y2

y3

Figure 2: Orbits integrated numerically from points at a distance 10−7 from P0 in the directions
of the eigenvectors, for c = 0.

This change of coordinates will be carried out in two steps. The �rst is the following change of
variables is (y1, y2, y3)→ (y1, y2, z = y1 + y3). In the new coordinates the ODE system is

ẏ1 = y2,
ẏ2 = z − y1,
ż = −1

2
y21.

What this linear change of variables, does is to �x the Lyapunov family in the plane z = 0, for
the new coordinates. Obviously the transformed system still has an equilibrium point in 0, with
the same eigenvalues 0,+i,-i, but the respective eigenvectors now are (1,0,1), (1,0,0) and (0,1,0).

Finally make the change of variables to the cylindrical variables (y1, y2, z),−→ (r cos θ, r sin θ, z)
ṙ cos θ − r sin θ θ̇ = r sin θ,

ṙ sin θ + r cos θ θ̇ = z − r cos θ,

ż = −1

2
r2 cos2 θ.

⇔

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

ṙθ̇
ż

 =

 r sin θ
z − r cos θ

−1

2
r2 cos2 θ


Then multiplying by the inverse of the left matrix, the system in the new coordinates is

ṙθ̇
ż

 =

 cos θ sin θ 0
−r−1 sin θ r−1 cos θ 0

0 0 1


 r sin θ
z − r cos θ

−1

2
r2 cos2 θ

 ⇔


ṙ = z sin θ,

θ̇ = r−1z cos θ − 1,

ż = −1

2
r2 cos2 θ.
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Hence, in a neighbourhood of P
0
which imply r << 1, for the plane z = 0, the system is then

(ṙ, θ̇, ż) = (0,−1, 0) for which all solutions are periodic. Thus we locally it is likely that there
may be family of periodic orbits. A complete proof should use the Lyapunov center theorem.

Next we will verify the stability of the 1D semi stable manifold which is tangent to the (1,0,0)
eigenvector. This will be done by means of the graph transform method. Assume that the
invariant manifold W can be written as graph G of y1 and it is analytic so that

W :

{
y2 = g2(y1) = g2,2y

2
1 + g2,3y

3
1 + g2,4y

4
1 + ...

y3 = g3(y1) = g2,2y
2
1 + g2,3y

3
1 + g2,4y

4
1 + ...

where the expansions starts at the terms of order y21, because it must contain (0, 0, 0) and be
tangent to (1,0,0). Since W is an invariant manifold it must satisfy an invariance system, which
is obtained by inserting G into the system of equations for c = 0.

ẏ1 = g2(y1),
ġ2(y1) = g3(y1),

ġ3(y1) = −g2(y1)−
1

2
y21.

⇒


ẏ1 = g2(y1),
g′2(y1)ẏ1 = g3(y1),

g′3(y1)ẏ1 = −g2(y1)−
1

2
y21.

⇒
{
g′2(y1)g2(y1) = g3(y1),
g′3(y1)g2(y1) = −g2(y1)−

1
2y

2
1,

where g′i(y0) is the derivative with respect to y0.

At this point the invariance system should be solved at each order in y1 to obtain the solutions
of the graph. However, in this particular case, by deriving the �rst equation an replacing g′3(y1)
into the second equation, the system can be reduced to the one equation(

(g′2(y1))
2 + g2(y1)g

′′
2(y1)

)
g2(y1) = −g2(y1)−

1

2
y21

It is enough to compute the coe�cients for the lower order which is order of y21. Then

g2(y1) = −1

2
y21 + o(3)

g3(y1) = +
1

2
y31 + o(4)

Recall that ẏ1 = g2(y1), so consequently ẏ1 = −1
2y

2
1 < 0 is always negative. This implies that on

the invariant manifold, which is tangent to (1, 0, 0), the coordinate y1 always point towards the
same direction and the manifold is semi-stable.

I 3.1.4. Invariant Manifolds for the Hyperbolic Case. The invariant manifolds unfolding from
the equilibrium point P0 have already been fairly discussed. From here on we will be concerned
with the invariant manifolds spawned by the hyperbolic equilibrium points.

The stable manifold theorem states that given an hyperbolic equilibrium ŷ point with k negative
real part eigenvalues for J(ŷ), then there exists a k-dimensional stable manifold W s tangent to
the stable subspace Es of the linearised system at ŷ. Analogously, the unstable manifold theorem
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states that given an hyperbolic equilibrium ŷ point with n− k positive real part eigenvalues for
J(ŷ), then there exists a (n − k)-dimensional unstable manifold W u tangent to the unstable
subspace Eu of the linearised system at ŷ.

Recall that a manifold W is invariant if ϕ(x,W ) ⊆ W , ∀x ∈ R. In particular, an invariant
manifold is stable if ∀y ∈ W then ϕ(x;y) → ŷ when x → +∞ and conversely it is unstable if
∀y ∈W then ϕ(x;y)→ ŷ when x→ −∞.

The previous theorems established a way to obtain a linear approximation of the stable and
unstable manifolds at �rst order in a neighbourhood of the equilibrium point, as Es and Eu.
(From now on, since Es and Eu are local approximations, they will be denoted by W s,loc and
W u,loc.) Therefore, to obtain a �rst order estimate of the invariant manifolds for a given c 6= 0
we need the eigenvectors of the linearisation at P+ and P−. Similarly to how the eigenvectors

were expressed in terms of the real one, using (3.2), it follows that

ker
(
J±(P±)− λ±I

)
=
〈(

1, λ±, λ
2
±

)〉
,

ker
(
J±(P±)− µ±I

)
=
〈

(1, µ±, µ
2
±)
〉

(3.2)
=

〈(
1,−

λ±
2
,−1−

λ2±
2

)
+ i

0,

√
1 +

3λ2±
4
,−λ±

√
1 +

3λ2±
4

〉 ,
ker

(
J±(P±)− ν±I

)
=
〈

(1, ν±, ν
2
±)
〉

(3.2)
=

〈(
1,−

λ±
2
,−1−

λ2±
2

)
+ i

0,−

√
1 +

3λ2±
4
, λ±

√
1 +

3λ2±
4

〉 .

Hence, (1, λ±, λ
2
±) is an eigenvector for λ± and (1,−λ±,−1 − λ2±/2), (0, 1,−λ±) are a pair of

eigenvectors for µ± and ν±. At this point, we should point out that expressing the eigenvectors
and eigenvectors in terms of real roots has some utility besides give a somewhat close expression.
Following this part and in order to check these results the invariant manifolds will be computed
numerically. To this end the computation of the eigenvectors is required which in principle would
imply solving three linear systems, two of them with complex entries. Using this approach the
computations are simpler since using a Newton-Raphson method in (3.1) to obtain λ is enough
to obtain the eigenvectors.

Summarizing the local invariant manifolds for P+ and P− and c > 0 which are generated by the
eigenvectors of the linearised system, are

W u,loc
P+

: (y1, y2, y3) = (
√

2c, 0, 0) +
〈

(1, 0,−1− λ2+), (0, 1,−λ+)
〉
,

W s,loc
P+

: (y1, y2, y3) = (
√

2c, 0, 0) +
〈

(1, λ+, λ
2
+)
〉
,

W u,loc
P−

: (y1, y2, y3) = (−
√

2c, 0, 0) +
〈

(1, λ−, λ
2
−)
〉
,

W s,loc
P−

: (y1, y2, y3) = (−
√

2c, 0, 0) +
〈

(1, 0,−1− λ2−), (0, 1,−λ−)
〉
.

(3.3)

Since W u,loc
P+

and W s,loc
P−

are planes it is useful to express them in implicit form∣∣∣∣∣∣
(y1 ∓

√
2c) y2 y3

1 0 −(1 + λ2±)

0 1 −λ±

∣∣∣∣∣∣ = 0 ⇒
W u,loc
P+

:
(

1 + λ2+

)
(y1 −

√
2c) + λ+y2 + y3 = 0,

W s,loc
P−

:
(

1 + λ2−

)
(y1 +

√
2c) + λ−y2 + y3 = 0.
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A Higher Order Approximation of Invariant Manifolds: The point of this part is to illustrate the
graph transformation method which allow us to compute approximations of invariant manifolds
up to any order. This method does not come new since we have already used it to determine the
parabolic manifold in the hyperbolic case. Since the stable and the unstable manifold theorem
states that the manifolds in question are as many times di�erentiable as the vector �eld, in this
case it is safe to assume that the manifold can approximated as an analytic graph of the some of
variables. Then the coe�cients are determined by imposing invariance in the system.

This method will be illustrated with the manifold W u
P+

and we will see that at �rst order the

previous local approximation is recovered. First, the following translation y1 → y1−
√

2c is made
so that the �xed point P+ relocates to the origin. (Note that the invariant manifold found is also
translated with respect to the original system). After the translation the system renders

ẏ1 = y2,
ẏ2 = y3,

ẏ
3

= −y
2

+
√

2c y
1
−
y21
2
.

Lets assume that W u
P+

can be expressed as a graph of y1 and y2, namely

W u
P+

: y3 = g(y1, y2) = a1,0y1 + a0,1y2 + a2,0y
2
1 + a1,1y1y2 + a0,2y

2
2 + o(3),

where the term a0,0 = 0 since the P+ which is now in the origin is in the manifold. The invariance
system is obtained replacing the graph into the ODE system because the manifold is invariant,
ẏ1 = y2,
ẏ2 = g(y1, y2),

ġ(y1, y2) = −y2 +
√

2c y1 −
y21
2
.

⇒


ẏ1 = y2,
ẏ2 = g(y1, y2),
∂g(y1, y2)

∂y1
y2 +

∂g(y1, y2)

∂y2
g(y1, y2) = −y2 +

√
2c y1 −

y21
2
.

Then the system is solved for each order to obtain the coe�cients. This means equalizing the
terms with same power of y1 and y2 at each side of the last equation.

At �rst order,

o(y1) : a1,0a0,1 =
√

2c,

o(y2) : a1,0 + a20,1 = 1.

It is easy to see that multiplying the second equation by a0,1 and replacing the �rst one into it

gives a30,1 + a0,1−
√

2c = 0, which is the characteristic equation (3.1). Then since the coe�cients

are real a0,1 = −λ+, and from the original second equation a1,0 = −1− λ2+. Hence

g(y
1
, y

2
) = −λy

1
− (1 + λ2

+
)y

1
+ a

2,0
y2
1

+ a
1,1
y
1
y
2

+ a
0,2
y2
2

+ o(3).

The tangent vectors at the origin for the graph (y1, y2)→ (y1, y2, g(y1, y2)) are(
∂y1
∂y1

,
∂y2
∂y1

,
∂g(0, 0)

∂y1

)
=
(

1, 0,−1− λ2+
)
,

(
∂y1
∂y2

,
∂y2
∂y2

,
∂g(0, 0)

∂y2

)
=
(

0, 1,−λ+
)
,
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recovering the previous results. At second order,

o(y21) : a0,1a2,0 + a1,1a1,0 = −1

2
,

o(y1y2) : 2a2,0 + 2a0,2a1,0 + a0,1a1,1 = 0,

o(y22) : a1,1 + 3a0,2a0,1 = 0.

⇒

−λ+ −(1 + λ2+) 0

2 −λ+ −(1 + λ2+)

0 1 −3λ+


a2,0a1,1
a0,2

 =

−
1

2
0
0

 .

Solving the system gives the coe�cients up to order two. In general, for order n the coe�cients
are found by solving a n + 1 linear system of equations. This way it is possible to obtain an
approximation up to any arbitrary order.

Numerical Computations of Manifolds: After all this discussion on invariant manifolds, some
numerical experimentations have to be made to con�rm the theory. With the numerical integrator
that we developed (explained in the next section) some orbits on the local approximations of the
invariant manifolds were computed (for c 6= 0).

The criterion followed is the following. Since we have been working with a double �oating point
precision (10−14) the error should be of that order of magnitude. Then as the approximations
are linear the error on the manifolds is of order o(|y−P±|

2) which imply that the starting point

should not be at a distance larger than 10−7 from the equilibrium point.

As suggested before, for both P+ and P−, the real eigenvalues λ+ and λ− were computed using
Newton-Raphson method. Then from (3.3) the tangent vectors were found and normalized .At
this point there is some di�erence in the process for the 1D and 2D invariant manifold.

For the 1D manifolds the two branches were computed integrating for the two starting points
given by P± ± 10−7v̂±, where v̂± are the normalized tangent vectors for P+ and P−.

For the 2D manifolds there were many possible points to integrate. We have used as starting
points to integrate, the points of a ring on the invariant planes with center the equilibrium
point and the distance stated before. The ring was generated by a rotation of the normalized
eigenvectors of the plane v̂± and û±, namely

(y1, y2, y3) = P± + 10−7v̂ cos θ + 10−7v̂ sin θ.

The points taken were equispaced within the angle theta angle θ for 30 divisions, i.e θ = 2πj/30,
for j = 0÷ 30.

Note that all the analysis on the dynamics of the equilibrium points performed corroborate the
numerical results found.

For large values of c such as those in �gure 3, the invariant manifolds do not interact but for
a heteroclinic orbit. As c starts to decrease the equilibrium points get closer and the invariant
manifolds interact more, see �gure 4. For small values of c there is a Hopf-Zero bifurcation which
is responsible of the creation and annihilation of homoclinic, heteroclinic and periodic orbits and
has chaotic behaviour, see �gure 5.
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Figure 3: Invariant manifolds for c=1.

Observations: Note that as a volume preserving �ow the equilibrium points had both contacting
and expanding directions all of which were compensated. Furthermore, the equilibrium points
appeared in a couple related by the time reversing symmetry except for the case c = 0 which
was actually R-symmetric. The invariant manifolds also were related by this symmetry in the
same way as the equilibrium points, being R(W u)P+

= W s
P−

and R(W s)P+
= W u

P−
. Intuitively,

the symmetry of the Michelson system is a rotation over the y2 axis, so it is consistent that the
behaviour on one side of the axis is the same as in the other for negative time.

Finally, for c = 0 the same linear reversing symmetry of the Michelson system, is a reversing
symmetry of the linearised system. Thus applying 2.3.7 and since it is dimension 3, there had to
be a singlet and a a doublet which actually did.
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3.2. Existence of Orbits Connecting the Equilibrium points. In this section it will be
proven that for all c > 0, the two equilibrium points have at least one homoclinic or one hete-
roclinic connexion. The proof has two steps, showing that the bounded solutions are uniformly
bounded and using the Conley index to prove the existence. This result is a partial prove since it
has been proven for the Michelson system that it is a R-symmetric heteroclinic orbit that persists
for c > 0. Nonetheless, the point of this section is to apply index theory to show the existence of
some type of orbits. Index theory is useful in these kind of existence demonstrations but usually
fail in giving constructive ways to �nd such orbits.

I 3.2.1. Lemma. Consider an autonomous ODE system, depending on a parameter c ∈ Rm,

dy

dx
= fc(y), x ∈ (−∞,+∞),

where y ∈ Rn and f(y) ∈ C1(Rn). Assume we can separate the vector �eld fc(y) into two parts,
namely fc(y) = h(y) + gc(y) satisfying

ρrρ−sh(ρsy) = h(y),

ρrρ−sgc(ρ
sy) −→ 0, as ρ→ 0

uniformly in |y| ≤ 1 and a compact domain of c. Then, under the above assumptions and having
ẏ = h(y) no bounded solutions but y = 0, if the set of bounded solutions is not empty, it is
uniformly bounded in the maximum norm in the compact domain of the parameter c.

Proof: Suppose the contrary holds, thus it exists a sequence of bounded solutions ym(x) such

that, supx∈R |ym(x)| → ∞ as m → ∞. Then consider the norm |y|s =
∑n

i=1 |yi|
1/si . Without

loss of generality, since the system is autonomous and we can shift x = 0, we may assume that

|ym(0)|s = ρm →∞, sup
x∈R
|ym(x)|s/ρm ≤ 1.

Apply the linear changes of variables zm = ρ−sm yn, ξ = ρrmx to each ym(x) in the sequence of
bounded solutions. Then the sequence in the new variables zm(ξ), now satisfy the equations

dzm
dξ

= h(zm) + ρrmρ
−s
m gc(ρ

s
mzm). (3.4)

and

|zm(0)|s = 1, sup
ξ∈R
|zm(ξ)|s ≤ 1. (3.5)

Finally, in |zm(0)|s ≤ 1, the term ρrmρ
−s
m gc(ρ

s
mzm) of (3.4) tends uniformly to 0 as ρ → 0, since

it was an hypothesis of the lemma. Therefore the set of bounded solutions zm(ξ) tend uniformly
to a ẑ(ξ) which is a bounded solution of the equation dz/dξ = h(z). This is a contradiction
since it is an hypothesis of the lemma that the only bounded solutions of the previous equation
is ẑ(ξ) = 0 and on the other hand from (3.5), |ẑ(0)|

s
= 1. �
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I 3.2.2. Corollary. The set of bounded solutions of the Michelson system is uniformly bounded
in any compact domain of c ∈ [0, c2∗].

Proof: For the Michelson system the hypotheses of the previous lemma apply for s = (1, 4/3, 5/3),
r = −1/3 and the following decomposition,(

y2, y3, c
2 − y2 −

y21
2

)
︸ ︷︷ ︸

f(y)

=

(
y2, y3,−

y21
2

)
︸ ︷︷ ︸

h(y)

+
(
0, 0, c2 − y2

)︸ ︷︷ ︸
gc(y)

,

We brie�y check that this is true

ρrρ−sh(ρsy) = ρrρ−sh(ρy1, ρ
4/3y2, ρ

5/3y3) = ρrρ−s
(
ρ4/3y2, ρ

5/3y3,−
1

2
(ρy1)

2

)
=

= ρr
(
ρ−1ρ4/3y2, ρ

−4/3ρ5/3y3,−
1

2
ρ−5/3ρ2y21

)
=

= ρ−1/3
(
ρ1/3y2, ρ

1/3y3,−
1

2
ρ1/3y21

)
=

(
y2, y3,−

1

2
y21

)
= h(y).

,

ρrρ−sgc(ρ
sy) = ρrρ−sgc(ρy1, ρ

4/3y2, ρ
5/3y3) = ρrρ−s(0, 0, c2 − ρ4/3y1) =

= ρr(0, 0, ρ−5/3c2 − ρ−5/3ρ4/3y2) = ρ−1/3(0, 0, ρ−5/3c2 − ρ−1/3y2) =

= (0, 0, ρ−2c2 − ρ−2/3y2)→ (0, 0, 0), as ρ→ 0, uniformly in |y| < 1,

and the system ẏ = h(y) has no bounded solutions but the equilibrium point at the origin. This
last part is simple to check since ẏ3 = −1/2 y21, thus all orbits eventually scape to in�nity for
all y1 6= 0 as ẏ3 < 0. In the plane y1 = 0 since ẏ1 = y2, the orbits leave the plane for y2 6= 0,
eventually escaping to in�nity. Finally it only remains that the bounded solutions are in the line
y1 = 0, y2 = 0, and since ẏ2 = y3 the only point which does not exit the line is the origin which
remains �xed.

I 3.2.3. Gradient-like Systems. A gradient-like function is somewhat a generalization concept
of the Lyapounov functions. Given an autonomous ODE system ẏ = f(y), it is said to be a
gradient-like system if there exists a function L(y) which decrease on solutions for x > 0. The
function L(y) is called gradient-like function.

I 3.2.4. Lemma. The system

dy

dx
=

(
y2, y3, µ− y2 −

1

2
y21

)
has no bounded solutions for µ < 0.
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Proof: The system has the following gradient-like function L = y
1

+y
3
. The function L decreases

along with solutions since L̇ = µ − 1
2y

2
1 < 0 for x > 0. Hence, as the gradient-like function is

unbounded, the solutions of the system are unbounded as well.

I 3.2.5. Theorem. For all c > 0 there is a homoclinic or heteroclinic connexion in P+ and P−.

Proof: The key to this demonstration is to use that the Conley index of a system is invariant
under homotopy transformations of the �ow as long as the invariant sets remain invariant (See
Appendix C for de�nitions and properties).

As of corollary 3.2.2, the set of bounded solutions of the Michelson system is uniformly bounded
in [0, c2∗]. Thus, there is a compact subset of the phase space U ∈ Ω such that ∀c2 ∈ [0, c2∗] all
bounded solutions are contained inside independent of the parameter c2. Now consider the family
of systems related by an homotopy of µ,

dy

dx
=

(
y2, y3, µ− y2 −

1

2
y21

)
, µ ∈ [−c2∗, c

2
∗]. (3.6)

and let Sc2∗
be the set of bounded solutions for the parameter c2∗, and be S−c2∗

the set of bounded

solutions for the parameter−c2∗. According to lemma 3.2.4, there are no bounded solutions in (3.6)
for µ < 0, hence we have S−c2∗

= ∅. At this point, note that U remains an isolating neighbourhood

for all µ ∈ [−c2∗, c
2
∗], therefore the systems are related by continuation and h(Sc2∗

) = h(S−c2∗
), the

Conley index are the same by one of its properties. Since the Conley index of the empty set is 0̄,
the pointed point, we have proven that h(Sc2∗

) = 0̄.

Finally we will show how this last fact contradicts to the equilibrium points P+ and P− not being
connected. Suppose there are no bounded solutions which connect the equilibrium points for the
parameter c2∗. Then it is possible to decompose Sc2∗

as P+∪P−∪Sc2∗ \ (P+∪P−) which is disjoint
union as the equilibrium points are isolated from all other bounded solutions.

The Conley index of a union is the sum of indices, recall appendix C, in the case of disjoint
unions we know how to compute it, we have to collapse the pointed points of the homotopy types
of each index. The hyperbolic �xed points have Conley index a one pointed sphere and a two
pointed sphere (as they have one and two positive real part eigenvalues) and the remaining set
is unknown. However, it is impossible to deform with a pointed homotopy a pointed topological
space which consist of a one dimension sphere a two dimension sphere and an unknown shape
connected by a point into a pointed point. This imply that h(Sc2∗

) 6= 0̄ which is the pointed

point, but this contradicts that h(Sc2∗
) = 0̄. Hence the assumption of the equilibrium points

being isolated in the set of bounded solutions is wrong and the argument is valid ∀c2∗. �
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3.3. Existence of periodic solutions for small c. Recall that the Michelson system had
a family of periodic orbits for c = 0. In this part we will be proving that at least one of this
periodic orbits persists for small parameters of c.

This demonstration is conducted by directly applying the perturbation theorem 3.3.1. The proof
of this theorem is not given here since it requires ideas such as Lyapunov-Schmidt reduction and
averaging methods which are overhead of this level. This demonstration and others can be found
in [2]. Note that the name of the theorem "Perturbations of an isochronus set" means that the
unperturbed system has to have a set of periodic orbits of the same period (isochronus means
same period).

Observe that this theorem may have many direct applications, it can be used with second order
perturbations of the ideal pendulum, for instance. In our case, we will be applied to the orbital
equations of the Michelson system.

I 3.3.1. Theorem (Perturbations of an isochronus set). Consider the following ODE system

ẏ = f0(x,y) + εf1(x,y) + ε2f2(x,y, ε), (3.7)

with (x,y, ε) ∈ R × Ω × (−ε0, ε0) and Ω ⊆ Rn an open subset. Assume that f0, f1 and f2 are
C2 and periodic with respect to x. For any y0 ∈ Ω, denote by My0

(x) the principal fundamental
matrix of the variational system

v̇ = Dyf0(x,y0) v.

Suppose that for ε = 0 there is an open bounded subset V , such that ∀y0 ∈ cl(V ), the solution
of the system (3.7) at that point ϕε=0(x;y0) is T-periodic in x. If ŷ ∈ cl(V ) is a zero of the
following map F : cl(V )→ Rn de�ned as

F (y0) =

ˆ T

0
M−1y0 (x)f1(x, ϕ(x;y0, 0))dx,

and det(Dy0
F (ŷ)) 6= 0, then for |ε| > 0 su�ciently small there is a T-periodic solution ϕε(x;y0)

of the system (3.7) such that ϕε(x;y0)→ ŷ as ε→ 0.

I 3.3.2. Corollary. For c > 0 su�ciently small the Michelson system has at least one periodic
orbit.

Proof. First we will give the general outlines of this demonstration. As we have seen in the analysis
of the elliptic equilibrium point, there was a family of periodic solutions in a neighbourhood of
the only equilibrium point, this is our set V mentioned in the previous theorem. The point is to
make again a change to cylindrical and �nd the orbital system of equations with respect to the
angle θ. Hence, with respect to orbital system theorem can be applied.
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Now we shall begin the proof. Start by considering a rescaling of variables in the Michelson
system, y1 → εy1, y2 → εy2, y3 → εy3 and c→ εc, with the parameter ε 6= 0. The system renders

ẏ1 = y2,
ẏ2 = y3,

ẏ3 = εc2 − y2 −
ε

2
y21.

Then recall that the �rst step is to apply a change of variables to cylindrical coordinates given
by y1 → z, y2 → r sin θ, y3 → r cos θ,
ż = r sin θ,

ṙ sin θ + r cos θ θ̇ = r cos θ,

ṙ cos θ − r sin θ θ̇ = εc2 − r sin θ − ε

2
z2,

⇔

1 0 0
0 sin θ r cos θ
0 cos θ −r sin θ

żṙ
θ̇

 =

 r sin θ
r cos θ

εc2 − r sin θ − ε

2
z2

 .

Inverting the left hand side matrix yieldżṙ
θ̇

 =

1 0 0
0 sin θ cos θ
0 r−1 cos θ −r−1 sin θ


 r sin θ

r cos θ

εc2 − r sin θ − ε

2
z2

 . ⇔


ż = r sin θ,

ṙ =
ε

2
(2c2 − z2) cos θ,

θ̇ = 1− ε

2r
(2c2 − z2) sin θ.

Once this has been done the second step is to obtain the orbital system with respect to θ. This
is done by using the chain rule on the previous system and replacing one of the equations into
the others,

dz

dθ

dθ

dx
= r sin θ,

dr

dθ

dθ

dx
=
ε

2
(2c2 − z2) cos θ,

dθ

dx
= 1− ε

2r
(2c2 − z2) sin θ,

⇒


(

1− ε

2r
(2c2 − z2) sin θ

) dz

dθ
= r sin θ,

(
1− ε

2r
(2c2 − z2) sin θ

) dr

dθ
=
ε

2
(2c2 − z2) cos θ,

This is already the orbital system. However, we would like to give system the aspect of a regular
ODE system, thus invert and send to the other side the nasty term accompanying the derivatives.
To do so we use the following trick. Since the expression is analytic with respect to all its variables,
the the inverse is too and we can consider the inverse as power series in ε, the coe�cients of which
must satisfy (

1− ε

2r
(2c2 − z2) sin θ

)
·
∑
n=0

an(z, r, θ) εn = 1

Equalizing terms at each side of the equation with same power in ε, the �rst two coe�cients are

a
0
(z, r, θ) = 1,

a1(z, r, θ) =
1

2r
(2c2 − z2) sin θ.

Hence (
1− ε

2r
(2c2 − z2) sin θ

)−1
= 1 +

ε

2r
(2c2 − z2) sin θ + ε2

∑
n=3

an(z, r, θ) εn−2

= 1 +
ε

2r
(2c2 − z2) sin θ + ε2g(z, r, θ, ε),
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where g(z, r, θ, ε) is analytic on all its variables. The orbital equation then is
dz

dθ
= r sin θ +

ε

2
(2c2 − z2) sin2 θ + ε2f2,1(z, r, θ, ε),

dr

dθ
=
ε

2
(2c2 − z2) cos θ + ε2f2,2(z, r, θ, ε),

(3.8)

where all the terms are analytic. Note that from now on it is convenient to use a prime to
represent the derivatives with respect to θ. This system has the form of (3.7) as in the theorem
and for ε = 0 the system is (z′, θ′) = (r sin θ, 0) for which given for all initial conditions (z0, r0)
all solutions are 2π-periodic, in particular

ϕ
ε=0

(θ; z
0
, r

0
) = (r

0
+ z

0
− r

0
cos θ, r

0
).

Therefore we are under the hypothesis of the theorem and it only remains to �nd the map F and
see if the conditions apply. To do so, it is required the principal fundamental matrix for ε = 0
whose columns the solution of the linearised system(

v′1
v′2

)
=

(
0 sin θ
0 0

)(
v1
v2

)
for initial conditions v = e1 and v = e2. Note that this is the linearised system for all initial
conditions (z0, x0) since the Jacobian does not depend on z nor r. For the previous linear system,
as the matrix commutes with itself the solution is

M(θ) =

(
1 0
0 1

)
+ exp

(ˆ θ

0

(
0 sin θ
0 0

)
dθ

)
.

thus

M(θ) =

(
1 1− cos θ
0 1

)
which is independent of the initial conditions (z0, x0) as stated before. Finally, we build the map
from the theorem F (z0, x0),

F (z0, x0) =

ˆ 2π

0

(
1 1− cos θ
0 1

)−1
1

2
(2c2 − z2)

(
sin2 θ
cos θ

)
dθ

∣∣∣∣∣
ϕε=0(θ;z0,r0)

=

=
1

2

ˆ 2π

0

(
2c2 − (r0 + z0 − r0 cos θ)2

)(1 cos θ − 1
0 1

)(
sin2 θ
cos θ

)
dθ =

=
1

2

ˆ 2π

0

[(
2c2 − (r0 + z0)

2

0

)
+

(
−r20 − 2r0(r0 − z0)

2r0(r0 + z0)

)
cos2 θ

]
dθ =

=
π

2

(
4c2 − 5r20 − 6r0z0 − 2z20

2r0(r0 + z0)

)
.
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To conclude the demonstration we must �nd the zeroes of the map for which the determinants
of the di�erentials are not zero. The last equation imply that, since r0 6= 0, the only zeros of F
must be of the form r0 = −z0 and from the second equation it follows that (z0, r0) = (−2c, 2c) is
the only zero. At this point the di�erential is

D(z0,r0)
F (z0, r0) =

π

2

(
−6z0 − 4z0 −10r0 − 6z0

2r0 4r0

)
⇒ D(z0,r0)

F (−2c, 2c) =
π

2

(
4c −8c
4c 8c

)
,

for which det(D
(z0,r0)

F (−2c, 2c)) = 8π2c2. Therefore, all the conditions of the theorem are met

and for |ε| > 0 small the orbital equation (3.8) has a 2π periodic solution ϕper,ε(θ; z0, r0) such

that (z0, r0) tend to (−2c, 2c) as ε→ 0. �
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4. NUMERICAL EXPERIMENTS

Numerical experiments are a fundamental part of dynamical systems. It is thanks to them that
it is possible to shed light on dynamics a system and it is them who show what is to be expected
from its solutions. With numerical computations it is possible to visualize the skeleton of the
system, i.e. equilibrium points, periodic orbits, invariant tori, attractors and many more.

It has already been stated that the numerical analysis is of utmost importance to gain insight
of a system. Nonetheless, this experiments do not replace the formal proofs of the presence of
some property or dynamics of a system. Still, in practice it is pointless to try and prove some
behaviour that has not been observed, and besides a numerical experiment can give an idea into
how to approach a demonstration. Finally we would like to comment that nowadays numerical
techniques are becoming more relevant due to growing popularity of the so called computer
assisted proofs, and in particular the Michelson system is no exception in this regard.

This section is divided into three subsections. The �rst part is the most important and is the
basic tool for all the other experiments. We are referring to the Taylor method, which allow us
to integrate to integrate the solutions of the system. Then a second part gives a method using
a �rst hit map to �nd 2D-heteroclinic orbits (those laying in the intersections of 2D invariant
manifolds). Finally in the third part it is explained how to locate periodic orbits using a Poncaré
maps. Both the �rst and second part have been programmed using C language and the code can
be found in the annex.

4.1. Taylor Method: This method is used to integrate, given initial conditions, the solutions of
an ODE systems with su�cient smoothness. There are many already created generic programmes
using this method which use automatic di�erentiation. However, in this work we are developing
our own Taylor method ad-hoc for the Michelson system, since this way we illustrate the method
and the resulting program would be faster. In this section, it is also discussed how some of the
technical issues were overcome such us how to truncate the series or which step-size is chosen to
control the error.

The general idea behind this method idea is to apply the Taylor theorem. Starting at a given
point x

0
, is approximated locally by a power series expansion, then the series is truncated at

some point to e�ectively be able to do computations. Finally a new point of the solution x0 + h
is found by evaluating the truncated series in our case using a Horner method.

Note that in section 2.1 it was proven that the solutions of the Michelson system exist, are unique
and, the most important part, that they are analytic. Therefore, in our case we have as much
smoothness as possible to apply this method. In fact, originally, the main motivation of section
2.1 was to prove that there was enough di�erentiability to be able to develop this method.

Before starting, recall that this same Taylor created here has already been used when studying
the elliptic equilibrium point and in plotting the invariant manifolds in section 3.1.
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I 4.1.1. Taylor Method Algorithm. As stated before, for each step we consider a generic formal
series expansion and its derivative in a neighbourhood of x0, which is the initial point for a given
step. It is convenient to de�ne the step-size as h = (x− x0) and relabelled the indexes m in the
case of the derivative for bookkeeping the degree of h. Thus

y =

∞∑
m=0

a
m
hm −→

y1y2
y3

 =
∞∑
m=0

a1,ma2,m
a3,m

hm. (4.1)

y′ =
∞∑
m=0

(m+ 1)am+1h
m −→

y1y2
y3

′ = ∞∑
m=0

(m+ 1)

a1,m+1

a2,m+1

a3,m+1

hm. (4.2)

As in Lemma 2.1.5, for the series to be a solution, it must satisfy the ODE system and as a
matter of fact the coe�cients are determined by replacing the series into the system. Hence we
insert (4.1) and (4.2) into the Michelson system, obtaining the following

∞∑
m=0

(m+ 1)

a1,m+1

a2,m+1

a3,m+1

hm =

 0
0
c2

+
∞∑
m=0


a2,m
a3,m

−a
1,m
− 1

2

m∑
k=0

a1,ka1,m−k

hm. (4.3)

Recall that the third equation of the Michelson system has a quadratic term y21, so when substi-
tuting the series we had to consider the Cauchy product of formal series. In general, the product
of two formal series may not be convergent so the previous relation may not be well de�ned. For
the Taylor method though, since the series are truncated (in the end we consider polynomials)
the product is well de�ned and convergence is unnecessary. However, in this particular case we
can argue that this product is convergent since the solutions are analytic, therefore y1 is analytic
and the product of analytic functions is analytic.

Finally, the recurrence formula that allow to determine the coe�cients is obtained by equalizing
the terms of equal power in h in (4.3). Doing so gives

a1,m+1

a2,m+1

a3,m+1

 =
1

m+ 1


 0

0
c2

 δm,0 +


a2,m
a3,m

−a2,m −
1

2

m∑
k=0

a1,ka1,m−k


 , (4.4)

for m ≥ 0. Note that in the case m = 0 there is an extra term, so in order to make the expression
compact, we have used the Kronecker delta, δm,0.

At this point we have an expression that allow us to compute the coe�cients of the solutions as a
series, using the previous ones. Nonetheless, for m = 0, the coe�cient a1 requires a0. Hence we
need initialize the recurrence by setting a0. This is done by using the previous computed point,
this is replacing y(x0) = y0 in (4.1). Therefore the coe�cient a0 is set with the value y0, the
point in the previous step (or the initial conditions in case it is the �rst step).
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The speed of the process depend on the number of computations, the less computations the faster
the process. Thus, for the sake of reducing the number of computations, in this particular case,
we can consider the symmetry of the Cauchy product in expression (4.4) to pair up the terms
which are the same, a1,ka1,m−k and a1,m−ka1,k. Thus, rewrite (4.4) as follows

a1,m+1

a2,m+1

a3,m+1

 =
1

m+ 1


 0

0
c2

 δm,0 +


a2,m
a3,m

−a2,m −
[(m+1)/2]∑

k=0

a1,ka1,m−k +
1

2
a21,m/2Θ


 . (4.5)

where [ · ] stands for the integer part and Θ is an operator which is 1 for m even and 0 for m
odd. Note that with respect to (4.4), the number operations in summation has been cut in half.

Using (4.5) and that a0 is the value of y for the previous computed point, the coe�cients of the
solution series (4.1) can be computed. In practice it is impossible for a computer to compute the
in�nite coe�cients of the series. Thus it is necessary to truncate the series at some order p which
will give an error. According to Taylor theorem, the reminder error (error made by truncating
the series), ε, can be approximated by,

ε ≈ 1

(p+ 1)!

∣∣∣∣∣d(p+1)y(x)

dxp+1

∣∣∣∣∣
ξ

hp+1 = M hp+1, where M is a constant.

Looking at the previous, we realize that ε = ε(p, h), thus there are many suitable step-sizes h and
truncation orders p that suit a �xed error. At this point we would like the error to be ε = 10−14,
as we will be programming in double-precision �oating-point variables and this is the maximum
precision possible. The step-size and truncation order are chosen to minimize the number of
operations (maximize the speed), according to the following two lemmas, the second of which is
attributed to [4].

I 4.1.2. Lemma (Number of operations). The total number of elemental arithmetic operations
(sums, di�erences, products and divisions) to compute the all of coe�cients am of (4.5), up to
an order p is of order o(p2), for p su�ciently large.

Proof: Counting in (4.5) the number of elemental arithmetic operations to compute a given
coe�cient am, we obtain utmost #op(m) = (m/2) + 5. Hence, the total number of operations to
compute up to the p-th coe�cient is the summation

#op(total) =

p∑
m=0

#op(m) =

p∑
m=0

(m/2) + 5 = (p(p+ 1)/4) + 5p.

Finally for p large yields o(p2). �
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I 4.1.3. Lemma (Optimal Step-size and Truncation). Assume that the Taylor series of a given
analytic function has radius of convergence ρ, that there exist constants M1,M2 > 0 such that
the derivatives satisfy

M1

ρm
≤
∣∣∣∣dmy(x)

dxm

∣∣∣∣ ≤ M2

ρm
, ∀m ∈ N, (4.6)

and that the number of elementary operations to compute the coe�cients of the series up to
order p is of order o(p2). Then, if the required accuracy ε → 0 (i.e. is su�ciently small), the
optimal truncation order and step-size that minimizes the number of operations tend to

hop → ±
ρ

e2
. (4.7) p→ −1

2
lnε, (4.8)

where the positive sign is for positive time (forward) integration and the negative sign for negative
(backward) time integration.

Proof: From the Taylor theorem reminder and condition (4.6),

ε ≈ o(hp+1) ≈ 1

(p+ 1)!

∣∣∣∣∣d(p+1)y(x)

dxp+1

∣∣∣∣∣
ξ

≈M
(
h

ρ

)p+1

.

Isolating the step-size,

h ≈ ρ
(ε
M

) 1
p+1

.

Now we compute the expression for the speed φ as the total number of computations of a step
(which is of order o(p2)) divided by how much we advance in that step which is given h.

φ(p) ≈ K(p+ 1)2

ρ

(ε
M

) 1
p+1

.

Then to �nd the minimum for this speed, we must solve φ′(p) = 0,

φ′(p) =
2K(p+ 1)

ρ

(ε
M

) 1
p+1

+
K(p+ 1)2

ρ

(ε
M

) 1
p+1

1

(p+ 1)2
ln

(ε
M

)
= 0 ⇒ p = −1

2
ln

(ε
M

)
− 1.

From this last equation, taking ε → 0 we obtain (4.8), and by replacing it in the expression for
h and taking the limit case ε→ 0 we obtain (4.9),

hop ≈ ρ
(ε
M

) 1
− 1

2
ln ε+1

= ρ

(ε
M

) 1

1−ln ε
1
2 −→ ρ

e2
�.

I 4.1.4. Corollary For a double-precision error of ε = 10−14, the optimal truncation order to
minimize the number of operations is p = 24. �
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In our Taylor method we have used as seen in Corollary 4.1.4 a truncation at order 24 for all
steps. On the contrary the optimal step-size depends on the step in which we are computing
since from (4.7) it is clear that depends on the radius of convergence. This poses the problem of
compting the radius of convergence. Recall the formal de�nition of the radius of convergence

ρ =
1

limm→∞
m

√
|am|

.

It is not possible to compute analytically this limit with the recurrence formulas obtained. Thus,
we are forced to work with an estimate ρ which we compute as

ρ = min{ρ24, ρ25, ρ26}, ρ−1j = j

√
|aj |. (4.9)

Note that we take the minimum of the three values with larger j for safety in case some coe�cient
is zero. This idea is also borrowed from [4]. Summarizing the optimal step-size is computed with
(4.7) and the estimate (4.9).

I 4.1.5. Step-size Control. We have already seen how to compute each step and what step-size
and truncation order use to control the error maximizing the speed. However, note that the
step-size computed using Lemma 4.1.3 may be "too good" for plotting the phase space.

Now we shall explain what "too good" means. Note that the optimal step-size computed with
(4.7) depend on the radius of convergence. Thus if the radius of convergence is too large when
representing the points in the phase space they may be too separated from each other. In fact,
this happens in the solutions of Michelson system, where the radius of convergence of most of
the series is quite large.

The idea is for the newly computed point to be at approximately the same distance d from the
previous one in the phase space. Therefore, for each step, we compute the point with the optimal
step-size given in (4.7) and we do the following depending on the distance in the phase space
with the previous point:

• If the newly computed point is at a distance smaller than d, then we do not save it in the
�le containing the points for latter representation. Instead we compute another step since
we cannot increase the step-size as it would increase the error.

• If the newly computed point is at a distance larger than d from the original point y
0
(note

that the computed point could be computed in more that one step given the previous case),
then we adjust heuristically the step-size as follows.

Suppose after n steps, �nally |yn(hop) − y0| > d. Then the correct step-size is given by

the solution of |yn(h) − y0| = d where h < hop and yn(h) is the truncated Taylor series

computed for this last step. Note that the truncated Taylor series yn(h) is a polynomial of
degree 24 in h. However, heuristically, if d is small we can suppose that h is small too, thus
we can approximate the polynomial up to the linear terms

d = |yn(h)−y0| ≈ |a0+a1h−y0| = |(yn−1−y0)+hf(yn−1)| ≈ |(yn−1−y0)|+|h| |f(yn−1)|,
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where we have used that the �rst two coe�cients of the Taylor in the last step are a
0

= y
n−1

and a1 = f(yn−1). Therefore, isolating h, the step-size that we use is

h = ±

∣∣∣∣∣d− |(yn−1 − y0)||f(yn−1)|

∣∣∣∣∣ ,
where the sign depends on whether we integrate the orbits forward or backwards in time.

The following �gure show an example of the di�erence when representing orbits in the phase
space with this protocol and without it.
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(a) Orbit computed using the optimal step-size given in
Lemma 4.1.3.
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(b) Orbit computed by using the Step-size Control 4.1.5.

Figure 6: The same orbits for c=2 and y1(0) = y2(0) = y3(0) = 0.

Note that this readjustment of the step-size will only be done when representing orbits in the
phase space. For all other purposes we will be using the optimal step-size (4.7) which gives the
fastest advance with the maximum speed.

I 4.1.6. The Kuramoto-Sivashinsky Waves. Recall that the Michelson system arise from the the
problem of �nding the steady solutions of the Kuramoto-Sivashinsky equation. As it stated in
the introduction the travelling-waves of the Kuramoto-Sivashinsky equation are given by

y0(x) =

ˆ x

0
y1(x̂; 0)dx̂

Therefore, given a solution of the Michelson system we have designed a programme that compute
the travelling-waves evaluating the previous integral. To solve the integral we have resorted to
the trapezoidal rule. Since the solutions of the Michelson system are saved in a �le containing
the coordinates (x, y1, y2, y3), the point of the travelling-waves are computed summing trapezoids

y0(xn+1) =
n∑
i=0

y1(xi+1) + y1(xi)

2(xi+1 − xi)
.
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Figure 7: Periodic orbit found by Troy in [11] with y1 = y3 = 0, y2 ≈ 1.5265 and c = 1, using
our integrator for the Michelson and KS systems.

In general, when considering the steady state equations of a certain wave modelling EDP, there
are two types of solutions which have special interest. The �rst are periodic solutions which
correspond to periodic travelling waves in the original system, as illustrated by Figure 7. The
second are homoclinic orbits which correspond to solitary waves (called "solitions" in [6]), which
are waves that start constant, at some point they oscillate and in the end they return to the
same constant state. This two types of waves have many applications, for instance in optical
communitarian systems.

4.2. Heteroclinic Orbits. In this section we will design an algorithm to �nd 2D-heteroclinic
orbits. By 2D-heteroclinic orbits we mean the heteroclinic orbits laying in the intersection of the
two dimensional stable and unstable manifolds of the two equilibrium points of the Michelson
system.

The idea is to take section (a plane) Σ between the two equilibrium points and de�ne two maps
(the �rst hit maps) which send points of the linear approximation of the 2D invariant manifolds
along the �ow to the section. Since the heteroclinic orbits connect both equilibrium points, it is
obvious that they will intersect the section a some point. Then the heteroclinic orbits are those
point in which the two maps coincide and they can be computed using a Newton method. The
concept will become more clear as the method is described.

I 4.2.1. Starting Points. The �rst step is to recall the linear approximations (planes) of the 2D
invariant manifolds for both equilibrium points which were computed in 3.1.2.

Eu
P+

: (1 + λ2+)(y1 −
√

2c) + λ+y2 + y3 = 0, EsP−
: (1 + λ2−)(y1 +

√
2c) + λ−y2 + y3 = 0,

where λ+ (resp. λ−) was the only real eigenvalue for the �xed point P+ (resp. P−).
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Now we would like to inscribe a small ring on each plane centred in their respective equilibrium
points. The purpose of this rings is to use its points as initial conditions to integrate the �ow.
This way we make sure all possible orbits on the manifold are represented with one variable which
is the angle. This part can be done in two steps.

Take both linear approximation of the invariant manifolds and write them as a graph of y
3
,

EuP+
: GP+

(y1, y2, y3(y1, y2)) = (y1, y2,−(1 + λ2+)(y1 −
√

2c)− λ+y2),

EsP−
: GP+

(y1, y2, y3(y1, y2)) = (y1, y2,−(1 + λ2−)(y1 +
√

2c)− λ−y2).

Then for each invariant plane consider two rings (y1(θ1), y2(θ1)) = (
√

2c + ε cos θ1, ε sin θ1) and

(y1(θ2), y2(θ2)) = (−
√

2 − ε cos θ2, ε sin θ2) with center in the equilibrium points and radius ε =
10−7, as the error in the linear approximation is of order o(ε2) and we want an the error of 10−14.
Then we can inscribe the rings into the planes by composing them with the graphs

RP+
(θ1) = (y1, y2, y3)(θ1) =

(√
2c+ ε cos θ1, ε sin θ1,−(1 + λ2+)ε cos θ1 − λ+ε sin θ1

)
,

RP−
(θ2) = (y1, y2, y3)(θ2) =

(
−
√

2c+ ε cos θ2, ε sin θ2,−(1 + λ2−)ε cos θ2 − λ−ε sin θ2

)
,

I 4.2.2. First Hit Maps. At this point, we may build the �rst hit maps. This map is built by
taking points in the ring, which give a good representation of the orbits of the manifold, and
integrate them until they intersect a section Σ. Therefore it is the composition of

P1(θ1) = π̂ ◦ϕ
(
τ+

(
RP+

(θ1)
)

;RP+
(θ1)

)
,

P2(θ2) = π̂ ◦ϕ
(
τ−

(
RP−

(θ2)
)

;RP−
(θ2)

)
.

where π̂ : R3 → Σ is the projection from the phase space to the section Σ, and τ± : R3 → R
which is the characteristic time function that for any point on the ring gives the time required to
reach Σ. Note that P1 : S1 → Σ and P2 : S1 → Σ.

For the section Σ we have chosen the plane y1 + y2 + y3 = 0 since the only condition required
was for the section to be between the two equilibrium points. The local coordinates of the plane
chosen are the two �rst coordinates (y1, y2), thus the projection is π̂(y1, y2, y3) = (y1, y2).

In practice it is easy to compute numerically the points of the �rst hit maps with some easy
modi�cations of the Taylor method designed in the previous section. We just have to evaluate
the function g(y1, y2, y3) = y1 + y2 + y3 at the same time we integrate the solutions. When the
function g changes sign, it means that in that step we have crossed the section Σ. Then using a
Newton method we can re�ne the point of the intersection. If yn(h) is the Taylor series of the
last step we have to �nd the step-size h such that g(yn(h)) = 0, therefore the Newton method in
question is

hnew = hold −
yn,1(hold) + yn,2(hold) + yn,3(hold)

y′n,1(hold) + y′n,2(hold) + y′n,3(hold)
,

where y′n(h) and y′n(h) is evaluated using a Horner method and a modi�ed Horner method for
the derivatives of a polynomial.
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Figure 8: Illustration on how the �rst hit maps are computed numerically for c=3 and 5 di�erent
starting angles on each ring.
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I 4.2.3. The Newton Method. The heteroclinic connexions occur when two orbits on each of
invariant manifold coincide. Therefore on Σ it correspond to the situation of two points of the
maps coinciding P1(θ1) = P2(θ2). For example, see from Figure 9 that for c = 0.8, the maps
intersect so this means that orbit passing through that point is an heteroclinic orbit.

Still, we do not want to �nd this connexions graphically so we should design some method to do
this numerically. From the argument stated before the problem of �nding heteroclinic orbits can
be reduced to the problem of �nding the zeroes of the map Γ(θ1, θ2) = P1(θ1) − P2(θ2) which
can be found by a two dimensional Newton method.

To compute the Newton method it is required the di�erential of the map Γ(θ1, θ2) : S1×S1 → Σ,
thus di�erentiating

D(θ1,θ2)
Γ(θ1, θ2) =

(
∂P1(θ1)

∂θ1

∂P2(θ2)

∂θ2

)
.

Next we will compute the �rst of this derivatives, for the one with P2 it is exactly the same.

∂P
1
(θ

1
)

∂θ
1

=
∂

∂θ
1

(
π̂ ◦ϕ

(
τ
+

(
R
P+

(θ
1
)
)

;R
P+

(θ
1
)
))

= D
(y1,y2,y3)

π̂ ◦ϕ
(
τ
+

(
R
P+

(θ
1
)
)

;R
P+

(θ
1
)
)
· ∂

∂θ
1

(
ϕ
(
τ
+

(
R
P+

(θ
1
)
)

;R
P+

(θ
1
)
))

= D
(y1,y2,y3)

π̂ ◦ϕ
(
τ
+

(
R
P+

(θ
1
)
)

;R
P+

(θ
1
)
)
·
[
∂

∂x

(
ϕ
(
τ
+

(
R
P+

(θ
1
)
)

;R
P+

(θ
1
)
))
·

· ∂

∂θ
1

(
τ
+

(
R
P+

(θ
1
)
))

+
∂

∂θ
1

(
R
P+

(θ
1
)
)]

Each of these derivatives are

D
(y1,y2,y3)

π̂ ◦ϕ
(
τ
+

(
R
P+

(θ
1
)
))

=


∂π̂

1

∂y
1

∂π̂
1

∂y
2

∂π̂
1

∂y
3

∂π̂
2

∂y
1

∂π̂
2

∂y
2

∂π̂
2

∂y
3


∣∣∣∣∣∣∣∣∣∣
ϕ(τ+(RP+

(θ1)))

=

(
1 0 0
0 1 0

)
,

∂

∂x

(
ϕ
(
τ
+

(
R
P+

(θ
1
)
)

;R
P+

(θ
1
), 0
))

= f
(
ϕ
(
τ
+

(
R
P+

(θ
1
)
)

;R
P+

(θ
1
), 0
))

,

∂

∂θ
1

(
R
P+

)
(θ

1
) =

(
∂y

1
(θ

1
)

∂θ
1

∂y
2
(θ

1
)

∂θ
1

∂y
3
(θ

1
)

∂θ
1

)T
=
(
−ε sin θ

1
ε cos θ

1
+(1 + λ2

+
)ε sin θ

1
− λ

+
ε cos θ

1

)T
.

Note that the second derivative is values of the vector �eld at the intersection which we compute
numerically along the solutions.
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There is still a remaining term which apparently we do not know, which is the derivative of the
characteristic time function which we do not know implicitly. We shall denote it N and L the
following terms

L =
∂

∂x

(
ϕ
(
τ+

(
RP+

(θ1)
)

;RP+
(θ1), 0

))
.

N =
∂

∂θ1

(
τ+

(
RP+

(θ1)
))

.

Note that L was the value of the vector �eld at the intersection and has dimension 3× 1 and N
is a scalar since τ+ : R3 → R and RP+

: S1 → R3. This term N which is unknown, is obtained

by the di�erentiating implicit equation g(y1, y2, y3) = y1 + y2 + y3 = 0 of Σ.

g
(
ϕ
(
τ+

(
RP+

(θ1)
)

;RP+
(θ1)

))
= 0,

di�erentiating
∂

∂θ1
g
(
ϕ
(
τ+

(
RP+

(θ1)
)

;RP+
(θ1)

))
= 0,

D(y1,y2,y3)
g
(
ϕ
(
τ+

(
RP+

(θ1)
)

;RP+
(θ1)

))
·
[
NL+

∂

∂θ1

(
RP+

(θ1)
)]

= 0,

therefore

(1, 1, 1) ·

N
L1
L2
L3

+

 −ε sin θ1
ε cos θ1

+(1 + λ2+)ε sin θ1 − λ+ε cos θ1

 = 0,

and

N =
λ2+ε sin θ1 + (1− λ+)ε cos θ1

L1 + L2 + L3

.

Once the di�erential of Γ(θ1, θ2) is(
θ1,new
θ2,new

)
=

(
θ1,old
θ2,old

)
−D(θ1,θ2)

Γ(θ1,old, θ2,old)
−1Γ(θ1,old, θ2,old)

T .

I 4.2.4. Heteroclinic orbits and the KS. Given an heteroclinic orbit of the Michelson system,
the corresponding travelling wave in KS equation is what in [6] is called a conical �ame front. It
is a kind of travelling wave that has a single maximum and its slopes tends to ±

√
2 as x→ ∓∞.

In the following �gure it is shown a heteroclinic orbit computed with the Newton method seen
above and the corresponding travelling wave. Note from the sub�gure (b) why these kind of
�ames are called conical fronts.
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(a) Heteroclinic orbit of the Michelson system.
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Figure 10: Heteroclinic orbit found with the Newton method of this section for c=1.5.

4.3. Poincaré Map: This part covers the concept of Poincaré maps and their use in tracking
periodic orbits. Moreover, an outline of an algorithm to �nd periodic orbits using a Poincaré
map is given for the Michelson system. However, unlike the two previous sections, in this part
the method has not been programmed.

I 4.3.1. Poincaré Section and Map. Let y′ = f(y) be any autonomuous ODE system with vector
�eld f : Ω→ Rn. A codimension one surface Σ = {y ∈ Ω | g(y) = 0} ⊆ Ω is said to be transversal

to the vector �eld if ∀y ∈ Σ,
〈
f(y),Dyg(y)

〉
6= 0, where 〈·, ·〉 stands for the scalar product and

the termDyg(y) is the normal vector of the surface. Note that what this transversality condition
imply is that the solutions of the system cannot be tangent to the section. A codimension one
surface with the previous transversality condition is called a Poincaré section.

A Poncaré map or a �rst return map, P : Σ → Σ, is an application from a Poincaré section Σ
into itself, de�ned as

P(ŷ) = π̂ ◦ ϕ(τ(ν(ŷ)), ν(ŷ)),

where π̂ : Ω → Σ is a projection , ϕ : I × Ω → Ω is the �ow of the system, ν : Σ → Ω is an
inclusion and τ : Σ → R is the return time function for which given a point in the section gives
the time x it takes for the point to return to the section.

From a practical standpoint, what the Poincaré map does is take points in a section and integrates
them until they return too the section. The transversality condition imply that when integrating
the points in the section the points immediately leave the section, hence the map is well de�ned
as a discreet application.
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I 4.3.2. Periodic Orbits and Poincaré Maps. This kind of maps are of great use since they
allow us to study some dynamics of a system with a map which has one dimension less than the
original system. This idea is the same than the one used in the previous section where heteroclinic
orbits of the Michelson system were found using the map Γ(θ1, θ2), reducing an apparent three
dimensional problem into a problem of �nding �xed points in two dimensions.

The main use of the Poincaré maps is the location of periodic orbits. From the way the Poincaré
maps are de�ned, the �xed points of such maps correspond to periodic orbits for the original
system. Therefore the problem of �nding periodic orbits is reduced to the problem of �nding the
�xed points of the Poncaré maps, P(ŷ) = ŷ, or equivalently �nding the zeroes of P(ŷ) − ŷ. In
order to �nd the zeroes in this last expression one can use a Newton method.

Observation: For the the periodic orbits to be �xed points of the Poincaré map we shall de�ne
the return time τ as the time it takes for a point y = ν(ŷ) to return to the section with the same
orientation that originally had, i.e. we have to additionally ask that

sign
(〈
f(y),Dyg(y)

〉)
= sign

(〈
f(ϕ(τ(y),y)),Dyg(ϕ(τ(y),y))

〉)
.

I 4.3.3. Poincaré Maps for the Michelson System. Up until now it looks as if �nding periodic
orbits with a Poincaré map is trivial. Nonetheless, it is not the case and we will illustrate the
problems that arise using the Michelson system as an example.

The main problem is the choice of Poincaré section. It may occur that a such section simply do
not exist or it is impossible to �nd. What's more, even though such a section is found, there is
no guarantee of any periodic orbits crossing it thus it rendering useless.

Now, we will try to compute a Poincaré section for the Michelson system. Consider a general
surface Σ which has implicit equation g(y) = 0. Then for it to be a Poincaré section it must
satisfy the transverslity condition, therefore

〈
f(y),Dyg(y)

〉
=
∂g(y)

∂y1
y2 +

∂g(y)

∂y2
y3 +

∂g(y)

∂y3

(
c2 − y2 −

y21
2

)
6= 0,

for all y ∈ Σ. Note that for the previous inequality there is no unique solution.

Our suggestion for a Poincaré section would be the surface Σ = {y ∈ R3 | y1 = 0, y2 6= 0}. This
choice is based on the assumption that the interesting dynamics occur amidst the two equilibrium
points, so the idea was to choose the y1 = 0 plane. However, the points with y2 = 0 had to be
subtracted to make the section satisfy the transversality condition.

I 4.3.4. Periodic Orbit Algorithm for the Michelson system. Recall that periodic orbits were
the zeroes of P(ŷ) − ŷ, and thus the di�erential of the Poincaré section is needed to implement
a Newton method.
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Di�erentiating and using the chain rule,

D
ŷ
P(ŷ) = D

ŷ
(π̂ ◦ ϕ(τ(ν(ŷ)), ν(ŷ)))

= D
y

(π̂ ◦ ϕ(τ(ν(ŷ)), ν(ŷ))) ·D
ŷ

(ϕ(τ(ν(ŷ)), ν(ŷ)))

= D
y

(π̂ ◦ ϕ(τ(ν(ŷ)), ν(ŷ))) ·
[
∂

∂x
ϕ(τ(ν(ŷ)), ν(ŷ)) ·D

ŷ
(τ(ν(ŷ)))

+D
y
ϕ(τ(ν(ŷ)), ν(ŷ)) ·D

ŷ
(ν(ŷ))

]
= D

y
(π̂ ◦ ϕ(τ(ν(ŷ)), ν(ŷ))) ·

[
∂

∂x
ϕ(τ(ν(ŷ)), ν(ŷ)) ·D

y
(τ(ν(ŷ))) ·D

ŷ
(ν(ŷ))+

+ D
y
ϕ(τ(ν(ŷ)), ν(ŷ)) ·D

ŷ
(ν(ŷ))

]
.

For the section Σ = {y ∈ R3 | y1 = 0, y2 6= 0}, we have that π̂(y1, y2, y3) = (y2, y3) and
ν(ŷ2, ŷ3) = (0, ŷ2, ŷ3). Then, each derivative is

• The di�erential of the projection at the point at which returns is

Dy (π̂ ◦ ϕ(τ(ν(ŷ)), ν(ŷ))) =


∂π̂1
∂y1

∂π̂1
∂y2

∂π̂1
∂y3

∂π̂2
∂y1

∂π̂2
∂y2

∂π̂2
∂y3


∣∣∣∣∣∣∣∣
ϕ(τ(ν(ŷ)),ν(ŷ))

=

(
0 1 0
0 0 1

)
.

• The di�erential of the inclusion at the initial point is

Dŷ (ν(ŷ)) =



∂ν1
∂ŷ1

∂ν1
∂ŷ2

∂ν2
∂ŷ1

∂ν2
∂ŷ2

∂ν3
∂ŷ1

∂ν3
∂ŷ2

 =

0 0
1 0
0 1

 .

• Dy (π̂ ◦ ϕ(τ(ν(ŷ)), ν(ŷ))) is the fundamental matrix found by solving the variational equa-
tions at the point of the section at which returns.

• ∂

∂x
ϕ(τ(ν(ŷ)), ν(ŷ)) = f(τ(ν(ŷ)), ν(ŷ)) is the value of the vector �eld at the point of the

section at which returns.

Finally the term Dy(τ(ν(ŷ))) which has dimension 2× 1 is obtained di�erentiating the implicit

equation of the Poincaré section Σ, which is g(y) = y1 = 0.

g (ϕ(τ(ν(ŷ)), ν(ŷ))) = 0

Di�erentiating with respect to ŷ,

D
ŷ

(g ◦ ϕ(τ(ν(ŷ)), ν(ŷ))) = D
y

(g ◦ ϕ(τ(ν(ŷ)), ν(ŷ))) ·
[
∂

∂x
ϕ(τ(ν(ŷ)), ν(ŷ)) ·D

y
(τ(ν(ŷ))) ·D

ŷ
(ν(ŷ))+

+ D
y
ϕ(τ(ν(ŷ)), ν(ŷ)) ·D

ŷ
(ν(ŷ))

]
= 0.
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Isolating D
y
(τ(ν(ŷ))) in this system of two equations, where all the derivatives are known, give

the two components of the term.

Finally the �xed points are computes using a Newton method on P(ŷ)− ŷ = 0, where the steps
are given by

(
ŷ2,new
ŷ3,new

)
=
(
D(ŷ2,ŷ3)

P(ŷ)− Id
)−1 [

P(ŷ2,old, ŷ3,old)−

(
ŷ2,old
ŷ3,old

)]

I 4.3.5. Variational System. For this part we will focus on how to compute the fundamental
matrix, by solving the variational equations. Recall that this matrix was needed to �nd the
di�erential of the Poincaré section. In the end it is explained how to solve �nd the matrix
numerically for the Michelson system.

First we will explain what the variational system is and how it is computed in the more general
case. Consider the initial value problem of an ODE system with f : Ω ⊆ R× Rn → Rn,

y′ = f(x,y). (4.10)

Then the variational system with respect to the initial conditions of a given initial value problem
y(x0) = y0 are given by the following system

v′ = Dfy(y0, x)v. (4.11)

What this variational system does is, given a vector v0 ∈ Rn, the solution of (4.11) with initial
conditions v(x0) = v0 give a �rst order approximation of the solutions of (4.10) with perturbed
initial conditions y(x0) = y0 + v0.

In particular we are interested in the fundamental matrix of (4.10). Fixing an orthonormal base
of Rn, for simplicity take the usual base {ei}1≤i≤n, we shall solve the n variational systems with
initial conditions the elements of the base{

v′i = Dfy(y, x)vi,

vi(x0) = ei,
1 ≤ i ≤ n.

The matrix M(x) = (v1(x)|...|vn(x)), whose columns are the solutions of the previous systems,
is known as the principal fundamental matrix of the system (4.10) and the point y0. Recall that
since the solutions of a linear system form a base, therefore the solutions for (4.11) with any
initial condition v(x0) = v0 is given by M(x)v0.

In the case of the Michelson, to obtain the principal fundamental matrix, we have to solve the
systems vi,1vi,2

vi,3


′

=

 0 1 0
0 0 1
−y1 −1 0


vi,1v

i,2

vi,3

 ⇒


v′i,1 = v2,

v′
i,2 = v3,

v′i,3 = −y0v1 − v2,
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for 1 ≤ i ≤ 3 and initial conditions v
i

= e
i
. Note that the principal fundamental matrix

varies along the solutions of the Michelson system. Thus, in practice we integrate the previous
initial value problem yielding the principal fundamental matrix at the same time we integrate
the solutions of the original system. This is done numerically using again a Taylor method with
the same criterion as the previous section with the change in the recurrence formulab1,m+1

b2,m+1

b3,m+1

 =
1

m+ 1

 0 1 0
0 0 1
−y1 −1 0


b1,mb2,m
b3,m

 .
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A. NOTATION

A.1. Multi-Index Notation. This notation is a powerful tool when writing "objects" in sev-
eral variables with many indices in a compact way .A multi-index is no more than a positive
integer vector, l = (l1, ..., ln) ∈ (N ∪ {0})n. The following points specify their use in di�erent
contexts.

I A.1.1. Multi-Index in Partial Derivatives. Let x = (x1, ..., xn) ∈ Cn be a variable of many
variables, and f(x) ∈ Cω(U) (so that the derivatives commute) a function on x, where U ∈ Cn.
Then its partial derivatives in multi-index notation are denoted by

∂|l|1f(x1, ..., xn)

∂l1x1...∂
lnxn

not.≡ ∂lxf(x), (A.1)

where from now |l|1 = l1 + ... + ln. Note that the component li of the multi-index denote the
order of the derivative for the variable xi. For EDPs with several variables and high orders this
notation is particularly useful.

I A.1.2. Multi-Index in Polynomials. Let x = (x1, ..., xn) be several indeterminates grouped in
a vector for commodity, and P ∈ Cn[x] be a polynomial. Then, the multi-indices denote the
powers at which each of the indeterminates are raised and help in book-keeping the coe�cients,
as follows

a(l1,...,ln)x
l1 ... xln

not.≡ alx
l =⇒ P (x)

not.≡
∑
l∈L

alx
l, (A.2)

where L is a set of multi-indeces.

I A.1.3. Multi-Index in Formal Series. The case of series of several indeterminates is kind of
a generalization of the previous case adding for all possible values of l. However, the notation
is more practical, since the resulting expression resembles the one indeterminate case. Let S ∈
Cn[[x]] be a formal series, then it is expressed in multi-index notation as

S(x) =
∑
l1

· · ·
∑
ln

a(l1,...,ln)x
l1 ... xln

not.≡
∑
l

alx
l, (A.3)

where the l under the right-hand side summation means the sum for all possible multi-index.

An interesting case comes from combining the this case with the �rst one. Thus, the Taylor
series expansion of a given function f(x) ∈ Cω(U), in several variables for a neighbourhood of
ξ = (ξ1, ..., ξn) ∈ Cn, can be written as

f(x)
not.≡

∑
l

1

l1! ... ln!
∂lxf(ξ) (x− ξ)l. (A.4)
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B. REVIEW ON SOME ALGEBRAIC TOPICS.

B.1. Discriminant: Let P (x) be a polynomial with complex coe�cients, in one indeterminate,
and of degree n.

P (x) = anx
n + an−1x

n−1 + ...+ a1x+ a0.

According to the fundamental theorem of algebra, the polynomial P (x) has n roots (not required
to be di�erent). Say λ1,...,λn are such roots, then the discriminant is de�ned as

∆ := a2n−2n

∏
i<j

(λi − λj)
2.

Depending on the value of the discriminant, the following can be said about the roots,

• ∆ > 0, imply that for some integer k, such that 0 ≤ k ≤ n/4, there are 2k pairs of complex
conjugated roots and n− 4k real roots (all di�erent).
• ∆ = 0, imply that at least two roots coincide which may be real or complex.
• ∆ < 0, imply that for some integer k, such that 0 ≤ k ≤ (n − 2)/4, there are 2k + 1 pairs
of complex conjugated roots and n− 4k − 2 real roots (all di�erent).

Particular case: In the case of a third degree polynomial,

P (x) = x3 + ax2 + bx+ c = 0,

the discriminant has the form ∆ = 18abc− 4a3c+ a2b2 − 4b3 − 27c2. Furthermore if a = 0, then
it follows ∆ = −4b3 − 27c2. Depending on the value of the discriminant the nature of the roots
are

• ∆ > 0, imply that all roots are real and di�erent.
• ∆ = 0, imply that all roots are real and one has multiplicity larger than one (is repeated).
• ∆ < 0, imply that one root is real and the other two are non-real complex conjugated roots.

B.2. Vieta's formulas: Let P (x) be a polynomial with complex coe�cients, in one indetermi-
nate, and of degree n.

P (x) = anx
n + an−1x

n−1 + ...+ a1x+ a0.

According to the fundamental theorem of algebra, the polynomial P (x) has n roots (not required
to be di�erent). Say λ1,...,λn are such roots, then Vieta's formulas are∑
i

λ
i

= −
an−1
an

,
∑
i 6=j

λiλj =
an−2
an

,
∑

i 6=j 6=k 6=i
λiλjλk = −

an−3
an

, λ1 · ... · λn = (−1)n
a0
an
.

Particular case: For a third degree polynomial of the type

P (x) = x3 + ax2 + bx+ c = 0,

which has roots λ1, λ2, λ3, Vieta's formulas are

λ1 + λ2 + λ3 = −a, λ1λ2 + λ2λ3 + λ3λ1 = b, λ1λ2λ3 = −c.
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C. A QUALITATIVE INTRODUCTION TO INDEX THEORY

This appendix purpose is to give some qualitative de�nitions and basic results on the Coley index
theory for �ows. Note that this a complete theory in itselt and it is not our purpose to deepen
into it. Most of these de�nitions and results require further concepts that are not explained here.
For complete discussion one should refer to [3] and a brief yet more detailed introduction than
this refer to [8].

C.1. Conley Index. Before introducing the index some previous de�nitions are required. A
set S of the phase space Ω is called an invariant set if it is the union of solution curves of the
system,

S =
⋃
x∈R

ϕ(x, S)

where ϕ : R×Ω→ Ω is the �ow. In particular, an invariant set is said to be isolated (an isolated
invariant set) if it is the maximal invariant set in some neighbourhood of itself. For example, an
hyperbolic equilibrium point is isolated invariant set since in a small neighbourhood all solutions
leave in positive or negative time.

It is isolated invariant set that we want to study. However, since invariant sets themselves
are di�cult to study, as they can have fractal structure, be chaotic or be structurally unstable
(sensible to perturbations), the approach to avoid these complications is to consider isolating
neighbourhoods instead. A compact set N ⊆ Ω is an isolating neighbourhood of an isolated
invariant set S, if S ⊆ int(N). Unlike the isolated invariant sets, the isolating neighbourhoods
are relatively easy to study and robust under perturbations (formally speaking, robust under
continuation).

At this point we need one last de�nition which is that of an exit set. Given an isolating neighbour-
hood N , its exit set, L ⊆ N is the maximal set such that ∀y ∈ L, ∃x > 0 such that ϕ(x,y) /∈ N.
In other words, the exit set L of N is the larger subset such that all its points eventually end up
leaving N in positive time under the action of the �ow. Recall that in this work time is regarded
as x.

Finally, the homotopy Conley index or (simply Conley index) of an isolated invariant set S, is
the homotopy type of the pointed topological space obtained by collapsing the exit set L of any
isolating neighbourhood N , to a point. This is formally

h(S) ∼ (N/L, [L]),

for any isolating neighbourhood N . Now we will brie�y see some properties of the Conley index
which are inherited by the properties of isolating neighbourhood and exit sets.

• Let N and N ′ be two isolating neighbourhood for a same isolated invariant set S, then

h(S) ∼ (N/L, [L]) ∼ (N ′/L′, [L′]).

This is, the Conley index does not depend on the isolating neighbourhood chosen.
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• If the Conley index is non trivial h(S) 6= 0̄ (we will see how 0̄ is de�ned in the next section),
then S 6= ∅.

• If ϕλ is a family of �ows related by continuation (i.e. the �ows are related by an homotopy
depending on the parameter λ) and Sλ1 , Sλ2 isolated invariant sets related by continuation,
then h(Sλ1) = h(Sλ2). This is the Conley index being invariant under continuation.

C.2. Conley Index Results. The point of this work is not to discuss index theory. Still some
two more results should be give away for completeness since they appear in section 3.2.

I C.2.1. Sum of Indices. Two operations can be done developed for the Conley index, namely
the sums and products. We are interested in the sum which is referred as wedge product in the
context of pointed topological spaces. In particular the sum of isolated invariant sets.

Given two isolated invariant sets S1 and S2, the sum (or wedge product) is achieved by considering
two the pointed homotopy types of the Conley index and collapsing the two points. The sum
properly speaking the Conley is index of S1 ∪ S2, but in the case of isolated invariant sets since
they are disjoint and there are disjoint isolating neighbourhood, it can be computed as stated
previously.

The sum is well de�ned and obviously has neutral element it is referred to as 0̄ which correspond
to the homotopy type of a pointed point. This element obviously has to be h(∅) = 0̄.

I C.2.2. Lemma. The Conley index of an hyperbolic �xed point is an n dimensional pointed
sphere (n-sphere), where n is the number of positive real part eigenvalues of the linearised system.
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D. PROGRAMS SOURCE CODE

D.1. Header File. File containing all subroutines.

/* File Calling Functions. */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

/* Makes a copy a vector of dimension 4. */

void copyvector (double y0[4], double y1[4]) {

int i;

for(i=0; i<4; i++){

y1[i]=y0[i];

}

return;

}

/* Normalizes vectors of dimension 3. */

void normalize (double vec [3]){

int i;

double mod;

mod=sqrt(vec [0]* vec [0]+ vec [1]* vec [1]+ vec [2]* vec [2]);

for(i=0; i<3; i++){

vec[i]/= mod;

}

return;

}

/* Evaluates three polynomials of degree 24, using Horner algorithm and saves

them in the first three components of y0. */

void horner (double a[3][27] , double y0[4], double h){

int i, k;

double b[3][25];

b[0][24]=a[0][24];

b[1][24]=a[1][24];

b[2][24]=a[2][24];

for(k=0; k<3; k++){

for(i=23; i>=0; i--){

b[k][i]=a[k][i]+b[k][i+1]*h;

}

}

y0[0]=b[0][0];

y0[1]=b[1][0];

y0[2]=b[2][0];

return;

}

/* Evaluates the derivative of three polynomials of degree 24, using Horner

algorithm and saves them in the first three components of y0der. */

void hornerder (double a[3][27] , double y0der[4], double h){

int i, k;

double b[3][24];
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b[0][23]=24*a[0][24];

b[1][23]=24*a[1][24];

b[2][23]=24*a[2][24];

for(k=0; k<3; k++){

for(i=22; i>=0; i--){

b[k][i]=a[k][i+1]*(i+1)+b[k][i+1]*h;

}

}

y0der [0]=b[0][0];

y0der [1]=b[1][0];

y0der [2]=b[2][0];

return;

}

/* Computes the Taylor series up to order 26 of the ODE at the point y0[4]. */

void taylorseries (double c, double y0[4], double a[3][27]){

int m, m2, k;

double sum;

/* The first coefficient of the series , a0 is the initial condition. */

a[0][0]= y0[0];

a[1][0]= y0[1];

a[2][0]= y0[2];

/* For the next coefficients of the series , iterate the recurrence formulas.

(The first case is done separately). */

a[0][1]=a[1][0];

a[1][1]=a[2][0];

a[2][1]=c*c-a[1][0] -(1./2)*a[0][0]*a[0][0];

for(m=1; m<=25; m++){

a[0][m+1]=a[1][m]/(m+1);

a[1][m+1]=a[2][m]/(m+1);

sum =0;

m2=(m+1)/2;

for(k=0; k<m2; k++){

sum+=a[0][k]*a[0][m-k];

}

if(m%2==0){

sum +=(1./2)*a[0][m2]*a[0][m2];

}

a[2][m+1]= -((a[1][m]+sum)/(m+1));

}

return;

}

/* Computes the optimal step -size (largest) for which the series has a fixed

error and minimum n o operations. */

double optimalstep (double a[3][27] , double tol){

int i;

double h=0., hprov , hopt , bound , modulo;

double mod[3], rho [3];

/* Makes three estimates of the radius of convergence. */
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mod [0]= sqrt(a[0][24]*a[0][24]+a[1][24]*a[1][24]+a[2][24]*a[2][24]);

mod [1]= sqrt(a[0][25]*a[0][25]+a[1][25]*a[1][25]+a[2][25]*a[2][25]);

mod [2]= sqrt(a[0][26]*a[0][26]+a[1][26]*a[1][26]+a[2][26]*a[2][26]);

rho [0]=1./ pow(mod [0] ,1./24);

rho [1]=1./ pow(mod [1] ,1./25);

rho [2]=1./ pow(mod [2] ,1./26);

/* Takes the minimum of the estimates of the radius of convergence. */

if(rho[0]<rho [1]){

if(rho[0]<rho [2]){

hopt=rho [0]/ exp(2);

}else{

hopt=rho [2]/ exp(2);

}

}else{

if(rho[1]<rho [2]){

hopt=rho [1]/ exp(2);

}else{

hopt=rho [2]/ exp(2);

}

}

/* Control possible cancellations and give if necessary a smaller step -

size. */

bound=sqrt(a[0][0]*a[0][0]+a[1][0]*a[1][0]+a[2][0]*a[2][0])+hopt*sqrt(a

[0][1]*a[0][1]+a[1][1]*a[1][1]+a[2][1]*a[2][1]);

for(i=2; i<=25; i++){

modulo=sqrt(a[0][i]*a[0][i]+a[1][i]*a[1][i]+a[2][i]*a[2][i]);

hprov=pow(bound/modulo ,1./i);

if(hopt >hprov && hprov >h){

h=hprov;

}

}

if(fabs(h)<tol){

h=hopt;

}

return h;

}

/* Estimates the step -size for which the distance in the phase space is a defined

value (heuristically). */

double adjuststep (double c, double dist , double tol , double y0safe [4], double y0

[4], int sign){

double h;

double f[3], dify0[3], p[3];

/* Computes the vector field. */

f[0]=y0[1];

f[1]=y0[2];

f[2]=c*c-y0[1]-y0[0]*y0 [0]/2;

/* Computes the difference between y_{n-1} and y_{0}. */

dify0 [0]=y0[0]- y0safe [0];

dify0 [1]=y0[1]- y0safe [1];

dify0 [2]=y0[2]- y0safe [2];
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/* Computes the coefficients of the second degree polynomial the solution

of which is the approximated h. */

p[0]=f[0]*f[0]+f[1]*f[1]+f[2]*f[2];

p[1]=f[0]* dify0 [0]+f[1]* dify0 [1]+f[2]* dify0 [2];

p[2]= dify0 [0]* dify0 [0]+ dify0 [1]* dify0 [1]+ dify0 [2]* dify0 [2];

/* Evaluates the polynomial and chooses the right sign. */

if(fabs(p[0])>tol){

if(sign ==1){

h=((-p[1])+sqrt(p[1]*p[1]+p[0]*( dist*dist -p[2])))/p[0];

}else{

h=((-p[1])-sqrt(p[1]*p[1]+p[0]*( dist*dist -p[2])))/p[0];

}

}else{

h=0.;

}

return h;

}

/* Uses a Newton method on the implicit equation of a section to find the

intersection with the orbit. */

void newtonpoincare (double c, double y0[4], double a[3][27] , double tol){

double h=0.1, g, gder;

double y0der [4];

do{

horner(a,y0,h);

hornerder(a,y0der ,h);

g=y0[0]+y0[1]+y0[2];

gder=y0der [0]+ y0der [1]+ y0der [2];

h-=g/gder;

}while(fabs(g)>tol);

horner(a,y0,h);

y0[3]+=h;

return;

}

/* Given an initial y0 point computes the next point in the orbit forward or back

in time (depending on the sign variable introduced) and saves it in y0.

* Integrates at maximum speed with no restrictions.

*

* integrator Variables:

* h -> The step -size for each iteration.

* y0[4] -> Vector containing the initial data (y0,y1 ,y2 ,x), and in

the end the output.

* a[3][27] -> Coefficients of the truncated Taylor series.

* sign -> +1 if iterates are forward in time. -1 if iterates are

back in time.

* event -> 0 the process can continue. 1 the process is to slow and

stops. */

void integrator (double c, double y0[4], int sign , int *event , double tol){

double mod , h;

double y1[4], a[3][27];

*event =0;

taylorseries(c,y0 ,a);

h=(( double)sign)*optimalstep(a,tol);
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horner(a,y1,h);

mod=sqrt((y1[0]-y0[0])*(y1[0]-y0[0])+(y1[1]-y0[1])*(y1[1]-y0[1])+(y1[2]-

y0[2])*(y1[2]-y0[2]));

copyvector(y1, y0);

/* If the ''advance '' in the phase space is close to zero , stop iterating

. */

if(mod <tol){

*event =1;

printf("The integration found a problem .\n");

}

y0[3]+=h;

return;

}

/* Given an initial y0 point computes the next point in the orbit forward or back

in time (depending on the sign variable introduced) and saves it in y0.

* Additionally , controls that the distance of the point returned is constant in

the phase space.

*

* integratorcont Variables:

* h -> The step -size for each iteration.

* hfinal -> The total h, as the sum of the step -size of all

iterations. (May iterate more than once if h too small).

* itermax -> Sets a maximum number of iterates.

* y0[4] -> Vector containing the initial data (y0,y1 ,y2 ,x), and in

the end the output.

* a[3][27] -> Coefficients of the truncated Taylor series.

* sign -> +1 if iterates are forward in time. -1 if iterates are

back in time.

* event -> 0 the process can continue. 1 the process is to slow and

stops.

* dist -> distance between points in the phase space. */

void integratorcont (double c, double y0[4], int sign , int *event , double dist ,

double tol){

int iter=0, itermax =1.e2;

double h, hfinal =0., mod;

double y0safe [4], y1[4], a[3][27];

copyvector(y0,y0safe);

copyvector(y0,y1);

*event =0;

do{

taylorseries(c,y0 ,a);

h=(( double)sign)*optimalstep(a,tol);

horner(a,y1,h);

mod=sqrt((y1[0]- y0safe [0])*(y1[0]- y0safe [0])+(y1[1]- y0safe [1])*(

y1[1]- y0safe [1])+(y1[2]- y0safe [2])*(y1[2]- y0safe [2]));

/* If the distance in the phase space is too large , finds the

step -size that advances the preset distance. */

if(mod >dist){

/* Estimates the approximated step and uses Horner to

compute the final solution. */

h=adjuststep(c,dist ,tol ,y0safe ,y0,sign);

horner(a,y1,h);

}

copyvector(y1, y0);
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hfinal +=h;

iter ++;

/* If the step is too small do another iterate since it uses the

optimal step -size which is the fastest in n o of operations.

*/

/* If the ''advance '' in the phase space is close to zero or the

iterates exceed a certain number , stop iterating. */

}while(mod <dist && mod >tol && iter <= itermax);

if(mod <tol || iter >itermax){

*event =1;

printf("The integration found a problem .\n");

}

y0[3]+= hfinal;

return;

}

/* Given an initial y0 point computes the next point in the orbit forward or back

in time (depending on the sign variable introduced) and saves it in y0.

* Additionally , controls that the distance of the point returned is constant in

the phase space.

* Additionally , controls if the orbit crosses a given section , and if it does

stops.

*

* integratorcont Variables:

* h -> The step -size for each iteration.

* hfinal -> The total h, as the sum of the step -size of all

iterations. (May iterate more than once if h too small).

* itermax -> Sets a maximum number of iterates.

* g, gold -> Value of the implicit equation of at the integrated

point and the previous one rep.

* y0[4] -> Vector containing the initial data (y0,y1 ,y2 ,x), and in

the end the output.

* a[3][27] -> Coefficients of the truncated Taylor series.

* sign -> +1 if iterates are forward in time. -1 if iterates are

back in time.

* event -> 0 the process can continue. 1 the process is to slow and

stops. 2 if the orbit crosses the section.

* dist -> distance between points in the phase space. */

void integratorcontsect (double c, double y0[4], int sign , int *event , double

dist , double tol){

int iter=0, itermax =1.e2;

double h, hfinal =0., mod , g, gold;

double y0safe [4], y1[4], a[3][27];

copyvector(y0, y0safe);

copyvector(y0, y1);

*event =0;

g=y0[0]+y0[1]+y0[2];

do{

taylorseries(c,y0 ,a);

h=(( double)sign)*optimalstep(a,tol);

horner(a,y1,h);

mod=sqrt((y1[0]- y0safe [0])*(y1[0]- y0safe [0])+(y1[1]- y0safe [1])*(

y1[1]- y0safe [1])+(y1[2]- y0safe [2])*(y1[2]- y0safe [2]));

/* If the distance in the phase space is too large , finds the

step -size that advances the fixed distance. */
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if(mod >dist){

/* Estimates the appropriate h and uses Horner to compute

the final solution. */

h=adjuststep(c,dist ,tol ,y0safe ,y0,sign);

horner(a,y1,h);

}

/* Checks if it crosses the section and refines the intersection

with a Newton method. */

gold=g;

g=y1[0]+y1[1]+y1[2];

if(g*gold <=0){

newtonpoincare(c,y0 ,a,tol);

*event =2;

break;

}

/* Prepares the next step. */

copyvector(y1, y0);

hfinal +=h;

iter ++;

/* If the step is too small do another iterate since it uses the

optimal step -size which is the fastest in n o of operations.

*/

/* If the ''advance '' in the phase space is close to zero stop

iterating. (Close to a fixed point). */

}while(mod <dist && mod >tol && iter <= itermax);

if(mod <tol || iter >itermax){

*event =1;

printf("The integration found a problem .\n");

}

y0[3]+= hfinal;

return;

}

/* Entering a file with an orbit of the Michelson system , computes the integral

to obtain a solution of the KS and writes it in another file.

* Since the points are given numerically , the method is the trapezoidal rule. */

void solutionKS (FILE *output1 , FILE *output2){

double sum =0.;

double y0[4], y1[4], y0safe [4];

rewind(output1);

fscanf(output1 , " %le %le %le %le", &y0safe [0], &y0safe [1], &y0safe [2], &

y0safe [3]);

copyvector(y0safe ,y0);

while(fscanf(output1 , " %le %le %le %le", &y1[0], &y1[1], &y1[2], &y1[3])

== 4){

/* Controls resets the initial condition when it detects the

change between semiorbits forward and back in time. */

if((y0[0]- y0safe [0])*(y1[0]- y0safe [0]) <0){

copyvector(y0safe ,y0);

sum =0.;

}

sum +=(y1[1]+y0[1])*(y1[0]-y0[0]) /2;

fprintf(output2 , "%.14le %.14le\n", y1[0], sum);

copyvector(y1,y0);

}
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return;

}

/* Return the real eigenvalue , the eigenvectors , the sign to integrate the node

manifold , and the implicit equation of the focus invariant plane ,

* for the hyperbolic fixed points. (For c different from 0). */

double eigen (double c, double evec1 [3], double evec2 [3], double evec3 [3], double

invplane [4], int *sign , double tol){

double eval=c;

double x0;

/* Finds the real root of the characteristic polynomial by a Newton

method. */

do{

x0=eval;

eval=x0 -(x0*x0*x0+x0+sqrt (2)*c)/(3*x0*x0+1);

}while(fabs(eval -x0)>tol);

/* Computes the eigenvector of the node eigenvalue and normalizes it. */

evec1 [0]=1.;

evec1 [1]= eval;

evec1 [2]= eval*eval;

normalize(evec1);

/* Computes the eigenvectors of the focus eigenvalues and normalizes them

. */

evec2 [0]=1.;

evec2 [1]=0.;

evec2 [2]= -(1.+ eval*eval);

normalize(evec2);

evec3 [0]=0.;

evec3 [1]=1.;

evec3 [2]=- eval;

normalize(evec3);

/* Sets the sign (to integrate forward or backward) for the node's

manifold. */

if(eval >=0){

*sign =1;

}else{

*sign=-1;

}

/* Computes the coefficients of the implicit equation of the eigenplane

of the focus manifold. */

invplane [0]=1+ eval*eval;

invplane [1]= eval;

invplane [2]=1.;

invplane [3]= -(1+ eval*eval)*sqrt (2)*c;

return eval;

}
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D.2. Taylor Method. Program that integrates orbits using the Taylor method.

/*

* Integrator -v5.c (Taylor Method)

* Author: Alberto García Molina

*/

#include "Auxiliary.h"

void writefile (double , double [4], double [4], int , double , double , FILE *);

/* main Variables:

* c -> Parameter of the vector field.

* y0[4] -> Vector containing the initial data (y0,y1 ,y2 ,x).

* sign -> +1 if iterates are forward in time. -1 if iterates are

back in time.

* dist -> distance between points in the phase space.

* Files:

* Solution.dat -> File contains (x0,y0 ,y1 ,y2) for the orbit. */

int main (void) {

/* Initialize variables. */

int sign;

double c=1., dist =1.e-3, tol=1.e-12;

double y0[4]={0. ,0. ,0. ,0.} , y0safe [4];

/* Opens the file. */

FILE *output1 , *output2;

output1=fopen("SolutionMichelson.dat", "w+");

output2=fopen("SolutionKS.dat", "w");

if (output1 == NULL || output2 == NULL){

printf("Error with output .\n");

exit (1);

}

/* Copies the initial conditions on a safety vector. */

copyvector(y0,y0safe);

fprintf(output1 , "%.14le %.14le %.14le %.14le\n", y0[3], y0[0], y0[1], y0[2])

;

/* Integrate forward in time for y0[4] and writes in file. */

sign =1;

writefile(c,y0,y0safe ,sign ,dist ,tol ,output1);

/* Resets the initial condition. */

copyvector(y0safe ,y0);

/* Integrates back in time for y0[4] and writes in file. */

sign=-1;

writefile(c,y0,y0safe ,sign ,dist ,tol ,output1);

/* Integrates to find the solution to the KS. */

solutionKS(output1 ,output2);

fclose(output1);

fclose(output2);

printf("Process Completed.");

return 0;

}

/* Writes the points of a semiorbit in a file.
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*

* writefile Variables:

* itermax -> Maximum number of iterates for control. (For instance ,

to avoid infinite computations in periodic orbits).

* plotlim -> maximum distance of the computations wrt the initial

condition. (Plot restricted in a domain).

* event -> 0 the process can continue one more step. 1 the process

has some cannot continue. */

void writefile (double c, double y0[4], double y0safe [4], int sign , double dist ,

double tol , FILE *output1){

int iter , itermax =1.e6 , event;

double plotlim =10;

iter =0;

do{

integratorcont(c,y0 ,sign ,&event ,dist ,tol);

iter ++;

fprintf(output1 , "%.14le %.14le %.14le %.14le\n", y0[3], y0[0], y0

[1], y0[2]);

}while(iter <itermax && fabs(y0[0]- y0safe [0])<plotlim && fabs(y0[1]- y0safe

[1])<plotlim && fabs(y0[2]- y0safe [2])<plotlim && event ==0);

return;

}

D.3. Invariant Manifolds. Program that integrates orbits using the Taylor method on the
linear approximations of the invariant manifolds.

/*

* Integrator -v5.c (Taylor Method)

* Author: Alberto García Molina

*/

#include "Auxiliary.h"

void writefile (double , double [4], double [4], int , double , double , FILE *);

/* main Variables:

* c -> Parameter of the vector field.

* y0[4] -> Vector containing the initial data (y0,y1 ,y2 ,x).

* sign -> +1 if iterates are forward in time. -1 if iterates are

back in time.

* dist -> distance between points in the phase space.

* eval -> node eigenvalue.

* evec1 [2] -> node eigenvector

* evec2[3], evec3 [3] -> focus eigenvectors.

* invplane [4] -> coefficients of the invariant plane of the focus A

(y0)+B(y1)+C(y2)+D)=0.

* radius -> distance from the fixed point to the invariant manifold

starting computation point.

* theta -> angle to compute orbits on a ring in the focus manifold.

* divisions -> number subdivisions of the ring where the focus

manifold orbits are computed.

* Files:

* NodeManifold.dat -> File contains (x0 ,y0 ,y1 ,y2) for orbits in the

node manifold.
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* FocusManifold.dat -> File contains (x0 ,y0 ,y1,y2) for orbits in

the focus manifold.

* ManifoldInfo -> Self explicatory , contains information of the

linearized fixed point. */

int main (void) {

/* Initialize variables. */

int i, divisions =10, sign;

double c=1., dist =1.e-9, tol=1.e-20, eval , radius =1.e-7, theta;

double y0[4], y0safe [4], evec1[3], evec2 [3], evec3[3], invplane [4];

/* Opens the file. */

FILE *output1 , *output2 , *output3;

output1=fopen("NodeManifold.dat", "w");

output2=fopen("FocusManifold.dat", "w");

output3=fopen("ManifoldInfo.dat", "w");

if (output1 == NULL || output2 == NULL || output3 == NULL){

printf("Error with output .\n");

exit (1);

}

eval=eigen(c,evec1 ,evec2 ,evec3 ,invplane ,&sign ,tol);

/* Computes one branch of the node manifold. */

y0[0]= sqrt (2)*c+radius*evec1 [0];

y0[1]= radius*evec1 [1];

y0[2]= radius*evec1 [2];

y0 [3]=0.;

copyvector(y0,y0safe);

fprintf(output1 , "%.14le %.14le %.14le %.14le\n", y0[3], y0[0], y0[1], y0

[2]);

writefile(c,y0,y0safe ,sign ,dist ,tol ,output1);

/* Computes the other branch of the node manifold. */

y0[0]= sqrt (2)*c-radius*evec1 [0];

y0[1]=- radius*evec1 [1];

y0[2]=- radius*evec1 [2];

y0 [3]=0.;

copyvector(y0,y0safe);

fprintf(output1 , "%.14le %.14le %.14le %.14le\n", y0[3], y0[0], y0[1], y0

[2]);

writefile(c,y0,y0safe ,sign ,dist ,tol ,output1);

/* Computes the orbits of a ring in the focus manifold. */

sign=-sign;

for(i=0; i<divisions; i++){

theta=i*2* M_PI/divisions;

y0[0]= sqrt (2)*c+radius*cos(theta)*evec2 [0]+ radius*sin(theta)*

evec3 [0];

y0[1]= radius*cos(theta)*evec2 [1]+ radius*sin(theta)*evec3 [1];

y0[2]= radius*cos(theta)*evec2 [2]+ radius*sin(theta)*evec3 [2];

y0 [3]=0.;

copyvector(y0,y0safe);

fprintf(output2 , "%.14le %.14le %.14le %.14le\n", y0[3], y0[0],

y0[1], y0[2]);

writefile(c,y0,y0safe ,sign ,dist ,tol ,output2);

}
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/* Saves information of the linearized system. */

fprintf(output3 , "Node eigenvalue: %.14le\n", eval);

fprintf(output3 , "Focus eigenvalue (1): %.14le+i%.14le\n", -eval/2, sqrt

(1+(3./4)*eval*eval));

fprintf(output3 , "Focus eigenvalue (2): %.14le-i%.14le\n\n", -eval/2,

sqrt (1+(3./4)*eval*eval));

fprintf(output3 , "Node eigenvector: (%.14le ,%.14le ,%.14le)\n", evec1 [0],

evec1[1], evec1 [2]);

fprintf(output3 , "Focus eigenvector (1): (%.14le ,%.14le ,%.14le)\n", evec2

[0], evec2[1], evec2 [2]);

fprintf(output3 , "Focus eigenvector (2): (%.14le ,%.14le ,%.14le)\n\n",

evec3[0], evec3 [1], evec3 [2]);

fprintf(output3 , "Implicit equation focus invariant plane: %+.14 le(y0)

%+.14le(y1)%+.14 le(y2)%+.14le=0\n", invplane [0], invplane [1],

invplane [2], invplane [3]);

fclose(output1);

fclose(output2);

fclose(output3);

printf("Process Completed.");

return 0;

}

/* Writes the points of a semiorbit in a file.

*

* writefile Variables:

* itermax -> Maximum number of iterates for control. (For instance ,

to avoid infinite computations in periodic orbits).

* plotlim -> maximum distance of the computations wrt the initial

condition. (Plot restricted in a domain).

* event -> 0 the process can continue one more step. 1 the process

has some cannot continue. */

void writefile (double c, double y0[4], double y0safe [4], int sign , double dist ,

double tol , FILE *output1){

int iter , itermax =1.e5 , event;

double plotlim =1.e-6;

iter =0;

do{

integratorcont(c,y0 ,sign ,&event ,dist ,tol);

iter ++;

fprintf(output1 , "%.14le %.14le %.14le %.14le\n", y0[3], y0[0], y0

[1], y0[2]);

}while(iter <itermax && fabs(y0[0]- y0safe [0])<plotlim && fabs(y0[1]- y0safe

[1])<plotlim && fabs(y0[2]- y0safe [2])<plotlim && event ==0);

return;

}
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D.4. 2D-Heteroclinic Orbits. Program that �nd the 2D-heteroclinic orbits.

/*

* Integrator -v5.c (Taylor Method)

* Author: Alberto García Molina

*/

#include "Auxiliary.h"

void writefile (double , double , double , FILE *);

/* main Variables:

* c -> Parameter of the vector field.

* y0[4] -> Vector containing the initial data (y0,y1 ,y2 ,x).

* sign -> +1 if iterates are forward in time. -1 if iterates are

back in time.

* dist -> distance between points in the phase space.

* Files:

* Solution.dat -> File contains (x0,y0 ,y1 ,y2) for the orbit. */

int main (void) {

/* Initialize variables. */

double c=0.8, dist =1.e-3, tol=1.e-12;

/* Opens the file. */

FILE *output1 , *output2;

output1=fopen("SectionFocus1.dat", "w+");

output2=fopen("SectionFocus2.dat", "w");

if (output1 == NULL || output2 == NULL){

printf("Error with output .\n");

exit (1);

}

writefile (c,dist ,tol ,output1);

writefile (-c,dist ,tol ,output2);

fclose(output1);

fclose(output2);

printf("Process Completed.");

return 0;

}

/* Writes the points of a semiorbit in a file.

*

* writefile Variables:

* itermax -> Maximum number of iterates for control. (For instance ,

to avoid infinite computations in periodic orbits).

* plotlim -> maximum distance of the computations wrt the initial

condition. (Plot restricted in a domain).

* event -> 0 the process can continue one more step. 1 the process

has some cannot continue. */

void writefile (double c, double dist , double tol , FILE *output1){

int iter , itermax =1.e5 , event , i, divisions =150, sign;

double plotlim =10, radius =1.e-7, theta;

double y0[4], y0safe [4], evec1[3], evec2 [3], evec3[3], invplane [4];
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eigen(c,evec1 ,evec2 ,evec3 ,invplane ,&sign ,tol);

/* Computes the orbits of a ring in the focus manifold. */

sign=-sign;

for(i=0; i<divisions; i++){

theta=i*2* M_PI/divisions;

y0[0]= sqrt (2)*c+radius*cos(theta)*evec2 [0]+ radius*sin(theta)*

evec3 [0];

y0[1]= radius*cos(theta)*evec2 [1]+ radius*sin(theta)*evec3 [1];

y0[2]= radius*cos(theta)*evec2 [2]+ radius*sin(theta)*evec3 [2];

y0 [3]=0.;

copyvector(y0,y0safe);

iter =0;

do{

integratorcontsect(c,y0,sign ,&event ,dist ,tol);

iter ++;

}while(iter <itermax && fabs(y0[0]- y0safe [0])<plotlim && fabs(y0

[1]- y0safe [1])<plotlim && fabs(y0[2]- y0safe [2])<plotlim &&

event ==0);

if(event ==2){

fprintf(output1 , "%.14le %.14le %.14le %.14le\n", y0[3],

y0[0], y0[1], y0[2]);

}

}

return;

}
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