
A&A 599, A92 (2017)
DOI: 10.1051/0004-6361/201629527
c© ESO 2017

Astronomy
&Astrophysics

Cosmic expansion history from SNe Ia data
via information field theory: the charm code

Natàlia Porqueres1, Torsten A. Enßlin2, Maksim Greiner2, Vanessa Böhm2, Sebastian Dorn2,
Pilar Ruiz-Lapuente4, 3, and Alberto Manrique1, 3

1 University of Barcelona, Departament de Física Quàntica i Astrofísica, Martí i Franquès 1, 08028 Barcelona, Spain
e-mail: natalia_porqueres@hotmail.com

2 Max-Planck-Insitut für Astrophysik (MPA), Karl-Schwarzschild-Strasse 1, 85741 Garching, Germany
3 Institut de Ciències del Cosmos, Martí i Franquès 1, 08028 Barcelona, Spain
4 Instituto de Física Fundamental, CSIC, Serrano 121, 28006 Madrid, Spain

Received 13 August 2016 / Accepted 3 December 2016

ABSTRACT

We present charm (cosmic history agnostic reconstruction method), a novel inference algorithm that reconstructs the cosmic expan-
sion history as encoded in the Hubble parameter H(z) from SNe Ia data. The novelty of the approach lies in the usage of information
field theory, a statistical field theory that is very well suited for the construction of optimal signal recovery algorithms. The charm
algorithm infers non-parametrically s(a) = ln(ρ(a)/ρcrit0), the density evolution which determines H(z), without assuming an analyt-
ical form of ρ(a) but only its smoothness with the scale factor a = (1 + z)−1. The inference problem of recovering the signal s(a)
from the data is formulated in a fully Bayesian way. In detail, we have rewritten the signal as the sum of a background cosmology
and a perturbation. This allows us to determine the maximum a posteriory estimate of the signal by an iterative Wiener filter method.
Applying charm to the Union2.1 supernova compilation, we have recovered a cosmic expansion history that is fully compatible with
the standard ΛCDM cosmological expansion history with parameter values consistent with the results of the Planck mission.
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1. Introduction

Combined observations of nearby and distant type Ia Super-
novae (SNe Ia) have demonstrated that the expansion of the Uni-
verse is accelerating in the current epoch (Perlmutter et al. 1999;
Riess et al. 1998). Such a Universe can be described by the cold
dark matter (ΛCDM) model, in which the cosmic acceleration
is determined by Einstein’s cosmological constant with a time-
independent equation of state, ω ≡ p/ρ = −1. However, this
is just one of the possible explanations of the expansion that is
consistent with the SNe Ia measurements. Others include a new
field component filling the Universe as a quintessence or modi-
fied gravity (Koyama 2016).

Constraining the cosmic expansion as a function of redshift
is a task of major interest, since the evolution of the scale factor
allows us to probe properties of the fundamental components of
the Universe. This may lead to a better understanding of their
nature as well possibly providing evidence for new fundamental
physics.

Recent studies of the baryonic acoustic oscillations (BAO)
have suggested different constraints on the density of dark
energy at high redshifts (Delubac et al. 2015; Hee et al.
2016). Such a change in the evolution of the dark energy den-
sity in the early epoch could be determined from SNe Ia
data at high redshifts (z> 1), which will be available shortly
(Rubin et al. 2016). In addition, some years from now a sam-
ple of 105 SNe Ia is expected to be available from the LSST
(LSST Science Collaboration et al. 2009). This upcoming data
will open an entirely new chapter in the study of dark energy.

The aim of this work is to reconstruct the cosmic expan-
sion history, encoded in the Hubble parameter H(z), from super-
novae data in the framework of Information Field Theory (IFT;
Enßlin et al. 2009). Conceptionally, IFT is a statistical field the-
ory that permits the construction of optimal signal recovery al-
gorithms. To this end, we developed the charm1 code, which is
freely available2. We use the Union2.1 Supernova compilation,
which is a database that contains 580 SNe Ia in the redshift range
of 0.015 < z < 1.414.

Deriving the cosmic expansion history is a major goal of
modern cosmology. To date, the low-redshift evolution of the
Hubble parameter H(z) has been studied with different methods.
Some recent studies present analysis of the cosmic expansion
by χ2 minimization (Bernal et al. 2017; Melia & McClintock
2015) while others develop non-parametric methods to solve the
inverse problem of reconstructing the Hubble parameter H(z)
(Li et al. 2016; Montiel et al. 2014; Ishida & de Souza 2011;
Shafieloo et al. 2006) or the equation of state of dark energy
(España-Bonet & Ruiz-Lapuente 2005, 2008; Simon et al. 2005;
Genovese et al. 2009). Common to all non-parametric recon-
structions, the ones cited above and the one we develop here,
is that a quantity to be reconstructed (Hubble parameter, cosmic
density, equation of state, etc.) as well a regularization for the
otherwise ill-posed inference problem must be chosen. The dis-
cussed methods differ in what regularization is chose.

Here, we develop a non-parametric reconstruction in natu-
ral coordinates for the reconstruction of the logarithm of the

1 charm stands for cosmic history agnostic reconstruction method.
2 https://gitlab.mpcdf.mpg.de/natalia/charm
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cosmic density s = ln(%/%crit0) as a function of the logarithm
of the cosmic scale factor x = − ln a and thereby the Hubble
parameter H(z). The regularization arises from a Bayesian prior
on potential solutions s(x). We construct this prior from the in-
sight that constituents of the cosmic density are likely to scale
with the inverse scale factor to some power typically (but not
exclusively) between zero (cosmological constant) and four (ra-
diation). Translated to the log-log coordinates we advocate this
to be natural, this means that straight lines in s(x) are preferred
over curved ones. We can also motivate the level of expected
curvature: a transition from radiation to dark energy domination
within a few e-folds of expansion has to be possible if our stan-
dard cosmological expansion history should be embraced by the
prior.

An advantage of the adopted Bayesian methodology lies in
the fact that it provides a flexible framework to question data:
it can reconstruct the cosmic expansion history using different
priors. For example, it can be asked how much the data re-
quests a modification of a given cosmology or what the pref-
ered expansion history is from a cosmological composition ag-
nostic point of view. The main assumption is a smooth behavior
of the logarithm of the density ln ρ with the logarithmic scale
factor, ln a, whereas the strength of this assumption can also be
varied.

We probe that charm is sensitive to features in expansion
history at any low-redshift, z < 1.5. In addition, the algorithm
is easily extendible to include other datasets, such as BAO or
Cepheids (Riess et al. 2016), which provide information of a
transition epoch between deceleration and acceleration of the
cosmic expansion (Moresco et al. 2016; Hee et al. 2016).

We develop and test charm, so that it is ready for application
to the new catalog Union3 compilation, which is expected to pro-
vide information about the dark energy density at high-redshifts.

After this introduction, we establish our notation and present
our assumptions and the inference problem in Sect. 2. In Sect. 3,
the SN Ia catalog is described and we derive our reconstruction
method in Sect. 4. In Sect. 5, we specify our prior knowledge and
the cosmological expansion histories that we use to test charm.
We present a comparison of charm with previous literature in
Sect. 6. Finally, we present the results of the reconstruction in
Sect. 7 and conclude in Sect. 8.

2. Inference approach

2.1. Basic notation

First of all, we needed to establish some notations and assump-
tions. We derived the algorithm of charm in the framework of
IFT, following the notation of Enßlin et al. (2009). We have as-
sumed that we are analyzing a discrete set of data d which may
depend on a signal s, which contains the physical quantities of
interest. In this case the signal is a field, s(x), chosen to be the
logarithm of the cosmic density ρ(z) as a function of the logarith-
mic scale factor, x = − ln(a) = ln(1 + z), where z is the redshift.

This parametrization is natural, as it deals with dimension-
less quantities, represents cosmic periods dominated by a con-
stant equation of state ρ ∝ a1+ω as straight lines s = s0 +(1+ω)x,
and converts relative variations of O(e) to additive variations
of O(1).

This coordinate system has the advantage that we can
model the signal uncertainties by Gaussian fluctuations around a

background cosmology, denoted as tbg(x):

P(s) = G(s − tbg, S ) =
1

√
|2πS |

exp
(
−

1
2

(s − tbg)†S −1(s − tbg)
)
,

(1)

where S is the prior covariance matrix S = 〈φ φ†〉(s|S ) with φ =
s − tbg. Scalar products of continuous quantities are defined as
a†b ≡

∫ ∞
0 dx a(x) b(x).

The diagonal of the prior covariance, S xx = 〈φ2
x〉(s|S ), encodes

how much variation of the signal around the a priori background
cosmology tbg is expected a priori at every location x. The off-
diagonal terms of the covariance, S xy = 〈φxφy〉(s|S ), specify how
correlated such deviations form the background cosmology are
expected to be between the points x and y. A larger correlation
corresponds to smoother structures of the deviations. In Sect. 5,
we will use simple and intuitive arguments about the expected
roughness of s to specify S , as well as different choices of the
background cosmology tbg. In particular, as no location of cos-
mic history is singled out a priori on a logarithmic scale, the prior
covariance structure should be homogeneous, S xy = Cs(|x − y|),
with Cs(r) a correlation function that only depends on the dis-
tance r = |x − y|.

2.2. Signal inference

In the inference problem, we are interested in the probability
of the signal given the data. This is described by the posterior
P(s|d), given by Bayes’ Theorem,

P(s|d) =
P(d|s)P(s)

P(d)
, (2)

which is the product of the likelihood P(d|s) and the signal prior
P(s) normalized by the evidence P(d).

In the framework of IFT, inference problems are formulated
in the language of statistical field theory. To that end we rewrite
the posterior P(s|d) as

P(s|d) =
P(d|s)P(s)

P(d)
=

1
Z

e−H(d,s), (3)

where H is called the information Hamiltonian and Z is the
partition function. They are defined as

H(d, s) = − ln(P(d|s)P(s)), (4)

Z(d) =

∫
Ds e−H(d,s) =

∫
Ds P(d|s)P(s) = P(d), (5)

whereDs is a phase space integral.
The information Hamiltonian comprises all available infor-

mation and is for this reason the central mathematical object
in our method development. Its minimum with respect to s for
a given dataset d, for example, is the maximum of the pos-
terior (MAP). Our algorithm calculates the MAP estimation
(Lemm 1999) of the expansion history.

3. Database

SNe Ia have been found to be an excellent probe for studying the
expansion history of the Universe. Observations of the nearby
and distant SNe Ia led to the discovery of the accelerating expan-
sion (Perlmutter et al. 1999; Riess et al. 1998). For this reason,
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Fig. 1. Hubble diagram for the Union2.1 compilation (upper panel) and
residuals of data respect to the Planck cosmology (bottom panel).

we choose supernovae as our initial data set to develop an IFT
based method for reconstructing the cosmic expansion history.

Kowalski et al. (2008) described a method to analyze the
SNe Ia data in a homogeneous manner and created a compi-
lation, the Union SN Ia compilation, combining the world’s
SN data sets. Both new data and literature SNe were fit using
a spectral template for lightcurve fitting, also known as SALT
(Guy et al. 2005).

Here, we use the Union2.1 compilation, which contains
580 SNe Ia: the 557 data from Union2 and 23 new measurements
at redshift z > 1 (Suzuki et al. 2012). The data are distributed in a
redshift range of 0.015 < z < 1.414 corresponding to an x-range
of 0.014 < x < 0.881. Union2.1 provides the redshift, distance
modulus and distance modulus error for each supernova, which
are shown in Fig. 1. The catalog also includes uncertainty co-
variance matrix with systematics.

In this work, we attempt a tomographic inversion of the
SN data into a cosmic expansion history, where the term tomo-
graphic means a reconstruction of a searched object properties
distributed along a coordinate for which the allocation does not
follow from observation, in this case a reconstruction along the
line of sight. Tomography is very sensitive to systematic errors
and therefore, we should use a non-diagonal noise covariance
matrix N in our reconstruction in order to account for correlated
systematic uncertainties. Some systematic errors are common in
all the observations while other sources of systematic errors are
controlled by the individual observers.

Kowalski et al. (2008), identified two categories of system-
atic errors: the ones that affect measurements independently for
each SN Ia (e.g. due to observational method) and systematic
errors that affect the measurements of SNe at similar redshifts
(e.g. due to astrophysics). Since the different sources of system-
atic errors can be considered to be independent, the total error
can be well approximated as a Gaussian error. In Appendix A
we briefly discuss the sources of systematics.

4. Reconstruction

In order to reconstruct the cosmic expansion history, which is
encoded in the Hubble parameter H(z), from supernovae data
we write H in terms of the scale factor a = (1 + z)−1. Then we

have

H =
ȧ
a

(6)

and(
H
H0

)2

=
ρ

ρcrit0
, (7)

where ρcrit0 = 3H2
0/(8πG). The density ρ is usually assumed to

be polynomial in a with three contributing terms:

ρ(a) = ρΛa0 + ρka−2 + ρDMa−3 + ρrada−4. (8)

However, as we aim for a non-parametric reconstruction, we do
not assume this polynomial form but just that ρ is smooth with
a−1 as well as that power-law like building blocks of ρ(a) are
favored.

As data we use the distance moduli of SNe from Union2.1,
assuming Gaussian noise. As our signal we define

s(x) = ln(ρ(x)/ρcrit0), (9)

with

x = − ln(a) = ln(1 + z). (10)

The distance modulus is

µ(z) = 5 log10

[
(1 + z)dH

∫ z

0
dz′

1
E(z′)

]
− 5, (11)

where dH is constant in a flat universe, dH = c/H0, and E =
H/H0. In ΛCDM we have

E(z) =
√

Ωm(1 + z)3 + ΩΛ, (12)

while our generic parametrization we have

E(z) = exp(s(x)/2). (13)

4.1. Response operator

Our cosmology signal s has been imprinted onto the data. The
functional relationship between the noiseless data µ and the sig-
nal can be regarded as a non-linear response operator. To be pre-
cise, the response operator describes how the distance moduli
at different redshifts of the SNe depend on the unknown cosmic
expansion history encoded in our signal s.

Combining our parametrization (Eqs. (9) and (10)) with
Eq. (11) yields the response as

R j(s) = 5 log10

[
ex j dH

∫ x j

0
dx′e−

1
2 s(x′)+x′

]
− 5, (14)

with x j = ln(1 + z j).
The response depends on an intergral over our signal s(x).

The goal of our tomographic method is to invert this integration.
Since the response is not a linear operation of the form R(s) =
R s + const. it cannot be algebraically inverted, which would al-
low us to minimize the information Hamiltonian directly.
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4.2. Expansion of the information Hamiltonian

In order to build the information Hamiltonian H(d, s) =
− ln P(d|s) − ln P(s), we describe our a priori knowledge on s
with a Gaussian P(s) = G(s− tbg, S ) as described in Eq. (1). The
background cosmology tbg and the signal covariance S are to be
specified later. The noise is assumed to be Gaussian and inde-
pendent of the signal, distributed as P(n|s) = G(n,N), since the
sources of uncertainty which operate on the distance modulus µ
can be approximately assumed to be independent from µ.

To perturbatively expand our problem, we can write the in-
formation Hamiltonian in terms of s = t + ϕ, where we call t the
pivot field and ϕ its perturbation. By assuming a signal covari-
ance S , the expanded Hamiltonian reads

H(d, ϕ|t) = − log
1

|2πS |1/2|2πN|1/2

+
1
2

(
d − R(t + ϕ)

)†
N−1

(
d − R(t + ϕ)

)
+

1
2

(ϕ + t − tbg)†S −1(ϕ + t − tbg), (15)

where the prior background cosmology only affects the terms
related to our prior. The amplitude of the perturbation is assumed
to be |ϕ| < 1 and then we can expand the response operator since
exp(t + ϕ) ≈ exp(t)(1 + ϕ).

Our posterior is a non-Gaussian probability distribution
function. In order to minimize the probability in an efficient and
numerically robust way, we Gaussianize it by linearizing the re-
sponse R(s) around the pivot field t,

R(s) = R(t) +
∂R
∂ϕ
|s=tϕ + O(ϕ2) = R(t) + Rtϕ + O(ϕ2). (16)

The linearized response Rt is

(Rt) jx = −α
q jx

r j
, (17)

with α = 5/(2 ln 10),

q jx ≡ dH e−
1
2 tx+x+x jθ(x j − x), (18)

and

r j ≡ ex j dH

∫ x j

0
dx′e−

1
2 tx′+x′ . (19)

The resulting approximated Hamiltonian,

H(d, ϕ|t) =
1
2

(d − R(t) − Rtϕ)† N−1 (d − R(t) − Rtϕ) (20)

+
1
2

(ϕ + t − tbg)†S −1(ϕ + t − tbg),

is then minimized by m = D j with

D = (R†t N−1Rt + S −1)−1, (21)

the so-called information propagator operator and

j = RtN−1 (d − R(t)) − S −1
(
t − tbg

)
, (22)

the so-called information source field.
The terms information source j and information propagator

D may require a brief explanation. In this linear response ap-
proximation the Hamiltonian is quadratic in s. This corresponds

to a Gaussian joint probability of signal and data, implying a
Gaussian posterior,

P(ϕ|d) ≈ G(ϕ − m,D). (23)

In this approximation the information propagator is the a poste-
rior uncertainty covariance D = 〈(ϕ − m) (ϕ − m)†〉(s|d,S ), very
similar to the a priori covariance S = 〈(s − tbg) (s − tbg)†〉(s|S ).
The covariance D is smaller than S , since the presence of the
data has restricted the set of possible cosmologies. The infor-
mation source j contains the data and has excited the increased
knowledge on s. This approximative linear solution to the infer-
ence problem is known as Wiener filter solution and D is also
called the Wiener variance.

This Wiener filter solution is not at the minimum of the unap-
proximated Hamiltonian. To reach it we have to repeat the pro-
cedure after shifting the pivot cosmology to t ← t + ϕ until t no
longer changes. We initialize the iteration by t = tbg and stop it
when t becomes stationary. Our iterating Wiener filtering scheme
can be regarded as a Newton method minimizing the full original
Hamiltonian, regularized by expanding the response and not the
Hamiltonian to ensure convergence of the Newton method, for
which we had to simplify our propagator operator (Appendix B).
Therefore, the correct MAP solution will be found at the end of
the iterations.

5. Cosmology prior

In this section, we focus on the definition of the prior as a Gaus-
sian process characterized by a power spectrum, which varies
around a background cosmology (Lemm 1999; Enßlin et al.
2009).

First, we consider that the background expansion history tbg
is that of the ΛCDM model, which is the currently accepted cos-
mology. To validate our reconstruction, we take two more ex-
pansion histories: (1) a CDM cosmology, without a dark energy,
in order to check that charm is able to recover the cosmologi-
cal constant even if the prior does not favor its presence. (2) An
agnostic cosmology that has little knowledge of the equation of
states of radiation, matter and dark energy for maximally model-
independent cosmic history reconstruction.

5.1. Prior

As prior knowledge, we assume that the signal s(x) exhibits only
limited curvature since all known contributions to s(x) like mat-
ter, radiation and dark energy contribute linear segments. We
therefore punish curvature as measured by ∇2ϕ and write our
negative log prior as

H(s − tbg) =
1
2

∫
dx (s − tbg)†∇†2∇2(s − tbg). (24)

This should control the degree of smoothness of %(a) =
%crit0 esx=ln a in the following fashion. A one-sigma fluctuation in
terms of this prior energy corresponds to a bending of the slope
of s(x) by one per e-folding of cosmic expansion. Given that in
the standard cosmological model from radiation domination un-
til today the scale factor changed by eight e-foldings (four orders
of magnitude) and the combined equation of state of mass in the
Universe changed only by four (from radiation to dark energy)
we see that that the standard cosmological expansion history is
well contained within the one sigma contour of our prior. We
can quantify the strength also with respect to data consistency:
the variance of d2 ln %(a)/(d ln a)2 is punished with a strength,
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which requests that for this quantity being on a level of one it is
required that the data is under stress by at least one sigma with
the reconstructed expansion history.

The signal prior covariance matrix S is then given by

S −1 = ∇†2∇2, (25)

which is a diagonal matrix in Fourier space3,

S kk′ = 2πδ(k − k′)k−4. (26)

5.2. Planck cosmology

The ΛCDM model is based upon a spatially flat and expand-
ing Universe, in which the dynamic of the cosmic expansion is
dominated by the CDM and a cosmological constant (Λ) at late
times.

According to the second Friedman equation, the expansion
rate H(a) is given by

H2 =
8πGρ

3
−

kc2

a2 +
Λc2

3
, (27)

where ρ is the energy density, k is the curvature and G is the
gravitational constant.

By defining the density parameters ΩX as the ratio between
the density of X and the critical density, the second Friedman
equation reads

H(a) = H0

√
ΩΛ + Ωka−2 + Ωma−3 + Ωrada−4. (28)

In a flat universe, the curvature density parameter is null,
ΩK = 0. Therefore, from the definition of our signal s(x) =
ln(ρ(x)/ρcrit0), the background cosmology is given by

t = ln(ΩΛ + Ωma−3 + Ωrada−4) ≈ ln(ΩΛ + Ωma−3), (29)

as the Ωrad � 1 in the late Universe.
In terms of the coordinate x = − ln(a) of our signal-space,

the former equation is written as

t ≈ ln(ΩΛ + Ωme3x). (30)

The values we adopt for the density parameters at present time
are the ones found by the Planck mission from the cosmic mi-
crowave background (CMB) data, Ωm = 0.314 and ΩΛ = 0.686
(Planck Collaboration XVI 2014).

The same values of the Ωm and H0 are used for the
CDM model. We use this unrealistic CDM scenario to test how
much our reconstruction depends on the assumed background
cosmology. Since in this case Ω < 1, we allow for a curvature
term Ωk = 1 −Ωm, which evolve with a−2.

5.3. Agnostic cosmology

In order to reconstruct the cosmic expansion history in a way
that is agnostic about the assumed constituents of the Universe,
like matter, radiation and dark energy, we assume another back-
ground cosmology, which we called agnostic cosmology.

As the ΛCDM model has contributions to the density evolu-
tion of terms proportional to a−4 and a0, the agnostic background
cosmology is taken as being proportional to a−2, which is the
geometric mean between these extremes. The exponent 2 of this
background slope is then on log-log scale

∂s
∂x

=
∂ln ρ
∂ln a

= 2. (31)

3 The following Fourier convention will be used f (k) =
∫

f (x) eikx dx.

Thus, the agnostic background expansion history is given by
tbg = 2x.

The prior for the variation around this background expan-
sion is assumed to be the same prior as before, since we do not
expect the signal to have any strong curvature. In fact, the agnos-
tic cosmology is the ideal background expansion history for this
non-parametric reconstruction, as log-log density expansion s(x)
is not curved and therefore any bending of s and ϕ are exactly
equivalent.

6. Comparison with other methods

In order to emphasize the advantages of our approach, we com-
pare charm to previous literature. Ishida & de Souza (2011) de-
velop a non-parametric method for the reconstruction of the H(z)
based on the principal component analysis (PCA) of the Fisher
matrix F = DT ΛD. This Fisher matrix corresponds in our no-
tation to the term R†N−1R in our propagator operator. While
Ishida & de Souza (2011) regularize their solution by cutting off
higher order PCA components, we can preserve all modes of the
expansion, just weight their contribution to the solution accord-
ing to their bending on log-log scale. Furthermore, our method
enforces the positivity of the density ρ = ρcrit0es.

Shafieloo et al. (2006) reconstructs the expansion history
with a non-parametric method that also enforces smoothness of
the solution. However, in their work the data is smoothed di-
rectly to suppress noise (while a background expansion history
is temporarily subtracted), while we just encourage smoothness
via a prior without modifying the data. In the end, also our ap-
proach averages nearby data to suppress noise, but it does this in
an adaptive way, having a shorter effective smoothing length in
regions of dense data, whereas Shafieloo et al. (2006) employ a
constant smoothing kernel in redshift space and have to experi-
ment with the kernel size.

To summarize, our approach requires less tuning of regu-
larization parameters compared to previous approaches, as our
prior assumption on the problem solution, that power law equa-
tion of states within a certain range are more natural, already
fully specifies the necessary regularization.

7. Results

We investigate in this section how far the assumption of a prior
cosmology affects the reconstruction.

First of all, in Sect. 7.1, we show that the iterative Wiener
filter is able to successfully reconstruct a perturbation of the
ΛCDM model. For this purpose, a mock data catalog is simu-
lated from a randomly perturbed cosmology.

Once we have convinced ourselves that our algorithm recon-
structs the cosmology from data accurately, we apply it to real
data. Now the impact of a prior background cosmology needs to
be investigated. For this reason, we start with different expansion
histories: the ΛCDM model, for which we expect that the recon-
structed corrections are nearly a constant around zero. Then, we
assume the CDM model as our initial guess, for which we ex-
pect that the cosmological constant is recovered. Finally we test
the agnostic cosmology, in order to see if the iterative Wiener
filter is able to reconstruct the standard ΛCDM cosmology from
a non-informative prior.
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7.1. Mock data

Before applying charm to the real data, we validate it with a
simulated database. These data were generated from a perturbed
Planck cosmology, where the perturbation was a random field.

The aim of generating mock data is to show that our mech-
anism for the reconstruction of the cosmology is able to find
a perturbation of the ΛCDM model if it is present in the data,
even in case the perturbation amplitude is much smaller than the
Planck cosmology amplitude.

The perturbation is introduced as an additive term to the
ΛCDM model, s = tΛCDM + ϕ. It is generated from Gaussian
probability density,

P(ϕ) ∝ exp
{

1
σA

∫ [
1

2σ2
c

(
∂2ϕ

∂x2

)2

+
1

2σ2
α

(
∂ϕ

∂x

)2]
dx

}
, (32)

that ensures the smoothness of the perturbed field. Here, σα can
be considered as a parameter to control the slope of the perturba-
tion, which we assume to be σα = 2 since this should naturally
permit slopes of ρ ∝ a−4 to ρ ∝ a0 bracketing our agnostic back-
ground cosmology ρ ∝ a−2 in case of σA = 1. The parameter σc
controls the curvature of the perturbation, which is assume to be
0.5, since we do not expect much curvature, while σA is a nor-
malization constant to control the amplitude of the perturbation.
As we focus on small perturbations, which are the realistic ones,
this parameter is fixed to 10−1. We note that the perturbation is
generated from a different probability distribution than the prior
used in our inference. This is on purpose to test the robustness
of charm.

Once the perturbed Planck cosmology and mock data are
generated, we can apply charm. The number of simulated SNe
Ia is 580 spread in a redshift range of 0.015 < z < 1.414, as in
the real database. The amplitude of the noise, σn, is set to the
amplitude of the perturbation, σA. In the results shown in Fig. 2,
the initial background cosmology is assumed to be the Planck
model. It is seen that the perturbation is small, since the per-
turbated cosmology, used to generate the data, is similar to the
Planck cosmology. The prior used for the reconstruction is the
one from Eq. (25) and the result follows the perturbed expansion
history. In order to see that the perturbation can be recovered, we
plot its reconstruction in the bottom panel of Fig. 2.

7.2. Reconstructed cosmology

Now, we can apply charm to real data from Union2.1 compi-
lation under the various prior background cosmologies as de-
scribed before.

Figure 3 displays the results assuming the ΛCDM model
as the cosmology background. The reconstruction is compati-
ble with Planck ΛCDM cosmology. The displayed uncertainty
limits of the reconstruction are provided by the diagonal of the
Hessian, considering all the terms in the inverse propagator D−1

plus the term from Eq. (B.1) that was was omitted during the
numerical minimization of the Hamiltonian for stability reasons.
From this, we can conclude that the data agree with the ΛCDM
model, as expected.

In order to study the agreement of the data with the Planck
cosmology, we calculate the signal response, Rs, for our recon-
struction. The residuals of the real data with respect to this are
shown in the bottom panel of Fig. 1 and they can be compared
to the residuals of the Planck cosmology in the middle panel of
Fig. 3, calculated by applying the response operator to the Planck
cosmology and substracting the real data. We can see that the

Fig. 2. Reconstruction using mock data generated with a perturbed
Planck cosmology with σA = 0.1 (upper panel). The blue and yellow
regions correspond to the prior and posterior 1σ uncertainty limits re-
spectively, which are obtained from the diagonal of the prior and the di-
agonal of the propagator operator via σx = S 1/2

xx and σx = D1/2
xx . Bottom

panel: reconstruction of the perturbation.

Fig. 3. Upper panel: reconstruction assuming Planck cosmology as
background cosmology. The blue and yellow regions correspond to the
prior and posterior 1σ uncertainty limits respectively. Middle panel:
residuals of the reconstruction; bottom panel: deviation of the recon-
struction from Planck cosmology.

residuals are almost the same for the Planck cosmology and for
our reconstruction.

Figure 4 shows the reconstruction for the CDM model as
prior background cosmology. Although this model differs signif-
icantly from the Planck cosmology, our reconstruction is com-
patible with the ΛCDM model. This shows that the data strongly
favors a cosmological expansion history dominated by CDM and
a cosmological constant. In the following subsection, we recover
the density of the cosmological constant ΩΛ by fitting this recon-
struction. The residuals in this case are equivalent to the ones in
the middle panel of Fig. 3.

Finally, we adopt the agnostic cosmology as our prior back-
ground dcosmology. The result is shown in Fig. 5 and demon-
strates that the Planck cosmology is recovered even in case
charm is not informed about the specific equations of state of
matter, radiation and dark energy.
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Fig. 4. Reconstruction assuming CDM model as background cosmology
(upper panel) and deviation of the reconstruction from Planck cosmol-
ogy (bottom panel).

Fig. 5. Reconstruction assuming agnostic cosmology as background
cosmology (upper panel) and deviation of the reconstruction from
Planck cosmology (bottom panel).

From the results in this section, we can conclude that the
assumed prior background cosmology does not strongly affect
our results. The ΛCDM is better recovered if it is assumed in
the prior, but also a CDM or the agnostic cosmology prior yield
a reconstruction close to the Planck ΛCDM model. Further-
more, we verified by not here displayed experiments that the ini-
tial pivot cosmology has no impact on the finally reconstructed
cosmology.

7.3. Fitting ΩΛ from the reconstruction

We have seen in Fig. 4 that the reconstruction from CDM model
recovered the cosmological constant. We can take advantage of
this to validate charm by comparing the density of the cosmo-
logical constant that we obtained with the values in the literature.

In order to obtain the value of ΩΛ from our reconstruction,
we transform our reconstruction in such a way that we can fit
a linear regression model. From the definition of the signal as
s = ln E2(x), this transformation reads as

X ≡ e3x, Y ≡ es → Y = ΩmX + ΩΛ (33)

Fig. 6. Reconstruction of a perturbation of the Planck expansion history
at high-redshifts.

and thus, the slope of the linear regression corresponds to the
mass density and the independent term is identified as the density
of dark energy.

The result of the fitting is ΩΛ = 0.670, which is compati-
ble with the value obtained by Planck mission, ΩΛ = 0.686 ±
0.020 (Planck mission, 2014). This parametric fit to our non-
parametric reconstruction should just illustrate the consistency
of our reconstruction with other measurements. For a proper un-
certainty quantification the parametric model should be fit to the
data directly, which was already done by many other works.

7.4. Constraints and Union3

Rubin et al. (2016) announced recently that a new update of the
Union catalog is in preparation, called Union3 Supernova com-
pilation. This new compilation will include high-redshift (z > 1)
supernovae observed with the Hubble Space Telescope.

The study of the BAO provides constraints to the evolution
of dark energy density. Recently, BAO measurements have sug-
gested a change in the density parameter of the dark energy at
large redshifts z > 1 (Delubac et al. 2015; Aubourg et al. 2015).
This early evolution of dark energy could be determined more
precisely when data of SNe Ia at high-redshift are available.

In order to prepare our reconstruction algorithm for future
work, we check that it is able to reconstruct a perturbation that
exists only for large redshifts (z > 1). We generate a perturbation
at z > 2 by adding a parabola to the Planck cosmology as a test.
As in Sect. 7.1, the number of simulated SNe Ia is 580 but now
spread in a redshift range of 0.015 < z < 3.0, that is an antici-
pation of the future improved datasets. We can see in Fig. 6 that
this perturbation can be recovered by charm. This reconstruc-
tion assumed a Planck model as initial background cosmology
and the prior from Eq. (25).

8. Conclusions

In this work we have developed charm, a Bayesian inference
method to reconstruct non-parametrically the cosmic expansion
history from SNe Ia data and applied it to the Union2.1 dataset.
As shown in Sect. 7, the choice of the background prior cosmo-
logical expansion history does not significantly affect the final
result of the reconstruction.
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We found that the Planck cosmology is reconstructed inde-
pendently of a prior assumed background cosmological expan-
sion history. We have also recovered the density parameter ΩΛ

in Sect. 7.3 and found a value of 0.670 which is compatible with
the one from Planck Collaboration XVI (2014).

Although no evidence for a deviation from the standard cos-
mological expansion history has been found, we have tested our
method whether it is able to reconstruct a perturbation if it ex-
isted. Our method was able to reconstruct a relative perturbation
to ΛCDM even with an amplitude as low as 10−1.

Since recent analysis of BAO showed new constraints on the
evolution of dark energy density at early epochs (Delubac et al.
2015), the study of SNe Ia at high-redshift will be crucial in the
future for constraining any time variation in dark energy. In order
to have charm prepared for the release of the database with su-
pernovae at high-redshift, we have checked that the reconstruc-
tion method could find a perturbation that existed only at high-
redshifts. Thus, charm will be a useful tool to study dark energy
in a more model-independent way when the new SNe Ia datasets
become available.
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Appendix A: Systematic errors

A.1. Color corrections

The empirical color corrections account for dust and intrinsic
color–magnitude relation. The validity of the color correction,
which is an empirical relation, relies on the assumption that
nearby and distant SNe Ia have the same color–magnitude rela-
tion. This correction could become a source of systematic error
if different corrections were required for different SN popula-
tions or if the distance to the SN affected this magnitude–color
relation.

The second case seems to be unlikely since the color correc-
tion relation at high and low redshift agree. Although this agree-
ment could arise from a different proportion of reddening and
intrinsic color at different redshift, it supports the empirical rela-
tion for color correction (Kowalski et al. 2008).

The presence of two SN populations is supported by two
types of SN-progenitors timescales argued by Mannucci et al.
(2006). If this two populations are present, they might evolve
in a different way with redshift. If the full sample is divided into
equal subsamples by splitting by color, the color correction is
significantly different for the two subsamples (Amanullah et al.
2010). This suggests that the color–magnitude relation could be
more complex than a linear relation.

A.2. Sample contamination

In order to avoid the contamination of the data by non-type
Ia SNe, which are not standard candles, an analysis technique
was developed by Kowalski et al. (2008). This method, which
is based on χ2 minimization, rejects the outliers from the sam-
ple. However, the systematic uncertainties are cast into an un-
certainty of the absolute magnitude ∆M. In order to consider the
sample contamination, an uncertainty ∆M = 0.015 was added to
the covariant matrix due to contamination.

A.3. Lightcurve model

The lightcurve model is a fit with two parameters and it becomes
a limit in capturing the diversity of SNe Ia. A problem arises
when different techniques are used to observe nearby and distant
supernovae, which implies that the parameters are obtained by
fitting a different part of the curve in high-redshift SNe.

A Monte-Carlo simulation was performed by Kowalski et al.
(2008) in order to quantify this systematic error, obtaining that
the difference of nearby and distant SNe is ∆M = 0.02 mag.

A.4. Photometric peak magnitude

The uncertainty of the peak magnitude is due to the color cor-
rection. In order to measure the color, the flux is measured in
at least two bands. Since the spectra of the SNe at different red-
shifts are obtained from different bands, their color is determined
from different spectral regions. Then, the uncertainty in the dif-
ferent regions of the reference Vega spectrum limits the accuracy
of SNe color measurement.

The Union compilation assumes an uncertainty in the ab-
solute magnitude of ∆M = 0.03 for the photometric peak
magnitude. Later, in the Union2 compilation, the numerical ef-
fect of each passband on the distance modulus was computed.
This was a more efficient way to include this systematic er-
ror than including a constant magnitude covariance for all SNe
(Amanullah et al. 2010).

A.5. Malmiquist bias

Malmiquist bias arises in flux limited surveys. The Union com-
pilation attributes a systematic uncertainty of ∆M = 0.02 in ab-
solute magnitude due to this bias.

A.6. Gravitational lensing

Gravitational lensing causes dispersion in the Hubble diagram at
high redshift (Kowalski et al. 2008). This effect is treated statis-
tically in the Union compilation. The uncertainty due to grav-
itational lensing is larger than the intrinsic dispersion only for
high-redshift SNe but it causes a bias of magnitudes. This bias is
not present if fluxes are used instead of magnitudes.

A.7. Galactic extinction

The photometry is corrected for galactic extinction using an ex-
tinction law that assumes RV = 3.1, together with dust maps
(Amanullah et al. 2010). The galactic extinction is more impor-
tant in nearby SNe, since the distant ones are measured in red-
der bands and then, its RR is approximately the color correction,
without an important effect of the galactic extinction.

A.8. Host-mass correction coefficient

The SNe Ia luminosity is related to the mass of the host galaxy,
even after color corrections (Suzuki et al. 2012). The host galax-
ies for low-redshift SNe Ia are more massive on average than the
host galaxies for high-redshift SNe Ia. This can bias cosmologi-
cal results and it can be corrected by fitting a step in the mass of
the host-galaxy at mthreshold = 1010 M�. The problem is that for
the Union2.1 compilation the individual host galaxy masses are
not known. To overcome this problem, a probabilistic method
was defined to determine the host mass correction. This proce-
dure could carry systematic errors, that are taken into account in
the covariance matrix as ∆M = 0.02.

Appendix B: Simplification of the propagator
operator

The propagator operator D measures the convex part of cur-
vature of the information Hamiltonian, since it is the Hamil-
tonian second derivative except for terms due to higher order
non-linearities in the response. This D operator is mostly used to
guide our gradient descent via the regularized Newton method.
Since the Newton method is not suited for negative curvatures,
the term

α
∑

i j

1
2

qixqiy − riqixδ(x − y)

r2
i

N−1
i j

(
d − R(t)

)
j
, (B.1)

which would be part of the Hessian of the full Hamiltonian is
dropped by our response linearisation in order to avoid numeri-
cal problems caused by negative Eigenvalues of D. This is justi-
fied, as D only guides the numerical scheme, while the unmodi-
fied j determines where the scheme finally converges to.

This simplification is allowed because we are iterating the
Wiener filter to find the global minimum of the information
Hamiltonian, and for this, it is not necessary to perform an opti-
mal step in each iteration just that all steps go in the right direc-
tion. Inhibiting negative Eigenvalues of our simplified Hamilto-
nian ensures that the resulting Newton method always descends
toward the global minimum of the Hamiltonian.
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