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Depinning transition of dislocation assemblies: Pileups and low-angle grain boundaries
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We investigate the depinning transition occurring in dislocation assemblies. In particular, we consider the
cases of regularly spaced pileups and low-angle grain boundaries interacting with a disordered stress landscape
provided by solute atoms, or by other immobile dislocations present in nonactive slip systems. Using linear
elasticity, we compute the stress originated by small deformations of these assemblies and the corresponding
energy cost in two and three dimensions. Contrary to the case of isolated dislocation lines, which are usually
approximated as elastic strings with an effective line tension, the deformations of a dislocation assembly
cannot be described by local elastic interactions with a constant tension or stiffness. A nonlocal elastic kernel
results as a consequence of long-range interactions between dislocations. In light of this result, we revise
statistical depinning theories of dislocation assemblies and compare the theoretical results with numerical
simulations and experimental data.
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I. INTRODUCTION characterized by a roughness exponent. Other scaling expo-
The depinning transition of individual dislocations gliding nents have been introduced to characterize the behavior of

on their slip plane has been widely investigated in thelpast Ccorrelation lengths and times, the velocity above depinning,
in order to explain solid solution hardeniAd, that is, the and the avalanching motion observed as the critical threshold

increase of the yield stress value when solute atoms arg @PProached. Quantitative predictions of the critical expo-

present in a crystal. The presence of solute atoms changggms have been obtained analytically by the renormalization

14,23-28 - .
the local properties of the host material, resulting in a pin-grOUp’ and have been confirmed by numerical

ning force on nearby dislocatiofi$. This is not the onl simulations’*#>=2In the course of time, a deeper level of
9 y : y description and understanding of this phenomenon has been

source of pinningz which can also be provided by IO":mi(:leachieved, going far beyond a mere estimate of the depinning
inclusions or by dislocations in other slip systehBeveral

: X k force, which has typically been the original motivation to
approximate calculations have been performed in the past t9yqress the problem.

obtain the depinning stress from a statistical summation of The analysis of the depinning transition in dislocation
individual pinning forces. In this respect, collective pinning theory has often been made in the line-tension
theories have been very successful in the case of diffusgpproximatioA where dislocations are considered as flex-
weak pinning forces)~** whereas the theory introduced by ible strings with local elasticity. This analogy is not fully
Friedel® is appropriate in the case of localized strong pin-accurate. In fact, the bending of a dislocation produces long-
ning centers. range stress and strain fielt§” and therefore the energy of
From the purely theoretical point of view, dislocations a dislocation line segment depends on the overall configura-
provide a concrete example of a more general problem: thaton of the dislocation line. As in the case of vortex lines in
of driven elastic manifolds in quenched random média. high-temperature superconduct§rer dislocation lines in
Apart from dislocations, other examples of this general probvortex crystals? this leads to a logarithmic wave-vector de-
lem are domain walls in ferromagnéfsi®flux lines in type  pendence of the effective line tension. This wave-vector de-
Il superconductor$’*® contact lines??° and crack pendence does not affect the main features of the depinning
fronts2%:22 In recent years, a vast theoretical effort has beerransition® although numerical simulations indicate a slight
devoted to understand the depinning transition as a nonequthange in the roughness exponent which is not completely
librium critical phenomenot?23-22The morphology of a de- understood:3* In passing, we note that a surface-tension ap-
pinning line is generally found to be self-affine and can beproximation has also been used to describe the so-called Ze-
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results, we gain a complete quantitative picture of the depin-
ning transition. In the elastic approximation, pileups and
low-angle grain boundaries are equivalent to a standard in-
terface depinning problem with long-range elasticity. In two
dimensions(2D), the problem can be mapped to a contact
line or to a planar crack, which have been extensively stud-
ied in the literature. In three dimensions, the self-stress is
similar to the dipolar force in magnetic domain walls and
leads to logarithmically rough deformations. In more techni-
cal terms,d=3 is the upper critical dimension for the transi-
tion, which is well described, up to logarithmic corrections,
by mean-field exponents.

The scaling exponents associated with the depinning tran-
sition describe not only the morphology of the dislocation
array but also its dynamics. In order to confirm the validity

FIG. 1. Transmission electron micrograph taken from aof the elastic calculations, we perform a series of numerical
Cu-14.4 at % Al single crystal deformed at room temperature; the;jmulations for a dislocation pileup. We consider a two-

image_ shows large [egularly spaced dislocation pileups. Courtesy ‘Himensional system, neglecting the deformation of single
Plessing and NeuhausgRef. 49. dislocations, which amounts to an effective one-dimensional

ner pinning of grain boundari®s*L and its impact on grain particle model. Simulations of the model display results in
growth?2 agr_eement wifch the theory and a_IIow to iIIust_rate some inter-
While the behavior of an isolated dislocation pushedeSt'”g dynamical effects. In particular, the _plleup _dlsplays a
through a random distribution of obstacles is at present quitéero-temperature power-law creep relaxation which can be
well understood, the results do not necessarily carry over t§terpreted by scaling relations. Below threshold, the power-
the more realistic case of collective dislocation motion. Dis-laW relaxation terminates into a pinned configuration, while
locations interact via their long-range stress fields, whictPove threshold there is a crossover to linear creep or aver-
may induce intriguing jamming and avalanche like phenom-29€ constant veIo_mty sl|d|ng._As is common for this class of
ena even in the absence of immobile obstatlds most  Systems, the motion of the pileup takes place in the form of
cases, one cannot simply neglect interactions and treat disl@valanches whose distribution again can be characterized by
cations as isolated objects. Developing an analytical theor§caling exponents.
of the depinning transition of interacting dislocation lines
and/or loops of generic orientations and Burgers vectors in a
random solute distribution may be a formidable task. In sev-
eral instances, however, dislocations are arranged into regu- Developing a theory for collective dislocation depinning
lar structures that are amenable to analytical treatment. Irequires the basic knowledge of the elastic properties of the
particular, here we analyze the depinning transition of onedislocation assembly in the first place. In this section, we
dimensional dislocation arrays, viz, regularly spaced pileupsletermine the elastic response of two particular dislocation
and low-angle grain boundarigbAGB). These relatively assemblies: a regularly spaced pileup and a low-angle grain
simple structures are sometimes observed experimentallyoundary of edge dislocation lines. The two structures are
(see Fig. ]} and provide a nice illustration of the effect of quite similar geometrically; both are one-dimensional arrays
dislocation interactions on the depinning transition. An earlyof N dislocation lines with the same Burgers vechand
analysis of the depinning of a dislocation pileup was pre-average line directiore (for edge dislocation® L b), but
sented in Ref. 45, considering explicitly the emission of dis-they differ in the relative orientation of the Burgers vector

locations from a source. _ o and the array direction. In particular, in a pileup a set of
We address the problem by first computing, in Sec. Il ofgqge dislocations lies in the same slip pladefined by the
the present paper, the stress and elastic energy associaigdiocation line directiorg and the Burgers vectpiso that
with a small deformation of the dislocation arrangement. ItAHB see Fia. 2 for a particular example w&hiandaHBHA
turns out that local elasticity approximations are inadequatéi ( 9. P ampie y),.
for dislocation arrays since long-range interdislocation inter-WhereaS. in the LAGB the edge glslocatlt?ns are stackeq in the
actions make pileups and low-angle grain boundaries mucRerpendicular plane such thatL b (see Fig. 3 for a particu-
stiffer than isolated dislocations. The elastic energy is thef@r geometry. We neglect climb, i.e., the motion of a dislo-
used in Sec. Il to estimate the depinning stress within thé&ation perpendicular to its slip plane; hence deformations of
framework of statistical pinning theories, using collectivethe structure can occur solely in the directiontoboth for
pinning theory and Friedel statistics for the weak and stronghe pileup and for the LAGB. In this section we derive the
pinning limits, respectively. shear stress and the elastic energy associated with small de-
In Sec. IV we investigate the dynamics of dislocation ar-formations of these dislocation assemblies. This is needed in
rays. At stresses close to the depinning stress, the dynamicsder to derive the yield stress from statistical pinning theo-
exhibits critical behavior which can be characterized in termgies. For completeness, we consider the problem both in two
of scaling exponents. Using previous renormalization-grou@nd in three dimensions.

Il. ELASTICITY
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z o (xy) =D Xy
Y 2m(1-v)  [(x=x)?+(y-yn)*P
whereu is the shear modulus andis the Poisson ratio. The
glide component of the total force per unit length on another
L dislocationm in the LAGB can be readily obtained from the
Peach-Koehler expressidr(o-b) X & Refs. 13 and 46
+oo
Fm Vi) =b 2 0 (X Y- 2)
n=—x
y For small deformation$,,—x,| <D|m-n| we have
FIG. 2. Aregularly spaced dislocation pileup with Burgers vec- b2 +o0 _
tor along they axis. The ideal configuration is plotted with straight f X Vi) = — M 2 Xm ~ %n , (3)
dashed lines, whereas the solid lines represent their possible glide 27(1 = v) e (Ym— yn)2
deformations within the slip plangz . . .
which can be used to obtain the elastic energy
+o0
A. Two dimensions E=- > f f (X Ym) A%,
m=—o
A two-dimensional model is obtained if we treat the dis- 5w e )
locations as rigid lines. In this case, deformations of the dis- = M > (XLX;)Z withm#=n. (4)
location arrangement result only from variations in the posi- 8m(1 = v) e n=— (M—1N)“D

tion of the dislocations within the one-dimensional arayS; is instructive to express the elastic energy in Fourier space
they form. We consider the case of a LAGB and then directly <pre : 9y _Space,
where one can easily identify the energy cost of the different

tgxte?hd thle rﬁsult to thf plleup.t Itn Laci,hm Ilnear_ a%p:ﬁX'ma'modes. For an infinitely long LAGBI— o, we can write the
ion the elastic energy turns out to be the same in both casegiq|qcation displacements as

Here and throughout the paper, we consider an idea
LAGB as an infinite set of equally spaced edge dislocations X :f %e“kDmx(k)
lying on theyz plane(without loss of generality we consider mo g '
the planex=0) with Burgers vector pointing along the posi- o .
tive x axis b=bX (see Fig. 3. In the rigid dislocation ap- where because of the periodic dislocation arrangement the
proximation, each dislocation is described by the coordinatell1t€gral is restricted to the first Brillouin zon®Zz) of the
(X.,Y,), Wherey,=nD, D is the dislocation spacing in the 'cciProcal spacé-w/D <k</D). Using
LAGB, andx, is a small displacement out of tlxe=0 plane. o2 = cos yd) _ 2 ) M . 2

The shear stress at the poifx,y) due to a dislocation at @ = ry 2 2 Py > Y4 (6)
(Xn,Yp) is given by346 d=1 d=1

©)

ZZ’]T

we obtairf’
pb?

_ow? (dk
E'Sw(l—wDZfBzzw(Z”“" DIOKIX(- K. (7)

From this expression, one can see that the elastic interaction
kernel (27r|k|-Dk?) is not quadratic in the wave vector, as
would be the case for a local elastic line with a constant
tension or stiffness, but grows roughly i for long wave-
length deformations. This is a consequence of long-range
interactions between dislocations in the LAGB which render
a much stiffer structure. In the following sections we will
explore the consequences of this result in view of the collec-
tive pinning of such dislocation structures, something that
has been disregarded in previous studies of dislocation de-
pinning.

The elastic energy associated with perturbations of a regu-

FIG. 3. Aregularly spaced low-angle grain boundary where thdarly spaced dislocation pileup can be obtained in an analo-
dislocations’ Burgers vector is parallel to tRexis. The ideal con- gous manner. According to the geometric conditions as-
figuration is plotted with straight dashed lines in the plae  sumed here, all Burgers vectors are now oriented along the
whereas the solid lines represent their possible glide deformationgositivey axis, and since the dislocations are all in the same
within the slip planexz slip plane we can now writg=x,=0. Proceeding as before,
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the total Peach-Koehler force on dislocatimralong the new Ré =(x-x)2+(y-y")2+(z-2)?, (12)
glide direction is given by .
and the shear stress field due to a screw segment of length

o0 1 1c46
ub? 1 AX' is
£y(0.Ym) = > : ®
VI 2m(1 - v) 2 Y= Yn (xy.2 phz-2 12
ny i L == -
Note that the Peach-Koehler forces are now repulsive; how- 4 RS

ever, the stability of the system is ensured in the case of apquationg(10) and(12) allow us to calculate the glide com-
infinite pileup where the dislocations located at the extremegonent of the total Peach-Koehler forte(o-b) X 7 on an

(at +) have fixed positions, or for a finite pileup with peri- edge or a screw segment. The glide force on an edge segment
odic boundary conditions. Thus, one can also compute thg; [Xn(2),Ym:Z] has two contributionsEE and fSE arising
’ ’ X X

elastic energy cost of small displacemenyg, of the dislo- 4 jts respective interactions with other edge or screw seg-
cations in the pileup with respect to their stable positions. Uy ants

to first order indy,,, we obtain a restoring elastic force
b?  Xn(2) = X,(Z)
o fEE Vo 7) = M m n
jub? %~ Yy © Ul YmD =200 TR 27
277(1 - V) n=—x (Ym - yn)

fy(orbym) ==
_ 2

. . X[l—BM}AZ'AZ,

equivalent to the one obtained for the case of the LAGB. The R%(z2,2)

corresponding elastic energy cost is given by Ef). with

x(K) replaced bysy(k) S ub? z-7 9x(2)
As a partial conclusion of this section, we emphasize that 2 Xn(2), Ym D) = - An R(27) a7

long wavelength distortions of low-angle grain boundaries Rinn(2,

and equally spaced pileups of straight dislocation lines withNote that up to first order in the small displacemdnig(z)

translational invariance alOﬂg the dislocation axis have the-xn(z’)EO:l, the relative distance among Segments can be

same nonlocal elastic properties, with eigenvalues that grovyitten asR?,(2,2')=(Ym=Yn)?+(z=2')%. On the other hand,

linearly with the modulus of the wave vector considered.  fom the general expression for the Peach-Koehler Force
written above, it is straightforward to verify that there are no
B. Three dimensions glide forces acting upon any screw segment on the disloca-

In this section, we consider the more general and realisti€®" line. After summing up all nonvanishing contributions,

case of deformable dislocation lines. As before, we considef's €a" obtain the elastic energy as for the two-dimensional

first the case of a LAGB with Burgers vectors oriented alongcase[see Eq(4)]. The elastic energy can be expressed as the

—EE_L SE ; ; ; _
the x axis, in which each dislocation is now described by as‘ém E'E ;E of the |nteracE[|onTinerg|es bgtweebn edge
set of coordinate$x,(2),y,,z]. Again, y,=nD, but now the edge and edge-screw segments. These are given by

AZ'Az. (13

displacementix,(z) of the infinitesimal dislocation segment ub?

under consideration depends on its positoalong the dis- EFF=- mz ff dzd?Z

location line (see Fig. 3. The elastic stress field due to a g Ymn

general dislocation line or loop can be obtained, for instance, (Ym=Yn)? | [Xn(2) = %1(Z) P

by considering the line as being composed of elementary X 1‘3R2 (2.7 S (27) (14
segments of infinitesimal lengff.Depending on the relative m Rine(2,

orientation of the Burgers vector and the local tangent vector 5 )

7(z), each segment can either have efiglg) L b] or screw ESE= ﬂz ffdzdz z-2 X (20,%(2). (15
charactef7z)||b], or it can be a combination of both. A first 16 R (zz) ™ AT

approximation of a general dislocation line can be its repre- . N .

sentation in terms of a succession of only edge and screw AS We did for the rigid line case, we can also express this
segment48 The mathematical form of the elastic stress fields€!2Stic eénergy in Fourier space in order to diagonalize the
generated by these two types of elementary segments ‘gteracpon ma’_mx and to obtain the Wave_z-vector depende_nce
simple and renders amenable the analytic treatment of th%f the interaction kernel between the different deformation

problem. The shear stress created at the Heint,2) by an modes. The detailed calculation is rather lengthy, so we

dae disl . ¢ diobx and | h merely indicate the procedure followed and the final results
edge dislocation segment of Burgers vedigibxand length  gpained. we evaluate separately the energy contribution due
AZ' located at(x’,y’,z’) is given by

to the self-interaction between the constituent segments of
2} each individual dislocation line, i.en=m, which we denote
AZ',

by E,, and the energy contributions due to the interaction of

dislocation segments lying on different lines, i.e#m,
(10)  Wwhich we refer to a€;. Proceeding this way, we find that

the total energy iE=E55+E5S+EEF+EES We express the
where dislocation displacements in terms of their Fourier modes,

b x-x y-vy)

47(1-v) Rg ” 2

214103-4



DEPINNING TRANSITION OF DISLOCATION.. PHYSICAL REVIEW B 69, 214103(2004)

dk [ d9 _yom ot ,ubzf dkf dq 1[
Xn(2)= | — | ——ekPmgriazy(k, 16 ESf==—| — | —=|2(- y-Inad|q)q?
(2 BZZJZW ka)  (16) =8 ) 2m ) 2np| 207N elaba
d eval he self-i i ibutions for | 2’
and evaluate the self-interaction contributions for long wave- + =gt | x(k, )x(- k,— q), (18)
length deformationga< 1 wherea is a short-distance cutoff 2

introduced to preclude the interaction of a line segment wit

itself. The result can be written as l1Nhere v is the Euler constant. We find a quadratic wave-

vector dependence typical of a local interaction kernel but

ub? dk [ dq1 modified by logarithmic corrections. This a well-known re-
EEo——— | — | == sult for isolated dislocation lines, as well as for similar sin-
16m(1-v)Jgz 2m ) 2mwD gularities such as vortex lines in high-temperature
3 22 superconductor®
X {2(;/— > +1n a|q|>q2 - 1—2q4] x(k,q)x(- k,— q), The energy contributions due to interactions between seg-

ments of different dislocation lings # m) in the LAGB can
(17) be expressed as

b2 dk [ dg1 Dlq| 2r K D?
EEE:M—f — ——{2( +In— |k + ——5—5-5 + —{(3)K? | x(k, q)x(- k,— q), 19
U T 16n(1 -0 Jag 2 ) 22D\ " an D [+ )2 " 22t K xkax(-k =) (19)
ESE-’M—bzf dk fdal 2( +In%) 2+2—Trq—2+D—2§(3) * [x(k,g)x(—k,— Q) (20
L )y 2m ) 220\ "V an )T T D g @12 22809 =),
[
where{(x) is the Riemann zeta function. Naturally, the inter- [1l. DISORDER: DEPINNING TRANSITION

action kernel between the deformation modes for the three- Distortions in a LAGB or a pileup arise from interactions

dimensional grain boundary case depends explicitly on bothy w6 gisiocations with various kinds of impurities such as
the y and z components of the wave vector in an intricateé o)t atoms, precipitates, or other immobile defects. The
manner. Nevertheless, as in the two-dimensional case, fGhteractions between individual dislocations and impurities
long wavelength deformations the leading term of the interhaye been computed and are reported in the literature. For
action kernel is essent_lally Imea_r in the_wave vector, whichipe purpose of this paper, we will consider quenched disorder
manifests the nonlocality of the interactions. created by a random distribution of immobile impurities with
Finally, we consider the case of a pileup lying on the concentratiorc which interact with dislocations via a force
=0 p_Iane. Again, we assu.me.small pe.rt.urbauons of the dISfp(r):fog(rlgp)’ wheref, is the pinning strengthé, is the
locations  from their equilibrium positionsym=Y,—[Ym interaction range, andis the distance between the impurity
+Ym(2)]=[yn*6yn(z)], where the displacements now de- anq the dislocation. The detailed shayte) of the individual
pend on thez coordinate of the infinitesimal line segment ninning force is inessential for most purposes.
considered. Expanding up to first order[idyy(z) - dyn(z')], The morphology and dynamics of a pileup or a LAGB
we evaluate the resulting Peach-Koehler glide forces and thgsult from a complicated interplay between elasticity and
corresponding elastic energy. As in the two-dimensionaljjsorder. Pileup and LAGB are examples of the general
case, the result is equivalent to the one computed for thgroblem of the depinning of elastic manifolds in random
LAGB, provided that we replace,(2) by éy,(2) in Egs.(17)  media, which has been extensively studied in the Hast.

and(20). Thus also in this case we find wave-vector depenthe elastic approximation, the dynamics of the dislocation
dent interaction kernels whose leading terfies long wave-  arrays follows:

length deformationsgrow either quadratically in the wave ;

vector (with logarithmic correctionsfor self-interactions of U _ | iy — ot " _

the safne dislgcation line, or Iinez)asrly in the case of interac- X gt _J X KO=x)ux’) = uGg] +bo + lx,u),
tions between different lines. Thus we may conclude that this (21)
particular form of the elastic kernels is characteristic of the

long-range interactions between different dislocations. As wavhere xy is a damping constanty is the applied stress,
will see in the following, these long-range elastic propertiesn(x,u) describes the effect of the pinning centers, and the
have significant consequences for the analysis of the depirelastic interaction kernd, computed in the preceding sec-
ning transition of dislocation assemblies. tion, scales a¢k| in Fourier space. In the following we will
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discuss how the main theoretical approaches to the depinnirigef. 12 in the context of the flux line lattice. One essentially
transition can be applied to the problem at hand. computes the typical displacementfor a system of size
Ir|=L, which for a LAGB is given by

A. Collective pinning theory: Weak pinning ) f d2k d2k’ ‘
N-u0)9=| —— | 7@ -cosk-r
Collective pinning theory describes the behavior of the {Ju(r) - @ 2m)? (277)2( )
LAGB in the limit of weak disorder, when pinning is due to % GGk F(K)F(K'), (24)

the fluctuations of the random forces. The key concept is the
introduction of a characteristic length, above which pin-  whereG(k) is the Green function associated with the elastic
ning becomes effectivéor energetically advantageguand  kernel determined in the preceding section, &tl) is the
consequently the LAGB is distorted. The collective pinningpinning force density. In the spirit of collective pinning
length can be evaluated, for instance, by balancing the e|aStiﬁeory<F(k)F(k’)>:W5<2)(k+k') with W:(fo\f%Tgp)zl The

energy cost and the pinning energy gain associated with gypjicit calculation leads to the characteristic displacement
small displacement of a region of linear sike On scales

belowL, the dislocations remain essentially undeformed and, ——D? L
Ations _ . ; u(L) = fovceé,—Int2= (25
hence, the fluctuations in potential energy follow Poissonian 0reloP b2 D
statistics. The effective concentration of the pinning defects ) ) ) )
along the LAGB is given by This expression can then be inverted, imposing &,, to
- obtain
c,§>D
— ¢ (sz)z]
C.= 2D), L.=D exp =2 : 26
eff E%,§p< D( ) c p[ceff f0D2 ( )
: (22)  The depinning stress can then be obtained a=@ and is
c.&>D given byacb:(,ubzgp)/(DLc). Again these results generalize
cor=1 & (3D) directly to the pileup case. It is, however, important to note
ef c—E,gp <D ' that they refer to the continuum limit, when one can neglect

. D the discrete nature of the dislocation system. To be consistent

The first expression refers to pinning by columnar defects ofVith this assumption, one should halg>D.
areal concentratiog in d=2, and the second to pinning by
localized defects of volume concentratienin d=3. In d

=2, the characteristic energy of a section of a LAGB of size
L displaced by an amount of the orderw€an be written as

B. Strong pinning: Friedel statistics

Collective pinning is due to a statistical superposition of
the forces created by many obstacles. In the limit of strong
and/or diluted pinning centers, however, the characteristic
bulge of width&, and extensior; as envisaged in the pre-
_ ceding section may not interact with enough pinning centers
Here bothE andf, are defined as quantities per unit length. for this viewpoint to be valid. Simple estimates for the
In the case of a thin film of thickness one can obtain their boundaries of the collective pinning regime are given by the

three-dimensional counterparts just BshE and fo=hf,,  inequalitiesL &= 1/Cs and L2g,= 1/cq for the d=2 and
Note the scale independence of the nonlocal expression &3 cases discussed above, respectively.

the elastic energyb?u?/D? in contrast to what would be this ~ In the regime of strong pinning, dislocations are pinned
energy in the local approximatigub?u?/DL. Essentially the DY individual obstacles. The spacing of obstacles along the
same expression holds for the pileup. Balancing elastic anélislocation and the depinning stress can be obtained by an
pinning contributions and imposing that the displacement i@rgument which was, in the context of single dislocations,
of the order of the pinning range~ gp! one read“y obtains developed by Friedel. The basic idea is to consider the be-

L= (u2bie )/(D4f(2)c_eﬁ). The LAGB is depinned when the havior of a dislocation segment as it depm; fror_n a pair of
work dong by the external stress in moving a segment O§trbor?g obftqcalfrz. -|rfhtﬁ Ie;glth oft'the segmelhg; iand it forms
lengthL. over the distancé, exceeds the characteristic pin- a bulge ot widtiu. € disiocation segment overcomes one

. — X = of the pins it will travel by an amount which is, again, of the
ning energy E(Ly) of this segment. EquatingE(Lc)  order ofu and, hence, sweep an area of the orddriofNow
=obLc&p/D, for the case above the result is givendy e can estimate the depinning threshold by requiring that
:(?eﬁng3)/(,ub2). during this process the freed dislocation segment encounters,

A similar calculation ind=3 is more subtle, since the on average, precisely one new obstacle. In other words, pre-

elastic and the pinning energies scale with the same power @isely at the point of depinning the dislocation starts to move
L and thus cancel in the simple dimensional approach disthrough a sequence of statistically equivalent configurations.
cussed above. As we will discuss in the following section,For a dislocation this leads to the conditibn=1/(c&,). L
this reflects the fact that=3 is the upper critical dimension andu can be related by equating the work done by the ex-
for the transition. To obtaiiL. in this case, one should per- ternal stress in bulging out the dislocation to the concomi-
form a perturbation expansion in the disorder, as discussed tant elastic energy increaséy?/L=obul, wherel  is a con-

— ub?? - =
E= 7 — foépVCerl U, (23
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TABLE I. Overview of pinning stresses and pinning lengths obtained from different models and their physical realizations.

Model Type of Type of
dimension elasticity pinning Pinning length Critical stress Physical realization
2D Local Weak Lo=(T2é,/ f2een 13 ob=(D33e, 1T )13 Isolated dislocation
2D Local Strong Ly=(To/ foCor) 2 b= (D 3cq/To) L2 Isolated dislocation
2D Nonlocal weak LC=F%§p/D2?020_eﬁ gcb:DZT()ﬁﬁ/ro [?iglocgtion array,
rigid dislocations
2D Nonlocal Strong Ly=To/ Df oCat ob=D22Ce/ T Dislocation array,
rigid dislocations
3D Local Weak L= (54, focen ob=Dficeq/ T Elastic sheet
3D Local Strong Li=(To/ foCetr) /2 ob=Dfice/ T Elastic sheet
3D Nonlocal Weak Le=D exd T3¢,/ Dfces] ocb=To&,Dexd -T5&,D?f5Cer] Dislocation array,
flexible dislocations
3D Nonlocal Strong L¢=Io/DfoCeft ob=D33c2, /T3 Dislocation array,

flexible dislocations

stant line tension. Finally, the depinning force can be IV. DYNAMICS: CRITICAL SCALING NEAR THE
obtained by comparing the external foroel with the pin- DEPINNING THRESHOLD

ning forcefo. Solving these three equations, one obtains the  gecond-order phase transitions can be described by scal-

Friedel lengthL;=(I'/c£,fo)" and the depinning stress ing laws and critical exponents and the depinning transition

ocb=(c&,fo/T)*2. is no exception. In the system discussed here, the control
This argument can be generalized in a straightforwargparameter is the applied stress, so that scaling laws depend

manner to the case of dislocation arrays. Let us first considesn the distance— o, from the critical point. In particular, as

the depinning of a two-dimensional LAGB as discussedthe system approaches the transition, the correlation length

above in the weak pinning limit: In this case, the Friedeldiverges ag~ (o—o.)™". Similarly, one can define a charac-

condition readd.u= 1/c.¢, the elastic energy per unit length teristic correlation time”, related to the correlation length as

of a bulge of widthu and extensiorL is ub?u?/D? which t'~ &% The average dislocation velocity reaches a steady

must equal the work per unit lengtioLu/D; and the force  Vvalue, scaling as ~ (o-o0)?, above the transition, and van-

. . . . ishes below. Before the steady state the average velocity de-
balance(again per unit lengthis ocbL/D=fo. Combining cays as a power law?, for tir¥1est<t*. Furthergmore thg

these relations we find that the Friedel length and the deIOinOrowan relation, which relates the rate of plastic deforma-
ning stress are tion y to the densityp and average velocity of moving
dislocations in a crystal, implies that similar scaling laws

_ pb? _ Ceif (2)D3 should hold for the strain ratg=bpuv. In this respect, it is
Li=———=, ob=""5— (2D). (27) ; ; =0 .
DZ%Cfo ub tempting to establish a relationship between the dynamical

behavior of dislocation systems and the creep laws observed

In 3D the Friedel condition i42u=1/c. the energy bal- in plastically deforming crystals, i.e., the crossover between
ance readsb?u?L/D2=¢bL2u/D, and the force balance is Primary (power law to secondarylinearn creep.

o bL2/D=f,. This yields Scaling exponents also characterize the morphology of
the dislocation arrangement, which exhibits roughening close
to the depinning transition. The roughness can be quantified
measuring the average displacement correlatiGtis—x")
=([u(x)-u(x")]?. At the transition in the steady state, we
Table | presents a compilation of results for the weak andexpect a self-affine scaling(x) ~x%, where( is the rough-
strong pinning cases in two and three dimensions. For conness exponent while the transient behavior is described by a
parison we have also included results obtained under the asealing form of the typeC(x,t)=tAif(x/t¥?). As in ordinary
sumption that the elastic behavior of the grain boundary cargritical phenomena, only a fraction of the scaling exponents
in local elasticity approximation, be described by a scaleare independent. For instance, one can easily derive the re-
independent surface energjy~ ub?/D. lations B,=z/ ¢ and 6=/ (vz).

b p - CefoD?
chefff 0 ’ ge ,LL2b4

L¢ (3D). (29)
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FIG. 5. The decay of the velocity at> o.=0.675 for different

FIG. 4. The decay of the average pileup velocities as a function a5 ofN, As N increases, the power-law scaling region extends.
of the applied stress. For o> 0,=0.675 the velocity reaches a The line has a slope af=0.65

steady value and decays to zero otherwise.

In general, it has be_en shown that in the depinning prob- X% = ub? L +bo+ > fo—Xp), (29
lem there are only two independent exponents that have been dt j#i Ix; = Xj| P

computed using the renormalization-group. To connect our

problem to previously obtained results, we notice that thevherey is an effective viscosity and is the applied stress.
effective elastic energy of the pileup and LAGB scalesgas The pinning centers are placed at randomly chosen positions
in Fourier space, as in the problems of contact*irend  Xp (with P=1,... Np) and exert an attractive force on the
planar crack depinningf. We can thus directly apply to our dislocations,

case the results obtained for a contact line with long-range

elastic energy*2® The renormalization group analysis pre- X e?

dicts thatd,=3 is the upper critical dimension, above which fpx) == fof—e P (30
fluctuations are suppressed. Thus fdrd. there is no P

roughening(i.e., {=0) and the other exponents can be com-
puted in the mean-field approximation, yieldiggz=v=1.
These results are valid in the physically interesting dimen
siond=3 apart from additional logarithmic corrections. For
d< 3, arenormalization-group expansionen3—d has been

In order to correctly take into account the effect of periodic
boundary conditions, the interactions between dislocations
‘are summed over the images. In one dimension the sum can
be performed exactly and [l in Eq. (29) is replaced by

performed to compute the exponents which at first order in oo
are given byB=7/9,v=3/2,{=1/3, andz=7/928 Using the D 1 _ m (31)
scaling relationd=8/(vz) one obtains#=2/3, which coin- e X+ KL L tan(mx/L)

cides with the exponent of the so-called Andrade creep law,

observed in the creep deformation of several mateldf$.  The equation of motiofiEq. (29)] is integrated numerically

using a Runge-Kutta algorithm for different values of the

applied stress. We take as initial condition a perfectly or-

dered pileup, with equally spaced dislocations. For the simu-
Our theoretical results have been obtained assuming smddtions reported here, we first considered\

perturbations of a regular dislocation arrangement. In order64,128,256,512 dislocations with a spacihg 16 and av-

to test the validity of these results in the general case whererage pinning center spacing,=L/N,=2. The units of

arbitrary dislocation positions are permitted, we have pertime, space, and forces are chosen so thi#t1, y=1, and

formed a series of numerical simulations of the dynamics ob=1, and we sef,=1 and§,=1.

a two-dimensional pileup. This corresponds to an effective In Fig. 4 we report the time decay of the average pileup

one-dimensional model in whidN interacting point disloca- velocity for different values of the applied stress. For large

tions move along a line in presence of quenched disordestress valuesy> 0,=0.675, the initial power-law decay is

For simplicity, we consider periodic boundary conditions, sofollowed by a plateau, while the velocity decays to zero oth-

that in absence of disorder the equilibrium configuration iserwise. This allows to identify the depinning point ag

an equally spaced pileup. To test the dependence on the sys-0.675. This is confirmed by the finite size analysis shown

tem size, we change the dislocation numRend the system in Fig. 5, indicating that fou.=0.675 the power law extends

A. Two-dimensional pileup: Numerical simulations

sizeL, keeping the dislocation spacimg=L/N constant. further as the system size is increased. The exponent of the
The equation of motion for the dislocationn the pileup  power-law scalingd=0.65 is in good agreement with the
is given by theoretical expectations.
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FIG. 8. Growth rate of slip steps on the surface of Cu—30 at %

FIG. 6. The growth of the correlation function at the depinning Zn deformed at room temperature as a function of the time passed
transition at different times. The data collapse in the inset allows tafter growth has started; after Ref. 9. The line is a power law with
estimate the roughness exponént0.35 and the dynamic exponent exponentf§=1.
z=0.9.

B. Three-dimensional pileup: Relaxation of slip-band growth

Moreover, in order to characterize the growth of correla- rates
tions at the critical point, we compute the displacement cor- In the case of flexible dislocation lines, we expect the
relation function C(i —j,t)={([u(t) —u;(1)]*}*? at different  depinning transition of a planar dislocation array to be gov-
timest for o=0, (see Fig.  The curves can be collapsed €rned by mean-field exponents. A detailed discussion of this
using the scaling forn€(x,t)=t#2f(x/t%) with ¢=0.35 and case has been given elsewhere in the context of domain-wall

. ! . . ’ inninAL6 o .

z=0.9(see the inset of Fig.)6To confirm this result we have dheplnnl_ng.l dTh_e mean f'gld eﬁponehts sﬁa:z— v=1 ;‘or_ a I
also computed the evolution of the power spectrBth, t) theoretical derivation and confirmation by numerical simula-

= fdxC(x)exp(ikx) (Fig. 7). These curves can also be col- t|o|ns the reader is re]‘t()alrred o the prelwc;]us &N.Orkh Here, we

lapsed aP(k, ) =t2+Dizg(kt) with the same exponent val- only point out a possible experimental check in the context
’ . . of planar dislocation arrangements.

ues as the correlation function.

. . Direct experimental observation of the dynamics of planar
In summary, all the exponents determined from the simuy;ig

lati . d ith th lizati location arrays may be possible in certain alloys exhibit-
ations are in good agreement with the renorma |zat!on-groumqg so-called planar slip where dislocations form huge pile-
predictions and with previous simulations based directly o

. A > g~ rLIpS (see Fig. 1 The motion of these planar dislocation
the elastic approxw_natlon, confirming the validity of the elas'groups goes along with the formation of large slip steps
tic theory for the pileup. along the traces where the slip plane of the pileup intersects
2 the surface of the metal specimen. For a moving pileup con-
' ' sisting of roughly equally spaced dislocations, the slip step
growth rate is proportional to the dislocation velocity. Since
T often only a small number of slip steps are growing at a
time>! one may attempt to relate the observed time depen-
] dence of slip step growth to the velocity relaxation of a
single pileup.

Figure 8 shows experimental data with rates of slip step
growth as a function of the time after growth has stafted.
The double-logarithmic plot indicates relaxation of the
1 growth rate(the dislocation velocity according tov ot™?
with a characteristic exponerfi=1+0.1 over six decades.
On the other hand, for the depinning transition of a planar
dislocation array in 3D we expect according to the scaling
relation 6= B/(vz) the valuef=1. The apparent length of the
10* 10° 108 107 10° scaling regime indicates that driving of the dislocation arrays

kt“z occurs at stresses very close to the critical one. This is in line
with the general observation that dislocation arrangements in

FIG. 7. The power spectrum of the pileup at the depinning translowly deforming crystalgfwhere “slow” covers the entire
sition. The data collapse is consistent with the scaling of the correrange of strain rates used in typical experim&htare in a
lation function. close-to-critical staté?53
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V. CONCLUSIONS diction for the velocity relaxation of a planar dislocation ar-
. . I . ray (pileup) is consistent with experimental observations of
_We have investigated the depinning transition of p[anarthg Eipme—dpzependent growth of inB bands in alloys exhibiting
dislocation arrays such as small-angle grain boundaries Hlanar slip.
Qislocation piIeL_Jps_. Contr_ary to the case _of isolated_disloca— The dislocation arrangements discussed in the present
tions, t_he elastic interactions between dislocation line Se0study have a simple, quasiplanar geometry in which only
ments in such arrays are of long-range nature and, hencgjsjocations of one sign are present and only small perturba-
cannot be described within a line- or surface-tension apprOXitjons of the p|anar arrangement of the dislocations are per-
mation. The pinning of planar dislocation arrays has beemitted. Because of this particular geometry, the dislocation
investigated both in the weak and strong pinning limits usingassemblies behave like two- or three- dimensional long-
collective pinning theory and Friedel statistics, respectively.range elastic objects. The situation is much more compli-
In certain situations, our results may have some implicacated when dislocations of different types and directions of
tions for grain growth limited by grain boundary pinnifff! ~ motion have to be considered. In such situations, there is still
For instance, in Ref. 42 the derivation of the dependence o transition between a stationary and a moving state of the
the average grain sizR on the impurity concentratiom  dislocation assembly'yielding transition’).*®> However, in
involved a Friedel-type estimate of the depinning stress for general dislocation assemblies the existence of metastable
grain boundary. The calculation was made in a local elasticstationary states does not depend on the presence of
ity (grain boundary energyapproximation, neglecting long- quenched disorder as in the present study. Rather, the inter-
range stresses. If these were included the result wouldctions between dislocation lines of different type together
change dramatically as discussed in Sec. Il B. However, thaith the dynamics constraints which tie the motion of the
present results apply only when grain boundary mobility isdislocation lines to their respective slip planes lead to the
governed by glide of the GB dislocations. In the general caspossibility of forming metastable jammed configurations
where grain boundary motion is controlled by diffusional even in the absence of any disorder. While the general sce-
rearrangementgglide-climb of the grain boundary disloca- nario of dynamic nonequilibrium phase transitions applies to
tions) long-range stresses need not occur and local elasticityuch systems, no ready-made theoretical framework is avail-
approximations may retain their validity. able and, hence, a theory of the yielding and dynamic behav-
Long-range elastic interactions also govern the dynamic#r of general dislocation systems remains a formidable task
of planar dislocation arrays at the depinning threshold. Irfor future investigations.
two dimensions, computer simulations and theoretical argu-
ments suggest that the dynamics falls into the same class as
contact-line depinning, while in three dimensions the dy- This work was supported by an Italy-Spain Integrated Ac-
namical behavior can be described by mean-field exponentsion. M.C.M. acknowledges financial support from the Min-
In particular, we have demonstrated that the mean-field prasterio de Ciencia y Tecnologi&pain).
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