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Size effect on current fluctuations in thin metal films: Monte Carlo approach
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Current fluctuations associated with the classical size effect, for which the mean free path of the car-
riers A is comparable to, or greater than, the film thickness d, have been investigated. The Monte Carlo
approach has been extended into the Knudsen regime of electron transport. Using this method, the au-
tocorrelation function and the spectral density of the fluctuations depending on two parameters (the ra-
tio ¥y =A/d and the surface specularity p) have been calculated. A procedure to generate the angle of
diffuse electron scattering at the surface is described for both the Fuchs and the Soffer boundary condi-
tions. It is demonstrated for both models that, with increasing ¥ and with decreasing p, the low-
frequency noise is suppressed, with a redistribution toward higher frequencies. In such a case, the auto-
correlation function is not exponential and the corresponding spectral density of the fluctuations is no

longer Lorentzian.

I. INTRODUCTION

Thin metal films have been studied for several decades
and have remained interesting topics for various physical
investigations. Films of a few micrometers in thickness
are often used as electrical interconnections in micro-
chips, multilayer hybrid packages designed for very-
large-scale-integrated circuits, and so on.? In physical
studies and applications, both the conductivity and the
current noise of the films are of primary interest because
an understanding of these characteristics can ultimately
result in the specification of optimum operating condi-
tions, in part to minimize voltage drops along the inter-
connects and to maximize the integrity of high-speed sig-
nals propagating through them or to improve the signal-
to-noise ratio.

It is known that when the mean free path of the car-
riers becomes comparable to, or greater than, the small-
est dimension of the specimen, the conductivity becomes
dependent on the size of the sample.>* A quantitative
model of this so-called classical size effect has been pro-
posed by Fuchs.’ A great number of papers dealing with
this problem have been published. In most of them only
resistivity of the thin films or wires as dependent on size,
temperature, and surface reflection conditions was exam-
ined both theoretically and experimentally (see Refs. 3
and 4).

It is obvious that the current noise, being not less an
important characteristic of transport phenomena, be-
comes dependent on the sample size too. In this paper,
we study changes in the current fluctuations due to elec-
tron scattering at the boundaries, i.e., under size-effect
conditions.

We consider the thermal current noise associated with
velocity fluctuations of electrons under the above-
mentioned conditions.

The autocorrelation function and the noise spectral
density of the random process can be estimated by use of
the Monte Carlo method, which is the most suitable one
for this purpose, because it is easy to connect the fluctua-
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tive variables with the microscopic motion of the charge
carriers. Monte Carlo simulation of this kind of noise
but without regard for the finite size of the sample has
been performed by various investigators for some materi-
als: InP,%’ p-type Ge,! Si,°"1?2 GaAs,”*12-* InSb,!
In,Ga,_,As.'®

The aim of the paper is to reveal the main features of
changes in the autocorrelation function and the noise
spectral density of the current fluctuations in the thin
metal film by decreasing its thickness and varying its sur-
face roughness.

The paper is organized as follows. In Sec. II we define
the physical model and introduce the main characteris-
tics of the noise which are to be calculated. In Sec. III
the particularities of the Monte Carlo method used are
described, with special attention being paid to boundary
reflection conditions. Two different types of boundary
conditions are considered: (a) according to the Fuchs
model’ and (b) according to Soffer.!” The results ob-
tained are discussed in Sec. IV. A comparison with the
theoretical results of another author is made for some
cases. Section V draws the main conclusions of this
work.

II. THE PHYSICAL MODEL

We consider a monocrystalline metal film under steady
electric field applied along its surfaces. The thickness of
the film d is comparable with the mean free path of the
electrons A. It is assumed that the transverse field can be
neglected, owing to the Debye screening length being
much less than A. The electric field is then uniform
across the sample.

The size effect occurs normally at low temperatures,
when the mean free path is rather large. Under this con-
dition the electron properties are entirely determined by
the most energetic electrons near the Fermi surface, all
moving with the same velocity ¥V in arbitrary directions.
For simplicity it is assumed that the electron Fermi sur-
face is spherically symmetric and the bulk mean free path
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is isotropic. The average time between collisions in the
bulk 7 (due to impurities or phonons) is constant and
equal to A/Vy. Each mechanism of the bulk scattering is
assumed to be elastic, entirely chaotic, and independent
of the velocity direction before collision.

Besides the scattering in the bulk, the electrons are
scattered at the boundaries. The latter scattering is con-
sidered to be elastic and characterized by a parameter p,
representing the fraction of specularly reflected electrons;
for fully specular scattering p =1 and in the opposite case
of fully diffuse scattering p =0. The parameter p has
been introduced by Fuchs and in his model it was in-
dependent of the angle of electron incidence. The Fuchs
model, being the most simple, is frequently used by many
authors. More recently Ziman'® has determined the
effect of geometrical roughness of the surface on the
specularity parameter at normal incidence. Soffer!” has
extended the method of Ziman to include oblique in-
cidence and modified it to satisfy the flux-conservation re-
quirement. As a result, the diffuse surface scattering was
found to be anisotropic in the general case and the angu-
lar dependence of the specular parameter p was obtained
in the form'

p(9)=e—(41chose)2 . (1)

Here, 0 is the angle of the incidence with respect to the
normal, R is the ratio of the surface rms height deviation
h to the de Broglie wavelength of electrons A,. The pa-
rameter R will be called here as a roughness coefficient.
To study the current fluctuations we consider both the
Fuchs model and the Soffer model. An appropriate com-
parison of the results will be made later in the paper.

Thus there are only two dimensionless parameters in
our problem: (1) y =A/d =Vypr/d, that is the ratio of the
mean free path to the film thickness, (2) the specularity
parameter of the surface p (in the case of the Fuchs mod-
el) or the roughness coefficient R (in the case of the Soffer
model).

By neglecting interaction between electrons the noise
spectral density of the current fluctuations S;(®) can be
assumed to be proportional to that of the velocity fluctua-
tions S, (w):®

_e’nd

SI(CO) L

S, () . )

Here, e is the electron charge, A is the cross-sectional
area of the sample, L its length, n is the electron density,
and o is the frequency. Hence it is quite enough to calcu-
late S, (@) to obtain the current noise.

According to the Wiener-Kintchine theorem, the ve-
locity fluctuation spectrum S, () is given by the Fourier
transform of the velocity autocorrelation function C,(¢):

S,(w)=4 [ “C,(t)cos(wt )dr . 3)
0
The autocorrelation function C,(#) is defined as
C,()=(8V(¢)8V(t'+1)) , 4)

where angle brackets indicate the averaging over the elec-
tron ensemble, ¢ is the lag time, 8V (£)=V (¢t)— (V) is the
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velocity fluctuation around the average value (V). The
function C,(?) is independent of time ¢’ for stationary
process, which we study.

The main problem now is to evaluate C,(z) and S,(w)
using Eqgs. (3) and (4) as dependent on parameters ¥ and

p-

III. MONTE CARLO SIMULATION

Electron drift velocity in metals is usually much less
than V. This means that the velocity increment due to
the electric field action during free flight between col-
lisions is small. Hence to find the fluctuations of velocity
around its average value, it suffices to consider the fluc-
tuations of velocity itself, the average value being neglect-
ed.

Because of stationarity and ergodicity of the random
process, we can use the time average instead of the en-
semble average and the one-particle Monte Carlo tech-
nique® is to be applied. The path of a single electron is
followed by computer simulation. The electron is con-
sidered to move quasiclassically during periods of free
flight. Since the probability of free flight of the electron
without any collision during the time ¢, is proportional to
exp(—t,/7), the time ¢, is determined from? ¢, = —rInr,
where 7 is a random number uniformly distributed be-
tween O and 1. The free flights are interspersed with
scattering events occurring in the bulk or at the film
boundary. If the electron does not collide with the sur-
face for the time ¢,, the bulk scattering occurs at the end
of the flight, the angle after collision being taken as ran-
dom with the equal probability. When the surface
scattering takes place, one of the two possible reflections
is chosen to occur. The choice is realized by generating a
random number r €[0,1] and after comparing it with the
value of p, which is given in the Fuchs model or estimat-
ed by Eq. (1) in the model of Soffer. The specular
reflection is adopted when r <p, and the diffuse one is
taken in the opposite case. According to the choice the
reflection angle is defined, the next free flight is generat-
ed, and the procedure is repeated.

Within the described model the angle of reflection is
equal to that of incidence in the case of specular surface
scattering. As for the diffuse scattering this relation is
not satisfied and the electron velocity is randomized. In
order to define the diffuse reflection angle 6, one has to
take into account that the electron flow toward the sur-
face must be equal to the flow backward. This flux-
conservation requirement provides the uniform electron
density across the film and quasineutrality condition to be
satisfied.

Let us consider two different models of the surface
scattering in details.

(a) The Fuchs boundary condition. In accordance with
the flux-conservation requirement the electron leaves the
surface in the direction ) inside the elementary solid an-
gle dQ with the probability?! cosdQ /7. The random
value 8, may be related to the uniformly distributed ran-
dom number 7 by
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1 er . 2
=— 0sinbdo . 5
r 7rfo cosO sin fo do (5)

From here one can obtain the formula to generate the
random angle of diffuse electron scattering at the surface:

cos,=V’r . (6)

(b) The Soffer boundary condition. The number of elec-
trons specularly reflected in direction 6 within d @ is pro-
portional to p(6) cosfsinfdB. In view of flow conserva-
tion the number of the electrons diffusely reflected
«[1—p(08)]cosBsinfd 6, since the number of incident
electrons within the same angle interval is proportional to
cosfsinf d 6.

By using Eq. (1) the probability for the diffuse scatter-
ing angle can be written as

W(0)dO < [1—e 7R 0016050 5inf d O
«[1—e “TR* g (7)

Here, § =cos?6. This distribution may be related to the
uniformly distributed random number r by

§r
fo (l_e*(4nR)2§)d§
r= > . (8)
l_e'(4ﬂR)

The integral (8) one can evaluate analytically but the
resulting equation is not possible to solve with respect to
&,. That is why we used the rejection technique? to gen-
erate the random value £, and then 0, was taken from

cosf,=VE, . 9)

Let us compare the resulting formulas for both models.
In the limit of large surface roughness R (A,<h) the
specular parameter p becomes equal to zero, the exponent
in Eq. (8) is much less than 1, and £, becomes equal to r.
Thus Egs. (6) and (9) are equivalent. In the limit of small
surface roughness (Ay>>h) p=1 and the specular
reflection is dominated. Hence for smooth and rough
cases both the Fuchs and the Soffer boundary conditions
are identical. But for an intermediate case this is not so.
In the Soffer model at grazing incidence the diffuse flux
vanishes and the specular scattering dominates for arbi-
trary roughness.

Following the electron path the values of longitudinal
velocity are stored in the computer after every time inter-
val Az. The simulation lasts until about 10° collisions,
which randomize the electron velocity, occur. The ob-
tained time series V(¢;) defined in N points is used to esti-
mate the autocorrelation function:

)= lim

N>

1 NS/ .
~ S Ve)V(g+jan |,

i=1

G,

j=0,1,...,N;. (10)

The equation gives (N+1) values of the autocorrelation

function at time moments ¢; =j At. The function S, (@) is

calculated from (3) by using the trapezoidal formula.
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IV. RESULTS AND DISCUSSION

Before studying the noise characteristics, some tests of
the Monte Carlo program code have been made. The size
effect may be associated with the Knudsen flow of elec-
trons as a rarefied gas, where most of their collisions are
with boundaries. The parameter y is equivalent to the
Knudsen number N, the latter being equal to the ratio
of the molecular mean free path to a characteristic linear
dimension. In such a consideration, using the well-
known formula for molecular collision frequency with the
surface, one can find the ratio of the electron collision fre-
quency with the boundaries to that in the bulk:

ve _ nVESy AS, )

= =—=1iy. (11)
; an 4V  2d
I

Here, S, is the area of the surface on which the electrons
are scattered, V is the sample volume. Hence the col-
lision frequency ratio determined during Monte Carlo
simulation may be used as a proof of the algorithm
correctness. This ratio calculated in our work coincides
with the predicted value with discrepancy less than 1%
for any y and p, indicating that the Monte Carlo pro-
cedure is correct. Moreover the uniformity of the elec-
tron density distribution across the film was verified.

Let us now consider the results obtained within the
Fuchs model. The functions C,(¢) and S,(w) (normalized
to 1VZ and £V}, respectively) are shown in Figs. 1 and
2. For fully diffuse boundary scattering (p =0) and for
different ¢ the curves C,(¢) are presented in Fig. 1(a).
The value of ¥ =0 corresponds to the case A <<d, when
the film thickness is infinite and the surface does not
effect on the electron scattering. It has been pointed out’
that, if (i) the probability of electron motion without col-
lisions is exponential and if (ii) each scattering event en-
tirely randomizes electron velocity, the autocorrelation
function has to be exponential with a time decay constant
equal to 7, i.e., the average time between collisions. In
our model conditions (i) and (i) are satisfied. The func-
tion C,(z) calculated coincides with exp(—¢/7) that is
theoretically predicted. The value of C,(0) is equal to
%V,%, corresponding to the average square velocity com-
ponent (¥?). This accounts for the choice of the nor-
malization value. For y =0 the time 7 is essentially the
correlation time.

Let us consider the curves C,(¢t) when y#0. With y
increased, i.e., with the film thickness diminished, the de-
cay time decreases. The diffuse electron scattering at the
boundaries results in decreasing the effective mean free
path and accordingly the characteristic correlation time.
The functions C,(¢), however, are not approximated by
an exponential, the greater y, the larger is the deviation
from the exponential function.

The autocorrelation functions C,(¢) for ¥y =10 and for
various specular parameter p, are presented in Fig. 2(a).
The specular reflections change the sign of the transverse
velocity component but do not randomize the velocity.
The longitudinal velocity component, used to estimate
C, (1), keeps the value after reflection in this case. Hence
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the correlation time and correspondingly the decay time
of the autocorrelation function are only determined by
diffuse reflections at the boundaries and by collisions in
the bulk. When the diffuse scattering is vanished (p =1),
the calculated values of C,(t) exactly coincide with those
calculated for y =0, i.e., for unbounded (infinite) sample.
This is in accord with the Fuchs theory, that gives the
resistivity of thin film with fully specular surfaces to be
equal to the resistivity of unbounded sample, if the Fermi
surface of the material is spherical. The decay time de-
creases with decreasing the surface specularity. At the
fully diffuse surface scattering (p =0) the autocorrelation
function takes on the limit curve which is determined by
both the bulk scattering and the transfer transport of the
electron.

In Figs. 1(b) and 2(b) the noise spectral density S, (),
corresponding to the autocorrelation function C,(¢) in
Figs. 1(a) and 2(a), are shown.

For y =0, when C,(t) is defined by

C,()=1VEe™ /T, (12)

the corresponding S, (w) is a Lorentzian:

1
S (0)=4Vir—— . (13)
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FIG. 1. Autocorrelation function (a) and spectral density of
velocity fluctuations (b) calculated within the Fuchs model for
fully diffuse boundary scattering and for different y.
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The function obtained coincides
Lorentzian.

The value of S,(w) in the limit ©—0 is related to the
diffusion coefficient of the particle in the unbounded sam-
ple by

S, ()], o=4D . (14)

nicely with this

In our case D =§V;2-T= 1 VA, that corresponds to the ex-
pression for classical diffusion coefficient in kinetic theory
of gases.

For the case of diffuse scattering the magnitude of
S,(®) can be seen to decrease at low frequencies and to
increase at high ones when the film thickness diminishes
[Fig. 1(b)]. The similar behavior occurs with decreasing p
for fixed y [Fig. 2(b)]. The total area under the curve
S, (), i.e., the integral noise, corresponds to the value of
C,(0) and coincides with the dispersion of random value
V:

1 re= = —(12
= fo S, (0)do=C,(0)=(V?) . (15)

This quantity remains constant with varying y and p.
Thus in the case under view, the presence of diffusely
scattering surface results in the noise redistribution to-
ward higher frequencies with the integral over spectrum
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FIG. 2. Autocorrelation function (a) and spectral density of
velocity fluctuations (b) calculated within the Fuchs model for
v =10 and for different specular parameter p.
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being constant. The main consequence of this redistribu-
tion is the low-frequency noise being suppressed.

It is known that the fluctuations of the system under
thermal equilibrium have to be expressed through the
linear response of the system to an external perturbation.
This follows from the fluctuation-dissipation theorem.*
The electron system considered in our work corresponds
to the equilibrium one, because of the electric field being
weak and the deviation of the electron distribution func-
tion from its equilibrium being small. Hence the value of
spectral density of the drift velocity fluctuations at w-~0
would be expected to be proportional to the drift velocity
itself. In order to compare these quantities we use the re-
sults for the resistivity of the thin metal film obtained
within the Fuchs model and given in Ref. 3. In Fig. 3 the
electron drift velocity ¥, (inversely proportional to the
resistivity) and the low-frequency noise spectral density
§,(0), normalized to the bulk values, are presented as the
functions of the film thickness (in units of A). The curves
are shown for two different values of specular parameter:
p=0and p=0.75. A good coincidence directly indicates
the high accuracy of the Monte Carlo algorithm and the
validity of the fluctuation-dissipation theorem at low fre-
quencies. These results allow us to use the analytic for-
mulas, obtained for the thin-film resistivity to estimate
S,(0) in some limiting cases. Using expressions for the
resistivity given in Ref. 3, one can write for y >>1,p <<1,

SU(0)=V}TLI;~/Z-(I+2p) ; (16)
for y «<1,
S,(0)=4V2r{1—3y(1—p)] . (17)

We may take into account that the average electron
collision frequency is determined by both the average col-
lision frequency in the bulk and that at the boundaries.
From this relation and using (11) one can obtain the for-
mula for the average effective collision time 7*:

. T

T T+ a—py 2’ 18)
that is virtually the correlation time (characteristic time
of velocity chaotization). Although the conductivity cal-
culated by using 7* is very close to that obtained from the
precise formula of Fuchs?® [the same is valid for S,(0)
due to fluctuation-dissipation theorem], the autocorrela-
tion function, however, is not approximated by
exp(—t/7*) and the noise spectral density as a function
of frequency is not precisely approximated by an equa-
tion like (13). To obtain the noise characteristics one has
to do numerical calculations.

The contribution of the transfer transport into S,(w)
becomes more important comparable with the bulk
scattering, the smaller the thickness d. For y >>1 the
value of S, (0) is basically determined by transfer trans-
port and the decay time of C,(?) is approximately equal
to 2d / V.

Consider finally the results obtained for the Soffer
boundary condition. The autocorrelation function C,(t)
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FIG. 3. Low-frequency noise spectral density S, (0) calculat-
ed in the present work (stars) and electron drift velocity ¥, tak-
en from Ref. 3 (dashed lines) as the functions of the film thick-
ness d (in units of A).

and the corresponding noise spectral density S,(e) for
¥ =10 and for various surface roughness R are presented
in Fig. 4. The surface is seen to be fully specular (p =~1)
when R $0.01, that corresponds to a large electron
wavelength in comparison with the surface rms height
deviation (Ao 100A). In this case C,(z) (curve 1) coin-
cides with that for the unbounded sample. On the con-
trary the surface scattering is fully diffuse when R >2,
that is, when Ay <0.5h. In this case p =0 and curve 7 in
Fig. 4(a) coincides with that calculated for the Fuchs
boundary condition [Fig. 2(a)].

We may also compare the results of both models for an
intermediate case of surface roughness if the specular pa-
rameter of the Soffer model (1), integrated over the angles
of incidence, is equal to that of the Fuchs model. In such
a case the total number of specularly reflected electrons
are the same for both models, but their angular distribu-
tions are different. The Fuchs curves (dashed lines) for
p=0.5 (a) and p =0.75 (B) correspond to the Soffer ones
for R=0.06 and R =0.1, respectively, in Fig. 4. The
functions C,(¢) obtained for the Fuchs boundary condi-
tion can be seen to decrease more rapidly and the noise
redistribution is therefore greater.

The results for an intermediate case of surface rough-
ness (R =0.2) and for various film thickness are shown in
Fig. 5. The Fuchs curves (dashed lines) for the corre-
sponding p =0.16 are also presented. The similar behav-
ior we can see, as before. The greater y the faster de-
crease of C,(t) for the Fuchs model in comparison with
that for the Soffer one and the greater the noise redistri-
bution.

The Soffer curves C,(t) at ¢ > 7 can be seen to become
parallel. That means for any ¥ the autocorrelation func-
tions at large times are exponents with the same decay
time being equal to 7. It can be explained by the follow-
ing way. The main contribution to the autocorrelation
function at large times arises from electrons which move
at grazing incidence, time and again specularly reflected,
so that their free path remains of the order of the bulk
free path. In such a case the low-frequency noise
suppression is therefore less.
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FIG. 4. Autocorrelation function (a) and spectral density of
velocity fluctuations (b) calculated within the Soffer model (solid
lines) for ¥ =10 and for different surface roughness R. Dashed
lines are the curves obtained within the Fuchs model for
p,=0.5(a) and p,=0.75 (B).

V. CONCLUSIONS

The current fluctuations in thin metal films have been
investigated under size effect. The existing Monte Carlo
approach has been extended into the Knudsen regime of
electron transport, when the electron scattering at the
boundaries prevails over that in the bulk. Under this
condition the main characteristics of the noise: auto-
correlation function and spectral density of fluctuations
have been calculated for various film thickness and sur-
face roughness. The Fuchs and the Soffer models for
electron surface scattering were considered. The auto-
correlation function for a thin film (d <A) was shown to
be not exponential in distinction of that for an unbound-
ed sample and the corresponding noise spectral density is
not Lorentzian. With diminishing the thickness d and
with decreasing the surface specularity, the noise redistri-
bution toward higher frequencies is demonstrated to
occur. Suppression of low-frequency noise under the
size-effect conditions may be essential and reach up, for
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FIG. 5. Autocorrelation function (a) and spectral density of
velocity fluctuations (b) calculated within the Soffer model (solid
lines) for an intermediate case of surface roughness (R =0.2)
and for various film thickness. Dashed lines are the curves ob-
tained within the Fuchs model for p, =0. 16.

example, several times at d ~A and tens of times at
d ~0.01A under the diffuse surface scattering. The
fluctuation-dissipation theorem was shown to be satisfied
at low frequencies. It is interesting to note that using the
above-obtained results and the fluctuation-dissipation
theorem for arbitrary frequencies one can easily calculate
the frequency dependence of the film conductivity o(w)
[or more precisely, Reo(w)]. All mentioned size depen-
dences and other features are also characteristics for
o(w). Particularly from these results one can obtain the
increase of Reo(w) in the high-frequency region at d <A.

The results of the present work can be applied to the
study of noise phenomena not only in metal films but in
semiconductor ones and other microdevices where the
classical size effect is essential.
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