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Fast interceptive actions, such as catching a ball, rely upon accurate and precise information from vision. Recent models
rely on flexible combinations of visual angle and its rate of expansion of which the tau parameter is a specific case. When
an object approaches an observer, however, its trajectory may introduce bias into tau-like parameters that render these
computations unacceptable as the sole source of information for actions. Here we show that observer knowledge of object
size influences their action timing, and known size combined with image expansion simplifies the computations required to
make interceptive actions and provides a route for experience to influence interceptive action.
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Introduction

In sport, highly skilled performers can respond very
accurately to balls traveling at considerable speed (e.g., 9
100 mph). This remarkable skill and the short time
available to prepare a response have supported the case
for the direct use of optical variables. The best known
example is the parameter tau (Lee, 1976), which combines
the objects visual angle E and its rate of expansion _E as a
ratio E/ _E that provides the time to contact for an object
traveling at constant velocity on a direct trajectory toward
the eye. Although there is evidence consistent with the use
of tau (e.g., Lee & Reddish, 1981), many of the studies do
not fare well under close scrutiny (López-Moliner &
Bonnet, 2002; Tresilian, 1999; Wann, 1996). Expanded
versions of the tau parameter have been proposed, which
allow for a more generalized account such as oblique
trajectories (Pepper, Bootsma, Mestre, & Bakker, 1994) and
the inclusion of binocular information (Rushton & Wann,
1999). There are still a number of common situations,
however, such as parabolic trajectories and object deceler-
ation that can render these direct parameters unreliable.
When we hit or catch balls, we are seldom naive to all

the task parameters. By interacting with objects in our
environment, we rapidly acquire information on their
steady-state attributes (e.g., physical size). It is inevitable
that, through extensive practice, the elite sport person
become very familiar with the size of a tennis ball, cricket
ball, or football. In such a situation, the visual system can

exploit lawful relations between known size (s), approach
velocity (v), and the resulting optical variables (E, _E):

v ¼
_E

sE2
: ð1Þ

Alternatively, a velocity estimate can be gleaned using
two consecutive samples of _E across a temporal window
of duration $t (see Appendix A), the approaching velocity
of that object is unambiguously specified according to

v ¼
s

ffiffiffiffiffi
1

_E1

s
j

ffiffiffiffiffi
1

_E2

s !2

$t2
; ð2Þ

where _Ei denotes the rate of expansion at time i and v is
the approaching velocity. In both Equations 1 and 2,
optical information combined with known size provides a
monocular estimate of approach velocity. An equivalent
binocular estimate of velocity can be derived by substitut-
ing change of relative disparity in place of _E in Equation 2.
Once velocity is recovered, in principle time to contact
(Tc) can be estimated using known size and optic
expansion, without the need to recover object distance:

Tc ¼
ffiffi
s

pffiffiffiffiffiffi
_Eth

p vj1=2: ð3Þ

For a given task in a specific setting, the skilled actor
will need to initiate a response action at some time Tca that
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leaves sufficient time for its execution. Using Equation 3,
then for a known size object (s), we can then derive a
simple threshold for optic expansion at which the actor
should initiate their action.

_Eth ¼ s

vT2
ca

: ð4Þ

Given the known size, it is therefore possible to
estimate velocity. Equations 1 and 2 use this in combina-
tion with known size to set a simple response threshold
based on looming (Equation 4), without the need to
continually update something like a tau estimate. A timing
strategy based on a fixed threshold of _E has attracted some
attention in previous studies. Michaels, Zeinstra, and
Oudejans (2001), using real balls, found that elbow
extension was modulated by rate of expansion in a
punching task. Partial support for the use of a constant _E
threshold has been also reported in Caljouw, van der
Kamp, and Savelsbergh (2004), where the timing of reach
onset but not hand closure was explained by rate of
expansion. In a task where observers were presented with
small and large simulated balls, Smith, Flach, Dittman,
and Stanard (2001) proposed a more complex threshold
based on the weighted combination of _E and E but
demonstrated that strategy can change as participants
become more familiar with the task settings. In contrast,
however, Tresilian, Plooy, and Carroll (2004) did not find
evidence for a timing based on a constant threshold of rate
of expansion in a context where nine ball sizes were used.
Object familiarity may be a critical issue in comparing
these results. Caljouw et al. used single size real balls
whereas Michaels et al. used a familiar size paradigm
where the observer could assume ball size. Where there
is uncertainly as to size (e.g., Tresilian et al., 2004), then
the weighting placed on timing-relevant variables may
well change, compatible with a Bayesian framework
(Miyazaki, Nozaki, & Nakajima, 2005). Our proposal is
that when there is reliable information (low uncertainty)
regarding ball size, observers will switch to a response
threshold for rate of expansion, but that threshold will
vary across size and speed conditions, and Equation 4
presents a formal proposal as to how the threshold could
be set based on assumed size.
To test this hypothesis and the validity of this proposal,

we contrasted settings where ball size was known with
when it was unknown. Using a large field of view virtual
environment, we tested the accuracy of nine observers in
intercepting a simulated ball when it was presented as a
monocular looming image and when it was present with
appropriate binocular disparity. First we examine per-
formance when observers were presented with balls that
varied in size and speed where they had no information
about their properties (a classic time-to-contact paradigm).
We then primed them with one specific ball size or with

two potential ball sizes, by interactively handling one or
two real balls of the same size as to used in subsequent
simulation trials. To test whether knowledge of size was
being used, we interleaved Bcatch[ trials in which the
actual size was slightly smaller or larger than that (or
those) subjects were expecting. This is analogous to
changing the size of a baseball midgame without infor-
ming the batter of the change.
In natural interceptive actions, the initiated action

would have a chosen speed, duration, and force (e.g., a
drop shot vs. a forehand drive in tennis). It has been
demonstrated that variations in object speed and size can
change the speed at which the interceptive movement is
executed (Tresilian et al., 2004). This produces two timing
points, the time at which an action is initiated (Tca in
Equation 4) and the time at which an action is completed
(Tcc), and the period between Tca and Tcc may vary
because of the perceived object trajectory. Because this
raises an issue as to which time point action is locked to,
in this experiment we used a very brief response where
Tca = (Tcc j neural delay). Participants made a button
press that required the application of 0.6 N and an overt
movement of 0.2 mm. Hence, even if larger/faster balls
prompted a more forceful response, the timing require-
ment is that an action needs to be initiated (Tca) to allow
time for the generation of a fingertip force 90.6 N, but
Tca is not affected by modulations in movement comple-
tion time.

Methods

Observers

Nine observers (including the authors) participated in
the experiment. All of them had normal or corrected-
to-normal vision and, except for the authors, were naive with
respect to the aims of the experiment. None of the subjects
was stereo-blind (StereoFly test, Stereo Optical Co.).

Displays and stimuli

Two identical JVC DLA-G20 projectors provided over-
laid images for each eye on a back-projection screen (1 m
width and 0.77 m height). Each image was updated at
85 Hz and polarizing filters were used to present binocular
stimuli appropriately for the user’s interpupillary separa-
tion and viewing distance. In the monocular condition, a
null interocular distance was used under the same viewing
conditions as in the binocular ones. The viewing distance
for participants was 1.5 m. The simulated time to contact at
the beginning of the trajectory were 0.6 or 0.8 s The
simulated approaching velocities were 1.7, 1.8, 2.0, and
2.12 m/s.
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Procedure

The task for the observers was to press a button at the
time they thought the ball would hit them. Each trial
started with a stationary simulated ball. After 1 s, the ball
started approaching the observer at a specific velocity and
time to contact. The trajectory remained visible for a time
between 85% and 90% of the initial time to contact. All
observers had a training phase in which feedback of the
timing error was provided. Once they were familiarized
with the task, observers were presented with balls that
varied between two sizes that were unknown to them
(radius 0.033 and 0.05 m). In a second phase, participants
were presented with a real ball (0.06 m of radius), which
they handled and then presented with simulation trials
where they were told that it was the same ball size. An
equal number of catch trails were introduced into this
series using two different sizes (radius of 0.045 and
0.075 m) to test the reliance on the known size informa-
tion. In a final phase, two different sized real balls were
physically presented and then simulated (radius of 0.033
and 0.06 m) to test the ability to use more than one size
estimate, and three catch sizes were used (radius of 0.025,
0.045, and 0.075 m). In the two-size condition, we asked
the participants to verbally report which ball (small or
large) they thought that they had just seen after each trial.
Participants were shown 24 repetitions of each combina-
tion of size (including catch sizes), time to contact, and
velocity in each of the phases.

Data analysis

To determine which optical variable subjects were
using, we employed the same approach as Sun and Frost
(1998) and plot the time to contact at the moment of the
response as a function of (s/v), which is the ratio of
physical size (diameter) to approaching velocity. This

helps to separate predictions regarding the use of tau or
different optical variables. If the same motor response is
initiated at a constant time before ball arrival, that equates
to a tau threshold (Cth in Figure 1, left panel), and the
initiation time distribution should be invariant with
respect to variations of physical size and approaching
velocity (Figure 1, right panel). If a response is initiated
when a critical value of the visual angle E is reached (Eth
in Figure 1), the initiation time will not be constant but
will increase linearly as a function of s/v (e.g., a larger
object will reach this threshold earlier and the final time
to contact will be larger than for a smaller object traveling
at the same speed) with a slope of 1/tan(Eth). If the
response is triggered by a critical value of rate of
expansion _Eth, then the distribution of response time will
be a power function of s/v with an exponent of 0.5 (red
line in Figure 1, right panel) or equivalently a linear
function of

ffiffiffiffiffiffiffi
s=v

p
with a slope of 1/

ffiffiffiffiffiffi
_Eth

p
. Details on the

derivation of these dependencies can be found in López-
Moliner and Bonnet (2002) and Sun and Frost.
These are Bpure[ predictions, but we do not have a

specific prediction for what participants might rely upon
in the naive, unknown size trials. For those trials, it is
informative to use a similar approach to (Smith et al.,
2001) to fit a model based on a linear combination of E
and _E. Fitting this model allows us to determine which of
the optical variables has been given the most weight by
observers (5s I E + 5r I _E). For example, if the estimate of
5s was very close to zero, it would favor a rate of
expansion strategy. A large negative weighting of visual
angle E would imply that it compensates for the growing
of _E resulting in a tau-like strategy (Smith et al., 2001).
Finally, a positive weight of E would conform to a
strategy close to a response initiation when this variable
reaches a critical value. Our model predicts that observers
will switch to a _E strategy when they feel that they know
the object size. Fitting the Smith et al. model provides a
convenient way of determining whether this strategy

Figure 1. (Left panel) different optical variables as a function of time. Thin arrows illustrate the time at which a sensory threshold (based on
the respective sensory signals) would be reached. (Right panel) Predicted relation between remaining time to contact and the ratio
between physical size (s) and approaching velocity (v) given that the sensory thresholds shown on the left are used to initiate a catching
response. Whereas visual angle would predict a linear relationship, rate of expansion predicts a linear relation between time and

ffiffiffiffiffiffiffiffi
s=v

p
.

Finally, if a tau-like threshold is used, the response time function would be flat.
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switch had taken place. To test for whether the data points
deviate significantly from the fitted model, we minimized
the #2 merit function as in López-Moliner and Bonnet
(2002), which compares the residual errors of the fit with
the vertical standard deviations in the points themselves.
If the data points significantly deviated from the model,
then the #2 would be above the critical value and we could
reject the hypothesis that observers were using the
strategy reflecting the fitted model. The number of degrees
of freedom is the number of data points minus the number
of fitted parameters.

Results

Figure 2 shows the remaining time to contact at the
moment of response as a function of s/v for the setting
where they had no ball size information or when they
assumed there was a single ball size. We include all catch
trials, so in a number of cases the observers’ assumption of
ball size would have been incorrect. If the observers had
been combining visual angle and rate of expansion (i.e.
using tau), the ball size manipulations in the catch trails
would be irrelevant and we would expect a flat relationship
between the remaining time and the s/v. If they were using
our _Eth proposal (Equation 4), we would predict a
negatively accelerating linear function (Figure 1). Solid
lines on Figure 2 show the best fitting prediction for our
_Eth proposal and broken lines show the least squares fit for
the 5s I E + 5r I _E model. Under monocular viewing, there
is no support for the use of tau, but the _Eth prediction fits
both sets of data quite well, #2(7)=2.67, p = 0.91 and

#2(11) = 3.86, p = 0.97 for unknown size and known size
conditions, respectively. When size was not known, there
is a strong linear function. To clarify this, we can use the
weights from the least squares 5s I E + 5r I _E model
(dashed lines). The inset bar graph presents proportional
weighting of visual angle relative to _E; that is, 5s/5r. In
the case of one known size, the weighted sum closely
resembles the rate of expansion strategy (e.g., 5s was very
close to zero). When size was unknown, a proportional
weight is attached to E, making this condition closer to a
visual angle strategy.
Under binocular viewing, when the size was known,

the results were again in line with the _Eth prediction, the
data points do not deviate from the _Eth model #2(11) = 8.6,
p = 0.66), and the 5s/5r ratio tended toward zero. When
size was not known, the function was variable but flat. As
a consequence, a linear fit produced a slope not different
from zero, F(1,6) = 0.78, p = 0.41, and the 5s/5r ratio had
a negative value somewhat in line with a tau prediction
(Smith et al., 2001).
The linear weight model using 5s I E + 5r I _E has more

free parameters than a pure _Eth strategy and as a result
produce a tighter fit to the data. But there are no proposals
as to how 5s and 5r would be chosen to provide an
optimal response for the range of conditions. The
important contrast is how 5s changed when size was
known (black vs. red bars in Figure 2, inset). When size
was known, the visual angle E was given much less weight
resulting in a strategy closer to using a simple _Eth response
model. Statistical tests confirm that a _Eth model was
consistent with the data when size was known.
To check whether the change of strategy resulted in a

significant decrease of the deviation of the response time,
we ran an F test on mean reaction time averaged across

Figure 2. Plot of the time to contact at the response time as a function of the ratio of size to velocity for the two viewing conditions. Data
points are grouped by whether size was known or unknown. The solid lines denote the prediction of the E threshold strategy. Dashed lines
show the best fitting prediction from a linear weighted sum: 5s I E + 5r I _E to each condition. The insets show how E is weighted for this: a
negative weighting would resemble a tau-like strategy (e.g., left panel) whereas a positive weighing would be a consequence of relying on
a E threshold strategy, which should result in a linear relation between response time and size/velocity.
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subjects individual trials to compare the variances of the
response time distributions when size was known to those
when size was not known. Testing the hypothesis that the
ratio of the variances (unknown to known size) was
greater than 1 produced a significant difference: F(8,8) =
4.87, p = 0.0382 for the binocular condition and F(8,8) =
9.07, p = 0.005 for the monocular condition. The degrees
of freedom are derived from the number of partici-
pantsVone for each sample variance.
Figure 3 presents the equivalent case for the situation

when the participant was primed with two possible sizes.
When they verbally reported which size (Blarge[ or
Bsmall[) had just approached them, this correlated very
well with physical size for the binocular condition. We
plot the results as two sets separated based on assumed
size, but again this includes the full set of catch trials, so a
number of the balls that observers assumed were larger,
were smaller, and vice versa. In the binocular case, there
appears to be a clear separation of the stimuli set and the
responses times cluster around the different _Eth predictions
for the different ball sizes (0.033 and 0.06 m radius). The
data points are well explained by the _Eth fits, #2(11) =
8.22, p = 0.69 and #2(11) = 5.92, p = 0.87 for small and
large judgments, respectively. On the basis of the fits, the
_Eth values are 7 and 13 deg/s for small and large sizes,
respectively. So viewing under binocular conditions does
allow observers to adopt different _Eth settings based on
recognized/assumed size.
To further explore whether these fits are meaningful, we

can compare the slopes obtained from linear fits as a
function of

ffiffiffiffiffiffiffi
s=v

p
with those predicted by using a _Eth

strategy based on the values of rate of expansion at the
response time. For the large ball, the slope (0.15) was very
close to that predicted by using a _Eth strategy (0.17). For
the smaller size, we would predict that the slope should

increase by a factor of 1.35 (1/
ffiffiffiffiffiffiffiffiffiffiffiffi
schange

p
; Equation 3). The

observed slope did increase although its value (0.37)
would suggest that optical size may also bias judgments to
some extent as indicated by the positive weight given to
visual angle (green bar of the inset of the binocular panel
of Figure 3).
Under monocular conditions, however, the situation is

less clear and the two _Eth predictions generate toward the
same threshold comparable to the larger size under bino-
cular viewing. Again the data points did not deviate from
the fits predicted by a _Eth strategy, #

2(11) = 13.3, p = 0.27
and #2(11) = 3.4, p = 0.98 for judgments small and large,
respectively. But unlike the binocular condition, one
single fit explained both sets of data, #2(23) = 17.59,
p = 0.78. This was not the case in the binocular condition,
#2(23) = 109.7, p G 0.001. The reason for the difference
between the monocular and the binocular conditions is not
clear. It seems that observers used a single estimate of _Eth
for all balls, whether large or small; this may be due to a
lack of confidence in their size categorization when the
balls are presented monocularly.

Discussion

The ecological approach to visual perception (Gibson,
1979) deliberately avoided the use of prior knowledge in
guiding action. Here we have shown that prior knowledge
acquired by experience can modulate which retinal
information we rely on for interceptive actions. This
effect was present for both monocular and binocular
stimuli when a single object size was assumed. When
there was a choice of two object sizes, observers seemed

Figure 3. Plot of the time to contact at the response time as a function of size/velocity when two known sizes were shown. Data points are
grouped by size judgments made by the observers, but catch trials are included in each set. This means that when they judged the balls
to be small, a significant number of balls were larger and the responses were made earlier and when they judged the balls to be large, the
reciprocal effect is that the catch trails push the responses to be large. We fitted the same functions as in Figure 2 to these data sets.
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able to switch between two threshold settings (Equation 3)
provided that binocular information was available. This
could be due to additional size information arising from
disparity or the ratio _E (Regan & Beverly, 1979),
resolving ambiguities in size categorization.
DeLucia (2005) presented observers with two objects

that approached at the same velocity and had the same
TTC but asked participants to make a judgment as to
which would arrive first. Observers erred toward the
object that was larger, but providing information about
size differences eliminated this size-arrival effect. This
demonstrated a general size bias in a forced choice
judgment, but here we demonstrate an effect of size on
setting an arrival threshold for finely timed responses for a
direct interception judgment. Our findings complement
those of Battaglia, Schrater, and Kersten (2005) who
found that similar tactile priming of ball size lead to more
reliable judgments as to where a ball would cross a
prespecified interception line. Battaglia et al. were not
able to show precise localization of crossing point, but
their findings do suggest that known size may help to cue
an approximation of Bhow far[ to the interception point to
supplement the Bwhen[ that we demonstrate.
In the Introduction section, we suggested that a skilled

performer familiar with their task may need a particular
response time to complete an action and may vary their
response threshold based upon that. In the present experi-
ment task conditions, the mode of response was kept to a
minimal finger movement and instructions about when to
respond in relation to the objects trajectory were held
constant. This generates toward a constant time require-
ment (Tca) for initiating the action (e.g., López-Moliner
and Bonnet, 2002; Michaels et al., 2001; Smith et al.,
2001), but this does not equate to a constant threshold for
looming. To maintain temporal accuracy, the looming
threshold needs to scale with object size and approach
velocity to yield the equivalent Tca (Equation 4). The
results from our two ball task suggest that the threshold is
not just scaled within blocks of trials, but that it can be
reset rapidly between trials as new objects of a different
apparent size are presented. We did have a curious finding
that tau-like responses were present when size was not
known but there was binocular information (Figure 2).
Rushton and Wann (1999) proposed that looming and
binocular stimuli are flexibly combined to yield an arrival
estimate, but if this veridical estimate was available when
size was unknown, it is curious that it was not then used
for all other binocular conditions.
An essential part of our proposal, however, is the use of

known size to recover the approaching velocity (Equa-
tions 1 and 2). We propose that this stage cannot be
bypassed. Once velocity is recovered, then it is possible to
set a response threshold ( _Eth), based upon prior experience
of how long the response action will require (Tresilian,
1999). But recovering velocity would not only be useful
for obtaining an accurate temporal signal but also for
modulating the motor response (e.g., determining the

kinematics of the catch). This approach is able to account
for how near optimal performance can be obtained when
using only monocular information, given suitable experi-
ence (Gray, 2002). The observer would need to estimate
the size of the ball but this could be gleaned by prior
information or by combining different cues during the
trajectory. As experience increases, the need to estimate
size is replaced by known size. If knowledge of size were
not available, the system must default to combining _E with
visual angle E, but the accuracy of the time-to-contact
estimate depends on the strong restrictions applying to
optical combinations alone. This mechanism would also
explain previous findings in which larger velocities
produce later or slower responses (Smith et al., 2001).
The scaling arises as a direct consequence of adopting a
strategy _Eth when there is some uncertainty as to object
size. Interestingly, if there was an error of 12% in
estimating the velocity (Harris & Watamaniuk, 1995),
the potential error in the time-to-contact computation,
with a velocity range of 20–30 m/s, would be very small
(,4 ms). This timing error would be tolerable for most
successful interceptive actions and applies to balls travel-
ing along a noncollision trajectory.
Overall, these results show that observers make use of

prior knowledge about the size of an object in judging its
interception and present a model as to how it is used.
Known size combined with expansion rate _E allows one to
recover velocity and set a threshold value for looming at
which to initiate an interceptive action, and this ensures
reliability in the temporal estimate of arrival. Known size
does not need to be considered as a cognitive, declarative
parameter. It represents a process of calibration whereby,
through experience, the skilled sports person adapts their
action to judging the flight of a specific, size-constant
object. The tuning of action in this manner does not need
to be at odds with an ecological approach to perception,
but it does provide a more explicit process whereby
experience and extensive practice can optimize perfor-
mance. How experience can shape the pickup of optical
information is a topic that has not been addressed within
the ecological approach. Our model bridges this gap.

Appendix A: Math Appendix

Here it is shown how approaching physical velocity can
be obtained from rate of expansion after some integration
time.
The rate of expansion at time t, _Et, for a direct approach

of an spherical object can be approximated as

_Et ¼ s I v

d2t
; ðA1Þ

where s is the diameter of the object, v is the approaching
velocity, and dt is the distance at time t between the object
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and the observer. Equation A1 makes the approximation
that s is nearly equal to dt I Et.
We have that for a defined time interval (t1 j t2 = $t),

the traveled distance is

$d ¼ d1 j d2 ¼ v I $t: ðA2Þ

Substituting Equation A1 in Equation A2,

ffiffiffiffiffiffiffiffi
s I v
_E1

r
j

ffiffiffiffiffiffiffiffi
s I v
_E2

r
¼ v I $t ðA3Þ

and

ffiffiffiffiffiffiffiffi
s I v

p
ffiffiffiffiffi
1

_E1

s
j

ffiffiffiffiffi
1

_E2

s !
¼ v I $t: ðA4Þ

If we square Equation A4, we have

s I v

ffiffiffiffiffi
1

_E1

s
j

ffiffiffiffiffi
1

_E2

s !2

¼ v2 I $t2: ðA5Þ

Apart from the trivial solution (v = 0), v has the solution

v ¼
s

ffiffiffiffiffi
1

_E1

s
j

ffiffiffiffiffi
1

_E2

s !2

$t2
: ðA6Þ

Equation A6 expresses the fact that physical approach-
ing velocity is available to the system from rate of
expansion and known size after sampling the rate of
expansion at two times separated by interval $t.
Once velocity is recovered, a time-to-contact signal Tc

based on a constant threshold ( _Eth) can easily be obtained
from Equation A1 by using the fact that time to contact
equals d/v:

Tc ¼
ffiffi
s

pffiffiffiffiffiffi
_Eth

p vj1=2: ðA7Þ

If an action needs to be initiated at a specific time
before contact Tca to allow its execution, then this could
be achieved for a known size object according to

_Eth ¼ s

vT2
ca

: ðA8Þ
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Barcelona, P. Vall d’Hebron, 171, 08035 Barcelona,
Catalonia, Spain.

References

Battaglia, P. W., Schrater, P., & Kersten, D. J. (2005).
Auxiliary object knowledge influences visually-
guided interception behavior. ACM International
Conference Proceeding Series, 95, 145–152.

Caljouw, S. R., van der Kamp, J., & Savelsbergh, G. J.
(2004). Catching optical information for the regula-
tion of timing. Experimental Brain Research, 155,
427–438. [PubMed]

DeLucia, P. R. (2005). Does binocular disparity or
familiar size override effects of relative size on
judgements of time to contact? Quarterly Journal of
Experimental Psychology A: Human Experimental
Psychology, 58, 865–886. [PubMed]

Ernst, M. O., & Banks, M. S. (2002). Humans integrate
visual and haptic information in a statistically optimal
fashion. Nature, 415, 429–433. [PubMed]

Ernst, M. O., & Bülthoff, H. H. (2004). Merging the
senses into a robust percept. Trends in Cognitive
Sciences, 8, 162–169. [PubMed]

Gibson, J. J. (1979). The ecological approach to visual
perception. Boston, MA: Houghton Mifflin.

Gray, R. (2002) Behavior of college baseball players in a
virtual batting task. Journal of Experimental Psy-
chology: Human Perception and Performance, 28,
1131–1148. [PubMed]

Harris, J. M., & Watamaniuk, S. N. (1995). Speed
discrimination of motion-in-depth using binocular
cues. Vision Research, 35, 885–896. [PubMed]

Lee, D. N. (1976). A theory of visual control of braking
based on information about time-to-collision. Percep-
tion, 5, 437–459. [PubMed]

Lee, D. N., & Reddish, P. E. (1981). Plummeting gannets: A
paradigm of ecological optics. Nature, 293, 293–294.
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