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Phase shifts and in-medium cross sections for dressed nucleons in nuclear matter
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The dressing of nucleons as embodied in single-particle spectral functions is incorporated in the description
of nucleon-nucleon scattering in nuclear matter at a density corresponding tokF51.36 fm21. In order to
clarify the new features associated with the complete off-shell behavior of the single-particle motion, results
involving mean-field particles are also presented with special emphasis on the behavior of the phase shifts
when bound pair states occur. Both the1S0 and 3S1-3D1 channels exhibit this feature at the considered density
for mean-field particles at zero temperature. An important tool to assess the effect of the dressing of the
particles is the two-particle density of states. A sizable reduction with respect to the mean-field density of states
is obtained. At 2eF this reduction corresponds tozkF

2 , wherezkF
is the strength of the quasiparticle pole atkF ,

and it can therefore be as large as 0.5. This reduction has significant consequences for the strength of pairing
correlations both in the3S1-3D1 channel where it leads to a dramatic decrease of the attraction at the Fermi
energy and for the1S0 channel which no longer shows a pairing signal. Phase shifts and cross sections for
dressed particles are determined based on expressions which fold the effective interaction with the dressed but
noninteracting two-particle spectral function. This folding procedure yields similar results to an ‘‘on-shell’’
prescription reminiscent of the result for free or mean-field particles, except for cross sections deep in the
Fermi sea. Comparison of phase shifts and cross sections to the case of mean-field particles indicates that
smaller phase shifts in an absolute sense and considerable reductions of the in-medium cross sections for
dressed particles are obtained. It is shown that while in many cases these results imply a weakening of the
effective interaction, this is not the case for1S0 interactions deep in the Fermi sea.@S0556-2813~99!06612-1#

PACS number~s!: 21.65.1f, 21.30.Fe
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I. INTRODUCTION

For various reasons the study of the interaction betw
nucleons in the nuclear medium has retained a consider
amount of interest over the years. The construction of
effective interaction to be used in shell-model calculation
but one example@1,2#. The modification of the effective in
teraction in nuclear or neutron matter with increasing den
remains a challenging issue for a deeper understandin
these systems@3#. Recent interest in the study of the intera
tion between nucleons in the nuclear medium has been
erated by the experimental developments involving
(e,e8pp) reaction@4,5#. The potential selectivity of this re
action for the removal of1S0 proton pairs to certain fina
states and the absence of large contributions from two-b
currents to these transitions may allow the study of the in
action between protons in the medium at short relative
tances@6#.

Of particular interest is the exploration of the ‘‘in
medium’’ interaction in the context of transport-theory d
scriptions of heavy-ion reactions@7#. Typical analyses simu
late the dynamics of a heavy-ion reaction on the basis
kinetic equations like the Boltzmann-Uehling-Uhlenbe
~BUU! equation@8#. An essential ingredient in these BU
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calculations is the nucleon-nucleon cross section in the
dium. Attempts to include medium-modified cross sectio
in such calculations have been described in Ref.@9#. Calcu-
lations of the cross section between nucleons in nuclear m
ter have been reported in Refs.@10–19#. Some recent issue
that have emerged from this work include the enhancem
of the cross section at finite temperature due to the vicinity
a pairing instability@16#, the sensitivity of the cross sectio
to the choice of the single-particle~sp! spectrum at zero tem
perature@17#, the density and energy dependence@18#, and
temperature dependence of the cross sections@19#.

All results obtained in Refs.@10–19# have been generate
under the assumption that the sp motion of the nucleon in
medium is that of a mean-field~mf! particle. Under this as-
sumption the scattering process in the medium takes p
between nucleons which at most have a sp spectrum diffe
from free space but are otherwise unaffected by the prese
of other nucleons except for the Pauli principle related to
mf Fermi gas. This assumption has been contradicted
equivocally in recent years for finite nuclei by a caref
analysis of the (e,e8p) reaction. This analysis demonstrat
that the sp strength is not completely concentrated at on
energy but for states accessed in this reaction has a dist
tion characterized by about 2/3 of the strength close to
spread around the expected sp energy@20#. Some additional
strength is inferred@21,22# at higher missing energy, leadin
to occupation numbers of about 75% close to the Fermi
ergy in 208Pb. Many-body calculations of the spectral fun
tion of nuclear matter using realistic interactions@23,24# gen-
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DICKHOFF, GEARHART, ROTH, POLLS, AND RAMOS PHYSICAL REVIEW C60 064319
erate a similar picture at normal nuclear matter density. I
therefore fair to say that both on the basis of experime
results as well as theoretical calculations for nuclear ma
it is prudent to consider the sp dressing of the nucleon
matter and the effect this has on the scattering process.

Preliminary results related to the present work have b
presented in Refs.@25–28#. In a recent paper@29# one of the
present authors has attempted to provide a framework to
terpret the results obtained in a ladder-diagram calculatio
the two-body propagator which employs fully dressed
propagators. One of the consequences of employing dre
particles is the localization of the two-body propagator
coordinate space, severely limiting the range of the propa
tion for most energies. This feature is due to the presenc
a given energy, of a range of momenta which determine
relative wave function of the propagating particles. While
mf particles a unique~on-shell! momentum characterizes th
relative wave function which therefore corresponds to
plane wave~or spherical wave!, the presence of differen
momentum components implies that the determination
phase shifts and cross sections requires some kind of fol
procedure over these momenta in the case of dressed
ticles. In Ref.@29# a set of expressions has been introduc
to characterize the scattering event of dressed particles
volving such a folding procedure. Results for phase sh
and cross sections obtained from these expressions are
pared in this paper with the corresponding results propa
ing free and mf particles using the Reid soft-core poten
@30#.

In Sec. II A the relation between the two-body propaga
and the effective interaction is summarized for free, mf, a
dressed particles. In Sec. II B the link between the desc
tion of the scattering process of free particles and the t
body propagator is presented including the case of cou
channels as required for the nuclear tensor force. The s
modifications required for the description of the scattering
mf particles are discussed in Sec. II C. Useful material
scribing the relation between phase shifts at energy thr
olds and bound states through a generalization of Levins
theorem can be found in Ref.@31#. Relevant results require
for the description of the scattering of dressed particles
collected in Sec. II D. This subsection also includes a disc
sion of the two-body spectral density and two-body spec
function for noninteracting but dressed particles. The la
quantity features prominently in determining the two-bo
density of states which is compared with the correspond
results for free and mf particles at zero total momentum
brief discussion of the method of calculating the two-bo
propagator in a partial-wave momentum space representa
is presented. Expressions used for calculating the ph
shifts and cross sections of dressed particles based on
work of Ref. @29# are also collected in Sec. II D.

Results for phase shifts involving the propagation of
particles are discussed in Sec. III. This section is intended
the one hand to make contact with Ref.@31# where the scat-
tering of 3He atoms was studied based on the use of a v
strongly repulsive central interaction, while on the oth
hand clarifying, in the nuclear case, the relation betwe
phase shifts and the possible occurrence of bound pair st
06431
is
al
r,
in

n

n-
of
p
ed

a-
at
e

r

a

f
ng
ar-
d
in-
s
m-
t-
l

r
d
-
-
d

ht
f
-
h-
’s

re
s-
l
r

g

on
se
the

f
n

ry
r
n
es.

These results also provide the background for the prese
tion of phase shifts and cross sections for the propagatio
dressed particles which is given in Sec. IV. A summary a
conclusions are presented in Sec. V.

II. SCATTERING FORMALISM EMPLOYING THE
TWO-BODY PROPAGATOR

The purpose of the present section is to gather all res
relevant for the calculation of phase shifts between nucle
in the nuclear medium. The physics included in the desc
tion of the scattering in the medium involves the proper
clusion of short-range correlations by means of summing
ladder diagrams for a realistic nucleon-nucleon interacti
The corresponding ladder-summed two-body effective in
action can then be linked to the two-body propagator wh
provides a convenient tool to describe the scattering in
medium@29#.

A. Two-body propagator and effective interaction

For the purpose of the present work it is sufficient
consider the two-time two-particle propagator

gII ~k1k2 ;k3k4 ;t12t2!

52 i ^C0
AuT$ak2

~ t1!ak1
~ t1!ak3

† ~ t2!ak4

† ~ t2!%uC0
A&, ~1!

given here in the momentum representation, while spin
isospin indices are suppressed. This propagator depend
the conserved total momentumK5k11k25k31k4 in the
medium. To facilitate a comparison with the scattering
particles in free space only results for the caseuKu50 will be
considered in Secs. III and IV. Extension of the present w
to deal with the case of nonzero total momentum require
numerically reliable calculation of the noninteracting prop
gator of dressed particles in the medium and will be p
sented elsewhere@33#. The remaining momentum depen
dence of the propagator can now be associated with
relative momentum of the pair of removal operators in E
~1!, given byk5 1

2 (k12k2), and of the pair of addition op-
erators given byk85 1

2 (k32k4). Since only ladder diagram
are considered together with a static bareNN interaction, the
corresponding integral equation for the propagator can
written as

gII ~k,k8;K,V!5gf
II ~k,k8;K,V!

1gf
II ~k;K,V!E d3q^kuVuq&gII ~q,k8;K,V!

5gf
II ~k,k8;K,V!1gf

II ~k;K,V!

3^kuG~K,V!uk8&gf
II ~k8;K,V!, ~2!

where

gf
II ~k,k8;K,V!5d~k2k8!gf

II ~k;K,V! ~3!

is the noninteracting two-particle propagator which both
homogeneous matter and free space conserves the re
9-2
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PHASE SHIFTS AND IN-MEDIUM CROSS SECTIONS . . . PHYSICAL REVIEW C 60 064319
momentum as expressed by thed function in Eq.~3!. The
presence of exchange terms in Eqs.~2! and ~3! is hereby
acknowledged but suppressed in the presentation. The
ond equality in Eq.~2! links the two-particle propagator with
the vertex function or effective interactionG which contains
the summation of all ladder diagrams.

A partial-wave decomposition of the two-body propaga
in Eq. ~2! yields the corresponding integral equation and
relation between the propagator and the vertex function~as-
suming an appropriate angle-averaging procedure for n
zero total momentum!

gJST
II ~kl,k8l 8;KV!

5
d~k2k8!

k2
d l ,l 8gf

II ~k;K,V!1gf
II ~k;K,V!

3(
l 9

E dqq2^kluVJSTuql9&gII ~ql9,k8l 8;K,V!

5
d~k2k8!

k2
d l ,l 8gf

II ~k;K,V!1gf
II ~k;K,V!

3^kluGJST~K,V!uk8l 8&gf
II ~k8;K,V!. ~4!

The appropriate notation for a partial wave basis has b
introduced in Eq.~4! in terms ofl ,S,J,T representing orbital,
total spin, total angular momentum, and isospin, whilek and
k8 denote relative andK total momentum quantum number
The energyV is conserved and must be viewed as a varia
upon which the propagator depends~it also depends on the
total momentum in the case of the medium!. The noninter-
acting propagator is again denoted bygf

II and may include
the dressing of the individual particles when the scatter
takes place in matter. The vertex function or effective int
actionG can be obtained from the numerical solution of t
ladder equation in a partial-wave momentum representa

^kluGJST~K,V!uk8l 8&

5^kluVJSTuk8l 8&

1(
l 9

E
0

`

dqq2^kluVJSTuql9&gf
II ~q;K,V!

3^ql9uGJST~K,V!uk8l 8&. ~5!

This equation has been solved for the first time using fu
dressed sp propagators in the medium in Ref.@25#. Since this
subsection deals primarily with general issues, the desc
tion of the calculation of the two-body interaction betwe
dressed particles will be be deferred to Sec. II D. Suffice i
state here that it depends critically on an accurate evalua
of the dressed but noninteracting propagatorgf

II (q;K,V).
In order to extract the information relevant for the d

scription of the scattering process from the effective tw
body interaction or two-body propagator calculated in m
mentum space, it is necessary to consider both quantitie
06431
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coordinate space. The coordinate space version of Eq.~4! is
obtained by a double Fourier-Bessel transform

gJST
II ~rl ,r 8l 8;K,V!

5
2

pE0

`

dkk2E
0

`

dk8 k82 j l~kr ! j l 8~k8r 8!

3gJST
II ~kl,k8l 8;K,V!. ~6!

The corresponding result for the noninteracting part of
propagator, represented by the first term in Eq.~4!, reduces
to one integral on account of the delta function which co
serves relative momentum:

gf ,l
I I ~r ,r 8;K,V!5

2

pE0

`

dkk2 j l~kr ! j l~kr8!gf
II ~k;K,V!.

~7!

The Fourier-Bessel transform of Eq.~4! has the following
form:

gJST
II ~rl ,r 8l 8;K,V!

5d l ,l 8gf ,l
I I ~r ,r 8;K,V!

1(
l 9

E
0

`

dr1r 1
2E

0

`

dr2r 2
2gf ,l

I I ~r ,r 1 ;K,V!

3^r 1l uVJSTur 2l 9&gJST
II ~r 2l 9,r 8l 8;K,V!

5d l ,l 8gf ,l
I I ~r ,r 8;K,V!

1E
0

`

dr1r 1
2E

0

`

dr2r 2
2gf ,l

I I ~r ,r 1 ;K,V!

3^r 1l uGJST~K,V!ur 2l 8&gf ,l 8
II

~r 2 ,r 8;K,V!. ~8!

When the bare two-body interactionV is local in the relative
coordinate, only one integral in the first equality remain
The second equality can be used to study the asymp
behavior of the propagator outside the range of the inte
tion.

B. Scattering of free particles

The propagator description of the scattering of free p
ticles was presented in Ref.@29# for the case of uncoupled
channels. As a result of the importance of channel coup
related to the nuclear tensor force, it is important to pres
this case explicitly here. In the case of free particles
noninteracting propagator in momentum space is given
~assuming zero total momentum!

gf
II ~k;V!5

1

V2\2k2/m1 ih
. ~9!

Defining the on-shell momentum by

V5
\2k0

2

m
, ~10!
9-3
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one can perform the relevant Fourier-Bessel transform of
noninteracting propagator in Eq.~7! analytically ~see, e.g.,
@32#!, yielding

gf ,l
I I ~r ,r 8;k0!52 ik0

m

\2
j l~k0r ,!hl~k0r .!. ~11!

The coordinate argument in the spherical Hankel funct
must be the larger ofr and r 8 and is denoted byr . , while
the argument of the spherical Bessel function is the sma
and denoted byr , . For the current analysis it will be as
sumed that the interaction has a finite range,^rl uVJSTur 8l 8&
50 for r ,r 8 larger than somer 0. Substituting Eq.~11! in the
second part of Eq.~8! in the case of coupled channels f
r 8.r and r 8.r 0 yields

gJST
II ~rl ,r 8l 8;k0!

52d l ,l 8ik0

m

\2
j l~k0r !hl 8~k0r 8!

1(
l 9

E
0

`

dr1r 1
2E

0

`

dr2r 2
2gf ,l

I I ~r ,r 1 ;k0!

3^r 1l uTJST~k0!ur 2l 9&S 2 ik0

m

\2D j l 9~k0r 2!hl 8~k0r 8!

52 ik0

m

\2
c l 8

JST
~rl ;k0!hl 8~k0r 8!, ~12!

where

c l 8
JST

~rl ;k0!5d l ,l 8 j l~k0r !1E
0

`

dr1r 1
2E

0

`

dr2r 2
2 gf ,l

I I ~r ,r 1 ;k0!

3^r 1l uTJST~k0!ur 2l 8& j l 8~k0r 2!, ~13!

and the conventional notationT instead ofG has been intro-
duced together with the replacement ofV by k0. This result
can be substituted into the first part of Eq.~8! to obtain the
relevant integral equation for the wave functionc ~under the
condition thatr 8.r 0):

c l 8
JST

~rl ;k0!5d l ,l 8 j l~k0r !

1(
l 9

E
0

`

dr1r 1
2E

0

`

dr2r 2
2 gf ,l

I I ~r ,r 1 ;k0!

3^r 1l uVJSTur 2l 9&c l 8
JST

~r 2l 9;k0!. ~14!

The asymptotic analysis of the wave function can be p
formed by using Eq.~11! in Eq. ~13! assuming thatr is larger
than r 0, the range of the interaction. Values ofr 1 and r 2 in
Eq. ~8! larger thanr 0 yield no contributions to the integra
As a result, the effective interactionT has a range similar to
the one of the bare interactionV. Using the relation between
spherical Bessel and Hankel functions
06431
e

n

er

r-

j l~r!5
1

2
@hl~r!1hl* ~r!#, ~15!

and Eq.~11! in Eq. ~13! one obtains the asymptotic behavi
of the wave function for the general case of a coupled ch
nel in the following form:

c l 8
JST

~rl ;k0!→1

2 H d l ,l 8hl* ~k0r !1hl~k0r !

3Fd l ,l 822i
m

\2
k0E

0

`

dr1 r 1
2E

0

`

dr2 r 2
2

3^r 1l uTJST~k0!ur 2l 8& j l~k0r 1! j l 8~k0r 2!G J
5

1

2 H d l ,l 8hl* ~k0r !1hl~k0r !Fd l ,l 822p i S mk0

2\2 D
3^k0l uTJST~k0!uk0l 8&G J . ~16!

The asymptotic form of the propagator is obtained by inse
ing the result of Eq.~16! into Eq. ~12!. The term in square
brackets corresponds to the possibly nondiagonalS-matrix
element

^k0l uSJST~k0!uk0l 8&5Fd l ,l 822p i S mk0

2\2 D
3^k0l uTJST~k0!uk0l 8&G . ~17!

In the case of an uncoupled channel one obtains the p
shift from

e2id l
JST

[^k0uSl
JST~k0!uk0&. ~18!

This result is equivalent to

tand l
JST5

Im^k0uTl
JST~k0!uk0&

Rê k0uTl
JST~k0!uk0&

, ~19!

which explicitly shows that a nonzero imaginary part of t
effective interaction is required to obtain a nonvanishi
phase shift. In turn, this imaginary part of the interacti
only appears for energies where the noninteracting propa
tor has a nonvanishing imaginary part. For the scattering
free particles this corresponds to all positive energies. In
case of coupled channels the unitarity of theSmatrix and the
symmetry property of theT matrix can be employed to infe
that S can be diagonalized by an orthogonal real matrixA:

^k0l uSJST~k0!uk0l 8&

5 (
a51,2

^ l uAJ~k0!ua&e2ida
JST

^auAJ~k0!u l 8&, ~20!
9-4
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PHASE SHIFTS AND IN-MEDIUM CROSS SECTIONS . . . PHYSICAL REVIEW C 60 064319
whereda
JST are called the~real! eigenphase shifts. One ma

choose@34#

^ l uAJ~k0!ua&5S coseJ sineJ

2sineJ coseJD , ~21!

whereeJ is referred to as the mixing angle and the rela
mixing parameter is given by

rJ5sin 2eJ. ~22!

It should be noted that the three real parametersd1
JST,d2

JST,
andeJ can be used to represent theSmatrix. The relation of
the eigenphase shifts and corresponding mixing param
with the usual representation of the experimental result
terms of bar phase shifts can be found, e.g., in Ref.@35#. It is
also possible to calculate the phase shifts and mixing par
eter directly from the realR-matrix elements@36#. Since for
the case of dressed nucleons the procedure correspon
diagonalizing anS-matrix-like quantity, this method is high
lighted here for the case of free particles.

C. Scattering of mean-field particles in the medium

To obtain the phase shifts for particles propagating in
medium with mf sp energies one can proceed in a sim
fashion. A useful reference is the work of Bishopet al. @31#
where the introduction of the phase shift for the case of ho
hole propagation is discussed. The corresponding mf pro
gator in the medium, also known as the Galitski-Feynm
propagator, is given by

gm f
II ~k1 ,k2 ;V!5

u~k12kF!u~k22kF!

V2e~k1!2e~k2!1 ih

2
u~kF2k1!u~kF2k2!

V2e~k1!2e~k2!2 ih
, ~23!

using the sp momentak1 andk2. For the case of zero cente
of-mass momentum which is the only one considered
Secs. III and IV, one obtains

gm f
II ~k;V!5

u~k2kF!

V22e~k!1 ih
2

u~kF2k!

V22e~k!2 ih
. ~24!

The sp energye(k) can deviate from the simple kinetic en
ergy spectrum and therefore yield a different relation
tween the energyV and the on-shell momentumk0:

V[2e~k0!. ~25!

Nevertheless, the uniqueness ofk0 for a given energy is still
preserved. Although one can no longer evaluate the no
teracting propagator in coordinate space completely ana
cally from Eq.~7!, the separability of the propagator is mai
tained for the contribution of the pole term as in Eq.~11!
~with a different constant prefactor!, while the remaining
term vanishes asymptotically forr sufficiently different from
r 8. A discussion of a similar result for the Fourier transfor
of the mf propagator given in Eq.~24! can be found in Ref.
@37# for the Bethe-Goldstone propagator. As a result, o
06431
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preserves the integral equation for the wave function in
partial wave basis as in Eq.~13! in the case of mf propaga
tors. The only difference with the free scattering case
volves the use of the mf equivalent of the noninteract
propagator in coordinate space in Eq.~14!. This result is due
to the uniqueness of the on-shell momentum at a given
ergy which guarantees that the noninteracting wave func
is a plane-wave or spherical Bessel function~in a partial-
wave basis!. One can therefore proceed with a simil
asymptotic analysis as for free particles yielding a cor
sponding definition of the phase shifts as in Eq.~18! in terms
of the on-shell scattering matrix. The result of Eq.~19! also
remains valid in this case. For coupled channels Eq.~17! is
still valid and eigenphase shifts are also obtained by dia
nalizing theS matrix. The presence of a nonvanishing pha
shift continues to be linked to the nonvanishing of the ima
nary part of the noninteracting propagator. In the case of
scattering the corresponding energy domain resides ab
2e(k50) which corresponds to the lowest energy of tw
occupied states.

As in the case of noninteracting particles, the presenc
bound states has specific consequences for the behavi
the phase shift at the corresponding thresholds in the en
variable@31#. While in free space this threshold correspon
to zero energy and the presence of one bound state is
flected in the phase shift going top when the scattering
energy goes to zero, the corresponding threshold in the
dium is 2eF . If the interaction is sufficiently attractive, th
phase shift may approachp on both sides of 2eF . This
feature is intimately related to the presence of a pairing
stability or bound pair states in Fermi systems with attract
effective interactions at the Fermi surface. The phase s
can also approach2p when a bound state below the hol
hole continuum@i.e., below 2e(k50)] appears due to a re
pulsive interaction. This possibility is realized in liquid3He
at sufficiently high density for mf particles@31,38#. Both
cases~phase shifts going to6p) will be illustrated in Secs.
III and IV by considering modifications of the1S0 interac-
tion of the Reid potential as well as the actual Reid1S0 and
3S1-3D1 interactions. If the interaction is not sufficiently a
tractive to yield pairing, the phase shift will vanish at 2eF .

The modesty of the modifications of the quantities th
characterize the scattering process for mf particles as c
pared to the case of free-particle scattering, is related to
continued one-to-one relation of the energy with a uniq
relative momentum for which the noninteracting propaga
has an imaginary part. This on-shell momentum emerge
the momentum that characterizes the spherical Bessel f
tion describing the relative motion. The plane-wave char
ter of the wave function allows for a conventional interpr
tation of the scattering process as in the case of free spa

D. Scattering of dressed particles in the medium

In order to discuss the modifications of the scattering p
cess in the medium involving dressed nucleons it is usefu
gather some general results involving the two-body propa
tor in the medium@Eq. ~1!# and the two-body spectral densit
9-5
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SII ~k1k2 ;k3k4 ;V!

52
1

p
Im gII ~k1k2 ;k3k4 ;V!

52
1

p
ImE

2`

`

d~ t12t2!eiV(t12t2)

3$2 i ^C0
AuT$ak2

~ t1!ak1
~ t1!ak3

† ~ t2!ak4

† ~ t2!%uC0
A&%.

~26!

Since the total momentum of the added and removed
must be the same on account of momentum conservatio
is more appropriate to consider the two-body spectral den
and propagator without the correspondingd function:

SII ~k,k8;K,V!52
1

p
Im gII ~k,k8;K,V!, ~27!

where the relative momentak, k8 and the total momentumK
are defined in a similar way as in the text below Eq.~1!. SII

contains two contributions just as the two-body propagato
the second equality of Eq.~2!:

SII ~k,k8;K,V!52
1

p
Im$gf

II ~k,k8;K,V!%

2
1

p
Im$gf

II ~k;K,V!^kuG~K,V!uk8&

3gf
II ~k8;K,V!%. ~28!

The first part in Eq.~28! refers to the propagation of tw
dressed particles without their mutual interaction. This te
contains ad function as in Eq.~3! related to the conservatio
of the relative momentum since there is no mutual inter
tion. The spectral function corresponding to this nonintera
ing term is given by

Sf
II ~k;K,V!52

1

p
Im$gf

II ~k;K,V!%. ~29!

By returning to individual momenta for the removal or add
tion of individual particles one can writegf

II (k;K,V) in
terms of the sp spectral functions:

gf
II ~k1 ,k2 ;V!5E

eF

`

dvE
eF

`

dv8
Sp~k1 ,v!Sp~k2 ,v8!

V2v2v81 ih

2E
2`

eF
dvE

2`

eF
dv8

Sh~k1 ,v!Sh~k2 ,v8!

V2v2v82 ih
.

~30!

Only the magnitudek1 andk2 are indicated here since the
is no dependence of the sp spectral functions on the direc
of the sp momentum. These particle and hole spectral fu
tionsSp andSh , respectively, describe the distribution of th
sp strength for a given momentum over the energy. They
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continuous and have sizable peaks either above or below
Fermi energy, corresponding to a momentum state abov
below kF , at the so-called quasiparticle energy. ForkF
51.36 fm21, corresponding to normal density, the streng
contained in the peak for momenta close tokF is typically
only 70% @23,24,39#. From the rest of the strength abo
10% is found below the Fermi energy, another 10% in
first 100 MeV above the Fermi energy, and the remain
10% is spread thinly towards even higher energy as a re
of the short-range and tensor correlations in the nuclear
teraction@23#. First attempts to incorporate these features
the solution of the ladder equation have been explored
Refs.@25–28#. A critical ingredient in solving this problem is
a careful evaluation of Eq.~30!. First results of this evalua
tion can be found in Ref.@40#. The noninteracting two-
particle spectral function corresponding to Eq.~30! can be
written as

Sf
II ~k1 ,k2 ;V!52

1

p
Im gf

II ~k1 ,k2 ;V!

55 EeF

`

dv Sp~k1 ,v!Sp~k2 ,V2v!, V.2eF,

E
2`

eF
dv Sh~k1 ,v!Sh~k2 ,V2v!, V,2eF.

~31!

It should be noted that for energies below 2eF , Eq. ~31! can
also be written as

Sf
II ~k1 ,k2 ;V!5(

n
u^Cn

A22uak1
ak2

uC0
A&u2

3d„V2~E0
A2En

A22!…. ~32!

Using the results of Eq.~31! one can obtain the following
two sum rules:

I .
II 5E

2eF

`

dV Sf
II ~k1 ,k2 ;V!5@12n~k1!#@12n~k2!#

~33!

and

I ,
II 5E

2`

2eF
dV Sf

II ~k1 ,k2 ;V!5n~k1!n~k2!, ~34!

wheren(k) refers to the occupation of the sp momentumk
which is related to the integral over energy of the hole sp
tral function

n~k!5E
2`

eF
dv Sh~k,v!. ~35!

The sum rule@Eq. ~34!# may yield large deviations from the
free-Fermi-gas result. Using the numbers of Ref.@39# for
kF51.36 fm21 yields about (0.8)2 for Eq. ~34! when both
momenta are belowkF as compared to unity in the case
9-6
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the free Fermi gas. Another important quantity related to
noninteracting two-body spectral function is the density
states which is given by

N(2)~K,V!5E
0

`

dkk2 Sf
II ~k;K,V!, ~36!

where the magnitudes of the relative and total momentum
used assuming an appropriate angle-averaging proced
This result may be compared to the result for a free Fe
gas for zero total momentum:

NF
(2)~V!5

m3/2V1/2

2\3
. ~37!

Using the unique relation between the energy and the
shell momentumk0 @see Eq.~10!# this result can be written
as

NF
(2)~k0!5

mk0

2\2
. ~38!

In the case of mf particles in the medium one has to inclu
the effect of the sp potential energyU which yields the fol-
lowing density of states~again for zero total momentum!:

Nm f
(2)~k0!5

mk0
2

2\2

1

k01~m/\2!]U/]kuk0

. ~39!

For purposes of comparison it is convenient to consider
density of states for dressed particles also as a functio
momentum. This is achieved for zero total momentum
determining an ‘‘on-shell’’ momentum by

V52e~k0!52H \2k0
2

2m
1ReS„k0 ,e~k0!…J , ~40!

whereS corresponds to the sp self-energy. Except for en
gies deep in the Fermi sea@29# this on-shell momentumk0
coincides with the location of the peak in the imaginary p
of gf

II as a function of momentum. This is shown in Fig. 1 f
k052.8 fm21 corresponding to an energy of 281 MeV. F

FIG. 1. Real~dotted line! and imaginary~dashed line! parts of
the dressed noninteracting propagator for an ‘‘on-shell’’ moment
of 2.8 fm21 corresponding to an energy of 281 MeV, as a functi
of momentum. The propagator is considered at zero total mom
tum.
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the case of zero total momentum@implying that the magni-
tude of the sp momenta in Eq.~30! is the same# both the real
~dotted line! and imaginary part~dashed line! parts of the
dressed propagator are plotted for this fixed energy~and
‘‘on-shell’’ momentum! as a function of momentum. Not
that for zero total momentum the relative momentum and
momentum appearing in Eq.~30! are identical. The position
of the peak in the imaginary part clearly corresponds to
on-shell momentum for this energy. In contrast to a
propagator which has ad-function imaginary part at 2.8
fm21, the dressed propagator displays a distribution o
momentum at a given energy. Also for the real part of t
propagator there is a distinct difference between the mf
dressed propagators. While the mf propagator jumps fr
1` to 2` at 2.8 fm21, the dressed propagator exhibits
characteristic wiggle around this energy going now throu
zero at the ‘‘on-shell’’ momentum. For other momenta
Fig. 1 one obtains a reduction factor of about 0.5 with
spect to the mf result, while only for large values ofk do the
real parts approach each other@29#. Figure 1 also suggest
that the numerical solution to Eq.~5! requires a somewha
different strategy than in the mf case. For mf propagators
usually solves Eq.~5! by discretizing the integral equation
taking only the real part of the propagator into account. T
solution to this integral equation then yields theR matrix by
a real matrix inversion@36#. The contribution of the imagi-
nary part of the propagator can then be obtained alge
ically using the R-matrix elements@41#. Using dressed
propagators it is more convenient to discretize the integ
equation in such a way that the relevant sampling of both
real and imaginary parts of the propagator occurs simu
neously, leading to a complex matrix inversion to obtainG
directly.

For small on-shell momenta it is possible that the peak
the imaginary part of the propagator~or equivalently inSf

II )
does not coincide with the ‘‘on-shell’’ momentum. This re
sult is indicated in Fig. 2 whereSf

II is plotted as a function of
energy for two different~relative! momenta~still for zero
total momentum!. In both cases the actual peak occurs a f
MeV below the energy obtained from Eq.~40!. The results in
Fig. 2 also imply that for fixed energy, but now as a functi
of momentum, the peak in the spectral function does
always occur at the on-shell momentum but typically a

n-

FIG. 2. Two-nucleon spectral function for two different mo
menta corresponding to 0.5 fm21 ~solid line! and 0.6 fm21, respec-
tively, as a function of energy. In both cases the total momentum
zero. The actual peak for both curves lies a few MeV below
corresponding energies as determined by Eq.~40!.
9-7
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somewhat higher value. This is true in particular for energ
deep in the Fermi sea. This observation points to the gen
feature that there is no unique on-shell momentum when
deals with dressed particles. As a result it is not obvious
one can use expressions like Eq.~19! to determine the phas
shifts.

Before discussing the determination of the phase shifts
dressed particles it is useful to further characterize the
ference between the noninteracting mf and dressed prop
tor. In Fig. 3 the density of states for these different case
considered. The dashed line represents the result for
particles~or mf particles with only kinetic energy! according
to Eq. ~38!. The dotted line shows the effect of a realistic
spectrum@39# for mf particles atkF51.36 fm21 and uses
Eq. ~39!. The inclusion of the complete dressing leads to
solid line in Fig. 3 based on the evaluation of Eq.~36!. When
the on-shell momentum approacheskF the reduction of the
density of states compared to the dotted line correspo
exactly to a factorzkF

2 ~about 0.5!, corresponding to a reduc

tion of the strength of the quasiparticle pole atkF for each of
the particles. Figure 3 shows that this reduction is substan
in a large domain of momenta~or equivalently in a large
domain of energies! corresponding to the redistribution o
the sp strength over a large energy domain@23#. For small
momenta the dressed density of states does not go to

FIG. 3. Density of two-particle states as a function of the o
shell momentum for free particles~dashed line!, for mf particles at
kF51.36 fm21, including a sp spectrumU ~dotted line!, and for
dressed particles~solid line!. All three lines correspond to zero tota
momentum. The dashed line also represents the density of state
mf particles in the medium when only kinetic energies are con
ered.

FIG. 4. Density of states as a function of energy for mf partic
~dashed line! and dressed particles~solid line!.
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since the on-shell relation~40! is no longer applicable for
energies below 2U(k50) while the density of states doe
not vanish at those energies. This feature is demonstr
more clearly in Fig. 4 where the dressed density of sta
~solid line! is plotted as a function of energy and compar
with the result for mf particles including the sp spectru
~dashed line! which starts at 2U(0) corresponding to abou
2140 MeV at this density.

It should be noted that the noninteracting propagator
Eq. ~30! becomes the familiar mf Galitski-Feynman prop
gator @see Eq.~24!# when mf spectral functions are inserte
which are characterized by ad-function peak of strength 1 a
a sp energy either above the Fermi energy (k.kF) or below
(k,kF). The difference between the Galitski-Feynm
propagator and the dressed propagator is qualitatively dif
ent for the imaginary part and quantitatively for the real p
as discussed in Ref.@29# and above with regard to Fig. 1. I
was shown in Ref.@29# that the spreading over a wide rang
of momenta of the imaginary part of the propagator a
given energy is responsible for the localization of the sc
tering process. This feature was demonstrated analyticall
approximating the noninteracting dressed propagator
terms of a propagator which has a simple pole in the co
plex momentum plane. Using this complex pole approxim
tion ~CPA! an asymptotic analysis of the scattering proce
was made in Ref.@29#. The critical ingredient in this analysi
is the new form of the dressed propagator in coordinate sp
in this CPA. It is obtained from Eq.~11! by replacingk0 by
the complex momentum corresponding to the pole of
CPA and inserting an overall multiplication factorc @29#.
The imaginary part of this pole momentum characterizes
width of the imaginary part of the propagator on the re
momentum axis as in Fig. 1. Its presence is responsible
the finite range of the propagator in coordinate space s
the probability amplitude for removing a pair with relativ
distancer while adding it after propagation atr 8 is exponen-
tially damped, its decay governed by this imaginary part
the momentum.

One consequence of this damping is the absence of a
mal definition of the cross section, since this requires asym
totically large distances for flux to arrive at a detector. T
dressing of particles in the medium simply implies that af
scattering the particles do not retain information about t
scattering event over asymptotically large distances si
they will interact with other particles while propagating
the medium. The above discussion does not imply that
local interaction between dressed particles is small. It d
mean that one has to be cautious with the notion of a cr
section of dressed particles in the medium.

Another consequence of this damping feature is the
pearance of complex phase shifts as illustrated in Ref.@29#
for the case of a hard-core potential. Fortunately this ima
nary part of the phase shift is in practice substantially sma
than the real part since their relative size is related to
relative size of the real and imaginary parts of the comp
momentum that characterizes the spread in momentum o
propagator. For most energies the imaginary part of this m
mentum is substantially smaller than the real part. An
ample of this feature is provided in Fig. 1 where the real p
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PHASE SHIFTS AND IN-MEDIUM CROSS SECTIONS . . . PHYSICAL REVIEW C 60 064319
of the pole momentum is close to 2.8 fm21 ~the ‘‘on-shell’’
value! while the imaginary part is approximately 0.2 fm21.
In order to facilitate the comparison with mf calculations
phase shifts and cross sections, it is therefore useful to
approximate expressions for real phase shifts and co
sponding cross sections that still reflect the spread in
mentum of the dressed propagator at a given energy. S
expressions have been proposed in Ref.@29#. They are based
on the smallness of the imaginary part of the complex m
mentum in the CPA which suggests that it makes sens
make use of the formal identity for the free propagator~for
r ,r 8) that is part of Eq.~16!:

2 ik0 j l~k0r ! j l~k0r 8!

5
2 ik0

2
$ j l~k0r !hl~k0r 8!1 j l~k0r !hl* ~k0r 8!%

5
1

pE0

`

dkk2
j l~kr ! j l~kr8!

k0
22k21 ih

2
1

pE0

`

dkk2
j l~kr ! j l~kr8!

k0
22k22 ih

5 i
2

pE0

`

dkk2 j l~kr ! j l~kr8!ImH 1

k0
22k21 ih

J , ~41!

which is valid for vanishingh, in the case of the dresse
propagator. By identifying in the last equality of Eq.~41! the
appearance of the imaginary part of the propagator~for the
free case!, one may extend this result to the case of the C
propagator or the complete dressed propagator. This app
mation is appropriate for a pole in the complex moment
plane not too far from the real axis for the CPA result b
also makes sense forr no too different fromr 8 in general.
Using this extension of the last equality in Eq.~41! to the
dressed propagator, theS-matrix element can be written@see
Eqs. ~16! and ~17!# for the case of zero total momentum
the following way:

Sl ,l 8
JST

~V!5112i E
0

`

dkk2 Im$gf
II ~k;V!%^kluGJST~V!ukl8&.

~42!

This result reduces to the conventional results@see, e.g., Eq.
~17!# for free or mf particles. In the case of coupled chann
Eq. ~42! can be used to follow the procedure to obtain ph
shifts by diagonalization as discussed in Sec. II B. In the c
of an uncoupled channel one can define the dressed p
shift according to

Sl ,l
JST~V!5112i E

0

`

dkk2 Im$gf
II ~k;V!%^kluGJSTukl&

[e2id l
JST

. ~43!

A consequence of the present approximation is that the p
shiftsd l

JST remain real@29#. As a result, the phase shifts ca
be fruitfully compared with results for mf or free particle
Detailed results for a realistic interaction will be presented
Sec. IV. Equation~42! is exact for noninteracting or mf par
ticles and for dressed particles includes the physically r
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sonable expectation that the distribution over the moment
contained in the imaginary part of the propagator will featu
in determining the scattering process. While this approxim
tion does not make sense at large distance scales, it prov
locally, a very reasonable generalization of the phase s
The corresponding ‘‘short-distance’’ approximation to t
scattering amplitude yields the following result@29#:

f m
s8ms

S
~u,f!54p(

l l 8J
(

mm8M

i l 8~2 i ! lYlml
~ r̂ !Yl 8m

l8
* ~ ẑ!

3~ lmlSmsuJM!~ l 8ml8Sms8uJM!

3E
0

`

dkk Im$gf
II ~k;V!%

3^k~ lS!JuG~V!uk~ l 8S!J&, ~44!

where a coupling to total spinS and projectionsms ,ms8 for
initial and final spin states has been included together w
the usual decomposition in partial waves. In the case of f
or mf particle scattering thed function of the imaginary part
of gf

II yields the conventional result. For the case of a cen
interaction and free particles Eq.~44! reduces to~suppressing
spin indices!

f ~u,f!5(
l

2l 11

k0
H 2mk0p

2\2 J ^k0uTl~k0!uk0&Pl~cosu!

5(
l

2l 11

k0
eid l sind l Pl~cosu!, ~45!

where the addition theorem for spherical harmonics and
d function of the imaginary part of the propagator have be
used to obtain the first equality and Eqs.~17! and ~18! to
obtain the second equality of this result. For the total cr
section~in the neutron-proton case! one obtains

s tot5p (
Sll8J

~2J11!U E
0

`

dkk Im$gf
II ~k;V!%

3 ^k~ lS!JuG~V!uk~ l 8S!J&U2

, ~46!

which for a central interaction and free particles reduces
the standard result

s tot5
4p

k0
2 (

l
~2l 11!sin2d l . ~47!

Equation~46! demonstrates that a sensible cross section
be obtained in the case of dressed particles at all energie
which a nonvanishing imaginary part of the propagator
ists. For two particles deep in the Fermi sea, for example,
~46! avoids the divergence associated with thek0

22 term in
Eq. ~47!. The formulation of the cross section in terms of E
~46! provides a reasonable way to assess the strength o
interaction between dressed particles in the medium in te
of the square of the relevant transition matrix element (G)
9-9
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DICKHOFF, GEARHART, ROTH, POLLS, AND RAMOS PHYSICAL REVIEW C60 064319
multiplied by an appropriate measure of the density of sta
represented by the imaginary part of the noninteract
propagator@see also Eq.~36!#.

III. RESULTS FOR MEAN-FIELD PARTICLES

The results discussed in this section involve the propa
tion of mf particles in nuclear matter at zero temperatu
The aim is to exhibit some characteristic changes that oc
in the medium for the phase shifts of the most import
channels in theNN interaction with respect to their behavio
in free space. The interaction used is the Reid soft-core
teraction@30#. An additional goal is to make contact with th
discussion of Ref.@31# where the determination of phas
shifts for the Galitski-Feynman propagator was introduc
for a central interaction appropriate for3He atoms. This goa
will be achieved by suitably modifying the1S0 channel of
the Reid interaction and studying the density dependenc
the resulting phase shifts. The discussion in this section
prepares for the comparison with the results obtained
propagating dressed particles.

In Fig. 5 the phase shift for the1S0 channel is shown as
function of the on-shell momentum for various densities a
compared with the result in free space~solid line!. The long-
dashed, dashed, and dotted lines correspond to Fermi
menta of 0.8, 1.36, and 1.8 fm21, respectively. For simplic-
ity and ease of comparison a sp spectrum of kinetic ene
was assumed in obtaining these results. The on-shell mom
tum was used as the plotting variable in Fig. 5 instead of
energy since it allows a direct comparison between res
for free and mf particles at different densities. While t
nuclear interaction in the1S0 channel is not sufficiently at
tractive to generate a bound state in free space, it is s
ciently attractive in the medium to yield a pairing solution
a wide range of densities~see, e.g., Ref.@42#!. The presence
of a pairing solution can be inferred from the behavior of t
phase shifts. When bound pair states in the effective inte
tion occur, it implies that the phase shift at the correspond
energy threshold~in this case 2eF) will tend to p @31#. This
result is indeed exhibited for the phase shifts correspond
to kF50.8 and 1.36 fm21. In both cases the phase shift o
either side of 2eF ~or, as in Fig. 5, on either side ofkF)

FIG. 5. Phase shift for the1S0 channel of the Reid potential a
various densities as a function of the on-shell momentum. Both
free particles~solid line! and mf particles in the medium corre
sponding tokF50.8 ~long-dashed line!, 1.36~dashed line!, and 1.8
fm21 ~dotted line! a kinetic energy spectrum was used.
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approachesp. It is also clear from Fig. 5 that the phase sh
tends top more abruptly forkF51.36 fm21 than for 0.8
fm21, while it no longer does so forkF51.8 fm21. These
results correspond closely to the appearance and streng
bound pair states as obtained in Ref.@43# where they acquire
the largest binding atkF50.8 fm21, almost no binding at
1.36 fm21, and no bound states exist at 1.8 fm21. Indeed,
the density range corresponding to the appearance of bo
pair states exactly corresponds to the appearance of a p
shift of p at kF . This observation is commensurate with th
suggestion that positive phase shifts in the medium neakF
~2eF), and therefore an attractive effective interaction, in
cate the presence of bound pair states. The general beh
aroundkF is then an indication of the amount of correlatio
strong pairing indicated by a phase shift that is already la
and positive quite far away fromkF .

The sensitivity of the1S0 phase shift to the sp spectrum
or a gap in the sp spectrum atkF is explored in Fig. 6. In the
top panel the kinetic energy spectrum atkF50.8 fm21 was
modified by including a 7 MeV gap between sp states abo
and below the Fermi momentum. This gap ensures that
eigenvalues of the bound pair states fall inside the co
sponding 14 MeV gap in the two-particle spectrum@43# and
are therefore real. When a pure kinetic energy spectrum
used, these eigenvalues acquire complex values, indica
the pairing instability. The dashed line in the top panel ref
to the kinetic energy spectrum and the short-dashed line
cludes the gap in the spectrum. In order to understand th
results it is useful to remember that the ladder equation
cluding both particle-particle and hole-hole propagation
equivalent to a random phase approximation~RPA! summa-
tion. While the phase shift in the top panel of Fig. 6 st
tends top at kF when the gap in the sp spectrum is intr
duced, it is also clear that the reduction of the RPA colle
tivity by the introduction of this gap between particle an

r

FIG. 6. Sensitivity of the1S0 phase shift in the medium to a ga
in the sp spectrum at the Fermi momentum forkF50.8 fm21 ~top
panel! and the inclusion of a realistic sp spectrum forkF

51.36 fm21 ~bottom panel!.
9-10
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PHASE SHIFTS AND IN-MEDIUM CROSS SECTIONS . . . PHYSICAL REVIEW C 60 064319
hole states leads to a less attractive phase shift aroundkF . A
similar reduction of the attraction exhibited by the pha
shift is observed in the lower panel of Fig. 6 correspond
to kF51.36 fm21 when a realistic sp potential energ
@39,40# is added. The dashed line in the bottom panel of F
6 corresponds to the kinetic energy spectrum while the sh
dashed line includes the sp potential energy. Also in this c
the average distance between particle and hole energi
enlarged by the sp potential energy which reduces the
lectivity of the RPA summation in the ladder equation.

Another illustration of the connection between the beh
ior of the phase shift nearkF and bound pair states is pro
vided in the top panel of Fig. 7. This panel demonstrates
behavior of the phase shifts for the same set of densities a
Fig. 5 but for a modified version of the Reid1S0 interaction.
By multiplying the intermediate-range attraction of th
three-Yukawa interaction by a factor of 1.1, one already g
erates a bound state in free space reflected by the corresp
ing phase shift going top at zero momentum in the top pan
of Fig. 7 ~solid line!. The other three curves correspond
the same set of Fermi momenta as in Fig. 5~again using a
kinetic energy sp spectrum in the medium!. Comparing the
phase shifts for these two interactions at the same den
one observes, as expected, a substantially more pos
phase shift for the more attractive interaction. For the high
Fermi momentum (kF51.8 fm21) the more attractive inter
action now has a phase shift ofp at kF unlike the actual Reid
1S0 interaction, demonstrating that the range of densi
where pairing occurs is enlarged.

FIG. 7. Phase shifts obtained for modified versions of the R
1S0 interaction. In the top panel the intermediate range attractio
increased by 10%. Phase shifts for the same densities as in F
illustrate that this modified interaction yields a bound state for f
particles which is illustrated by the corresponding phase shift go
to p at zero momentum~solid line!. For the highest density (kF

51.8 fm21) the phase shift atkF tends top now in contrast to the
result shown in Fig. 5. In the bottom panel the shortest-ra
Yukawa of the Reid1S0 interaction is multiplied by a factor of 10
to simulate an atom-atom-like interaction. Results are shown for
same set of densities as in the top panel.
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The effective 1S0 interaction in the nuclear medium i
sufficiently attractive to yield~at least when propagating m
particles! a paired ground state in a wide range of densiti
As discussed above one may reach this conclusion also
inspecting whether the phase shift atkF ~or equivalently 2
eF) tends to1p. It is also instructive to illustrate the con
dition under which the phase shift from the Galitsk
Feynman integral equation tends to2p. In earlier papers
@31,38# it was shown that this case occurs when a hole-h
bound state exists below the hole-hole continuum, wh
corresponds to higher excitation energies than can be
tained by removing two mf particles. Such a spectrum
generated by propagating mf3He atoms in the medium in
teracting by means of a realistic atom-atom interaction.
order to simulate this type of interaction, one may increa
the strength of the short-range repulsion of the Reid1S0
channel by a factor of 10. The corresponding phase s
results for the same set of densities are shown in the bot
panel of Fig. 7. The phase shift for free particles now alwa
indicates a repulsive effective interaction~negative phase
shift!. For kF50.8 fm21 the phase space of the hole-ho
continuum is not yet large enough to yield a bound sta
whereas forkF51.36 and 1.8 fm21 this is the case, yielding
a phase shift of2p at the corresponding energy threshold
zero momentum which is associated with the highest tw
hole excitation energy that the mf picture allows.

Results for other channels will be mentioned while co
paring with the results for the propagation of dressed p
ticles. It is appropriate to mention, however, that the pres
results are consistent with the results obtained in Ref.@13# to
finite temperature. One difference that should be noted c
responds to the different boundary condition that is appl
in Ref. @13# for the propagation of hole-hole states. As
result, the corresponding phase shifts differ from the o
obtained here and in Refs.@31# and @38# by a sign. In addi-
tion, the calculations in Ref.@13# have been performed abov
the critical temperature for pairing. This choice implies th
the effective interaction at twice the chemical potential~the
generalization of 2eF at finite temperature! is repulsive yield-
ing a phase shift of zero at this energy~instead ofp in most
cases considered here for the1S0 and 3S1 channels!.

IV. RESULTS FOR DRESSED NUCLEONS

The proposed expressions for phase shifts and cross
tions for dressed particles discussed in Sec. II D and or
nally proposed in Ref.@29# involve the folding of the imagi-
nary part of the dressed but noninteracting propagator w
the effective interaction. While this result yields the prop
limit for mf or free particles, it is important to compare th
result obtained with Eq.~43! with results obtained by at
tempting to define an ‘‘on-shell’’ momentum for a give
energy as in Eq.~40! and then using Eq.~19!. Such a com-
parison is made in Fig. 8 for the1S0 phase shift. The solid
line corresponds to Eq.~43! while the dotted line corre-
sponds to the on-shell momentum definition. Comparison
both definitions for the dressed phase shift indicates tha
serious difference exists in a wide energy domain. A m
critical difference is encountered when cross sections
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considered~see below!. It should be noted that particularl
aroundkF , or equivalently 2eF , there cannot be any differ
ence between both definitions since in this limit the ima
nary part of the dressed propagator tends to ad function
located at 2eF and therefore yields an identical result to t
‘‘on-shell’’ definition. While both definitions of the phas
shift do not differ very dramatically for those values of th
energy for which Eq.~40! yields an actual solution for the
momentum, it should be kept in mind that no such solut
exists for energies below twice the lowest quasiparticle
ergy. Since the strength distributions of the spectral functi
do not vanish abruptly at this energy, it is evident that bel
this energy only Eq.~43! makes sense. The correspondi
result for the phase shift as a function of energy is displa
in Fig. 9. Below the on-shell threshold energy correspond
to 2140 MeV the phase shift further decreases smoothly
zero, reflecting the decrease of the density of states show
Fig. 4.

The main results for the phase shifts for some of the m
important partial wave channels are summarized in Fig.
A comparison is made between phase shifts for free parti
~solid line!, mf particles atkF51.36 fm21 ~dashed line!,
and dressed particles~short-dashed line! at the same density
for the 1S0 , 3S1 , 3P1, and 3D1 channels~corresponding to

FIG. 8. Comparison of the1S0 phase shift for dressed particle
obtained by folding the effective interaction over the imaginary p
of the dressed propagator using Eq.~43! ~solid line! and the phase
shift obtained by using Eq.~19! for the ‘‘on-shell’’ momentum
given by Eq.~40! ~dotted line!.

FIG. 9. Result for the dressed1S0 phase shift as a function o
energy. Below about2140 MeV there is no solution for the on
shell momentum defined by Eq.~40!. The result obtained by folding
the effective interaction with imaginary part of the propaga
~spectral function! yields a smooth decline to zero when the ener
decreases below this threshold reflecting the reduction in the
sity of states shown in Fig. 4.
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the different panels in Fig. 10! as a function of the on-shel
momentum. In general one finds that the dressed phase s
suggest weaker interactions since in essentially all cases
are either less repulsive or less attractive than the mf res
By studying the individual contributions of the real an
imaginary parts of the effective interaction one may ga
more insight into this issue~see below!. For the twoS-wave
channels the most striking feature of the dressed phase
is the disappearance of the pairing signature for the1S0
channel and the enormous reduction of the signal in the3S1
case. While the dressed1S0 phase shift is essentially zero a
kF , it is still clearly attractive at this momentum for the3S1
channel. The actual calculation of the phase shift for t
channel displays a slight kink close tokF , suggesting that
the phase shift may actually rise very rapidly top very close
to kF . This implies a tremendous reduction in the strength
the pairing correlations in this coupled channel as compa
to a mf treatment. Gaps of the order of 10 MeV have be
obtained for this channel in Refs.@43–45#. Clearly, the
dressing of the nucleons has a strong influence on pair
While one would expect to obtain a gap using dressed nu
ons based on the attractive effective interaction at the Fe
surface, its magnitude is presumably drastically reduced
suggested by the phase shift calculation shown in Fig.
The main ingredient in this reduction is the decrease in
density of states at 2eF when dressed nucleons are prop
gated. As shown in Figs. 3 and 4 this reduction is essenti
the square of the strength of the quasiparticle pole atkF ,
leading to a reduction factor of about 0.5. Since pairing c
relations are particularly sensitive to this density of states
is not surprising that the strength of the pairing is subst
tially diminished when dressing is taken into account. It
also noteworthy that one observes a smaller negative p
shift for bothSwaves at higher energy as compared to the

t

r

n-

FIG. 10. Comparison of phase shifts for free particles~solid
line!, mf particles~dashed line!, and dressed particles~short-dashed
line! for different partial waves. The density of the medium corr
sponds tokF51.36 fm21.
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result. A similar conclusion may be drawn by inspecting t
phase shifts for the3P1 and 3D1 channel in the bottom
panels of Fig. 10. Also for these partial waves which rep
sent repulsive effective interactions, one observes a reduc
of the magnitude of the phase shift when dressing is con
ered. It is also important to note that in the case of mf pro
gation the results in Fig. 10 show that the correspond
results tend to those of free particles at high energy, whe
this is not the case for dressed particles. This latter re
indicates that the effect of the dressing extends to a la
energy domain. This observation is not too surprising si
the spreading of the sp strength due to short-range and te
correlations takes place in a very large energy dom
@23,24,39# and is quite different from a local~in energy!
spreading of the strength as would be obtained by a com
quasiparticle energy.

In order to assess the change in the effective interac
when dressing is taken into account, a comparison is mad
Figs. 11 and 12 of the real part of the on-shell interaction
free ~solid line!, mf ~dashed line!, and dressed particles~dot-
ted line! for the 1S0 and 3S1 interaction, respectively. The
free 1S0 interaction shown in Fig. 11 is quite attractive
low energy reflecting the almost appearance of a bound s
For mf particles this attraction is larger atkF than for free
particles at this momentum, leading to bound pair state
this density. Their presence is reflected in the behavior of
real part of the interaction nearkF which has been studied i
detail in Refs.@43,46#. Using dispersion relations for the re
part of the effective interaction one obtains an extrem

FIG. 11. Real part of the on-shell effective interaction in the1S0

channel for free~solid line!, mf ~dashed line!, and dressed particle
~dotted line! as a function of the on-shell momentum.

FIG. 12. Real part of the on-shell effective interaction in the3S1

channel for free~solid line!, mf ~dashed line!, and dressed particle
~dotted line! as a function of the on-shell momentum.
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rapid variation as a function of energy in the case of wea
bound pair states as is the case for the1S0 interaction with
mf particles at this density. This behavior cannot be captu
as a function of the on-shell momentum on the present s
but is indicated by the kinklike behavior nearkF . While the
effective interaction is less attractive for dressed nucleon
kF than for mf or free particles, it is more attractive at sm
momenta~deep in the Fermi sea! than for mf particles. This
shows that one may not conclude from a comparison of
phase shifts whether the~real part of the! interaction has
actually weakened; quite the opposite is true at small m
menta for the1S0 channel.

The results for the3S1 interaction in Fig. 12 indicate tha
for free particles the effective interaction becomes very
pulsive at low energy. That this should be the case beco
clear when one realizes that theT matrix ~effective interac-
tion! has a real pole at the deuteron energy and its real
must therefore approach infinity when the energy approac
the deuteron pole from above. The presence of stron
bound pair states for mf particles leads to the behavior of
real part of the effective interaction illustrated in Fig. 1
@46#. The dressed effective interaction is weakly attractive
kF , suggesting again the substantial weakening of the p
ing correlations which are determined by the effective int
action atkF . Except nearkF , the dressed effective interac
tion is more repulsive than the mf one.

The introduction of a medium with nucleons invites al
the question whether the effect of the tensor force can cha
with respect to its role in free space. Based on the str
pairing in the 3S1 channel found for mf particles@23,44,45#
one may infer that the tensor force is more effective in
medium than in free space. This can be understood by no
that the lowest energy excitations in the medium have a r
tive momentum corresponding tokF whereas for free par-
ticles the lowest excitation has zero momentum. In the la
case the tensor force cannot directly mix with this low m
mentum state since the corresponding matrix elements
ish. In order to investigate the role of the tensor force in
medium for mf and dressed particles, the mixing parame
@Eq. ~22!# is displayed in Fig. 13 for free~solid line!, mf
~dashed line!, and dressed particles~dotted line! as a function
of the on-shell momentum. Since the eigen mixing parame
is plotted instead of the bar one, the maximum mixing occ
when r1 equals 1, corresponding to an equal admixture
the 3S1 and 3D1 waves. The ‘‘small’’ admixture of the3D1

FIG. 13. Mixing parameter for the3S1-3D1 channel for free
~solid line!, mf ~dashed line!, and dressed particles~dotted line! as a
function of the on-shell momentum.
9-13
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DICKHOFF, GEARHART, ROTH, POLLS, AND RAMOS PHYSICAL REVIEW C60 064319
wave at small momenta for free particles is apparent
persists for mf particles. Both for mf and dressed partic
the mixing is substantial over a wide range of momen
Especially deep in the Fermi sea the mixing paramete
quite large for dressed particles, reaching its maxim
aroundkF . It is clear from Fig. 13 that the mixing paramet
is quite sensitive to the treatment of the medium and chan
its behavior dramatically with respect to free space resul

The results for the phase shifts obtained for dressed
ticles lead to the expectation that the corresponding t
cross sections are substantially reduced compared to th
results. The results for neutron-proton (np) and neutron-
neutron (nn) total cross sections displayed in Fig. 14 co
firm this expectation. Results have been obtained for f
~solid line!, mf ~dashed line!, and dressed particles~short-
dashed line! by including all partial-wave channels of th
Reid potential withJ<2. Results for mf particles were gen
erated with a realistic sp energy spectrum and are simila
the corresponding results obtained, e.g., in Ref.@17#. The
effect of the pairing correlations on the cross sections yie
a cusplike behavior aroundkF reminiscent of the enhance
ment of the cross sections obtained by the Rostock grou
finite temperature@9,16#. As the phase shifts for mf particle
suggest, the corresponding cross sections in the medium
come essentially identical to the one in free space at h
energy. Both for thenp andnn total cross sections the effec
of dressing the nucleons is quite dramatic, leading to a s
stantial reduction of the total cross section at all energ
Indeed, on average a cross section of only about 10 m
obtained. While this may seem a small number, it should

FIG. 14. Total neutron-proton~top! and neutron-neutron~bot-
tom panel! cross sections for free~solid line!, mf ~dashed line!, and
dressed particles~short-dashed line! as a function of the on-shel
momentum.
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kept in mind that this by no means implies that the effect
interaction in the medium has become insignificant~see Figs.
11 and 12!. In addition, one should recall that the concept
asymptotic flux in the medium representing preserved inf
mation of a scattering event deep in the medium is no
realistic consideration when the dressing of the nucleon
significant@29#, as it is atkF51.36 fm21. The main ingre-
dient representing the dressing is the two-particle density
states; its reduction for dressed particles is to a large ex
responsible for the reduction of the cross section. In t
respect it should be noted that the results of Ref.@16# also
show a substantial reduction of the total cross section at h
energy with increasing temperature. This result implies t
with increasing temperature which also means a larger de
tion of the Fermi sea due to thermal excitations, one obta
a reduction of the total cross section similar to the one
tained here at zero temperature when the dressing of
particles is incorporated~and therefore the depletion of th
Fermi sea due to correlations is included!. While no results
are shown in Fig. 14 below 0.5 fm21 in order to avoid the
large value of the total cross sections for free particles
should be noted that the cross sections for dressed part
smoothly go to zero when expression~46! is used at lower
energies. This expression avoids the problem associated
Eq. ~47! which would yield an infinite cross section for th
on-shell momentum going to zero. In addition, Eq.~47! does
not yield a cross section for energies that do not yield
solution for the on-shell momentum according to Eq.~40!,
i.e., for energies deep in the hole-hole continuum.

V. SUMMARY AND CONCLUSIONS

In the present work results for the scattering of dres
nucleons in the nuclear medium at a density correspondin
kF51.36 fm21 have been reported using the Reid soft-co
potential. The spectral functions which describe the dress
of the nucleons at this density were taken from Refs.@39,40#.
These spectral functions describe nucleons with substa
fragmentation of the sp strength, leading to an average o
pation number of about 0.8 for momenta belowkF . The
jump in the occupation number atkF embodied in this
strength distribution~which also corresponds to the streng
of the quasiparticlezkF

) corresponds to 0.72~see also Ref.
@24#!. A critical ingredient gauging the difference with th
propagation of mf nucleons is the two-particle density
states. Results for this density of states are shown in Fig
and 4. A substantial reduction for dressed particles is
tained in a wide range of energies with respect to the
density of states, the reduction factor being exactly equa
zkF

2 or about 0.5 at 2eF . For energies below the mf two-hol

spectrum a nonvanishing density of states is obtained als
account of the spreading of the sp strength.

While the emphasis in this work is on the results f
dressed particles, an attempt has been made to ground
discussion firmly in terms of a comparison of scattering
sults obtained for mf particles at the same density and at z
temperature. Of particular interest is the connection betw
pairing correlations and the tendency of the phase shif
9-14
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PHASE SHIFTS AND IN-MEDIUM CROSS SECTIONS . . . PHYSICAL REVIEW C 60 064319
approach a value ofp at 2eF . Both the 1S0 and 3S1-3D1
channels exhibit this behavior at this density when mf pro
gators are used. Indeed, the phase shift in the coupled c
nel is quite large and positive over a wide range of energ
suggesting a connection with strong pairing correlatio
which has been observed for this channel in the literat
@23,44,45#. The influence of a gap in the sp spectrum o
realistic sp potential energy spectrum was explored for
1S0 phase shift. In addition, modifications of the bare1S0
interaction were employed to illustrate on the one hand
connection with pairing correlations and a more attract
bare interaction and on the other hand with results for3He
atoms which, also at the mf level, exhibit a phase shift
2p deep in the Fermi sea@31# due to a strongly repulsive
core in the interaction. The latter phase shift of2p indicates
the existence of a bound state below the hole-hole continu
~or at an excitation energy higher than allowed by the
moval of two mf particles!.

Using expressions proposed in Ref.@29# for the phase
shifts and scattering amplitudes for dressed particles, a s
has been made of the effect of the dressing of the nucle
on these quantities. The folding procedure in which the
fective interaction is sampled with the imaginary part of t
dressed~but noninteracting! propagator is shown to yield
phase shifts which are quite similar to phase shifts obtai
from an ‘‘on-shell’’ prescription for the relative momentum
for a wide range of energies. The resulting phase shift for
two nuclearS waves shows that the effect of the dressing
to eliminate the pairing signal for the1S0 channel while
weakening it substantially for the coupled3S1-3D1 channel
as shown in Fig. 10. Similar sizable changes are obtained
-

rt

l.

.
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other partial waves. In all cases one must attribute th
changes to the substantial fragmentation of the sp streng
reflected in the substantially different two-particle density
states. While in general both less repulsive and less attrac
phase shifts for dressed particles are obtained than for
particles, it is not in general true that this always implies
weakening of the effective interaction. An example of th
feature is shown in Fig. 11 where the effective1S0 interac-
tion inside the Fermi sea is shown to be more attractive
dressed than for mf particles. A particularly sensitive qua
tity to medium effects is the mixing parameter in the coup
3S1-3D1 channel. Strong mixing of the3S1 and 3D1 wave
functions is obtained for dressed particles in a wide range
energies with a maximum around the Fermi surface.

The results for the two-particle density of states and ph
shifts for dressed particles culminate in total cross secti
which are substantially smaller than any previously obtain
result involving mf particles at zero temperature. It may
useful to extend the present work to finite temperature
assess the relevance of this reduction for the analysis
heavy-ion reactions. The folding prescription for the to
cross section given in Eq.~46! avoids the singularity associ
ated with Eq.~47! at small on-shell momenta. As a result, th
total cross sections decrease smoothly for energies g
deep into the Fermi sea.
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