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Phase shifts and in-medium cross sections for dressed nucleons in nuclear matter
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The dressing of nucleons as embodied in single-particle spectral functions is incorporated in the description
of nucleon-nucleon scattering in nuclear matter at a density correspondikg=tth.36 fm 1. In order to
clarify the new features associated with the complete off-shell behavior of the single-particle motion, results
involving mean-field particles are also presented with special emphasis on the behavior of the phase shifts
when bound pair states occur. Both tt& and 3S;-3D; channels exhibit this feature at the considered density
for mean-field particles at zero temperature. An important tool to assess the effect of the dressing of the
particles is the two-particle density of states. A sizable reduction with respect to the mean-field density of states
is obtained. At 2¢ this reduction corresponds nﬁF, Wheresz is the strength of the quasiparticle polekat,
and it can therefore be as large as 0.5. This reduction has significant consequences for the strength of pairing
correlations both in théS;-3D; channel where it leads to a dramatic decrease of the attraction at the Fermi
energy and for thé'S, channel which no longer shows a pairing signal. Phase shifts and cross sections for
dressed particles are determined based on expressions which fold the effective interaction with the dressed but
noninteracting two-particle spectral function. This folding procedure yields similar results to an “on-shell”
prescription reminiscent of the result for free or mean-field particles, except for cross sections deep in the
Fermi sea. Comparison of phase shifts and cross sections to the case of mean-field particles indicates that
smaller phase shifts in an absolute sense and considerable reductions of the in-medium cross sections for
dressed particles are obtained. It is shown that while in many cases these results imply a weakening of the
effective interaction, this is not the case ft®, interactions deep in the Fermi s¢80556-281809)06612-1

PACS numbegs): 21.65+f, 21.30.Fe

[. INTRODUCTION calculations is the nucleon-nucleon cross section in the me-
dium. Attempts to include medium-modified cross sections
For various reasons the study of the interaction betweem such calculations have been described in R&f. Calcu-
nucleons in the nuclear medium has retained a considerabletions of the cross section between nucleons in nuclear mat-
amount of interest over the years. The construction of theer have been reported in Ref40—-19. Some recent issues
effective interaction to be used in shell-model calculations ighat have emerged from this work include the enhancement
but one exampl¢l,2]. The modification of the effective in- of the cross section at finite temperature due to the vicinity of
teraction in nuclear or neutron matter with increasing densitya pairing instability{ 16], the sensitivity of the cross section
remains a challenging issue for a deeper understanding @b the choice of the single-partic{ep spectrum at zero tem-
these systems3]. Recent interest in the study of the interac- perature[17], the density and energy dependent8], and
tion between nucleons in the nuclear medium has been gettemperature dependence of the cross secfib@s
erated by the experimental developments involving the All results obtained in Ref§10-19 have been generated
(e,e’pp) reaction[4,5]. The potential selectivity of this re- under the assumption that the sp motion of the nucleon in the
action for the removal of'S, proton pairs to certain final medium is that of a mean-fiel@nf) particle. Under this as-
states and the absence of large contributions from two-bodgumption the scattering process in the medium takes place
currents to these transitions may allow the study of the interbetween nucleons which at most have a sp spectrum different
action between protons in the medium at short relative disfrom free space but are otherwise unaffected by the presence
tanceq 6]. of other nucleons except for the Pauli principle related to a
Of particular interest is the exploration of the “in- mf Fermi gas. This assumption has been contradicted un-
medium” interaction in the context of transport-theory de-equivocally in recent years for finite nuclei by a careful
scriptions of heavy-ion reactiofig]. Typical analyses simu- analysis of the €,e’p) reaction. This analysis demonstrates
late the dynamics of a heavy-ion reaction on the basis ofhat the sp strength is not completely concentrated at one sp
kinetic equations like the Boltzmann-Uehling-Uhlenbeckenergy but for states accessed in this reaction has a distribu-
(BUU) equation[8]. An essential ingredient in these BUU tion characterized by about 2/3 of the strength close to or
spread around the expected sp end@]. Some additional
strength is inferredl21,22] at higher missing energy, leading
*Present address: Ford Scientific Research Laboratory, 20000 Rte occupation numbers of about 75% close to the Fermi en-
tunda Drive, P.O. Box 2053, MD 2115, Rm 2115, SRL, Dearborn,ergy in 2°Pb. Many-body calculations of the spectral func-
MI 48121-2053. tion of nuclear matter using realistic interactid28,24] gen-
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erate a similar picture at normal nuclear matter density. It iSThese results also provide the background for the presenta-
therefore fair to say that both on the basis of experimentalion of phase shifts and cross sections for the propagation of
results as well as theoretical calculations for nuclear matteidressed particles which is given in Sec. IV. A summary and
it is prudent to consider the sp dressing of the nucleons igonclusions are presented in Sec. V.
matter and the effect this has on the scattering process.

Preliminary results related to the present work have been II. SCATTERING FORMALISM EMPLOYING THE
presented in Ref$25-28. In a recent papdr29] one of the TWO-BODY PROPAGATOR
present authors has attempted to provide a framework to in- The purpose of the present section is to gather all results
terpret the results obtained in a ladder-diagram calculation 0rfelevant for the calculation of phase shifts between nucleons
the two-body propagator which employs fully dressed sp
propagators. One of the consequences of employing dress
particles is the localization of the two-body propagator in
coordinate space, severely limiting the range of the propag

rbthe nuclear medium. The physics included in the descrip-
ion of the scattering in the medium involves the proper in-
é}c_lusion of short-range correlations by means of summing all
tion for most energies. This feature is due to the presence, dder diagrams for a realistic nucleon-nucleon interaction.

a given energy, of a range of momenta which determine the e corresponding ladder-summed two-hody effective inter-

relative wave function of the propagating particles. While l‘oraCt'o.n can then be_Ilnked o the two_—body propagator V.Vh'Ch

mf particles a uniquéon-shel) momentum characterizes the prov!des a convenient tool to describe the scattering in the

relative wave function which therefore corresponds to amed|um[29].

plane wave(or spherical wavg the presence of different

momentum components implies that the determination of ~ A. Two-body propagator and effective interaction

phase shifts and cross sections requires some kind of folding For the purpose of the present work it is sufficient to

procedure over these momenta in the case of dressed paonsider the two-time two-particle propagator

ticles. In Ref.[29] a set of expressions has been introduced

to characterize the scattering event of dressed particles i (KiKz;kskg;ti—t5)

volving such a folding procedure. Results for phase shifts _

and crgoss sections ob%a?ned from these expressFi)ons are com- _'<q’/3|T{akz(tl)akl(tl)ala(tZ)al4(t2)}|q,8>’ (1)

pared in this paper with the corresponding results propagat-

ing free and mf particles using the Reid soft-core potentiagiven here in the momentum representation, while spin and

[30]. isospin indices are suppressed. This propagator depends on
In Sec. Il A the relation between the two-body propagatorthe conserved total momentui=k; +k,=ks+k4 in the

and the effective interaction is summarized for free, mf, andnedium. To facilitate a comparison with the scattering of

dressed particles. In Sec. 1l B the link between the descripParticles in free space only results for the cige=0 will be

tion of the Scattering process of free partides and the twoconsidered in Secs. lll and IV. Extension of the present work

body propagator is presented including the case of coupletp deal with the case of nonzero total momentum requires a

channels as required for the nuclear tensor force. The slighitumerically reliable calculation of the noninteracting propa-

modifications required for the description of the scattering ofgator of dressed particles in the medium and will be pre-

mf particles are discussed in Sec. I C. Useful material desented elsewherg33]. The remaining momentum depen-

scribing the relation between phase shifts at energy thresifience of the propagator can now be associated with the

olds and bound states through a generalization of Levinson’¢lative momentum of the pair of removal operators in Eq.

theorem can be found in RdB1]. Relevant results required (1), given byk=3(k,—k), and of the pair of addition op-

for the description of the scattering of dressed particles argrators given bk’ =3 (ks—kg). Since only ladder diagrams

collected in Sec. Il D. This subsection also includes a discusare considered together with a static bhifd interaction, the

sion of the two-body spectral density and two-body spectraforresponding integral equation for the propagator can be

function for noninteracting but dressed particles. The lattewvritten as

quantity features prominently in determining the two-body | |

density of states which is compared with the correspondingd” (k,k';K,Q) =gy (k,k";K,Q)

results for free and mf particles at zero total momentum. A

brief discussion of the method of calculating the two-body +g|f|(k;K,Q)f d3q(k|V|a)g" (q.k’;K,Q)
propagator in a partial-wave momentum space representation

is _presented. Expres_smns used for calc_ulatlng the phase :glfl(k,kr;K’Q)_i_glfl(k;K,Q)

shifts and cross sections of dressed particles based on the

work of Ref.[29] are also collected in Sec. |1 D. X(KIT(K,Q)[k" gt (K";K,Q), 2

Results for phase shifts involving the propagation of mf
particles are discussed in Sec. Ill. This section is intended owhere
the one hand to make contact with RE§1] where the scat-
tering of He atoms was studied based on the use of a very g'f'(k,k’;K,Q)= S(k— k’)g'f'(k;K,Q) ©)]
strongly repulsive central interaction, while on the other
hand clarifying, in the nuclear case, the relation betweeris the noninteracting two-particle propagator which both in
phase shifts and the possible occurrence of bound pair statd®amogeneous matter and free space conserves the relative
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momentum as expressed by tAgunction in Eq.(3). The  coordinate space. The coordinate space version of4ds
presence of exchange terms in E@®) and (3) is hereby obtained by a double Fourier-Bessel transform
acknowledged but suppressed in the presentation. The sec-
ond equality in Eq(2) links the two-particle propagator with Jas«(rl.r'l";K,Q)
the vertex function or effective interactidnwhich contains )
the summation of all ladder diagrams. I L2 -
A partial-wave decomposition of the two-body propagator B wfo dkszo dk k=g (kn)ji (k)
in Eq. (2) yields the corresponding integral equation and the |
relation between the propagator and the vertex funaiasa X gystkl k1K, £). (6)

suming an appropriate angle-averaging procedure for non- . . .
zero tgtal mo?r?en?um 9 gng p The corresponding result for the noninteracting part of the

propagator, represented by the first term in &, reduces
g'JIST(kLk" 'KQ) to one mteg_ral on account of the delta function which con-
serves relative momentum:

S(k—k') , 2f= o
= A (KK.Q) T (GK,Q) gri(r.r ;K.m=;f0 dki ji(kn)ji(kr)gi (kiK,Q).
(7)
XZ; daof(kl[V?Tal"g" (g1”,k'1";K,Q) The Fourier-Bessel transform of E¢) has the following
: form:
o(k—k’ .
:%5|,|rg'f'(k;K,Q)+g'f'(k;K,Q) ghst(rl,r'1’;K,Q)
=69t (r,r":K,Q
X (KIITSTK L)1) g ('K, ). @ O rGR)
* 2 * 2411 .
The appropriate notation for a partial wave basis has been +% o drlrlfo drorags, (r,ri;K,Q)
introduced in Eq(4) in terms ofl,S,J, T representing orbital, |
total spin, total angular momentum, and isospin, wkiknd X(r [ VISTrol "y gls(rol 7 r 17K, Q)

k' denote relative an{ total momentum quantum numbers.
The energy() is conserved and must be viewed as a variable
upon which the propagator depen(salso depends on the

=8,.9f,(r,r';K,Q)

total momentum in the case of the medjurihe noninter- +f drlrff dror3gf (r,ryK,Q)
acting propagator is again denoted @y and may include 0 0
the dressing of the individual particles when the scattering x<r1||FJST(K,Q)|r2|r>g|f|'|,(r2,r/;K,Q)_ ®)

takes place in matter. The vertex function or effective inter-

actionI” can be obtained from the numerical solution of theWhen the bare tWO'bOdy interactidhis local in the relative

ladder equation in a partial-wave momentum representatiotoordinate, only one integral in the first equality remains.
The second equality can be used to study the asymptotic

(KI[TISTK, Q) [K'17) behavior of the propagator outside the range of the interac-
tion.
=(kI|VISTk'1")
" B. Scattering of free particles
+ f daa?(kl[V’STql"gf (9;K, Q) The propagator description of the scattering of free par-
I 70 ticles was presented in RdR9] for the case of uncoupled
X (ql"|TISTK,Q)|k'l"). (5) channels. As a result of the importance of channel coupling

related to the nuclear tensor force, it is important to present

This equation has been solved for the first time using fullythis case explicitly here. In the case of free particles the
dressed sp propagators in the medium in R&8]. Since this honinteracting propagator in momentum space is given by
subsection deals primarily with general issues, the descrip@ssuming zero total momentiim
tion of the calculation of the two-body interaction between
dressed particles will be be deferred to Sec. Il D. Suffice it to gV (k:Q)= 1 9)
state here that it depends critically on an accurate evaluation A Q—%2k2m+i ,7'
of the dressed but noninteracting propagagb(q;K,Q).

In order to extract the information relevant for the de- Defining the on-shell momentum by
scription of the scattering process from the effective two- 522
body interaction or two-body propagator calculated in mo- Q 0 (10)

mentum space, it is necessary to consider both quantities in m
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one can perform the relevant Fourier-Bessel transform of the . 1
noninteracting propagator in E¢7) analytically (see, e.g., J|(P):§[h|(P)+h|*(P)], (15
[32)]), yielding

and Eq.(11) in Eqg. (13) one obtains the asymptotic behavior

, om. of the wave function for the general case of a coupled chan-
glfl,l(rvr ;ko)z _Ikoﬁjl(k0r<)hl(k0r>)- (11) nel in the fo||owing form:

The coordinate argument in the _spherical Hankel fu_nctio IJ,ST(rI;kO)HE 8 1 (Kor) +hy(Kor)
must be the larger of andr’ and is denoted by- , while 2|
the argument of the spherical Bessel function is the smaller

and denoted by . For the current analysis it will be as- . m * o[ 2
sumed that the interaction has a finite rangé|V'STr’1") x| o =2l f?kofo drlrlfo drars
=0 forr,r’ larger than some,. Substituting Eq(11) in the

second part of Eq(8) in the case of coupled channels for

r'>r andr’>r, yields X(r ol TST(ko) ol )i (Ko 1)1/ (Kor 2) ]

als7(rl,r'1":ko)
2

[ mko
5|'|r_277|(%>

] : (16)

1
:—[ 5|’|rhik(k0r)+h|(k0r)

om ,
=- 5|,|'|koﬁl|(kof)h|'(kof )
X (Kol [ T?ST(Ko) Kol ")

oo

+> drlr%f dror3ge (r,rq;ko)
1" 0 0

The asymptotic form of the propagator is obtained by insert-
ing the result of Eq(16) into Eq.(12). The term in square

omy , i i :

x<rl||TJST(kO)|r2|n>( _|k0_2>1|"(k0r2)h|’(k0r ) 2IrSrCnl§aer:ts corresponds to the possibly nondiag&halatrix
— ik, ISTrl; ko) hy (Kor ! (12) (kol|S*ST(ko) kol V=1 & 1 — 2 mko
= oﬁzlﬂp( TKo)hyr(Kor "), 0 o)lKol )= Oy =2l =

where X (Kol [ T?5T(ko) [Kol />]- 17

JST, . _ : * 2 * 2 .
Y (rliko) = 8,111 (kor) + fo drlrlfo drar29ri(1rako) 1y the case of an uncoupled channel one obtains the phase

shift from
X(r [ T?ST(ko)[r2l")jir(Kor 2), (13 o
&2 = (ko| /(o) ko) (19
and the conventional notatiohinstead ofl” has been intro-
duced together with the replacement®fby kq. This result  This result is equivalent to
can be substituted into the first part of E§) to obtain the

relevant integral equation for the wave functigr{under the Im<k0|T|JST( ko) ko)

it ' - tans; 5= , 19
condition thatr’ >r): T Relko| T ko) ko) (19
Y72l ko) = 811011 (Kor) which explicitly shows that a nonzero imaginary part of the
" " effective interaction is required to obtain a nonvanishing
+> drlrif dror2 gl (r,ri:ko) phase shift. In turn, this imaginary part of the interaction
17 Jo 0 ' only appears for energies where the noninteracting propaga-
JST, tor has a nonvanishing imaginary part. For the scattering of

JST| " ”.
X(ral V=Tl ") g7 (ral " ko). (14 free particles this corresponds to all positive energies. In the

_ ) ) case of coupled channels the unitarity of Bwmatrix and the
The asymptotic analysis of the wave function can be persymmetry property of th@ matrix can be employed to infer

formed by using Eq(11) in Eq. (13) assuming thatis larger  that S can be diagonalized by an orthogonal real ma#ix
thanr, the range of the interaction. Valuesgf andr, in

Eq. (8) larger thanr, yield no contributions to the integral. (kol|S’ST(ko)|kol ")

As a result, the effective interactiohhas a range similar to

the one of the bare interactioh Using the relation between => <||AJ(kO)|a>82i5‘iST<a|AJ(ko)|| N, (20)
spherical Bessel and Hankel functions a=12

064319-4



PHASE SHIFTS AND IN-MEDIUM CROSS SECTIOS!. . . PHYSICAL REVIEW C60 064319

where 8’5" are called thereal) eigenphase shifts. One may preserves the integral equation for the wave function in a
choosg 34] partial wave basis as in EqL3) in the case of mf propaga-
tors. The only difference with the free scattering case in-
volves the use of the mf equivalent of the noninteracting
propagator in coordinate space in Ety). This result is due
to the uniqueness of the on-shell momentum at a given en-
where e’ is referred to as the mixing angle and the relatedergy which guarantees that the noninteracting wave function
mixing parameter is given by is a plane-wave or spherical Bessel functigm a partial-
J_cin o J wave basis One can therefore proceed with a similar
p=sin2¢”. (22 ; . . A
asymptotic analysis as for free particles yielding a corre-

It should be noted that the three real paramesdrs,5,°",  sponding definition of the phase shifts as in Ei) in terms
ande’ can be used to represent tBenatrix. The relation of ~ Of the on-shell scattering matrix. The result of E&9) also

the eigenphase shifts and corresponding mixing parametgémains valid in this case. For coupled channels &d) is

with the usual representation of the experimental results istill valid and eigenphase shifts are also obtained by diago-
terms of bar phase shifts can be found, e.g., in B&]. Itis  nalizing theS matrix. The presence of a nonvanishing phase
also possible to calculate the phase shifts and mixing paranshift continues to be linked to the nonvanishing of the imagi-
eter directly from the reaR-matrix element$36]. Since for  nary part of the noninteracting propagator. In the case of mf
the case of dressed nucleons the procedure correspondsdeattering the corresponding energy domain resides above
diagonalizing ar-matrix-like quantity, this method is high- 2¢(k=0) which corresponds to the lowest energy of two

cose’  sine’
, (22)

(I |AJ(ko)|a>=(

—sine’ cos’

lighted here for the case of free particles. occupied states.
As in the case of noninteracting particles, the presence of
C. Scattering of mean-field particles in the medium bound states has specific consequences for the behavior of

dhe phase shift at the corresponding thresholds in the energy
yariable[Bl]. While in free space this threshold corresponds

fashion. A useful reference is the work of Bishepal. [31] to zero energy and the_presgnce of one bound statg is re-
where the introduction of the phase shift for the case of holefléctéd in the phase shift going to when the scattering
hole propagation is discussed. The corresponding mf prop&N€rgy goes to zero, the corresponding threshold in the me-

gator in the medium, also known as the Galitski-Feynmarfj'um is 2ex . If the interaction is sufficiently attractive, the
propagator, is given t'Jy phase shift may approach on both sides of 2-. This

feature is intimately related to the presence of a pairing in-

To obtain the phase shifts for particles propagating in th
medium with mf sp energies one can proceed in a similal

| O(ky—ke) 8(k,—Kg) stability or bound pair states in Fermi systems with attractive
Imi(K1,k2; Q)= 0= e(ky)—e(ky) +i effective interactions at the Fermi surface. The phase shift
! 2 7 can also approach 7= when a bound state below the hole-
O(kp—Kkq) O(ke—k») hole continuuni.e., below Z(k=0)] appears due to a re-

Q—e(ky)—e(kp)—in’ (23 pulsive interaction. This possibility is realized in liquitHe

at sufficiently high density for mf particleg31,3§. Both
using the sp momenta, andk,. For the case of zero center- casegphase shifts going ta- 7r) will be illustrated in Secs.
of-mass momentum which is the only one considered irll and IV by considering modifications of théS, interac-

Secs. Il and IV, one obtains tion of the Reid potential as well as the actual Ré®) and
3s,-3D; interactions. If the interaction is not sufficiently at-
0oy OK—ke) (ke —k) tractive to yield pairing, the phase shift will vanish a¢:2
Imi(K; Q) (24)

Q-2ek)+in Q—2ek) —iy The modesty of the modifications of the quantities that

] ) o characterize the scattering process for mf particles as com-

The sp energy(k) can deviate f_rom the_5|mple kmet_lc €n- pared to the case of free-particle scattering, is related to the

ergy spectrum and therefore yield a different relation betontinued one-to-one relation of the energy with a unique

tween the energ§) and the on-shell momentuky: relative momentum for which the noninteracting propagator
0=2e(ky). 25) has an imaginary part. This on-shell momentum emerges as

the momentum that characterizes the spherical Bessel func-
Nevertheless, the uniquenesskgffor a given energy is still tion describing the re]ative motion. The pIang—wavg charac-
preserved. Although one can no longer evaluate the nonir‘F—er_ of the wave fungtlon allows for a conventional interpre-
teracting propagator in coordinate space completely analytit-at'on of the scattering process as in the case of free space.
cally from Eq.(7), the separability of the propagator is main-
tained for the contribution of the pole term as in Efl)
(with a different constant prefactorwhile the remaining
term vanishes asymptotically forsufficiently different from In order to discuss the modifications of the scattering pro-
r'. A discussion of a similar result for the Fourier transform cess in the medium involving dressed nucleons it is useful to
of the mf propagator given in E¢24) can be found in Ref. gather some general results involving the two-body propaga-
[37] for the Bethe-Goldstone propagator. As a result, ongor in the mediunfEqg. (1)] and the two-body spectral density

D. Scattering of dressed particles in the medium
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S (kiky ksks: Q) continuous and have sizable peaks either above or below the
Fermi energy, corresponding to a momentum state above or
below kg, at the so-called quasiparticle energy. Hagr

=——Im 9" (kika:ksky; Q) =1.36 fm !, corresponding to normal density, the strength
contained in the peak for momenta closektois typically
1 o0 10ty -1,) only 70% [23,24,39. From the rest of the strength about
= _|mf_md(tl_t2)e v 10% is found below the Fermi energy, another 10% in the
first 100 MeV above the Fermi energy, and the remaining
><{—i(\If§|T{akz(tl)akl(tl)alg(tz)al4(t2)}|Wé)}, 10% is spread thinly towards even higher energy as a result

of the short-range and tensor correlations in the nuclear in-
(26)  teraction[23]. First attempts to incorporate these features in

. the solution of the ladder equation have been explored in
Since the total momentum of the added and removed PaRefs.[25—-28. A critical ingredient in solving this problem is

must be the same on account of momentum conservation, I . | evauation of Ed30). First results of this evalua-
is more appropnatg to consider the two-'body spectral denm%n can be found in Ref[40]. The noninteracting two-
and propagator without the correspondifigunction: particle spectral function corresponding to E§0) can be

1 written as

S”(k,k’;K,Q)=—;lmg”(k,k’;K,Q), (27)

S (k1 ko 0) = — = Im gl (ki 3 )
where the relative momenta k’ and the total momentund ™
are defined in a similar way as in the text below Er. S" w
contains two contributions just as the two-body propagator in J dw Sp(ky,)Sp(ky, Q- w), Q>2e,
the second equality of Eq2): €F

= (31
€F
1 fd Ky, ky,Q—w), Q<2e¢.
S”(k,k’;K,Q)=—;Im{g?(k,k’;K,Q)} . (Ush( 1 w)sh( 2 w) F
1 It should be noted that for energies below:2 Eq. (31) can
- ;Im{g'f'(k;K,Q)(k|F(K,Q)|k’) also be written as

I ’.
X gf (k';K,Q)}. (28) Slfl(kl,kzil):% |<‘Pﬁ72|aklak2|‘l’é>|2
The first part in Eq.(28) refers to the propagation of two
dressed particles without their mutual interaction. This term X 8(Q—(Ef—EL?)). (32
contains & function as in Eq(3) related to the conservation
of the relative momentum since there is no mutual interactsing the results of Eq(31) one can obtain the following
tion. The spectral function corresponding to this noninteracttwo sum rules:
ing term is given by

|g:f°° dQ S (ks ko3 ) =[1-n(k) 1~ N(ky)]

TP __1 Moy, .
S/ (kiK,Q) =~ —Im{g} (kK,Q)}. (29) 2 -

By returning to individual momenta for the removal or addi- 5
tion of individual particles one can writg! (k;K,Q) in

terms of the sp spectral functions: 2er
I!=f dQ S{ (kg k; Q) =n(kpn(ky), (34
Sp(kliw)sp(kZIw,) o

gL'(kl,kz;sz):f dwf do’
€F €F

Q-w—w'+ip wheren(k) refers to the occupation of the sp momentlkkm
) which is related to the integral over energy of the hole spec-
F ¢, Sn(ky, @)S(kp,0") tral function
- do do - .
- - Q-w—w'—in
(30) n(k)=J " dw Sy(k o). (35)

Only the magnitudé,; andk, are indicated here since there

is no dependence of the sp spectral functions on the directiofhe sum ruld Eq. (34)] may yield large deviations from the
of the sp momentum. These particle and hole spectral fundree-Fermi-gas result. Using the numbers of R&0] for
tionsS, ands;, respectively, describe the distribution of the kg =1.36 fm ! yields about (0.8) for Eq. (34) when both
sp strength for a given momentum over the energy. They armomenta are below: as compared to unity in the case of
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FIG. 2. Two-nucleon spectral function for two different mo-

FIG. 1. Real(dotted ling and imaginary(dashed ling parts of
( ing imaginary ingp pfnenta corresponding to 0.5 frh (solid line) and 0.6 fm' %, respec-

the dressed noninteracting propagator for an “on-shell” momentum, | ; . ; In both h | .
of 2.8 fm ! corresponding to an energy of 281 MeV, as a function IVe!Y, @s afunction of energy. In both cases the total momentum is

of momentum. The propagator is considered at zero total momer£Ero: The e}ctual pea}k for both curves lies a few MeV below the
tum. corresponding energies as determined by (E6).

the free Fermi gas. Another important quantity related to théhe case of zero total momentuimplying that the magni-

noninteracting two-body spectral function is the density oftude of the sp momenta in E(B0) is the samgboth the real
states which is given by (dotted ling and imaginary partdashed ling parts of the

dressed propagator are plotted for this fixed enei@yd
“on-shell” momentum as a function of momentum. Note
that for zero total momentum the relative momentum and sp
momentum appearing in EG30) are identical. The position
where the magnitudes of the relative and total momentum aref the peak in the imaginary part clearly corresponds to the
used assuming an appropriate angle-averaging procedur@n-shell momentum for this energy. In contrast to a mf
This result may be compared to the result for a free Fermpropagator which has @-function imaginary part at 2.8

N(Z)(K,Q)=fwdkkzs'f'(k;K,Q), (36)
0

gas for zero total momentum: fm~1, the dressed propagator displays a distribution over
momentum at a given energy. Also for the real part of the

@ m32Q 12 propagator there is a distinct difference between the mf and

NE (Q):W- (37)  dressed propagators. While the mf propagator jumps from

+% to — at 2.8 fm !, the dressed propagator exhibits a
Using the unique relation between the energy and the orharacteristic wiggle around this energy going now throu_gh
shell momentunk, [see Eq.(10)] this result can be written 2&r° at the “on-shell” momentum. For other momenta in

as Fig. 1 one obtains a reduction factor of about 0.5 with re-
spect to the mf result, while only for large valueskado the
. mk, real parts approach each otHe8]. Figure 1 also suggests
N’ (ko) = - (380  that the numerical solution to E@5) requires a somewhat
2h different strategy than in the mf case. For mf propagators one

usually solves Eq(5) by discretizing the integral equation,
etaking only the real part of the propagator into account. The
solution to this integral equation then yields tRematrix by
a real matrix inversion36]. The contribution of the imagi-
mkf) 1 nary part of the propagator can then be obtained algebra-
N@(ky) = — _ (39) ically using the R-matrix elements[41]. Using dressed
" 272 Ko+ (m/h2)gU/ okK| propagators it is more convenient to discretize the integral
° equation in such a way that the relevant sampling of both the
For purposes of comparison it is convenient to consider théeal and imaginary parts of the propagator occurs simulta-
density of states for dressed particles also as a function afeously, leading to a complex matrix inversion to obtHin
momentum. This is achieved for zero total momentum bydirectly.
determining an “on-shell” momentum by For small on-shell momenta it is possible that the peak in
the imaginary part of the propagat@r equivalently inS'f')

In the case of mf particles in the medium one has to includ
the effect of the sp potential energgywhich yields the fol-
lowing density of stategagain for zero total momentuym

ﬁzkg does not coincide with the “on-shell” momentum. This re-
1=2e(ko) =2 5~ T ReZ(ko, e(ko)) 40 suitis indicated in Fig. 2 wher8}' is plotted as a function of

energy for two different(relative momenta(still for zero
whereX, corresponds to the sp self-energy. Except for enertotal momentumn In both cases the actual peak occurs a few
gies deep in the Fermi s¢a9] this on-shell momenturk,  MeV below the energy obtained from E@0). The results in
coincides with the location of the peak in the imaginary partFig. 2 also imply that for fixed energy, but now as a function
ofg'f' as a function of momentum. This is shown in Fig. 1 for of momentum, the peak in the spectral function does not
ko=2.8 fm ! corresponding to an energy of 281 MeV. For always occur at the on-shell momentum but typically at a
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0.04 since the on-shell relatiof40) is no longer applicable for
& energies below B (k=0) while the density of states does
£ 0.03- not vanish at those energies. This feature is demonstrated
% more clearly in Fig. 4 where the dressed density of states
§ 0.02+ (solid line) is plotted as a function of energy and compared
@5 with the result for mf particles including the sp spectrum
Z 0.014 (dashed ling which starts at ®J(0) corresponding to about
: —140 MeV at this density.
00‘ T 3 3 It should be noted that the noninteracting propagator in
Eqg. (30) becomes the familiar mf Galitski-Feynman propa-
k (fm") gator[see Eq.24)] when mf spectral functions are inserted

FIG. 3. Density of two-particle states as a function of the on-WhiCh are characterized bydfunction peak of strength 1 at

shell momentum for free particlédashed ling for mf particles at a sp energy eltht_er above the Fermi enerigy kF_) o_r below
ke=1.36 fm L, including a sp spectrurty (dotted ling, and for (k<kg). The difference between the_ Gallt§k|-_Feynnjan
dressed particleolid line). All three lines correspond to zero total Propagator and the dressed propagator is qualitatively differ-
momentum. The dashed line also represents the density of states 8t for the imaginary part and quantitatively for the real part
mf particles in the medium when only kinetic energies are considas discussed in Ref29] and above with regard to Fig. 1. It
ered. was shown in Refl29] that the spreading over a wide range
of momenta of the imaginary part of the propagator at a

somewhat higher value. This is true in particular for energiegiv,en energy is re;ponsible for the localization of thg scat-
deep in the Fermi sea. This observation points to the gener&f/ing Process. This feature was demonstrated analytically by
feature that there is no unique on-shell momentum when on@PProximating the noninteracting dressed propagator in
deals with dressed particles. As a result it is not obvious thafe'™s Of @& propagator which has a simple pole in the com-
one can use expressions like Ef9) to determine the phase PI€X momentum plane. Using this complex pole approxima-
shifts. tion (CPA) an asymptotic analysis of the scattering process

Before discussing the determination of the phase shifts fof/2S made in Ref29]. The critical ingredient in this analysis
dressed particles it is useful to further characterize the diflS the new form of the dressed propagator in coordinate space
ference between the noninteracting mf and dressed propagli- this CPA. It is obtained from Eq11) by replacingk, by
tor. In Fig. 3 the density of states for these different cases i4'¢ complex momentum corresponding to the pole of the
considered. The dashed line represents the result for fregP”A @nd inserting an overall multiplication factor[29].
particles(or mf particles with only kinetic energyaccording The imaginary part of this pole momentum characterizes the

to Eq.(38). The dotted line shows the effect of a realistic spWidth of the imaginary part of the propagator on the real
spectrum[39] for mf particles atke—1.36 fm ® and uses Momentum axis as in Fig. 1. Its presence is responsible for

Eqg. (39). The inclusion of the complete dressing leads to thefhe finite range of the propagator ".‘ coordin_ate.space §ince
solid line in Fig. 3 based on the evaluation of E&¢). When the probability amplitude for removing a pair with relative

the on-shell momentum approachigsthe reduction of the distancer while adding it after propagation at is exponen-
density of states compared to the dotted line correspondi@!ly damped, its decay governed by this imaginary part of

exactly to a factorzﬁF (about 0.5, corresponding to a reduc- the momentum.

. L One consequence of this damping is the absence of a for-
tion of the strength of the quasiparticle polekatfor each of 3y gefinition of the cross section, since this requires asymp-

the particles. Figure 3 shows that this reduction is substantighyica|ly large distances for flux to arrive at a detector. The
in a large domain of momenteor equivalently in a large gressing of particles in the medium simply implies that after

domain of energigscorresponding to the redistribution of gcattering the particles do not retain information about this

the sp strength over a large energy domi@8]. For small  gcattering event over asymptotically large distances since
momenta the dressed density of states does not go t0 zefRey will interact with other particles while propagating in

the medium. The above discussion does not imply that the

0.03 local interaction between dressed particles is small. It does

& mean that one has to be cautious with the notion of a cross
§ 0.02 section of dressed particles in the medium.

z Another consequence of this damping feature is the ap-
§ pearance of complex phase shifts as illustrated in 2

a@ 0.014 for the case of a hard-core potential. Fortunately this imagi-
b=

nary part of the phase shift is in practice substantially smaller
) than the real part since their relative size is related to the
9250_1'50 20 50 150 250 relative size of the real and imaginary parts of the complex
momentum that characterizes the spread in momentum of the
propagator. For most energies the imaginary part of this mo-
FIG. 4. Density of states as a function of energy for mf particlesmentum is substantially smaller than the real part. An ex-
(dashed lingand dressed particldésolid line). ample of this feature is provided in Fig. 1 where the real part

Q (MeV)
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of the pole momentum is close to 2.8 fh(the “on-shell” sonable expectation that the distribution over the momenta as
value while the imaginary part is approximately 0.2 frh contained in the imaginary part of the propagator will feature
In order to facilitate the comparison with mf calculations of in determining the scattering process. While this approxima-
phase shifts and cross sections, it is therefore useful to fintion does not make sense at large distance scales, it provides,
approximate expressions for real phase shifts and corrdocally, a very reasonable generalization of the phase shift.
sponding cross sections that still reflect the spread in moThe corresponding “short-distance” approximation to the
mentum of the dressed propagator at a given energy. Sudifattering amplitude yields the following res[@9]:

expressions have been proposed in [R29]. They are based

on the smallness of the imaginary part of the complex mo- m o, (0,0)= 4772 E i"(—i) Ylm|(r)Y ( 2)

mentum in the CPA which suggests that it makes sense to 073 mm'M
make use of the formal identity for the free propagdfor L,
r<r') that is part of Eq(16): x(ImSmyIM)(1'my S| IM)
~ikoii(kor )i (kor ") xf dkkim{g! (k; 0)}
0
—ik
=To{ju(kor)hmkor’)+j|(kor)h|*(kor’)} X (k(19)J|T(Q)[k(1'S)J), (44)
J|(|<r (ke L= j(kn)j(kr) where a coupling to total spi8 and projectionsng,m for
—f R I —f R initial and final spin states has been included together with
—k+inp o ko—k"—ip the usual decomposition in partial waves. In the case of free
or mf particle scattering thé function of the imaginary part
=i Efwdkkzh(kr)h(kr’)lm ; , (41) of g'f' yields the conventional result. For the case of a central
mJo 2 K24 interaction and free particles E@4) reduces tqsuppressing
spin indice$
which is valid for vanishingz, in the case of the dressed
propagator. By identifying in the last equality of E¢.1) the 21+1 | —mkym
appearance of the imaginary part of the propagétar the f(0,¢)= E YT (Ko| Ti(ko) ko) Py (cos6)

free casg one may extend this result to the case of the CPA
propagator or the complete dressed propagator. This approxi-
mation is appropriate for a pole in the complex momentum
plane not too far from the real axis for the CPA result but
also makes sense forno too different fromr’ in general.
Using this extension of the last equality in Ed.1) to the
dressed propagator, ti8matrix element can be writteisee
Egs.(16) and (17)] for the case of zero total momentum in
the following way:

21+1
” e'% sin P, (cosé), (45)
| 0

where the addition theorem for spherical harmonics and the
6 function of the imaginary part of the propagator have been
used to obtain the first equality and Eq47) and (18) to
obtain the second equality of this result. For the total cross
section(in the neutron-proton casene obtains

SlQ)=1+2i f:dkkz Im{g!' (k; Q) }(KITISTQ) |kI"). oS (2341)

| awimigl o)y
0

(42) Si’J
2
This result reduces to the conventional res[dese, e.g., Eq. X (k(1S)J|T(Q)|k(1'S)J) (46)
(17)] for free or mf particles. In the case of coupled channels

Eq. (42 can be used to follow the procedure to obtain phase hi . . .
shifts by diagonalization as discussed in Sec. I B. In the Caséféelch for a central interaction and free particles reduces to
of an uncoupled channel one can define the dressed pha standard result

shift according to

41 )
. To=—5 > (21+1)sir?s,. (47)
S]’?T(Q)=1+2if dkie Im{g} (k; Q) }(kI|TISTkI) ko
0

Equation(46) demonstrates that a sensible cross section will
EeZiéi]ST, (43) be obtained in the case of dressed particles at all energies for

which a nonvanishing imaginary part of the propagator ex-
A consequence of the present approximation is that the phassts. For two particles deep in the Fermi sea, for example, Eq.
shifts a’ST remain real29]. As a result, the phase shifts can (46) avoids the divergence associated with t«la‘é term in
be fruitfully compared with results for mf or free particles. Eq. (47). The formulation of the cross section in terms of Eq.
Detailed results for a realistic interaction will be presented in(46) provides a reasonable way to assess the strength of the
Sec. IV. Equatior(42) is exact for noninteracting or mf par- interaction between dressed particles in the medium in terms
ticles and for dressed particles includes the physically reasf the square of the relevant transition matrix elemdn} (
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FIG. 5. Phase shift for théS, channel of the Reid potential at 27 e "
various densities as a function of the on-shell momentum. Both for K
free particles(solid line and mf particles in the medium corre- o 1 S
sponding toke= 0.8 (long-dashed ling 1.36 (dashed ling and 1.8 0 RN
fm~! (dotted ling a kinetic energy spectrum was used. \
-1 L
multiplied by an appropriate measure of the density of states 0 1k(fm_1) e 8

represented by the imaginary part of the noninteracting

propagatofsee also Eq(36)]. FIG. 6. Sensitivity of the'S, phase shift in the medium to a gap
in the sp spectrum at the Fermi momentum kpre=0.8 fm * (top

pane) and the inclusion of a realistic sp spectrum f&g
IIl. RESULTS FOR MEAN-FIELD PARTICLES =1.36 fm ! (bottom panel

The results discussed in this section involve the propaga-
tion of mf particles in nuclear matter at zero temperatureapproachesr. It is also clear from Fig. 5 that the phase shift
The aim is to exhibit some characteristic changes that occuends tom more abruptly forke=1.36 fm ! than for 0.8
in the medium for the phase shifts of the most importanfm~?, while it no longer does so fdkz=1.8 fm 1. These
channels in théd N interaction with respect to their behavior results correspond closely to the appearance and strength of
in free space. The interaction used is the Reid soft-core inbound pair states as obtained in Hdf3] where they acquire
teraction[30]. An additional goal is to make contact with the the largest binding ak=0.8 fm™!, almost no binding at
discussion of Ref[31] where the determination of phase 1.36 fm !, and no bound states exist at 1.8 ffn Indeed,
shifts for the Galitski-Feynman propagator was introducedhe density range corresponding to the appearance of bound
for a central interaction appropriate féHe atoms. This goal pair states exactly corresponds to the appearance of a phase
will be achieved by suitably modifying théS, channel of  shift of = atkg . This observation is commensurate with the
the Reid interaction and studying the density dependence sfuggestion that positive phase shifts in the medium kear
the resulting phase shifts. The discussion in this section als@er), and therefore an attractive effective interaction, indi-
prepares for the comparison with the results obtained focate the presence of bound pair states. The general behavior
propagating dressed particles. aroundkg is then an indication of the amount of correlation,

In Fig. 5 the phase shift for thé&S, channel is shown as a strong pairing indicated by a phase shift that is already large
function of the on-shell momentum for various densities andand positive quite far away frorkg .
compared with the result in free spas®lid line). The long- The sensitivity of the!S, phase shift to the sp spectrum
dashed, dashed, and dotted lines correspond to Fermi mor a gap in the sp spectrumlat is explored in Fig. 6. In the
menta of 0.8, 1.36, and 1.8 fm, respectively. For simplic- top panel the kinetic energy spectrumkat=0.8 fm ! was
ity and ease of comparison a sp spectrum of kinetic energynodified by includig a 7 MeV gap between sp states above
was assumed in obtaining these results. The on-shell momeand below the Fermi momentum. This gap ensures that the
tum was used as the plotting variable in Fig. 5 instead of theigenvalues of the bound pair states fall inside the corre-
energy since it allows a direct comparison between resultsponding 14 MeV gap in the two-particle spectr{3] and
for free and mf particles at different densities. While theare therefore real. When a pure kinetic energy spectrum is
nuclear interaction in théS, channel is not sufficiently at- used, these eigenvalues acquire complex values, indicating
tractive to generate a bound state in free space, it is suffthe pairing instability. The dashed line in the top panel refers
ciently attractive in the medium to yield a pairing solution in to the kinetic energy spectrum and the short-dashed line in-
a wide range of densitigsee, e.g., Ref42]). The presence cludes the gap in the spectrum. In order to understand these
of a pairing solution can be inferred from the behavior of theresults it is useful to remember that the ladder equation in-
phase shifts. When bound pair states in the effective interacluding both particle-particle and hole-hole propagation is
tion occur, it implies that the phase shift at the correspondingquivalent to a random phase approximatiBfA) summa-
energy thresholdin this case 2¢) will tend to 7 [31]. This  tion. While the phase shift in the top panel of Fig. 6 still
result is indeed exhibited for the phase shifts correspondingends tor at kr when the gap in the sp spectrum is intro-
to ke=0.8 and 1.36 fm'. In both cases the phase shift on duced, it is also clear that the reduction of the RPA collec-
either side of 2¢ (or, as in Fig. 5, on either side df:) tivity by the introduction of this gap between particle and
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3 A ] The effective 'S, interaction in the nuclear medium is
H sufficiently attractive to yieldat least when propagating mf
5 non particles a paired ground state in a wide range of densities.
) I :":. As discussed above one may reach this conclusion also by
= ) | 1 inspecting whether the phase shiftlat (or equivalently 2
A D €r) tends to+ . It is also instructive to illustrate the con-
] \ dition under which the phase shift from the Galitski-
Feynman integral equation tends tow. In earlier papers
A l\ ) [31,38 it was shown that this case occurs when a hole-hole
S AN QAN 1 bound state exists below the hole-hole continuum, which
/\ (N corresponds to higher excitation energies than can be ob-
5 2t A, | tained by removing two mf particles. Such a spectrum is
£ /'l \\‘\\ generated by propagating miHe atoms in the medium in-
© sl 7 \\\:~: teracting by means of a realistic atom-atom interaction. In
ey N order to simulate this type of interaction, one may increase
the strength of the short-range repulsion of the R&R)
—40 y S 3 channel by a factor of 10. The corresponding phase shift
Kk (fm) results for the same set of densities are shown in the bottom

panel of Fig. 7. The phase shift for free particles now always

FIG. 7. Phase shifts obtained for modified versions of the Reidndicates a repulsive effective interactignegative phase
1S, interaction. In the top panel the intermediate range attraction ishift). For k.=0.8 fm ! the phase space of the hole-hole
increased by 10%. Phase shifts for the same densities as in Fig.dontinuum is not yet large enough to yield a bound state,
illustrate that this modified interaction yields a bound state for freeyhereas foke=1.36 and 1.8 fm? this is the case, yielding
particles which is illustrated by the corresponding phase shift goingy phase shift of- 7 at the corresponding energy threshold at
to m at zero momentuntsolid line). For the highest densityké  zero momentum which is associated with the highest two-
=1.8 fm 1) the phase shift &t tends tomr now in contrast to the hole excitation energy that the mf picture allows.
result shown in Fig. 5. In the bottom panel the shortest-range Results for other channels will be mentioned while com-
Yukawa of the Reid'S, interaction is multiplied by a factor of 10 aring with the results for the propagation of dressed par-
to simulate an ato'm-atomjlike interaction. Results are shown for th icles. It is appropriate to mention, however, that the present
same set of densities as in the top panel. results are consistent with the results obtained in R&f. to

hole states leads to a less attractive phase shift aroginéd finite temperature. One difference that should be noted cor-
similar reduction of the attraction exhibited by the phaserésponds to the different boundary condition that is applied
shift is observed in the lower panel of Fig. 6 correspondingn Ref. [13] for the propagation of hole-hole states. As a
to ke=1.36 fm ! when a realistic sp potential energy result, the corresponding phase shifts differ from the ones
[39,40 is added. The dashed line in the bottom panel of Figobtained here and in Refg31] and[38] by a sign. In addi-
6 corresponds to the kinetic energy spectrum while the shortion, the calculations in Ref13] have been performed above
dashed line includes the sp potential energy. Also in this cas#e critical temperature for pairing. This choice implies that
the average distance between particle and hole energies e effective interaction at twice the chemical potenttake
enlarged by the sp potential energy which reduces the coBeneralization of &- at finite temperatupes repulsive yield-
lectivity of the RPA summation in the ladder equation. ing a phase shift of zero at this energgstead ofm in most
Another illustration of the connection between the behav<ases considered here for th§, and 3S; channels
ior of the phase shift nedt and bound pair states is pro-
vided in the top panel of Fig. 7. This panel demonstrates the
behavior of the phase shifts for the same set of densities as in
Fig. 5 but for a modified version of the Rel, interaction. The proposed expressions for phase shifts and cross sec-
By multiplying the intermediate-range attraction of this tions for dressed particles discussed in Sec. [ID and origi-
three-Yukawa interaction by a factor of 1.1, one already gennally proposed in Ref.29] involve the folding of the imagi-
erates a bound state in free space reflected by the corresponthry part of the dressed but noninteracting propagator with
ing phase shift going tar at zero momentum in the top panel the effective interaction. While this result yields the proper
of Fig. 7 (solid line). The other three curves correspond tolimit for mf or free particles, it is important to compare the
the same set of Fermi momenta as in Figafain using a result obtained with Eq(43) with results obtained by at-
kinetic energy sp spectrum in the mediur€omparing the tempting to define an *“on-shell” momentum for a given
phase shifts for these two interactions at the same densignergy as in Eq40) and then using Eq.19). Such a com-
one observes, as expected, a substantially more positiyarison is made in Fig. 8 for théS, phase shift. The solid
phase shift for the more attractive interaction. For the highedine corresponds to Eq43) while the dotted line corre-
Fermi momentumK-=1.8 fm 1) the more attractive inter- sponds to the on-shell momentum definition. Comparison of
action now has a phase shift afatkg unlike the actual Reid both definitions for the dressed phase shift indicates that no
s, interaction, demonstrating that the range of densitieserious difference exists in a wide energy domain. A more
where pairing occurs is enlarged. critical difference is encountered when cross sections are

IV. RESULTS FOR DRESSED NUCLEONS
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FIG. 8. Comparison of théS, phase shift for dressed particles
obtained by folding the effective interaction over the imaginary part
of the dressed propagator using E43) (solid line) and the phase
shift obtained by using Eq(19) for the “on-shell” momentum
given by Eq.(40) (dotted ling.

8 (rad)

consideredsee below It should be noted that particularly ,
aroundkg, or equivalently 2¢, there cannot be any differ- o 1 2 0 1 2 3
ence between both definitions since in this limit the imagi- k (fm™) k (fm™)

nary part of the dressed propagator tends té &unction

located at 2¢ and therefore yields an identical result to the line), mf particles(dashed ling and dressed particléshort-dashed

"ﬁ.”ff(;‘e”" tdgf;utlon. Wdh”e b?.th ”de;‘lnlttlﬁns of tlhe ph?‘;’ﬁ line) for different partial waves. The density of the medium corre-
shift do not differ very dramatically for those values o esponds toke=1.36 fm L.

energy for which Eq(40) yields an actual solution for the

momentum, it should be kept in mind that no such solutionye gifferent panels in Fig. 2Gs a function of the on-shell
exists for energies below twice the lowest quasiparticle enpomentum. In general one finds that the dressed phase shifts
ergy. Since the strength distributions of the spectral functiong,gqest weaker interactions since in essentially all cases they
do not vanish abruptly at this energy, it is evident that below, ¢ gither less repulsive or less attractive than the mf result,
this energy only Eq(43) makes sense. The correspondinggy sy,dying the individual contributions of the real and
resqlt for the phase shift as a function of energy is d'Splaqulmaginary parts of the effective interaction one may gain
in Fig. 9. Below the on—shelllthreshold energy correspondingy,qre insight into this issuésee below For the twoSwave

to —140 MeV the phase shift further decreases smoothly tQpannels the most striking feature of the dressed phase shift
zero, reflecting the decrease of the density of states shown {@ he disappearance of the pairing signature for HiSg

Fig. 4. ) , channel and the enormous reduction of the signal in*®e
__The main rgslults for tr;]e phalse shifts for some of the more.,qe \while the dresse, phase shift is essentially zero at
|mp0rtant.part|.a wave channels are summanzed n F|g.. 1Ok[:, it is still clearly attractive at this momentum for tH&,

A comparison is made between phase shifts for free particlég apnel. The actual calculation of the phase shift for this

(solid line), mf particles atke=1.36 fm * (dashed ling  cpannel displays a slight kink close kg, suggesting that
and drelssed3 partgcle(short-giashed lineat the same density yq phase shift may actually rise very rapidlystovery close
for the °Sy, °S;, “P1, and D, channeldcorresponding t0 4, This implies a tremendous reduction in the strength of
the pairing correlations in this coupled channel as compared
to a mf treatment. Gaps of the order of 10 MeV have been
0.2- o obtained for this channel in Ref$43-45. Clearly, the
J\ dressing of the nucleons has a strong influence on pairing.
While one would expect to obtain a gap using dressed nucle-
-0.2 ons based on the attractive effective interaction at the Fermi
surface, its magnitude is presumably drastically reduced as
suggested by the phase shift calculation shown in Fig. 10.
0.6 . . The main ingredient in this reduction is the decrease in the
20 S0 150 350 density of states até& when dressed nucleons are propa-
2 (Mev) gated. As shown in Figs. 3 and 4 this reduction is essentially

FIG. 9. Result for the dressel, phase shift as a function of th€ square of the strength of the quasiparticle polégat
energy. Below about-140 MeV there is no solution for the on- €ading to a reduction factor of about 0.5. Since pairing cor-
shell momentum defined by E(10). The result obtained by folding relations are particularly sensitive to this density of states, it
the effective interaction with imaginary part of the propagatoriS not surprising that the strength of the pairing is substan-
(spectral functionyields a smooth decline to zero when the energytially diminished when dressing is taken into account. It is
decreases below this threshold reflecting the reduction in the derlso noteworthy that one observes a smaller negative phase
sity of states shown in Fig. 4. shift for bothSwaves at higher energy as compared to the mf

FIG. 10. Comparison of phase shifts for free particleslid

0.4

0

3 (rad)

-0.4
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FIG. 13. Mixing parameter for théS;-3D,; channel for free

FIG. 11. Real part of the on-shell effective interaction in ti$g (solid line), mf (dashed ling and dressed particlédotted line as a
channel for fregsolid ling), mf (dashed ling and dressed particles f,nction of the on-shell momentum.

(dotted ling as a function of the on-shell momentum.
rapid variation as a function of energy in the case of weakly
result. A similar conclusion may be drawn by inspecting thehound pair states as is the case for fi% interaction with
phase shifts for the’P; and °D; channel in the bottom mf particles at this density. This behavior cannot be captured
panels of Fig. 10. Also for these partial waves which repreas a function of the on-shell momentum on the present scale
sent repulsive effective interactions, one observes a reductigiut is indicated by the kinklike behavior nelgr. While the
of the magnitude of the phase shift when dressing is consiceffective interaction is less attractive for dressed nucleons at
ered. It is also important to note that in the case of mf propak_. than for mf or free particles, it is more attractive at small
gation the results in Fig. 10 show that the correspondingnomenta(deep in the Fermi s¢ahan for mf particles. This
results tend to those of free particles at high energy, whereashows that one may not conclude from a comparison of the
this is not the case for dressed particles. This latter resufihase shifts whether th@eal part of thg interaction has
indicates that the effect of the dreSSing extends to a |arggctua"y Weakened; quite the opposite is true at small mo-
energy domain. This observation is not too surprising sinCenenta for thelS, channel.
the spreading of the sp strength due to short-range and tensor The results for theS, interaction in Fig. 12 indicate that
correlations takes place in a very large energy domaifor free particles the effective interaction becomes very re-
[23,24,39 and is quite different from a localin energy  pulsive at low energy. That this should be the case becomes
spreading of the strength as would be obtained by a complegear when one realizes that tiiematrix (effective interac-
quasiparticle energy. ) o ~ tion) has a real pole at the deuteron energy and its real part
In order to assess the Change in the effective |nteract|0ﬂ1ust therefore approach |nf|n|ty When the energy approaches
when dressing is taken into account, a comparison is made ipe deuteron pole from above. The presence of strongly
Figs. 11 and 12 of the real part of the on-shell interaction folhound pair states for mf particles leads to the behavior of the
free (solid line), mf (dashed ling and dressed particlédot-  rea| part of the effective interaction illustrated in Fig. 12
ted ling for the 'Sy and *S, interaction, respectively. The [46]. The dressed effective interaction is weakly attractive at
free 1S, interaction shown in Fig. 11 is quite attractive at ke, suggesting again the substantial weakening of the pair-
low energy reflecting the almost appearance of a bound statgqg correlations which are determined by the effective inter-
For mf particles this attraction is larger ¢ than for free  action atke . Except neakg, the dressed effective interac-
particles at this momentum, leading to bound pair states afon is more repulsive than the mf one.
this density. Their presence is reflected in the behavior of the The introduction of a medium with nucleons invites also
real part of the interaction ne&g which has been studied in  the question whether the effect of the tensor force can change
detail in Refs[43,46. Using dispersion relations for the real with respect to its role in free space. Based on the strong
part of the effective interaction one obtains an extremelyyairing in the3S, channel found for mf particleg23,44,45
one may infer that the tensor force is more effective in the
medium than in free space. This can be understood by noting
’s, that the lowest energy excitations in the medium have a rela-
tive momentum corresponding tq whereas for free par-
ticles the lowest excitation has zero momentum. In the latter
case the tensor force cannot directly mix with this low mo-
mentum state since the corresponding matrix elements van-
ish. In order to investigate the role of the tensor force in the
o medium for mf and dressed particles, the mixing parameter
Py 1 3 3 [Eq. (22)] is displayed in Fig. 13 for fregsolid line), mf
K (fm)" (dashed ling and dressed particlédotted ling as a function
of the on-shell momentum. Since the eigen mixing parameter
FIG. 12. Real part of the on-shell effective interaction in #isg IS plotted instead of the bar one, the maximum mixing occurs
channel for fredsolid line), mf (dashed ling and dressed particles when p* equals 1, corresponding to an equal admixture of
(dotted ling as a function of the on-shell momentum. the 3S; and ®D; waves. The “small” admixture of théD,
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1000 . . - . kept in mind that this by no means implies that the effective
interaction in the medium has become insignifio@et Figs.
11 and 12. In addition, one should recall that the concept of
asymptotic flux in the medium representing preserved infor-
mation of a scattering event deep in the medium is not a
realistic consideration when the dressing of the nucleons is
significant[29], as it is atke=1.36 fm *. The main ingre-
dient representing the dressing is the two-particle density of
states; its reduction for dressed particles is to a large extent
responsible for the reduction of the cross section. In this
respect it should be noted that the results of R&6] also
show a substantial reduction of the total cross section at high
energy with increasing temperature. This result implies that
with increasing temperature which also means a larger deple-
tion of the Fermi sea due to thermal excitations, one obtains
a reduction of the total cross section similar to the one ob-
tained here at zero temperature when the dressing of the
particles is incorporatetand therefore the depletion of the
Fermi sea due to correlations is inclugle@hile no results
are shown in Fig. 14 below 0.5 fnt in order to avoid the
large value of the total cross sections for free particles, it
, , should be noted that the cross sections for dressed particles
1 2 3 smoothly go to zero when expressiofb) is used at lower
k (fm™) energies. This expression avoids the problem associated with
Eq. (47) which would yield an infinite cross section for the
FIG. 14. Total neutron-protoftop) and neutron-neutrofbot-  on-shell momentum going to zero. In addition, E4j7) does
tom pane) cross sections for fregsolid line), mf (dashed ling and ot yield a cross section for energies that do not yield a
dressed particlegshort-dashed lineas a function of the on-shell g (ution for the on-shell momentum according to E4(),
LUL i.e., for energies deep in the hole-hole continuum.

wave at small momenta for free particles is apparent and
persists for mf particles. Both for mf and dressed particles
the mixing is substantial over a wide range of momenta. V. SUMMARY AND CONCLUSIONS
Especially deep in the Fermi sea the mixing parameter is
quite large for dressed particles, reaching its maximun}1u
aroundkg . It is clear from Fig. 13 that the mixing parameter K

:tssql;Jeltﬁa?/?grsglr\;erntgtit:aelItr?/?ifurr?(ragé Oé(t:?(teor?reedelusm;cned g;‘zﬂge otential. The spectral functions which describe the dressing
y P P ‘of the nucleons at this density were taken from RE§9,40.

ticlzgelerzgultos Iﬁé tgi F;T;Eti:t?oihltfrt];oﬁfzmc%?rfeosr grnedsaiedtg;:rhese spectral functions describe nucleons with substantial
P P 9 mr]agmentation of the sp strength, leading to an average occu-

cross sections are substantially reduced compared to the Ltion number of about 0.8 for momenta beldw. The
results. The results for neutron-protonp) and neutron- P . . ' S ;
jump in the occupation number & embodied in this

neutron (i) total cross sections displayed in Fig. 14 con- strength distributior{which also corresponds to the strength

firm this expectation. Results have been obtained for fre N
(solid ling), mf (dashed ling and dressed particlgshort- of the quasiparticle,) corresponds to 0.7see also Ref.

dashed ling by including all partial-wave channels of the [24)- A critical ingredient gauging the difference with the
Reid potential with)<2. Results for mf particles were gen- Propagation of mf nucleons is the two-particle density of
erated with a realistic sp energy spectrum and are similar t§t&t€S. Results for this density of states are shown in Figs. 3
the corresponding results obtained, e.g., in R&7]. The and 4, .A sub_stannal reduction fqr dre_ssed particles is ob-
effect of the pairing correlations on the cross sections yield&ined in a wide range of energies with respect to the mf
a cusplike behavior arounkk reminiscent of the enhance- dzensny of states, the reduction fgctor being exactly equal to
ment of the cross sections obtained by the Rostock group &k, OF about 0.5 at & . For energies below the mf two-hole
finite temperaturg¢9,16]. As the phase shifts for mf particles spectrum a nonvanishing density of states is obtained also on
suggest, the corresponding cross sections in the medium baecount of the spreading of the sp strength.

come essentially identical to the one in free space at high While the emphasis in this work is on the results for
energy. Both for thenp andnn total cross sections the effect dressed particles, an attempt has been made to ground the
of dressing the nucleons is quite dramatic, leading to a suldiscussion firmly in terms of a comparison of scattering re-
stantial reduction of the total cross section at all energiessults obtained for mf particles at the same density and at zero
Indeed, on average a cross section of only about 10 mb igmperature. Of particular interest is the connection between
obtained. While this may seem a small number, it should bgairing correlations and the tendency of the phase shift to

100
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10 [

100
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In the present work results for the scattering of dressed
cleons in the nuclear medium at a density corresponding to
=1.36 fm ! have been reported using the Reid soft-core
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approach a value ofr at 2¢x. Both the 'S, and 3S;-°D, other partial waves. In all cases one must attribute these
channels exhibit this behavior at this density when mf propachanges to the substantial fragmentation of the sp strength as
gators are used. Indeed, the phase shift in the coupled chareflected in the substantially different two-particle density of
nel is quite large and positive over a wide range of energiesstates. While in general both less repulsive and less attractive
suggesting a connection with strong pairing correlationPhase shifts for dressed particles are obtained than for mf
which has been observed for this channel in the literatur@articles, it is not in general true that this always implies a
[23,44,49. The influence of a gap in the sp spectrum or aveakening of the effective interaction. An example of this
realistic sp potential energy spectrum was explored for thé€ature is shown in Fig. 11 where the effecti¥, interac-

1, phase shift. In addition, modifications of the bat8, tion inside the Fermi sea is shown to be more attractive for
interaction were employed to illustrate on the one hand th&ressed than for mf particles. A particularly sensitive quan-
connection with pairing correlations and a more attractivel? 19 medium effects is the mixing parameter n the coupled
bare interaction and on the other hand with results3ide S;-"D; channel. Strong mixing of thésl and °D, wave
atoms which, also at the mf level, exhibit a phase shift ofunctions is obtained for dressed particles in a wide range of

— 1 deep in the Fermi sef81] due to a strongly repulsive energies with a maximum aro_und the _Fermi surface.
core in the interaction. The latter phase shift-ofr indicates The results for the two-particle density of states and phase

the existence of a bound state below the hole-hole continuuriifts for dressed particles culminate in total cross sections

(or at an excitation energy higher than allowed by the re_which are substantially smaller than any previously obtained

moval of two mf particlek result involving mf particles at zero temperature. It may be
Using expressions proposed in RE29] for the phase useful to extend the present work to finite temperature to

shifts and scattering amplitudes for dressed particles, a Stu:ﬁlzsess the relevance of this reduction for the analysis of

has been made of the effect of the dressing of the nucleo avy-ion .reac_tions.. The folding prescri_ption fpr the tqtal
on these quantities. The folding procedure in which the efTOSS Section given in EG46) avoids the singularity associ-

fective interaction is sampled with the imaginary part of theat(ad with Eq.(47)_ at small on-shell momenta. As a regult, th_e
dressed(but noninteracting propagator is shown to yield total cross sections decrease smoothly for energies going

phase shifts which are quite similar to phase shifts obtained€€P into the Fermi sea.
from an “on-shell” prescription for the relative momentum
for a wide range of energies. The resulting phase shift for the
two nuclearS waves shows that the effect of the dressing is  This work was supported by the National Science Foun-
to eliminate the pairing signal for théS, channel while dation under Grant Nos. PHY-9602127 and PHY-9900713,
weakening it substantially for the couplé®,-3D, channel by DGICYT (Spain Grant No. PB95-1249, and by Gener-
as shown in Fig. 10. Similar sizable changes are obtained faalitat Catalunya Grant No. 1998SGR-11.
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