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Pairing properties in relativistic mean field models obtained from effective field theory
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We apply recently developed effective field theory nuclear models in mean field approxirEameter
sets G1 and G2o describe ground-state properties of nuclei from the valleg sfability up to the drip lines.
For faster calculations of open-shell nuclei we employ a modified BCS approach which takes into account
quasibound levels owing to their centrifugal barrier, with a constant pairing strength. We test this simple
prescription by comparing with available Hartree-plus-Bogoliubov results. Using the new effective parameter
sets we then compute separation energies, density distributions, and spin-orbit potentials in (sutiopic)
chains of nuclei with magic neutraiproton numbers. The new forces describe the experimental systematics
similarly to conventional nonlinear — w relativistic force parameters like NL3.
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I. INTRODUCTION vector(W) meson fields are small compared with the nucleon
mass M), and they vary slowly with position in finite nu-

The relativistic field theory of hadrons known as quantumclei. This indicates that the raticB/M, W/M, |V®|/M?,
hadrodynamic§QHD) has become a very useful tool for and |[VW|/M? can be used as the expansion parameters.
describing bulk and single-particle properties of nuclear matWith the help of the concept of naturalness, it is then pos-
ter and finite nuclei in the mean field approximatidn-4]. sible to compute the contributions of the different terms in
Compared with the nonrelativistic approach to the nucleathe expansion and to truncate the effective Lagrangian at a
many-body problem, the relativistic model explicitly in- given level of accuracy4,10,12,13. None of the couplings
cludes the mesonic degrees of freedom and treats the nuclshould be arbitrarily dropped out to the given order without a
ons as Dirac particles. At the mean fie{Hlartreg level,  symmetry argument.
nucleons interact in a relativistic covariant way by exchang- Reference$10,12,13 have shown that it suffices to go to
ing virtual mesons: an isoscalar-vectas meson, an fourth order in the expansion. At this level one recovers the
isoscalar-scalar meson, and an isovector-vectormeson.  standard nonlineasr— w model plus a few additional cou-
With these ingredients the mean field treatment of QHD auplings, with 13 free parameters in all. These parameters have
tomatically takes into account the spin-orbit force, the finitebeen fitted(parameter sets G1 and G reproduce some
range, and the density dependence of the nuclear force. Adbservables of magic nuclgiO]. The fits display naturalness
justing some coupling constants and meson masses from tliee., all coupling constants are of the order of unity when
properties of a small number of finite nuclei, the relativisticwritten in appropriate dimensionless formand the results
mean field RMF) model produces excellent results for bind- are not dominated by the last terms retained. This evidence
ing energies, root-mean-square radii, quadrupole and hexaeonfirms the utility of the EFT concepts and justifies the
decapole deformations, and other properties of spherical anduncation of the effective Lagrangian at the first lower or-
deformed nuclef5,6]. ders.

The original linearoc—» model of Walecka[7] was Recent applications of the models based on EFT include
complemented with cubic and quartic nonlinearities oféghe studies of pion-nucleus scatterin@4] and of the nuclear
meson 8] (nonlinearc— w mode) to improve the results for spin-orbit force[15], as well as calculations of asymmetric
the incompressibility and for finite nuclei. Since these mod-nuclear matter at finite temperature with the G1 and G2 sets
els were proposed to be renormalizable, the scalar self6]. In a previous work17] we have analyzed the impact of
interactions were limited to a quartic polynomial and scalar-each one of the new couplings introduced in the EFT models
vector or vector-vector interactions were not allowed.on the nuclear matter saturation properties and on the nuclear
Recently, and inspired by effective field thedBFT), Furn-  surface properties. In Refl8] we have looked for con-
stahl, Serot, and Tan®,10] abandoned the idea of renor- straints on the new parameters by demanding consistency
malizability and extended the RMF theory by including otherwith Dirac-Brueckner-Hartree-FocKDBHF) calculations
nonlinear scalar-vector and vector-vector self-interactions aand the properties of finite nuclei. In recent years a large
well as tensor couplingest,9-13. amount of work has been devoted to measuring masses of

The EFT Lagrangian has an infinite number of termsnuclei far from stability{ 19]. This body of experimental data
since it contains all the nonrenormalizable couplings consishas been used as a benchmark to test the predictions of the
tent with the underlying QCD symmetries. Therefore it iscurrently existentrelativistic and nonrelativistjcnuclear ef-
mandatory to develop a suitable scheme of expansion anféctive forces[20]. This fact motivates us to investigate in
truncation. At normal nuclear densities the scald) (and the present work the behavior of the parameter sets G1 and

0556-2813/2001/63)/04432114)/$20.00 63 044321-1 ©2001 The American Physical Society



DEL ESTAL, CENTELLES, Vﬁ\AS, AND PATRA PHYSICAL REVIEW C63 044321

G2 derived from EFT in regions far from the stability line. Il. RELATIVISTIC MEAN FIELD APPROACH
To study ground-state properties of spherical open-shell FROM EFFECTIVE FIELD THEORY

nuclei one has to take into account the pairing correlations. The effective field theory approach to QHD has been de-
Relativistic mean field calculations near tBestability line 65064 in the recent years. The theory and the equations for
have usually included pairing in a constant gap BCS approXipclear matter and finite nuclei can be found in the literature
mation[5,21,23, with the gaps fitted to empirical odd-even 4 9 10 and here we shall only outline the formalism. We
mass differences. This approach works properly when thgtart from Ref.[9] where the field equations were derived
main effect of the pairing correlations is a smearing of thefrom an energy density functional containing Dirac baryons
Fermi surface. Since the BCS pairing energy diverges foand classical scalar and vector mesons. This functional can
large momenta, a cutoff has to be introduced in the pairinge obtained from the effective Lagrangian in the Hartree ap-
channel to simulate phenomenologically the finite range oproximation, but it can also be considered as an expansion in
the particle-particle force. The limitations of this simple BCS terms of the ratios of the meson fields and their gradients to
method appear when one deals with nuclei far from thehe nucleon mass of a general energy density functional that
B-stability line. Close to the drip lines the Fermi level falls contains the contributions of correlations within the spirit of
near the particle continuum and it is known that the BCSdensity functional theory4,10].
model does not provide a correct description of the coupling According to Refs.[4,10] the energy density for finite
between bound and continuum staf28,24. In the nonrel-  puclei can be written as
ativistic framework this difficulty was overcome by the uni-
fied description of the mean field and the pairing correlations
provided by the Hartree-Fock-Bogoliubo(HFB) theory N 1 + 75
[25,26], with Skyrme[23,24] or Gogny forceg27]. g(r):%: ¢q) Tl VHB(M—P)+ W+ 5 73R+ ——A

The same unified treatment was developed by Kucharek
and Ring[28] in the relativistic framework. However, a i 1
quantitative description of the pairing correlations in nuclei - mﬁa"(fUVWJF 5 fpmsVR+ )\VA)
cannot be achieved with relativistic mean field parametriza-

tions because the meson exchange forces are not properly 1 1 ks ® Ky D2

adapted to large momentum transf8,29. Later, Ring and oS (Bst Buma) AA @t | 5 F simtarg:

co-workers[29—-37 have used the RMF interaction for the 2M ' "M

particle-hole channel plus the pairing part of the Gogny force 2 ®

[27] (with the D1S parametel83]) for the particle-particle X%q,z_@ £W4+ i 1+ al_) (VD)2

channel, in relativistic Hartree-plus-Bogoliub¢RHB) cal- g2 4! g2 292 M

culations. Other authors have employed a density-dependent )

zero-range pairing forcg34] instead of the Gogny pairing 1 P 1 7, @

force[35,36. —2—92 1+a2m)(VW)2_§ 1+ nlm‘f‘?W
Recent calculations with nonrelativistic Skyrme forces v

and a zero-range force in the particle-particle channel have m2 1 ®\m?

shown that a BCS approach is able to provide a good quali- X—W2— —(VR)?~ S| 1+ np—)—ng

tative estimate of the drip lines if some quasibound states 9, 29p 2 M 9,

due to their centrifugal barridplus the Coulomb barrier for

protons) are incI.LJd.ed in the calculatidﬁ?—Sq. In.this work _ i(VA)2+ AAW+ AAR, 1)

we will use a similar BCS approach with quasibound states e? 39,9, Y9p

to approximately take into account the effects of the con-
tinuum contributions near the drip lines. We will employ a ] )
constant pairing strength which can be considered as a sinfthere the index: runs over all occupied statgs,(r) of the
plification of the zero-range pairing force and which givesPositive energy spectrumP=gseo(r), W=g,Vo(r), R
similar results to those obtained with a delta force for spheri=9,bo(r), andA=eAy(r). Variation of the energy density
cal nuclei[40]. (1) with respect top!. and the meson fields gives the Dirac
The paper is organized as follows. We summarize theequation fulfilled by the nucleons and the meson field equa-
mean field approximation to the EFT nuclear model in thetions, which are solved self-consistently by numerical itera-
second section. In the third section we describe our modifietion. We refer the reader to RdfL0] for the expressions of
BCS approach with quasibound states, and perform somiée variational equations.
calculations to test its possibilities and limitations by com- The terms withg,, N, Bs, and 3, take care of effects
paring with Bogoliubov results available from the literature. related with the electromagnetic structure of the pion and the
The fourth section is devoted to the detailed study with thenucleon(see Ref.[10]). Specifically, the constarg, con-
EFT parametrizations G1 and G2 of properties such as sep&erns the coupling of the photon to the pions and the nucle-
ration energies, particle densities, and spin-orbit potentials ofns through the exchange of neutral vector mesons. The ex-
nuclei belonging to chains of isotopésotone$ with magic  perimental value ig§/41-r=2.0. The constant is needed to
proton(neutron) number. Our conclusions are laid out in the reproduce the magnetic moments of the nucleons. It is de-
last section. fined by
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TABLE I. Dimensionless parameters and saturation propertied\/e note that the value of the effective mass at saturation
of the sets G1 and G2 based on EFT and of the RMF set NL3.  M*/M in the EFT sets {0.65) is somewhat larger than the
usual value in the RMF parameter sets((.60). This fact is

Gl G2 NL3 related with the presence of the tensor couplipgf the @
me/M 0.540 0.554 0.541 meson to the nucleon, which has an important bearing on the
g/ 0.785 0.835 0.813 spin-orbit force[10,15,117.
g, /47 0.965 1,016 1.024 One should men'_[ion that the EFT perspective also has
gU/477 0.698 0.755 0712 been helpful to elucidate the empirical success of the usual
pK 2207 3047 1.465 nonlinearoc— w models that incorporate less couplingsst
® _10'090 0.632 _5 668 up to cubic and quartic self-interactions of the scalar field
K4 ' ' ) the EFT approach accounts for the success of these RMF
£ 3525 2.642 0.0 models and provides an expansion scheme at the mean field
N 0.071 0.650 0.0 level and for going beyond if4,10,14. In practice it has
2 —0.962 0.110 0.0 been seen that the mean field phenomenology of bulk and
7o —0.272 0.390 0.0 single-particle nuclear observables does not constrain all of
a 1.855 1.723 0.0 the new parameters of the EFT model unambiguously. That
a; 1.788 —1.580 0.0 is, the constants of the EFT model are underdetermined by
f /4 0.108 0.173 0.0 the observables currently included in the fits and different
f 14 1.039 0.962 0.0 parameter sets with low? (comparable to G1 and G2an
Bs 0.028 —0.093 0.0 be found[10,12-14. However, the extra couplings could
By —0.250 —0.460 0.0 prove to be very useful for the description of further observ-
ables. Indeed, for densities above the normal saturation den-
& We}? ~16.14 —16.07 ~16.24 sity, and owing to the additional nonlinear couplings, the
p (M ) 0.153 0.153 0.148 EFT models are ablgl8] to give an equation of state and
K (':Aev) 2150 2150 2715 nuclear matter scalar and vector self-energies in much better
MZ/M 0.634 0.664 0.595 agreement with the microscopic Dirac-Brueckner-Hartree-
J (MeV) 38.5 36.4 37.40

Fock (DBHF) predictions than the standard nonlinear w
parametrizationgthe latter completely fail in following the
DBHF trends as the nuclear density gromMs,27).

) The sets G1 and G2 were fitted including center-of-mass
corrections in both the binding energy and the charge radius.
Therefore we will utilize the same prescription of RE0]

with \,=1.793 and\,=—1.913 the anomalous magnetic in our calculations with G1 and G2, namely, a correction

moments of the proton and the neutron, respectively. The

terms with 85 and B, contribute to the charge radii of the 17.2

nucleon[10]. Ecm="1zMeV ()

In this work we will employ the EFT parameter sets G1 A
and G2 of Refs[4,10]. The masses of the nucleon and the
andp mesons take their experimental valubb=939 MeV,

m, =782 MeV, andm,=770 MeV. The 13 parametersg,

Os: Oy gp’ N1y M2s Mpy K3, Kg, gO! fvi ay, anda2 were —— ——fm

fitted by a least-squares optimization procedure to 29 observ- 4 (2MAE )

ables(binding energies, charge form factors, and spin-orbit )
splittings near the Fermi surfacef the nuclei 10, 4%ca, (O the mean-square charge radius.
48Ca, 88sr, and2%%Pb, as described in Reff10]. The con-

1 1
)\ZE)\p(l"‘ 7'3)+ E)\n(l_’T?,),

to the binding energy and a correction

3 1 ) @)

stantsgs, B,, and f, were then chosen to reproduce the . PAIRING CALCULATION

experimental charge radii of the nucleon. The fits yielded

two best, distinct parameter se61 and G2 with essen- It is well known that pairing correlations have to be in-
tially the samey? value[10]. cluded in any realistic calculation of medium and heavy nu-

We report in Table | the values of the parameters and thelei. In principle the microscopic HFB theory should be used
saturation properties of G1 and G2. One observes that thier this purpose. However, for pairing calculations of a broad
fitted parameters differ significantly between both interacrange of nuclei not too far from the-stability line, a simpler
tions. For example, G2 presents a positive valuecgfas  procedure is usually considered in which a seniority potential
opposed to G1 and to many of the most successful RMFcts between time-reversed orbitals. In this section we want
parametrizations, such as the NL3 parameter{4&f For- to discuss and test a straightforward improvement of this
mally a negative value ok, is not acceptable because the simple approximation to be able to describe in addition nu-
energy spectrum then has no lower bo{#d]. Furthermore, clei near the drip lines, at least on a qualitative level. Without
the wrong sign in the®* coupling constant may cause the complications intrinsic to a full Bogoliubov calculation,
troubles in obtaining stable solutions in light nuclei lik&C.  our faster approximation will allow us later on to perform
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extensive calculations of chains of isotopes and isotones wither of available levels above it is clearly reduced. Moreover,
the relativistic parameter sets. in this situation the particle-hole and pair excitations reach
The pairing correlation will be considered in the BCS the continuum. Referend@3] showed that if one performs a
approach[25,26. One assumes that the pairing interactionBCS calculation using the same quasiparticle states as in a
Upair N@s nonzero matrix elements only between pairs oHFB calculation, then the BCS binding energies are close to

nucleons invariant under time reversal: the HFB ones but the rms radiie., the single-particle wave
~ - functiong dramatically depend on the size of the box where
(azas|vpad arar)=—G, (5 the calculation is performed. This is due to the fact that there

- are neutrons(protong that occupy continuum states for
where|a)=|nljm) and|a)=|nlj—m) (with G>0 andm  \which the wave functions are not localized in a region, thus
>0). Most often the BCS calculations in the RMF model gjving rise to an unphysical neutrgproton gas surrounding
have been performed using a constant gap approadfe nucleus.

[5,21,23. Instead, here we choose a seniority-type interac- Recent nonrelativistic calculations near the drip lines with
tion with a constant value o6 for pairs belonging to the Skyrme force$38,39 have shown that the above problem of

active pairing shells. - _ the BCS approach can be corrected, in an approximate man-
The contrlbut!on of the pairing interaction to the_ total en-ner, by taking into account continuum effects by means of
ergy, for each kind of nucleofmeutrons or protonsis the so-called quasibound states, namely, states bound be-

2 cause of their own centrifugal barrigicentrifugal-plus-
Epair:_G[ 2 [na(l—na)]l’z} —GE ”i, (6) Coullomb bar_rler for protons Wh_en the quasibound states
a>0 a>0 are included in the BCS calculatigfrom now on a gb-BCS
calculation, it is necessary to prevent the unrealistic pairing
wheren,, is the occupation probability of a state with quan- of highly excited states and to confine the region of influence
tum numbersy={nljm} and the sum is restricted to positive of the pairing potential to the vicinity of the Fermi level.
values ofm. One has Instead of using a cutoff factor as in RER8], in our calcu-
lations we will restrict the available space to one harmonic

n :} 1- Eq™ M ) oscillator shell above and below the Fermi level.
“ 2 Ve, — pn)2+ A% In order to check this approach we have performed with

the G1 parameter seG(,=21/A MeV, see next sectigrcal-
The Lagrange multipliep is called the chemical potential culations of the binding energy and rms radius of #Ré&sn
and the gap\ is defined by and %%Sn nuclei in boxes of sizes between 15 and 254
in the nonrelativistic calculations of Rdf23]). The results
taking into account the quasibound levelsg4, 2fs;,, and
1i g, for 12%Sn, and 1,,,and 1j 5, for 8%Sn, are compared
in Fig. 1 with the output of a standard BCS calculation with
As usual the last term in E@6) will be neglected. It is not a only bound levels. It turns out that in the gb-BCS case the
very important contribution and its only effect is a renormal-results are essentially independent of the size of the box

A=G2 [n,(1-n,)]"2 (8)

ization of the pairing energig®5,26|. where the calculations are carried out. When the quasibound
Assuming constant pairing matrix elemeig in the vi-  levels are included the binding energies are larger than when
cinity of the Fermi level one ge{25,26 only the bound levels are taken into account, due to the
damping of the pairing correlation caused by disregarding
G 1 the continuum states in the standard BCS calculafiz8].
5 —=1, (9 We also show in Fig. 1 the results of a BCS calculation using
2 50 (s,—pu)?+A?

all bound and unbound levelse., without restricting our-
selves to quasibound levelgé the considered range. It is

i Ea— M _ (10 obvious that in this case the results are box dependent, as the
2 Je,—m)2+AZ] binding energy and neutron rms radius ‘8fSn evidence.

Another test of the gb-BCS approach concerns the
whereA is the number of neutrons or protons involved in theasymptotic behavior of the particle densitigsl]. In Fig. 2
pairing correlation. The solution of these two coupled equawe display the radial dependence of the neutron density of
tions allows one to fingk andA. Using Eqgs(7) and(8) the  '°°Sn (as in Ref.[24]) calculated with the G1 parameter set
pairing energy for each kind of nucleon can be written as in boxes of radii between 15 and 25 fm. For large enough
distances the density decreases smoothly when the size of the
A? box increasegexcept very near of the edge, where the den-
G (11) sity suddenly drops to zero because of the=0 boundary
condition. This means that no neutron gas surrounding the
This simple approach breaks down for nuclei far from thenucleus has appeared. In a Bogoliubov calculation the
stability line. The reason is that in this case the number oisymptotic behavior of the particle density is governed by
neutrons(for isotopes or protons(for isotoneg increases, the square of the lower component of the single-quasiparticle
the corresponding Fermi level approaches zero and the numvave function corresponding to the lowest quasiparticle en-

Epair: -
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FIG. 1. Dependence of the binding energy
(left) and neutron rms radiugight) of the nuclei
12951 and'®%sn on the size of the box used in the
calculations. Solid, dashed, and dotted lines cor-
respond to a BCS approach including quasibound
levels, only bound levels, and all available levels,
respectively. The results are for the G1 parameter
set.

with the conclusion of Ref{24] (see Fig. 19 of that wopk

most straight dotted line in Fig. 2. It can be seen that the where nonrelativistic HFB densities are compared for large
density obtained with our approach decreases more slowlylistances with the densities obtained in the gb-BCS approach
than the RHB density, i.e., asymptotically the gb-BCS denwith a state-dependent pairifig7].

sity is not able to follow the RHB behavior. This coincides

10

P, [fm”]

10

10

FIG. 2. Neutron density of°°Sn for different sizes of the box
used in the gb-BCS calculatiorifor the set GL The dotted line

Although the gb-BCS densities do not display the right

asymptotic behavior, it was conjectured in RE24] that

— R, =25fm
-~ Asymptotic behavior
(Ref. [24])

150,
Sn

' such an approach could allow one to compute properties of

r [fm]

20 25

nuclei much closer to the drip lines than in a standard BCS
calculation. Very recently, RHB calculations up to the drip
lines of the two-neutron separation ener8y, for nickel
isotopeq 35] and of the charge and neutron rms radii for tin
3 isotopeq 36] have been carried out using the NL-SH param-
eter set[43] plus a density-dependent zero-range pairing
force. We have repeated these calculations with our gb-BCS
method for both isotopic chain@vith a pairing interaction
strengthG,,=22.5A in the case of NL-SH

1 We display the values of th§,,, separation energies for
the Ni chain in Fig. 8a). The RHB calculation predicts the
drip line at the isotope'®Ni and shows shell effects &
=28 and 50and to a minor extent & =70). These features
are well predicted by our simpler gb-BCS calculation. The
. differences between these gb-BCS and RHB results also
come in part from the different pairing forces used in the
calculations. To investigate this point we show in Figh)3
the neutron pairing energy obtained in our appro@Ef.
(11)] for the isotopes of the Ni chain. It vanishesNat 28,

50, and 70, in agreement with the shell structure shown in
Fig. 3@ by theS,,, separation energies. The largest pairing
energies are found in the middle of two closed shells and
they are enhanced by increasiNgFigure 3b) can be com-

pared with the RHB values displayed in Fig. 2 of R&5].
The tendencies are the same, though the gb-BCS pairing en-

ergies are slightly larger than in the RHB calculation. In Fig.
4 we draw our results for the radii of the Sn isotopes, and

denotes the asymptotic behavior expected from a Bogoliubov calcompare them with the RHB values. In the case of the charge

culation[24].

radii the agreement is excellent. The neutron radii obtained
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FIG. 3. (@) The two-neutron

. separation energies for Ni isotopes
calculated in the gb-BCS ap-
proach are compared with the

RHB results of Ref[35] and with
experiment.(b) The neutron pair-
ing energy obtained in the gb-
BCS approach. The results are for
the set NL-SH.

in our method closely follow the behavior of the RHB neu- tracted two-proton separation energigs, in Table Il. The

tron radii and the kink alN= 132 is qualitatively reproduced. agreement between the gb-BCS and RHB approaches again
We have furthermore computed the binding energies ofs very good. In both models the last stable nucleu®ke,

nuclei of theN=20 isotonic chain for which RHB results as in experiment. Notice that in the present case the first

exist with the NL3 parameter s¢B1]. We present the ex-

NL-SH

&—0 ¢b+BCS
55+ & —ARHB

Radius [fm]
i

4.5

levels with positive energy correspond to those of fife
shell. Due to the Coulomb barrier all these levels become
quasibound in our approach, and it is expected that they will
lie close to the canonical levels. This explains the goodness
of the gb-BCS energies for this isotonic chain.

From the previous comparisons we see that the simple
gb-BCS calculation is able to reasonably follow the main
trends of the more fundamental RHB pairing calculation.
One can also conclude that the consideration of quasibound
states in the BCS approach is, actually, a key ingredient to
eliminate the spurious nucleon gas arising near the drip lines.

IV. RESULTS FOR EFT PARAMETER SETS

We want to analyze the ability of the G1 and G2 param-
eter sets based on effective field theddy10] to describe

TABLE Il. RHB and gb-BCS two-proton separation enerdies
MeV) of someN=20 isotones calculated with the NL3 parameter
set.

4 1 1 1
100 110 120 130 140 150 160 170 180

A

FIG. 4. Charge and neutron rms radii of Sn isotopes in gb-BCS

S RHB gb-BCS exp
36g 23.56 23.05 25.28
38Ar 19.36 18.97 18.35
“Ca 14.65 15.46 14.99
42T 6.36 6.70 4.86
4cr 3.30 3.31 3.08
46Cr 0.60 0.54 0.21
48N -2.33 -2.21

and RHB[36] calculations performed with the NL-SH set.
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4 A
Isotopes G1
— 3+ 8
>
L
2 Ll |
o FIG. 5. The state-independent
L | pairing gaps predicted by our gb-
BCS approach for Ni, Sn, and Pb
0 isotopes(top) and for N=28, 50,
4t § 82, and 126 isotonegbottom).
3 The G1 set has been used. The
z empi.rical average curve .1\2K
2 ot ] [44] is depicted by a solid line.
<
1 - 4
O 1 1 1 1 1
0 50 100 150 200 250 300

nuclear properties far from the stability line, i.e., far from thethatS,,, is not always zero at the drip line is connected with
region where the parameters were fitted. To our knowledgéhe quenching of the shell structure with which is a force-
such calculations have not been explored so far. We wildependent property24]. This effect is illustrated in Fig. 25
contrast the results with experiment and with those predictedf Ref. [24] for HFB calculations with different nonrelativ-
by the NL3 set, that we take as one of the best representéstic forces. We find similar situations with the considered
tives of the usual RMF model with only scalar self- relativistic sets in our gb-BCS calculations of separation en-
interactions.

As indicated, we shall use a schematic pairing with a 40 11 LI L BB
state-independent matrix elemedi=C_./A, whereC_ is a
constant andr=n,p for neutrons or protons, respectively.
We fix the constan€C,, for neutrons by looking for the best
agreement of our calculation with the known experimental
binding energies of Ni and Sn isotopes. Similarly, we deter-_
mine C,, for protons from the experimental binding energies 75 =
of the |sotones ofN=28 andN=82. The values obtained E
from this fit areC,=21 MeV andC,=22.5 MeV for the G1 o
set,C,=19 MeV andC,=25 MeV for G2, and finallyC,
=20.5 MeV andC,= 23 MeV for NL3. Figure 5 shows that
the neutron and proton state-independent gapsandA )
predicted by our calculation with G1 are scattered around the
empirical average curve 12A [44]. A similar picture is
found with the parameter sets G2 and NL3.

A. Two-particle separation energies

In Fig. 6(a) we present the two-neutron separation ener-
giesS,, for the chain of Ni isotopes. Clear shell effects arise §
at N=28 and 50. The three relativistic interactioi1, G2, 2
and NL3 slightly overestimate the shell effect Bit=28 as =
compared with the experimental value, which also happens
in more sophisticated RHB calculations with N[30,32,. In
our gb-BCS approach some disagreement with experiment i
found for theN=38 andN=40 isotopes. Again, this also
occurs in the RHB calculations of Ref$0,32 with NL3.
However, if we compare Fig.(8 with the results that we
have shown in Fig. @) for the NL-SH parameter set, we see
that NL-SH achieves a better agreement with experiment for
theseN=38 andN=40 isotopes. FIG. 6. Two-neutror{a) and one-neutrotb) separation energies

We stop our calculation towards the neutron drip linefor Ni isotopes computed with the qb-BCS approach for the param-
when the two-neutron separation energy vanishes or whesgtrizations G1, G2, and NL3, in comparison with the experimental
the neutron chemical potential becomes positive. The faatata.

20 30 40 50 60 70
N
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] N
10 & (b) — FIG. 8. Two-neutron separation energies for Pb isotopes com-
B ' ] puted with the gb-BCS approach, in comparison with experiment.
% L i
S 51— — Our calculateds,,, energies for Pb isotopes are shown in
oF C YS35558808 ] Fig. 8. The experimental shell effectldt=126 is reasonably
= — well reproduced by G1, G2, and NL3. The drip line is found
o ] at N=184 with a nonvanishing two-neutron separation en-
= - ergy, as in the calculations performed with the extended
N ] Skyrme force SLy4 in Ref[38], where a similar approach
- | | | | | | | (quasibound states and a state-dependent gapurs was
-5 S used. The relatively large shell effect found\at 184 means
50 60 70 80 9 100 110 120 130 f

that there is no quenching for this magic number in our gb-
BCS approximation for the studied parameter sets. Indeed, to
FIG. 7. Same as Fig. 6 for Sn isotopes. verify this point a full RHB calculation should be performed.
To analyze the proton pairing we have studied the two-
roton separation energies in chains of isotonedNef28
ig. @] and N=82 [Fig. 10@)]. In the case ofN=28,
shell gaps appear a=20 andZ=28. ForZ=20 the pre-
dicted gap is larger than in experiment. Rb& 28, G1 and

N

ergies. In the case of the Ni isotopes we reach the drip line
N=66 with the G1 and NL3 sets and ldt=68 with the G2
set. This agrees nicely with the valld¢=66 obtained in

HFB calculations with the Skyrme forces S[KB4,4ES and . G2 agree better than NL3 with experime8},, vanishes at
SkP [34]. For NL-SH.our gb-BCS scheme predicts the drip 7 _ 39 for NL3, whereas it vanishes Zt=32 for G1 and G2.
line at N=72 [see Fig. 8], the same value found in the pe jsotones oN=282 display a clear shell effect @t=50,
RHB calculations of Ref|35]. in agreement with the nonrelativistic calculation of H&8].

In Fig. 7(a) we display our gb-BCS results for the two- ¢ js slightly larger for G2 than for G1 and NL3. Experimen-
neutron separation energies of the Sn isotopic chain. In Refg| information for this shell effect is not available. NL3
[32] it was claimed that pure BCS calculations in the con-would predict another shell effect Zt=58, which does not
stant gap approactwith NL3) are not suitable for the Sn appear experimentally. The effect is less pronounced in G1
isotopes. We observe in Fig(&f that belowN=60, as one and it does not show up in G2. The three forces indicate that
moves towardd\ =50, some discrepancies with the experi- the proton drip line is reached after tH&%W isotope, in
mental values appear, which also arise in the RHB calculaagreement with experimental informatiof6].
tions [32]. The three forces slightly overestimate the shell Figures 11a) and 11b) show, respectively, the calculated
effect atN=82 (as the RHB results of Ref$30,32 for  S,, separation energies for tHé=50 andN=126 isotone
NL3). We have computed Sn isotopes upAe- 176, when  chains. Note that we did not use any information about these
S,n vanishes for NL3(in good agreement with RHB results nuclei in our fit of theG, pairing strength. FoN=50 the set
for NL-SH [36] and HFB results for the Skyrme force SkP G2 follows the experimental data very well, specially for the
[23]). For G1 and G2 we find th&,,, does not yet vanish at largerZ. The trend of G1 and NL3 is only a little worse. The
N=126, and it is not possible to increase the neutron numbegroton drip line is located at®°Sn in the three parametriza-
due to the shell closure ai=126 (the neutron chemical tions, in good accordance with experiment. The quenching of
potential becomes positive for thid=128 isotope¢ This the shell effect aZ=>50 is larger for G2 than for G1 and
means that the quenching of the shell effecNat 126 for ~ NL3. The available data for two-proton separation energies
NL3 (and NL-SH is larger than for the G1 and G2 param- of N=126 isotones are reasonably well estimated by the
eter sets. relativistic sets. However, the trend of NL3 is worse than that
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FIG. 9. Two-proton(a) and one-protor(b) separation energies FIG. 10. Same as Fig. 9 fdd=82 isotones.

for N=28 isotones computed with the gb-BCS approach, in com- _ o _ _ _
parison with experiment. respectively. The remaining active shells contribute in the

usual mannefEgs.(6) and (10)]. Due to rearrangement ef-
of G1 and G2. It would then be very interesting to performfects, blocking the single-particle state with smallest quasi-
RHB calculations of this chain to confirm the behavior of particle energyE,=\(e,— n)?+AZ2 in the evenA—1
NL3. The last nucleus of the chain stable against two-protomcleus, does not necessarily lead to the largest binding en-
emission is***U according to G1 and NL3, an&%Pu ac-  ergy of the oddA nucleus. Therefore in some cases one has
cording to G2. The three sets predict a shell effecZat o repeat the calculation blocking in turn the different single-

=92, though it is relatively quenched for G2. particle states that lie around the Fermi level to find the con-
figuration of largest binding enerd®3,27,47.
B. One-particle separation energies The one-neutroifone-proton separation energies lie over

We have computed one-neutr¢one-proton separation two differe_n_t CUIVES f(_)r even and odd neutr@motor) num-
energies for Ni and Sn isotopéfor N=28 andN=82 iso-  P€r- FO(; Ni |sotope£aF|g. &(0)] theglhreﬁ parameter se;cs Gll’
tones. The results are displayed in Figgbgand 7b) [9(b) G2, and NL3 reproduce reasonably the experimental values.

and 1ab)], respectively. To deal with odd mass number nu-1n€ shell effect alN=28 is, again, overestimated by the
clei we have used a spherical blocking approximation. ondhree forces. The heaviest Ni isotope stable against one-

pair of conjugate statds) and|«) is blocked, i.e., taken out neutron gmission s fou'nd o= 55 with NL3 and G1 and at
of the pairing schemf25,26. In the spherical approximation N=57 with G2. For Sn isotopd$ig. 7(b)] the shell effect at

one | the blocked sinal ticle state b N=282 is slightly overestimated by the studied forces. The
replaces the blocked single-particie state by an aVera(:f)":r'edictions of the three parametrizations are roughly similar

over the degenerate states in jitshell. This way the rota- up to N=110, where the behavior of NL3 starts to depart

tional and time-reversal invariance of the many-body SyStenf'rom G1 and ,GZ due to the large quenching of b 126

is restored in the intrinsic framg47]. In this approach the shell effect shown by NL3 as compared with G1 and G2. In

contribution of thej shell that contains the blocked state to )

the number of active particles and the pairing enerav is  °Y" calculations, the odd Sn isotopes become unstable
P P 9 9y against the emission of one neutron arouse 110. This

A=2j-1)n+1, (12)  valueis larger than the values found with the nonrelativistic
. . SkP interaction in HFB Xl=103) or HF+BCS (N=101)
Epairj=—G (2] —1)[n;(1—n))]*?3 (13)  calculations[23]. The origin of this discrepancy lies in the
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E E FIG. 12. Radial dependence of the neutfah and proton(b)
; 156 NL3 ] densities of som&l= 28 isotones obtained with the G2 set.
g u Exp. 7
E, C ] mass densities extend outwards and the rms radii and the
VJ& 10— ] surface thickness increase. Special attention has been paid to
C . the isospin dependence of the spin-orbit interaction. The
5L ] magnitude of the spin-orbit potential is reduced when one
- . approaches the neutron drip line and, as a consequence, there
- . is a reduction of the energy splittings between spin-orbit
0 L. | L | partner levels[30,31,3. To our knowledge, for isotones

76 80 84 88 92 such an study has only been carried out in Ive 20 chain
A [31]. It is to be remarked that the EFT parametrizations G1
and G2 contain a tensor coupling of tlae meson to the
FIG. 11. Two-proton separation energies f=50 (8 andN  nucleon which plays a very important role in the spin-orbit
=126 (b) isotones computed with the qb-BCS approach, in com-force because there exists a trade off between the size of this
parison with experiment. coupling and the size of the scalar figtts,17).

In Figs. 12a) and (b) we display, respectively, the neu-
fact that the shell distribution in tin isotopes arouhd tron and proton densities of soni¢=28 isotones fromZ
=126 for SkP is rather different from that of the relativistic =16 to Z=32 as predicted by the G2 set in our gb-BCS
sets[32]. approach. Figures 18 and (b) show the results for some

The one-proton separation energies for the isotondd$ of N=82 isotones fromZ=40 to Z=70. SinceN is fixed in
=28 [Fig. 9Ab)] show an overall good agreement with the each isotonic chain, the spatial extension of the neutron den-
experimental data. The shell effectsZat 20 andZ=28 are  sities is very similar for the different nuclei of the chain. In
rather well reproduced by the forces analyzed here. G1 anany case, as one goes from the lightest to the heaviest isotone
G2 predict the heaviest nucleus stable against one-protosf the chain, the neutron densities tend to be depressed in the
emission to be’’Cu, as in experiment, while it is unstable in interior region and their surface thickne@0—-10 % falloff
the NL3 calculation. For the isotones Nf=82 [Fig. 10b)]  distance shows a decreasing tendency. The proton densities
the shell effect predicted by NL3 and G150 is similar.  of the isotones exhibit a strong dependenceZoby adding
Again, as forS,,, [Fig. 10@)], NL3 predicts a shell effect at more protons they are raised at the interior and their surface
Z=58 which is not found experimentally, whereas for G1is pushed outwards. Fd¥=28 the surface thickness pf,
this effect is clearly smaller and it does not appear for G2remains roughly constant up t&=28 and increases for
The last stable nucleus against one-proton emissiditlan  heavier isotones as a consequence of the growing occupation
according to the three parameter sets. of the 1f, shell. At the origin the proton densities show a
bump whenZ=20 because thes2,, level is occupied. The
Z=16 isotone shows a dip at the center due to, precisely, the
emptiness of this &, level. For the considered nuclei of

The nuclear densities for chains of isotopes of light and\N= 82, the proton densities have an approximately constant
medium size nuclei have recently been studied in the RHBsurface thickness and present a hole at the center owing to
approximation[30,31,35,3% As N grows the neutron and the Coulomb repulsion. In Fig. 14 we display the neutron

\O
N

C. One-body densities and potentials

044321-10
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The spin-orbit interaction is automatically included in the
RMF approximation. It appears explicitly when the lower
spinor of the relativistic wave function is eliminated in favor
of the upper spinor. This way one obtains a Scimger-like
equation with a ternVg(r) that has the structure of the
. single-particle spin-orbit potential. Including the contribution
of the tensor coupling of the meson, the spin-orbit term
il reads[15,30

1
0.08 | Hso:mvso(r) L-S (14)
. 0.06 i
£ v _M%1 d<I>+dW+2fM1dW 15
& oot - sl =gz rlar Far | P gy a9
0.02 B

where M=M—1(®+W). We have checked numerically
10 that the contribution to the spin-orbit potential of theten-
r [fm] sor coupling of thep meson is very small, even when one
approaches the drip lines. Hence we have not written this
contribution in Eq.(15).
. _ _ ) ) The spin-orbit potential15) for some lead isotopes com-
and proton rms radii of th&l=82 isotonic chain obtained puted with G2 and NL3 is displayed in Figs. (#@band (b),
with G2 and NL3. It turns out that the predictions of both respectively. As a general trend, for both G2 and NL3, when
sets are very similar. The proton radii increase uniformlyyne number of neutrons is increased the depth of the spin-
with Z, similarly to the behavior found foN=20 isotones it potential decreases gradually and the position of the
with NL3 and the RHB scheme in Reff31]. The neutron  po4om of the well is shifted outwards, which implies a sig-
radii remain roughly constant with. They just show a slight  pificant weakening of the spin-orbit interaction. The same
decrease with increasing till Z~50 and slightly increase gtect arises in other isotopic chains in RHB calculations
afterwards. This behavior may be related with the shell effecE30,35,36_ Comparing the spin-orbit potentials obtained
for protons atZ=50. with the G2 and NL3 sets, one sees that they have a similar
strength for all the isotopes analyzed and that the minima of
32 ' ' ' ' the wells are located at similar positiofslightly shifted to
larger values of in G2). The higher effective mass of G2 at
saturation M*/M=0.664) with respect to NL3 N */M
=0.595) is compensated by the tensor coupling included in
. G2 (f,=0.692). To ascertain the relative importance of the
tensor coupling we have drawn in the insert of Figal5for
228pp, the full potential(15) and the contribution resulting
from settingf, =0 in Eq.(15). We see that the fuN'g(r) is
much deeper and wider. The maximum depth\&f(r)
changes from—68 MeV fm™ 2 (right scale of the insertto
—44 MeV fm 2 when f,=0. That is, the tensor coupling
accounts for roughly one-third of the total spin-orbit strength
in the G2 parameter set.
. One expects that the weakening of the spin-orbit potential
in going to the neutron drip line will bring about a reduction
of the spin-orbit splittings

FIG. 13. Same as Fig. 12 for sorhe=82 isotones.

48

> [fm]

n,p

<r

4.6

—eo>" a2

—e>" G2
sl G“OquiZNB Ae=enj=1—12~ €nlj=1+102 (16)
: ¢---0<r > NL3
of the neutron leveld30]. Figure 16 displays the energy
splittings of some spin-orbit partner levels of neutrons for
lead isotopes, obtained with the G2 and NL3 parameter sets.
. , s . The splittings predicted by G2 and NL3 are very close as a
110 120 130 4 140 150 160 consequence of the similarity of the corresponding spin-orbit
potentials. Partner levels with high angular momentum un-
FIG. 14. Neutron and proton rms radii 6f=82 isotones ob- dergo some reduction in the splitting along the Pb isotopic

tained with the G2 and NL3 sets. chain, but partners with small angular momentum show an

4.2
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v, [Mev.fm]

FIG. 15. Spin-orbit potential
for some Pb isotopes obtained
with the G2 set(a) and with the
NL3 set(b).

V., [Mev-fin]

12
r [fm]

almost constant splitting. By comparison of their RHB re-
g . . . . . . sults for Ni and Sn, the authors of R¢R0] pointed out that
the weakening of the spin-orbit interaction should be less
important for heavier isotopic chains. Our calculations for Pb
would confirm this statement. All the single-particle levels
involved in Fig. 16 are bound. Of course, one should not
expect the results foAe to be so reliable in our gb-BCS
approach if one, or both, of the partner levels lies at positive
energy. The reason is that the single-particle energies of the
quasibound levels do not exactly reproduce the energies of
the corresponding canonical states of a RHB calculation.

In Figs. 17a) and(b) we show the spin-orbit potential for
isotones oN=282 fromZ=40toZ=70, for the G2 and NL3
—Wv3d,,, parametrizations. Similarly to what is found for isotopes, the
results obtained from G2 and from NL3 are comparable and
the spin-orbit potential weNg(r) moves outwards with the
addition of protons, following the tendency of the proton
density. However, for isotones we find that the behavior of
the depth of the spin-orbit potential well is not so monoto-
nous: it increases when one goes from the neutron drip line
7 up to the B-stable region, while it decreases afterwards as
more protons are added.

Age [MeV]
H

V. SUMMARY AND CONCLUSION

We have analyzed the pairing properties of some chains
of isotopes and isotones with madicandN numbers in the
relativistic mean field approach. The study has been per-
formed for the G1 and G2 parametrizations that were ob-

FIG. 16. Energy splitting of some spin-orbit partner levels of tained in Ref.[10] from the modern effective field theory
neutrons in Pb isotopes, calculated in the qb-BCS approach for thepproach to relativistic nuclear phenomenology. We have
G2 and NL3 sets. compared the results with those obtained with the NL3 pa-

0 1 1 1 1 1 1
208 216 224 232 240 248 256
A
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vV, [Mev.fm™]

FIG. 17. Spin-orbit potential
for someN =82 isotones obtained
] with the G2 set(a) and with the
NL3 set(b).

v, [Mev- fm ]

10

r [fm]

rameter set which is considered to be very successful foetrizations(G1, G2, and NL3and in general they reproduce
dealing with nuclei beyond the stability line. the available experimental data, at least qualitatively. The
For accurate calculations of pairing far from the valley of neutron and proton drip lines are usually reached at the same
B stability in the relativistic models, the relativistic Hartree- place with the three forces, though one may find a shift of
Bogoliubov approach should be applied. However, we havene or two units ofA among them. We have paid some
presented a simpler modified BCS approach which allowgttention to the quenching of the shell structure near the drip
one to obtain pairing properties near the drip lines fast angines, For example, the quenching of the shell effecNat
confidently. The method has been used previously in nonrel= 15 tor sn isotopes is larger in NL3 than in G1 and G2,
ativistic calculations with Skyrme force$8,39. The key  yile for Ph isotopes none of the three sets exhibits a

ipgredient is to take into account the con.tinuum.contribu—quenching of the shell effect &= 184 in our qb-BCS cal-
tions through quasibound levels due to their centrifugal bar-

! o . dculation. The EFT parametrizations G1 and G2 contain ten-
rier. To further simplify the calculations we have assume or counlinas that are not present in the RME parametriza-
pairing matrix elements of the tygeé=C/A instead of, e.g., pling P b

a state-dependent pairing with a zero-range force. tions like NL3 and have a larger effective mass at saturation.

The considered quasibound levels are mainly localized M—[owever., the predictgd spin-orbit. potentials along the isoto-
the classically allowed region and decrease exponentiallfic @nd isotonic chains do not differ much from those ob-

outside it. This eliminates the unphysical nucleon gas whicht@inéd with NL3.
near the drip lines, surrounds the nucleus when all available OUr analysis shows that the parameter sets based on EFT

positive energy levels are included in the usual BCS apare able to describe nuclei far from tjgestability line, after
proach. Normally, the quasibound levels have high angulafdding a phenomenological pairing residual interaction. Only
momentum and lie close in energy to the corresponding RHEXperimental information about some magic nuclei was uti-
canonical levels. One of the limitations of the gb-BCS ap-lized in the fit of the constants of the G1 and G2 sets and
proach employed here is the fact that the nuclear densitthus the results for nuclei near the drip lines are veritable
does not follow the asymptotic falloff of the densities com- predictions of the model. In spite of the fact that the EFT sets
puted with the relativistic Hartree-plus-Bogoliubov theory. include more couplings and parameters than the conventional
In spite of this shortcoming, we have shown by comparisorRMF sets like NL3, both models reproduce the experimental
with available RHB results that the gb-BCS approach is ablesystematics with a similar quality. In fact, the studied prop-
to predict the position of the drip lines, or the behavior of theerties away from the valley oB stability do not seem to
neutron and charge radii for nuclei far from the stability line, provide further constraints on the EFT parameters, not even
in a reasonable way. Also, the obtained pairing gaps arin the isovector sector. In conclusion, extended sets like G1
nicely scattered around the empirical average/a2/ and G2 will serve almost the same purposes for normal sys-

We have applied the gb-BCS approach to the Ni, Sn, antems as the conventional parameter sets. However, some of
Pb isotopic chains, and to tHé=28, 50, 82, and 126 iso- the extra parameters of the general EFT functional may be
tonic chains. The two-neutraftwo-proton and one-neutron used to better describe regions of the equation of state at
(one-proton separation energies, as well as the resultinchigher density or temperatufd 6,18 without spoiling the
shell gaps, are similar for the three studied relativistic paramsystematics for finite nuclei.
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