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Summary

Transcendental numbers are a relatively recent finding in mathematics and they
provide, togheter with the algebraic numbers, a classification of complex numbers.

In the present work the aim is to characterize these numbers in order to see
the way from they differ the algebraic ones. Going back to ancient times we will
observe how, since the earliest history mathematicians worked with transcendental
numbers even if they were not aware of it at that time.

Finally we will describe some of the consequences and new horizons of mathematics
since the apparition of the transcendental numbers.
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todas las personas que me han dado apoyo durante estos años de estudios y hicieron
posible que llegue hasta aqúı.
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Gracias también a todos los compañeros de estudios durante estos años, princi-
palmente a Ferran quien fue un eje de apoyo, consejo y compañ́ıa en momentos
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1 Introduction to numbers

1.1 History background

If we go back in time, for example until the sixth century before Christ, dur-
ing ancient Greece, mathematicians believed that all numbers were rational and
Pythagoreans based their system on such a belief. It came as a surprise when they
proved that

√
2 could not be written as a fraction and this is why such numbers

were called irrational.
Over the years, mathematicians went deeper in the characterization of such num-
bers and step by step the theory got more detailed in the XIX century until they
arrived to the notion of transcendental numbers.

In general, talking about history, trying to expose the facts, can be a difficult
task since there is a danger in mixing up history as it actually happened with how
we reformulate ideas now. True is that transcendence results are ofetn based on
algebra theory, more precisely on Galois theory. We will see that the main difference
between an algebraic and a transcendental number lies in the fact of being or not a
sero of a polynomial equation. Thus, getting deeper in the classification of numbers
is about getting deeper in the solubility of polynomial equations.

Évariste Galois (1811-1832)

We mencioned Évariste Galois(1811-1832), this is because the main work
and motivation of Galois was to found results and answers to solubility of
polynomial equations. It may not be clear where his work started but his
extraordinary mathematical intuition attracted since the second half of nine-
teenth century, great publicity far beyond the mathematical world. We can
say that his ideas changed the theory of equations from its classical form into
what now is known as Galois Theory, together with its associated ’abstract
algebra’, including the theory of groups and fields. We will not enter deeper
in this theory, but we remark that there is an english translation of his work
made by Neumann. Next we have the end of his testamentary letter.

[...]You will have this letter printed in the Revue Encyclopédique. Often in
my life I have risked advancing propositions of which I was not certain. But
all that I have written here has been in my head for almost a year and it is

not in my interest to make a mistake so that one could suspect me of having
announced theorems of which I did not have the complete proof. You will

publicly ask Jacobi or Gauss to give their opinion not on the truth but on the
importance of the theorems. After that there will, I hope, be people who will

find profit in deciphering all this mess.

I embrace you warmly.

E Galois 29 May 1832.
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For more details of the manuscripts and papers of Galois, see the book of
Neumann [1]

Three of the oldest problems in mathematics

The theory of algebraic and transcendental numbers has enabled mathemati-
cians to settle three well-known geometric problems that have come down
from antiquity. These problems come from classical Greek geometry. Accord-
ing to Plato the only ”perfect” geometric figures are the straight line and the
circle. This belief had the effect of restricting the instruments available for
performing geometric constructions to two: the ruler and the compass. With
these instruments alone Euclid systematically set out in his Elements a wide
range of constructions. [6, p.100]

So, in the straightedge and compass constructions problems, the ruler is used
merely as a straight edge, an instrument for drawing a straight line but not
for measuring or making off distances. [3, p.3]. In this way, during this pe-
riod, many problems of construction raised, but these were gradually solved as
there was formed a solid base of the euclidean geometry. But there were some
of them that do not have solution, fact that was proved just when algebra
had been more developed, in the nineteenth century.
We will mention three of them: squaring of the circle, the doubling of the
cube and the trisection of an angle.

Doubling the cube

Reference to this problem occurs in many documents and there are dif-
ferent theories about how did it appear, one of them is about making
bigger (doubling the volume) of a royal tomb.

There is another theory and this problem received the name of ”Delian
problem,” according to an account given by the mathematician and histo-
rian Eutocius (sixth century A.D.), goes back to an old legend according
to which the Delphic oracle in one of its utterances demanded the Delian
altar block to be doubled. [7, p.170]

Regardless of how it started, mathematically, the problem consists of the
construction of a cube whose volume is twice that of the unit cube. If
the side of the given cube has length 1 unit, then the volume of the given
cube is 13 = 1. So if the volume of the larger cube should be 2, then its
sides should have length 3

√
2.

Hence the problem is reduced to that of constructing, from a segment of
lenght 1, a segment of length 3

√
2.

Many mathematicians from the antiquity dealt with this problem, open-
ing up new frontiers in different mathematics areas. The problem con-
tinued being open and already in more modern times, mathematicians
as René Descartes (1596-1650) or Isaac Newton (1643-1727) tried to find
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a solution in the euclidean geometry. It was not until 1837 when Pierre-
Laurent Wantzel (1814-1848) made public the proof of the impossibility
of the construction of the number 3

√
2 with straightedge and compass.

The key of why is this problem impossible to be solved lies in the fact
that with the methods of Galois theory one can prove that 3

√
2 can-

not be expressed in terms of rational numbers and nested square roots
so it is not constructible. We will talk about constructible numbers later.

Pierre Laurent Wantzel (1814-1848)

We will expose the biography about this mathematician since it
seems that he had a bright intelligence even if he did not achieved
more inovative results.
He was born in Paris on 5th of june but during his childhood his
father was serving in the army. After his return he became a math-
ematics professor.
Wantzel showed at a very young age great aptitude in mathematics
as in other areas, Jean Claude Saint-Venant(1797 - 1886) said that:

[...] He soon surpassed even his master, who sent for the young
Wantzel, at age nine, when he encountered a difficult surveying

problem.

At the age of 12 he entenered to École des Arts et Métiers de Châlons
and after two years he moved to the Collège Charlemagne. At the age
of 15 he edited a second edition of Reynaud’s Treatise on arithmetic
giving a proof of a method for finding square roots which was widely
used but previously unproved. At the age of 17 he received first
prizes of French dissertation and Latin dissertation from the Collège
Charlemagne.
One year later he was placed first in the entrance examination to
the École Polytechnique and also first for the science section of the
École Normale. Gaston Pinet said about him that

[...] he threw himself into mathematics, philosophy, history, music,
and into controversy, exhibiting everywhere equal superiority of

mind.

He seemed to said that he prefered the teaching of mathematics and
so he became a lecturer in analysis at the École Polytechnique in
1838 and in 1840 he was made an engineer.
According to Saint-Venant his death was the result of overwork:

[...]one could reproach him for having been too rebellious against
those counselling prudence. He usually worked during the evening,
not going to bed until late in the night, then reading, and got but a
few hours of agitated sleep, alternatively abusing coffee and opium,

taking his meals, until his marriage, at odd and irregular hours.

Wantzel published over 20 works, three of these works are written
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jointly with Saint-Venant and concern the flow of air when there is
a large pressure difference. De Lapparent sums up his other work as
follows:

[...]We owe to him a note on the curvature of elastic rods, several
works on the flow of air ... finally, in 1848, an important

posthumous note on the rectilinear diameters of curves. It was he
who first gave the integration of differential equations of the elastic

curve.

In pure mathematics Wantzel is famed for his work on solving equa-
tions by radicals. Gauss had stated that the problems of duplicating
a cube and trisecting an angle could not be solved with ruler and
compass but he gave no proofs. In 1837 Wantzel published in a pa-
per in Liouville’s Journal the first proofs of these results.
In 1845 Wantzel gave a new proof of the impossibility of solving all
algebraic equations by radicals and writes in the introduction:

[...]Although Abel’s proof is finally correct, it is presented in a form
too complicated and so vague that it is not generally accepted. Many
years previous, Ruffini, an Italian mathematician, had treated the
same question in a manner much vaguer still and with insufficient
developments, although he had returned to this subject many times.
In meditating on the researches of these two mathematicians, and

with the aid of principles we established in an earlier paper, we
have arrived at a form of proof which appears so strict as to remove

all doubt on this important part of the theory of equations.

Saint-Venant, ponders the question of why Wantzel with one of the
most impressive early achievements of any mathematician, should
have failed to achieve even more innovative results despite his early
death. He says:

[...]I believe that this is mostly due to the irregular manner in
which he worked, to the excessive number of occupations in which

he was engaged, to the continual movement and feverishness of his
thoughts, and even to the abuse of his own facilities. Wantzel
improvised more than he elaborated, he probably did not give

himself the leisure nor the calm necessary to linger long on the
same subject.

To see more details and references to his work and life, see the Mac
Tutor History of Mathematics archive [8]

Trisecting an arbitrary angle

The Greeks were concerned with the problem of constructing regular
polygons, and it is likely that the trisection problem arose in this con-
text because the construction of the regular polygon with nine sides
necessitates the trisection of an angle.[3, p.1]
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This problem consists in giving a construction which divides a given an-
gle in three equal parts for every given angle. We remark this because
there are some angles that can be trisected inside Platonic constraints.

So if we could trisect every angle then, we could trisect an angle of 60◦.
This angle represents the countraexample that will lead us tho the im-
possibility of this problem.

Trisect the angle 60◦ is to construct an angle of 20◦. If this were possible
then we could also construct a line segment of length cos 20◦.

Many mathematicians from the antiquity dealt with this problem. Some
examples would be Archimedes (c.287 b.C. − c.212 b.C.) or Pappus
(c.300 b.C.).[7].
As it happens with the doubling the cube problem, it was not until 1837
when Pierre-Laurent Wantzel (1814-1848) made public the proof of the
impossibility of the construction of the number cos 20◦, with straightedge
and compass. [3, p.104]

Squaring the circle

This problem, also known as the quadrature of the circle represents
the most famous of the three problems we are treating in this work. Its
insolubility is also the most difficult to prove, because it relies on the
transcendence of π.

The history of the problem is linked to that of calculating the area of
a circle. Information about this is found in the Rhind Papyrus from
c.1650 b.C., one of the most ancients mathematical manuscripts. There
is stated that the area of a circle is: A = (8

9
)2d2 where d represents de

diameter. This lead us to have an approximation of π = 4(8
9
)2 = 256

81
=

3.1604 . . .. The Papyrus contains no explanation of how this formula was
obtained.[3, p.2]

Fifteen hundred years later Archimedes improved the aproximation to
310
71
< π < 310

70
, that is, 3.1408... < π < 3.1428...

A curiosity is that in the time of Greeks a special word was used to people
who tried to square the cercle, that was τετραγωνιζειν(tetragonidzein)
which means to occupy oneself with the quadrature.[3, p.2]

We know that a circle of radius 1 has area equal to π so a square with
the same area would have sides of length

√
π. Thus if squaring the circle

could be done with straightedge and compass, it would follow that
√
π

is constructible.
This would mean, as we will see in section 5, that

√
π is algebraic over

Q. But this would lead to π being itself algebraic over Q.
So in order to prove the insolubility of squaring the circle, it suffice to
show that π is not algebraic over Q, that is, that π is a transcendental
number.
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We start and base our work in how transcendental numbers appeared. For this
purpose, the first thing we do is to classify numbers into rational and irrational since
the first transcendental numbers known were constructed aproximating irrational
numbers by rational ones.

1.2 Rational and Irrational numbers: Q and R−Q

Definition 1.2.1. A rational number is a number that can be put in the form a
d

where a and d are integers and d is not zero.

Exploring a bit more the rationals, we can speak about the decimal represen-
tation of a number. In this way, rationals can be classified into ones that have
terminating or finite decimals (for example 1

80
= 0.0125) and in the ones that have

infinite decimal representation (for example 5
11

= 0.454545 . . .). We have several
results and descriptions:

• Any rational fraction a
b

is expressible as a terminating decimal or an infinite
periodic decimal ; conversely, any decimal expansion which is either terminat-
ing or infinite periodic is equal to some rational number.

• A rational fraction a
b

in lowest terms has a terminating decimal expansion if
and only if the integer b has no prime factors other than 2 and 5.

About these descriptions see chapter 2.2 of [?, p.23]

The word ’irrational’, makes reference to the impossibility of expressing a number
in ratio format: a

b
. Irrational numbers don’t own any of the properties of the rational

numbers: they do not constitute a closed set under any of the operations of addition,
substraction, multiplication or division.

However, other properties are fulfilled: if α ∈ R−Q and r ∈ Q 6= 0, then

α + r, α− r, r − α, rα, α
r
,
r

α
, −α, α−1 ∈ R−Q

We will see now that numbers such as
√

7, 3
√

5 or 5
√

91 are irrational. Establish the
irrationality of such numbers is based on shifting the emphasis from the numbers
themselves to simple algebraic equations having the numbers as roots. So the
method we are about to describe for deciding whether or not a given number is
irrational can be applied if and only if we can write down a polynomial equation
which has the considered number as a root.

Definition 1.2.2. A polynomial equation with integer coefficients is an equality of
the form:

cnx
n + cn−1x

n−1 + . . .+ c1x+ c0 = 0

where cn 6= 0 and ci ∈ Z.

Proposition 1.2.1. A number of the form n
√
a, where a and n are positive integers,

it is either irrational or an integer.
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Proof. Recall that if a polynomial equation with integer coefficients has a rational
root a

b
then a is a divisor of c0 and b is a divisor of cn.

Then, the proof follows from that n
√
a is a root of the equation xn− a = 0. Since

here the leading coefficient is 1, if this equation would have a rational root c
d

then
d would be a divisor of the leading coefficient, in this case 1, so this rational root
would be in fact an integer. �

This argument it can be used for any given number α which is a root of a
polynomial equation in order to decide if it is or not irrational.

1.3 Algebraic and transcendental numbers

At this point we open a new classification of the real numbers, formalized on the
second half of the nineteenth century by Joseph Liouville who demonstrated in 1844
the existence of the transcendental numbers.

However a closely related study of irrational numbers had constituted a major focus
of attention for at least a century preceding. Indeed, by 1744, Euler had already
established the irrationality of the constant e and by 1761, Lambert had confirmed
the irrationality of π. [11].

We get now to the classification of real numbers in algebraic and transcendentals.

Definition 1.3.1. A complex number α ∈ C is algebraic if it is a root of a polyno-
mial equation with integer coefficients.

Definition 1.3.2. A transcendental number is a number that is not algebraic.

Remarks:

i) All rational numbers a
b

are algebraic since they satisfy the polynomial equa-
tion: bx− a = 0, so all transcendental numbers are irrational.

ii) An algebraic number can be irrational too,
√

2 is an example: it is irrational
but satisfies: x2 − 2 = 0.

We speak about them, but we have not proved the existence of transcendental
numbers. About the existence of such numbers, there appeared two proofs, one
of them, the one of Cantor from year 1874 is based on concepts of set cardinality:
he observed that the set of all algebraic numbers, denoted by Q, has the same
cardinality as the set of natural numbers N, in contrast to the set of real numbers
R which is uncountable. From this fact, we can conclude that there are ’a lot more’
transcendent numbers than algebraic ones.

Cantor’s proof is far from proving the existence through an example of a tran-
scendental number, let alone to say if a given number is transcendental or not. We
will see that to prove the transcendence of a concrete number is a difficult problem.

The one who achieved the existence of transcendental numbers with examples
was Liouville in 1844. He constructed a number which is transcendental, using
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aproximations of irrationals numbers by rationals. He proved the transcendence of
some concrete given numbers.

2 Aproximation of irrational numbers by rational

numbers

Liouville was who observed that the earliest results of continous fractions revelead
basic features concerning the approximation of irrational numbers by rationals. He
revealed that there exists a limit to the accuracy with which any algebraic number,
not itself rational, can be approximated by rationals.

In order to analyse Liouville’s example, we will work deeper with the irrational
numbers by analyzing differents ways of aproximating them by rational numbers.
We start with aproximations by integers:

Theorem 2.0.1. Given any irrational number α ∈ R, there is a unique integer
m ∈ Z such that:

−1

2
< α−m <

1

2

The proof for this theorem can be found at [5, p.85].
Now we pass to aproximations by rationals, here we can think in decimals, so let us
see an example of one way of approximation that we can use for any given number.
For example if we take

√
2 we know that

√
2 = 1.41421... Then we can get closer

to
√

2 moving within the infinite sequence:

1

1
,
14

10
,
141

100
,
1414

1000
,
14142

10000
,
141421

100000
, ...

However, these rational numbers have the special feature that their denominators
are powers of 10. In order to get away from this dependence on the denominators,
first we will see that every irrational number can be approximated by a rational
number having any given denominator.

Theorem 2.0.2. Let α be any irrational number and n be any positive integer.
Then there is a rational number with denominator n, m

n
, such that:

− 1

2n
< α− m

n
<

1

2n

Proof. In general, beginning with any irrational α and any positive integer n, we
note that nα is irrational.

Then we define m as the nearest integer to nα, and applying Theorem 2.0.1 for nα
we get:

−1

2
< nα−m <

1

2
Next we divide by the positive integer n and obtain:

− 1

2n
< α− m

n
<

1

2n
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So, any irrational number can be approximated by a rational number m
n

with an
error less than 1

2n
, but can this be done with less error? In the next theorem we

show that the approximation by m
n

can be made within 1
kn

for any specified k and
certain values of n.

Theorem 2.0.3. Given any irrational number α and any positive integer k, there
is a rational number m

n
whose denominator n does not exceed k, such that:

− 1

nk
< α− m

n
<

1

nk

Proof. Given an irrational number α and a positive integer k, we take the k numbers:
α, 2α, 3α, 4α, ...kα, and write each of these numbers as an integer plus a fractional
part:

jα = aj + βj (2.1)

where aj ∈ Z and βj ∈ (0, 1) are irrational.

Next we divide the unit interval into k parts, I1, I2, . . . Ik each of length 1
k

with

Ij =

(
j − 1

k
,
j

k

)
Because of the irrationality of βj ∀j ∈ {1, 2, . . . , k}, none of them are equal to any
of the interval limits j

k
which are rational numbers. Thus each β lies in exactly one

of the intervals I1, I2, . . . , Ik. Here we have two possibilities:

Case 1) The first interval, I1 contains one or more β′s.

Consider βn ∈ I1 where n ≤ k
But βn = nα− an

⇒ 0 < nα− an < 1
k
⇒ − 1

k
< nα− an < 1

k

If we divide through by n we get:

− 1

kn
< α− an

n
<

1

kn
and finally m := an.

Case 2) It does not exist any j ∈ {1, 2, . . . , k} so that βj ∈ I1.
In this case there is at least one interval Ii that contains two or more β′s.

Denote βr and βj with j, r ∈ {1, 2, . . . , k}, j > r these two values that are
found in the same interval Ii. So we have that 0 < j − r < k.

βr, βj ∈ Ii ⇒ − 1
k
< βj − βr < 1

k

but βj = jα− aj
and βr = rα− ar

⇒ − 1
k
< (jα− aj)− (rα− ar) < 1

k
⇒

⇒ − 1
k
< (j − r)α− (aj − ar) < 1

k

We now define
n := j − r
m := aj − ar

⇒ − 1
k
< nα−m < 1

k
and we divide by n⇒

⇒ − 1

kn
< α− m

n
<

1

kn
where n < k.

10



In this way the proof of the theorem is complete. �

Theorem 2.0.4. Given any irrational number α, there are infinitely many rational
numbers m

n
in lowest terms such that − 1

n2 < α− m
n
< 1

n2

Proof. Let’s supose, on the contrary, that there exists only a finite quantity of
rational numbers, in lowest terms,

m1

n1

,
m2

n2

, . . . ,
mi

ni

that satisfy the assertion of the theorem.
We consider now the numbers

α− m1

n1

, α− m2

n2

, . . . , α− mi

ni

Observe that these numbers are irrational, since α is irrational, some of them posi-
tive and some of them negative, but neither of these is zero.
Let’s take k ∈ N so that:{

0 < 1
k
< α− mj

nj
∀j ∈ {0, . . . , i} so that α− mj

nj
> 0

α− mj

nj
< − 1

k
< 0 ∀j ∈ {0, . . . , i} so that α− mj

nj
< 0.

With this value of k, neither of the next inequalities is true:

− 1
k
< α− m1

n1
< 1

k

− 1
k
< α− m2

n2
< 1

k

...

− 1
k
< α− mi

ni
< 1

k

To continue, we apply with this value of k, the Theorem 2.0.3, so there results that:

∃ m
n
∈ Q with n < k so that − 1

nk
< α− m

n
<

1

nk
⇒ −1

k
< α− m

n
<

1

k

In this point we can observe that there is a contradiction since from this last step
we obtain that m

n
6= mj

nj
∀j ∈ {1, 2, . . . , i} which means that there exists another

rational number m
n

which satisfy the Theorem. �

In fact there is a limit Theorem which gives the best approximation of any
irrational number:

Theorem 2.0.5. Hurwitz’s Theorem

Given any irrational number α, exists infinitely many rational numbers m
n

so that:

− 1√
5n2

< α− m

n
<

1√
5n2

.

For constants greater than
√

5, there exist irrationals α for which the above approx-
imation holds only for finitely many rationals m

n
.
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The proof can be found at [9, p.23].

At this point is where we can make the difference between algebraic and transcen-
dental numbers. This far we were talking about irrational numbers in general. The
main idea is that non-rational algebraic numbers can not be so well aproximated
by rational numbers as it is with transcendental numbers.
At first sight it does not ”make sense”. For now it is clear that all rationals are
algebraic, and that a part of the irrationals are also algebraic. So what we are say-
ing is that these irrational algebraic numbers are badly approximated by algebraic
rationals in comparation with the approximations of transcendental numbers which
are far from being connected with the rationals.

For now we will prove the existence of transcendental numbers introducing the
Liouville number α, with whom Liouville demonstrates that there are irrational
numbers that are not algebraic.

2.1 First construction of transcendence: Liouville numbers

Definition 2.1.1. A real number α is a Liouville number if for every positive integer
j, there are integers m and n with n > 1 such that

0 < |α− m

n
| < 1

nj
.

We will take now the most famous Liouville number: α = 0, 11000100... where
the ones occur in the decimal places numbered 1!, 2!, 3!, 4!, 5!, 6!, 7!, ...

Consequently α can be written like a sum of negative powers of 10:

α = 10−1! + 10−2! + 10−3! + 10−4! + 10−5! + . . .

= 10−1 + 10−2 + 10−6 + 10−24 + 10−120 + . . .

= 0.1 + 0.01 + 0.000001 + . . .

(2.2)

Theorem 2.1.1.

The Liouville number α =
∞∑
j=1

1

10j!
is a transcendental number. (2.3)

Proof.
First of all notice that

∑∞
j=1

1
10j!

is convergent since | 1
10j!
| < 1

10j
∀j ∈ N and∑∞

j=1
1

10j
is a geometric series.

In order to demonstrate the assertion of the theorem, we will use some lemmas.
We will start by making an aproximation of α by rationals and we will use a poly-
nomial f(x) of lowest degree which has α as a root. This will give us two different
ways of ’mesuring’ the order of magnitude for f(α)−f(β). Finally this two different
ways of approaching f(α) − f(β) will give a conflict and we will deduce that α is
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transcendental.
In order to start, we take:

β = 10−1! + 10−2! + 10−3! + · · ·+ 10−j!

=
1

101!
+

1

102!
+

1

103!
+ · · ·+ 1

10j!
, j ∈ N.

β is a good aproximation of α and is a rational number since is a sum of fractions.
For the moment we do not fix the value of j.

We can write β as unique fraction if we take the common denominator 10j!:

β =
t

10j!
where t ∈ N (2.4)

Then β is very close to α:

α− β = 10−(j+1)! + 10−(j+2)! + . . . |=⇒ α− β < 2

10(j+1)!
(2.5)

In particular we have that for r, s ∈ N :

0 < αr < 1

0 < βs < 1

0 < αrβs < 1

(2.6)

To prove that α is transcendental we shall suppose that α is algebraic and then we
shall obtain a contradiction.
Let us assume that α ∈ Q⇒ α satisfies an algebraic equation with integer coeficients.
Selecting one of lowest degree, we have that α is a root of no equation of degree
less than n and there is

f(x) = cnx
n + cn−1x

n−1 + · · ·+ c2x
2 + c1x+ c0, ci ∈ Z

with f(α) = 0
(2.7)

Lemma 2.1.1. The number β is not a root of f(x), that is to say f(β) 6= 0.

Proof. If β were a root of f(x) then (x− β) would be a factor of f(x):

f(x) = (x− β)q(x) where q(x) ∈ Q[x]
q(x) have one degree less than f(x) ⇒ f(α) = (α− β)q(α) = 0 |⇒ q(α) = 0.
But α is a root of f(x)

We define now k as the product of all denominators of the rational coefficients
of q(x). In this way kq(x) has integer coefficients and α is a root of kq(x).

But this is a contradiction since α satisfies no equation of degree less than n with
integer coefficients. So f(β) 6= 0. �

To go on with the proof of Theorem 2.1.1 we will prove now a lemma about the
order of magnitude between |f(α)− f(β)| and α− β:

13



Lemma 2.1.2. There exists a number

N := n|cn|+ (n− 1)|cn−1|+ (n− 2)|cn−2|+ · · ·+ 2|c2|+ |c1| (2.8)

dependent only on the coefficients of f(x) and its degree, such that:

|f(α)− f(β)| < N(α− β)

Proof. In the course of the proof we will use the identity

αk − βk = (α− β)(αk−1 + αk−2β + αk−3β2 + · · ·+ α2βk−3 + αβk−2 + βk−1) (2.9)

To start the proof we will compute:

f(α)− f(β) = cn(αn − βn) + cn−1(α
n−1 − βn−1) + · · ·+ c1(α− β)

(2.6)
= (α− β)[cn(αn−1 + αn−2β + · · ·+ αβn−2 + βn−1)+

+ cn−1(α
n−2 + αn−3β + · · ·+ αβn−3 + βn−2)+ (2.10)

+ · · ·+ c1]

Using now eq.(2.6) we have that:

(αk − βk) < (α− β)(1 + 1 + · · ·+ 1) = k(α− β).

So we can now finish the proof:

|f(α)− f(β)| < |α− β|[n|cn|+ (n− 1)|cn−1|+ · · ·+ |c1|]
= N(α− β)

�

In order to finish the proof of the transcendence of α, we now look at f(α)− f(β)
in another way:

Lemma 2.1.3. The number |f(α) − f(β)| · 10j!n ∈ N, no matter what value is
assigned to the positive integer j.

Proof. Since f(α) = 0 we have that |f(α)− f(β)| · 10nj! = |f(β)| · 10nj!.
We have

f(β) = cnβ
n + cn−1β

n−1 + cn−2β
n−2 · · ·+ c1β + c0

(2.4)
=

cnt
n

10nj!
+
cn−1t

n−1

10(n−1)j! +
cn−2t

n−2

10(n−2)j! + · · ·+ c1t

10j!
+ c0

Multiplying now by 10nj! we obtain:

f(β) · 10nj! = cnt
n + cn−1t

n−1 · 10j! + cn−2t
n−2 · 102j! + · · ·+ c1t · 10(n−1)j!

Observe that the left-hand side is a non-zero integer, because f(β) 6= 0.
Taking absolute values, we see that f(β)·10nj! is a positive integer and so the lemma
is proved.
�
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At this point, we will choose now the value of j used in the definition of β. We
will show that for a convenient j the number given by Lemma 2.1.4 lies between
0 and 1. This fact will give a contradiction to the last Lemma 2.1.4. Then the
supposition that α is algebraic is false and so α must be transcendental.
Let’s see that 0 < |f(α)− f(β)| · 10nj! < 1:

|f(α)− f(β)| · 10nj!
Lemma.2.1.3

< N(α− β) · 10nj!
(2.5)
<

2N · 10nj!

10(j+1)!

But
2N · 10nj!

10(j+1)!
=

2N

10(j+1)!−nj! where the denominator can be written as follows:

(j + 1)!− nj! = (j + 1)j!− nj! = j!(j + 1− n)

Observe that this exponent can be made as large as desired for fixed n, by taking
j very large. At this point we observe that:

• n and N are fixed: n is the degree of α and N is fixed by definition.

• j depends neither on n or N and we can take it so large that

0 <
2N · 10nj!

10(j+1)!
< 1 is satisfied.

But looking back, we have:

|f(α)− f(β)| · 10j!n ∈ N and at the same time,

|f(α)− f(β)| · 10j!n ∈ N < 2N ·10nj!

10(j+1)!

Thus we have a contradiction since we have a natural number which is smaller
than 1. So α must be transcendental.

�

3 Euler’s constant e and its transcendence

For now we just have seen the proof of the existence of transcendental numbers
through the Liouville number, specially constructed for this purpose. Although
there are more transcendental numbers than algebraic ones, it has been surprisingly
difficult to exhibit any transcendental number. To enter more deeply into this kind
of numbers we will start with the first example of a common number which is
transcendental: the number e, the base of natural logarithms.

Historicaly it was in 1873 when there apepared Hermite’s epoch-making memoir
entitled Sur la fonction exponentielle. Hermite’s work we can say that began a new
era because many future work is based on generalizing his work.

First of all we will prove that e is irrational and after that we will go on demon-
strating that e is transcendental.
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3.1 Irrationality of e

Euler’s number is an irrational number: e ∈ R−Q. This was first established by
Euler in 1744 using infinite continued fractions. We present a different proof so for
that we will choose the expression of e as the sum of the infinite series:

e =
∞∑
n=0

1

n!

For any n, e can be rewritten as:

e =

(
1 +

1

2!
+

1

3!
+ . . .+

1

n!

)
+

1

(n+ 1)!
+

1

(n+ 2)!
+ . . .

=

(
1 +

1

2!
+

1

3!
+ . . .+

1

n!

)
+

1

n!

(
1

n+ 1
+

1

(n+ 2)(n+ 1)
+ . . .

)
Now the second term in parentheses is positive and bounded by the sum of the
geometric series

1

n+ 1
+

1

(n+ 1)2
+ · · · = 1

n

So now we have that:

e ≤
(

1 +
1

2!
+

1

3!
+ . . .+

1

n!

)
+

1

n · n!

Therefore, writing the sum 1 + 1
2!

+ 1
3!

+ . . .+ 1
n!

as a fraction with common
denominator n!, say as pn

n!
, we obtain:

0 < e− pn
n!
≤ 1

n · n!

Finally we clear the denominator n! to get:

0 < n!e− pn ≤
1

n

If e is rational, then n!e is an integer when n is large. But that makes n!e −
pn an integer located in the open interval (0, 1/n), which is absurd. We have a
contradiction, so e is irrational.

3.2 Transcendence of e

Hermite’s original proof was simplified by Karl Weierstrass, David Hilbert, Adolf
Hurwitz and Paul Gordan. We will give the simplified version where we use a
generalization of the problem of simultaneous approximation of irrationals.

Theorem 3.2.1. The e number is transcendental.
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Proof. Let us assume that e is not transcendental, so it is an algebraic number and:

ame
m + · · ·+ a1e+ a0 = 0 where aj ∈ Z ∀j, a0 6= 0. (3.1)

We define the polynomial in x of degree mp+ p− 1:

f(x) =
xp−1(x− 1)p(x− 2)p · . . . · (x−m)p

(p− 1)!
where p is an arbitrary prime number.

To continue, we first observe that f (mp+p)(x) = 0 and we take:

F (x) =
∞∑
j=0

f (j)(x) = f(x) + f ′(x) + f ′′(x) + . . .+ f (mp+p−1)(x)

We calculate:

d

dx

[
e−xF (x)

]
= e−x (F ′(x)− F (x)) = −e−xf(x)

For any j now we integrate in both sides between 0 and j and after multiplying by
aj we obtain :

aj

∫ j

0

e−xf(x)dx = aj
[
−e−xF (x)

]j
0

= ajF (0)− aje−jF (j)

(3.2)

Multiplying by ej and summing over j = 0, 1, . . . ,m :

m∑
j=0

(
aje

j

∫ j

0

e−xf(x)dx

)
= F (0)

m∑
j=0

aje
j −

m∑
j=0

ajF (j)

(3.2)
= −

m∑
j=0

mp+p−1∑
i=0

ajf
(i)(j)

(3.3)

We observe that:

f ′(x) =
1

(p− 1)!
[(p− 1)xp−2(x− 1)p(x− 2)p · . . . · (x−m)p+

+ xp−1p(x− 1)p−1(x− 2)p · . . . · (x−m)p+

+ xp−1p(x− 1)p(x− 2)p−1 · . . . · (x−m)p + . . .]

(3.4)

Next we claim that each f (i)(j) takes integer values at j = {0, 1, 2, . . .m}. In order
to establish the claim we will use Leibniz’s rule for differentiating a product:

dm

dxm
(uv) =

m∑
r=0

(
m

r

)
dru

dxr
dm−rv

dxm−r

In this way, if f(x) is differentiated fewer than p times, then the value of f (i) is 0
whenever x = j, for j ∈ {0, 1, 2, . . .m} since f (i)(x) have at least one factor (x− j).
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If f(x) is differentiated p or more times, then the unique non-zero terms arise when
setting x = j 6= 0 and come from the factor (x−j)p. Since p!

(p−1)! = p, all such terms
are integers divisible by p. The only exception is when j = 0. In this case the first
nonzero term occurs when i = p− 1:

f (p−1)(x) =
1

(p− 1)!

[
(p− 1)!x0(x− 1)p(x− 2)p · . . . · (x−m)p + . . .

]
⇒

⇒ f (p−1)(0) = (−1)p(−2)p · . . . · (−m)p
(3.5)

Subsequent non-zero terms are all multiple of p:

f (p)(x) =
1

(p− 1)!
[p!(x− 1)p−1(x− 2)p · . . . · (x−m)p+

+ (x− 1)pp(x− 2)p−1 · . . . · (x−m)p + . . .]⇒

⇒ f (p)(0) =
1

(p− 1)!

[
p!(−1)p−1(−2)p · . . . · (−m)p + (−1)pp(−2)p−1 · . . . · (−m)p

]
(3.6)

Finally, the value of the Equation (3.3) is:

Kp + a0(−1)p . . . (−m)p for some K ∈ Z.

Depending on the value of p, the integer a0(−1)p . . . (−m)p is not divisible by p.
This happens when p > max(m, |a0|), so for sufficiently large primes p the value of
(3.3) is an integer not divisible by p, hence not 0.

On the other hand we will now estimate the integral of (3.4). Looking the defi-
nition of f(x), if 0 ≤ x ≤ m, then: |f(x)| ≤ mmp+p−1

(p−1)! in addition if f is a integrable

function then |f | is integrable too and is verified that :∣∣∣∣∣
m∑
j=0

aje
j

∫ j

0

e−xf(x)dx

∣∣∣∣∣ ≤
m∑
j=0

|ajej|
∫ j

0

mmp+p−1

(p− 1)!
dx

≤
m∑
j=0

|ajej|j
mmp+p−1

(p− 1)!
−→
p→∞

0

(3.7)

At this point we arrive to a contradiction since we have proved that the value of
(3.3) is not an integer for p big enough. So the suposition of e being an algebraic
number is false, therefore, e is transcendental.

�

4 Further examples: π number and its

transcendence

In order to demonstrate that π is a transcendental number, a fact that was achieved
by Lindemann in 1882, we will need some more algebra: results from the theory of
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symmetric polynomials. Then, using ideas from the proof of the transcendence of
e we will give the proof for π.

4.1 Results from the theory of Symmetric Polynomials

In order to achieve the proof of the transcendence of π we will use an equation for π
via symmetric polynomials. For now we will make remarks about the main proper-
ties and relationship between polynomials, symmetric polynomials and elementary
symmetric ones.

Definition 4.1.1. A polynomial f(X1, X2, . . . , Xn) in indeterminates X1, X2, . . . , Xn

is called symmetric if, for all permutations ρ of {X1, X2, . . . , Xn}, we have:

fρ{X1, X2, . . . , Xn} = f(Xρ(1), Xρ(2), . . . , Xρ(n)) = f(X1, X2, . . . , Xn)

Lemma 4.1.1. i) If f(X1, X2, . . . , Xn) and g(X1, X2, . . . , Xn) are symmetric
polynomials in X1, X2, . . . , Xn then so are

f(X1, X2, . . . , Xn)± g(X1, X2, . . . , Xn)

f(X1, X2, . . . , Xn) · g(X1, X2, . . . , Xn)

ii) If h(Y1, Y2, . . . , Ym) is any polynomial in indeterminates Y1, Y2, . . . , Ym and
if g1(X1, X2, . . . , Xn), . . . , gm(X1, X2, . . . , Xn) are symmetric polynomials in
X1, X2, . . . , Xn then

h(g1(X1, X2, . . . , Xn), . . . , gm(X1, X2, . . . , Xn))

is also symmetric in X1, X2, . . . , Xn.

Definition 4.1.2. The n elementary symmetric functions σ1, σ2, . . . , σn in indeter-
minates X1, X2, . . . , Xn are the coefficients respectively of the powers Y n−1, Y n−2, . . . , Y 0

in the expansion of
(Y +X1)(Y +X2) . . . (Y +Xn)

that is,

σ1(X1, X2, . . . , Xn) = X1 +X2 + . . .+Xn,

σ1(X1, X2, . . . , Xn) = X1X2 +X1X3 + . . .+X1Xn+

+X2X3 + . . .+X2Xn+

+Xn−1Xn,

...

σn(X1, X2, . . . , Xn) = X1X2 . . . Xn.

Notice that σk(X1, . . . , Xn) has
(
n
k

)
terms.
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Theorem 4.1.1. Fundamental Theorem on Symmetric Functions

Every symmetric polynomial g, with coefficients in a field F, in the indeterminates
X1, X2, . . . , Xn can be written as a polynomial h with coefficients in F and degree
smaller or equal than the degree of g, in the n elementary symmetric functions.

The proof of this theorem can be found in [10, p.214].

Corollary 4.1.1. Let F be a field and let f(X) be a polynomial of degree n with
coefficients in F and with n zeros α1, α2, . . . , αn in some extension field E of F. If g is
any symmetric polynomial in X1, X2, . . . Xn with coefficients in F then g(α1, α2, . . . , αn) ∈
F.

Proof. Write f(X) = anx
n + . . .+ a0 = (x− α1) . . . (x− αn). By the Fundamental

Theorem of Symmetric Functions, g(X1, X2, . . . , Xn) = h(σ1, σ2, . . . , σn) where h is
a polynomial with coefficients in F. So

g(α1, α2, . . . , αn) = h(β1, β2, . . . , βn)

where βi = σi(α1, α2, . . . , αn) for i = 1, 2, . . . , n. But taking into account that
σi(α1, α2, . . . , αn) = (−1)iai/an each of the β’s are in F and thus g(α1, α2, . . . , αn)
is in F. �

The next proposition is one of the results that we will use in the demonstration
of the transcendence of π.

Proposition 4.1.1. Let F be a field and let t(X) be a polynomial of degree n with
coefficients in F and with n zeros α1, α2, . . . , αn in some extension field E of F.
Assume that k is an integer between 1 and n, and let

γ1, γ2, . . . , γm

be all the sums of exactly k of the α’s. Then there is a monic polynomial tk(X) of
degree m with coefficients in F which has γ1, γ2, . . . , γm as its zeros.

Proof. We define tk(X) = (X − γ1)(X − γ2) . . . (X − γm). We must prove that
each of its coefficients is in F. Now, each of the coefficients of tk(X) is a symmetric
polynomial evaluated at (γ1, γ2, . . . , γm). It is sufficient then to prove that, if h
is any symmetric polynomial in m indeterminates and with coefficients in F then
h(γ1, γ2, . . . , γm) is in F.

Let h be any symmetric polynomial in m indeterminates and with coefficients in
F. We introduce now n indeterminates X1, X2, . . . , Xn and let Y1, Y2, . . . , Ym denote
all the sums of exactly k of the X’s. Then h(Y1, Y2, . . . , Ym) can be expanded out
to give a polynomial g(X1, X2, . . . , Xn) in the X’s:

h(Y1, Y2, . . . , Ym) = g(X1, X2, . . . , Xn)

It is easy to see that if we permute the X’s we also permute the Y ’s since a sum of
k X’s remains such a sum after permutation of the X’s, and every such sum comes
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from another such sum after permutation. Thus g(X1, X2, . . . , Xn) is a symmetric
function in X1, X2, . . . , Xn and has its coefficients in F. Finally, from the connection
between the Y ’s and X’s and between the γ’s and α’s, we have

h(γ1, γ2, . . . , γm) = g(α1, α2, . . . , αn)

which is in F by the Corollary 4.1.1. �

4.2 π is transcendental

We arrived to the highpoint of this work and this is representeded by the transcen-
dence of π, the second common number found as being transcendental. In fact this
is a generalization of the Hermite’s method made by Lindemann who give the proof
of the transcendence of maybe the most famous number i history, π.

Theorem 4.2.1. Number π is transcendental.

Proof. This proof is by contradiction. We suppose the opposite: π is not transcen-
dental, so it is algebraic. Hence π is a zero of a non-zero polynomial over Q. Since
the imaginary unit i ∈ C is an algebraic number we have that iπ is also algebraic.

Let t(X) be a monic polynomial with rational coefficients such that t(iπ) = 0.
The Fundamental Theorem of Algebra tells us that t(X) factors completely over C
so that:

t(X) = (X − α1)(X − α2) · . . . · (X − αn) (4.1)

where α1 = iπ, α2, . . . , αn are all complex numbers.

On the other hand, from the Euler formula for complex numbers we know that:

ex+iy = ex(cos y + i sin y)
x=0,y=π

=⇒ eiπ + 1 = 0 (4.2)

so we have:
(eα1 + 1)(eα2 + 1) · . . . · (eαn + 1) = 0 (4.3)

The product in (4.3) can be written out as a sum of 2n terms of the form eγ where
γ is a sum of one or more α’s and a single term equal to 1: the product of all the
1’s in (4.3). Thus (4.3) can be rewritten as

eγ1 + eγ2 + . . .+ eγN + 1 = 0 where N = 2n − 1 (4.4)

Now using the Proposition 4.1.1 we have the next results:

(i) there is a monic polynomial t1(X) with rational coefficients which has all the
α’s as zeros.

(ii) there is a monic polynomial t2(X) with rational coefficients which has all the
sums of two α’s as zeros. And so on, finishing with:

(iii) there is a monic polynomial tn(X) with rational coefficients which has all the
sums of n α’s as zeros.

21



So if
T (X) = t1(X)t2(X) . . . tn(X)

then T (X) is a monic polynomial with rational coefficients which has all the N γ’s
as it zeros. This means that

T (X) = (X − γ1)(X − γ2) . . . (X − γN) (4.5)

It may happen that some of these sums of α’s are zero. We don’t have a way to
know it, so we can allow for it by rewrite the eq.(4.4) like:

eβ1 + eβ2 + . . .+ eβr + k = 0 (4.6)

where k ∈ Z, k 6= 0 and the β’s are all the nonzero γ’s. So the eq.(4.5) becomes:

T (X) = Xk−1(X − β1) . . . (X − βr) (4.7)

and has rational coefficients. Then dividing by Xk−1

T (X)

Xk−1 = (X − β1) . . . (X − βr) (4.8)

is also a polynomial with rational coefficients. Finally we can multiply it by a
suitable integer c 6= 0, in order to cancel out all denominators to obtain a polynomial
θ(X) over Z.

θ(X) = cXr + c1X
r−1 + . . .+ cr where cr 6= 0 since none of the β′s is 0.

Define

f(x) =
csxp−1[θ(x)]p

(p− 1)!

where s = rp− 1 and p is any prime number. Define also:

F (x) = f(x) + f ′(x) + . . .+ f (s+p)(x)

and note that f (s+p+l)(x) = 0 ∀ l > 0. Now we will use the same remark of Adolf
Hurwitz as in the proof of the transcendence of e :

d

dx
[e−xF (x)] = e−x

(
f ′(x) + f ′′(x) + . . .+ f (s+p)(x) + f (s+p+1)(x)

)
−

− e−x
(
f(x) + f ′(x) + . . .+ f (s+p)(x)

)
= −e−xf(x)

Consequently if we integrate on both sides between 0 and x, we obtain∫ x

0

d

dy
[e−yF (y)] =

∫ x

0

−e−yf(y)dy

In order to calculate the integral we will make a substitution: y = τx and we will
multiply in both sides by ex, so we obtain:
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F (x)− exF (0) = −x
∫ 1

0

e(1−τ)xf(τx)dτ

Observe that x is now a constant. Let it range over β1, β2, . . . βr and add the
resulting equations, we get

r∑
j=1

F (βj) + kF (0) = −
r∑
j=1

βj

∫ 1

0

e(1−τ)βjf(τβj)dτ (4.9)

since, from eq. (4.6): −
r∑
j=1

eβj = k.

We remember that we shall achieve a contradiction, at this point we will start the
reasoning to get it since this result gives it and it.
We will analise both sides of eq.(4.9), in the same way that we did in the proof of
the transcendence of e.

First of all, we remember the definition of f(x):

f(x) =
csxp−1[θ(x)]p

(p− 1)!

=
cs

(p− 1)
xp−1(x− β1)p . . . (x− βr)p, c ∈ Z

Now we will look to the left side of eq.(4.9) and we claim that for all sufficiently
large p this left side is a non-zero integer. To prove the claim let’s observe that

r∑
j=1

f (t)(βj) = 0 when 0 ≤ t < p.

since if we derive f less than p times, each obtained factor contains at least one
term (x − βj), ∀j = 1, . . . , r, so if we make the substitution x = βj, the result is
0, ∀j = 1, . . . , r.

For the cases where t > p we will use the next lemma:

Lemma 4.2.1. Let be f(x) a polynomial with integer coefficients. The coefficients
of the j-derivative of f(x) are divisibe by j!.

We can assume f(x) is a monomial, then the key point of the proof of this lemma
raises in the fact that:

k!

(k − j)!
xk−j = j!

(
k

j

)
︸︷︷︸
∈Z

xk−j.

for each summand of f(x).
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In our case we use the lemma with the t−derivate of (p− 1)!f(x), whose coeffi-
cients are divisible by p! since t > p. For the study of our f(x), we will let appart
for now the cs term and define:

f0(x) =
1

(p− 1)!
xp−1(x− β1)p . . . (x− βr)p

.So, each derivative of order p or higher has a factor p and degree at most s. Now,
let us consider

r∑
j=1

f
(t)
0 (βj) with t > p

Moreover this sum is symmetric respect to the βj’s and its coefficients are divisible
by p. Since θ(x) = cxr+c1x

r−1 + . . .+cr is the polynomial which has the β’s like its
zeros, we can use the elementary symmetric functions to provide the relationship
between the zeros of θ(x) and its coefficients: in particular, the quotients ci

c
are the

elementary symmetric functions evaluated in the βj’s.

Now if we apply the FTSF(Fundamental Theorem on Symmetric Functions) to

r∑
j=1

f
(t)
0 (xj)

we obtain the existence of a new polynomial q(x) with coefficients in Z of degree
lower than s, such that:

r∑
j=1

f
(t)
0 (xj) = q(sr1(x), . . . , srr(x))

where sri are the elementary symmetric polynomials in r variables. Evaluating now
xj at β and multiplying by cs we get:

r∑
j=1

f (t)(βj) = cs q
(c1
c
, . . . ,

cr−1
c

)
︸ ︷︷ ︸

∈Z, multiple of p

In conclusion,

r∑
j=1

f (t)(βj) = pkt, t = p, p+ 1, . . . , p+ s

where the kt are integers. It follows that

r∑
j=1

F (βj) = p

n+s∑
t=p

kt

In order to complete the proof that the left side of eq.(4.9) is a non-zero integer, we
now look at kF (0). From the definition of f(x) and earliest comments it is clear
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that

f (t)(0) = 0, for t ≤ p− 2

f (t)(0) = cscpr, for t = p− 1

f (t)(0) = plt, for p ≤ t ≤ p+ s

for suitable lt ∈ Z. Consequently the left-hand side of the eq.(4.9) is

mp+ kcscpr for some m ∈ Z.

Now it remains to see that this integer is not 0. From eq.(4.6) we have that k 6= 0.
Same happen for c and cr since c is the leading coefficient of θ(x) and cr is the
independent term of θ(x) which zeros are all different of 0.
So since the value of p is not fixed yet, if we take p with enough high value, the
left-hand side of eq.(4.9) is a non-zero integer.

The last part of the proof represents the analysis of the right-hand side of eq.(4.9).
We claim, like in the proof for e, that this right-hand term tends to 0 as p tends to
+∞.

In order to proove the claim, we will treat the sum by terms, so we will choose
one of the β’s: ∣∣∣∣+βj ∫ 1

0

e(1−λ)βj |f(λβj)|dλ
∣∣∣∣ (4.10)

Let’s look to |f(λβj)|:

|f(λβj)| ≤
∣∣∣∣ cs

(p− 1)!
(λβj)

p−1θ(λβj)
p

∣∣∣∣ ≤ |c|s

(p− 1)!
|βj|p−1|θ(λβj)|p ≤︸︷︷︸

θ(λβj) ≤ m(j) (4.11)

where m(j) = sup
0≤λ≤1

|θ(λβj)|

≤ |c|s

(p− 1)!
|βj|p−1|m(j)p

Then, returning to the (4.10):∣∣∣∣+βj ∫ 1

0

e(1−λ)βj |f(λβj)|dλ
∣∣∣∣ ≤ |βj|p|c|s(p− 1)!

m(j)p
∫ 1

0

e(1−λ)βjdλ ≤︸︷︷︸
e(1−λ)βj ≤ B (4.12)

where B = sup
0≤λ≤1

e(1−λ)βj

≤ |βj|
p|c|s

(p− 1)!
m(j)pB =

=
1

|βj|m(j)
(|c|sB)

[|βj| m(j)]p−1

(p− 1)!
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If we define y = |βj|m(j) then we have:

=
1

|βj|m(j)
(|c|sB)

yp−1

(p− 1)!
(4.13)

Remark: We observe that eq.(4.11) and eq.(4.12) occur since both of the functions,
the exponential and θ(x) are continous functions in a compact space: [0, 1] so they
have a supreme.

Turning back to (4.13) we can underestimate the first part since the last one:
yp−1

(p−1)! tends to 0 as p tends to∞ so we can now observe that for enough large p the

right-hand side of eq.(4.9) tends to 0.
This contradicts the fact that the left-hand side of the equality is a non-zero integer
and so π is transcendental.
�

5 History, continuing with the impossibilities.

On the beggining of this work, we started with the classical geometry problems,
but we did not proove the impossibility of such constructions. The main point for
the three problems is to describe which numbers are constructible with straightedge
and compass.

First of all we will give an algebraic expression to what we can do using the straight-
edge and the compass with the rules laid down by the ancient greeks, who imagined
the straightedge as being free of any markings, so it is not allowed to measure dis-
tances or to transfer lengths.

Given line segments of lengths α and β , we can construct line segments of length:

αβ,
α

β
,
√
α

For details constructions and steps look forward to Chapter 5 of [3].

5.1 Constructible numbers

We continue making a reminder about the constructible numbers :

Definition 5.1.1. Let γ ∈ R be a real number. Then γ is said to be constructible
if we can construct points Pi and Pj whose distance apart is |γ| performing a finite
number of operations of addition, substraction, multiplication, division or square
root.

Theorem 5.1.1. The set CON of all constructible numbers is a subfield of R.
Furthermore

a) all rational numbers are in CON, and
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b) if α is in CON and α > 0 then
√
α ∈ CON.

The plain of the proof is the next one:

1. From segments of lengths |α| and |β| we can construct segments of lengths
α + β and |α− β| since with the compass we can transfer lengths.

2. We can also construct segments of lengths |αβ| and |α
β
|

3. Since we are given a segment of length 1 we can construct segments of lengths
1 + 1 = 2, 2 + 1 = 3 and so on, from which we can construct segments of
length equal to any positive integer. Hencewe can construct a segment of
length equal to any desired rational number m

n
since m,n ∈ N.

4. Finally we know that
√
α is constructible. (see [3, p.87])

Corollary 5.1.1. Successive Square Roots Give Constructibles

A real number γ ∈ R is constructible if there exist positive real numbers γ1, γ2, . . . , γn
such that:

γ1 ∈ F1 where F1 = Q,
γ2 ∈ F2 where F2 = F1(

√
γ1),

...

γn ∈ Fn where Fn = Fn−1(
√
γn−1),

and, finally,

γ ∈ Fn+1 where Fn+1 = Fn(
√
γn),

Notice that there is a tower of fields

Q ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fn ⊆ Fn+1

Theorem 5.1.2. All Constructible Come From Square Roots

If the real number γ ∈ R is constructible, then there exist positive real numbers
γ1, γ2, . . . , γn such that:

γ1 ∈ F1 where F1 = Q,
γ2 ∈ F2 where F2 = F1(

√
γ1),

...

γn ∈ Fn where Fn = Fn−1(
√
γn−1),

and, finally,

γ ∈ Fn+1 where Fn+1 = Fn(
√
γn),
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The proof of this theorem is given in [3, p.110].

Now we will apply the Theorem 5.1.2 to show that many numbers are not con-
structible, in fact that every constructible number must be algebraic.

Theorem 5.1.3. Degree of a Constructible Number Theorem

If a real number γ ∈ R is constructible, then γ ∈ Q is algebraic over Q and
deg(γ,Q) = 2s for some integer s ≥ 0.

Proof. Let γ be constructible and let γ1, γ2, . . . , γn be as in the All Constructible
Come From Square Roots Theorem. But ∀i ∈ {1, . . . , n}, the number

√
γi is a zero

of the polynomial X2 − γi which is in Fi[X] since γi ∈ Fi. Hence by the definition
of the irreductible polynomial of γi over Fi we have that

deg(
√
γi,Fi) = 1 or 2

and since Fi+1 = Fi(
√
γi) it follows from Theorem 3.2.4 that

[Fi+1 : Fi] = 1 or 2 (1 ≤ i ≤ n).

Now if we reconsider the tower of fields:

Q ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fn ⊆ Fn+1

we know that

[Fn+1 : Q] = [Fn+1 : Fn][Fn : Fn−1] . . . [F2 : F1]

= 2u, for some integer u ≥ 0

So γ ∈ Fn+1 is algebraic over Q. Also, by considering the tower

Q ⊆ Q(γ) ⊆ Fn+1

we see that deg(γ,Q) is a factor of [Fn+1 : Q]. Hence

deg(γ,Q) = 2s

for some integer s ≥ 0. �

Now, we get back on the classical problems already discussed and we give a
reasoning of the impossiblity of each one. The reasoning consists in see that if the
constructions were possible, then:

• there would exist a constructible number which is not algebraic, or

• there would exists a constructible number which is algebraic but whose degree
over Q is not a power of 2.

We recall that the most difficult problem, the one of squaring the circle, is proved
in the previous chapter where it is evidentiated that π is transcendental.
So we will see now the other two problems, which do not need of the transcendence
of any number and are easier to prove.
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Dubling the cube

If the cube could be doubled, then the number 3
√

2 would be a constructible
number. But:

X3 − 2 has 3
√

2 as a zero and it is monic.
Now, the only possible zeros in Q are {±1,±2}, none of which is solution.

This polynomial has degree 3 so we obtain that it is irreducible over Q and:

irr(
3
√

2,Q) = X3 − 2

and so:
deg(

3
√

2,Q) = 3

which is not a power of 2. This shows that 3
√

2 is not a constructible number,
and so the cube cannot be doubled.

Trisecting an arbitrary angle

Here we remained at the point to prove that cos 20◦ is a non constructible
number.

To do so, we recall the trigonometric formula:

cos 3θ = 4 cos3 θ − 3 cos θ.

Proof. This formula derives from using:

cos(A+B) = cosA cosB − sinA sinB

sin(A+B) = sinA cosB + cosA sinB
(5.1)

Replacing A and B by a single value θ in (5.1) we obtain:

cos 2θ = cos2 θ − sin2 θ

sin 2θ = 2 sin θ cos θ
(5.2)

Nex if we replace A by 2θ and B by θ in the first equation of (5.1), we get:

cos 3θ = cos 2θ cos θ − sin 2θ sin θ (5.3)

Now, using (5.2) and the identity cos2θ + sin2 θ = 1, we obtain

cos 3θ = (cos2 θ − sin2 θ) cos θ − (2 sin θ cos θ) sin θ

= cos3 θ − 3 sin2 θ cos θ

= 4cos3θ − 3 cos θ

(5.4)

�
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If we use now θ = cos 20◦, we get:

cos 60◦ = 4 cos3 20◦ − 3 cos 20◦

if we set: x = cos 20◦ then:
1

2
= 4x3 − 3x

or what is the same: 8x3 − 6x− 1 = 0

(5.5)

At this point we know that cos 20◦ is a root . In order to go on we know that
the only possible rational roots are ±1,±1

2
,±1

4
,±1

8
. Since none of these eight

possibilities is an actual root, we obtain that cos 20◦ is an irrational number
and that polynomial f(x) = 8x3 − 6x− 1 is irreducible in Q[x].
Finally applying Theorem 5.1.3 we obtain that cos 20◦ is not a constructible
number because the degree of the polynomial f(x) = 8x3 − 6x − 1 is not a
power of 2.
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6 Conclusions and future work

All the understanding about transcendental numbers realized during this study is
generated by the fresh ideas of Liouville about the approximation of irrationals by
rationals and of Hermite who studied the exponential function. Then, within a
decade Lindemann succeeded in generalizing Hermite’s method. [11]

In fact, the two preceding cases: e and π are special cases of a much more general
result which Lindemann sketched in his original memoir of 1882 and which was later
proved by Karl Weierstrass. [12]

Theorem. Lindemann Theorem

The number eα is transcendental for any non-zero algebraic number α.

So we can observe that an immediate consequence is the transcendence of π.

Then a good way to continue this work would be studying the Lindemann-
Weierstrass Theorem:

Theorem. Lindemann-Weierstrass Theorem

Let α0, α1 . . . , αn be n+ 1a distinc algebraic numbers. Then

eα0 , eα1 , . . . , eαn

are linearly independent over the algebraic numbers. That is, if β1, . . . , βn are non-
zero algebraic numbers, then:

β0e
α0 , β1e

α1 + . . .+ βne
αn 6= 0.

This theorem represents a very important result, knowing that numbers are
linearly independent over algebraic numbers leads to extremely powerful and im-
portant results about transcendental numbers.

Nowadays, the rhythm is accelerated and many new information is achieved.
The next point that I would study to go on with the transcendence would be the
seventh problem of the famous 23 problems proposed by David Hilbert in 1900.
There he proposed that mathematicians attempt to establish the transcendence
of an algebraic number to an irrational, algebraic power. Partial solutions to this
problem were given by A. O. Gelfond in 1929, R. O. Kuzmin in 1930, and K. Boehle
in 1933. In 1934 the complete solution was obtained independently by A. O. Gelfond
and by Th. Schneider. The partial solutions were based on ideas reminiscent of the
nineteenth proofs for the transcendence of e and for the transcendence of pi, both of
the general solutions relied on a new idea that opened the way for the development
of a theory of transcendental numbers.
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