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Nuclear incompressibility in the quasilocal density functional theory
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We explore the ability of the recently established quasilocal density functional theory for describing the
isoscalar giant monopole resonance. Within this theory we use the scaling approach and perform constrained
calculations for obtaining the cubic and inverse energy weighted morggmtsrule$ of the RPA strength. The
meaning of the sum rule approach in this case is discussed. Numerical calculations are carried out using Gogny
forces and an excellent agreement is found withtHfRPA results previously reported in literature. The nuclear
matter compression modulus predicted in our model lies in the range 210—230 MeV which agrees with earlier
findings. The information provided by the sum rule approach in the case of nuclei near the neutron drip line is
also discussed.
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I. INTRODUCTION ported in Ref[1]. The residual correlation enerdsgn] is

Recently we have established the quasilocal density funct—aken phenomenologically and is parametrized similar to the

tional theory(QLDFT) and its application for describing the tcr?ent(rsll(a)utr;oninc;fe:ggtigigsny—dependent part of the Skyrme or
nuclear ground state propertigg. It is just a generalization Th any £ th LIjFT is 1o d i " f th
of the local Hohenberg-Kohn-ShalKS) theory[2,3] and e aim of the Q IS 0 describe properties ot the
is based on the definition of an universal energy densit)pud.ear grouru_j state such as the total endigy, the_ local
functional £ of the Slater density matrixDM) p, [1]. One pfarncle den3|t|e$1, th? neutron and prqton separauon ener-
, i ) A gies(chemical potentiajsof double magic nuclei. To do that
can define the quasilocal energy functioBfh, 7,J] through | ;5e is made of the variational principle to obtain a set of
a many-to-one mapping of the density mafpixto a set of  sjngle-particle equations similar to the Kohn-Sham ones but
local quantitiesh={n,,n.}, 7={7,, m}, J={J,,Jn}, where containing additionally a position-dependent effective mass
Ng 7y Jq @re the local, the kinetic energy, and the spin denand a spin-orbit potentidll]. We have used this quasilocal

sities of each kind of nucleong=p,n): approach to obtain some nuclear ground-state properties of
R several magic nuclei with the Gogny D1S foi{&. We have

E[A,7,J]= inf &[po]. (1) found a very good agreement between the binding energies

po—h 7 and root mean square radii computed using the QLDFT and

. . . . - the corresponding values calculated with the full HF method
The main property of the functiongl) is that its minimum

) Lo . 1].
provides the exact ground state energy, which is attained A Now we are in turn to investigate if the QLDFT is also
B L L densmiﬂs It IS worthwhile to note e 1o predict some information about excited nuclear states.
that in this case the equilibriumandJ densities are not the |n this paper we want to analyze the collective breathing
exact ones and they correspond to the system without corrgnode and to study the isoscalar giant monopole resonance

lations. A (ISGMR) in finite nuclei using our model. The experimental
The functionalE[, 7,J] consists of two terms: value of the excitation energy of the ISGMR is mainly ex-
tracted from the analysis of the inelastie,«’) scattering
E[ﬁ,},j] = Eo[ﬁ,},j] + Erd ], (2) data(see Ref[7] and references therginFrom the experi-

R mental excitation energies in medium and heavy nuclei it is
where Eg[h, 7,J] is a Hartree-FockHF) energy functional possible to estimate the nuclear matter compression modulus
reduced to the quasilocal form, alghc is the residual cor- K.. In particular, self-consistent HF plus random phase ap-
relation energy. The HF contribution corresponds to a finitefproximation(RPA) calculations using Gognf8] or Skyrme
range density-independent effective force. Its quasilocaforces[9] determineK., to be 210-230 MeV.
form is calculated using the extended Thomas-Fermi theory

[4], and consists of a kinetic energy part, a Hartree term, a Il THE BASIC THEORY
local exchange contribution, and a spin-orbit energy as used '
in the Skyrme energy functionald]. To compute this HF Giant resonances are understood in terms of small ampli-

functional we use the density-independent finite-range partiude oscillations of nuclei as a response to an external field
of the Gogny force[5]. The main formulas folE, are re- generated by electromagnetic or hadronic probes. The most
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widely used theoretical framework for describing these vi- 1(262\?( 0’ES ()
brations is the RPA10] which allows to obtain the strength m3:§ ™ _g_dﬁé . 9)
7=1

function S(E) that measures the nuclear response. For me-
dium and heavy nuclei far from the drip line, the strengthThus them; moment measures the change of energy of the
S(E) corresponding to the breathing mode is mainly concennucleus when the ground-state wave function is deformed
trated in a rather narrow region of the energy spectrum. Iraccording to(8).

these cases the knowledge of a few low energy moments of With account of Eqs(6), (7), and(9), the scaled average

S(E) (sum rule$, which are defined as energy of the ISGMR is defined as
me= 2 (E,~Eg(QO)?, 3 Es= /2. (10
v#0 my

whereQ=3,; r? is the one-body monopole excitation opera- This method allows also to define the scaled nuclear com-
tor, can provide a useful information on the average properpression modulus for a finite nucleus with mass nunfes

ties of the ISGMR. Ifk is an odd integer, the sum rules; (see Ref[12])

can be written as expectation values of some commutators

calculated in the exact ground stdfl]. For example, s_M o o 1(FE ()
Ka= 5(r?oEs= —| —25—| (11)
h A d77 7=1
my =(0|[Q,[H,Q]]|0) 4) :
whereM is the nucleon mass.
and Let us describe the method of calculation of the deriva-
tives in the right-hand sides of Eg®) and(11). Within the
ms = (0|[[Q,H],[H,[H,Q111|0). (5) QLDFT the scaled energy can be written as
S — Dir Exch
From these moments one can estimate several average ener- g.5(7) = T(7) *+ Exuei(7) *+ Exuel(7) + Ecoul7) + Esd %)
gies as +Ere(7). (12
_ my Due to the fact that in the QLDFT we deal with Slater de-
Eyy2= L (6) terminant wave functions, the different contributions to the
-2

scaled energy can be easily determined. The kinetic, the spin-
The full quantal calculation of the sum rules is still a orbit, and the Coulomb contributions scale as
complicated task because the exact ground state wave func-

tion is usually unknown. However, if the energy moments of T(n) = 7°T(1), Es(n)=7Eq1), and
S(E) are evaluated atpllh (RPA) level, it is possible to
replace the exact ground-state wave functions by the uncor- Ecoul(7) = 7Ecou(1). (13)

related HF ones in the calculation of the sum rules.

For forces that commute with the monopole excitationIn our approach the residual correlation energy is chosen
operatorQ, as it happens for the Skyrme and Gogny interacfohenomenologicallysee Introductiopas
tions, the only contribution to the commutatd®,[H,Q]]

comes from the kinetic energy part of the Hamiltonian. Thus  g_ 1= t_SJ dr N2 +x)n2(r) = (2% + 1)(n(r
the m; sum rule is given bysee Ref[11]) el 4 (Ol I = (2x3+ 1 p( )

2ﬁ2 5 + nﬁ(r))]l (14)
M= VA<r Jor ™ which under the scaling transformation reads
where the expectation value of the operatdis calculated Erc(m) = n***VErc(D). (15

with the HF wave functions. , These formulas give a simple way to obtain some of the
The direct evaluation of the commutators entering the foryg o entering12). Similar explicit expressions for the di-

mula (5) for ms is a rather cumbersome task which can beyeqt and exchange energy contributions coming from the fi-
avoided computing thens sum rule of the RPA monopole njte range part of the effective force cannot be derived. How-
strength function through the scaling metf{dd]. Using the  g\er one can calculate their corresponding derivatives with
scaled ground-state wave function respect to the dimensionless collective coordinatesing
3 the following trick. For the sake of simplicity we will con-
WMy, o k)= 02" (or g, .. p), (8)  sider a simple Wigner central force. In our approach we use
Gogny-like forces with Gaussian form factar& /) where
the plus three energy moment can be expressed by means @fis the range of the force. In this case the direct part of the
the second derivative of the scaled ground-state energgnergy coming from the finite range effective force has the
Egs(m=(V,[H¥,) as general form
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or 1 ) ) , well known (see Ref[11]) that them_; RPA sum rule is half
ENuei = Ef dr dr'n(rv(|r =r'[/win(r’). (16)  the ground-state polarizability with respect to the excitation
operatorQ of the ISGMR, i.e.,
It is easy to see that the scaling of the direct energy is re-

2
duced to renormalization of the range m,=S (+|Q|O)| __ }(dRZ()\)> _ }(dzEcg.s.()\)>
1 ! =0 E,~Eo 2\ d\n /o 2 d\? )\zo'
Rt =3 | o o nto ol = (e ) = ERL). 24

(17)  Where R?(\) and Eg<(\) are the expectation values of the
excitation(Q) and the Hamiltoniar{H) operators evaluated

It enables us to writ¢see Refs[13,14) with the ground-state wave function of the constrained
EDT HamiltonianH,=H+\Q. Using Egs.(6), (7), and (24), the
Enuci(7) = }f dar dr’n(r)[stv(S/’u) constrained estimate of the average energy of the ISGMR is
do* "7 2 ds defined as
d?v (/) , I'm
+SZT nr’), (18) Ec= Ill (25)
wheres=r —-r' is the relative coordinate. In our calculations The constrained nuclear compression modulus can also be
we, however, used another relation, defined in a similar way to that of Eq11):
dZEDir ( ) dZEDir ( r) M 1 dZEC R
T s SRS (19) KS = —5(r2)oE2 =~ rIEER) (g
d7] 7=1 dlu’ w'=p h A dR2 R=R,
which follows immediately from Eq(17). where the functionES((R) is defined by the relations

co;?negi‘?g]n? tlr?etrfl:ritéo:atsgeeeggzgt?\?: flé?cc: ((a)nudrj_i %%Zgiocalﬁg-smo\))=EQC-S-O‘)’ Ro=R(A=0).
' As it has been pointed out before, in Rgf1] was proved

exchange energy is obtained by replacing the exact Slat(:'Eﬁat the exact ground-state wave function can be replaced by

single-particle density matrix by the quasiclassical DM ; )
within the extended Thomas-Fermi approximati&TF) [4]. the HF onein the self-conS|§tent I_-+HRPA(1plh) sum rule
calculation. Analogous considerations allow to state that the

It is easy to check that the quasiclassical Dide(r,r’ L
y a ) mg, My, and m_; sum rules calculated within QLDFTi.e.,

t_rgﬁz‘(o?nsgti[xt?avs_(r +1')/2] satisfies the correct scaling using Slater determinants built up of the single-particle wave
' functions obtained from the minimization of the QLDFT en-
pere(R,S, 1) = 7°pere( 7R, 7 9). (200  ergy functiona), coincide with the QLDFT-based self-
consistent RPA results.
Thus, because in the QLDFT the exchange energy has the Finally, let us note that the RPA moments fulfiling/m;
general form =m,/my=+Vmy/m_,. Therefore, the scaleEs) and the con-
strained(E.) estimates of the average energy of the reso-
EQCh= EJ dR ds pZ;R,s)v(Ju), (21)  nance give an upper and a lower bound of the mean energy
2 of the ISGMRm,/my,. The total RPA widtho of the strength
distribution can also be estimated from thg and E. ener-
we have gies:

~ 1E2_E2
ﬁmwfmw@ﬂmwwwﬁmm o= VBB’ (27)

(22)

I1l. NUMERICAL RESULTS
and

_ We have calculated the scaled and the constrained esti-
e dPES () mates of the average energies of the ISGMR as well as the
M T L (23) corresponding compression moduli in finite nuclei using the

wER QLDFT with the D [5] and the D196] Gogny forces. In
The derivatives in Eqs(19) and (23) were calculated nu- order to test our method we compare in Table | our QLDFT
merically. results with the calculations performed in R8] in the
In light nuclei the strength function is much more spreadframework of the HF and HFRPA approaches with the

and fragmented than in heavy nuclsee for instance Ref. same forces.
[15]). Therefore, to get more insight about the spreading of It can be seen that the agreement between the constrained
S(E) we will consider another estimate of the ISGMR meanQLDFT and HF energie&c, and the average HFRPA en-

energy provided by a constrained QLDFT calculation. It isergiesk, _, is fairly well. The agreement between the scaled

PEReal(m)

d7]2

7=1
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TABLE I. The ISGMR average energiéis MeV) in 2Pb com-  results obtained with the D1S force underestimate the ex-

puted in the framework of the scaIQEGMR) and the constrained perimental value by a 3. S%E R) and 8%(EGMR) The
(EEwr) approaches with the Dland the D1S Gogny forces using reason for this dlscrepancy lies on the fact that the nuclear
the QLDFT compared with the average energies obtained in Refmatter compression modulus for the Diforce (K.,

[8] using the HF and the HFRPA methods. =228 MeV) is larger than that for the D1S forc&.,
=209 Me\). The situation is inverse for th&’Zr nucleus
QLDFT HF HFHRPA where the theoretical QLDFT estimates of the ISGMR en-
ECS-}MR EéMR EéMR E,_, Esy ergy for D1S f(_)rce are in a better agreement with the experi-
’ : mental centroid valug17.9 MeV) than that for the D1
D1’ 14.51 13.93 14.05 14.15 15.33 force. ThusK,, extracted from the sum rule approach using
D1S 13.65 13.05 13.22 13.34 14.16 the results for the nucleu’®®b is around 230 MeV, while

the results for the nucleu®’Zr lead to the value around
210 MeV, which corresponds to the the upper and lower
QLDFT energiesEg and the values 0E31 obtained in HF  bounds of the compression modulus predicted in Re.
+RPA approach is reasonable, though it is worse than for th&or the*°Ca nucleus, the ISGMR energies obtained with our
constrained energies. From these comparisons we conclud@-DFT plus sum rule approach clearly overestimate the ex-
that using our sum rule approach based on the QLDFT, thperimental centroid value both for the Dand for the D1S
corresponding average energies can be confidently used torces. In particular, for the D1S force the calculated scaled
theoretically estimate the ISGMR energies with Gognyenergy overestimates thigs/m,)Y/2 experimental valugl5]
forces, at least for nuclei for which the monopole strengthby a 7% whereas the constrained energy is larger than the
shows a well-defined narrow peak. experimental(m,/m_,)*? by a 21%. For this nucleus our

In Table Il we display results obtained for the nué®a, QLDFT model predicts a total RPA widthEq. (27)] of
907y, and?%%b, for which the experimental excitation ener- 3.7 MeV. This means that the monopole strength is quite
gies of the ISGMR are accurately known,15]. spread or fragmented and thus the sum rule estimate of the

For the nucleug®Pb, the QLDFT scaled and constrained ISGMR for “°Ca should be considered only as qualitative.
predictions of the ISGMR excitation energy computed with  The use of radioactive beams allows to obtain nuclei be-
the D1 Gogny force agree very well with the experimental yond the limits of 3-stability and to reach the neutron drip
centroid value(14.2 MeV). On the other hand, the QLDFT line for nuclei withZ<8. Nuclei near the drip line are char-

TABLE II. The compression moduK, (in MeV) and the ISGMR average energiegyr (in MeV) of
some magic nuclei computed in the framework of the scal€y Egyr) and the constrainetky, E¢yr)
approaches with the Dland the D1S Gogny forces using the QLDFT compared with the same quantities
computed with the SkMand the SIIl Skyrme interactions using the HF approximation. Experimental average
energies are taken from Refg,15].

160 280 4°Ca QOZr 208Pb
K3 D1’ 132 106 146 154 152
D1S 126 100 137 141 137
SkM* 124 103 138 146 143
Sl 199 166 225 243 243
Elum D1’ 28.1 20.1 23.2 19.0 14.5
D1S 27.1 19.3 22.2 18.0 13.7
SkM” 26.8 19.6 22.2 18.3 13.9
Sl 34.5 25.3 28.5 23.4 17.9
K% D1’ 102 14 127 144 140
D1S 100 14 121 132 125
SkM* 94 28 119 136 133
Sl 132 17 178 216 214
ESym D1’ 24.7 7.2 21.6 18.4 13.9
D1S 24.1 7.3 20.9 175 13.1
SkM* 23.2 10.2 20.6 17.6 13.3
Sl 28.1 8.1 25.4 22.1 16.8
B2, 19.2+0.4 17.9+0.2 14.2+0.3
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acterized by the small energy of the last bound levels and bgonably well fulfiled for each nucleus when the QLDFT

their large asymmetry. It is expected that the properties ofalues are used, especially in the case of the scaled energies.

such nuclei, in particular the ones concerning collective ex-

citations, may considerably differ from the corresponding

properties of stable nuclei. Theoretical HRPA calculations IV. SUMMARY

carried out by Hamamoto, Sagawa, and ZhH using the We have analyzed the ability of the recently established

S.kM. fo_rce, have shown that in nucle_l near the drip line thequasilocal density functional theory for describing the

distribution fozr:he| monopole ?F]ren%thkljsdmucth zﬁ'}fec{c_ed %y th reathing mode in finite nuclei. First of all, it has to be

presence of the low-energy threshold due to the tiny bound - . ' .

nucleons. This pattern clearly differs from the one shown b}omted out that. the fih R.PA calculations based on this
eory have similar properties to the HIRPA calculations.

stable nuclei where the strength is concentrated in a singl ticular. th ¢ RPA d p ;
peak at least for medium and heavy nuclei. n particular, the exac ground-state wave function can

In particular the aforementioned authors have analyze@© replaced by the Slater determinants built up of the single-
the monopole strength of tH80 nucleug17]. We have also particle QLDFT wave functions in order to obtain the odd
considered this nucleus in our QLDFT plus sum rule ap-moments of the i1h RPA strength function. Thus the scal-
proach and their scaled and constrained energies are al§¥ approach and constrained calculations can be used to
reported in Table II. Although the sum rule approach is un-obtain thems and m.; moments(sum rules of the RPA
able to deal with fine details of the monopole strength, itstrength based on the quasilocal density functional theory.
provides some signatures about the global behavior of the We have applied this sum rule approach using the Gogny
monopole strength in nuclei near the drip line. In the nucleugorces. For the nucleu®b, we have found an excellent
280, the scaled and the constrained energies are clearly reagreement with the HF and the HIRPA results for the IS-
duced with respect to the corresponding values in the stabléMR reported in the literature. Using the Dand the D1S
180 nucleus, which are also given in Table II. This reductionGogny forces and comparing our theoretical estimates of the
is particularly significant for the constrained energy and pro-average energies of the ISGMR with the experimental values
duces a noticeable enhancement of the width of the ISGMRof some selected medium and heavy nuclei, we have found
These facts point out the importance of the low-energy parthat the predicted nuclear matter compression modulus lies
of the monopole strength in drip line nuclei. in the range 210-230 MeV which also agrees with earlier

In order to do a complementary check of our QLDFT findings. It is also found that our estimates of the average
estimates of the average excitation energies of the ISGMRnergies of the ISGMR, in particular the ones obtained with
using the D1 and the D1S forces, we have repeated the sunthe scaling method, roughly scale with the square root of the
rule analysis using the Skyrme force SkMvhich hasK,, ~ compression modulus in nuclear matter.
=217 MeV slightly larger than the corresponding D1S value Although the sum rule approach works basically for me-
(209 MeV). The scaled energies with Skyrme forces are easdium and heavy stable nuclei where the RPA strength is
ily calculated[11] and the constrained calculations are per-mainly concentrated in a narrow peak, we have analyzed its
formed in the way discussed previously. The excitation enpredictions in nuclei near the neutron drip line. In this case
ergies as well as the finite nuclei incompressibilities obtainedhe RPA strength is broaded and the low energy part consid-
with SkM" are also collected in Table II. It can be seen thaterably enhanced because of the last weakly bound neutrons.
D1S and SkM practically predicts the same values for the The sum rule approach is able to give globally this tendency
scaled and constrained energies. Actually the excitation erin such nuclei by reducing thes and especially then_; sum
ergies obtained with SkMare slightly larger than the ones rules and thereby increasing the estimate of the resonance
computed with D1S, at least for medium and heavy nucleidth.
where the sum rule approach can be regarded more confi-
dently, due to the fact thaK., is a little bit larger in the ACKNOWLEDGMENTS
former than in the latter force. In the same Table Il we also
report the ISGMR excitation energies obtained using the The authors are grateful to Professor S. Shlomo for useful
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