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We explore the ability of the recently established quasilocal density functional theory for describing the
isoscalar giant monopole resonance. Within this theory we use the scaling approach and perform constrained
calculations for obtaining the cubic and inverse energy weighted moments(sum rules) of the RPA strength. The
meaning of the sum rule approach in this case is discussed. Numerical calculations are carried out using Gogny
forces and an excellent agreement is found with HF1RPA results previously reported in literature. The nuclear
matter compression modulus predicted in our model lies in the range 210–230 MeV which agrees with earlier
findings. The information provided by the sum rule approach in the case of nuclei near the neutron drip line is
also discussed.
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I. INTRODUCTION

Recently we have established the quasilocal density func-
tional theory(QLDFT) and its application for describing the
nuclear ground state properties[1]. It is just a generalization
of the local Hohenberg-Kohn-Sham(HKS) theory [2,3] and
is based on the definition of an universal energy density
functional E of the Slater density matrix(DM) r0 [1]. One

can define the quasilocal energy functionalEfn̂, t̂ , Ĵg through
a many-to-one mapping of the density matrixr0 to a set of

local quantitiesn̂;hnp,nnj, t̂;htp,tnj, Ĵ;hJp,Jnj, where
nq, tq, Jq are the local, the kinetic energy, and the spin den-
sities of each kind of nucleonssq=p,nd:

Efn̂,t̂,Ĵg = inf
r0→n̂,t̂,Ĵ

E fr0g. s1d

The main property of the functional(1) is that its minimum
provides the exact ground state energy, which is attained at
the true local nucleon densitiesn̂. It is worthwhile to note

that in this case the equilibriumt̂ and Ĵ densities are not the
exact ones and they correspond to the system without corre-
lations.

The functionalEfn̂, t̂ , Ĵg consists of two terms:

Efn̂,t̂,Ĵg = E0fn̂,t̂,Ĵg + ERCfn̂g, s2d

whereE0fn̂, t̂ , Ĵg is a Hartree-Fock(HF) energy functional
reduced to the quasilocal form, andERC is the residual cor-
relation energy. The HF contribution corresponds to a finite-
range density-independent effective force. Its quasilocal
form is calculated using the extended Thomas-Fermi theory
[4], and consists of a kinetic energy part, a Hartree term, a
local exchange contribution, and a spin-orbit energy as used
in the Skyrme energy functionals[1]. To compute this HF
functional we use the density-independent finite-range part
of the Gogny force[5]. The main formulas forE0 are re-

ported in Ref.[1]. The residual correlation energyERCfn̂g is
taken phenomenologically and is parametrized similar to the
contribution of the density-dependent part of the Skyrme or
the Gogny interactions.

The aim of the QLDFT is to describe properties of the
nuclear ground state such as the total energyEg.s., the local
particle densitiesn̂, the neutron and proton separation ener-
gies(chemical potentials) of double magic nuclei. To do that
use is made of the variational principle to obtain a set of
single-particle equations similar to the Kohn-Sham ones but
containing additionally a position-dependent effective mass
and a spin-orbit potential[1]. We have used this quasilocal
approach to obtain some nuclear ground-state properties of
several magic nuclei with the Gogny D1S force[6]. We have
found a very good agreement between the binding energies
and root mean square radii computed using the QLDFT and
the corresponding values calculated with the full HF method
[1].

Now we are in turn to investigate if the QLDFT is also
able to predict some information about excited nuclear states.
In this paper we want to analyze the collective breathing
mode and to study the isoscalar giant monopole resonance
(ISGMR) in finite nuclei using our model. The experimental
value of the excitation energy of the ISGMR is mainly ex-
tracted from the analysis of the inelasticsa ,a8d scattering
data(see Ref.[7] and references therein). From the experi-
mental excitation energies in medium and heavy nuclei it is
possible to estimate the nuclear matter compression modulus
K`. In particular, self-consistent HF plus random phase ap-
proximation(RPA) calculations using Gogny[8] or Skyrme
forces[9] determineK` to be 210–230 MeV.

II. THE BASIC THEORY

Giant resonances are understood in terms of small ampli-
tude oscillations of nuclei as a response to an external field
generated by electromagnetic or hadronic probes. The most
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widely used theoretical framework for describing these vi-
brations is the RPA[10] which allows to obtain the strength
function SsEd that measures the nuclear response. For me-
dium and heavy nuclei far from the drip line, the strength
SsEd corresponding to the breathing mode is mainly concen-
trated in a rather narrow region of the energy spectrum. In
these cases the knowledge of a few low energy moments of
SsEd (sum rules), which are defined as

mk = o
nÞ0

sEn − E0dkuknuQu0lu2, s3d

whereQ=oi r i
2 is the one-body monopole excitation opera-

tor, can provide a useful information on the average proper-
ties of the ISGMR. Ifk is an odd integer, the sum rulesmk
can be written as expectation values of some commutators
calculated in the exact ground state[11]. For example,

m1 = k0ufQ,fH,Qggu0l s4d

and

m3 = k0uffQ,Hg,fH,fH,Qgggu0l. s5d

From these moments one can estimate several average ener-
gies as

Ēk,k−2 =Î mk

mk−2
. s6d

The full quantal calculation of the sum rules is still a
complicated task because the exact ground state wave func-
tion is usually unknown. However, if the energy moments of
SsEd are evaluated at 1p1h (RPA) level, it is possible to
replace the exact ground-state wave functions by the uncor-
related HF ones in the calculation of the sum rules.

For forces that commute with the monopole excitation
operatorQ, as it happens for the Skyrme and Gogny interac-
tions, the only contribution to the commutatorfQ,fH ,Qgg
comes from the kinetic energy part of the Hamiltonian. Thus
the m1 sum rule is given by(see Ref.[11])

m1 =
2"2

M
Akr2l0, s7d

where the expectation value of the operatorr2 is calculated
with the HF wave functions.

The direct evaluation of the commutators entering the for-
mula (5) for m3 is a rather cumbersome task which can be
avoided computing them3 sum rule of the RPA monopole
strength function through the scaling method[11]. Using the
scaled ground-state wave function

Chsr 1, . . . ,r Ad = h
3
2

ACshr 1, . . . ,hr Ad, s8d

the plus three energy moment can be expressed by means of
the second derivative of the scaled ground-state energy
Eg.s.

s shd=kChuHuChl as

m3 =
1

2
S2"2

M
D2Sd2Eg.s.

s shd
dh2 D

h=1
. s9d

Thus them3 moment measures the change of energy of the
nucleus when the ground-state wave function is deformed
according to(8).

With account of Eqs.(6), (7), and(9), the scaled average
energy of the ISGMR is defined as

ES=Îm3

m1
. s10d

This method allows also to define the scaled nuclear com-
pression modulus for a finite nucleus with mass numberA as
(see Ref.[12])

KA
S =

M

"2kr2l0ES
2 =

1

A
Sd2Eg.s.

s shd
dh2 D

h=1
, s11d

whereM is the nucleon mass.
Let us describe the method of calculation of the deriva-

tives in the right-hand sides of Eqs.(9) and(11). Within the
QLDFT the scaled energy can be written as

Eg.s.
s shd = Tshd + ENucl

Dir shd + ENucl
Exchshd + ECoulshd + Esoshd

+ ERCshd. s12d

Due to the fact that in the QLDFT we deal with Slater de-
terminant wave functions, the different contributions to the
scaled energy can be easily determined. The kinetic, the spin-
orbit, and the Coulomb contributions scale as

Tshd = h2Ts1d, Esoshd = h5Esos1d, and

ECoulshd = hECouls1d. s13d

In our approach the residual correlation energy is chosen
phenomenologically(see Introduction) as

ERCfn̂g =
t3
4
E dr nasr dfs2 + x3dn2sr d − s2x3 + 1dsnp

2sr d

+ nn
2sr ddg, s14d

which under the scaling transformation reads

ERCshd = h3sa+1dERCs1d. s15d

These formulas give a simple way to obtain some of the
terms entering(12). Similar explicit expressions for the di-
rect and exchange energy contributions coming from the fi-
nite range part of the effective force cannot be derived. How-
ever, one can calculate their corresponding derivatives with
respect to the dimensionless collective coordinateh using
the following trick. For the sake of simplicity we will con-
sider a simple Wigner central force. In our approach we use
Gogny-like forces with Gaussian form factorsvsr /md where
m is the range of the force. In this case the direct part of the
energy coming from the finite range effective force has the
general form
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ENucl
Dir =

1

2
E dr dr 8nsr dvsur − r 8u/mdnsr 8d. s16d

It is easy to see that the scaling of the direct energy is re-
duced to renormalization of the rangem,

ENucl
Dir shd =

1

2
E dr dr 8nsr dvsur − r 8u/shmddnsr 8d = ẼNucl

Dir smd.

s17d

It enables us to write(see Refs.[13,14])

d2ENucl
Dir shd

d h2 h =1 =
1

2
E dr dr 8nsr dF2s

dvss/md
ds

+ s2d2vss/md
ds2 Gnsr 8d, s18d

wheres=r −r 8 is the relative coordinate. In our calculations
we, however, used another relation,

Ud2ENucl
Dir shd
dh2 U

h=1
= m2Ud2ẼNucl

Dir sm8d
dm82 U

m8=m

, s19d

which follows immediately from Eq.(17).
The same is true for the exchange Fock energyENucl

Exchshd
coming from the finite range effective force. Our quasilocal
exchange energy is obtained by replacing the exact Slater
single-particle density matrix by the quasiclassical DM
within the extended Thomas-Fermi approximation(ETF) [4].
It is easy to check that the quasiclassical DMrETFsr ,r 8d
=rETFsR ,sd [with R=sr +r 8d /2] satisfies the correct scaling
transformation law,

rETFsR,s,hd = h3rETFshR,h sd. s20d

Thus, because in the QLDFT the exchange energy has the
general form

ENucl
Exch=

1

2
E dR ds rETF

2 sR,sdvss/md, s21d

we have

ENucl
Exchshd =E dR ds rETF

2 sR,sdvss/shmdd = ẼNucl
Exchsmd

s22d

and

Ud2ENucl
Exchshd
dh 2 U

h=1
= m2Ud2ẼNucl

Exchsm8d
dm82 U

m8=m

. s23d

The derivatives in Eqs.(19) and (23) were calculated nu-
merically.

In light nuclei the strength function is much more spread
and fragmented than in heavy nuclei(see for instance Ref.
[15]). Therefore, to get more insight about the spreading of
SsEd we will consider another estimate of the ISGMR mean
energy provided by a constrained QLDFT calculation. It is

well known (see Ref.[11]) that them−1 RPA sum rule is half
the ground-state polarizability with respect to the excitation
operatorQ of the ISGMR, i.e.,

m−1 = o
nÞ0

uknuQu0lu2

En − E0
= −

1

2
SdR2sld

dl
D

l=0
=

1

2
Sd2Eg.s.

c sld
dl2 D

l=0
,

s24d

where R2sld and Eg.s.
c sld are the expectation values of the

excitationsQd and the HamiltoniansHd operators evaluated
with the ground-state wave function of the constrained
HamiltonianHc=H+lQ. Using Eqs.(6), (7), and (24), the
constrained estimate of the average energy of the ISGMR is
defined as

EC =Î m1

m−1
. s25d

The constrained nuclear compression modulus can also be
defined in a similar way to that of Eq.(11):

KA
C =

M

"2kr2l0EC
2 =

1

A
SR2d2Ẽg.s.

c sRd
dR2 D

R=R0

, s26d

where the functionẼg.s.
c sRd is defined by the relations

Ẽg.s.
c (Rsld)=Eg.s.

c sld, R0=Rsl=0d.
As it has been pointed out before, in Ref.[11] was proved

that the exact ground-state wave function can be replaced by
the HF one in the self-consistent HF1RPA s1p1hd sum rule
calculation. Analogous considerations allow to state that the
m3, m1, and m−1 sum rules calculated within QLDFT(i.e.,
using Slater determinants built up of the single-particle wave
functions obtained from the minimization of the QLDFT en-
ergy functional), coincide with the QLDFT-based self-
consistent RPA results.

Finally, let us note that the RPA moments fulfillÎm3/m1
ùm1/m0ùÎm1/m−1. Therefore, the scaledsESd and the con-
strainedsECd estimates of the average energy of the reso-
nance give an upper and a lower bound of the mean energy
of the ISGMRm1/m0. The total RPA widths of the strength
distribution can also be estimated from theES andEC ener-
gies:

s ø
1
2
ÎES

2 − EC
2. s27d

III. NUMERICAL RESULTS

We have calculated the scaled and the constrained esti-
mates of the average energies of the ISGMR as well as the
corresponding compression moduli in finite nuclei using the
QLDFT with the D18 [5] and the D1S[6] Gogny forces. In
order to test our method we compare in Table I our QLDFT
results with the calculations performed in Ref.[8] in the
framework of the HF and HF1RPA approaches with the
same forces.

It can be seen that the agreement between the constrained
QLDFT and HF energiesEC, and the average HF1RPA en-

ergiesĒ1,−1 is fairly well. The agreement between the scaled
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QLDFT energiesES and the values ofĒ3,1 obtained in HF
1RPA approach is reasonable, though it is worse than for the
constrained energies. From these comparisons we conclude
that using our sum rule approach based on the QLDFT, the
corresponding average energies can be confidently used to
theoretically estimate the ISGMR energies with Gogny
forces, at least for nuclei for which the monopole strength
shows a well-defined narrow peak.

In Table II we display results obtained for the nuclei40Ca,
90Zr, and 208Pb, for which the experimental excitation ener-
gies of the ISGMR are accurately known[7,15].

For the nucleus208Pb, the QLDFT scaled and constrained
predictions of the ISGMR excitation energy computed with
the D18 Gogny force agree very well with the experimental
centroid values14.2 MeVd. On the other hand, the QLDFT

results obtained with the D1S force underestimate the ex-
perimental value by a 3.5%sĒGMR

s d and 8% sĒGMR
c d. The

reason for this discrepancy lies on the fact that the nuclear
matter compression modulus for the D18 force sK`

=228 MeVd is larger than that for the D1S forcesK`

=209 MeVd. The situation is inverse for the90Zr nucleus
where the theoretical QLDFT estimates of the ISGMR en-
ergy for D1S force are in a better agreement with the experi-
mental centroid values17.9 MeVd than that for the D18
force. ThusK` extracted from the sum rule approach using
the results for the nucleus208Pb is around 230 MeV, while
the results for the nucleus90Zr lead to the value around
210 MeV, which corresponds to the the upper and lower
bounds of the compression modulus predicted in Ref.[8].
For the40Ca nucleus, the ISGMR energies obtained with our
QLDFT plus sum rule approach clearly overestimate the ex-
perimental centroid value both for the D18 and for the D1S
forces. In particular, for the D1S force the calculated scaled
energy overestimates thesm3/m1d1/2 experimental value[15]
by a 7% whereas the constrained energy is larger than the
experimentalsm1/m−1d1/2 by a 21%. For this nucleus our
QLDFT model predicts a total RPA width[Eq. (27)] of
3.7 MeV. This means that the monopole strength is quite
spread or fragmented and thus the sum rule estimate of the
ISGMR for 40Ca should be considered only as qualitative.

The use of radioactive beams allows to obtain nuclei be-
yond the limits ofb-stability and to reach the neutron drip
line for nuclei withZø8. Nuclei near the drip line are char-

TABLE I. The ISGMR average energies(in MeV) in 208Pb com-

puted in the framework of the scaledsĒGMR
s d and the constrained

sĒGMR
c d approaches with the D18 and the D1S Gogny forces using

the QLDFT compared with the average energies obtained in Ref.
[8] using the HF and the HF1RPA methods.

QLDFT HF HF1RPA

ĒGMR
s ĒGMR

c ĒGMR
c Ē1,−1 Ē3,1

D18 14.51 13.93 14.05 14.15 15.33

D1S 13.65 13.05 13.22 13.34 14.16

TABLE II. The compression moduliKA (in MeV) and the ISGMR average energiesĒGMR (in MeV) of

some magic nuclei computed in the framework of the scaled(KA
s , ĒGMR

s ) and the constrained(KA
c , ĒGMR

c )
approaches with the D18 and the D1S Gogny forces using the QLDFT compared with the same quantities
computed with the SkM* and the SIII Skyrme interactions using the HF approximation. Experimental average
energies are taken from Refs.[7,15].

16O 28O 40Ca 90Zr 208Pb

KA
s D18 132 106 146 154 152

D1S 126 100 137 141 137

SkM* 124 103 138 146 143

SIII 199 166 225 243 243

ĒGMR
s D18 28.1 20.1 23.2 19.0 14.5

D1S 27.1 19.3 22.2 18.0 13.7

SkM* 26.8 19.6 22.2 18.3 13.9

SIII 34.5 25.3 28.5 23.4 17.9

KA
c D18 102 14 127 144 140

D1S 100 14 121 132 125

SkM* 94 28 119 136 133

SIII 132 17 178 216 214

ĒGMR
c D18 24.7 7.2 21.6 18.4 13.9

D1S 24.1 7.3 20.9 17.5 13.1

SkM* 23.2 10.2 20.6 17.6 13.3

SIII 28.1 8.1 25.4 22.1 16.8

ĒGMR
exp 19.2±0.4 17.9±0.2 14.2±0.3
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acterized by the small energy of the last bound levels and by
their large asymmetry. It is expected that the properties of
such nuclei, in particular the ones concerning collective ex-
citations, may considerably differ from the corresponding
properties of stable nuclei. Theoretical HF1RPA calculations
carried out by Hamamoto, Sagawa, and Zhang[16] using the
SkM* force, have shown that in nuclei near the drip line the
distribution of the monopole strength is much affected by the
presence of the low-energy threshold due to the tiny bound
nucleons. This pattern clearly differs from the one shown by
stable nuclei where the strength is concentrated in a single
peak at least for medium and heavy nuclei.

In particular the aforementioned authors have analyzed
the monopole strength of the28O nucleus[17]. We have also
considered this nucleus in our QLDFT plus sum rule ap-
proach and their scaled and constrained energies are also
reported in Table II. Although the sum rule approach is un-
able to deal with fine details of the monopole strength, it
provides some signatures about the global behavior of the
monopole strength in nuclei near the drip line. In the nucleus
28O, the scaled and the constrained energies are clearly re-
duced with respect to the corresponding values in the stable
16O nucleus, which are also given in Table II. This reduction
is particularly significant for the constrained energy and pro-
duces a noticeable enhancement of the width of the ISGMR.
These facts point out the importance of the low-energy part
of the monopole strength in drip line nuclei.

In order to do a complementary check of our QLDFT
estimates of the average excitation energies of the ISGMR
using the D18 and the D1S forces, we have repeated the sum
rule analysis using the Skyrme force SkM*, which hasK`

=217 MeV slightly larger than the corresponding D1S value
s209 MeVd. The scaled energies with Skyrme forces are eas-
ily calculated[11] and the constrained calculations are per-
formed in the way discussed previously. The excitation en-
ergies as well as the finite nuclei incompressibilities obtained
with SkM* are also collected in Table II. It can be seen that
D1S and SkM* practically predicts the same values for the
scaled and constrained energies. Actually the excitation en-
ergies obtained with SkM* are slightly larger than the ones
computed with D1S, at least for medium and heavy nuclei
where the sum rule approach can be regarded more confi-
dently, due to the fact thatK` is a little bit larger in the
former than in the latter force. In the same Table II we also
report the ISGMR excitation energies obtained using the
Skyrme SIII force which hasK`=355 MeV. As it has been
pointed out in Ref.[8], the energy of the breathing mode is
roughly proportional toÎK`. We have checked this behavior
with the excitation energies of the ISGMR of the nuclei90Zr
and 208Pb calculated with the D1S, D18, SkM*, and SIII
forces using the scaling method and performing constrained
calculations. It is found that this proportionality is also rea-

sonably well fulfilled for each nucleus when the QLDFT
values are used, especially in the case of the scaled energies.

IV. SUMMARY

We have analyzed the ability of the recently established
quasilocal density functional theory for describing the
breathing mode in finite nuclei. First of all, it has to be
pointed out that the 1p1h RPA calculations based on this
theory have similar properties to the HF1RPA calculations.
In particular, the exact RPA ground-state wave function can
be replaced by the Slater determinants built up of the single-
particle QLDFT wave functions in order to obtain the odd
moments of the 1p1h RPA strength function. Thus the scal-
ing approach and constrained calculations can be used to
obtain them3 and m−1 moments(sum rules) of the RPA
strength based on the quasilocal density functional theory.

We have applied this sum rule approach using the Gogny
forces. For the nucleus208Pb, we have found an excellent
agreement with the HF and the HF1RPA results for the IS-
GMR reported in the literature. Using the D18 and the D1S
Gogny forces and comparing our theoretical estimates of the
average energies of the ISGMR with the experimental values
of some selected medium and heavy nuclei, we have found
that the predicted nuclear matter compression modulus lies
in the range 210–230 MeV which also agrees with earlier
findings. It is also found that our estimates of the average
energies of the ISGMR, in particular the ones obtained with
the scaling method, roughly scale with the square root of the
compression modulus in nuclear matter.

Although the sum rule approach works basically for me-
dium and heavy stable nuclei where the RPA strength is
mainly concentrated in a narrow peak, we have analyzed its
predictions in nuclei near the neutron drip line. In this case
the RPA strength is broaded and the low energy part consid-
erably enhanced because of the last weakly bound neutrons.
The sum rule approach is able to give globally this tendency
in such nuclei by reducing them3 and especially them−1 sum
rules and thereby increasing the estimate of the resonance
width.
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