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Sum rules and short-range correlations in nuclear matter at finite temperature
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The nucleon spectral function in nuclear matter fulfills an energy weighted sum rule. Comparing two
different realistic potentials, these sum rules are studied for Green'’s functions that are derived self-consistently
within the T matrix approximation at finite temperature.
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[. INTRODUCTION tral function is by means of the energy weighted sum rules.
They are well established in the literature and have been
The microscopic study of the single-particle properties innumerically analyzed in the case of zero temperafliz.
nuclear matter requires a rigorous treatment of the nucleon- The analysis of the energy weighted sum rules can give
nucleon (NN) correlations[1,2]. In fact, the strong short- useful insights not only on the numerical accuracy of the
range and tensor components, which are needed in realistmany-body approach used to calculate them but also can
NN interactions to fit theNN scattering data, lead to impor- help to understand the properties and structure ofNhe
tant modifications of the nuclear wave function. A clear in-potential.
dication of the importance of correlations is provided by the This paper is devoted to study the physical implications of
observation that a simple Hartree-Fock calculation forthe fulfillment of these sum rules for single-particle spectral
nuclear matter at the empirical saturation density using sucfunctions in nuclear matter at finif€. This investigation is
realisticNN interactions typically results in positive energies based on the framework of SCGF employing a fully self-
rather than the empirical value of -16 MeV per nucl¢@gh  consistent ladder approximation in which the complete spec-
Correlations do not only manifest themselves in the bulktral function has been used to describe the intermediate states
properties but also modify the single-particle properties in an the Galistkii-Feynman equation.
substantial way. Several recent calculations have shown After a brief summary of the definitions of the single-
without ambiguity how théNN correlations produce a partial particle spectral function, we give a simple derivation of the
occupation of the single-particle states which would be fullysum rules. Then we analyze the results for two types of re-
occupied in a mean field description and a wide distributioralistic potentials, the CDBONN and the Argonne V18, and
in energy of the single-particle strength. These two featurediscuss the different behaviors based on the different
have also been empirically founded in the analysis of thestrengths of the short-range and tensor components of both
(e,€'p) nucleon knockout reactiori8]. The theoretical stud- potentials.
ies have been conducted both in finite nu¢§iand also in
nuclear mattef5-7.
An optimal tool to study the single-particle properties is Il SUMRULES
provided by the self-consistent Green’s function technique For a given HamiltoniarH, the Green’s function for a
(SCGH [8]. This method gives direct access to the single-system at finite temperature can be defined in a grand-
particle spectral function, which should be self-consistentlycanonical formulation:
determined at the same time than the effective interactions ) T
between the nucleons in the medium. Enormous progress in ig(kt;k't") = Tr{pT [ac(ay, (t")]}. 1)
the SCGF applications to nuclear matter have been report
in the last years, both at zen@] and finite temperature
[9-11].

efj is the time ordering operator that acts on a product of
Heisenberg field operators, (t)=e'Ha,e ™ in such a way

The efforts aff=0 have mainly been addressed to providethat the field operator with the largest time argumieist put

the appropriate theoretical background for the interpretatimtn0 the left. 'I_'he trace Is to_be taken over all energy eigenstates
of the (e, €' p) experiments while the investigation at finife and all particle number eigenstates of the many-body system,

is mainly oriented to describe the nuclear medium in astroyve'ghted by the statistical operator,

physical environments or to the interpretation of the dynam-

ics of heavy ion collisions. p
In any case, the key quantity is the single-particle spectral

function, i.e., the distribution of strength in energy when one and x denote the inverse temperature and the chemical

adds or removes a particle of the system with a given mopotential, respectivelyN is the operator that counts the total

mentum. A possible way to analyze the single-particle specaumber of particles in the system,

1
= Ee—B(H—MN) ) 2)
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N is independent of time, since it commutes wkh The
normalization factor in E¢(2) is given by the grand partition
function of statistical mechanics,

Z="TrehPH=uN) (4)
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For a homogeneous system, the Green’s function is diagone=
in momentum space and depends only on the absolute valu< g, |
of k and on the difference=t’-t. Starting from the defini-

0.02

tion of the Green'’s function, we first focus on the case0. 0.01 ‘f-\‘\ T i T 001
. ; \

In order to recover the expression for the ensemble averag & ¥ } 2 o

of the occupation numbent(k) for =0*, the following defi- =0 = 0 e [’fv[e\?]

nition of the correlation functiom™ includes an additional
factor of - with respect to the definition of the Green's  FIG. 1. (Color onling Spectral function for a density ob
function g, =0.2 fm and a temperature df=10 MeV (solid ling). Various
- : CHAT ot momenta are considered as indicated in the three panéls.
9= (k 7) = Tr{pe " e "ay}. (5 (dashed lingand A~ (dash-dotted lingare also displayed.
- -
g (k'T.) can be expressed as a Fourier integral over all freis clear that the lowest possible energy of the final state is the
quencies, ground state energy of the—1 particle system, so that there
e is an upper limit for the hole spectral function at=E}
g-(k7) =f 2—6_"’”A<(k,w) (6)  —E{"'=u. In a similar fashion, the particle spectral function
- e A, can be defined as the probability to attach a further
if A<(k,w) is defined by[13] nucleon to the system in such a way that the excitation en-
o BEn i) ergy of the ccf)rT;]pound Isystem WitEAE?spI?ctl tohthe ground
< _ m 29 _ state energy of the initial systemds= —Ej. In this case,
Atk w) = 277% Z (¥ ola ¥m)l*dw = (En~ Ed)]. one can argue that, to add a further particleo, one has to pay at
least the chemical potential, so thats a lower bound forw.
) At zero temperature, this behavior causes a complete separa-

This can be easily checked by inserting the eigenstatgs tion of the particle and the hole spectral function.

into the expression of the trace in E&). It is important to The situation is quite different in a grand-canonical for-
note thaiW,) are simultaneous eigenstates of both the numinulation at finite temperature. To illustrate these changes,
ber operator and the Hamiltonian. the full spectral functiord, as well asA™ andA< are shown
A similar analysis can be conducted fer< 0, yielding a  in Fig. 1 for three momenta around the Fermi momentum of
function a zero temperature system at the same densitg,.2 fm3,
Numerical values for the integrated strength?of are listed
A" (k,w) = S HAT (K, w). (8) in Table I. Since thermally excited state¥,) are always

included in the grand-canonical ensemble average according
o their weight factoe #Em#Nw one can take out a particle
from a thermally excited state and end up in a weakly excited
Ak, ) = Ak, ) + A” (K, w). (9 state close to the ground state of the residual system. This
_ leads to a contribution t&< for an energyw larger thanu.
Expressior(7), for A=, can be compared to the result for the  gimjlarly, a particle can be added to a thermally excited

hole spectral function at zero temperature, which was restate. leaving the compound system in a state close to its
ported in Ref[12],

The spectral function at finite temperature is defined as th
sum of the two positive functioné&< andA~,

TABLE I. Strength distribution ofA<. The numbers give the
Ak, ) = 2>, [(TA Yo W2 w - (E5 - EX Y], fraction of the integrated strength above and below the chemical
n potential u. The last column reports the occupation number of the
(10) respective state. The parameters are the same as in Fig. 1.

where |W?) is the ground state of aA particle system and k(MeV) Below u (%) Above u (%) n(k)
|\Ifﬁ‘1) labels the excited energy eigenstates of a system that

contains one particle less. The physical interpretation of the 230 98 2 0.706
hole spectral function in a system at zero temperature is the 275 77 23 0.481
following: A,(k,w) is the probability to remove a particle 320 33 67 0.191
from the ground state of th&-body system, such that the 400 71 29 0.025
residual system is left with an excitation energ§ '=Ef 500 95 5 0.006

—w. Eé is the ground state energy of tiAeparticle system. It
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ground state, so th#t” (k, w) extends to the region below.
In any case, there is no longer a separation betweeand
A<, and the maxima of both functions can even coincide.

This is also quite pbvious fr_om t.he relatiod). FIG. 2. Diagrammatic representation of the HF approximation
For the T matrix approximation to the self-energy re- ety and the energy independent part of the self-consistently
ported in Ref.[11], one can determine the single-particle yressed self-energyight).
Green’s function as the solution of Dyson’s equation for any
complex value of the frequency varialt ,
P quency ® L P ImS(ka+in)
Re3(k,w)=3"(k) - — d\———. (17
1 mJ w—\
g(k,2)=k2—- (17)
z- — -3(k,2) In the derivation _of Eq(17), the spectral de_cqmposition of
2m the Green’s function was already used, so it is a property of
. . . . the T matrix approach that it automatically fulfills the sum
Using the analytical properties of the finite temperafure, o5 Nevertheless, besides providing a useful consistency
Green's function along the imaginary time axis, an importantupecy for the numerics, it is interesting to use the sum rules
relation between the spectral function and the Green’s funcg, compare the importance of short-range correlations for
tion can be derived and analytically continued to slightly itterent realistic potentials on a quantitative level. The first
complex valueg14]: term on the right-hand side of E€L7) is the energy inde-

= do’ Ak o) pendent part of the self-energy,

g(k,w+i77):J — (12 o
e 2T w0 tiy Ew(k):f d>k
(2m)®

(kk"[VIkk )an(k’), (18)

One can extract sum rules from the asymptotic behavior at . . . o )
largew by expanding the real part of both expressions for théVhich can be identified with lip_.Re 3 (k, w), since the
Green’s function, Eqg11) and(12), in powers of 1f. This  dispersive part decays like d/for w— 0. Equation(18)

yields looks like a Hartree-Fock potential, howevexk) is the
momentum distribution that is determined from a non-

1 1| k¥ trivial spectral functionA< in Eq. (6), assumingr=0. In
Reg(k ) = ;{1+;[§n+l@xRe2(k’w)} +} contrast, the Hartree-Fock self-energy at finite tempera-

ture must be determined from an energy spectrikn and
(13 a momentum distributiomye(k) =f(e(k)), where f(w) is
the Fermi function. Unlikenye(k), the nontrivialn(k) ac-
counts for depletion effects of the bound states due to
1{ +o0 short-range correlations. In this sen&&, is a generaliza-
Reg(k,w)=— f do’ Ak,o") tion of a Hartree-Fock potential. Figure 2 illustrates the
Rl G difference between the two pictures with the correspond-
ing Feynman diagrams.

and

1 +00
+ —J do'w' Ak ') + } (14
w —00

Ill. RESULTS AND DISCUSSION
By comparing the first two expansion coefficients, one finds

All results in this paper have been obtained using the
the my and them; sum rules,

iteration procedure that was described in Rdfl]. Fully
A self-consistent spectral functions were calculated for two re-
f —AKk,w)=1 (15) alistic potentials, the stiffer Argonne V18 and the softer
o 2T CDBONN.
The my sum rule is fulfilled better than 0.1% in the com-
and plete momentum range. Results for thesum rule are given
o 5 in Fig. 3 for a temperature of =10 MeV and a density of
d—wA(k,a))w: L + limRe 3 (K ). (16) p=0.2 fi3, It is satisfied better than 1%. Both right-hand
—w 2T m  w-e side and left-hand side are plotted, but the curves lie on top
of each other and cannot be distinguistiedlid lineg. The
Similar sum rules can be obtained from the higher ordetower dash-dotted line shows tme, contribution fromA<,
terms, as it was done in Ref12] for m,. Thinking of an  which is always negative and goes to zero for high momenta,
arbitrary approximation scheme far(k, ), it might be in-  since thereA= is strongly suppressed. The probability to re-
teresting to ask whether or to what extend such a schemmove a high-momentum particle from the system is simply
fulfills the sum rules. This is, however, not the point we wantvery small. The upper dash-dotted line displays the contribu-
to address in this paper. In tAematrix approximation, the tion from A~. Due to the short-range correlations, there is a
real part of the self-energy can be computed from the imagihigh-energy tail present in the spectral function, and so this
nary part, using a dispersion relation, contribution is already positive at low momenta, further-
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FIG. 3. (Color onling lllustration of the energy weighted sum
rule m; (solid lineg for the CDBONN potentia(left pane) and the FIG. 4. Saturation of the sum ruleg, (right pane) andm, (left
Argonne V18 potentia{right pane). Both right-hand side and left- pane) for the CDBONN potentia(solid line) and the Argonne V18
hand side are displayed, but the sum rule is so well fulfilled thatpotential(dashed ling The momentum i&E=500 MeV. Again, tem-
they are on top of each other. The contributionntp that comes  perature and density are the same as in Fig. 1.
from A~ andA< is indicated by the upper and the lower dash-dotted
lines, the latter approaching zero rapidly for high momenta. The(0.2 frm3) and temperaturéT=10 MeV) considered an in-
dotted line is the Hartree-Fock single-particle spectrum. Densitternal energy of 3.4 MeV permucleon for the CDBONN
and temperature are the same as in Fig. 1. interaction to be compared to -7.6 MeV for the Argonne
potential.
more, it is nearly constant in this range, reflecting the fact The dotted lines in Fig. 3 are the simple Hartree-Fock
that the high-energy strength distribution is momentum indeestimate ofm, for the same temperature and density. For
pendent. As soon as the quasiparticle peak of the spectrabth potentials, the Hartree-Fock result makes up quite a
function is located at energies greater thgrthe A~ contri-  good approximation to the sum rule. This result is interest-
bution increases steadily, following the position of this peak.ng, since it permits a quantitative estimate of the amount of
Both contributions add up toy. It is interesting to remind correlations produced by any givédiN potential without a
the fact that for free particles, the sum rules are automaticallgophisticated many-body calculation.
fulfilled. In this case A< andA~ are § peaks that are located Figure 4 reports the exhaustion of the sum ruigs(left
at the same position and their strength adds up to 1. Thejpane) andm; (right panej versus the upper integration limit
relative strength is given by the ratio of the phase space for a momentum ok=500 MeV. At this momentum, the
factors f(e(k)) and [1-f(e(k))], respectively, wheree(k) quasiparticle peak is located around 100 MeV. For both in-
=k?/2m in the free case. teractions that were considered, the main contributiomgo
The results in Fig. 3 show that the sum ruhg is rather ~more than 80%, come from the quasiparticle peak of the
sensitive to the differences in tidN potentials. Them, re-  spectral function. In the region far above the peak, the
sult for the CDBONN interaction is about 65 MeV more CDBONN saturates considerably faster. In Table Il, the up-
attractive than the Argonne V18 result. A closer examinatiorper integration limits that have to be chosen to exhaust the
shows that this is predominantly due to A€ contribution, ~sum rule to a given percentage are reportednigrand m,
which is almost 50 MeV more repulsive for the Argonne and compared for both potentials. In the casengfand the
V18. This means that the Argonne potential produces morétiffer Argonne V18, one must integrate almost twice as far
correlations in the sense that the strength that affegtés  as for the softer COBONN. The saturation of tigsum rule
redistributed to higher energies.
From Fig. 3 one can also see that #he contribution to TABLE Il. Upper integration limits of the running integral; that
my is more attractive for the CDBONN potential than for the Must be chosen to exhaust the sum rajgandm, up to the fraction

Argonne interaction. Note that this contribution is related todiven in the first column. The level of saturation in the first column
the internal energy by Koltun’s sum rule is given in percent, all other entries are in MeV. The parameters are

the same as in Fig. 4.

L ls fdw A= (K, w) + ! kK n(k) % saturation myCDB  myV18 m; CDB m; V18
=7 | T3 | o o)t | T . 0

2) @m?) 2m 2) (2m32m ! -
(19) 60 277 690
75 790 1518
Therefore, this more attractive contribution originating from 90 215 311 2250 2860
A< together with a smaller value originating from the kinetic 95 403 725 3756 3740
energy leads to a more attractive internal energy for the 99 1388 2977 8545 5720

CDBONN potential. Indeed we obtain at the density
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is different, because in this case, a somewhat higher energyontributions to the spectral function abowe=4000 MeV
region of the spectral function is probed. In the right panel ofare weak and yield no further repulsion.

Fig. 4, one can observe that the quasiparticle peak contrib-
utes less than 50% tay, and the high-energy tail becomes
much more important, since it is weighted by a factorwof
While both potentials behave qualitatively similar up to an This work has been supported by the German-Spanish
integration limit of about 700 or 800 MeV, wherg; is al-  exchange prograniDAAD, Acciones Integradas Hispano-
ready exhausted by about 75% for the CDBONN potentialAlemana$. We also would like to acknowledge financial
(cf. Table Il), a large contribution of about 40% is still above support from the Européische Graduiertenkolleg TUbingen-
this energy in the case of the Argonne V18. One can als®asel (DFG - SNB and the DGICYT(Spain Project No.
note that to exhaush; completely, one has to integrate up to BFM2002-01868 and from Generalitat de Catalunya Project
higher energies in the case of the CDBONN. However, thes&lo. 2001SGR00064.
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