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Abstract. Despite the recent identification of some novel risk genes for Alzheimer’s disease (AD), the genetic etiology
of late-onset Alzheimer’s disease (LOAD) remains largely unknown. The inclusion of these novel risk genes to the risk
attributable to the APOE gene accounts for roughly half of the total genetic variance in LOAD. The evidence indicates that
undiscovered genetic factors may contribute to AD susceptibility. In the present study, we sequenced the MC1R gene in 525
Spanish LOAD patients and in 160 controls. We observed that a common MC1R variant p.V92M (rs2228479), not related to
pigmentation traits, was present in 72 (14%) patients and 15 (9%) controls and confers increased risk of developing LOAD
(OR: 1.99, 95% CI: 1.08–3.64, p = 0.026), especially in those patients whose genetic risk could not be explained by APOE
genotype. This association remains and even increased in the subset of 69 patients with typical AD cerebrospinal fluid profile
(OR: 3.40 95% CI: 1.40–8.27, p = 0.007). We did not find an association between p.V92M and age of onset of AD. Further
studies are necessary to elucidate the role of MC1R in brain cells through the different MC1R pathways.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neu-
rodegenerative disorder characterized clinically by
memory and cognitive dysfunction and represents
the most common form of dementia in the elderly
[1]. The prevalence of the disease increases after the
age of 65 years and the disease onset is usually after
the age of 70 years [2]. However, familial AD (FAD)
patients carry autosomal dominant mutations in high-
risk Alzheimer susceptibility genes (APP, PSEN1,
and PSEN2) and present an early age of onset (<65
years). These genes do not play an important role in
either Sporadic AD cases or late onset cases (>65
years) indicating that other genomic variants may be
involved in the common forms of the disease [3]. To
date, the �4 allele polymorphism in the Apolipopro-
tein E (APOE) gene has been well established as a risk
factor for developing late-onset Alzheimer’s disease
(LOAD) [3]. The disease-attributable risk in LOAD
patients related to the �4 allele in APOE is less than
50% [4]. Previous genome-wide association studies
(GWAS) have identified low-risk variants associated
with LOAD [5–10], which account for a small pro-
portion of risk. The inclusion of these novel risk genes
to the risk attributable to the APOE gene accounts for
roughly half of the total genetic variance [11], indicat-
ing that additional undiscovered genetic factors may
contribute to AD susceptibility.

The main pathological hallmarks of AD are extra-
cellular amyloid plaques, intracellular neurofibrillary
tangles, and loss of neurons and synapses, resulting
in brain atrophy [12]. Moreover, an elevated level
of oxidative damage products has been observed in
areas of degeneration in AD brains, suggesting that
oxidative stress and consequent protein oxidation
may be potential mechanisms of neuronal death in
AD [13]. The accumulation of intracellular damage
determined by reactive oxygen species might pro-
duce the progressive loss of control over biological
homeostasis and the functional impairment typical of
damaged brain cells in AD [14].

The Melanocortin 1 receptor (MC1R) gene
encodes for a G protein-coupled seven transmem-
brane receptor for melanocortin peptides (�-MSH,
ACTH) and mediates its effects mainly by activating
a cAMP-dependent signaling pathway [15]. MC1R
expression is observed in several types of neuronal
cells suggesting that it may be a key regulator in brain
cell functions and survival [16]. The MC1R activa-
tion has anti-inflammatory and immunomodulatory
effects in brain cells [16] and promotes pigmentation

synthesis in melanocytes [17]. It has been estab-
lished that several MC1R polymorphisms constitute
a risk factor to develop skin cancer (melanoma and
non-melanoma skin cancer) [18, 19], in part, by pro-
moting an increased oxidative stress in skin cells [20].
Notably, co-occurrence of Parkinson’s disease (PD)
and cutaneous melanoma (CM) has been reported in
epidemiological studies [21] and previous evidence
indicates that MC1R is involved in the bidirectional
link between both diseases [22, 23]. Thus, we hypoth-
esized that certain MC1R variants may increase the
oxidative damage and/or deregulate inflammatory
processes in brain cells, which consequently, increase
the susceptibility of developing other neurodegen-
erative disorders beyond PD. In the present study,
we analyzed the role of the MC1R gene as a puta-
tive genetic risk factor in LOAD patients, and we
observed that a common MC1R variant, not related to
pigmentation traits, confers risk of developing LOAD
in a Spanish population.

MATERIAL AND METHODS

We performed a case-control study of 525 unre-
lated LOAD patients (Mean age ± SD, 76.35 ± 5.61
years (the age of onset was after 65 years in all
patients studied; male 29.7%/female 70.3%) and
160 controls (Mean age ± SD, 73.81 ± 5.87 years;
male 36.3%/female 63.7%). All patients studied were
recruited from two hospital-based series from the
same geographical area: the Alzheimer’s Disease and
Other Cognitive Disorders Unit at Clinic Hospital of
Barcelona and from the Memory Unit at Sant Pau
Hospital of Barcelona. All AD patients were diag-
nosed using the NINCSDS-ADRDA criteria [24].
Furthermore, 69/525 had a CSF biomarker profile
typical of AD (A�42/p-tau ratio <6.43) [25].

The control group included healthy individuals
without signs of neurodegenerative or psychiatric dis-
orders obtained from three independent control series
from Spain: Hospital Clinic of Barcelona (N = 13),
Sant Pau Hospital of Barcelona (N = 85), and the
Spanish National Bank of DNA (N = 62) (Table 1).

All individuals included in the study gave their
written informed consent according to the Declara-
tion of Helsinki. The Ethical Committee of Clinical
Investigation at the Hospital Clinic of Barcelona
approved the study.

APOE genotype analysis

DNA was isolated from blood samples using the
Wizard® Genomic DNA Purification Kit (Promega,
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Table 1
Demographic data and APOE genotype of the samples analyzed

LOAD (N = 525) Controls (N = 160)

AOO Mean ± SD* 76.35 ± 5.61 73.81 ± 5.87
Gender Male N (%) 156 (29.7) 58 (36.3)

Female N (%) 369 (70.3) 102 (63.7)
aAPOE APOE –/– N (%) 283 (53.9) 128 (80)

APOE –/+ N (%) 218 (41.5) 32 (20)
APOE +/+ N (%) 24 (4.6) 0 (0)

Hospital based-series Hospital Clinic of Barcelona N (%) 110 (21) 13 (8)
Sant Pau Hospital of Barcelona N (%) 415 (79) 85 (53)
National Bank of DNAb N (%) 0 (0) 62 (39)

a –/– individuals who carry no �4 allele. –/+individuals who carry one �4 allele. +/+individuals who carry two �4 alleles bfrom The University
of Salamanca. *SD standard deviation.

Fitchburg, Wisconsin, USA). APOE genotype was
determined through the analysis of rs429358 and
rs7412 using TaqMan (Applied Biosystems) geno-
typing technologies.

CSF biomarkers determination

69 subjects underwent a spinal tap during the morn-
ing. The samples were centrifuged and stored in
polypropylene tubes at –80◦C within 2 h. Levels of
A�42, t-tau, and p-tau were measured by experienced
laboratory personnel using commercial sandwich
ELISA kits (Innogenetics, Ghent, Belgium) [26].
We are participants of the QC program, and A�42,
t-tau, and p-tau levels obtained in our lab for the
Alzheimer’s Association QC samples were within
mean ± 2 SD.

MC1R molecular screening

The MC1R gene, which consists of one single exon
encoding a 317 amino-acid protein (ENST00000
555147), was sequenced using 50–100 ng of total
DNA per sample. PCR amplification was carried out
as previously described [27] using an initial denatur-
izing step at 95◦C 5 min, followed by 35 PCR cycles
(94◦C 1 min, 55◦C 1 min, 72◦C 3 min), and a final
extension at 72◦C 10 min. PCR products were puri-
fied using Multiscreen Filter plates (Millipore). We
sequenced the entire coding region of MC1R (a 1,107
bp fragment) using the following internal primers
(TM-F: 5’AACCTGCACTCACCCATGTA3’ and
TM-R: 5’TTTAAGGCCAAAGCCCTGGT3’) and
the BigDye Terminator v3.1 Cycle Sequencing kit,
according to manufacturer’s instructions (Applied
Biosystems, Foster City, CA). Sequences were run on
an ABI3100 automatic sequencer (Applied Biosys-
tems) and analyzed using the SeqPilot 4.0.1 software
(JSI Medical Systems). The entire coding region was

sequenced in 110 LOAD patients and in all controls.
In 415 LOAD patients, the MC1R gene was exclu-
sively sequenced using TM-R primer. This strategy
allows us to detect all MC1R variants, except for the
presence of p.D294H and p.T314T variants.

Statistical analysis

We focused the analysis on the non-synonymous
MC1R variants with an observed minor allele fre-
quency (MAF) in at least 1% of cases. Synonymous
variants were considered as wild-type MC1R alleles.
Public databases such as dbSNP (http://www.ncbi.
nlm.nih.gov/), MelGene DB (http://www.melgene.
org/), and Ensembl genome browser (http://www.
ensembl.org/) were used to determine whether the
detected non-synonymous variants have been previ-
ously described. In-silico analysis of each rare non-
synonymous variant was carried out using software
Polyphen2 (http://genetics.bwh.harvard.edu/pph2/)
[28].

The genotypic association analysis was per-
formed using multiple logistic regression models
(co-dominant, dominant, recessive, over-dominant,
and log-additive) in the whole set of patients
(N = 525) and in the subset of patients with CSF
biomarkers data (N = 69). The selection of the most
suitable model of inheritance was performed based
on both Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC). All reported
odds ratios (ORs), 95% confidence intervals (CI), and
p-values were adjusted for age, gender, and APOE
genotype.

The goodness-of-fit of our logistic regression
model was evaluated by the Hosmer-Lemeshow test.
In the genotypic association analysis with the whole
set of samples (525 patients and 160 controls), we
obtained the best fit of our model by categorical trans-
formation of the age. We converted the numerical

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.melgene.org/
http://www.melgene.org/
http://www.ensembl.org/
http://www.ensembl.org/
http://genetics.bwh.harvard.edu/pph2/
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Table 2
Genetic variants detected in the MC1R gene

MC1R variants Subjects
LOAD (N = 525) Controls (N = 160) Polyphen

rs MAF (%) (EA/AA/All) # AA change cDNAchange N (%) N (%) Score 2

Synonymous
rs146544450 0.2151/0.0969/0.1761 p.Q233Q (c.699G>A)Het 4 (0.7) – –
rs181269865 0.1064/0.0712/0.0947 p.I264I (c.792C>T)Het 2 (0.4) – –
UN UN p.L309L (c.927C>G)Het 1 (0.2) – –
rs2228478 10.7936/40.8062/20.8104 ∧p.T314Ta (c.942A>G)Het 21 (19)a 24 (15)a –

(c.942A>G)Homo 2 (2)a –
Non-synonymous
rs1805005 13.3419/2.2612/9.6064 ∧p.V60L (c.178T>G)Het 137 (26) 40 (25) 0.988

(c.178T>G)Homo 18 (3) 5 (3)
rs372590533 0.0117/0.0/0.0078 p.R67Q (c.200G>A)Het – 3 (2) 0.744
rs34474212 0.1051/0.0228/0.0773 p.S83P (c.247T>C)Het 1 (0.2) – 0.999
rs1805006 1.0028/0.1826/0.7254 ∧p.D84E (c.252C>A)Het 1 (0.2) – 1.000
rs2228479 8.5784/1.9389/6.3311 ∧p.V92M (c.274G>A)Het 72 (14) 15 (9) 0.015

(c.274G>A)Homo 2 (0.4) –
rs201192930 0.0116/0.0228/0.0154 p.V122M (c.364G>A)Het 1 (0.2) – 0.126
rs374235260 0.0116/0.0/0.0077 p.M128T (c.383T>C)Het – 1 (0.6) 0.235
rs11547464 0.7442/0.0682/0.5155 ∧p.R142H (c.425G>A)Het 6 (1) 1 (0.6) 1.000
rs1805007 7.6163/1.7061/5.6171 ∧p.R151C (c.451C>T)Het 26 (5) 9 (6) 1.000
rs201326893 0.0349/0.0/0.0231 p.Y152* (c.456C>A)Het 1 (0.2) – 1.000
rs1110400 1.0468/0.2959/0.7928 ∧p.I155T (c.464T>C)Het 6 (1) 5 (3) 0.986
UN UN p.V156E (c.467T>A)Het 1 (0.2) – 0.981
rs1805008 7.7147/1.3452/5.5624 ∧p.R160W (c.478C>T)Het 18 (3) 4 (2) 0.861
rs885479 4.8207/1.5269/3.7068 ∧p.R163Q (c.488G>A)Het 24 (5) 3 (2) 0.004
UN UN p.V174I (c.520G>A)Het – 1 (0.6) 0.002
rs200000734 0.0594/0.0239/0.0476 p.R213W (c.637C>T)Het 1 (0.2) – 0.019
rs1805009 2.0716/0.6859/1.6111 ∧p.D294Ha (c.880G>C)Het 5 (4)a 6 (4)a 1.000

(c.880G>C)Homo 1 (0.9)a –
UN UN p.Y298H (c.892T>C)Het – 2 (1.2) 1.000
#The minor-allele frequency in percent listed in the order of European American (EA), African American (AA) and all populations
(All) (delimited by /). Variants in bold have not been reported before. UN = Unknown. Het: variant in heterozygosis. Homo: variant in
homozygosis.∧ MC1R common variants.Score Polyphen2: predicts possible impact of an amino acid substitution on the structure and func-
tion of a human protein (scores close to 0.0, indicate a benign mutation; score close to 1.0, damaging mutation) a MC1R variants evaluated
in 110 LOAD patients and 160 controls.

variable (age) into a categorical variable, dividing
the age into different categories. In this analysis, the
logistic regression model was adjusted for age (as
categorical variable), gender, and APOE genotype.
Otherwise, in the genotypic association analysis with
the subset of patients with typical AD CSF biomark-
ers (69 patients and 160 controls), we obtained the
best fit of our model, including the age as a numer-
ical variable. In this second analysis, the logistic
regression model was adjusted for age (as numerical
variable), gender, and APOE genotype.

We evaluated whether MC1R and APOE geno-
types modify age of onset (AOO) among the Spanish
LOAD group using the Student’s t-test. We evalu-
ated whether interaction between MC1R variants and
APOE alleles exists using the two-tail χ2 test.

p-values less than 0.05 were considered statis-
tically significant. All tests were two sided, and
Bonferroni correction for multiple comparisons was

applied to all p-values <0.05. We performed all the
analyses using STATA v.11 software.

RESULTS

MC1R genotyping was carried out in 525 LOAD
patients and in 160 control subjects. Non-significant
difference in the gender distribution was detected
between patients and controls (p = 0.118). The study
identified 22 MC1R variants (4 synonymous and
18 non-synonymous), four rare variants (p.V156E,
p.V174E, p.Y298H, and p.L309L) had not been
previously identified (Table 2). Five recurrent non-
synonymous variants showed a frequency ≥1%
in LOAD patients: p.V60L (16%), p.V92M (7%),
p.R151C (2%), p.R160W (2%), and p.R163Q (2%).
All variants were in Hardy-Weinberg equilibrium
within both the control population and LOAD
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Table 3
Results of association analysis of MC1R variants and LOAD

Controls (N = 160) LOAD patients (N = 525)
AA change aMAF aGenotype frequency MAF Genotype frequency CONTROL vs LOAD patients

2 1–1 1–2 2–2 2 1–1 1–2 2–2 OR (95% CI)b p-valueb

p.V60L 0.16 0.72 0.25 0.03 0.16 0.71 0.26 0.03 0.93 (0.69–1.33) 0.695
p.V92M 0.05 0.9 0.1 0 0.07 0.859 0.137 0.004 1.99 (1.08–3.64) 0.026
p.R163Q 0.01 0.98 0.02 0 0.02 0.95 0.05 0 2.47 (0.69–8.81) 0.162
p.R151C 0.03 0.94 0.06 0 0.025 0.95 0.05 0 1.01 (0.44–2.30) 0.979
p.R160W 0.01 0.975 0.025 0 0.02 0.966 0.034 0 0.92 (0.29–2.91) 0.882

MAF: Minor allele frequency. aAllele described as 1 (wild type allele) or 2 (variant allele). bAdjusted for gender, age (converted in a
categorical variable) and APOE genotype. The genetic model used was log-additive, the homozygous for ‘variant allele’ (a/a) has double
the risk of the heterozygous (A/a). The statistically significant result is highlighted in bold.

patients (allelic and genotypic frequencies are listed
in Table 3). Moreover, frequencies of MC1R vari-
ants observed in control subjects were compared with
those observed in other set of controls (N = 736)
free from neurodegenerative disorders used in other
study [29]. No statistical significant differences were
observed between both groups.

The APOE genotype was obtained for all cases
and controls. The frequency of heterozygous APOE
�4 carriers was 41.5% (218/525) in LOAD patients
and 20% (32/160) in controls. The APOE �4/�4
genotype was only detected in 4.6% (24/525) of
LOAD patients. The carriers of at least one APOE
�4 allele had a higher than three-fold increased risk
of developing LOAD (OR: 3.47, 95% CI: 2.24–5.39,
p < 0.0001).

We evaluated the 5 most common MC1R vari-
ants detected in the study with the risk of developing
LOAD (Table 3). We detected that variant p.V92M
was enriched in LOAD patients compared to controls,
being associated with an increased risk of develop-
ing LOAD under the log-additive genetic model (OR:
1.99, 95% CI: 1.08–3.64, p = 0.026), after Bonferroni
correction this association did not reach statistical
significance (Bonferroni corrected p = 0.13).

We re-evaluated the association between MC1R
variant p.V92M and LOAD risk within the subset
of 69 patients with typical AD CSF profile (Table 4)
and we found it was statistically significant and we
evidenced an even higher OR (OR: 3.40 95% CI:
1.40–8.27, p = 0.007). We did not detect statistically
significant differences in the different CSF biomark-
ers levels between p.V92M carriers and non-carriers
(data not shown).

In order to identify whether the p.V92M associa-
tion with LOAD risk was modulated by the presence
of the APOE �4 allele, we evaluated the interaction
between both alleles within the whole set of LOAD
patients (Table 5). The frequency of variant p.V92M

Table 4
Demographic data and CSF biomarkers levels of LOAD patients

subset confirmed by CSF analysis

LOAD (N = 69)

AOO Mean ± SD* 71.46 ± 4.74
Gender Male N (%) 26 (37.7%)

Female N (%) 43 (62.3%)
aAPOE APOE –/– N (%) 30 (43.5%)

APOE –/+ N (%) 31 (44.9%)
APOE +/+ N (%) 8 (11.6%)

CSF protein levels A�42 Mean ± SD 348.64 ± 143.14
t-tau Mean ± SD 711.25 ± 385.51
p-tau Mean ± SD 100.46 ± 42.002

a –/– patients who carry no �4 allele. –/+patients who carry one
�4 allele. +/+patients who carry two �4 alleles. *SD standard
deviation.

in the MC1R gene was significantly lower (p = 0.041)
in carriers of at least one APOE �4 allele compared to
non-carriers (35.1% and 64.9%, respectively). This
result suggests an inverse correlation between both
alleles.

Finally, we observed a significantly lower AOO
associated with APOE �4 allele (p < 0.0001), in con-
trast, no significant effect on AOO was observed for
MC1R variant p.V92M (Table 6).

DISCUSSION

LOAD form accounts for more than 90% of AD
cases [30]. To date, the APOE gene is the major
genetic factor in LOAD susceptibility [31], while
other genetic factors related with LOAD susceptibil-
ity remain largely unknown. Thus, identification of
novel genetic factors may be crucial to detect indi-
viduals with an inherited AD risk.

In this study, we report a novel association between
the p.V92M variant in the MC1R gene and the risk
of developing LOAD. After Bonferroni correction,
the association detected in the overall set of patients
did not reach statistical significance. However, the
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Table 5
Analysis of p.V92M distribution regarding APOE genotype within

LOAD patients (N = 525)

∧p.V92M p-value
0 ≥1

APOE genotype N % N %

APOE �4 (–) 235 52.1 48 64.9 0.041
APOE �4 (+) 216 47.9 26 35.1

APOE �4 (–): non carriers of APOE �4 allele. (+): carriers of at
least one APOE �4 allele. ∧ p.V92M (0): non carriers of variant
p.V92M. (≥1): carriers of at least one p.V92M allele.

Table 6
Analysis of AOO regarding APOE genotype and p.V92M variant

genotype

Age of onset p-value
aAPOE genotype N Mean ± SD∗
APOE �4 – 283 77.36 ± 5.33 <0.0001
APOE �4 + 242 75.17 ± 5.70
∧MC1R genotype
p.V92M (–) 451 76.38 ± 5.64 0.758
p.V92M (+) 74 76.16 ± 5.43
∗SD, standard deviation.a–/– patients who carry no �4 allele.
–/+ patients who carry one �4 allele. +/+ patients who carry two �4
alleles. ∧ p.V92M (–): non carriers of p.V92M variant. (+): carriers
of at least one p.V92M allele.

association in the subset of biochemically confirmed
AD patients was even stronger than in the overall set
of patients, suggesting that the MC1R variant plays a
role in the etiology of AD. This gene is highly poly-
morphic, and p.V92M and other variants are common
in the Caucasian population. During the last few
years, several GWAS have been conducted to iden-
tify common LOAD risk variants [5–10], and none of
these studies reported an association between MC1R
and the disease. This could be caused by method-
ological issues (coverage level of MC1R in SNP-array
platforms or conservative statistical correction proce-
dures) or by the molecular or clinical heterogeneity
of patients included. Interestingly, we observed an
inverse tendency between the APOE genotype and
p.V92M suggesting that the presence of the MC1R
variant could contribute to AD susceptibility, espe-
cially in those patients whose genetic risk could be not
attributable to the APOE genotype. Further studies
restricted to MC1R variants and APOE alleles should
be conducted using previous GWAS data to elucidate
such an inverse correlation.

Clinicopathological studies have shown that the
sensitivity and specificity of the classical clinical cri-
teria for AD diagnosis are roughly 85% and 70%,
respectively [32]. CSF studies measuring A�42 and
tau protein levels in AD patients with confirmed
pathology have demonstrated that abnormal levels

of both biomarkers constitute a specific signature
of the underlying AD-pathology (senile plaques and
neurofibrillary tangles, respectively). Furthermore,
multiple studies have shown that the sensitivity
and specificity with the inclusion of specific CSF
biomarkers profiles are roughly 90% and 85%,
respectively [33, 34]. In accordance with this evi-
dence, a recent study has found after inclusion of
CSF results, 90% of amnestic and 82% of the non-
amnestic AD presentation could be categorized as
“high probability of AD etiology”, while 3% of AD
patients fit into the category “dementia probably not
due to AD” [35]. Thus, we included a subset of
patients with typical CSF AD biomarkers, demon-
strating evidence of AD pathophysiological process
and increased probability of AD etiology as a cause of
symptomatology of the patient according to NIA-AA
criteria [36]. This fact is relevant, because dif-
ferent studies have demonstrated neuropathological
changes that sometimes do not correlate with clinical
diagnosis [37]. Therefore, the role of the MC1R vari-
ant p.V92M in the AD risk was re-analyzed in these
well-characterized AD patients. Notably, in spite of
the sample size reduction, the association remains sta-
tistically significant and the LOAD risk in p.V92M
carriers increased more than three fold. Thereby, the
risk of p.V92M is more evident within more accu-
rately diagnosed AD patients.

In this study, decreasing age of onset was restricted
to the APOE �4 allele. Thus, the p.V92M variant
should be considered like those prior variants which
increase the risk of developing AD but do not modu-
late AOO [38].

The MC1R gene encodes a membrane receptor,
which is expressed, in neurons of the periaqueductal
gray matter, astrocytes, and Schwann cells activated
by melanocortin peptides [16, 39]. This receptor may
have an important role in the anti-inflammatory brain
response [16] and in female specific mediation mech-
anisms of analgesia [40]. MC1R is also expressed in
melanocytes, a cell type with a common embryonic
origin with brain cells [41], which determine hair and
skin color [42], and certain variants increase the risk
for skin cancer (melanoma and non-melanoma skin
cancer) [18, 19]. Functional studies of MC1R variants
conducted in melanocytes, reveal that certain variants
reduce cell surface protein expression and diminished
capacity to stimulate cAMP, resulting in the red hair
color phenotype [17]. Interestingly, two MC1R vari-
ants related to red hair color phenotype modulate
the risk to develop PD [22, 29]. These findings par-
tially explain the previous epidemiological evidence
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describing a bidirectional link between PD and CM
[21]. In contrast to PD, an increased incidence of
CM among AD patients and overrepresentation of
individuals with natural red hair within AD patients
compared to control population has not been reported.
This can be explained as the p.V92M variant does not
confer a risk to develop CM [18] and by the fact that
variant p.V92M promotes a decrease in the affinity of
the receptor for its ligand �-MSH, but showed nor-
mal cell surface expression and normal capacity to
stimulate cAMP, consequently it does not impact on
the phenotype [17, 39]. Notably, a functional defi-
ciency of �-MSH in the brain cells of LOAD patients
had been previously reported, suggesting that �-MSH
may be critical in the development of LOAD [43].

To date, functional evaluation of MC1R vari-
ants in other cell types such as the nervous system
cells is limited. However, there is evidence that
certain variants may also impact physiological con-
ditions beyond skin and hair pigmentation, such
as risk of depression disorders [44], pain response
[40], and anesthetic requirement [45]. Interestingly,
a case-control study indicates that variant p.V92M
is associated with the response of desipramine treat-
ment in depression disorder [44].

Our study, although exploratory, has some limi-
tations. The major one being sample size, which is
not large enough to provide reliable evidence for a
genetic AD risk factor, especially if we focus on the
controls size (N = 160) which is small. However, our
work provides positive results from our hypothesis
and highlights a putative role of the MC1R gene in the
genetic susceptibility to developing neurodegenera-
tive diseases, which is in the same line as previously
published works [22, 23].

Another minor limitation is the exclusion of the
p.D294H MC1R variant from the genetic association
analysis. As we explained in the Material and Meth-
ods section, the entire coding region was sequenced in
110 LOAD patients, but the other 415 LOAD patients
were exclusively sequenced using TM-R primer. This
strategy allowed us to detect all MC1R variants except
one common non-synonymous variant (p.D294H).
However, we compared the frequency of the p.D294H
variant observed in 110 LOAD patients (minor allele
frequency was 3%) with the frequency observed in
160 controls (minor allele frequency was 2%), and we
did not detect any statistically significant difference.

In conclusion, the present study suggests that
MC1R variant p.V92M may increase the risk to
develop LOAD. Although, the molecular mech-
anisms underlying the increased risk of LOAD

associated with p.V92M variant are not known, this
variant may have biological relevance through non-
pigmentation pathways involved in inflammatory or
immunomodulatory processes.

Larger genetic studies are necessary to confirm the
association of p.V92M with AD. Additionally, further
functional studies should be carried out to elucidate
the role of the MC1R receptor in brain cells.
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M, Frölich L, Hampel H, Gallacher J, Hull M, Rujescu D,
Giegling I, Goate AM, Kauwe JS, Cruchaga C, Nowotny
P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs
S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass
NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-
Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R,
Mühleisen TW, Nöthen MM, Moebus S, Jockel KH, Klopp
N, Wichmann HE, Pankratz VS, Sando SB, Aasly JO, Bar-
cikowska M, Wszolek ZK, Dickson DW, Graff-Radford NR,
Petersen RC, Alzheimer’s Disease Neuroimaging Initiative,
van Duijn CM, Breteler MM, Ikram MA, DeStefano AL,
Fitzpatrick AL, Lopez O, Launer LJ, Seshadri S, consortium
CHARGE, Berr C, Campion D, Epelbaum J, Dartigues JF,
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