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Semiclassical theories such as the Thomas-Fermi and Wigner-Kirkwood methods give a good description of
the smooth average part of the total energy of a Fermi gas in some external potential when the chemical potential
is varied. However, in systems with a fixed number of particles N , these methods overbind the actual average of
the quantum energy as N is varied. We describe a theory that accounts for this effect. Numerical illustrations are
discussed for fermions trapped in a harmonic oscillator potential and in a hard-wall cavity, and for self-consistent
calculations of atomic nuclei. In the latter case, the influence of deformations on the average behavior of the
energy is also considered.
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I. INTRODUCTION

A basic problem in the physics of finite fermion systems
such as, for example, atoms, nuclei, helium clusters, metal
clusters, or semiconductor quantum dots, is the determination
of the ground-state energy E. A standard decomposition,
deeply rooted in the connection of classical and quantum
physics, is to write E as the sum of an average energy Ē

and a fluctuating part Ẽ [1–3]:

E(N ) = Ē(N ) + Ẽ(N ). (1)

The largest contribution, Ē, is a smooth function of the number
N of fermions. The shell correction Ẽ has a pure quantal origin
and displays, instead, an oscillatory behavior as a function
of N .

Equation (1) underlies the usefulness of the so-called
mass formulas, such as the liquid drop model for nuclei
or for metal clusters, of which the oldest example is the
well-known Bethe-Von Weizsäcker mass formula for the
binding energy of nuclei. The decomposition (1) is also at
the basis of semiclassical and statistical techniques that are
used to investigate how the properties of global character of
fermion systems vary with the particle number N . Such is
the case, for instance, of the celebrated Thomas-Fermi and
Wigner-Kirkwood theories [1,2]. These methods often provide
deep physical insights that might otherwise be obscured behind
a full quantum calculation.

It is recognized, however, that the semiclassical calculations
of Ē(N ) for fermion systems in either external potentials or
self-consistent mean fields show systematic deviations with
respect to the actual average of the exact quantum results
[1,2,4–8]. For example, in spherically symmetric calculations
one finds that, as a function of the number N of particles,
the difference E(N ) − Ē(N ) between the (fluctuating) exact
value E(N ) and the (smooth) semiclassical average Ē(N )
does not oscillate around zero. In general, for fermions in
a fixed external potential, semiclassical calculations overbind

the true average of the quantum energy. One of our purposes
in the present work is to explain the origin of this effect and
to derive an explicit formula that allows one to compute the
correct average behavior of E(N ) in fermion systems. Related
studies are the works of Refs. [9,10], where a particle-number-
conserving shell correction method has been pursued.

Additional contributions to the average part of the ground-
state energy come in fact from a careful analysis of the
oscillatory term Ẽ(N ). Because this fluctuating function is
evaluated at discrete values of the chemical potential (which
correspond to integer values of the particle number), its average
value is generically nonzero and therefore contributes to the
average part of E(N ). This phenomenon is related to the
different physical descriptions of quantum mechanical systems
obtained from different thermodynamic ensembles, the grand
canonical and the canonical in the present context. This subtle
topic has played, in recent years, a crucial role in understanding
the physics of, for example, persistent currents in mesoscopic
metallic rings [11] or in trapped Bose-Einstein condensates
[12].

Our results are illustrated with two schematic models.
Namely, we study the average of E(N ) for fermions in
a harmonic oscillator (HO) potential, via the semiclassical
Wigner-Kirkwood (WK) theory [13], and for fermions in a
spherical cavity with sharp boundaries, via the Weyl expansion
[14]. In the former case, analytical expressions are available.
Finally, and in contrast to the previous examples where the
confining potential is fixed, we consider the influence of
deformations and self-consistency on the average behavior
of E(N ), as well as other related topics. We find that for
self-consistent potentials with deformation degrees of freedom
the behavior of the average energy is qualitatively different.

II. SMOOTH BEHAVIOR: GRAND CANONICAL VERSUS
CANONICAL ENSEMBLES

The usual computation of the different terms in Eq. (1) is as
follows. The single-particle level density g(ε) = Tr[δ(ε − Ĥ )]
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of a quantum fermion system can be expressed as [1,2,13]

g(ε) = 2

(2πh̄)3

∫ ∫
∂fε(�r, �p)

∂ε
d �pd�r (2)

in terms of the phase-space Wigner function fε(�r, �p). We have
included a factor 2 to account for spin degeneracy. Then, for
a set of fermions in a potential well filled up to an energy
µ, the number of states (accumulated level density) and the
ground-state energy are obtained from g(ε) through

N (µ) =
∫ µ

0
g(ε)dε, E(µ) =

∫ µ

0
εg(ε)dε. (3)

Inserting the Wigner-Kirkwood expansion of the Wigner
function fε(�r, �p) in powers of h̄ in Eq. (2) produces a smooth
function ḡ(ε), where the leading order gives rise to the Thomas-
Fermi term. This procedure is well documented in the literature
[1,2,15–18]. Inserting the latter series for g(ε) ≈ ḡ(ε) into
Eqs. (3) yields the semiclassical h̄ expansions for N̄ (µ)
and Ē(µ). Alternatively, for a Fermi gas contained in a
hard-wall cavity, one inserts in Eqs. (3) the corresponding Weyl
expansion [14] of the average single-particle level density ḡ(ε).
In both cases, Eqs. (3) produce a series in decreasing powers
of µ whose coefficients depend on the shape of the potential.

These expressions provide in general accurate descriptions
of the average behavior of g(ε),N (µ), and E(µ). For instance,
for an isotropic three-dimensional HO potential of frequency
ω one obtains the well-known WK expressions [1,2,15–18]

ḡ(ε) =
[( ε

h̄ω

)2
− 1

4

]
1

h̄ω
+ 17

960
h̄ωδ ′(ε), (4)

N̄ (µ) = 1

3

( µ

h̄ω

)3
− 1

4

µ

h̄ω
, (5)

Ē(µ) =
[

1

4

( µ

h̄ω

)4
− 1

8

( µ

h̄ω

)2
− 17

960

]
h̄ω. (6)

The last term in Eq. (4) contains the derivative of the delta
function δ(ε). This term and the last term in Eq. (6) stem from
the corrections of order h̄4 to ḡ and Ē, respectively. In the HO
potential the h̄4 contribution to N̄ vanishes.

Figure 1 displays the comparison between the exact quan-
tum mechanical quantities and the smooth approximations
(5) and (6). The upper panel shows the accumulated level
density N (µ) for a set of fermions in a spherical HO
potential, as a function of µ/h̄ω. The quantum result exhibits
discontinuities at each major shell (N = 2, 8, 20, 40, 70, 112
in the present case) and is represented by a staircase function
that fluctuates around the smooth WK curve provided by
Eq. (5). The oscillatory part of N (µ) (dashed curve) contains
the fluctuations resulting from shell effects. They are seen
to oscillate around zero, with a vanishing net average, as µ

is varied. The lower panel of Fig. 1 displays the ground-state
energy E(µ)/h̄ω for the same potential [19]. Again, the smooth
WK curve excellently averages the quantum result and the shell
energy fluctuates around zero.

The fact that the average behavior of the remaining shell
corrections is zero for E(µ) and N (µ) can be explicitly
checked. The general semiclassical theory expresses the fluctu-
ating parts Ẽ(µ) = E(µ) − Ē(µ) and Ñ (µ) = N (µ) − N̄ (µ)
as sums over the classical periodic orbits of the system at

FIG. 1. (Color online) Accumulated level density (upper panel)
and total energy (lower panel) with spin-degeneracy 2 for a spherical
HO potential as a function of chemical potential µ. Staircase, solid,
and dashed lines correspond to the quantum, semiclassical WK, and
shell correction (quantum minus semiclassical) values, respectively.

energy µ [1,20–22]. Each term in Ẽ(µ) and Ñ (µ) is an
oscillatory function of the chemical potential (through the
action of the corresponding orbit), whose average over a
chemical potential window is zero. In the particular case of
the HO potential the semiclassical approximation turns out to
be exact (see, e.g., Refs. [1,23]) and takes the form

N (µ) = N̄ (µ) + 2
∞∑

M=1

(−1)M

M3
r

[
µr cos µr

+ (
µ2

r − 2 − 1
4M2

r

)
sin µr

]
, (7)

E(µ) = Ē(µ) + 2
∞∑

M=1

(−1)M

M4
r

[(
3µ2

r − 6 − 1
4M2

r

)
cos µr

+ (
µ2

r − 6 − 1
4M2

r

)
µr sin µr

]
h̄ω, (8)

where Mr ≡ 2πM,µr ≡ Mrµ/h̄ω, and N̄ (µ) and Ē(µ) are
given by Eqs. (5) and (6), respectively. These expressions
illustrate explicitly that the average of the fluctuating parts
Ẽ(µ) and Ñ (µ) over a chemical potential window is zero; that
is, 〈Ẽ(µ)〉µ = 〈Ñ (µ)〉µ = 0.

In real physical Fermi gases with a well-defined number
of particles the various quantities, such as masses or many-
body level densities, are not studied as a function of the
chemical potential µ but rather as a function of the particle
number N . For instance, the ground-state energy E(N ) of
the system consists of the sum of the single-particle energies
of the N lowest single-particle states (taking into account
spin-degeneracy). Thus Eqs. (7) and (8) are related to the grand
canonical ensemble. The qualitative behavior of the function
E(N ) as a function of N is in general quite different from the
behavior of E(µ).

Based on, for example, the Wigner-Kirkwood method, the
usual way to calculate the function E(N ) is as follows. Having
determined, in that approximation, the energy Ē(µ) and the
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accumulated level density N̄ (µ), one first fixes the chemical
potential (or Fermi energy) in terms of the particle number N

by inverting the function

N̄ (µ̄) = N =⇒ µ̄N = µ̄(N ). (9)

To be consistent in the notation, we use µ̄N to denote the
value of the chemical potential for a given N determined
from the WK (or Weyl) approximation, to stress that, in this
approximation, µ is computed by inverting the smooth part N̄
and not the exact counting function N . Finally, one obtains the
smooth Wigner-Kirkwood or Weyl term Ē(N ) by replacing µ

by µ̄N in Ē(µ),

Ē(N ) = Ē(µ̄N ) =
∫ µ̄N

0
εḡ(ε)dε. (10)

For example, applying this procedure to the isotropic HO
potential, from the leading terms of Eqs. (5) and (6) one
straightforwardly obtains

Ē(N ) = 1
4 (3N )4/3h̄ω, (11)

which is the leading-order Thomas-Fermi result. This shows
that in a HO the leading dependence of the average energy per
particle, in units of h̄ω, is ∝ N1/3.

The full Wigner-Kirkwood function Ē(N )/N computed for
the HO potential including contributions up to the fourth-order
in h̄ is plotted in Fig. 2 (dashed line) as a function of the
particle number N , in units of h̄ω. It is compared to the exact
quantum result (solid line). To better visualize the quantum
oscillations with changing N , we have subtracted the dominant
N1/3 dependence [recall Eq. (11)] from both the quantum
and the WK curves. The upper panel of Fig. 2 displays the
results for the isotropic HO potential. The lower panel is
for a strongly deformed potential and it will be discussed

FIG. 2. (Color online) (Upper panel) Quantum and WK values of
the energy per particle for a spherical HO potential as a function of
the number of particles, in units of h̄ω. The leading N dependence
given by Eq. (11) is subtracted from both curves. (Lower panel) The
same as in the upper panel but for a strongly triaxially deformed HO
potential. Notice that the WK curves are different in the spherical and
deformed cases.

later on. Focusing on the isotropic HO, one sees that,
as expected, the general trend of the smooth WK result
turns out to be quite correct in comparison with the global
particle number dependence of the quantum energies. There is,
however, a systematic deviation in the sense that the WK curve
does not pass as a function of N through the average of the
quantum values. This is clearly seen from the large asymmetry
of the shaded regions above and below the WK curve in the
upper panel of Fig. 2. One notices that the WK result overbinds
with respect to the true average of the quantum values when N

is varied in the spherical symmetry. The same situation prevails
in other problems of atomic and nuclear physics as well as in
self-consistent mean-field calculations [1,2,4–8].

III. CONTRIBUTION OF THE OSCILLATORY
CORRECTIONS

The previous results show that the function Ē(N ) does not
describe appropriately the average behavior of E(N ). We now
discuss the origin of the discrepancy and the way to correct it.

In systems with a well-defined number of particles the
chemical potential µ takes discrete values. These values do
not occur at random. For instance, for an even number of
particles and nondegenerate single-particle states, a standard
rule is to locate the chemical potential half-way between the
last occupied and the first unoccupied single-particle states.
Fixing a particular rule to determine the chemical potential at
a given number of particles introduces a bias in the sampling of
the values of µ (with respect to a uniform, random distribution
of µ). Because of this bias, when the oscillatory part of the
energy Ẽ(µ) is evaluated over the set of discrete points it
produces, generically, a function whose average is different
from zero. To compute that average we proceed as follows.

The decomposition of the single-particle level density into
a smooth part and a fluctuating part,

g(ε) = ḡ(ε) + g̃(ε),

where ḡ(ε) is the WK (or Weyl) smooth part and g̃(ε) is given
by the sum over periodic orbits already mentioned [1], induces
a corresponding decomposition of the integrated density [cf
Eqs. (3)]:

N (µ) = N̄ (µ) + Ñ (µ). (12)

For a given number of particles N , the chemical potential
is defined by inversion of the exact accumulated level density

N (µ) = N =⇒ µN = µ(N ). (13)

As the particle number N increases, it is natural to decompose
the chemical potential into smooth and fluctuating parts:

µN = µ̄N + µ̃N .

The average part µ̄N satisfies Eq. (9). Assuming that µ̃N 

µ̄N , a Taylor expansion of the smooth part in powers of µ̃N

around µ = µ̄N in Eq. (12) yields, to lowest order,

µ̃N = − 1

ḡ
Ñ (µN ), (14)
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where we denote

ḡ = ḡ(µ̄N ). (15)

(Note that no Taylor expansion is allowed for the fluctuating
term Ñ , because it is not a regular function.) Similarly, the
energy may be decomposed as

E(µ) = Ē(µ) + Ẽ(µ). (16)

In a system with a well-defined number of particles, the smooth
part Ē(N ) of the exact function E(N ) = E(µN ) was defined
in (10): Ē(N ) = Ē(µ̄N ) = ∫ µ̄N

0 εḡ(ε)dε. The fluctuating part
is thus defined as

Ẽ(N ) = E(N ) − Ē(N ). (17)

To compute Ẽ(N ), and in particular its average over some
particle-number window �N around N , it is convenient to
express the energy in terms of the grand potential � =
− ∫ µ N (ε)dε using the thermodynamic relation

E(µ) = �(µ) + µN (µ).

Recalling the definition of µN and µ̄N [Eqs. (9) and (13)], we
may write Eq. (17) as

Ẽ(N ) = �(µN ) − �̄(µ̄N ) + µ̃NN,

where �̄(µ̄N ) = − ∫ µ̄N N̄ (ε)dε. Decomposing �(µN ) into its
average and fluctuating parts, expanding �̄(µN ) around µ̄N to
second order in µ̃N , and using the thermodynamic relations

∂�̄(µ̄N )

∂µ̄N

= −N̄ (µ̄N ) and
∂2�̄(µ̄N )

∂µ̄2
N

= −ḡ,

we get

Ẽ(N ) = �̃(µN ) − ḡ µ̃2
N

/
2.

By using Eq. (14), this takes the form

Ẽ(N ) = �̃(µN ) − 1

2ḡ
Ñ 2

(µN ) + O
(
µ̃3

N

)
. (18)

Equation (18) connects the fluctuations of the grand potential
(grand canonical ensemble) to those of the energy at a fixed
number of particles (canonical ensemble). This connection,
to lowest order, has been exploited in recent years to analyze
nuclear-mass fluctuations [24,25].

One may be tempted to think that the average of Ẽ(N )
over some particle-number window �N around N , denoted
〈Ẽ(N )〉N , is proportional, from Eq. (18), to the variance

〈Ñ 2
(µN )〉N of Ñ (µN ) and that the average of E(N ),

〈E(N )〉N = Ē(N ) + 〈Ẽ(N )〉N, (19)

is thus lowered with respect to Ē(N ) [owing to the minus sign

in front of Ñ 2
(µN ) in Eq.(18)]. However this is wrong because,

for the same reasons as for Ẽ(N ), the average 〈�̃(µN )〉N �= 0.
A detailed calculation (cf. the Appendix) shows that

〈�̃(µN )〉N = 1

ḡ
〈Ñ 2

(µN )〉N + 1

8
ḡ
〈
s2
N

〉
N

− 1

6ḡ
, (20)

where 〈s2
N 〉N is the variance of the spacing sN = εN+1 − εN

between two consecutive single-particle levels around µN .
Taking the average with respect to the discrete points µN

in Eq. (18), using Eq. (20) for the average of �̃(µN ), and

expressing, for convenience, the average 〈Ñ 2
(µN )〉N over the

discrete points µN in terms of the average 〈Ñ 2
(µ)〉µ over the

continuous variable µ around µN (cf. the Appendix),

〈Ñ 2
(µN )〉N = 〈Ñ 2

(µ)〉µ + 1
6 − 1

4 ḡ2
〈
s2
N

〉
N
, (21)

we get

〈Ẽ(N )〉N = 1

2ḡ
〈Ñ 2

(µ)〉µ − 1

12ḡ
+ O

(
µ̃3

N

)
. (22)

The final expression for the average value of the energy in
a system conserving the number of particles is, according to
Eqs. (19) and (22),

〈E(N )〉N = Ē(N ) + 1

2ḡ
〈Ñ 2

(µ)〉µ − 1

12ḡ
+ O

(
µ̃3

N

)
. (23)

It follows from Eq. (23) that, with respect to the WK or Weyl
smooth terms, the true average of the energy as a function
of N is increased by a term proportional to the variance
of the accumulated level density. Equation (23) contains all
the relevant information on the average and allows us to
understand the numerical results just presented. Before making
a quantitative comparison, we first discuss the general aspects
involved in that equation.

Equation (20) is demonstrated in the Appendix for a
system without degeneracies (intrinsic and/or resulting from
spin). However, it is easy to see that it is also valid in the
presence of degeneracies. This is because the thermodynamic
quantities we are considering are continuous variables of a
given set of external parameters �λ. Assume that for some
�λ = �λ0 degeneracies occur and that for slightly different values
�λ �= �λ0 all the degeneracies are lifted (for instance, some of the
components of �λ may be associated with a shape deformation,
with �λ = �λ0 the spherical case, and another component may be
a magnetic field that lifts the spin degeneracy, with �λ = �λ0 = 0
no magnetic field). Then for �λ �= �λ0 Eq. (20) is valid. One
can therefore consider the case with degeneracies as the limit
�λ → �λ0 and, by continuity, Eq. (20) remains valid.

The variance 〈Ñ 2
(µ)〉µ in Eq. (23) depends on the system

under consideration. However, its general properties can easily
be determined. In systems where the typical size of the fluctu-
ations is important, then the shift of the true average 〈E(N )〉N
with respect to Ē(N ) will also be important. However, in

systems with small fluctuations, 〈Ñ 2
(µ)〉µ/2ḡ will be small,

and the term Ē(N ) will give a good approximation to not
only 〈E(N )〉N but also to E(N ) as well (since fluctuations are
small). In general, the more regular and/or symmetric a system
is, the greater the fluctuations are, and the larger the correction

〈Ñ 2
(µ)〉µ/2ḡ will be. As the regularities or symmetries are

broken, the typical size of the fluctuations diminishes, and
E(N ) will be well approximated by Ē(N ). This point is
illustrated in Fig. 2, where the upper panel shows E(N )/N
for the isotropic HO, where large fluctuations are observed and
clear deviations of the average with respect to Ē(N ) are found.
In contrast, the lower panel shows a strongly deformed HO,
with frequencies ωx/ω = 0.460, ωy/ω = 1.111, and ωz/ω =
1.954 (ωxωyωz = ω3), where small fluctuations are observed,
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FIG. 3. (Color online) Quantum and WK values of the energy
per particle in a triaxially deformed HO potential. Spin degeneracy is
included.

and as a consequence good agreement between E(N )/N
and Ē(N )/N is found. Another manifestation of the same
phenomenon is provided in Fig. 3, where E(N )/N is shown
for N = 92 fermions (with spin degeneracy) in a triaxially
deformed HO potential as a function of the deformation
parameter d, where ωx/ω = δ−1/2/σ 1/3, ωy/ω = δ1/2/σ 1/3,
and ωz/ω = σ 2/3, with σ = 1 + d

√
3 and δ = 1 + |d|√2.

We see that for most deformations (midshell configurations)
the quantum and the smooth WK values practically agree,
up to small fluctuations. Large deviations are observed,
instead, when sphericity is approached, and for other special
deformations, for example, for d ∼ 0.65, where the frequency
ratio ωx :ωy :ωz is close to 1:2 :3 (When the three frequencies
ωx, ωy , and ωz are integer ratios, the energy levels of the HO
are degenerate and the classical trajectories of the Hamiltonian
become closed periodic orbits [1].)

We have made a quantitative check of Eqs. (22) and
(23) for the case of a Fermi gas in a spherical cavity. The
upper panel of Fig. 4 represents the fluctuating part Ẽ(N )
as a function of N , defined in Eq. (17). A clear structure
organized in shells (rapid oscillations) and supershells (long-

FIG. 4. (Upper panel) Normalized fluctuating part Ẽ(N ) =
E(N ) − Ē(N ) as a function of N for a spherical cavity. E0 =
h̄2/2mr2

0 , where r0 is the radius of the sphere and m is the mass of
fermions. (Lower panel) Average 〈Ẽ(N )〉N of the fluctuating function
in the upper panel (full line) compared to the theoretical prediction,
Eq. (22) (dashed line).

range modulation of the rapid oscillations) is observed. The
lower panel shows a comparison between the average 〈Ẽ(N )〉N
calculated numerically from the upper panel of that figure
and the result obtained from Eq. (22) as a function of N .
The average shows a nontrivial dependence with the particle
number (which reflects, to a large extent, the supershell
structure), which is very well reproduced by theory.

In the case of the spherical HO, it is possible to easily obtain
an analytical expression for 〈E(N )〉N . The function Ñ (µ) is
given by the second term in the right-hand side of Eq. (7).

By squaring it, the main contribution to Ñ 2
(µ) comes from

terms where both indices of the double sum are equal. Hence
to leading order in µ, we get

Ñ 2
(µ) =

( µ

h̄ω

)4 ∞∑
M=1

(
sin(2πMµ/h̄ω)

πM

)2

. (24)

〈Ñ 2
(µ)〉µ is calculated by averaging over the rapidly

fluctuating factors, given by the sine terms. This yields

〈Ñ 2
(µ)〉µ = (µ/h̄ω)4

2π2

∞∑
M=1

1

M2
= 1

12

( µ

h̄ω

)4
. (25)

Since 〈Ñ 2
(µ)〉µ is a smooth function, we replace µ by µ̄.

Thus we can use the WK expression Eq. (5) to compute
the dependence of the variance with the number of particles.
Using, moreover, Eq. (4) we finally get, to leading order in N ,

〈Ẽ(N )〉N = 〈Ñ 2
(µ)〉µ

2ḡ
= 1

24
(3N )2/3h̄ω. (26)

A comparison with the numerical average of Ẽ(N ), obtained
from an isotropic 3D HO, is presented in Fig. 5. The result
shows an excellent agreement; compared to the spherical
cavity, a much simpler N dependence is observed, owing to
the absence of supershells.

Based on general properties of the single-particle spectrum,
it is possible to estimate the typical size of the variance

〈Ñ 2
(µ)〉µ and of its N dependence for a large class of systems

and therefore to estimate 〈E(N )〉N . The relevant classification
relies on the type of classical dynamics associated with the

FIG. 5. (Upper panel) Fluctuating part Ẽ(N ) = E(N ) − Ē(N )
as a function of N for a 3D isotropic HO. (Lower panel) Average
〈Ẽ(N )〉N of the fluctuating function in the upper panel (full line)
compared to the theoretical prediction, Eq. (26) (dashed line).
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confining potential. The two extreme cases that can be treated
explicitly are fully regular and fully chaotic dynamics (with
the case of mixed dynamics being more subtle). Based on this

classification, explicit results for the typical size of 〈Ñ 2
(µ)〉µ

were obtained in Ref. [26].

IV. DEFORMED AND SELF-BOUND SYSTEMS

Up to now we have considered fermion systems confined by
an external potential. This may be applicable to, for example,
quantum dot systems or magnetically trapped atomic gases
where the self-consistent mean-field part plays a minor role
with respect to the external confining potential. However, many
relevant systems are self-bound and then the mean-field poten-
tial is essentially given by the solution of the self-consistent
Hartree-Fock equations, which are obtained by minimizing the
energy of the system. The mean field in these situations may
turn out to be spherical, but in many cases rotational invariance
will be broken and the mean field becomes deformed. We
will see that in these cases the results can show interesting
differences with regard to the scenario found in the upper
panel of Fig. 2 or in Fig. 5 for the harmonic oscillator, and in
Fig. 4 for the hard-wall cavity, where the potential was kept
spherical. We want to investigate such cases now.

First, to illustrate the situation, we again consider the HO
potential. In contrast to the previous section, for each particle
number we now minimize the ground-state energy of the
quantum solution with respect to deformation, that is, with
respect to free variation of ωx, ωy , and ωz, under the constraint
of volume conservation (ωxωyωz = ω3). This must be done
in carefully checking simultaneously the optimal choice of
the occupancies nx, ny, nz. The semiclassical energies Ē(N )
always have their absolute minimum at sphericity as given by
Eq. (6). As a particular example of a self-bound system, we
consider the case of atomic nuclei. We mimic the saturation
properties of nuclear forces by including the standard particle-
number dependence of the HO frequency h̄ω = 41A−1/3 MeV
[2] with A = 2N (i.e., A here represents the mass number
of a hypothetical uncharged nucleus with N protons and N

neutrons).
In Fig. 6 we show the difference δE between the fully

minimized quantum energies and the corresponding isotropic
semiclassical expression Ē(N ) obtained from Eqs. (5) and (6).
For comparison, we include in the same figure the fluctuating
part Ẽ(N ) for the spherical HO (the same curve as in the upper
part of Fig. 5). We observe that, with respect to the purely
spherical case, the situation changes considerably. Now, in
contrast to the spherical case, practically all values of δE from
the minimized quantum solutions are negative, meaning that
the minimized quantum energies stay below the semiclassical
curve Ē(N ). The minimized quantum energies coincide with
the spherical ones only in a small neighborhood around the
shell closures, whereas away from the latter the system is
axially deformed or even, around the middle of the shells, a
slight triaxiality can appear. (In the case of axial symmetry,
typical deformations show an axis ratio of 2:3.)

It seems natural that the deformed quantum energies are
more bound than the approximate energies obtained from the

FIG. 6. (Color online) Difference between the minimized ground-
state energy with respect to deformations and the spherical WK
energy Ē(N ) for fermions in a HO potential (squares joined by full
line). For comparison, the dotted curve shows the energy difference
for an isotropic HO (same curve as in the upper part of Fig. 5). The
average of both curves is shown by a long-dashed line. The scaling
h̄ω = 41(2N )−1/3 MeV has been used in the calculations.

semiclassical theory, in spite of the fact that to our knowledge
no upper bound theorem like the Rayleigh-Ritz principle exists
for the semiclassical approach. We wish to point out that in
Fig. 6 for most values of N the system is actually rather well
deformed and that, with the exception of a couple of particle
numbers around closed shells, the energy differences are in
most cases very close to the zero line (i.e., to the semiclassical
WK values). This is consistent with the results obtained in
the previous section, where it was shown that for deformed
systems where degeneracies are lifted the energy E(N ) is
expected to be well approximated by the WK theory.

The magnitude of the difference δE of the minimized quan-
tum solutions to the semiclassical values slightly increases
with increasing particle number, as the average curve shows
in Fig. 6. However, the magnitude of the same quantity δE

divided by the particle number decreases as a function of in-
creasing N , and the minimized deformed quantum energies per
particle are extremely close to the semiclassical ones. Notice
the opposite trend in Fig. 6 of the two average curves, with
and without energy minimization. In contrast to the latter case,
for which an explicit formula for the average behavior was
developed and successfully checked in the previous section,
we do not yet have an equivalent result for a self-bound system.

We are interested in checking whether this simplified
HO scenario remains valid in realistic Hartree-Fock-type
mean-field calculations. In Ref. [8] self-consistent calculations
of the ground-state binding energy of atomic nuclei were
carried out using the variational Wigner-Kirkwood method
[27]. The nuclear interaction was described by the relativistic
mean-field (RMF) meson exchange model [28]. Quantum
calculations for the RMF model are available in the literature.
In particular, a mass table of deformed (axially symmetric)
quantum calculations for nuclei with an accurately calibrated
RMF nuclear interaction is published in Ref. [29]. From this
table we took for each value of the mass number A the most
bound (in general deformed) isotope and traced E/A as a
function of A [30]. The quantum values together with the
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FIG. 7. (Color online) Energy per particle of atomic nuclei with
an even number of protons and of neutrons along the periodic table,
as obtained from self-consistent relativistic mean-field calculations.
The deformed calculations are from Ref. [29]. For each value of the
mass number A we plot the most bound isotope according to the
tabulation of Ref. [29] (except for A = 40 [30]).

RMF semiclassical results, computed following Ref. [8], are
shown in Fig. 7 for nuclei with an even number of protons and
neutrons. Most of the WK energies lie on top of the deformed
quantum energies on the scale of the figure. We plot in addition
the RMF quantum values constrained to sphericity. The typical
arch structure found in Fig. 2 for the spherical HO potential is
then recovered. These arches in nuclei take place between the
so-called magic numbers (i.e., the proton or neutron numbers
where effects analogous to the shell closures of the HO or
of the electron shells in atoms occur). The fact that for nuclei
above iron E/A increases whereas in Fig. 2 it keeps decreasing
is a trivial effect caused by to the Coulomb repulsion among
protons in the atomic nucleus.

In Fig. 8 we display for the self-consistent RMF the
difference δE between the quantum energies (which are, as
mentioned, minimized with respect to deformation) and the

FIG. 8. (Color online) Energy difference between the deformed
quantum solutions and the WK values of Fig. 7 for the self-
consistent relativistic nuclear mean field. The result obtained by
taking the difference of the experimental data [31] from the calculated
WK energies is also shown for the purpose of illustration. The location
of the magic neutron (N ) and proton (Z) numbers is indicated.

corresponding semiclassical values (which attain their absolute
minima at sphericity). For reference, the values of the energy
difference δE obtained from experimental data [31] instead of
the quantum results are also displayed. The similarity of Fig. 8
with Fig. 6 for the HO is striking. Systems with the largest
deformations are again located mostly around midshells.
When the system approaches spherical shape, δE becomes
increasingly negative and displays the downward peaks seen
in Fig. 8 on reaching neutron or proton magic numbers.

It is clear that in the self-consistent case as in the schematic
case of the HO with optimized shapes considered here, the
average of δE as a function of particle number is, at least for
the heavier systems, negative. In self-bound systems we again
find that in between shells the quantum energies are closer
to the semiclassical WK values. In between shells the system
deforms in search of minimum energy and avoids the large
positive shell corrections to the energy that occur if a spherical
shape is kept. As the deformation increases, symmetries are
broken and the amplitude of the shell corrections diminishes.
This is in agreement with the basic ideas underlying Eq. (23),
which imply an energy E(N ) that is well approximated by the
WK theory.

V. CONCLUDING REMARKS

In this work we have revisited the old problem of the
semiclassical approach to finite fermion systems, based on
either the Wigner-Kirkwood expansion with h̄ corrections or
the Weyl expansion. We have addressed the nature of one of
the most elusive features of the theory, namely the systematic
overbinding compared to the quantum average for fermions in
fixed potentials.

In the first part, we have shown that this discrepancy
occurs because these methods do not incorporate appropriately
conservation of particle number. There is, generically, a
contribution to the average ground-state energy that comes
from the fluctuating part, or shell contribution. We derived an
explicit formula that takes into account that contribution, and
we have tested it for different fixed confining potentials. In all
cases, a positive correction with respect to the semiclassical
result is predicted [cf Eq. (23)], whose magnitude depends
on the size of the shell effects. When the confining potential
has symmetries, the shell corrections are large, and important
deviations between the exact quantum and the WK energies
are observed, in agreement with our predictions. In contrast,
when symmetries are broken, shell effects are smaller, and
the exact energies (and not only their average part) are better
described by the WK theory.

The description of the behavior of self-bound systems is
more difficult and subtle, because at each particle number N

the energy is minimized, and hence the shape of the potential
is a function of N . In this case, a shell correction that is
nearly always negative with respect to the spherical WK result
is observed for the HO potential. In between shells, when
the system deforms and symmetries are broken, the value
of the shell correction is smaller, and the energy is well
approximated by the WK theory, in agreement with the general
considerations that follow from Eq. (23). Interestingly, all these
features have been qualitatively confirmed by a more realistic
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model based on a mean-field self-consistent calculation of the
ground-state energy of atomic nuclei. However, the problem
of deriving an explicit formula for the average behavior of the
ground-state energy of self-bound systems that correctly takes
into account the N dependence with deformation degrees of
freedom is still open.
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APPENDIX

We follow here Appendix B of Ref. [32] to prove Eqs. (20)
and (21).

Let us consider a single-particle spectrum εj , with j =
1, 2, . . . and εj � εj+1. The accumulated level density N (µ)
is discontinuous at each energy level. At the discontinuity, we
assign to N (µ) the “intermediate” value N (εN ) = N − 1/2.
For N � 1 and εN < µ < εN+1, writing N (µ) = N̄ (µ) +
Ñ (µ), making a Taylor expansion of N̄ (µ) around εN , and
using N (εN ) = N − 1/2, we may write

Ñ (µ) = Ñ (εN ) + 1
2 − (µ − εN )ḡ. (A1)

Evaluating this relation just before µ = εN+1, and taking into
account the value of the function at εN+1, we have

Ñ (εN+1) = Ñ (εN ) + 1 − sN ḡ, (A2)

where

sN = εN+1 − εN

is the level spacing (where we neglect the dependence of ḡ

with energy). Taking the discrete average over N on both sides
of Eq. (A2), defined as

〈f (εN )〉N = 1

�N

N+�N/2∑
j=N−�N/2

f (εj ),

where �N is the number of levels in the window around the
N th level, and using 〈Ñ (εN+1)〉N = 〈Ñ (εN )〉N , we obtain the
(trivial) relation 〈sN 〉N = 1/ḡ.

Now, defining the continuous average over a window �µ

of a function that depends on the chemical potential as

〈f (µ)〉µ = 1

�µ

N+�N/2∑
j=N−�N/2

∫ εj+1

εj

f (µ) dµ,

where �N = ḡ�µ is the number of levels in the window, we
have from Eq. (A1)

〈Ñ (µ)〉µ = 1

�µ

N+�N/2∑
j=N−�N/2

∫ εj+1

εj

[Ñ (εj ) + 1/2

− ḡ(µ − εj )] dµ

= �N

�µ

(
〈Ñ (εN )sN 〉N + 〈sN 〉N

2
− ḡ

2

〈
s2
N

〉
N

)

= ḡ

(
〈Ñ (εN )sN 〉N + 1

2ḡ
− ḡ

2

〈
s2
N

〉
N

)
= 0.

(A3)

The last equality follows because 〈Ñ (µ)〉µ = 0 by definition.
From Eq. (A3) we deduce

〈Ñ (εN )sN 〉N = ḡ

2

〈
s2
N

〉
N

− 1

2ḡ
. (A4)

By squaring and computing the discrete average in both sides
of Eq. (A2) it is possible to deduce that 〈Ñ (εN )〉N = 0 after
using Eq. (A4).

Similarly, by squaring Eq. (A1) and computing in both sides
the continuous average it is possible to relate the continuous
variance of Ñ (µ) with discrete averages

〈Ñ 2
(µ)〉µ = ḡ〈Ñ 2

(εN )sN 〉N
− ḡ2

〈
Ñ (εN )s2

N

〉
N

+ ḡ

3

〈
s3
N

〉
N

− 1

4
. (A5)

Computing the discrete average of the third power of Eq. (A2)
considerably simplifies the previous expression for the contin-
uous variance and gives

〈Ñ 2
(εN )〉N = 〈Ñ 2

(µ)〉µ − 1
12 . (A6)

We are now interested in the statistics at the discrete points
µN = (εN+1 + εN )/2. From Eq. (A1) we have

Ñ (µN ) = Ñ (εN ) + 1

2
− ḡ

2
sN , (A7)

from which it is easy to deduce that 〈Ñ (µN )〉N = 0. From the
discrete average of the square of Eq. (A7), and by using the
result (A4) as well as Eq. (A6), it follows that

〈Ñ 2
(µN )〉N = 〈Ñ 2

(µ)〉µ + 1

6
− ḡ2

4

〈
s2
N

〉
N
. (A8)

We have demonstrated Eq. (21).
Let us now consider the grand potential for N � 1

and εN < µ < εN+1. Since �̃(µ) − �̃(εN ) = − ∫ µ

εN
Ñ (ε)dε,

using Eq. (A1) and integrating we get

�̃(µ) = �̃(εN ) −
(
Ñ (εN ) + 1

2

)
(µ − εN ) + ḡ

2
(µ − εN )2.

(A9)

By noting that �̃(µ) is a continuous function, Eq. (A9) at
µ = εN+1 gives

�̃(εN+1) = �̃(εN ) −
(
Ñ (εN ) + 1

2

)
sN + ḡ

2
s2
N. (A10)

In a similar way as was done for the accumulated level density,
by integration of Eq. (A9) [knowing that 〈�̃(µ)〉µ = 0], and
taking the discrete average of the product of Eq. (A2) and Eq.
(A10), we deduce

〈�̃(εN )〉N = 1

ḡ
〈Ñ 2

(µ)〉µ. (A11)

034332-8



AVERAGE GROUND-STATE ENERGY OF FINITE FERMI . . . PHYSICAL REVIEW C 74, 034332 (2006)

From Eq. (A9), for µ = µN , we have

�̃(µN ) = �̃(εN ) −
(
Ñ (εN ) + 1

2

)
sN

2
+ ḡ

8
s2
N. (A12)

The discrete average of this equation, together with

Eqs. (A4) and (A11), finally leads to

〈�̃(µN )〉N = 1

ḡ
〈Ñ 2

(µ)〉µ − ḡ

8

〈
s2
N

〉
N
. (A13)

This equation, together with Eq. (A8), implies Eq. (20).
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