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Introduction

The Poncelet problem

Given two non-degenerate conics C and D in the complex projective plane P2
C, consider the following problem:

constructing a closed polygon inscribed in C and circumscribed about D.

Assuming that the polygon may have self-intersections, a first approach to build such a polygon could be the next

one. Take an arbitrary point p0 ∈C, and choose l0 one of the two tangent lines to D passing through p0. If the line

l0 is not tangent to C, there exists a point p1 ∈ C∩ l0 different from p0. Then, take l1 6= l0 the tangent line to D

through p1. In a similar way, l1 must intersect C at a point p2 6= p1.

Figure 0.1

Iterating, we obtain sequences {p0, p1, p2, . . .} and {l0, l1, l2, . . .} of points on C and tangent lines to D, respectively.

In order to find the desired polygon, we want this process to come back to p0, namely, pn = p0 for some n ≥ 3.

In that case, we will have an n-sided polygon inscribed in C and circumscribed about D, with vertices p0, . . . , pn−1

and edges l0, . . . , ln−1.

Poncelet’s porism1 is a beautiful result concerning this problem:

1The word porism has classical nature, and it’s used in geometry to denote properties that are either never satisfied, or are satisfied in
infinitely many cases.

Another famous result of this kind is Steiner’s porism.
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Theorem (Poncelet’s porism). This process closes (after n steps) for some initial point p0 ∈C if, and only if, it

closes (after n steps) for any initial point on C.

In other words: if there exists an n-sided polygon inscribed in C and circumscribed about D, then any point on C

is the vertex of an n-sided polygon which is also inscribed in C and circumscribed about D. In particular, there are

infinitely many of these polygons.

A bit of history

This result was discovered by Jean-Victor Poncelet (1788-1867), a member of Napoleon’s army, while he was a

war prisoner in Saratov (Russia), in the period 1812-1814. Obviously, it was not raised in the “modern” terms we

have used, and it was restricted to the case of two ellipses in the plane, with one lying inside the other.

During the captivity, Poncelet discovered many other important theorems on the development of projective geo-

metry, which were gathered in the treatise Traité des propriétés projectives des figures (1822). This publication

contained the first proof of Poncelet’s porism, that had synthetic nature. A few years later, Jacobi gave another

proof, based on the additivity of elliptic functions.

Cayley, in 1853, found explicit analytic conditions determining whether, for two given conics, there exists an

n-sided polygon as the desired in the Poncelet problem. Lebesgue translated Cayley’s results to the geometric

language, and published these progress in Les coniques (1888).

Almost a hundred years later, the problem was studied again by Phillip Griffiths and Joe Harris, in terms of modern

algebraic geometry.

The project

With the aim of making a first approach to the theory of complex algebraic curves, we will try to understand the

point of view adopted by Griffiths and Harris in the papers [8] and [9]. All the necessary background, which

involves different branches of mathematics (not only Algebraic Geometry), is exposed in the two first chapters.

Chapter 1 includes essential notions on conics and quadrics (many of them worked on the subject Projective Geo-

metry) and introduces plane algebraic curves, which will play a fundamental role in the study of the Poncelet

problem.

The second chapter is devoted to Riemann surfaces, a very particular case of topological surfaces. The concept

of Riemann surface was devised in order to work in Complex Analysis (Riemann wanted to extend the domain of

some analytic functions), but has become an essential tool in Geometry because of its identification with complex

algebraic curves. At the end of the chapter, we specially focus on elliptic curves, a certain type of Riemann surfaces

which can be endowed with a group structure.
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After this previous theory, in chapter 3 we prove Poncelet’s porism. The proof consists on translating the Poncelet

problem to the study of the fixed points of a certain automorphism on the Poncelet correspondence, an elliptic

curve.

In the next chapter we deal with Cayley’s theorem, a criterion about the existence or not of polygons inscribed in a

conic and circumscribed about another. This result is a consequence of the characterization of the torsion points on

the Poncelet correspondence.

Once the Poncelet problem in the plane has been studied, chapter 5 discusses a generalization to the three-

dimensional space. In particular, we analyze whether there exist polyhedra simultaneously inscribed in and cir-

cumscribed about a pair of quadric surfaces.

The project is finished by commenting, briefly, a topic linking the Poncelet problem with the area of Dynamical

Systems: the mathematical billiards. Nowadays, this subject is constantly expanding and has many open problems.
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Chapter 1

Conics, quadrics and algebraic curves

In this chapter, we explain all the geometric preliminaries that are necessary for the project.

With respect to conics and quadrics, some basic definitions and principles have been revised, in order to fix ideas

and notations. In that case, proofs have been avoided. A detailed exposition can be found in [1].

Even if most of the concepts can be considered over an arbitrary field K, we will study only complex projective

spaces, as they are the necessary ones to prove Poncelet’s porism using Riemann surfaces.

1.1 Projective conics and quadrics and their classification

Definition. A quadric of Pn
C is a class, modulo proportionality, of non-zero symmetric bilinear forms on Cn+1.

Definition. Let [ϕ] be the quadric represented by a non-zero symmetric bilinear form ϕ on Cn+1. A point p = [v] ∈
Pn
C is said to be a point of the quadric [ϕ] if, and only if, ϕ(v,v) = 0. In that case, we will write p ∈ [ϕ].

Let ∆ a reference of Pn
C, and A =

(
ai j

)
0≤i, j≤n

the (symmetric) matrix of a non-zero symmetric bilinear form ϕ in

a basis of Cn+1 adapted to ∆. Then,

(x0 : . . . : xn)∆ ∈ [ϕ] ⇐⇒ 0 = ϕ((x0, . . . ,xn),(x0, . . . ,xn)) =
n
∑

i, j=0
ai jxix j

Definition. A and
n
∑

i, j=0
ai jxix j = 0 are, respectively, the matrix and the equation of [ϕ] relative to the reference ∆.

Definition. The rank of a quadric [ϕ] of Pn
C is the rank of the matrix of [ϕ] relative to any reference of Pn

C. The

quadric is non-degenerate when its rank is n+1.

Remarks.

1. Since the set of points of a quadric determines univoquely the quadric, the word quadric will also refer to it.
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2. Fixed a reference of Pn
C, the matrix and the equation of a quadric are unique up to scalar multiplication.

3. Quadrics of the projective plane P2
C are called conics.

An essential fact is that quadrics are projective notions, that is, the image f (Q) of a quadric Q ⊂ Pn
C under a

projectivity f : Pn
C −→ Pn

C is a quadric of Pn
C.

In particular: if A is the matrix of Q relative to a reference ∆ and f is given by M in the references ∆ and ∆′, then

the matrix of f (Q) relative to ∆′ is (M−1)tAM−1.

Hence, it makes sense to classify quadrics of a projective space Pn
C under the action of projectivities.

Definition. Two quadrics Q,Q′ ⊂ Pn
C are said to be projectively equivalent if, and only if, there exists a projectivity

f : Pn
C −→ Pn

C such that f (Q) = Q′.

Theorem 1.1. Q,Q′ ⊂ Pn
C are projectively equivalent⇐⇒ Q and Q′ have the same rank.

Example. Each conic in P2
C is projectively equivalent to a:

Figure 1.1

Non-degenerate conic (rank 3) Pair of lines (rank 2) Line counted twice (rank 1)

Remark. This projective classification holds when we work over any algebraically closed field K. Nevertheless, in

real projective spaces, it’s necessary to work with an extra projective invariant (aside from the rank): the index.

1.2 Polarity and tangency. Quadric envelopes

Let Q = [ϕ] and L = [F ] be, respectively, a quadric and a linear variety of Pn
C.

• If ϕ|F×F = 0, we have ϕ(v,v) = 0 for each v ∈ F , and thus L⊂ Q.

• If ϕ|F×F 6= 0, we have the quadric Q∩L = [ϕ|F×F ] of L.

In particular, when we take a line l of Pn
C, there are three possible cases:

1. Q∩ l is a single point (called double point)

2. Q∩ l are two different points

3. l ⊂ Q

2



Definition. The line l is said to be tangent to Q in the cases 1 (proper tangent line) and 3. If l is tangent to Q, the

points of Q∩ l are called contact points of Q and l.

Definition. Let Q and L be, respectively, a quadric and a linear variety of Pn
C. Then, L is tangent to Q at a point

p ∈ Pn
C when the following conditions are satisfied:

• p ∈ Q∩L

• For each point q ∈ L\{p}, the line p∨q is tangent to Q.

Definition. Let Q be a non-degenerate quadric of Pn
C, with matrix A relative to a certain reference ∆. The polarity

induced by Q is the projectivity

PQ : Pn
C −→ Pn

C
∨

that, in the references ∆ of Pn
C and ∆∨ of Pn

C
∨, is given by the regular matrix A.

The image PQ(p) of a point p ∈ Pn
C by PQ is called the polar hyperplane of p.

Lemma 1.2. If p is a point of a non-degenerate quadric Q⊂ Pn
C, then PQ(p) is the tangent hyperplane to Q at p.

Definition. A quadric envelope of Pn
C is a quadric of the dual space Pn

C
∨.

Definition. The envelope of a non-degenerate quadric Q⊂ Pn
C is the image Q∗ = PQ(Q) of Q by its own polarity.

Since Q∗ is the image of a non-degenerate quadric by a projectivity, Q∗ is a non-degenerate quadric of Pn
C
∨ (i.e., a

non-degenerate quadric envelope of Pn
C). Conversely:

Lemma 1.3. Each non-degenerate quadric envelope of Pn
C is the envolope Q∗ of a non-degenerate quadric Q⊂ Pn

C
(univoquely determined).

Proof. Let A be the symmetric matrix of a quadric Q⊂ Pn
C relative to a reference ∆. Since PQ is given by A in the

references ∆ and ∆∨, the matrix of the envelope Q∗ relative to ∆∨ is (A−1)tAA−1 = A−1.

Proportional regular matrices have proportional inverses and conversely. Hence, mapping each non-degenerate

quadric Q ⊂ Pn
C to its envelope Q∗ is a bijection between the set of non-degenerate quadrics and the set of non-

degenerate quadric envelopes of Pn
C. Namely:

• Each non-degenerate quadric envelope is the envelope of a non-degenerate quadric.

• Each non-degenerate quadric is determined by its envelope. �

Remark. Joining lemmas 1.2 and 1.3, we obtain that a non-degenerate quadric of Pn
C
∨ is the set of tangent hyper-

planes to a non-degenerate quadric of Pn
C. For example, for n = 2, a conic envelope has the form

3



Figure 1.2

1.3 Ruled quadrics in P3
C

In this section, we focus on non-degenerate quadrics of P3
C. As we will see, they are ruled quadrics (there exist

lines contained in them) and their tangent planes can be described easily.

This description will be very useful to generalize Poncelet’s porism to the three-dimensional space.

Theorem 1.4. If Q⊂ P3
C is a non-degenerate quadric, there are two families A and B of lines lying on Q such that:

1. Any line contained in Q belongs to one (and only one) of the families.

2. Two different lines of the same family are disjoint.

3. Any two lines of different families meet.

4. For each point p ∈ Q, there is one line of each family going through p.

Proof. Since, by theorem 1.1, all non-degenerate quadrics of P3
C are projectively equivalent, we can take a reference

such that the equation for Q relative to it is xt− yz = 0.

Consider A the family of lines whose equations areα0t−α1y = 0

α1x−α0z = 0

for some (α0,α1) ∈ C2 \{(0,0)}. Similarly, let B the family of lines with equationsβ0t−β1z = 0

β1x−β0y = 0

4



for some (β0,β1) ∈ C2 \ {(0,0)}. The lines described are trivially contained in Q. Furthermore, looking at the

parameters αi and βi as homogeneous coordinates, A and B can be endowed with structure of P1
C.

Suppose that we have two different lines l1, l2 ∈ A with coordinates αi and α ′i , respectively. The coordinates of the

points of l1∩ l2 are the solutions of the system

α0t−α1y = 0

α1x−α0z = 0

α ′0t−α ′1y = 0

α ′1x−α ′0z = 0

whose determinant can be easily checked to be

∣∣∣∣∣α0 α1

α ′0 α ′1

∣∣∣∣∣
2

6= 0 (this 2×2 determinant not being zero is equivalent

to the lines l1, l2 being different). Hence, the system above has no non-zero solutions and l1 ∩ l2 = /0. A similar

reasoning will give us that two different lines of B are disjoint.

On the other hand, the intersection of an A-line with a B-line is given by the system

α0t−α1y = 0

α1x−α0z = 0

β0t−β1z = 0

β1x−β0y = 0

whose determinant is∣∣∣∣∣∣∣∣∣∣
0 −α1 0 α0

α1 0 −α0 0

0 0 −β1 β0

β1 −β0 0 0

∣∣∣∣∣∣∣∣∣∣
= α1β0

∣∣∣∣∣ 0 α0

−β1 β0

∣∣∣∣∣+α1β1

∣∣∣∣∣−α0 0

−β1 β0

∣∣∣∣∣= α1β0α0β1−α0β0α1β1 = 0

so that the system has non-trivial solutions and the intersection is non-empty. This proves 3.

Finally, let p = (a : b : c : d) a point of Q. Then, there exists an A-line through p if, and only if,α0d−α1b = 0

α1a−α0c = 0

for some (α0,α1) ∈ C2 \ {(0,0)}. This is equivalent to the determinant of the system (in variables α0,α1) being

zero, i.e., ad−bc = 0. And this equality holds since p ∈ Q.

Hence for each point of Q there exists an A-line going through it. Note that this A-line will be unique, inasmuch as

two different A-lines fail to meet.

The same argument holds for the existence of a B-line through p. �

Remark. Consequently, mapping each pair of lines (lA, lB) (with lA an A-line and lB a B-line) to the point lA∩ lB ∈Q

gives a bijection from P1
C×P1

C to Q.
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Theorem 1.5. The section of Q by a tangent plane is the pair of lines (contained in Q) through the contact point.

Figure 1.3

Proof. Given a point p ∈ Q, denote by TpQ the tangent plane to Q at p. We want to study Q∩TpQ.

We know that any line meeting Q in three or more points is contained in Q. We claim that:

q ∈ Q∩TpQ =⇒ p∨q ⊂ Q∩TpQ

In fact, the line p∨q lies on TpQ (since p,q ∈ TpQ) and meets Q in at least three points: p (a double point) and q.

Thus p∨q ⊂ Q∩TpQ.

Namely, we have a conic Q∩TpQ (in the plane TpQ) such that:

q ∈ Q∩TpQ =⇒ p∨q ⊂ Q∩TpQ

So Q∩TpQ must be a pair of lines through p. And these lines must be different (we have not a line counted twice)

because Q is non-degenerate.

Since Q∩TpQ is pair of different lines contained at Q meeting at the contact point p, we have the result. �

For any line l ⊂ P3
C, the set l∗ =

{
H ∈ P3

C
∨ : l ⊂ H

}
is a linear variety of P3

C
∨ with dimension 3− 1− dim l = 1,

i.e., it’s a line in P3
C
∨.

Then l ⊂ Q if, and only if, l∗ ⊂ Q∗. This claim can be easily proved assuming, by a change of coordinates, that Q

has equation xt− yz = 0 (in that case, the equation for Q∗ in P3
C
∨ is the same one).

A consequence of this equivalence is:

Lemma 1.6.

1. Let l ⊂ P3
C be a line such that l��⊂Q. Then, there are exactly two tangent planes to Q containing l.

2. Any plane containing a line l ⊂ Q is tangent to Q at some point of l.

Proof. In 1, we want to study the planes tangent to Q and containing l, i.e., the elements of l∗∩Q∗.

But if l��⊂Q, we know that l∗��⊂Q∗. So l∗ is a line of P3
C
∨ not contained in the non-degenerate quadric Q∗ of P3

C
∨,

and the intersection l∗∩Q∗ is a pair of points of P3
C
∨.

In order to prove 2, suppose that a plane π ⊂ P3
C contains a line l ⊂ Q.

Then, joining l∗ ⊂ Q∗ with π ∈ l∗ we deduce that π ∈ Q∗, namely, the plane π is tangent to Q. �

6



1.4 Plane algebraic curves

Now, we introduce algebraic curves. They will be defined as the zero locus of polynomials in P2
C or the complex

affine plane C2, and it will be a generalization of the conics we have described in section 1.1.

By the identification of C2 with
{
(x : y : z) ∈ P2

C : z 6= 0
}

, the study of algebraic curves in both spaces will be

essentialy the same. This allows us to choose the most appropiate context (affine or projective) for each case.

Definition. A plane affine curve is a zero locus{
(x,y) ∈ C2 : f (x,y) = 0

}
where f ∈ C[X ,Y ] is a non-zero polynomial.

Definition. A polynomial F ∈ C[X1, . . . ,Xn] is homogeneous of degree d if all its monomials have degree d.

Equivalently, if F(λX1, . . .λXn) = λ d ·F(X1, . . . ,Xn) for each λ ∈ C\{0}.

Definition. A plane projective curve is a zero locus{
(x : y : z) ∈ P2

C : F(x,y,z) = 0
}

where F ∈ C[X ,Y,Z] is a non-zero homogeneous polynomial.

Remark. If F is an homogeneous polynomial, the condition F(x,y,z) = 0 does not depend on the choice of

coordinates for the points (x : y : z) ∈ P2
C: for each λ ∈ C\{0},

0 = F(λx,λy,λ z) = λ d ·F(x,y,z) ⇐⇒ 0 = F(x,y,z)

Therefore, the zero locus of an homogeneous polynomial in P2
C is well-defined.

Definition.

1. If γ is a projective plane curve given by an homogeneous polynomial F(x,y,z), the plane affine curve{
(x,y) ∈ C2 : F(x,y,1) = 0

}
is called the affine part of γ .

2. Conversely, let γ ′ an affine plane curve given by a polynomial f (x,y) of degree d. Then, F(x,y,z) = zd ·
f ( x

z ,
y
z ) is an homogeneous polynomial of degree d, such that F(x,y,1) = f (x,y).

The plane projective curve
{
(x : y : z) ∈ P2

C : zd · f ( x
z ,

y
z ) = 0

}
is called the projective completion of γ ′, and

its affine part is γ ′.

Definition.

1. A projective curve γ =
{
(x : y : z) ∈ P2

C : F(x,y,z) = 0
}

is said to be non-singular at a ∈ γ when
∂F
∂x (a) 6= 0, ∂F

∂y (a) 6= 0 or ∂F
∂ z (a) 6= 0.

In that case, the tangent line to γ at a is the line with equation ∂F
∂x (a) · x+

∂F
∂y (a) · y+

∂F
∂ z (a) · z = 0.
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2. An affine curve γ ′ =
{
(x,y) ∈ C2 : f (x,y) = 0

}
is said to be non-singular at a = (a1,a2) ∈ γ ′ when

∂ f
∂x (a) 6= 0 or ∂ f

∂y (a) 6= 0.

In that case, the tangent line to γ ′ at a is the line with equation ∂ f
∂x (a) · (x−a1)+

∂ f
∂y (a) · (y−a2) = 0.

Example (the conic as a plane projective curve). Consider an arbitrary conic C of P2
C, with matrix

A =

a00 a01 a02

a01 a11 a12

a02 a12 a22


Its set of points is the zero locus of the homogeneous polynomial F(x,y,z) = a00x2 + 2a01xy+ 2a02xz+ a11y2 +

2a12yz+a22z2, so we can see the conic as a plane projective curve. Since

∂F
∂x = 2a00x+2a01y+2a02z, ∂F

∂y = 2a01x+2a11y+2a12z and ∂F
∂ z = 2a02x+2a12y+2a22z,

it’s not difficult to see that:

• C is non-degenerate if, and only, it has no singular points.

• If C is a pair of lines (i.e., A has rank 2) the only singular point of C is the intersection of both lines.

• If C is a line counted twice (i.e., A has rank 1), each point of C is singular.

Furthermore, the tangent line to C at a non-singular point is the polar line.

Now, we want to see that the definition of a singular point in a projective curve is consistent when we consider its

affine part. First of all, we need Euler’s theorem for homogeneous polynomials:

Theorem 1.7 (Euler). If F(X1, . . . ,Xn) is an homogeneous polynomial of degree d, then
n
∑

i=1
Xi · ∂F

∂Xi
= d ·F(X1, . . . ,Xn).

Proof. By definition of homogeneous polynomial, for each t ∈ C the equality

F(tX1, . . . , tXn) = td ·F(X1, . . . ,Xn)

holds. Differenciating with respect to t, we have
n
∑

i=1
Xi · ∂F

∂Xi
(tX1, . . . , tXn) = dtd−1 ·F(X1, . . . ,Xn)

(on the left side we use the chain rule). Taking t = 1, the result is obtained. �

Theorem 1.8. Let γ ⊂ P2
C a plane projective curve with homogeneous equation F(x,y,z) = 0, and let γ ′ ⊂ C2 be

its affine part. Then:

(a1 : a2 : 1) ∈ γ is a non-singular point of γ ⇐⇒ (a1,a2) ∈ γ ′ is a non-singular point of γ ′

In such a case, the tangent line to γ ′ at (a1,a2) is the affine part of the tangent line to γ at (a1 : a2 : 1).

Proof. Note that, if f (x,y) = F(x,y,1) is the polynomial defining γ ′,
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∂F
∂x (x,y,1) =

∂ f
∂x (x,y),

∂F
∂y (x,y,1) =

∂ f
∂y (x,y)

A combination of these equalities with Euler’s theorem gives

0 = d ·F(a1,a2,1) = a1 · ∂F
∂x (a1,a2,1)+a2 · ∂F

∂y (a1,a2,1)+ ∂F
∂ z (a1,a2,1) = a1 · ∂ f

∂x (a1,a2)+a2 · ∂ f
∂y (a1,a2)

+∂F
∂ z (a1,a2,1) =⇒ ∂F

∂ z (a1,a2,1) =−a1 · ∂ f
∂x (a1,a2)−a2 · ∂ f

∂y (a1,a2)

So that

(a1,a2) ∈ γ ′ is a singular point of γ ′⇐⇒ ∂ f
∂x (a1,a2) = 0 =

∂ f
∂y (a1,a2)⇐⇒ ∂F

∂x (a1,a2,1) =

= ∂F
∂y (a1,a2,1) = ∂F

∂ z (a1,a2,1) = 0⇐⇒ (a1 : a2 : 1) ∈ γ is a singular point of γ

Furthermore, the tangent line ∂F
∂x (a1,a2,1) · x+ ∂F

∂y (a1,a2,1) · y+ ∂F
∂ z (a1,a2,1) · z = 0 has affine part

0 = ∂F
∂x (a1,a2,1) · x+ ∂F

∂y (a1,a2,1) · y+ ∂F
∂ z (a1,a2,1) =

∂ f
∂x (a1,a2) · x+ ∂ f

∂y (a1,a2) · y−a1 · ∂ f
∂x (a1,a2)

−a2 · ∂ f
∂y (a1,a2) = (x−a1) · ∂ f

∂x (a1,a2)+(y−a2) · ∂ f
∂y (a1,a2)

that is the tangent line to γ ′ at the point (a1,a2). �

The following result assures us that plane algebraic curves, as well as their singular points, are an invariant notion

under the action of projectivities.

Lemma 1.9. If g : P2
C −→ P2

C is a projectivity and γ ⊂ P2
C is a plane projective curve, then g(γ) ⊂ P2

C is a plane

projective curve. Furthermore:

1. If p is a singular point of γ , g(p) is a singular point of the curve g(γ).

2. If l is the tangent line to γ at a point p ∈ γ , then g(l) is the tangent line to g(γ) at g(p).

To finish this section, we define algebraic curves in the product space P1
C×P1

C.

As well as the concept of singular point of a projective plane curve can be studied “locally” restricting it to an affine

plane curve, the same will hold for curves in P1
C×P1

C. In this case, we will use the cover of P1
C×P1

C given by

A1 =
{
((x0 : 1),(y0 : 1)) ∈ P1

C×P1
C : x0,y0 ∈ C

}
, A2 =

{
((x0 : 1),(1 : y1)) ∈ P1

C×P1
C : x0,y1 ∈ C

}
,

A3 =
{
((1 : x1),(y0 : 1)) ∈ P1

C×P1
C : x1,y0 ∈ C

}
, A4 =

{
((1 : x1),(1 : y1)) ∈ P1

C×P1
C : x1,y1 ∈ C

}
(each of these subsets can be easily identified with the complex affine plane C2).

Definition. A polynomial F ∈ C[X1, . . . ,Xn,Y1, . . . ,Ym] is said to be bihomogenous of bidegree (d,e) if

∀λ ,µ ∈ C\{0} F(λX1, . . . ,λXn,µY1, . . . ,µYm) = λ d µe ·F(X1, . . . ,Xn,Y1, . . . ,Ym)

Equivalently, in each monomial of F the groups of indeterminates Xi and Yj have degree d and e, respectively.
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Definition. An algebraic curve in P1
C×P1

C is a zero locus{
((x0 : x1),(y0 : y1)) ∈ P1

C×P1
C : F(x0,x1,y0,y1) = 0

}
where F ∈ C[X0,X1,Y0,Y1] is a non-zero bihomogeneous polynomial.

Definition. Let γ be an algebraic curve in P1
C×P1

C, with bihomogeneous equation F(x0,x1,y0,y1) = 0. A point

p = ((x0 : 1),(y0 : 1)) ∈ γ ∩A1 is a singular point of γ if, and only if, the point (x0,y0) is a singular point of the

plane affine curve with equation F(x,1,y,1) = 0.

Similarly, we can describe all the singular points of γ in any subset γ ∩Ai.

1.5 Intersection of curves. Bézout theorem

In this part, we are interested in describing the intersection of two plane projective curves, focusing on the case of

two conics. In order to understand the basic result, Bézout theorem, we will define the intersection number from

the implicit function theorem for polynomials.

Nevertheless, the usual definition involves the notion of local ring at a point. For further details on this construction,

as well as a proof of Bézout theorem, see [5].

Theorem 1.10 (implicit function theorem for polynomials). Let f (x,y) be a polynomial in two variables with

complex coefficients, such that f (a,b) = 0 and ∂ f
∂y (a,b) 6= 0 for some a,b ∈ C.

Then, there exist open neighbourhoods X and Y of a and b (respectively) in C, and an holomorphic function

g : X −→ Y such that, for each x ∈ X, f (x,g(x)) = 0.

Remark. In other words, if ∂ f
∂y (a,b) 6= 0, the plane affine curve f (x,y) = 0 can be parameterized as y = g(x) in a

neighbourhood of the initial point (a,b). Similarly, we can express x as a function of y when ∂ f
∂x (a,b) 6= 0.

Figure 1.4

Definition. Let p ∈ C2 and C,D two plane affine curves, with respective equations f1(x,y) = 0 and f2(x,y) = 0.

Suppose, by changing coordinates, that p = (0,0). If C is non-singular at p, the multiplicity of C and D at p is

10



I(p,C∩D) = mult0 f2(x,g(x))

where y = g(x) is a parameterization of C, via the implicit function theorem, in a neighbourhood of (0,0).

Remarks.

1. Likewise, if C is parameterized as x = g(y) in a neighbourhood of (0,0), the multiplicity is defined as

I(p,C∩D) = mult0 f2(g(y),y).

2. It follows from the definition that I(p,C∩D)≥ 0, with equality if, and only if, p /∈C∩D.

3. If p ∈ C∩D is a point where C and D have different tangent lines, it must be I(p,C∩D) = 1. And the

multiplicity will be greater than 1 when C and D have the same tangent line at p.

This definition can be extended to the case of two plane projective curves C,D and a point p∈P2
C. In fact, supposing

p = (0 : 0 : 1) by the action of a projectivity, we define I(p,C∩D) as the multiplicity of the affine parts of C and D

at the point (0,0).

Example. Consider C : xz− y2 = 0, and D the conic given by the matrixa d e

d b f

e f c


Let’s study the multiplicity of C and D at p = (0 : 0 : 1). Note that the affine parts of C and D are the respective

zero locus of f1(x,y) = x− y2 and f2(x,y) = ax2 +by2 +2dxy+2ex+2 f y+ c = 0.

In particular, x = y2 is a global parameterization of the affine part of C. Namely, I(p,C∩D) is the multiplicity of 0

with respect to

f2(y2,y) = ay4 +2dy3 +(b+2e)y2 +2 f y+ c

Therefore:

• If c 6= 0, we have I(p,C∩D) = 0. It makes sense, since c 6= 0 if, and only if, (0 : 0 : 1) /∈ D.

• If c = 0 and f 6= 0, it must be I(p,C∩D) = 1.

• If c = f = 0 and b+2e 6= 0, we have I(p,C∩D) = 2.

• If c = f = b+2e = 0 and d 6= 0, the multiplicity is I(p,C∩D) = 3.

• Finally, if c = f = b+2e = d = 0, we have I(p,C∩D) = 4.

Theorem 1.11 (Bézout theorem). Let C and D two plane projective curves given, respectively, by homogeneous

polynomials F1(x,y,z) and F2(x,y,z) without a common factor. Then, C∩D is a set of degF1 ·degF2 points, counted

with multiplicity.
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Example (intersection of conics). Let C,D ⊂ P2
C two different conics, with homogeneous polynomials F(x,y,z)

and G(x,y,z). If (at least) one of them is non-degenerate, its homogeneous polynomial is irreducible and F,G

have no common factors. According to Bézout theorem, C and D meet at four points counting multiplicities. The

possible cases are:

1. C and D meet at four different points, each of them with multiplicity 1. That is, C and D have no common

tangent lines at the intersection points.

2. C and D meet at three different points, one of them being of multiplicity 2.

3. C and D meet at two different points, each of them counted twice.

4. C and D meet at two points, with multiplicities 3 and 1.

5. C and D meet at a single point, whose multiplicity is 4.

Cases 1 to 3 are too intuitive, and can be visualized in the following way:

Figure 1.5

To visualize cases 4 and 5, we can use the computations made in the preceding example:

Figure 1.6 Figure 1.7

Figure 1.6 corresponds to case 4. It’s a representation of the affine parts of C : xz = y2 (blue) and D : x2−y2+xy+

xz = 0 (red). Both conics meet at (0 : 0 : 1) (with multiplicity 3) and (1 :−1 : 1) (with multiplicity 1).

In figure 1.7, we can see the affine parts of C : xz = y2 (blue) and D : x2 − 2y2 + 2xz = 0 (red). The unique

intersection point is (0 : 0 : 1), with multiplicity 4.
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1.6 Conic pencils

Remark. Whenever the context is clear enough, we write, by an abuse of notation, C and D to denote the conics

and their respective matrices.

Definition. Let C,D ⊂ P2
C two different conics, with respective matrices C and D. The conic pencil generated by

C and D, that we will write {C,D}, is the set of conics with matrices r0C+ r1D, for some (r0,r1) ∈ C2 \{(0,0)}.

Remarks.

1. Considering the parameters λ ,µ as homogeneous coordinates, {C,D} can be identified with P1
C.

2. The points of C∩D are called the base points of {C,D}.

3. According to Bézout theorem, in a conic pencil there are from one to four different base points.

Lemma 1.12. Let C,D⊂ P2
C two different conics, with (at least) one of them non-degenerate. Then:

1. Each conic of the pencil {C,D} contains the base points.

2. Each point in P2
C, not being a base point, is contained in an unique conic of {C,D}.

Theorem 1.13. Let p1, p2, p3, p4 be the points of a quadrivertex in P2
C (that is, no three of them are aligned). Then,

the set of conics containing these points is a conic pencil with exactly three degenerate conics.

Proof. Take the reference of P2
C with vertices p1, p2, p3 and unit point p4. Namely, p1 = (1 : 0 : 0), p2 = (0 : 1 : 0),

p3 = (0 : 0 : 1) and p4 = (1 : 1 : 1).

It’s immediate to check that any conic through p1, p2, p3, p4 has matrix0 λ µ

λ 0 −λ −µ

µ −λ −µ 0


and equation 0 = λxy+µxz−λyz−µyz = λ (xy− yz)+µ(xz− yz).

Hence, the set of conics containing p1, p2, p3, p4 is the conic pencil generated by xy− yz = 0 and xz− yz = 0.

An arbitrary conic λ (xy− yz)+µ(xz− yz) = 0 of this pencil will be degenerate if, and only if,

0 =

∣∣∣∣∣∣∣
0 λ µ

λ 0 −λ −µ

µ −λ −µ 0

∣∣∣∣∣∣∣=−2λ µ(λ +µ) ⇐⇒ λ = 0, µ = 0, λ =−µ

so that this conic pencil has exactly three degenerate conics: the two generators and the conic xz− xy = 0. �

Remark. Note that the three degenerate conics of this pencil are (p1∨ p2)∪ (p3∨ p4), (p1 ∨ p3)∪ (p2∨ p4) and

(p1∨ p4)∪ (p2∨ p3).
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Corollary 1.14. If C,D ⊂ P2
C are two non-degenerate conics meeting at four different points a,b,c,d ∈ P2

C, the

degenerate conics of {C,D} are exactly the pairs of lines

(a∨b)∪ (c∨d), (a∨ c)∪ (b∨d), (a∨d)∪ (b∨ c)

Proof. Since C and D are non-degenerate, any line meets C and D at most two different points. Thus there are not

three aligned points in the set {a,b,c,d}, and a,b,c,d form a quadrivertex.

By lemma 1.12, the pencil {C,D} is the set of conics containing the points {a,b,c,d}. And, according to theorem

1.13, there are three degenerate conics in this set: (a∨b)∪ (c∨d), (a∨ c)∪ (b∨d) and (a∨d)∪ (b∨ c). �
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Chapter 2

Riemann surfaces

2.1 Definition and first examples

Definition. Let X be a topological space. A complex chart on X is a pair (U,φ), where U is an open set in X (called

domain) and φ : U −→V is an homeomorphism between U and an open set V ⊂ C in the complex plane.

We say that the chart is centered at a point p ∈U if φ(p) = 0.

Definition. Two charts (U1,φ1) and (U2,φ2) on X are compatible if either U1∩U2 = /0, or the transition function

φ2 ◦φ
−1
1 : φ1(U1∩U2)−→ φ2(U1∩U2)

is holomorphic (between open sets in C).

Lemma 2.1. Each transition function T between two compatible charts is a conformal map.

Proof. We only need to show that the derivative T ′ is never zero. Obviously, T is a bijective map, since it’s the

composition of two homeomorphisms. If S is its inverse function, for each z ∈ C in the domain of T we have

S(T (z)) = z =⇒ 1 = S′(T (z)) ·T ′(z) =⇒ T ′(z) 6= 0 . �

Definition. An atlas on X is a collection {(Ui,φi)}i∈I of pairwise compatible charts such that X =
⋃
i∈I

Ui.

Definition. A maximal atlas on X (or complex structure on X) is an atlas {(Ui,φi)}i∈I such that, if (V,ψ) is a chart

on X compatible with each (Ui,φi), then (V,ψ) is a chart of the atlas.

Definition. A Riemann surface is a Hausdorff and second countable topological space, endowed with a complex

structure.

Remark. By using Zorn’s lemma, it can be checked that each atlas of a Hausdorff and second countable space is

contained in an unique complex structure. Consequently, giving an atlas is enough to determine a Riemann surface.
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Examples.

1. The complex plane. C, with its usual topolgy, is a Hausdorff, connected and second countable space.

Furthermore, we have an atlas given by a single chart, (C, IdC).

2. The Riemann sphere. Let Ĉ = C∪{∞} be the Alexandroff’s compactification of C. Recall that the open

sets in this space are the open sets in C and the complementaries, in Ĉ, of the compact sets in C.

Then, Ĉ is compact, connected, Hausdorff and second countable space. Let’s consider the charts:

• (U1,φ1), where U1 = C and φ1 = IdC.

• (U2,φ2), with domain U2 = Ĉ\{0} and φ2 : Ĉ\{0} −→ C given by φ2(z) = 1
z (with the rule 1

∞
= 0).

Clearly, their domains cover Ĉ. Let’s check the compatibility condition: we have

U1∩U2 = C\{0}, φ1(U1∩U2) = C\{0}= φ2(U1∩U2)

Therefore, the transition function is the holomorphic function

φ1 ◦φ
−1
2 : C\{0} −→ C\{0}

z 7−→ 1
z

3. Open sets in a Riemann surface. Let X be a Riemann surface, and U ⊂ X a connected open set. Then, U

inherites (with the subspace topology) the properties of being Hausdorff and second countable.

Moreover, if we have a complex structure {(Ui,φi)}i∈I on X , it can be easily checked that the collection

defined by {(Ui,φi) : i ∈ I,Ui ⊂U} is a complex structure on U .

2.2 Orientation and genus

Proposition 2.2. Every Riemann surface X is an orientable topological surface.

Proof. Taking the usual identification between C and R2, we have that X is locally homeomorphic to R2. Since X

is also a Hausdorff and second countable space, it follows that it’s a topological surface.

Furthermore, for any two charts (U,φ) and (V,ψ) of the atlas on X , the holomorphy condition of

φ ◦ψ−1 : ψ(U ∩V )−→ φ(U ∩V )

x+ yi 7−→ u(x,y)+ v(x,y)i

means that u,v : R2 −→ R satisfy the Cauchy-Riemann equations ∂u
∂x = ∂v

∂y and − ∂u
∂y = ∂v

∂x .

Considering φ ◦ψ−1 as a function between open sets in R2 (instead of open sets in C), its Jacobian is

det

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
= ∂u

∂x ·
∂v
∂y −

∂u
∂y ·

∂v
∂x =

(
∂u
∂x

)2
+

(
∂v
∂y

)2

> 0

So the atlas on the Riemann surface X defines an oriented atlas, thinking of X as a topological surface. �
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By the classification theorem of topological surfaces, the following definition makes sense.

Definition. The genus of a compact and connected Riemann surface X is the topological genus of X , as a compact,

connected and orientable topological surface. In other words, it’s the number of “handles” or “holes” on X .

Example. The Riemann sphere Ĉ is homeomorphic to the 2-dimensional sphere S2 (since it’s the Alexandroff’s

compactification of C∼= R2). Hence, the Riemann sphere is a compact Riemann surface with genus 0.

2.3 The complex torus

Let ω1,ω2 ∈ C linearly independent over R (i.e., ω1 6= 0 and ω2
ω1

/∈ R), and

Λ = {nω1 +mω2 : n,m ∈ Z}= 〈ω1,ω2〉

the lattice of the complex plane generated by ω1 and ω2. We have an equivalence relation on C given by

z1 ∼ z2 ⇐⇒ z1− z2 ∈ Λ

In the quotient set (denoted by C/Λ) consider the final topology with respect to the projection π : C −→ C/Λ.

Namely: U ⊂ C/Λ is an open set⇐⇒ π−1(U)⊂ C is an open set.

Lemma 2.3. The topological space C/Λ is homeomorphic to a torus.

Proof. Consider the projection π restricted to the closed region R with vertices 0,ω1,ω2,ω1 +ω2.

Figure 2.1

π|R is continuous and surjective (all the classes have a representative in R). And since π is an open map, so it is π|R:

U open in C =⇒ π−1(π(U)) =
⋃

ω∈Λ

(ω +U) open in C (it’s the union of open sets) =⇒ π(U) open in C/Λ

So π|R is an identification map. Moreover, two different points z1,z2 ∈ R satisfy π(z1) = π(z2) if, and only if,

z1− z2 ∈ {ω1,ω2}.

Hence, C/Λ is the result of gluing together the sides of R as in the following figure:

Figure 2.2

Doing these identifications, we obtain that C/Λ is homeomorphic to a torus. �
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Lemma 2.4. C/Λ is a compact Riemann surface with genus 1 (that will be called complex torus).

Proof. We only need to determine an atlas on C/Λ because, since it’s homeomorphic to a torus, C/Λ is a second

countable, Hausdorff, connected and compact space with topological genus 1.

Take ε = min{|ω| : ω ∈ Λ\{0}}, and for each a ∈ C, define Da =
{

z ∈ C : |z−a|< ε

4

}
.

We are going to check that π|Da is injective, for each a ∈ C. Let x,y ∈ Da such that π(x) = π(y). Then:

|x− y| ≤ |x−a|+ |y−a|< ε

4 +
ε

4 = ε

2

π(x) = π(y) =⇒ x− y ∈ Λ

By definition of ε , it must be x− y = 0, i.e., x = y.

Since π|Da is injective and π is an open and continuous map, we have an homeomorphism π|Da : Da −→ π(Da). If

φa denotes the inverse homeomorphism and Ua = π(Da), it follows that {(Ua,φa)}a∈C is an atlas on C/Λ:

• The sets Ua cover C/Λ: in fact,

x ∈ C/Λ =⇒ x = π(a) ∈Ua, for some a ∈ C

• Compatibility of the charts: suppose that Ua∩Ub 6=∅, and denote by w the transition function

w = φb ◦φ−1
a : φa(Ua∩Ub)−→ φb(Ua∩Ub)

Then, for each z ∈ φa(Ua∩Ub), we have: π(w(z)) = π(z) =⇒ w(z)∼ z =⇒ w(z)− z ∈ Λ.

Let’s see that α(z) = w(z)− z is a constant function, namely, it does not depend on z. If z1,z2 ∈ φa(Ua∩Ub),

z1,z2 ∈ Da =⇒ |z1− z2| ≤ |z1−a|+ |z2−a|< ε

4 +
ε

4 = ε

2

w(z1),w(z2) ∈ Db =⇒ |w(z1)−w(z2)| ≤ |w(z1)−b|+ |w(z2)−b|< ε

4 +
ε

4 = ε

2

so that

|α(z1)−α(z2)|= |w(z1)− z1−w(z2)+ z2| ≤ |w(z1)−w(z2)|+ |z1− z2|< ε

2 +
ε

2 = ε

Since α(z1)−α(z2) ∈ Λ, it must be α(z1)−α(z2) = 0, i.e., α(z1) = α(z2).

Thus for each z ∈ φa(Ua∩Ub) we have α(z) =C ∈Λ (constant) and the transtion function w(z) = z+C is a

translation (in particular, is holomorphic). �

2.4 Algebraic curves and Riemann surfaces

Let’s start by studying plane affine curves, with the induced topology as a subspace of C2. In order to determine

complex structures, we will need the implicit function theorem for polynomials.

Theorem 2.5. Every non-ninsgular algebraic curve γ of C2 is a Riemann surface.

Proof. As a subspace of C2, γ is Hausdorff and second countable. We only need to find an atlas.
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Let f (x,y) = 0, with f a polynomial, be the equation for γ , and take an arbitrary point (a,b) ∈ γ . By the non-

singularity of γ , we will have one of the two following cases:

• If ∂ f
∂y (a,b) 6= 0, we can take neighbourhoods X and Y , and a function g as in theorem 1.10. Then,

U = {(x,y) ∈ γ : x ∈ X ,y ∈ Y}= {(x,g(x)) : x ∈ X}

is an open neighbourhood of (a,b) in γ , and we have an homeomorphism

φ : U −→ X ⊂ C
(x,y) 7−→ x

(x,g(x)) ←−[ x
Thus (U,φ) is a local chart on γ at the point (a,b).

• If ∂ f
∂x (a,b) 6= 0, we have neighbourhoods X ′ and Y ′, and a function h : Y ′ −→ X ′ parameterizing the zeroes

of f as x = h(y). Then,

V = {(x,y) ∈ γ : x ∈ X ′,y ∈ Y ′}= {(h(y),y) : y ∈ Y ′}

is an open neighbourhood of (a,b) in γ , and we have an homeomorphism

ψ : V −→ Y ′ ⊂ C
(x,y) 7−→ y

(h(y),y) ←−[ y
Thus (V,ψ) is a local chart on γ at the point (a,b).

Taking for each point of γ some of these charts, we obtain a collection of charts whose domains cover γ . In order

to see that this collection is an atlas, we have to check the compatibility conditions.

Using previous notations, each chart has the form (U,φ) or (V,ψ). The possible transition functions will be the

identity (if both charts have the same form), (ψ ◦φ−1)(z) = g(z) or (φ ◦ψ−1)(z) = h(z).

Since all these transition functions are holomorphic, the compatibility is proved. �

Remark. A plane affine curve in C2 is not compact, since it’s not a bounded space: its projective closure meets the

line at infinity (according to Bézout theorem).

Now, we work in the projective plane P2
C, with the induced topology of C3 \{(0,0,0)} by the projection. With this

topology, P2
C is a second countable, compact and Hausdorff space that can be covered by the open sets

Ui =
{
(x0 : x1 : x2) ∈ P2

C : xi 6= 0
}

(i = 0,1,2)

Each of these open sets is homeomorphic to the affine plane, taking

ϕ0 : U0 −→ C2, ϕ0((x0 : x1 : x2)) = ( x1
x0
, x2

x0
), ϕ

−1
0 (a,b) = (1 : a : b)

ϕ1 : U1 −→ C2, ϕ1((x0 : x1 : x2)) = ( x0
x1
, x2

x1
), ϕ

−1
1 (a,b) = (a : 1 : b)

ϕ2 : U2 −→ C2, ϕ2((x0 : x1 : x2)) = ( x0
x2
, x1

x2
), ϕ

−1
2 (a,b) = (a : b : 1)
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Theorem 2.6. Let X be a non-singular curve of P2
C, given by an homogeneous polynomial F(x,y,z). Then, X is a

Riemann surface.

Proof. Again, the conditions of being Hausdorff and second countable are inherited from the ambient space P2
C.

On the other hand, we can see each of the open sets Xi = X ∩Ui in X as a non-singular curve of C2. For example,

X2 = X ∩U2 ∼=
{
(a,b) ∈ C2 : F(a,b,1) = 0

}
is the affine part of γ . By theorem 2.5, each Xi has, separately, a complex structure.

We want to see that they give a complex structure on X , i.e., that any two charts on different Xi are compatible.

For example, let’s consider two charts (V0,ψ0) and (V1,ψ1), respectively on X0 and X1, such that V0∩V1 6= /0. By

the construction we did in theorem 2.5, it’s easy to check that

ψ0((x0 : x1 : x2)) =
x1
x0

or x2
x0

, ψ1((x0 : x1 : x2)) =
x0
x1

or x2
x1

Suppose that ψ0((x0 : x1 : x2)) =
x1
x0

and ψ1((x0 : x1 : x2)) =
x2
x1

. Then, if z ∈ ψ0(V0∩V1), we have

ψ
−1
0 (z) = (1 : z : g(z)), with g holomorphic =⇒ (ψ1 ◦ψ

−1
0 )(z) = g(z)

z is holomorphic, since z 6= 0 1

Hence, the charts (V0,ψ0) and (V1,ψ1) are compatible. In a similar way, the remaining cases can be checked to

conclude the proof. �

Remark. The curve X is compact (it’s a closed set in the compact space P2
C) and connected (the proof exceeds our

level; it can be found in [7]). Thus it makes sense considering the genus of X . In section 2.6, we will express this

genus in terms of the degree of the curve.

Theorem 2.7. Any non-singular algebraic curve γ in P1
C×P1

C is a Riemann surface.

Proof. First of all, our curve is Hausdorff and second countable, as a subspace of P1
C×P1

C.

Moreover, considering the restrictions of γ in the subsets

A1 =
{
((x0 : 1),(y0 : 1)) ∈ P1

C×P1
C : x0,y0 ∈ C

}∼=C2, A2 =
{
((x0 : 1),(1 : y1)) ∈ P1

C×P1
C : x0,y1 ∈ C

}∼=C2

A3 =
{
((1 : x1),(y0 : 1)) ∈ P1

C×P1
C : x1,y0 ∈ C

}∼=C2, A4 =
{
((1 : x1),(1 : y1)) ∈ P1

C×P1
C : x1,y1 ∈ C

}∼=C2

we have four non-singular plane affine curves that, according to theorem 2.5, will have separate complex structures.

It can be checked, by a similar reasoning to the one used in theorem 2.6, that two charts on different restrictions

γ ∩Ai are compatible. Therefore, we have an atlas on γ and γ is a Riemann surface. �

2.5 Maps between Riemann surfaces

Definition. Let X be a Riemann surface and p ∈ X . A function f : X −→ C is said to be holomorphic at p (resp.

meromorphic at p) if, for some chart (U,φ) on X satisfying p ∈U , the composition f ◦φ−1 is holomorphic (resp.

meromorphic) at φ(p).
1It must be z 6= 0, because (1 : z : g(z)) = ψ

−1
0 (z) ∈V0∩V1 ⊂V1 ⊂ X1
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The function f is holomorphic whether it is holomorphic at any point of X .

Remark. If f is meromorphic at p, the type of singularity of f at p is the type of singularity of f ◦ φ−1 at φ(p)

(pole, removable or essential singularity).

Examples.

1. If (U,φ) is a chart on X , the function φ : U −→ C is holomorphic at U .

2. Taking X = C, the preceding definitions agree with the usual definitions of holomorphy and meromorphy.

Definition. Let X ,Y be Riemann surfaces and p ∈ X . We say that F : X −→ Y is an holomorphic map at p (resp.

meromorphic map at p) if, for some charts (U1,φ) on X and (U2,ψ) on Y such that p ∈U1 and F(p) ∈U2, the

composition ψ ◦F ◦φ−1 is holomorphic (resp. meromorphic) at φ(p).

F is an holomorphic map whether it is holomorphic at any point of X .

Remark. Since the composition of holomorphic functions (between open sets in C) is holomorphic, the preceding

definition does not rely on the choice of local coordinates and we can change “some charts” by “all the charts”.

Remark. It’s not difficult to prove, using the analogous properties for holomorphic functions of C, that:

• Any two holomorphic maps are continuous, and their composition is an holomorphic map.

• A map F : X −→ Y , holomorphic on X \{p1, . . . , pr} and continuous at p1, . . . , pr, is holomorphic on X .

Examples.

1. Taking Y = C, an holomorphic map F : X −→ Y is an holomorphic function.

2. For any Riemann surface X , Id : X −→ X is an holomorphic map.

3. Every meromorphic function f : X −→ C induces an holomorphic map F : X −→ Ĉ given by

F(x) =

∞ if x is a pole of f

f (x) otherwise

Definition. Let X ,Y two Riemann surfaces. A map F : X −→Y is an isomorphism if is holomorphic and bijective.

In such a case, X and Y are said to be isomorphic Riemann surfaces.

Definition. An automorphism of a Riemann surface X is an isomorphism F : X −→ X .

Example. The automorphisms φ : C−→ C are given by φ(z) = az+b, with a 6= 0.

By the following result, we can transfer to other sets the complex structure of a Riemann surface.
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Lemma 2.8. Let X be a Riemann surface, Y a set and f : X −→ Y a bijective map. We define a topology and a

complex structure on Y with the rules:

U open set in Y ⇐⇒ f−1(U) open set in X, (U,φ) chart on Y ⇐⇒ ( f−1(U),φ ◦ f ) chart on X

Then, f : X −→ Y is an isomorphism between the Riemann surfaces X and Y .

Example. By the bijection f : P1
C −→ Ĉ, f ((x0 : x1)) =

x0
x1

, the complex projective line P1
C is a compact Riemann

surface with genus 0.

For those times when we are dealing with Riemann surfaces related to projective spaces, the following lemma will

be very useful, since it allows us to extend holomorphic maps.

Lemma 2.9. Let X and Y ⊂ Pn
C be Riemann surfaces, and U ⊂ X an open set such that X \U consists of isolated

points. If X is compact, every holomorphic map f : U −→ Y can be extended to an holomorphic map f̃ : X −→ Y .

Proof. Consider, up to scalar, the holomorphic functions fi : U −→ C (i = 0, . . . ,n) defining the homogeneous

coordinates of f . Namely, f (x) = ( f0(x) : . . . : fn(x)) for each x ∈U .

Given a point p ∈ X \U , take a chart (V,φ) on X centered at p, and consider the Laurent series of fi ◦ φ−1 on a

neighbourhood Vi of z = 0. Compactness of X ensures us that its principal part is finite:

∀z ∈Vi \{0} ( fi ◦φ−1)(z) =
a−mi

zmi
+ . . . , with a−mi 6= 0

If m = max{m0, . . . ,mn}, for each z ∈ (V0∩ . . .∩Vn)\{0} we can multiply projective coordinates by zm 6= 0 and

( f ◦φ−1)(z) = (( f0 ◦φ−1)(z) : . . . : ( fn ◦φ−1)(z)) = (( f0 ◦φ−1)(z) · zm : . . . : ( fn ◦φ−1)(z) · zm) =

= (a−m0zm−m0 + . . . : . . . : a−mnzm−mn + . . .)

Taking limits, we can extend f ◦φ−1 to an holomorphic function at z = 0, so f can be extended to an holomorphic

map at p.

Repeating this process for each point of X \U , we obtain an holomorphic map f̃ : X −→ Pn
C. The condition

f̃ (X)⊂ f (U)⊂ Y finishes the proof. �

2.6 Ramification and degree. Hurwitz formula

Theorem 2.10 (local form). Let X ,Y be Riemann surfaces and F : X −→ Y a non-constant map, holomorphic at

p ∈ X. Then, there exists an unique integer m≥ 1 with the following property: if (U2,φ2) is a chart on Y centered

at F(p), there exists a chart (U1,φ1) on X centered at p such that (φ2 ◦F ◦φ
−1
1 )(z) = zm.

Proof. To prove the existence, fix a chart (U2,φ2) centered at F(p) (i.e., φ2(F(p)) = 0), and consider (U,ψ) a chart

on X centered at p. Then, the Taylor series of T = φ2 ◦F ◦φ−1 in a neighbourhood of w = 0 has the form

T (w) =
∞

∑
i=m

ciwi,
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with cm 6= 0 and m≥ 1 (since T (0) = (φ2 ◦F ◦φ−1)(0) = φ2(F(p)) = 0). So we can write T (w) = wm ·S(w), with

S holomorphic at w = 0 and S(0) 6= 0.

By the existence of m-th root of S, there is a function R(w), holomorphic on a neighbourhood of w = 0, such that

S(w) = R(w)m =⇒ T (w) = wm ·R(w)m = (w ·R(w))m

Writing η(w) = w ·R(w), we have: η ′(w) = w ·R′(w)+R(w) =⇒ η ′(0) = R(0) 6= 0.

Hence, on a neighbourhood V of 0, the funcion η is invertible (by the inverse function theorem) and holomorphic.

The composition φ1 = η ◦ψ , considered on a neighbourhood V ′ of p such that ψ(V ′)⊂V , satisfies:

• It’s a chart on X , since it’s the composition of the chart ψ with the invertible and holomorphic function η .

• It’s centered at p: φ1(p) = η(ψ(p)) = ψ(p) ·R(ψ(p)) = 0 ·R(0) = 0

• φ2(F(φ−1
1 (z))) = φ2(F(ψ−1(η−1(z)))) = T (η−1(z)) = (η−1(z) ·R(η−1(z)))m = (η(η−1(z)))m = zm

Now, let’s see the uniqueness. In a neighbourhood of p, the points near F(p) have exactly m preimages. This

exponent m is determined by the topological propierties of the map in a neighbourhood of p, so it does not rely on

the choice of charts. �

Definition. Under the above hypothesis:

1. The integer m is called ramification index of F at p, and we denote it by ep(F).

2. We say that p is a ramification point of F when ep(F)> 1.

3. A branch point of F is the image, for F , of a ramification point.

Remark. Ramification points of an holomorphic map form a discrete set.

Proposition 2.11. Let F : X −→ Y be a non-constant homolomorphic map between compact Riemann surfaces.

For each y ∈ Y , let’s consider

degy(F) = ∑
p∈F−1({y})

ep(F)

Then degy(F) is an integer, independent of the point y ∈ Y . It’s called the degree of F, and denoted by deg(F).

Theorem 2.12 (Hurwitz formula). If X ,Y are compact Riemann surfaces and F : X −→ Y is a non-constant

holomorphic map, then

2g(X)−2 = deg(F) · (2g(Y )−2)+ ∑
p∈X

(ep(F)−1)

Example. Let C a non-singular algebraic curve in P2
C, given by an homogeneous polynomial F(x,y,z) of degree d.

We are going to see that its genus is g(C) = (d−1)(d−2)
2 .

Take p = (a : b : c) /∈C, with c 6= 0, and denote by πp the projection, from p, of the points in C over the line z = 0:
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Figure 2.3

We can consider this projection as an holomorphic map πp : C −→ P1
C. Then:

• The ramification points will be the points q ∈C such that p ∈ TC(q), i.e., the points q ∈C such that

a · ∂F
∂x (q)+b · ∂F

∂y (q)+ c · ∂F
∂ z (q) = 0

The points q satisfying this equation define a curve C′, with degree d−1 (the polar of C with respect to p).

So we are looking for the points of C ∩C′. By Bézout theorem, we have d(d− 1) points (counted with

multiplicity). In point of fact, it can be proved that there are exactly d(d−1) ramification points, all of them

with index 2.

• If we take a point p̃ of the line z = 0 (not a branch point), the preimages of p̃ are the d different intersection

points of the line p̃∨ p with C, all of them with ramification index 1. By computing deg(πp) with p̃, we

obtain that deg(πp) = d.

According to Hurwitz formula, we have

2g(C) = 2+deg(πp) ·(2g(P1
C)−2)+ ∑

p∈C
(ep(πp)−1) = 2−2d+d(d−1) = d2−3d+2 = (d−1)(d−2) =⇒

=⇒ g(C) = (d−1)(d−2)
2

2.7 Automorphisms of a complex torus

In this section, we want to describe the automorphisms of a complex torus. It will be a particular case of the study

of isomorphisms between two arbitrary complex tori.

Let’s consider Λ1,Λ2 two lattices of the complex plane, defining two separate tori T1 = C/Λ1 i T2 = C/Λ2.
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Theorem 2.13. Let F : T1 −→ T2 be an holomorphic map. Then, there exists an unique isomorphism ψ : C−→ C
such that the diagram

C ψ−→ C
π1 ↓ ↓ π2

T1
F−→ T2

(∗)

is commutative, with πi : C−→ Ti denoting the projection.

Proof. Since g(T1) = 1 = g(T2), by Hurwitz formula F has no ramification points. Thus

(T1,F) is a covering space of T2 =⇒ (C,F ◦π1) is a covering space of T2

But C is simply connected, so (C,F ◦π1) must be homeomorphic to the universal covering space of T2: (C,π2).

We have an homeomorphism ψ : C−→ C such that the diagram (∗) commutes.

Now, we only have to check that ψ : C−→ C is an isomorphism of Riemann surfaces. And this is immediate, since

ψ is holomorphic (the other maps in the diagram are holomorphic) and bijective (it’s an homeomorfism). �

Theorem 2.14.

1. If the tori T1 and T2 are isomorphic Riemann surfaces, then Λ2 = αΛ1, for some α ∈ C.

2. Conversely, if Λ2 = αΛ1, then T1 and T2 are isomorphic. The isomorphisms from T1 to T2 have the form

ϕ([z]) = [αz+β ] (z ∈ C), for any β ∈ C.

Proof. We start proving 1. Given an isomorphism F : T1 −→ T2, by theorem 2.13 there exists an automorphism

ψ : C−→ C such that F(π1(z)) = π2(ψ(z)), for each z ∈ C.

By the characterization of automorphisms of C, it must be ψ(z) = αz+β (with α 6= 0, β ∈ C). So, if z ∈ Λ1,

π2(αz+β ) = F(π1(z)) = F(π1(0)) = π2(β ) =⇒ [αz+β ] = [β ] in Λ2 =⇒ [αz] = [0] in Λ2 =⇒ αz ∈ Λ2

This proves the inclusion αΛ1 ⊆ Λ2. A similar reasoning with F−1 and ψ−1 proves the converse inclusion.

Let’s see 2. Suppose that Λ2 = αΛ1, and for any β ∈ C consider the map ϕ : T1 −→ T2, ϕ([z]) = [αz+β ]. Then:

• ϕ is injective: ϕ([z1]) = ϕ([z2]) =⇒ [αz1+β ] = [αz2+β ] in Λ2 =⇒ α(z1− z2) = (αz1+β )− (αz2+β ) ∈
Λ2 = αΛ1 =⇒ α(z1− z2) = αx, for a certain x ∈ Λ1 =⇒ z1− z2 = x ∈ Λ1 =⇒ [z1] = [z2] in Λ1 .

• ϕ is surjective: For each x ∈ T2, we have x = [z0], for some z0 ∈ C. Then, x = [z0] = ϕ(
[

z0−α

β

]
).

• ϕ is holomorphic: If x ∈ T1, put x = [z0], for a certain z0 ∈ C. Consider an open disk D, with center z0, such

that π1 : D−→ π1(D) is an isomorphism.

Then, for each p ∈ π1(D), we can put ϕ(p) = (π2 ◦ψ ◦ π
−1
1 )(p). Hence, ϕ is holomorphic on π1(D),

particularly at x = [z0].

Therefore, ϕ is an isomorphism of Riemann surfaces. Moreover, every isomorphism from T1 to T2 has this form,

according to theorem 2.13. �
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Theorem 2.15 (automorphisms of a complex torus). Let T = C/Λ be a complex torus.

1. The automorphisms of T are exactly ϕ([z]) = [αz+β ], for any β ∈ C and with α ∈ C such that αΛ = Λ.

2. The automorphisms of T with no fixed points have the form ϕ([z]) = [z+β ], for any β ∈ C\Λ .

Proof. The first part is a particular case of the preceding theorem, with Λ1 = Λ = Λ2.

Now, consider ϕ([z]) = [αz+β ] an automorphism of T without fixed points. If it were α 6= 1, we would have

ϕ(
[

β

1−α

]
) =

[
α

β

1−α
+β

]
=
[

αβ+β (1−α)
1−α

]
=
[

β

1−α

]
and

[
β

1−α

]
would be a fixed point for ϕ , contradiction.

On the other hand, ϕ([z]) = [z+β ] has no fixed points, except when β ∈ Λ (in that case, ϕ is the identity map). �

Example. A typical consequence of these results is that every complex torus is isomorphic to C/〈1,τ〉, with

Imτ > 0.

Indeed, given a torus T = C/Λ (where Λ is the lattice generated by ω1,ω2 ∈ C), consider τ =±ω2
ω1

(taking + o −
so that Imτ > 0). Then, we have 〈1,τ〉=± 1

ω1
Λ and, by theorem 2.14, the tori T and C/〈1,τ〉 are isomorphic.

2.8 Elliptic curves

Definition. An elliptic curve is a compact and connected Riemann surface with genus 1.

Example. According to the characterization of the genus of a non-singular algebraic curve in P2
C, every non-

singular plane projective cubic is an elliptic curve.

Theorem 2.16. Every elliptic curve is isomorphic (as a Riemann surface) to a torus C/Λ, for some lattice Λ.

Remarks.

1. It’s obvious, from the definition, that an elliptic curve is homeomorphic to any complex torus, since they are

two orientable topological surfaces with the same genus.

Nevertheless, theorem 2.16 says something quite deeper: any complex structure on an elliptic curve is the

one given in a certain complex torus.

2. This result can be proved by using universal coverings and Riemann uniformization theorem. Another proof,

at a higher level, requires Abel’s theorem. For further reading, see [4].

Let E be an elliptic curve. Then, there exists an isomorphism of Riemann surfaces

ϕ : C/Λ−→ E

for some lattice Λ. Observe that:
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• C/Λ has an additive group structure, with the following addition inherited from C:

∀z1,z2 ∈ C [z1]+ [z2] = [z1 + z2]

We say that (C/Λ,+) is an analytic group, that is, in terms of local charts about any two points in C/Λ, the

addition + is an analytic function of two complex variables.

• By means of ϕ and the preceding addition +, we have an analytic addition ⊕ on E given by

∀p1, p2 ∈ C/Λ ϕ(p1)⊕ϕ(p2) = ϕ(p1 + p2)

The neutral element on E will be ϕ([0]).

Theorem 2.17. Let E be an elliptic curve. Then, for each θ ∈ E, E has an unique analytic group structure having

θ for neutral element.

Proof. Let’s see the existence. Let ϕ : E −→ C/Λ be an isomorphism of Riemann surfaces, and consider the map

α : C/Λ −→ C/Λ

[z] 7−→ [z]−ϕ(θ)

According to theorem 2.15, α is an automorphism of C/Λ, mapping ϕ(θ) to [0]. Now, if Φ denotes the isomorphism

Φ = ϕ−1 ◦α−1 : C/Λ−→ E ,

we can define an addition ⊕ on E by the rule

∀p1, p2 ∈ C/Λ Φ(p1)⊕Φ(p2) = Φ(p1 + p2)

Then, (C/Λ,⊕) is a group with neutral element Φ([0]) = ϕ−1(α−1([0])) = ϕ−1(ϕ(θ)) = θ . Furthermore, the

property of being an analytic group is inherited from (C/Λ,+), since Φ is an isomorphism of Riemann surfaces.

Now, let’s see the uniqueness. Let’s assume, as an initial case, that E = C/Λ and θ = [0].

Suppose that, a part from + (inherited from C), there exists another analytic addition ⊕ on C/Λ with [0] for neutral

element. We want to see that

∀[z1], [z2] ∈ C/Λ [z1]+ [z2] = [z1]⊕ [z2]

Note that:

• If [z2] = [0], for each [z1] ∈ C/Λ [z1]+ [0] = [z1] = [z1]⊕ [0] , since [0] is the neutral element of + and ⊕.

• If [z2] 6= [0], the map Φ[z2]([z]) = [z]⊕ [z2] is an automorphism of C/Λ: in fact, it’s a bijective an holomorphic

map, because (C/Λ,⊕) is an analytic group.

Moreover, Φ[z2] has no fixed points, so by theorem 2.15,

Φ[z2]([z]) = [z]+ [β ]

for some β /∈ Λ, i.e., [β ] 6= [0]. Then, for each [z] ∈ C/Λ,

[z]⊕ [z2] = Φ[z2]([z]) = [z]+ [β ]

In particular, taking [z] = [0] we deduce [z2] = [β ] and thus

∀[z1] ∈ C/Λ [z1]⊕ [z2] = [z1]+ [β ] = [z1]+ [z2]
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In the case of an arbitrary elliptic curve E and an arbitrary element θ ∈ E, suppose that there exist two different

analytic group structures on E, having θ for neutral element.

Defining Φ as above, Φ−1 transfers two different analytic additions on E (with θ for neutral element) to two

different analytic additions on C/Λ with Φ−1(θ) = [0] for neutral element, which is impossible. �

Corollary 2.18. Let E1,E2 be elliptic curves, with additions + and ⊕ having for neutral elements θ1 and θ2, re-

spectively. Then, any isomorphism ϕ : E1−→E2 of Riemann surfaces satisfying ϕ(θ1)= θ2 is a group isomorphism

from (E1,+) to (E2,⊕).

Proof. Define an analytic addition ⊕′ on E2 given by

∀a,b ∈ E1 ϕ(a)⊕′ ϕ(b) = ϕ(a+b)

with neutral element ϕ(θ1) = θ2.

Then, (E2,⊕) and (E2,⊕′) are both analytic groups with neutral element θ2. By theorem 2.17,

∀a,b ∈ E1 ϕ(a)⊕ϕ(b) = ϕ(a)⊕′ ϕ(b) = ϕ(a+b)

This property, jointly with ϕ being bijective and mapping the neutral element θ1 to the neutral element θ2, gives us

that ϕ is a group isomorphism. �

Example. Given a lattice Λ⊂ C, its Weierstrass’s ℘-function is defined by

℘(z) =
1
z2 + ∑

ω∈Λ\{0}

(
1

(z−ω)2 −
1

ω2

)
This function is elliptic with period any point of Λ: that is, ℘(z) =℘(z+ω) for each ω ∈ Λ.

Furthermore, ℘ is meromorphic on C (with a double pole at each point of Λ) and satisfies an equation of degree 3

involving ℘ and ℘′.

If C is a non-singular plane projective cubic (a particular case of elliptic curve), by the properties of Weierstrass’s

℘-functions, the isomorphism ϕ : C/Λ−→C with a certain complex torus C/Λ has the form

ϕ([z]) = (1 :℘(z) :℘′(z))

The group structure on C defined through ϕ , with neutral element O ∈C, is given by

Figure 2.4
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Remark. An exposition of Weierstrass’s ℘-functions (and their relation to elliptic curves) can be found in [3].

Definition. Let E be an elliptic curve, and + the analytic addition on E with neutral element θ ∈ E. A point p ∈ E

is said to be a torsion point of order n (or a n-torsion point) if and only if

θ = p+ n). . .+ p = n · p

The notion of torsion point on elliptic curves is useful in many branches of mathematics. For example, in Number

Theory, one considers elliptic curves over a number field, and their torsion points are closely related to the solutions

of diophantine equations.

In our case, we are studying elliptic curves over C. In order to prove Cayley’s theorem in Chapter 4, we are

interested in the torsion points on a very specific elliptic curve: the plane projective cubic. The following theorem

gives us an useful criterion:

Theorem 2.19. Let E be the plane cubic with equation y2z = (x−az)(x−bz)(x−cz) in P2
C, where a,b,c ∈C\{0}

are distinct. Consider E as elliptic curve, with neutral element (0 : 1 : 0) ∈ E.

Suppose that
∞

∑
k=0

Ak(x− x0)
k is the Taylor expansion of

√
(x−a)(x−b)(x− c) at a point x = x0.

1. If n is odd (n = 2m+1, for some m≥ 1), then:

(x0 : A0 : 1) is a n-torsion point of E ⇐⇒

∣∣∣∣∣∣∣∣
A2 . . . Am+1
...

...

Am+1 . . . A2m

∣∣∣∣∣∣∣∣= 0

2. If n is even (n = 2m, for some m≥ 2), then:

(x0 : A0 : 1) is a n-torsion point of E ⇐⇒

∣∣∣∣∣∣∣∣
A3 . . . Am+1
...

...

Am+1 . . . A2m−1

∣∣∣∣∣∣∣∣= 0

Remark. Choosing the Taylor expansion of −
√

(x−a)(x−b)(x− c), the same criterion holds. In fact, this choice

just changes the sign of the coefficients Ak, so the determinant is multiplied either by 1 or −1.
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Chapter 3

Poncelet’s porism

3.1 Poncelet correspondence

Definition. Let C and D two non-degenerate conics of P2
C. The Poncelet correspondence for C and D is

M= {(p, l) ∈C×D∗ : p ∈ l},

where D∗ denotes the conic envelope of D.

Consider two maps σ and τ on M, given by

σ : M −→ M

(p, l) 7−→ (q, l)

τ : M −→ M

(q, l) 7−→ (q, l̃)

where q is the other point of the intersection C∩ l, and l̃ is the other tangent line to D through q. It’s obvious that

σ and τ are involutions of M: σ2 = IdM = τ2.

Figure 3.1

The composition η = τ ◦σ maps the pair (p, l) to (q, l̃), which is equivalent, in terms of the Poncelet problem,

to make a step in the construction of a polygon inscribed in C and circumscribed about D, just like we did in the

Introduction.
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So Poncelet’s porism can be restated in the following way:

“For any integer n≥ 3, ηn has a fixed point if and only if ηn = IdM”

To prove this new version of Poncelet’s porism, we shall identify M with a non-singular algebraic curve of P1
C×P1

C,

so that M will become a Riemann surface. Actually, we will see that M is an elliptic curve.

Poncelet’s porism will follow easily from the fact that η is a translation of M, considering M with its group

structure. In this point, the characterization of automorphisms on a complex torus, given in the preceding chapter,

will be very useful.

3.2 M as an algebraic curve in P1
C×P1

C

Let C and D two non-degenerate conics of P2
C, and let

q : P1
C −→ P2

C, q(r) = q(r0 : r1) = (r2
0 : r0r1 : r2

1)

a parameterization of the non-degenerate conic with equation y2− xz = 0. Since any two non-degenerate conics of

P2
C are projectively equivalent, there are 3× 3 regular matrices A and B such that Aq(r) = p(r) and Bq(s) = l(s)

are, respectively, parameterizations of C and D∗.

Hence, we have a bijection

F : P1
C×P1

C −→C×D∗

(r,s) 7−→ (p(r), l(s))

Let’s consider γ = F−1(M) =
{
(r,s) ∈ P1

C×P1
C : p(r) ∈ l(s)

}
, and put BtA = T = (ti j)0≤i, j≤2 . T is a regular

matrix, as it’s the product of two regular matrices.

In order to find an equation of γ in P1
C×P1

C, observe that

(r,s) ∈ γ ⇐⇒ p(r) ∈ l(s) ⇐⇒ 0 = (l(s))t · p(r) ⇐⇒ 0 = (Bq(s))t ·Aq(r) = q(s)tBtAq(r) ⇐⇒

⇐⇒ 0 =
(

s2
0 s0s1 s2

1

) t00 t01 t02

t10 t11 t12

t20 t21 t22


 r2

0

r0r1

r2
1

= (t00r2
0 + t01r0r1 + t02r2

1) · s2
0+

+(t10r2
0 + t11r0r1 + t12r2

1) · s0s1 +(t20r2
0 + t21r0r1 + t22r2

1) · s2
1

Writing Ti(r) = ti0r2
0 + ti1r0r1+ ti2r2

1, we can describe γ as the algebraic curve in P1
C×P1

C with equation H(r,s) = 0,

where H(r,s) = T0(r) · s2
0 +T1(r) · s0s1 +T2(r) · s2

1 is a bihomogeneous form of bidegree (2,2).
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Remark. T0(r) = T1(r) = T2(r) = 0 has no solution. In fact, since T is regular, 0

0

0

=

 T0(r)

T1(r)

T2(r)

= T

 r2
0

r0r1

r2
1

 =⇒ r2
0 = r0r1 = r2

1 = 0 =⇒ r0 = 0 = r1 =⇒ (r0 : r1) /∈ P1
C

Proposition 3.1. Let ∆(r) = T1(r)2−4T0(r)T2(r), for each r ∈ P1
C. Then: ∆(r) = 0 if and only if p(r) ∈C∩D.

Proof. For a fixed point r ∈ P1
C, there are two distinct tangent lines to D through p(r), except when p(r) ∈C∩D

(in that case, there is only one such line). Therefore,

p(r)∈C∩D ⇐⇒There is a single tangent line to D through p(r)⇐⇒ H(r,s) = 0 has a single solution s∈ P1
C

We are going to prove that this is equivalent to ∆(r) = 0. Let’s distinguish two cases:

• If T2(r) = 0, we have: 0 = ∆(r) ⇐⇒ T1(r) = 0 (and T0(r) 6= 0)⇐⇒The equation is 0 = H(r,s) = T0(r) · s2
0.

And this equation has a single solution, s = (0 : 1) ∈ P1
C.

• If T2(r) 6= 0, it’s easy to check that H(r,s) = 0 has no solution with s0 = 0. We can suppose that s0 = 1 and

the equation is

0 = T0(r)+T1(r) · s1 +T2(r) · s2
1,

that is a polynomial of degree 2 in s1. So:

H(r,s) = 0 has a single solution s = (1 : s1) ∈ P1
C⇐⇒ 0 = T1(r)2−4T0(r)T2(r) = ∆(r)

In any case, we have the desired equivalence. �

Reversing r and s, we have H(r,s) = T̃0(s) · r2
0 + T̃1(s) · r0r1 + T̃2(s) · r2

1, where

T̃i(s) = t0is2
0 + t1is0s1 + t2is2

1

(namely, H is given by the columns of T instead of its rows). By a similar argument, we obtain:

Proposition 3.2. Let ∆̃(s) = T̃1(s)2−4T̃0(s)T̃2(s), for each s ∈ P1
C. Then: ∆̃(s) = 0 if and only if l(s) ∈C∗∩D∗.

3.3 Structure of elliptic curve on M

Our first goal in this section is to prove that, when C and D are in general position, γ =
{
(r,s) ∈ P1

C×P1
C : H(r,s) = 0

}
is a non-singular algebraic curve in P1

C×P1
C. Then, according to theorem 2.7, γ will become a Riemann surface,

and the bijection F|γ : γ −→M will endow M with a complex structure, through the rules:

U is an open set in M⇐⇒ F−1(U) is an open set in γ ,

(U,φ) is a chart on M⇐⇒ (F−1(U),φ ◦F) is a chart on γ
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Lemma 3.3. The set of singular points of γ is Sγ = {(a,b) ∈ γ : p(a) ∈C∩D, l(b) ∈C∗∩D∗}.

Proof. We are going to study γ in the cover of P1
C×P1

C formed by the charts

A1 = {((x0 : 1),(y0 : 1)) : x0,y0 ∈ C}, A2 = {((x0 : 1),(1 : y1)) : x0,y1 ∈ C},

A3 = {((1 : x1),(y0 : 1)) : x1,y0 ∈ C}, A4 = {((1 : x1),(1 : y1)) : x1,y1 ∈ C},

each of them isomorphic to the complex affine plane C2.

For example, we can see γ ∩A1 as the plane affine curve H̃(r0,s0) = 0, where

H̃(r0,s0) = H((r0 : 1),(s0 : 1)) = T0((r0 : 1)) · s2
0 +T1((r0 : 1)) · s0 +T2((r0 : 1)).

By an abuse of notation, we will write Ti(r0) = Ti((r0 : 1)) for i = 0,1,2. Then,

H̃(r0,s0) = T0(r0) · s2
0 +T1(r0) · s0 +T2(r0)

∂ H̃
∂ s0

(r0,s0) = 2T0(r0) · s0 +T1(r0)

and we have the identity
(

∂ H̃
∂ s0

(r0,s0)

)2

−4T0(r0) · H̃(r0,s0) = T1(r0)
2−4T0(r0)T2(r0) = ∆((r0 : 1)) (∗).

On the other hand, using the expression of H(r,s) in terms of T̃i(s) (i = 0,1,2), we can put

H̃(r0,s0) = H((r0 : 1),(s0 : 1)) = T̃0((s0 : 1)) · r2
0 + T̃1((s0 : 1)) · r0 + T̃2((s0 : 1)).

Abusing again of notation, we will write T̃i(s0) = T̃i((s0 : 1)) for i = 0,1,2. Then,

H̃(r0,s0) = T̃0(s0) · r2
0 + T̃1(s0) · r0 + T̃2(s0)

∂ H̃
∂ r0

(r0,s0) = 2T̃0(s0) · r0 + T̃1(s0)

and we deduce
(

∂ H̃
∂ r0

(r0,s0)

)2

−4T̃0(s0) · H̃(r0,s0) = T̃1(s0)
2−4T̃0(s0)T̃2(s0) = ∆̃((s0 : 1)) (∗∗).

Finally, if ((a0 : 1),(b0 : 1)) is an arbitrary point of γ ∩A1 (i.e., H̃(a0,b0) = 0),

((a0 : 1),(b0 : 1)) is a singular point of γ ∩A1 ⇐⇒ ∂ H̃
∂ r0

(a0,b0) = 0 = ∂ H̃
∂ s0

(a0,b0) ⇐⇒

⇐⇒ ∆((a0 : 1)) = 0 = ∆̃((b0 : 1)) ⇐⇒ p((a0 : 1)) ∈C∩D and l((b0 : 1)) ∈C∗∩D∗

(in the second equivalence we make use of (∗) and (∗∗), and in the third one propositions 3.1 and 3.2 are required).

A similar argument holds for the affine charts A2, A3 and A4. �

Corollary 3.4. If C and D meet at four different points, γ is a non-singular algebraic curve of P1
C×P1

C.

Proof. Note that the image of Sγ under the bijection F is F(Sγ) = {(p, l) : p ∈C∩D, l ∈C∗∩D∗, p ∈ l}.

Under our hypothesis, this set is empty: if it were (p, l) ∈ F(Sγ), C and D would meet at p with the same tangent

line l. Hence, the multiplicity of the intersection point p would be greater than 1 and, according to Bézout theorem,

C and D would not meet at four different points.

Since F(Sγ) = /0 and F is a bijection, it follows that Sγ = /0. By lemma 3.3, γ has no singular points. �
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Hereinafter, we will assume that C and D meet at four different points. Once we have shown that M is a Riemann

surface (with a complex structure inherited from γ), we want to prove that M is an elliptic curve. This fact follows

from Hurwitz formula, but first we need a technical result concerning holomorphic maps and analytic manifolds.

Theorem 3.5. Let V1 and V2 two connected analytic manifolds, M ⊂ V1 a submanifold and f : V1 −→ V2 an

holomorphic map. Then, f|M is an holomorphic map.

Naively, we can think of analytic manifolds as a generalization of Riemann surfaces: they are topological spaces

locally homeomorphic to Cn, such that the transition maps are holomorphic functions in several complex variables.

Lemma 3.6. M is an elliptic curve.

Proof. Consider the analytic manifolds C×D∗ and C, with the complex structures determined by the parameteriz-

ations p : P1
C −→C and l : P1

C −→ D∗. Then,

π1 : C×D∗ −→C

(p, l) 7−→ p

π2 : C×D∗ −→ D∗

(p, l) 7−→ l

are holomorphic maps so, by theorem 3.5, their respective restrictions π̃1, π̃2 to the Riemann surface M ⊂C×D∗

are holomorphic maps too.

If we focus on π̃1, a general point p ∈C has two preimages (p, l1) and (p, l2), where l1 and l2 are the two tangent

lines to D through p:

Figure 3.2

This happens except when p ∈C∩D. In that case, there is a single tangent line to D through the point p, so p has

a single preimage.

Hence, π̃1 is an holomorphic map of degree 2 with four ramification points: (p1, l1),(p2, l2),(p3, l3) and (p4, l4),

where p1, p2, p3, p4 are the four different points of C∩D and li is the tangent line to D through pi.

Furthermore, each of these ramification points has ramification index 2. By Hurwitz formula,
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2g(M)−2 = deg(π̃1) · (2g(C)−2)+ ∑
p∈M

(ep(π̃1)−1) = 2 · (0−2)+4 · (2−1) =−4+4 = 0 =⇒ g(M) = 1

Therefore, to show that M is an elliptic curve, it will suffice to prove that M is a compact and connected space, so

that Hurwitz formula can indeed be used.

Compactness of M is immediately checked: the topology of M is inherited from γ , which is a compact space (γ is

a closed subset in the compact space P1
C×P1

C).

Let’s prove that M is a connected space. We know that (M, π̃1) is a double cover of C. So, if M has two connected

components M0 and M1, we have isomorphisms

π̃1 : M0
∼=−→C, π̃1 : M1

∼=−→C

and M0∩M1 is the set of four ramification points of π̃1: that is, M0∩M1 = {(pi, li) : i = 1, . . . ,4}= F1.

Figure 3.3

In a similar way, (M, π̃2) is a double cover of D∗ and we will also have isomorphisms

π̃2 : M0
∼=−→ D∗, π̃2 : M1

∼=−→ D∗

M0∩M1 will be the set of ramification points of π̃2: M0∩M1 =
{
(p̃i, l̃i) : i = 1, . . . ,4

}
=F2, where l̃i ∈C∗∩D∗

and p̃i =C∩ l̃i.

But F1 6= F2 (in fact, F1∩F2 = /0 as we saw in corollary 3.4), which is a contradiction. �

3.4 Proof of Poncelet’s porism

As we have said in section 3.1, we will deduce Poncelet’s porism from the fact that η = τ ◦σ is a translation on M.

The first step consists on proving that the involutions σ and τ are automorphisms of M, and thus so is η = τ ◦σ .

Let us remember that we have an isomorphism of Riemann surfaces

F|γ : γ −→M, F(r,s) = (p(r), l(s))

So we can define two maps σ∗,τ∗ : γ −→ γ given by the rules σ∗ = F−1 ◦σ ◦F and τ∗ = F−1 ◦ τ ◦F .

Remark. σ∗ interchanges the points of γ with the same s-coordinate. In fact, for a point (a,b) ∈ γ , we have:

• If l(b) /∈ C∗ ∩D∗, the intersection l(b)∩C consists of two different points p(a) and p(a′), for a certain

a′ ∈ P1
C. Therefore, (a,b),(a′,b) are the two points of γ with the s-coordinate equal to b and

σ∗(a,b) = (F−1 ◦σ ◦F)(a,b) = F−1(σ(p(a), l(b))) = F−1(p(a′), l(b)) = (a′,b)
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• Let’s suppose that l(b) ∈C∗∩D∗. Since l(b) is a tangent line to C, it follows that p(a) is the single point of

the intersection l(b)∩C. In this case, (a,b) is the single point of γ with the s-coordinate equal to b and

σ∗(a,b) = (F−1 ◦σ ◦F)(a,b) = F−1(σ(p(a), l(b))) = F−1(p(a), l(b)) = (a,b)

In the same way, τ∗ interchanges the points of γ with the same r-coordinate.

Figure 3.4

Lemma 3.7. σ∗ and τ∗ are automorphisms of the Riemann surface γ .

Proof. We will give a proof for τ∗; a similar one holds for σ∗.

Consider the set B = {(r,s) ∈ γ : p(r) ∈C∩D}. By the preceding remark, we can write

τ∗(r,s) =

(r,s′) (with s′ 6= s such that p(r) ∈ l(s′)) if (r,s) /∈ B

(r,s) if (r,s) ∈ B

It is clearly a bijective map. In order to show that τ∗ is an holomorphic map, observe that:

• τ∗ is holomorphic on γ \B:

Let p0 = (r0,s0) ∈ γ \B, then τ∗(p0) = (r0,s′0) ∈ γ \B with s0 6= s′0. Since γ is a Hausdorff space, we can

take disjoint neighbourhoods U and U ′ of p0 and τ∗(p0), respectively.

Let’s choose a neighbourhood V of r0 in P1
C, such that the projection

π1 : P1
C×P1

C −→ P1
C, π1(r,s) = r

induces homeomorphisms π1 : U
∼=−→V and π1 : U ′

∼=−→V .

Figure 3.5
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We can see (U,π1) and (U ′,π1) as local charts on γ . In terms of these charts, τ∗ is given by

π1 ◦ τ∗ ◦π
−1
1 : V

π
−1
1−→U τ∗−→U ′ π1−→V ,

that is the identity map. Thus τ∗ is holomorphic at p0.

• τ∗ is continuous on B:

Let’s suppose that τ∗ is not continuous at a point p0 = (r0,s0) ∈ B. Namely, we can consider a sequence
{(rn,sn)}n ⊂ γ such that

(rn,sn)
n→ (r0,s0), τ∗(rn,sn) = (rn,s′n)

n9 τ∗(r0,s0) = (r0,s0)

By the compactness of γ , there exists a partial sequence
{
(rnk ,s

′
nk
)
}

k converging to a point of γ . Looking at

the first component, we have

rn
n→ r0 =⇒ (rnk ,s

′
nk
)

k→ (r0,s′0) ∈ γ , for some s′0 6= s0

So (r0,s0),(r0,s′0) ∈ γ , with s0 6= s′0 and (r0,s0) ∈ B, which is a contradiction.

Since τ∗ is holomorphic on γ \B and is continuous on the finite set B, we conclude that τ∗ is holomorphic on γ . �

Corollary 3.8. σ and τ are automorphisms of the Riemann surface M.

Proof. It follows from the fact that σ = F ◦σ∗ ◦F−1 and τ = F ◦ τ∗ ◦F−1 are composition of isomorphisms. �

In the following theorem, we deal with the structure of involutional automorphisms of a complex torus.

Theorem 3.9. Let Λ a lattice, and τ : C/Λ −→ C/Λ a nontrivial automorphism with at least one fixed point

satisfying τ2 = Id . Then,

τ([z]) = [−z+β ], for some β ∈ C

Proof. Since τ is an automorphism of C/Λ, by theorem 2.15 we know that τ([z]) = [αz+β ], for some α,β ∈ C
such that αΛ = Λ. Iterating τ , we obtain

τ2([z]) = [α(αz+β )+β ] = [α2z+β (α +1)]

By hypothesis, τ is an involution, so

∀z ∈ C [z] = τ2([z]) = [α2z+β (α +1)] =⇒ ∀z ∈ C g(z) = (α2−1)z+β (α +1) ∈ Λ

Note that, if α2 6= 1, g is a translation and its image is not contained in Λ. Hence, α2 = 1.

Furthermore, if α = 1, τ([z]) = [z+β ] is the identity map (if β ∈ Λ) or has no fixed points (if β /∈ Λ).

Therefore, it must be α =−1 and τ([z]) = [−z+β ] . �

Remark. If {ω1,ω2} is a basis of the lattice Λ, it’s easy to check that τ has exactly four fixed points:

[1
2(β +ω1)], [1

2(β +ω2)], [1
2 β ] and [1

2(β +ω1 +ω2)]
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Corollary 3.10. Let τ1,τ2 automorphisms of C/Λ with at least one fixed point satisfying τ2
1 = Id=τ2

2 . Then, τ1 ◦τ2

is a translation of C/Λ.

Proof. By theorem 3.9, we have τ1([z]) = [−z+β1] and τ2([z]) = [−z+β2], for some β1,β2 ∈ C.

This gives that (τ1 ◦ τ2)([z]) = τ1([−z+β2]) = [z−β2 +β1] is a translation. �

Recall that, inasmuch as M is an elliptic curve, we have an isomorphism

ϕ : C/Λ−→M

for some lattice Λ. This isomorphism induces an analytic group structure on M, with the addition

ϕ(x)+ϕ(y) = ϕ(x+ y) for all x,y ∈ C/Λ

Based on the preceding corollary, we are ready to prove that η is a translation on M and deduce Poncelet’s porism.

Proposition 3.11. η = τ ◦σ is a translation on M. Namely, there exists m ∈M such that

η(p) = p+m, for all p ∈M.

Proof. Let’s consider the maps σ̃ , τ̃, η̃ : C/Λ−→ C/Λ given by

σ̃ = ϕ−1 ◦σ ◦ϕ , τ̃ = ϕ−1 ◦ τ ◦ϕ , η̃ = ϕ−1 ◦η ◦ϕ (note that η̃ = τ̃ ◦ σ̃ ).

The involutions σ̃ and τ̃ are automorphisms of C/Λ with four fixed points (a property inherited from σ and τ). By

corollary 3.10, there exists a ∈ C/Λ such that

η̃(q) = q+a, for all q ∈ C/Λ.

Then, it’s enough to take m = ϕ(a). In fact, for all p ∈M,

η(p) = (ϕ ◦ η̃ ◦ϕ−1)(p) = ϕ(ϕ−1(p)+a) = ϕ(ϕ−1(p))+ϕ(a) = p+m �

Theorem 3.12 (Poncelet’s porism). For any integer n≥ 3, ηn has a fixed point if and only if ηn = IdM.

Proof. Suppose that ηn has a fixed point p0 ∈M. By proposition 3.11, there exists m ∈M such that

∀p ∈M η(p) = p+m =⇒ ∀p ∈M ηn(p) = p+n ·m

If p0 is a fixed point of ηn, we have

p0 = ηn(p0) = p0 +n ·m =⇒ n ·m = 0 =⇒ ∀p ∈M ηn(p) = p

and, therefore, ηn is the identity map. �
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Chapter 4

Cayley’s theorem

We keep on working with two non-degenerate conics C and D of P2
C, meeting at four different points.

Let n ≥ 3 an integer. By Poncelet’s porism, we know that either there are no n-sided polygons simultaneously

inscribed in C and circumscribed about D, or there are infinitely many of them.

Now, the problem we deal with is determining whether there exists such a polygon. Cayley’s theorem provides an

elegant answer to this question, by expliciting a criterion from the equations for C and D.

4.1 A new algebraic equation for M

Remark. By an abuse of notation, we write C and D to denote the conics and their respective matrices.

For every r = (r0 : r1) ∈ P1
C, let Cr be the conic with matrix r0C+ r1D. Then, {Cr}r∈P1

C
is the conic pencil with

base points p0, p1, p2, p3 ∈C∩D.

Let’s denote by lr the tangent line to Cr through the point p0. This line will meet again C at another point p(r):

Figure 4.1
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We have a bijection p : P1
C −→C, with p((1 : 0)) = p0 since l(1:0) is the tangent line to C(1:0) =C through p0.

This bijection p gives us a parameterization of the conic C. So there exists a 3× 3 regular matrix A such that

Aq(r) = p(r), where

q : P1
C −→ P2

C, q(r) = q(r0 : r1) = (r2
0 : r0r1 : r2

1)

is the parameterization of the non-degenerate conic y2− xz = 0.

Proposition 4.1. For each r = (r0 : r1) ∈ P1
C, the identity ∆(r) = r1 det(r0C+ r1D) holds.

Proof. We have already seen that p0 = p((1 : 0)). Now, we want to find the preimages of the other base points

p1, p2, p3 of the conic pencil {Cr}r∈P1
C
.

Inasmuch as C and D meet at four different points, {Cr}r∈P1
C

has exactly three degenerate conics Ca1 ,Ca2 and Ca3 ,

with ai = (ai0 : ai1) ∈ P1
C satisfying det(ai0C+ai1D) = 0.

Furthermore, we can assume that ai = (ai0 : 1) (C is a non-degenerate conic, so detC 6= 0). Namely, a10,a20 and

a30 are the three complex roots of the third degree polynomial det(r0C+D).

According to corollary 1.14, the degenerate conics Ca1 ,Ca2 and Ca3 are the three pairs of lines including the points

p0, p1, p2, p3. If we index the ai in a way that Cai contains the line li = p0∨ pi, we have

lai = li =⇒ pi = p(ai)

On the other hand, recall that p(r) ∈C∩D = {p0, p1, p2, p3} ⇐⇒ ∆(r) = 0. Now:

• Focusing on the points (r0 : 1), r0 ∈ C, we observe that ∆((r0 : 1)) and det(r0C+D) are polynomials in C
with exactly the same roots (a10,a20 and a30). Consequently,

∀r0 ∈ C ∆((r0 : 1)) = α ·det(r0C+D)

for some constant α 6= 0.

• ∆((1 : 0)) = 0 (it follows from p((1 : 0)) = p0 ∈C∩D) and, clearly, α · r1 det(r0C+ r1D) vanishes at (1 : 0).

Since ∆((r0 : r1)) and α · r1 det(r0C+ r1D) are homogeneous polynomials of degree 4, it is deduced that

∀(r0 : r1) ∈ P1
C ∆((r0 : r1)) = α · r1 det(r0C+ r1D)

Changing, if necessary, the matrix A by 1√
α

A (this change does not affect the projectivity represented by A), we can

assume α = 1. �

As we have seen, with this parameterization p of the conic C we have a “relatively good” expression for ∆(r). Now,

we will use this expression to construct an explicit isomorphism G between a certain elliptic curve E and γ .

Lemma 4.2. The curve γ is isomorphic to E =
{
(r,u) ∈ P1

C×P1
C : u2

0r3
1 = u2

1 ·det(r0C+ r1D)
}

.

Proof. Note that E is an algebraic curve in P1
C×P1

C, with bidegree (3,2). In order to show that E is a Riemann

surface, by theorem 2.7 it will suffice to prove that it has no singular points.
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Consider the affine chart A1 =
{
((x : 1),(y : 1)) ∈ P1

C×P1
C : x,y ∈ C

}
of P1

C×P1
C. Using the notations of propos-

ition 4.1, we can see E ∩A1 as the plane affine cubic with equation

y2 = det(xC+D) = (x−a10)(x−a20)(x−a30)

where the ai0 are three different non-zero complex numbers.

Taking partial derivatives with respect to x and y, the conditions for singular points are
2y = 0

(x−a10)(x−a20)+(x−a10)(x−a30)+(x−a20)(x−a20) = 0

y2 = (x−a10)(x−a20)(x−a30)

But this system has no solutions: if y = 0, by the third equation it must be x = ai0 for some i ∈ {1,2,3} and the

second equation is not satisfied.

So that E has no singular points on A1. A similar check holds for the remaining affine charts covering P1
C×P1

C.

Now, consider the open set E0 = {(r,u) ∈ E : T2(r) 6= 0, r1 6= 0} in E, and define a map

G : E0 −→ γ , G((r0 : r1),(u0 : u1)) = ((r0 : r1),(2T2(r) ·u1 :−T1(r) ·u1 +u0 · r2
1))

In fact, for each (r,u) ∈ E0, G(r,u) is a point of γ , because it satisfies the equation H(r,s) = 0:

H((r0 : r1),(2T2(r) ·u1 :−T1(r) ·u1+u0 ·r2
1)) = T0(r) ·(2T2(r) ·u1)

2+T1(r) ·2T2(r) ·u1 ·(−T1(r) ·u1+u0 ·r2
1)+

+T2(r) · (−T1(r) ·u1 +u0 · r2
1)

2 = 4T0(r)T2(r)2u2
1−2T1(r)2T2(r)u2

1((((
((((

((
+2T1(r)T2(r)u0u1r2

1 +T2(r)u2
0r4

1

((((
(((

(((−2T1(r)T2(r)u0u1r2
1 +T1(r)2T2(r)u2

1 = 4T0(r)T2(r)2u2
1−T1(r)2T2(r)u2

1 +T2(r)u2
1r1 ·det(r0C+ r1D) =

= 4T0(r)T2(r)2u2
1−T1(r)2T2(r)u2

1 +T2(r)u2
1∆(r) = T2(r)u2

1 · (4T0(r)T2(r)−T1(r)2 +∆(r)) = T2(r)u2
1 ·0 = 0

Moreover, G is an injective map:

((r0 : r1),(2T2(r) ·u1 :−T1(r) ·u1 +u0 · r2
1)) = ((r̃0 : r̃1),(2T2(r̃) · ũ1 :−T1(r̃) · ũ1 + ũ0 · r̃1

2)) =⇒

=⇒ (r0 : r1) = (r̃0 : r̃1) and (2T2(r) ·u1 :−T1(r) ·u1 +u0 · r2
1) = (2T2(r) · ũ1 :−T1(r) · ũ1 + ũ0 · r2

1) =⇒

=⇒ (r0 : r1) = (r̃0 : r̃1) and 0 =

∣∣∣∣∣2T2(r) ·u1 −T1(r) ·u1 +u0 · r2
1

2T2(r) · ũ1 −T1(r) · ũ1 + ũ0 · r2
1

∣∣∣∣∣= 2T2(r) · r2
1 · (ũ0u1−u0ũ1) =⇒

=⇒ (r0 : r1) = (r̃0 : r̃1) and 0 = ũ0u1−u0ũ1 =⇒ (r0 : r1) = (r̃0 : r̃1) and (u0 : u1) = (ũ0 : ũ1)

It can also be checked that G is an holomorphic map. So we have two holomorphic maps G : E0 −→ γ and

G−1 : G(E0)−→ E, both of them with degree 1 (by the injectivity of G).

Since γ and E are Riemann surfaces contained in P1
C×P1

C ⊂ P3
C (this last inclusion via the Segre embedding), it

follows from lemma 2.9 that we have two extended holomorphic maps G̃ : E −→ γ and G̃−1 : γ −→ E.

The fact of E and γ being non-singular curves ensures us that each of these extensions has degree 1. Therefore, the

map G : E −→ γ is bijective and gives us an isomorphism from the elliptic curve E to γ . �
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4.2 Cayley’s theorem

Since M is an elliptic curve, it can be endowed with an analytic group structure, uniquely determined by the choice

of neutral element as we saw in theorem 2.17.

Now, we are going to relate the existence of our desired polygons with the torsion points of M.

We will use the restatement of the Poncelet problem in terms of η . Namely, there exists an n-sided polygon

inscribed in C and circumscribed about D if, and only if, ηn = IdM.

Lemma 4.3. Let n > 0 a positive integer, and θ ∈M the neutral element of the addition on M. Then:

ηn = IdM ⇐⇒ n ·η(θ) = θ (i.e., η(θ) is a torsion point of order n)

Proof. We know that η is a translation of M. Hence, there must exist m ∈M such that

∀p ∈M η(p) = p+m =⇒ ∀p ∈M ηn(p) = p+n ·m

In particular, taking p = θ , observe that η(θ) = θ +m = m and

ηn = IdM ⇐⇒ n ·m = θ ⇐⇒ n ·η(θ) = θ �

So we are interested in the torsion points of M, which provide from torsion points of E.

But note that, in the usual affine charts of P1
C×P1

C, the elliptic curve E “looks like” a plane cubic. Basing on the

description of torsion points of plane cubics given in theorem 2.19, we can establish the following criterion:

Theorem 4.4 (Cayley’s theorem). Let C and D two non-degenerate conics of P2
C meeting at four different points,

and let√
det(tC+D) = A0 +A1t +A2t2 + ...

be the Taylor expansion, at the point t = 0, of the function
√

det(tC+D). Then, there exists a n-sided polygon

inscribed in C and circumscribed about D if, and only if,∣∣∣∣∣∣∣∣
A2 . . . Am+1
...

...

Am+1 . . . A2m

∣∣∣∣∣∣∣∣= 0, when n is odd and n = 2m+1, for some m≥ 1

∣∣∣∣∣∣∣∣
A3 . . . Am+1
...

...

Am+1 . . . A2m−1

∣∣∣∣∣∣∣∣= 0, when n is even and n = 2m, for some m≥ 2

Proof. Recall that we have the curves E =
{
(r,u) : u2

0r3
1 = u2

1 ·det(r0C+ r1D)
}

and γ = {(r,s) : H(r,s) = 0} in

P1
C×P1

C, as well as the isomorphisms

G : E −→ γ , G((r0 : r1),(u0 : u1)) = ((r0 : r1),(2T2(r) ·u1 :−T1(r) ·u1 +u0 · r2
1))
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F : γ −→M, F(r,s) = (p(r), l(s))

Let’s consider the isomorphism ψ = G−1 ◦F−1 : M−→ E.

If we take θ = (p0, l0) = (p((1 : 0)), l0) as the neutral element on M (where l0 is the tangent line to D through p0),

ψ(θ) = G−1(F1(p((1 : 0)), l0)) = G−1((1 : 0), l−1(l0)) = ((1 : 0),(u0 : u1))

for some (u0 : u1) such that ((1 : 0),(u0 : u1)) ∈ E. That is, ψ(θ) = ((1 : 0),(1 : 0)).

Thus choosing ((1 : 0),(1 : 0)) as the neutral element on E, by corollary 2.18 ψ is also a group isomorphism.

Note that η(θ) = (p̃, l̃), where p̃ satisfies C∩ l0 = {p0, p̃} and l̃ is the tangent line to D through p̃. But p̃= p((0 : 1))

(since l0 is the tangent line to D =C(0:1) through p0), so

ψ(η(θ)) = G−1(F1(p((0 : 1)), l̃)) = G−1((0 : 1), l−1(l̃)) = ((0 : 1),(u0 : u1))

for some (u0 : u1) such that ((0 : 1),(u0 : u1))∈E. From the equation for E, it follows that (u0 : u1) = (±
√

detD : 1).

Using that ψ is a group isomorphism and Lemma 4.3, we deduce that

ηn = IdM ⇐⇒ η(θ) is a torsion point of M of order n⇐⇒

⇐⇒ ψ(η(θ)) = ((0 : 1),(±
√

detD : 1)) is a n-torsion point of E

Now, let’s study the restriction of the elliptic curve E to the affine chart A1 =
{
((x : 1),(y : 1)) ∈ P1

C×P1
C : x,y ∈ C

}
of P1

C×P1
C. Namely, consider the plane affine curve

E ′ =
{
(x,y) ∈ C2 : ((x : 1),(y : 1)) ∈ E

}
=
{
(x,y) ∈ C2 : y2 = det(xC+D)

}
and its projective closure

E ′′ =
{
(x : y : z) ∈ P2

C : y2z = det(xC+Dz)
}

Since the pair of points at infinity ((1 : 0),(1 : 0)) is the neutral element on E, the neutral element on E ′′ must be

on the line at infinity z = 0: it’s the point (0 : 1 : 0). Then,

((0 : 1),(±
√

detD : 1)) is a n-torsion point of E ⇐⇒ (0,±
√

detD) is a n-torsion point of E ′⇐⇒

⇐⇒ (0 :±
√

detD : 1) is a n-torsion point of E ′′

and Cayley’s theorem becomes a consequence of theorem 2.19. �

4.3 Some examples

Let C and D two non-degenerate conics of P2
C. As we have seen, simply by computing a Taylor series and a determ-

inant, Cayley’s theorem allows us to know whether there exists a n-sided polygon inscribed in C and circumscribed

about D (and hence, whether there exist infinitely many).

In this section, we see two examples of this explicit criterion, checking graphically the results obtained.
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Example. Consider the non-degenerate conics C : −y2 +2xz = 0 and D : 2xy− z2 = 0 of P2
C, given by

C =

0 0 1

0 −1 0

1 0 0

, D =

0 1 0

1 0 0

0 0 −1

.

We have det(tC+D) = t3 +1 and the Taylor expansion
√

t3 +1 = 1+ 1
2 t3 + ... .

Since C and D meet at the four different points (1
2 : 1 : 1), (1 : 0 : 0), (−1+

√
3i

4 : −1−
√

3i
2 : 1) and (−1−

√
3i

4 : −1+
√

3i
2 : 1),

it follows from Cayley’s theorem (taking n = 3 and m = 1) that there exist infinitely many triangles inscribed in C

and circumscribed about D.

Let’s visualize this fact at the real affine plane R2 ∼=
{
(x : y : 1) ∈ P2

C : x,y ∈ R
}

with Geogebra. The affine equa-

tions for C and D are C : −y2 +2x = 0 (a parabola) and D : 2xy−1 = 0 (an hiperbola).

Note that we will only see the intersection point (1
2 ,1), since (1 : 0 : 0) lies on the line at infinity and the points

(−1+
√

3i
4 : −1−

√
3i

2 : 1), (−1−
√

3i
4 : −1+

√
3i

2 : 1) have complex coordinates.

For any starting point on C 1, the Poncelet construction closes at the third step, and gives us a triangle simultaneously

inscribed in C and circumscribed about D. The independence of the choice of starting point is easily checked with

the tool «Attach / Detach Point».

Figure 4.2
1The point must be good enough to ensure the existence of tangent lines to D: recall that now we are working in R2
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Example. Let C : −y2 +2xy+2xz = 0 and D : −x2 +2xy+2yz = 0 be the non-degenerate conics with matrices

C =

0 1 1

1 −1 0

1 0 0

, D =

−1 1 0

1 0 1

0 1 0


Note that C and D meet at the points (0 : 0 : 1), (−2 :−2 : 1), (−1−

√
3

3 i :−1+
√

3
3 i : 1) and (−1+

√
3

3 i :−1−
√

3
3 i : 1).

It’s easy to see that det(tC + D) = t3 + 2t2 + 2t + 1 and
√

t3 +2t2 +2t +1 = 1 + t − t2 − 1
2 t4 + ... . Hence,

by Cayley’s theorem (with n = 4 and m = 2), any point on C is a vertex of a quadrilateral inscribed in C and

circumscribed about D.

Proceeding as in the example above, we get a visualization at the real affine plane:

Figure 4.3
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Chapter 5

The Poncelet problem in P3
C

After having studied the Poncelet problem in the plane, now we want to generalize the results obtained to higher

dimensions.

For example, we ask whether there exist polyhedra in P3
C inscribed in one quadric and circumscribed about another.

Nevertheless, the method of construction can’t be exactly the same as before: through a point in P3
C there are

infinitely many tangent planes to a quadric.

We will need to construct polyhedra both inscribed in and circumscribed about a pair of quadrics. The theorem

concerning their existence will be remarkably similar to Poncelet’s porism.

5.1 Intersection of quadrics in P3
C

During all the chapter, Q1 and Q2 will be two non-degenerate quadrics in P3
C, with respective matrices M1 and M2.

In order to construct a polyhedra both inscribed in and circumscribed about Q1 and Q2, we must know how is the

intersection of the given quadrics. We will assume that it is a transverse intersection.

Definition. We say that Q1 and Q2 are meeting transversely if, and only if, for each point p ∈ Q1∩Q2 the tangent

planes TpQ1 and TpQ2 are different.

Remarks.

1. We can see the transverse intersection as an analogy of the intersection of two conics at four different points.

In fact, by Bézout theorem, two conics meet at four different points if, and only if, both tangent lines to the

conics at the intersection points are different.

2. If PQi denotes the polarity induced by the quadric Qi, the transverse intersection of Q1 and Q2 is equivalent

to the projectivity
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P−1
Q2
◦PQ1 : P3

C
PQ1−→ P3

C
∨

P−1
Q2−→ P3

C

not having fixed points, when restricted to Q1∩Q2.

Proposition 5.1. Two quadrics Q1,Q2 ⊂ P3
C are meeting transversely if, and only, their envelopes Q∗1,Q

∗
2 are

meeting transversely (as non-degenerate quadrics in P3
C
∨).

In the case of intersecting three quadrics, we have the following result:

Lemma 5.2. Let Q1,Q2,Q3 ⊂ P3
C be three non-degenerate quadrics with pairwise transverse intersection. Then,

Q1∩Q2∩Q3 consists of a set with eight points.

Remark. The idea behind lemma 5.2 is that, via the identification Q1 ∼= P1
C×P1

C given in section 1.3, we can see

Q1∩Q2∩Q3 = (Q1∩Q2)∩ (Q1∩Q3)

as the intersection of two non-singular curves in Q1 ∼= P1
C×P1

C, both of them with bidegree (2,2).

According to a sort of Bézout theorem for curves in P1
C×P1

C, Q1∩Q2∩Q3 consists of 2 ·2+2 ·2 = 8 points.

5.2 Construction of polyhedra

Hereinafter, we will assume that Q1,Q2 ⊂ P3
C are two non-degenerate quadrics meeting transversely.

We will denote by A,B the two families of lines lying on Q1, and similarly C,D for Q2, and we will write

E = Q∗1∩Q∗2

the set of bitangent planes.

Consider an arbitrary bitangent plane T ∈ E. Then:

• Since T ∈ Q∗1, it follows from theorem 1.5 that T meets Q1 in two lines: an A-line LA and a B-line LB.

• Similarly, the intersection T ∩Q2 is the union of a C-line LC and a D-line LD.

Note that the four lines must be distinct because Q1 and Q2 are meeting transversely.

Then, P1 = LA∩LB and P2 = LC ∩LD are the contact points of T with Q1 and Q2, respectively.

Figure 5.1
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Now, since LA��⊂Q2, according to lemma 1.6 there are exactly two tangent planes to Q2 containing the line LA. One

of them is T . Let’s write T̃ the other one.

Note that T̃ contains the line LA ⊂ Q1 so, again by lemma 1.6, T̃ is tangent to Q1 at some point of LA.

Hence, T̃ is a bitangent plane (T̃ ∈ E) and we can writeT ∩Q1 = LA∪LB, T ∩Q2 = LC ∪LD

T̃ ∩Q1 = LA∪ L̃B, T̃ ∩Q2 = L̃C ∪ L̃D

where L̃B is a B-line, L̃C is a C-line and L̃D is a D-line.

Remark. We have LD∩LA = L̃C ∩LA and LC ∩LA = L̃D∩LA.

In fact, LD∩ L̃C 6= /0, since it’s the intersection of a C-line with a D-line. Then,

/0 6= LD∩ L̃C ⊂ T ∩ T̃ = LA

So the three distinct lines LA, LD and L̃C are incident and it must be LD ∩ LA = LD ∩ L̃C = L̃C ∩ LA. A similar

reasoning holds for LC ∩LA = L̃D∩LA.

The following figure illustrates the situation:

Figure 5.2

Let’s denote by iA this construction process of T̃ from T : namely, T̃ = iA(T ).
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In a similar way, we can define maps iB, iC, iD on E, by taking LB,LC or LD on the plane T instead of the line LA.

Remark. The maps iA, iB, iC and iD are involutions on E. For example, iA interchanges the two tangent planes to

Q2 containing the line LA.

Beginning with a fixed bitangent plane T0 ∈ E and succesively applying these involutions, we have a polyhedron

Π(T0). For example, in figure 5.2, the shaded quadrilaterals are faces of the configuration Π(T ).

A polyhedron Π(T0) generated from a bitangent plane T0 ∈ E is both inscribed in and circumscribed about Q1 and

Q2, in the following sense:

• Its planes are elements of E, that is, are tangent to both Q1 and Q2.

• Its vertices are points lying on Q1∩Q2.

• Its edges are lines alternately contained in Q1 and Q2.

The question we deal with is whether or not this configuration is finite, that is, the process of applying succesively

the involutions comes back to the initial bitangent plane.

The answer, published by Griffiths and Harris in [8], reminds Poncelet’s porism.

5.3 A Poncelet theorem in space

Lemma 5.3. The transverse intersection Q1∩Q2 is a Riemann surface with genus 1.

Proof. We can see Q1 ∩Q2 as a non-singular curve of bidegree (2,2) in Q1 ∼= P1
C×P1

C (see remark on page 50).

Hence, when endowed with the complex structure described in theorem 2.7, Q1∩Q2 is a Riemann surface.

Now, let’s define

πA : Q1∩Q2 −→ {A-lines of Q1}

mapping each point p ∈ Q1∩Q2 to the A-line through p.

We can see {A-lines of Q1} as a Riemann surface, by taking a bijection from P1
C to this set and defining a complex

structure as in lemma 2.8. With this complex structure, πA is an holomorphic map.

Consider an arbirary A-line L of Q1. Note that it can’t be L⊂ Q2, since Q1 and Q2 are meeting transversely. Then,

generally L meets Q2 in two points, so that the A-line L has two preimages.

But this happens except when L is a tangent line to Q2: in such a case, L has an unique preimage.

In other words: πA is an holomorphic map of degree 2, with branch points the A-lines of Q1 which are tangent to

Q2. By Hurwitz formula, we deduce that

2 ·g(Q1∩Q2) =−2+ ∑
p∈Q1∩Q2

(ep(πA)−1)
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So, in order to prove that g(Q1∩Q2) = 1, it’s enough to prove that there are four branch points.

On the other hand, consider the holomorphic map

πB : Q1∩Q2 −→ {B-lines of Q1}

whose branch points are the B-lines of Q1 which are tangent to Q2.

By Hurwitz formula, πB has the same number of branch points as πA. Therefore, if we prove that there are exactly

eight lines lying on Q1 and tangent to Q2, we will have four of them in each family (A or B), finishing our prove.

Let’s suppose that L ⊂ Q1 is a tangent line to Q2 (at a point p). Then, TpQ2 is a plane containing the line L ⊂ Q1

and, according to lemma 1.6, TpQ2 is tangent to Q1 somewhere along L (namely, TpQ2 ∈ Q∗1).

Conversely, if we have a point p ∈ Q1∩Q2 with TpQ2 ∈ Q∗1 (that is, TpQ2 = Tp′Q1 for some p′ ∈ Q1), then:

p∨ p′ ⊂ Q1∩Tp′Q1 = Q1∩TpQ2 =⇒ p∨ p′ ⊂ Q1 and p∨ p′ is tangent to Q2

Thus: finding the lines contained in Q1 and tangent to Q2 is equivalent to determining the points p ∈ Q1∩Q2 such

that TpQ2 ∈ Q∗1.

Suppose that p ∈ Q1∩Q2 is a point with coordinates (x0 : x1 : x2 : x3) in P3
C. Then,

TpQ2 ∈ Q∗1⇐⇒ M2


x0

x1

x2

x3

= M1


y0

y1

y2

y3

 , for some (y0 : y1 : y2 : y3) ∈ Q1⇐⇒

⇐⇒ M−1
1 M2


x0

x1

x2

x3

=


y0

y1

y2

y3

 , for some
(

y0 y1 y2 y3

)
M1


y0

y1

y2

y3

= 0⇐⇒

⇐⇒
(

x0 x1 x2 x3

)
Mt

2(M
−1
1 )tM1M−1

1 M2


x0

x1

x2

x3

= 0⇐⇒
(

x0 x1 x2 x3

)
M2M−1

1 M2


x0

x1

x2

x3

= 0

Namely, the points p ∈Q1∩Q2 such that TpQ2 ∈Q∗1 are exactly the points p ∈Q1∩Q2∩Q3, where Q3 ⊂ P3
C is the

non-degenerate quadric with matrix M2M−1
1 M2.

Since the quadrics Q1,Q2,Q3 have pairwise transverse intersection (it can be checked from their matrices), by

lemma 5.2 the intersection Q1∩Q2∩Q3 consists of a set with eight points.

Therefore, there are exactly eight lines contained in Q1 and tangent to Q2, which finishes the proof. �

Corollary 5.4. If two quadrics Q1,Q2 ⊂ P3
C have transverse intersection, the set E = Q∗1∩Q∗2 of bitangent planes

is an elliptic curve.

Proof. According to proposition 5.1, we know that the quadrics Q∗1 and Q∗2 are meeting transversely in P3
C
∨.
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Since Q∗1 and Q∗2 are quadrics of a three-dimensional projective space meeting transversely, it follows from lemma

5.3 that E = Q∗1∩Q∗2 is a Riemann surface with genus 1. �

Theorem 5.5 (Griffiths, Harris). Let Q1,Q2 ⊂ P3
C be two non-degenerate quadrics meeting transversely, and

E = Q∗1∩Q∗2 their set of bitangent planes.

Then, the configuration Π(T0) is finite for some T0 ∈ E if, and only if, Π(T ) is finite for every bitangent plane T ∈ E.

Proof. By corollary 5.4, E is an elliptic curve. Hence, there exists an isomorphism ϕ : C/Λ−→ E defining a group

structure on E:

ϕ(x)+ϕ(y) = ϕ(x+ y) for all x,y ∈ C/Λ

Let’s denote by θ = ϕ([0]) the neutral element for this group law on E.

The map ĩA = ϕ−1 ◦ iA ◦ϕ : C/Λ −→ C/Λ is an involutional automorphism of C/Λ with fixed points (a property

inherited from iA). So, according to theorem 3.9, there exists an element a1 ∈ C/Λ such that

ĩA(q) =−q+a1, for all q ∈ C/Λ.

Taking τ1 = ϕ(a1), we have

iA(z) = (ϕ ◦ ĩA ◦ϕ−1)(z) = ϕ(−ϕ−1(z)+a1) = ϕ(−ϕ−1(z))+ϕ(a1) =−z+ τ1

for all z ∈ E. Likewise, we can suppose that iB, iC and iD are given by

iB(z) =−z+ τ2 , iC(z) =−z+ τ3 , iD(z) =−z+ τ4

With these notations, the condition of having a finite polyhedron Π(T0) for some T0 ∈ E becomes

(iD ◦ iC ◦ iB ◦ iA)n(T0) = T0, for some n≥ 1⇐⇒ T0 +n(τ4− τ3 + τ2− τ1) = T0, for some n≥ 1⇐⇒

⇐⇒ n(τ4− τ3 + τ2− τ1) = θ , for some n≥ 1⇐⇒ τ4− τ3 + τ2− τ1 is a torsion point on E

And this condition does not rely on the choice of the initial bitangent plane T0. �
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Appendix. Mathematical billiards

The billiard problem

The billiard problem was formulated by George D. Birkhoff (1884-1944) in his studies of certain dynamical systems

concerning the three-body problem.

Let C be a simple closed convex curve in the euclidean plane R2 (for example, a polygon or an ellipse). We can

imagine the domain bounded by C as a pool table.

Let’s suppose that a point particle moves in the interior of this pool table. The motion is along a straight line,

with constant velocity and the particle reflects elastically at the boundary. That is, when the particle reaches the

boundary, the angle of incidence is equal to the angle of reflection.

Figure A.1

The billiard problem consists on describing all the possible trajectories of the particle, and its general answer is not

known.

However, if the curve C is an ellipse, the billiard problem is closely related to Poncelet’s porism. We are going to

see that the trajectories of the particle correspond to the construction of polygons inscribed in C and circumscribed

about a conic D (an ellipse or an hyperbola), that is confocal with C.
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Elliptic billiards

Hereinafter, C ⊂ R2 will denote an ellipse with foci F1 and F2. Namely, C is the locus of points in R2 the sum of

whose distances from F1 and F2 is a fixed constant.

Lemma A.1. Let p0 ∈C, and l = Tp0C the tangent line to C through the point p0.

1. If F ′2 is the symmetric point of the focus F2 with respect to l, then the points F1, p0 and F ′2 lie on a line.

2. The lines l1 = F1∨ p0 and l2 = F2∨ p0 have the same incident angle with respect to l.

Proof. Given two points a,b ∈ R2, we write ab for the segment defined by a and b, and |ab| for its length.

If λ = |F1 p0|+ |F2 p0|, by definition of ellipse we have |F1q|+ |F2q|= λ for each point q ∈C.

Figure A.2

We claim that, for each p ∈ l \ {p0}, |F1 p|+ |pF ′2| > λ . Indeed, if qp is the intersection point of C with the line

spanned by F1 and p (see figure A.2),

λ = |F1qp|+ |F2qp|< |F1qp|+ |qp p|+ |pF2|= |F1 p|+ |pF2|= |F1 p|+ |pF ′2|

Since p = p0 minimizes the function |F1 p|+ |pF ′2| in l, it follows the result. �

Definition. A billiard trajectory for C is a sequence {(pn, ln)}n≥0 (with pn ∈C and ln a line on R2) such that, for

each n≥ 0, pn, pn+1 ∈ ln and ln−1, ln make equal angles with the tangent line TpnC.

Figure A.3
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Remark. By lemma A.1, if a line of a billiard trajectory for C contains one of the foci, then all lines of the trajectory

contain one or the other focus, alternately.

Definition. Let D be either another ellipse or an hyperbola in R2. A Poncelet trajectory for the pair (C,D) is a

sequence {(pn, ln)}n≥0 such that, for each n≥ 0, pn, pn+1 ∈C∩ ln and ln is a tangent line to D.

Theorem A.2.

1. Let D a confocal ellipse or hyperbola with C. Then, the Poncelet trajectories for (C,D) are billiard traject-

ories for C.

2. Conversely, any billiard trajectory for C (not passing through the foci, and not along the minor axis) is a

Poncelet trajectory for (C,D), for some conic D confocal with C.

Proof. Let’s prove 1, assuming that C and D are two confocal ellipses. By lemma A.1, we have a picture

Figure A.4

where the red lines lA and lB, and the point p, are part of a Poncelet trajectory for (C,D). In order to prove that it’s

a billiard trajectory, we must show the equality of red angles θ1 = θ2. Consider:

• A and B the contact points of lA and lB with D, respectively.

• F ′2 the reflexion of F2 with respect to TpC.

• F ′′1 and F ′′2 the reflexions of F1 and F2 with respect to lA and lB, respectively.

• η1 the angle between lA and the line p∨F ′′1 , as well as the angle between lA and the line p∨F1.

• η2 the angle between lB and the line p∨F ′′2 , as well as the angle between lB and the line p∨F2.
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By definition of the ellipse D,

|F1A|+ |AF2|= |F1B|+ |BF2| =⇒ |F ′′1 A|+ |AF2|= |F1B|+ |BF ′′2 | =⇒ |F ′′1 F2|= |F1F ′′2 |

It follows that the triangles F ′′1 pF2 and F1 pF ′′2 are rotations of each other (through p), so that

α +2η1 = α +2η2 =⇒ η1 = η2

Moreover, considering C and the segments pF1 and pF2, it must be θ1 +η1 = θ2 +η2 and thus θ1 = θ2.

The second statement can be proved with similar arguments. See the book [3] for further details. �
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