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Abstract

Hopf Galois theory is a generalization of Galois theory. Galois theory gives a bijec-
tive correspondence between intermediate fields of a Galois field extension (normal
and separable) and subgroups of the Galois group. Hopf Galois theory substitutes
the Galois group by a Hopf algebra. In the case of separable extensions it has a
characterization of the Hopf Galois character in terms of groups. Thus, we use
Magma in order to obtain all Hopf Galois structures of extensions of degree 8.
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A. Navarro, José Navarro, Juan Sancho, Pedro Sancho and Fernando Sánchez for
having been such wonderful teachers and, furthermore, models and friends.

I want to thank my family, especially my parents, my friends and my local
churches in Barcelona and in Badajoz for their support during my undergraduate
studies.

And finally, but not least, I want to thank God, the Great Mathematician and
Creator of the Universe. Thank you, Jesus, for giving me a new life and for giving
real meaning to what I am and do.

“This most beautiful system of the sun, planets, and comets, could only proceed
from the counsel and dominion of an intelligent and powerful Being... This Being

governs all things, not as the soul of the world, but as Lord over all”

Principia Mathematica - Sir Isaac Newton

ii



Contents

1 Introduction 1

2 Algebras and coalgebras 2

2.1 Multilinear maps and tensor products . . . . . . . . . . . . . . . . . 2

2.2 Algebras and coalgebras . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Bialgebras and module algebras 25

3.1 Bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Module algebras and module coalgebras . . . . . . . . . . . . . . . . 28

3.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Hopf algebras and Hopf Galois extensions 34

4.1 Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Hopf Galois extensions . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Separable Hopf Galois extensions 48

5.1 Classification of forms . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Hopf Galois character in terms of groups . . . . . . . . . . . . . . . 51

5.3 Examples of separable extensions of degree 8 . . . . . . . . . . . . . 54

6 Conclusions 58

A Magma code and some results 59

iii



1 Introduction

Project

Galois theory, named after Évariste Galois, provides a connection between field
theory and group theory. Using Galois theory, certain problems in field theory can
be reduced to group theory, which is, in some sense, simpler and better understood.
Galois theory classifies intermediate fields of a Galois field extension L|K by means
of the subgroups of G = Gal(L|K) of K-automorphisms of L.

The Galois action of the Galois group G on L induces an action of the group
algebra K[G] on L. Replacing K[G] with an appropriate algebra we can generalize
Galois theory. Chase and Sweedler introduced in the sixties the Hopf Galois theory
in which the action of G is replaced by the action of a Hopf algebra, and they ap-
plied it to inseparable extensions. Later on, Greither and Pareigis studied the Hopf
Galois theory of separable field extensions and stated the Hopf Galois character of
a field extension in terms of groups. Hopf Galois theory has applications in number
theory in the study of integral normal basis and ramification.

In this dissertation, we introduce the notions of Hopf algebra and Hopf Galois
extension, and discuss some results of Hopf Galois theory in the case of separable
extensions. The characterization of the Hopf Galois character in terms of groups
allows us to use the computational algebra system Magma to obtain explicit calcu-
lations. We focus on separable extensions of degree 8.

Memory structure

In order to reach to the concept of Hopf algebra, we need some previous knowledge.
We start defining tensor product of modules over a ring. It leads us to construct
the first important structure, called algebra, as a vector space endowed with two
linear maps satisfying certain properties which may be presented via commutative
diagrams. We define coalgebras as co-objects to algebras formed by reversing the
arrows in the diagrams for algebras. Afterwards, we define bialgebras as vector
spaces which are both algebras and coalgebras. Finally, we construct Hopf algebras
as bialgebras with an additional map.

We consider the action of a bialgebra over an algebra and define Hopf Galois
extensions by means of the action of a Hopf algebra on the extension field. Moreover,
in the case of separable field extensions, there is a characterization of Hopf Galois
extensions in terms of groups which allows us to obtain explicit results using Magma.
We focus on separable extensions of degree 8 and discuss an example in detail.
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2 Algebras and coalgebras

In this first chapter, we introduce algebras and coalgebras. We begin by construct-
ing the tensor product of a finite collection of R-modules, where R is a commu-
tative ring with unity. We specialize to tensor products over a field K and give
the diagram-theoretic definition of a K-algebra. We then define coalgebras as co-
objects to algebras formed by reversing the arrows in the diagrams for algebras.

We next consider the linear dual. We show that if C is a coalgebra, then C∗

is an algebra. But the converse of this statement is not true in general. In order
to have the reciprocal result, we need to replace the dual space A∗ with a certain
subspace A◦ called the finite dual. Now, if A is an algebra, then A◦ is a coalgebra.
As an application, we show that the finite dual K[x]◦ can be identified with the
collection of linearly recursive sequences of all orders over K.

2.1 Multilinear maps and tensor products

In this section, we define R-n-linear maps in order to construct the tensor product
of a set of R-modules M1, . . . ,Mn as the solution to a universal mapping problem.

LetR be a commutative ring with unity. Let n ≥ 2 be an integer. LetM1, . . . ,Mn

be a collection of R-modules, and let A be an R-module.

Definition 2.1.1. A map f : M1 × · · · ×Mn → A is R-n-linear if for all r ∈ R,
ai, a

′
i ∈Mi, where i ∈ {1, . . . , n}, it satisfies

1. f(a1, . . . , ai + a′i, . . . , an) = f(a1, . . . , ai, . . . , an) + f(a1, . . . , a
′
i, . . . , an),

2. f(a1, . . . , rai, . . . , an) = rf(a1, . . . , ai, . . . , an).

For instance, an R-bilinear map is an R-2-linear map.

Definition 2.1.2. A tensor product of M1, . . . ,Mn over R is an R-module T toge-
ther with an R-n-linear map f : M1 × · · · ×Mn → T so that for every R-module A
and R-n-linear map h : M1 × · · · ×Mn → A there exists a unique R-module map
h̃ : T → A for which h̃f = h.

Equivalently, the following diagram commutes:

M1 × · · · ×Mn A

T

f

h

h̃
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Remark 2.1.3. From the definition, we deduce the uniqueness of the tensor pro-
duct up to isomorphism. Let T1, T2 be tensor products of M1, . . . ,Mn over R, that
is, T1, T2 are respectively endowed with R-n-linear maps f1 : M1× · · · ×Mn → T1,
f2 : M1 × · · · × Mn → T2 which satisfy the tensor product property. Since T1
is a tensor product and we have f2, there exists a unique h̃1 : T1 → T2 for which
h̃1 ◦ f1 = f2. Similarly, since T2 is a tensor product and we have f1, there exists a
unique h̃2 : T2 → T1 for which h̃2 ◦ f2 = f1.

We need to prove that h̃2 ◦ h̃1 = IT1 . Note that h̃2 ◦ (h̃1 ◦ f1) = h̃2 ◦ f2 = f1, that
is, (h̃2 ◦ h̃1) ◦ f1 = f1. Since T1 is a tensor product and we have f1, there exists a
unique h̃ : T1 → T1 for which h̃ ◦ f1 = f1. Thus, since both h̃2 ◦ h̃1 and IT1 satisfy
the property of h̃ and it is unique, we conclude h̃2 ◦ h̃1 = IT1 . Analogously, one has
h̃1 ◦ h̃2 = IT2 .

Therefore, from now on, we will note M1 ⊗R · · · ⊗R Mn the tensor product of
M1, . . . ,Mn over R, or just M1 ⊗ · · · ⊗Mn.

We construct a tensor product as follows. Let F 〈M1 × · · · ×Mn〉 be the free R-
module on M1 × · · · ×Mn: {f : M1 × · · · ×Mn → R such that f(m1, . . . ,mn) = 0,
up to a finite number of elements}, with operations given pointwise{

(f + g)(m1, . . . ,mn) = f(m1, . . . ,mn) + g(m1, . . . ,mn),

(λf)(m1, . . . ,mn) = λf(m1, . . . ,mn),

for all (m1, . . . ,mn) ∈M1×· · ·×Mn and λ ∈ R. Its basis is {fm}m∈M1×···×Mn , where

fm : M1 × · · · ×Mn −→ R, fm(m′) =

{
1R if m′ = m

0 if m′ 6= m

so every f ∈ F 〈M1 × · · · ×Mn〉 can be written as f =
∑

m∈M1×···×Mn

f(m)fm. From

now on, we will note fm simply as m.

Let J be the submodule of F 〈M1×· · ·×Mn〉 generated by quantities of the form

(a1, . . . , aj + a′j, . . . , an)− (a1, . . . , aj, . . . , an)− (a1, . . . , a
′
j, . . . , an),

(a1, . . . , raj, . . . , an)− r(a1, . . . , aj, . . . , an),

for aj, a
′
j ∈Mj, r ∈ R, j ∈ {1, . . . , n}. Let i : M1 × · · · ×Mn ↪→ F 〈M1 × · · · ×Mn〉

be the natural inclusion map and let π : F 〈M1× · · ·×Mn〉 → F 〈M1× · · ·×Mn〉/J
be the canonical surjection. Set f := π ◦ i. Then, the following diagram commutes:

M1 × · · · ×Mn F 〈M1 × · · · ×Mn〉

F 〈M1 × · · · ×Mn〉/J

i

πf
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Then the quotient space F 〈M1 × · · · ×Mn〉/J together with the map f (which
is clearly R-n-linear due to the definition of J) is a tensor product. It solves the
universal mapping problem described in Definition 2.1.2.

Proposition 2.1.4. The quotient space F 〈M1×· · ·×Mn〉/J together with the map
f is a tensor product of M1, . . . ,Mn over R.

Proof. We need to show that the conditions of Definition 2.1.2 are satisfied. Let A
be an R-module and let h : M1×· · ·×Mn → A be an R-n-linear map. The following
diagram illustrates the idea of the proof:

M1 × · · · ×Mn A

F 〈M1 × · · · ×Mn〉 F 〈M1 × · · · ×Mn〉/J

h

i

π

φ

h̃

Indeed, there exists an R-module map φ : F 〈M1×· · ·×Mn〉 → A determined by
φ(m1, . . . ,mn) = h(m1, . . . ,mn). Since h is R-n-linear, by the definition of J and φ,
one has J ⊆ Ker(φ). Thus, by the universal property of the quotient module,
there exists a unique R-module map h̃ : F 〈M1 × · · · × Mn〉/J → A defined as
h̃([m1, . . . ,mn]J) = φ(m1, . . . ,mn). Finally, h̃ ◦ π ◦ i = h̃ ◦ f = h. �

Consequently, we write

F 〈M1 × · · · ×Mn〉/J = M1 ⊗ · · · ⊗Mn.

with the class [(m1, . . . ,mn)]J now written as the tensor m1 ⊗ · · · ⊗mn.

Proposition 2.1.5. Let M1,M2 be R-modules and let N1, N2 be R-submodules of
M1,M2, respectively. Then there is an isomorphism of R-modules

M1/N1 ⊗M2/N2
∼= (M1 ⊗M2)/(N1 ⊗M2 +M1 ⊗N2).

Proof. The following diagrams illustrate the idea of the proof:

M1 ×M2 M1 ⊗M2

M1/N1 ⊗M2/N2 (M1 ⊗M2)/(N1 ⊗M2 +M1 ⊗N2)

bilin

h
h̃

π

∼= α

M1/N1 ×M2/N2 M1/N1 ⊗M2/N2

(M1 ⊗M2)/(N1 ⊗M2 +M1 ⊗N2)

bilin

l ∼= l̃ = α−1
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First note that there is an R-bilinear map h : M1 × M2 → M1/N1 ⊗ M2/N2

defined by h(m1,m2) = [m1]N1 ⊗ [m2]N2 . Since M1 ⊗ M2 is a tensor product,
there exists a unique R-module map h̃ : M1 ⊗M2 → M1/N1 ⊗M2/N2 defined by
h̃(m1 ⊗m2) = [m1]N1 ⊗ [m2]N2 .

Then, note that N1 ⊗M2 + M1 ⊗N2 ⊆ ker(h̃). Now, we consider the canonical
surjection π : M1⊗M2 → (M1⊗M2)/N1⊗M2 +M1⊗N2). Thus, by the universal
property of the quotient module, there exists a unique R-module map

α : (M1 ⊗M2)/(N1 ⊗M2 +M1 ⊗N2) → M1/N1 ⊗M2/N2

[m1 ⊗m2](N1⊗M2+M1⊗N2) 7→ [m1]N1 ⊗ [m2]N2

Next, we define the following map

l : (M1/N1 ×M2/N2) → (M1 ⊗M2)/(N1 ⊗M2 +M1 ⊗N2)
([m1]N1 , [m2]N2) 7→ [m1 ⊗m2](N1⊗M2+M1⊗N2)

We see that l is a well-defined map. Let [m1]N1 = [m′1]N1 and [m2]N2 = [m′2]N2 .
There exist n1 ∈ N1, n2 ∈ N2 such that m′1 = m1 + n1,m

′
2 = m2 + n2. Therefore,

m′1 ⊗m′2 = (m1 + n1)⊗ (m2 + n2) = m1 ⊗m2 +m1 ⊗ n2 + n1 ⊗m2 + n1 ⊗ n2 =

= m1 ⊗m2 + n1 ⊗m2 + (m1 + n1)⊗ n2 ∈ m1 ⊗m2 +N1 ⊗M2 +M1 ⊗N2 =

= [m1 ⊗m2]N1⊗M2+M1⊗N2 ⇒ [m1 ⊗m2]N1⊗M2+M1⊗N2 = [m′1 ⊗m′2]N1⊗M2+M1⊗N2 .

Hence, l is well-defined. It is easy to show that l is R-bilinear and so, since
M1/N1 ⊗M2/N2 is a tensor product, there exists a unique R-module map

l̃ : (M1/N1 ⊗M2/N2) → (M1 ⊗M2)/(N1 ⊗M2 +M1 ⊗N2)
[m1]N1 ⊗ [m2]N2 7→ [m1 ⊗m2](N1⊗M2+M1⊗N2)

Clearly, α−1 = l̃, and thus l̃ is an isomorphism. �

Proposition 2.1.6. Let M1,M2,M3 be R-modules. Then there is an R-module
isomorphism M1 ⊗ (M2 ⊗M3) ∼= (M1 ⊗M2)⊗M3 (that is, the associative property
for tensor products holds).

Proof. The following diagram illustrates the idea of the proof:

M1 ×M2 ×M3 (M1 ⊗M2)⊗M3

M1 ⊗M2 ⊗M3

M1 ×M2 ×M3 M1 ⊗ (M2 ⊗M3)

h

3-lin ∼= h̃

g

3-lin
∼= g̃

∼= φ = h̃ ◦ g̃−1
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Let h : M1×M2×M3 → (M1⊗M2)⊗M3 be the map defined by h(m1,m2,m3) =
(m1⊗m2)⊗m3. We see that h is R-3-linear: for r, r′ ∈ R,m1,m

′
1 ∈M1,m2 ∈ M2,

m3 ∈M3,

h(rm1 + r′m′1,m2,m3) = ((rm1 + r′m′1)⊗m2)⊗m3 =

= (r(m1 ⊗m2) + r′(m′1 ×m2))⊗m3 =

= r((m1 ⊗m2)⊗m3) + r′((m′1 ⊗m2)⊗m3) =

= rh(m1,m2,m3) + r′h(m′1,m2,m3).

So, h is R-linear in the first component. Similar calculations show that h
is R-linear in the other components. Thus, h is an R-3-linear map, and since
M1 ⊗ M2 ⊗ M3 is a tensor product, there exists a unique map of R-modules
h̃ : M1⊗M2⊗M3 → (M1⊗M2)⊗M3 defined by h̃(m1⊗m2⊗m3) = (m1⊗m2)⊗m3.
Clearly, h̃ is an isomorphism.

In a similar manner, one constructs another isomorphism g̃ : M1 ⊗M2 ⊗M3 →
M1⊗ (M2⊗M3) defined by g̃(m1⊗m2⊗m3) = m1⊗ (m2⊗m3). Finally, we define
φ : M1⊗ (M2⊗M3)→ (M1⊗M2)⊗M3 as the composition φ = h̃ ◦ g̃−1. Then φ is
an isomorphism of R-modules. �

By an “iterated tensor product in some association” we mean a tensor
product whose factors themselves may be tensor products or tensor products of
tensor products, and so on. As we have seen in the previous proposition, there is a
natural isomorphism between tensor products and iterated tensor products in some
association.

Proposition 2.1.7. Let M1, . . . ,Mn be R-modules and let S be an iterated tensor
product of M1, . . . ,Mn in some association. Then there is a natural isomorphism
M1 ⊗ · · · ⊗Mn

∼= S.

Proof. We proceed by induction on n. The trivial case n = 2 clearly holds. Assume
the result holds for any collection of less than n R-modules, and we are going to see
that it holds for M1, . . . ,Mn. There exists an integer r ∈ {1, . . . , n − 1} for which
S = T ⊗ U , where T is an iterated tensor product of M1, . . . ,Mr in some associa-
tion and U is an iterated tensor product of Mr+1, . . . ,Mn in some association. By
the induction hypothesis, T ∼= M1 ⊗ · · · ⊗Mr and U ∼= Mr+1 ⊗ · · · ⊗Mn, and so,
S ∼= (M1 ⊗ · · · ⊗Mr)⊗ (Mr+1 ⊗ · · · ⊗Mn).

Let h : M1×· · ·×Mn → (M1⊗· · ·⊗Mr)⊗(Mr+1⊗· · ·⊗Mn) be the map defined
as h(m1, . . . ,mr,mr+1, . . . ,mn) = (m1 ⊗ · · · ⊗ mr) ⊗ (mr+1 ⊗ · · · ⊗ mn), which is
n-linear. Since M1 ⊗ · · · ⊗Mn is a tensor product, there exists a unique map of
R-modules h̃ : M1 ⊗ · · · ⊗Mn → (M1 ⊗ · · · ⊗Mr) ⊗ (Mr+1 ⊗ · · · ⊗Mn) given by
h̃(m1⊗· · ·⊗mr⊗mr+1⊗· · ·⊗mn) = (m1⊗· · ·⊗mr)⊗ (mr+1⊗· · ·⊗mn). Clearly,
h̃ is an isomorphism. Therefore we conclude S ∼= M1 ⊗ · · · ⊗Mn. �
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In view of this proposition, we will ignore the parentheses from now on and con-
sider tensor products and iterated tensor products in some association as the same
objects through the natural isomorphism.

We close this section with two remarks about maps.

Proposition 2.1.8. Let M1, . . . ,Mn,M
′
1, . . . ,M

′
n be R-modules and for i ∈ {1, . . . , n},

let fi : Mi →M ′
i be R-module maps. Then there exists a unique map of R-modules

f1 ⊗ · · · ⊗ fn : M1 ⊗ · · · ⊗Mn → M ′
1 ⊗ · · · ⊗M ′

n

m1 ⊗ · · · ⊗mn 7→ f1(m1)⊗ · · · ⊗ fn(mn)

Proof. There exists an R-n-linear map h = f1 × · · · × fn : M1 × · · · × Mn →
M ′

1 ⊗ · · · ⊗M ′
n defined as (f1 × · · · × fn)(m1, . . . ,mn) = f1(m1) ⊗ · · · ⊗ fn(mn).

Since M1 ⊗ · · · ⊗ Mn is a tensor product, there exists a unique R-module map
h̃ = f1× · · · × fn : M1⊗ · · · ⊗Mn →M ′

1⊗ · · · ⊗M ′
n defined as h̃(m1⊗ · · · ⊗mn) =

f1(m1)⊗ · · · ⊗ fn(mn). �

Corollary 2.1.9. Let K be a field and let V1, . . . , Vn be a finite set of vector spaces
over K. Then V ∗1 ⊗ · · · ⊗ V ∗n ⊆ (V1 ⊗ · · · ⊗ Vn)∗.

Proof. Let fi ∈ V ∗i , where i ∈ {1, . . . , n}, be a set of K-linear forms, that is to say,
fi : Vi → K, ∀i ∈ {1, . . . , n}. By the previous proposition, there exists a unique
K-linear map f1 ⊗ · · · ⊗ fn ∈ V ∗1 ⊗ · · · ⊗ V ∗n defined as:

f1 ⊗ · · · ⊗ fn : V1 ⊗ · · · ⊗ Vn → K ⊗ · · · ⊗K
v1 ⊗ · · · ⊗ vn 7→ f1(v1)⊗ · · · ⊗ fn(vn)

Since K ⊗ K ∼= K through the map r ⊗ s 7→ rs, then f1(v1) ⊗ · · · ⊗ fn(vn) =
f1(v1) . . . fn(vn) ∈ K, and so f1 ⊗ · · · ⊗ fn ∈ (V1 ⊗ · · · ⊗ Vn)∗. Consequently,
V ∗1 ⊗ · · · ⊗ V ∗n ⊆ (V1 ⊗ · · · ⊗ Vn)∗. �

We remark that we have the equality in the previous corollary if, and only if,
each Vi is finite dimensional.

2.2 Algebras and coalgebras

In this section, we present the diagram-theoretic definition of a K-algebra and prove
its equivalence with the usual definition. Afterwards, we see some basic examples
and discuss quotient algebras and algebra homomorphisms. Next, we define coal-
gebras as co-objects to algebras formed by reversing the arrows in the diagrams for
algebras, and give some examples. We introduce Sweedler notation to write the
image of the comultiplication map and we show how it works to simplify computa-
tions. We define coideals, quotient algebras and algebra homomorphisms.

Let K be a field.

7



Definition 2.2.1. A K-algebra is a triple (A,mA, λA) consisting of a K-vector
space and K-linear maps mA : A ⊗ A → A and λA : K → A that satisfy the
following conditions:

1. The diagram commutes

A⊗ A⊗ A A⊗ A

A⊗ A A

IA ⊗mA

mAmA ⊗ IA

mA

where the map IA : A→ A is the identity map on A.

Equivalently, we have for all a, b, c ∈ A,

mA(IA ⊗mA)(a⊗ b⊗ c) = mA(mA ⊗ IA)(a⊗ b⊗ c) (2.1)

The map mA is called the multiplication map and Condition (2.1) is the
associative property.

2. The diagram commutes

A⊗K A⊗ A

A K ⊗ A

IA ⊗ λA

s2
mA

λA ⊗ IA

s1

where the map s1 : K ⊗ A → A is defined by r ⊗ a 7→ ra and the map
s2 : A⊗K → A is defined by a⊗ r 7→ ra.

Equivalently, we have for all r ∈ K, a ∈ A,

mA(IA ⊗ λA)(a⊗ r) = ra = mA(mA ⊗ IA)(r ⊗ a) (2.2)

The map λA is called the unit map and Condition (2.2) is the unit property.

The K-algebra A is commutative if mAτ = mA, where τ (or, if necessary, τA⊗A)
denotes the twist map defined as τ(a⊗ b) = b⊗ a.

8



Here is the usual definition of K-algebra.

Definition 2.2.2. A K-algebra is a set A endowed with a sum, a multiplication
and a scalar multiplication by elements in K such that

1. A is a unitary ring with the sum and the multiplication,

2. A is a K-vector space with the sum and the scalar multiplication,

3. The following relation between the multiplication (of the ring) and scalar
multiplication (of the vector space) is satisfied

r(ab) = (ra)b = a(rb),∀ r ∈ K, a, b ∈ A. (2.3)

Our first task is to show that we really do not have a new definition of K-algebra.

Proposition 2.2.3. Both definitions of K-algebras are equivalent.

Proof. Let A be a K-algebra as in Definition 2.2.2. We already have that A is a
K-vector space. We will first show that there exists a K-linear map mA satisfying
the associative property. We consider the multiplication in the ring: A × A → A,
(a, b) 7→ ab, which is K-bilinear (due to (2.3) and the distributive properties of
multiplication on A). Since A ⊗ A is a tensor product, there exists a unique K-
linear map mA : A⊗A→ A defined as mA(

∑
a⊗ b) =

∑
mA(a⊗ b) =

∑
ab. Thus,

the associative property of the multiplication on A implies that (2.1) holds:

mA(IA ⊗mA)(a⊗ b⊗ c) = mA(mA ⊗ IA)(a⊗ b⊗ c)⇔

⇔ mA(IA(a)⊗mA(b⊗ c)) = mA(mA(a⊗ b)⊗ IA(c))⇔

⇔ mA(a⊗ (bc)) = mA((ab)⊗ c)⇔ a(bc) = (ab)c = abc.

Then, we have obtained

mA(IA ⊗mA)(a⊗ b⊗ c) = mA(mA ⊗ IA)(a⊗ b⊗ c)⇔ a(bc) = abc = (ab)c (2.4)

We next show that there exists a K-linear map λA satisfying the unit property.
We define λA : K → A as λA(r) = r1A. Since scalar multiplication is distributive
with respect to scalar addition, λA preserves addition, and since scalar multiplica-
tion is associative, it preserves scalar multiplication. Thus λA is linear. Finally, the
formula (2.3) implies that Condition (2.2) holds:{

mA(IA ⊗ λA)(a⊗ r) = mA(a⊗ λA(r)) = aλA(r) = a(r1A) = r(a1A) = ra,

mA(λA ⊗ IA)(r ⊗ a) = mA(λA(r)⊗ a) = λA(r)a = (r1A)a = r(1Aa) = ra,

We conclude that (A,mA, λA) is a K-algebra.

Conversely, suppose that (A,mA, λA) is a K-algebra as in Definition 2.2.1. We
already have that A is a K-vector space. We see that it is a ring with unity, with
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addition given by vector addition. We define multiplication on A as ab = mA(a⊗b).
It is associative by (2.1) and it is distributive with respect to addition by linearity.
From (2.2) we obtain the unity: 1A = λA(1K), and so, A is a ring with unity.

Finally, we show that the relation between multiplication and scalar multiplica-
tion holds by linearity of mA: for a, b ∈ A, r ∈ K,{

r(ab) = rmA(a⊗ b) = mA(ra⊗ b) = (ra)b,

r(ab) = rmA(a⊗ b) = mA(a⊗ rb) = a(rb),

We conclude that A is a K-algebra in the sense of Definition 2.2.2. �

We do some remarks about maps of algebras. Let (A,mA, λA) be a K-algebra.

Remark 2.2.4. From now on, we will write mA(a ⊗ b) = ab, for all a, b ∈ A, and
λA(r) = r1A, for all r ∈ K.

Remark 2.2.5. Since K is a field and λA maps 1K to 1A, it is injective, and so
ker(λA) = 0. Therefore, by the isomorphism theorem, K/ker(λA) ∼= λA(K). Hence,
the image λA(K) is isomorphic to K. Thus, A contains a copy of K through the
identification r = r1. The unit map can be given by λA(r) = r.

Example 2.2.6. The field K as a vector space over itself is a commutative K-
algebra with multiplication map mK : K ⊗K → K given by mK(r ⊗ s) = rs, and
unit map λK : K → K defined as λK(r) = r. It is called the trivial K-algebra.

Example 2.2.7. The polynomial ring K[x] is a commutative K-algebra with mul-
tiplication map mK[x] : K[x] ⊗K[x] → K[x] given by the usual polynomial multi-
plication and unit map λK[x] : K → K[x] defined as λK[x](r) = r1.

Example 2.2.8. Let G be a finite group with identity element 1. The group ring

K[G] =
{∑
g∈G

rgg : rg ∈ K
}

is a K-algebra called the group algebra.

Multiplication map mK[G] : K[G] ⊗K[G] → K[G] is given by mK[G](g ⊗ h) = gh,
and unit map λK[G] : K → K[G] is defined as λK[G](r) = r1. Clearly, K[G] is
commutative if, and only if, G is abelian.

Example 2.2.9. Let L = K(α) be a simple algebraic extension of K. Then L
is a commutative K-algebra with multiplication map mL : L ⊗ L → L given by
multiplication in the field L and unit map λL : K → L defined as λL(r) = r.

Example 2.2.10. We generalise the previous example. Let K be a subfield of a field
L. Then L is a commutative K-algebra with multiplication map mL : L ⊗ L → L
given by multiplication in the field L and unit map λL : K → L defined as λL(r) = r.

Definition 2.2.11. Let A,B be K-algebras. The tensor product of algebras
A⊗B has the structure of a K-algebra with multiplication map given by

mA⊗B : (A⊗B)⊗ (A⊗B) → A⊗B
(a⊗ b)⊗ (c⊗ d) 7→ (mA ⊗mB)(IA ⊗ τ ⊗ IB)(a⊗ (b⊗ c)⊗ d)
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that is,

mA⊗B((a⊗ b)⊗ (c⊗ d)) = (mA ⊗mB)(IA ⊗ τ ⊗ IB)(a⊗ (b⊗ c)⊗ d) =

= (mA ⊗mB)(a⊗ (c⊗ b)⊗ d) = ac⊗ bd,

and unit map defined as

λA⊗B : K → A⊗B
r 7→ λA(r)⊗ 1B

Proposition 2.2.12. Let A be a K-algebra and let I be an ideal of A. Then the
quotient space A/I is a K-algebra.

Proof. We need to define a multiplication map mA/I and a unit map λA/I . We will
start with multiplication. The following diagram illustrates the idea of the proof:

A⊗ A A A/I

(A⊗ A)/(I ⊗ A+ A⊗ I) A/I ⊗ A/I

mA π

π′
α

mA/I = α ◦ β̃

∼= β̃

Let π : A → A/I denote the canonical surjection. The composition π ◦ mA

is a K-linear map (since π and mA are also linear) defined as (π ◦ mA)(a ⊗ b) =
π(ab) = [ab]I . Note that I ⊗A+A⊗ I is a subspace of A⊗A. Since I is an ideal,
mA(i ⊗ a + b ⊗ j) = mA(i ⊗ a) + mA(b ⊗ j) = ia + bj ∈ I,∀ i, j ∈ I, a, b ∈ A, and
so, I ⊗ A + A ⊗ I ⊆ ker(π ◦ mA). Let π′ : A ⊗ A → (A ⊗ A)/(I ⊗ A + A ⊗ I)
denote the canonical surjection. By the universal property of the quotient module,
there exists a unique K-linear map α : (A⊗A)/(I ⊗A+A⊗ I)→ A/I defined as
α([a⊗ b]I⊗A+A⊗I) = [ab]I .

By Proposition 2.1.5, there is a K-linear isomorphism β̃ between A/I⊗A/I and
(A⊗A)/(I ⊗A+A⊗ I), defined as β̃([a]I ⊗ [b]I) = [a⊗ b]I⊗A+A⊗I . Therefore, let
mA/I = α ◦ β̃

mA/I : A/I ⊗ A/I → A/I
[a]I ⊗ [b]I 7→ [ab]I

It is easy to check that mA/I satisfies the associative property since mA does.

Finally, we define the unit map as the composition of the unit map of A and the
canonical surjection: λA/I = π ◦ λA. It is easy to check that it satisfies the unit
property since λA does. �
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Definition 2.2.13. Let A be a K-algebra and let I be an ideal of A. The K-algebra
A/I of the previous proposition is the quotient algebra of A by I.

Definition 2.2.14. Let (A,mA, λA), (B,mB, λB) be K-algebras. A K-algebra
homomorphism from A to B is a map φ : A→ B that verifies:

1. φ(a+ b) = φ(a) + φ(b), for all a, b ∈ A,

2. φ(mA(a⊗ b)) = mB(φ(a)⊗ φ(b))⇔ φ(ab) = φ(a)φ(b), for all a, b ∈ A,

3. φ(λA(r)) = λB(r)⇔ φ(r1A) = r1B, for all r ∈ K.

The first condition means that φ is a group homomorphism and, with the last
two ones, it implies that it is a K-linear map: indeed, for all a ∈ A, r ∈ K,

φ(ra) = φ(r1Aa) =
(2)
φ(r1A)φ(a) =

(3)
r1Bφ(a) = rφ(a).

A K-algebra homomorphism that is injective and surjective is a K-algebra
isomorphism.

We will now describe objects that are dual (in some sense) to algebras; essentially
forming them by reversing the arrows in the structure maps for algebras. These
objects are called coalgebras.

Let C be a K-vector space.

Definition 2.2.15. A K-coalgebra is a triple (C,∆C , εC) consisting of a K-vector
space and K-linear maps ∆C : C → C⊗C and εC : C → K that satisfy the following
conditions:

1. The diagram commutes

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆C

IC ⊗∆C∆C

∆C ⊗ IC

where the map IC : C → C is the identity map on C.

Equivalently, we have for all c ∈ C,

(IC ⊗∆C)∆C(c) = (∆C ⊗ IC)∆C(c) (2.5)

The map ∆C is called the comultiplication map and Condition (2.4) is the
coassociative property.

12



2. The diagram commutes

C K ⊗ C

C ⊗K C ⊗ C

1K ⊗−

−⊗ 1K
∆C

εC ⊗ IC

IC ⊗ εC

where the map 1K ⊗− : C → K ⊗ C is defined by c 7→ 1K ⊗ c and the map
−⊗ 1K : C → C ⊗K is defined by c 7→ c⊗ 1K .

Equivalently, we have for all c ∈ C,

(εC ⊗ IC)∆C(c) = 1K ⊗ c, (IC ⊗ εC)∆C(c) = c⊗ 1K (2.6)

The map εC is called the counit map and Condition (2.5) is the counit
property.

The K-coalgebra C is cocommutative if τ∆C = ∆C .

We will now introduce Sweedler notation to write the image of comultiplica-
tion map. Sweedler notation is a special notation for discussion of operations in
coalgebras. Let C be a K-coalgebra. For c ∈ C, ∆C maps c to an element in C⊗C,

which is a sum of the form
n∑
i=1

ai ⊗ bi.

Sweedler suggests not to make up new symbols like a and b, but rather use com-

posed symbols c(1) and c(2). Therefore ∆C(c) =
n∑
i=1

c(1)i ⊗ c(2)i.

Sweedler notation means that for certain manipulations involving just generic
linear operations we actually do not need to think of the summation symbol i, so

we can just write ∆C(c) =
∑
(c)

c(1) ⊗ c(2).

We write the coassociative property using this notation. On the one hand,

(IC ⊗∆C)∆C(c) = (IC ⊗∆C)

(∑
(c)

c(1) ⊗ c(2)
)

=
∑
(c)

c(1) ⊗∆C(c(2)) =

=
∑

(c,c(2))

c(1) ⊗ c(2)(1) ⊗ c(2)(2) (2.7)
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On the other hand,

(∆C ⊗ IC)∆C(c) = (∆C ⊗ IC)

(∑
(c)

c(1) ⊗ c(2)
)

=
∑
(c)

∆C(c(1))⊗ c(2) =

=
∑

(c,c(1))

c(1)(1) ⊗ c(1)(2) ⊗ c(2) (2.8)

By the coassociative property, (IC⊗∆C)∆C = (∆C⊗IC)∆C . So, the expressions

in (2.7) and (2.8) are equal. This common value is denoted as
∑
(c)

c(1) ⊗ c(2) ⊗ c(3).

Likewise, we write the counit property using this notation. Note first that the
scalar multiplication on C defines two maps s1 : K ⊗ C → C with r ⊗ c 7→ rc and
s2 : C ⊗K → C with c⊗ r 7→ rc, ∀ c ∈ C, r ∈ K. Since s1(1⊗ c) = c = s2(c⊗ 1),
the counit property (2.6) implies

s1(εC ⊗ IC)∆C(c) = c = s2(IC ⊗ εC)∆C(c),∀ c ∈ C, (2.9)

that is to say,

c = s1(εC ⊗ IC)∆C(c) = s1(εC ⊗ IC)

(∑
(c)

c(1) ⊗ c(2)
)

= s1

(∑
(c)

εC(c(1))⊗ c(2)
)

=

=
∑
(c)

εC(c(1))c(2),

c = s2(IC ⊗ εC)∆C(c) = s2(IC ⊗ εC)

(∑
(c)

c(1) ⊗ c(2)
)

= s2

(∑
(c)

c(1) ⊗ εC(c(2))

)
=

=
∑
(c)

c(1)εC(c(2)) =
∑
(c)

εC(c(2))c(1).

All in all, we have obtained:∑
(c)

εC(c(1))c(2) = c =
∑
(c)

εC(c(2))c(1) (2.10)

Example 2.2.16. The field K as a vector space over itself is a cocommutative K-
coalgebra with comultiplication map ∆K : K → K⊗K given by ∆K(r) = r⊗1, and
counit map εK : K → K defined as εK(r) = r. It is called the trivial K-coalgebra.

In the next examples of a coalgebra C, ∆C and εC are defined on basic elements
and extended by linearity to the whole C.

Example 2.2.17. Let x be an indeterminate and let C = K ⊕ Kx be the direct
sum of vector spaces, where Kx = {rx : r ∈ K}. The canonical basis is {1, x}.
Then C is a K-coalgebra with comultiplication map ∆C : C → C ⊗ C given
by ∆C(1) = 1 ⊗ 1, ∆C(x) = x ⊗ x, and counit map εC : C → K defined as
εC(1) = εC(x) = 1.
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Example 2.2.18. Let x be an indeterminate and we consider C = K ⊕Kx, where
the canonical basis is {1, x}. Then C is a K-coalgebra with comultiplication map
∆C : C → C ⊗C given by ∆C(1) = 1⊗ 1, ∆C(x) = 1⊗ x+ x⊗ 1, and counit map
εC : C → K defined as εC(1) = 1, εC(x) = 0.

Example 2.2.19. Let V denote an n-dimensional K-vector space with basis B =
{b1, . . . , bn}. Then V is a cocommutative K-coalgebra with comultiplication map
∆V : V → V ⊗ V given by ∆V (bi) = bi ⊗ bi, and counit map εV : V → K defined
as εV (bi) = 1, for all i ∈ {1, . . . , n}.

Example 2.2.20. Let G be a finite group. The group ring K[G] (defined as in
Example 2.2.8) is a cocommutative K-coalgebra called the group coalgebra. Co-
multiplication map ∆K[G] : K[G]→ K[G]⊗K[G] is given by ∆K[G](g) = g⊗ g, and
counit map εK[G] : K[G]→ K is defined as εK[G](g) = 1K .

Example 2.2.21. Let K[x] be the K-vector space of polynomials in the indetermi-
nate x, where the canonical basis is {1, x, x2, . . . }. Then K[x] is a cocommutative
K-coalgebra with comultiplication map ∆K[x] : K[x] → K[x] ⊗ K[x] given by
∆K[x](x

m) = xm ⊗ xm, and counit map εK[x] : K[x]→ K defined as εK[x](x
m) = 1.

Example 2.2.22. Let K[x] be the K-vector space of polynomials in the indeter-
minate x, where the canonical basis is {1, x, x2, . . . }. Then K[x] is a cocommu-
tative K-coalgebra with comultiplication map ∆K[x] : K[x] → K[x] ⊗ K[x] given

by ∆K[x](x
m) =

n∑
i=1

(
m

i

)
xi ⊗ xm−i, and counit map εK[x] : K[x] → K defined as

εK[x](x
m) = δ0,m. It is called the divided power coalgebra.

Definition 2.2.23. Let C,D be K-coalgebras. The tensor product of coalge-
bras C⊗D has the structure of a K-coalgebra with comultiplication map given by

∆C⊗D : C ⊗D → (C ⊗D)⊗ (C ⊗D)
c⊗ d 7→ (IC ⊗ τ ⊗ ID)(∆C ⊗∆D)(c⊗ d)

that is,

∆C⊗D(c⊗ d) = (IC ⊗ τ ⊗ ID)(∆C ⊗∆D)(c⊗ d) = (IC ⊗ τ ⊗ ID)(∆C(c)⊗∆D(d)) =

= (IC ⊗ τ ⊗ ID)

(∑
(c,d)

c(1) ⊗ c(2) ⊗ d(1) ⊗ d(2)
)

=
∑
(c,d)

(c(1) ⊗ d(1))⊗ (c(2) ⊗ d(2)),

and counit map defined as

εC⊗D : C ⊗D → K
c⊗ d 7→ (εC ⊗ εD)(c⊗ d) = εC(c)εD(d)

We next discuss the analog of an ideal in a ring for a coalgebra.

Definition 2.2.24. Let C be a K-coalgebra. A subspace I ⊆ C is a coideal of C
if ∆C(I) ⊆ I ⊗ C + C ⊗ I and εC(I) = 0 (that is, I ⊆ ker(εC)).
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Proposition 2.2.25. Let C be a K-coalgebra and let I be a coideal of C. Then the
quotient space C/I is a K-coalgebra.

Proof. We need to define a comultiplication ∆A/I and a unit εA/I . We will start
with comultiplication. The following diagram illustrates the idea of the proof:

C C/I

C ⊗ C

(C ⊗ C)/(I ⊗ C + C ⊗ I) C/I ⊗ C/I

∆C

π′

π

α ∆C/I = α ◦ β̃

∼= β̃

Let π : C → C/I denote the canonical surjection. Note that I ⊗ C + C ⊗ I is a
subspace of C⊗C. Let π′ : C⊗C → (C⊗C)/(I⊗C+C⊗ I) denote the canonical
surjection, and consider the composition π′ ◦∆C , which is a K-linear map (since π′

and ∆C are also linear).

Since I is a coideal, ∆C(I) ⊆ I ⊗ C + C ⊗ I, and so I ⊆ ker(π′ ◦∆C). By the
universal property of the quotient module, there exists a unique K-linear map
α : C/I → (C ⊗ C)/(I ⊗ C + C ⊗ I) defined as α([c]I) = [∆C(c)]I⊗C+C⊗I .

By Proposition 2.1.5, there is a K-linear isomorphism β̃ between the space
(C ⊗ C)/(I ⊗C+C⊗I) and C/I⊗C/I, defined as β̃([c⊗d]I⊗C+C⊗I) = [c]I⊗ [d]I .
Therefore, let ∆C/I = α ◦ β̃

∆C/I : C/I → C/I ⊗ C/I
[c]I 7→

∑
(c)

[c(1)]I ⊗ [c(2)]I

It is easy to check that ∆C/I satisfies the coassociative property since ∆C does.

Finally, since I is a coideal of A, I ⊆ ker(ε). Moreover, since π is the canonical
surjection, by the universal property of the module quocient, there exists a unique
K-linear map εC/I : C/I → K defined as εC/I([c]I) = εC(c). It is easy to check that
it satisfies the counit property since εC does. �

Definition 2.2.26. Let C be a K-coalgebra and let I be a coideal of C. The
K-coalgebra C/I of the previous proposition is the quotient coalgebra of C by I.

Definition 2.2.27. Let C be a K-coalgebra. A non-zero element c ∈ C for which
∆C(c) = c⊗ c is a grouplike element of C.
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Proposition 2.2.28. Let c be a grouplike element of a K-coalgebra C. Then it
satisfies εC(c) = 1.

Proof. Since c is grouplike,

1c = c =
(2.9)

s1(εC ⊗ IC)∆C(c) = s1(εC ⊗ IC)(c⊗ c) = s1(εC(c)⊗ c) = εC(c)c⇒

⇒ εC(c)c = 1c⇒ (εC(c)− 1)c = 0.

Moreover, since K is a field and c 6= 0 (as it is a grouplike element), εC(c)−1 = 0,
and hence εC(c) = 1. �

For instance, in Example 2.2.19, the grouplike elements of V are precisely those
in the basis B, and in Example 2.2.21, the grouplike elements of K[x] are 1, x, x2, . . . .

Proposition 2.2.29. Let K[x] be the divided power coalgebra. Then 1 is the only
grouplike element.

Proof. Recall that K[x] is the coalgebra of Example 2.2.22, with comultiplication

given by ∆K[x](x
m) =

n∑
i=1

(
m

i

)
xi ⊗ xm−i, and counit defined as εK[x](x

m) = δ0,m.

Suppose a0 + a1x+ · · ·+ anx
n is grouplike. By Proposition 2.2.28, we have

1 = εK[x](a0x
0 + a1x+ · · ·+ anx

n) = a0 εK[x](x
0) + a1 εK[x](x) + · · ·+ an εK[x](x

n) =
= a0 1 + a1 0 + · · ·+ an 0 = a0 ⇒ a0 = 1.

On the one hand, since 1 + a1x+ · · ·+ anx
n is a grouplike element,

∆K[x](1 + a1x+ · · ·+ anx
n) = (1 + a1x+ · · ·+ anx

n)⊗ (1 + a1x+ · · ·+ anx
n).

On the other hand, since ∆K[x] is K-linear,

∆K[x](1x
0 + a1x+ · · ·+ anx

n) = ∆K[x](x
0) + a1 ∆K[x](x) + · · ·+ an ∆K[x](x

n) =

= 1⊗ 1 + a1(1⊗ x+ x⊗ 1) + · · ·+ an

n∑
i=0

(
n

i

)
xi ⊗ xn−i.

Note that {xi⊗xj}0≤i,j≤n is a linearly independent subset of K[x]⊗K[x]. Deve-
loping the first equality, there is the term anx

n ⊗ anxn = a2n(xn ⊗ xn). If we define
the degree of a term xi ⊗ xj as i + j, then our term has degree 2n. As there is no
term of degree bigger than n in the second equality, thus a2n = 0, and so an = 0.
Therefore, we have ∆K[x](1 + a1x + · · · + anx

n) = (1 + a1x + · · · + an−1x
n−1)⊗

(1 + a1x + · · · + an−1x
n−1). Repeating the argument, we obtain a2i = 0, and hence

ai = 0, for all i ∈ {1, . . . , n}. �

Proposition 2.2.30. Let C be a K-coalgebra and let G(C) denote the set of grou-
plike elements of C. Then G(C) is a linearly independent subset of C.
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Proof. If G(C) = ∅, then G(C) is clearly linearly independent. If G(C) contains
exactly one grouplike element, then this element is non-zero, and so G(C) is linearly
independent. Thus, we assume that G(C) contains at least two elements.

Reduction to absurdity. Suppose that G(C) is linearly dependent. Let m ≥ 1
be the largest integer for which S = {g1, . . . , gm} is a linearly independent subset of
G(C). Then G(C) \ S 6= ∅ (else G(C) is linearly independent). Let g ∈ G(C) \ S.
There exist scalars ri ∈ K such that g = r1g1 + · · · + rmgm. Since g is grouplike,
g 6= 0, and so, there exists at least one i ∈ {1, . . . ,m} for which ri 6= 0.

On the one hand, since g is a grouplike element,

∆C(g) = g ⊗ g =
m∑
i=1

m∑
j=1

rirj(gi ⊗ gj).

On the other hand, since ∆C is K-linear and gi are grouplike elements,

∆C(g) = ∆C

( m∑
i=1

rigi

)
=

m∑
i=1

ri∆C(gi) =
m∑
i=1

rigi ⊗ gi.

All in all, we have obtained
m∑
i=1

m∑
j=1

rirj(gi ⊗ gj) =
m∑
i=1

rigi ⊗ gi.

Note that {gi ⊗ gj}1≤i,j≤m is a linearly independent subset of C ⊗ C. Since at
the right side of the last equality there are no terms of the form gi⊗ gj, with i 6= j,
then rirj = 0,∀ i 6= j. Thus

m∑
i=1

r2i (gi ⊗ gi) =
m∑
i=1

ri(gi ⊗ gi)⇒ r2i = ri, ∀ i ∈ {1, . . . ,m}.

For any ri 6= 0, one has rj = 0,∀ j 6= i (since K is a field and rirj = 0), and hence
ri 6= 0 for exactly one i. For this i, r2i = ri implies ri = 1. Therefore, g = gi, which
contradicts our choice of g. We conclude that G(C) is linearly independent. �

Definition 2.2.31. Let (C,∆C , εC), (D,∆D, εD) be K-coalgebras. A K-coalgebra
homomorphism from C to D is a map φ : A→ B that verifies:

1. φ is K-linear,

2. (φ⊗ φ)∆C(c) = ∆D(φ(c)), for all c ∈ C,

3. εC(c) = εD(φ(c)), for all c ∈ C.

A K-coalgebra homomorphism that is injective and surjective is a K-coalgebra
isomorphism.
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Proposition 2.2.32. Let C be a K-coalgebra. Then the counit map εC : C → K
is a K-coalgebra homomorphism.

Proof. Recall that in Example 2.2.16, we have seen that K is the trivial coalge-
bra with comultiplication given by ∆K(r) = r ⊗ 1, and counit defined as εK(r) =
IK(r) = r. Moreover, note that εC ⊗ εC = (εC ⊗ IK)(IC ⊗ εC) trivially holds.

Let c ∈ C. We need to prove that εC satifies the two properties of the definition
of coalgebra homomorphism. On the one hand, we have

(εC ⊗ εC)∆C(c) = (εC ⊗ IK)(IC ⊗ εC)∆C(c) =
(2.6)

(εC ⊗ IK)(c⊗ 1) =

= εC(c)⊗ 1 = ∆K(εC(c)).

On the other hand, we have εC(c) = IK(εC(c)) = εK(εC(c)). Therefore, we
conclude that εC is a K-coalgebra homomorphism. �

Proposition 2.2.33. Let φ : C → D be a homomorphism of K-coalgebras. If c ∈ C
is a grouplike element, then φ(c) ∈ D is a grouplike element.

Proof. Since φ is a coalgebra homomorphism, (φ⊗ φ)∆C(a) = ∆D(φ(a)) holds for
every a ∈ C. Since c is a grouplike element of C, it satisfies ∆C(c) = c⊗ c. Thus,

∆D(φ(c)) = (φ⊗ φ)∆C(c) = (φ⊗ φ)(c⊗ c) = φ(c)⊗ φ(c).

Hence, φ(c) is a grouplike element of D. �

2.3 Duality

We next consider the linear duals of algebras and coalgebras. There are two main
results. The first one, which is easier to prove, is that if C is a coalgebra, then C∗ is
an algebra, where multiplication and unit maps are induced from the transpose of
comultiplication and counit maps, respectively. But the converse of this statement
is not true in general. In order to have the reciprocal result, we need to replace the
dual space A∗ with a certain subspace A◦ called the finite dual. Thus, the second
important result is that if A is an algebra, then A◦ is coalgebra. Finally, as an
application, we show that the finite dual K[x]◦ can be identified with the collection
of linearly recursive sequences of all orders over K.

Let C be a K-coalgebra and let C∗ be its linear dual.

Remark 2.3.1. For every field E and every E-vector space V , there exists the
following K-vector space isomorphism

E ⊗E V ∼= V (∼= V ⊗E E) (2.11)

given by r ⊗ v 7→ rv, and v 7→ 1E ⊗ v, for all v ∈ V , r ∈ E.
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Theorem 2.3.2. If C is a K-coalgebra, then C∗ is a K-algebra.

Proof. Recall that C is a triple (C,∆C , εC), where ∆C : C → C⊗C is K-linear and
satisfies the coassociative property and εC : C → K is K-linear and satisfies the
counit property. We need to define a multiplication map mC∗ and a unit map λC∗ .

We start considering the transpose of ∆C , ∆∗C : (C ⊗ C)∗ → C∗, which is a
K-linear map defined as ∆∗C(ψ) = ψ ◦∆C . Since C∗⊗C∗ ⊆ (C⊗C)∗ (by Corollary
2.1.9), ∆∗C restricts to a K-linear map

mC∗ : C∗ ⊗ C∗ → C∗

f ⊗ g 7→ mC∗(f ⊗ g) = ∆∗C(f ⊗ g)

Now, we consider the transpose of εC , ε∗C : K∗ ∼= K → C∗, which is a K-linear
map given by ε∗C(r) = rεC . Set λC∗ = ε∗C . Observe that if we dualize the commu-
tative diagrams of the definition of the coalgebra C, we obtain the commutative
diagrams of the definition of the algebra C∗

C∗ C∗ ⊗ C∗

C∗ ⊗ C∗ C∗ ⊗ C∗ ⊗ C∗

mC∗

IC∗ ⊗mC∗mC∗

mC∗ ⊗ IC∗

,

C K ⊗ C

C ⊗K C ⊗ C

s1

s2 mC∗
λC∗ ⊗ IC∗

IC∗ ⊗ λC∗

It remains to show that (1K ⊗−)∗ = s1 and (−⊗ 1K)∗ = s2: indeed, for f ∈ C∗,
c ∈ C, r ∈ K, we have

(1K ⊗−)∗(r ⊗ f)(c) = (r ⊗ f)(1K ⊗−)(c) = (r ⊗ f)(1K ⊗ c) =

=
(K∼=K∗)

r ⊗ f(c) =
(2.11)

rf(c) = (rf)(c) = s1(r ⊗ f)(c).

Similarly, one has (−⊗ 1K)∗ = s2. Hence, (C∗,mC∗ , λC∗) is a K-algebra. �

We have just seen that if C is a coalgebra, then C∗ is an algebra. Then if A is
an algebra, we may wonder if A∗ is a coalgebra. It is not true in general because
the transpose of the multiplication map mA : A⊗ A → A is m∗A : A∗ → (A⊗ A)∗,
where A∗ ⊗ A∗ is a proper subset of (A ⊗ A)∗ if A is infinite dimensional over K.
Therefore, m∗A may not induce the required comultiplication map in A∗. In order
for the transpose mA∗ to serve as a comultiplication map we need to replace A∗

with a certain subspace of A∗ called the finite dual.

Definition 2.3.3. Let A be a K-algebra. We already know that A is a vector space
over K and a ring. An ideal I of A is cofinite if the quotient space A/I is finite
dimensional.
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Definition 2.3.4. Let A be a K-algebra. The finite dual A◦ of A is the following
subspace of A: A◦ = {f ∈ A∗ : f(I) = 0 for some ideal I ⊆ A cofinite}.

Example 2.3.5. Let ϕi ∈ K[x]∗ be defined as ϕi(x
j) = δi,j, for i, j ≥ 0. Since

ϕi clearly vanishes on the ideal (xi+1) and dim(K[x]/(xi+1)) = i + 1 (because
{1, x, . . . , xi} is a basis), then ϕi ∈ K[x]◦.

Proposition 2.3.6. If A is finite dimensional as a K-vector space, then A◦ = A∗.

Proof. Since always A◦ ⊆ A∗, it suffices to prove that A∗ ⊆ A◦. Let f ∈ A∗, and
we consider the ideal 0. It satisfies that 0 ⊆ A, A/0 = A is finite dimensional (by
hypothesis) and f(0) = 0 (since f is linear). Thus f ∈ A◦. Consequently, A∗ ⊆ A◦,
and we conclude that A◦ = A∗. �

In order to prove that if A is an algebra, A◦ is a coalgebra, we need three results.

Lemma 2.3.7. Let I be an ideal of A and let π : A → A/I be the canonical
surjection of vector spaces. Let π∗ : (A/I)∗ → A∗ be the transpose defined as
π∗(f) = f ◦ π, for all f ∈ (A/I)∗. Then π∗ is an injection.

Proof. Let f, g ∈ (A/I)∗. Then for a ∈ A, we have

π∗(f)(a) = π∗(g)(a)⇒ f(π(a)) = g(π(a))⇒ f([a]I) = g([a]I)⇒ f = g.

Therefore, we conclude that π∗ is injective. �

Proposition 2.3.8. Let f ∈ A◦ and suppose that f vanishes on the ideal I of A.
Then there exists a unique element f ∈ (A/I)∗ for which π∗(f) = f .

Proof. Since f ∈ A◦ ⊆ A∗, then f ∈ A∗, and so f : A → K is a K-linear map.
Moreover, since f(I) = 0, then I ⊆ kerf . Now, we consider the canonical surjection
π : A → A/I. Thus, by the universal property of the quotient vector space,
there exists a unique K-linear map f : A/I → K such that f(a) = f(π(a)) =
π∗(f(a)), for all a ∈ A. Therefore, since π∗ is an injection (by the previous lemma),
we conclude that f is the unique element in (A/I)∗ for which π∗(f) = f . �

Remark 2.3.9. If E is a finite dimensional K-vector space, E∗ ⊗ E∗ ∼= (E ⊗ E)∗.
Indeed, let {e1, . . . , en} be a base of E and let {ω1, . . . , ωn} be its dual base, which
is given by ωi(ej) = δi,j, for all i, j ∈ {1, . . . , n}. Thus {ei ⊗ ej}1≤i,j≤n is a base of
E ⊗ E. Let {ηij}1≤i,j≤n be its dual base, which is defined as

ηij(ek ⊗ el) =

{
1 if i = k, j = l
0 otherwise

}
= δikδjl.

Therefore, we conclude that there is a K-vector space isomorphism between
E∗ ⊗ E∗ and (E ⊗ E)∗ given by ωi ⊗ ωj 7→ ηij.

21



Proposition 2.3.10. It is satisfied that m∗A(A◦) ⊆ A◦ ⊗ A◦.

Proof. Let f ∈ A◦. Then f vanishes on some cofinite ideal I ⊆ A. By the previous
proposition, there exists a unique f ∈ (A/I)∗ such that π∗(f) = f .

Recall that, by Proposition 2.2.12, A/I is a K-algebra with multiplication map
mA/I : A/I ⊗ A/I → A/I defined as mA/I([a]I ⊗ [b]I) = [ab]I . Its transpose
m∗A/I : (A/I)∗ → (A/I ⊗A/I)∗ is given by m∗A/I(f) = f ◦mA/I . Since A/I is finite

dimensional, by the previous remark one has that (A/I)∗⊗ (A/I)∗ ∼= (A/I⊗A/I)∗,
and so m∗A/I : (A/I)∗ → (A/I)∗ ⊗ (A/I)∗.

Thus, for a, b ∈ A, we have

m∗A(f)(a⊗ b) = m∗A(π∗(f))(a⊗ b) = π∗(f)(mA(a⊗ b)) = π∗(f)(ab) =

= f(π(ab)) = f([ab]I) = f(mA/I([a]I ⊗ [b]I)) = m∗A/I(f)([a]I ⊗ [b]I) =

= m∗A/I(f)(π(a)⊗ π(b)) =

(∑
(f)

f (1) ⊗ f (2)

)
(π(a)⊗ π(b)) =

=
∑
(f)

f (1)(π(a))⊗ f (2)(π(b)) =
∑
(f)

π∗(f (1))(a)⊗ π∗(f (2))(b) =

=

(∑
(f)

π∗(f (1))⊗ π∗(f (2))

)
(a⊗ b).

All in all, we have obtained m∗A(f)(a⊗ b) =

(∑
(f)

π∗(f (1))⊗ π∗(f (2))

)
(a⊗ b).

It remains to show that π∗(f (1)), π
∗(f (2)) ∈ A◦. Since f (1), f (2) ∈ (A/I)∗, then

π∗(f (1)), π
∗(f (2)) ∈ A∗. Since I is a cofinite ideal, for c ∈ I, i ∈ {1, 2}, we have

π∗(f (i))(c) = f (i)(π(c)) = f (i)([c]I) = f (i)([0]I) = 0. Thus π∗(f (1)), π
∗(f (2)) ∈ A◦.

Consequently, we conclude that m∗A(A◦) ⊆ A◦ ⊗ A◦. �

Theorem 2.3.11. If A is a K-algebra, then A◦ is a K-coalgebra.

Proof. Recall that A is a triple (A,mA, λA), where mA : A⊗A→ A, mA(a⊗b) = ab,
is K-linear and satisfies the associative property and λA : K → A, λA(r) = r1A, is
K-linear and satisfies the unit property. We need to define a comultiplication map
∆A◦ and a counit map εA◦ .

We start considering the transpose of mA, m∗A : A∗ → (A ⊗ A)∗, which is a
K-linear map defined as m∗A(f) = f ◦mA. Since A◦ ⊆ A∗ and m∗A(A◦) ⊆ A◦ ⊗ A◦
(by Proposition 2.3.10), m∗A restricts to a K-linear map

∆A◦ : A◦ → A◦ ⊗ A◦
f 7→ ∆A◦(f) = m∗A(f)
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Now, we consider the transpose of λA, λ∗A : A∗ → K∗ ∼= K, which is a K-linear
map given by λ∗A(f) = f ◦ λA. Since A◦ ⊆ A∗, λ∗A restricts to a K-linear map

εA◦ : A◦ → K
f 7→ εA◦(f) = λ∗A(f)

Observe that if we dualize the commutative diagrams of the definition of the
algebra A, we obtain the commutative diagrams of the definition of the coalgebra A◦

A◦ ⊗ A◦ ⊗ A◦ A◦ ⊗ A◦

A◦ ⊗ A◦ A◦

IA◦ ⊗∆A◦

∆A◦∆A◦ ⊗ IA◦

∆A◦

,

A◦ ⊗K A◦ ⊗ A◦

A◦ K ⊗ A◦

IA◦ ⊗ εA◦

−⊗ 1K
∆A◦ εA◦ ⊗ IA

1K ⊗−

By Theorem 2.3.2, we know that (1K ⊗ −)∗ = s1 and (− ⊗ 1K)∗ = s2. Thus,
(1K ⊗−)∗∗ = 1K ⊗− = s∗1 and (−⊗ 1K)∗∗ = −⊗ 1K = s∗2. Therefore, we conclude
that (A◦,∆A◦ , εA◦) is a K-coalgebra. �

Proposition 2.3.12. If (A,mA, λA) is a commutative algebra, then (A◦,∆A◦ , εA◦)
is a cocommutative colgebra, and if (C,∆C , εC) is a cocommutative coalgebra, then
(C∗,∆C∗ , εC∗) is a commutative algebra.

Proof. We will start with the first statement. Since A is an algebra, by Theorem
2.3.11, A◦ is a coalgebra. Now, we consider the twist map of A⊗A, which is defined
as τA⊗A(a⊗ b) = b⊗ a. Since A◦ ⊗A◦ ⊆ A∗ ⊗A∗ ⊆ (A⊗A)∗ (by Corollary 2.1.9),
its transpose restricted to A◦ ⊗ A◦ is

τ ∗A⊗A : A◦ ⊗ A◦ → A◦ ⊗ A◦
f ⊗ g 7→ (f ⊗ g) ◦ τA⊗A

Note that for a, b ∈ A, f, g ∈ A◦,

τ ∗A⊗A(f ⊗ g)(a⊗ b) = (f ⊗ g)(τA⊗A(a⊗ b)) = (f ⊗ g)(b⊗ a) = f(b)g(a) =

= g(a)f(b) = (g ⊗ f)(a⊗ b)⇒ τ ∗A⊗A(f ⊗ g) = g ⊗ f.

In other words, τ ∗A⊗A is the twist map of A◦ ⊗ A◦

τ ∗A⊗A = τA◦⊗A◦ (2.12)

Since the commutative diagrams of the definition of an algebra and a coalgebra
are mutually dual, we conclude that A◦ is a cocommutative coalgebra.

Analogously, one has the second statement. �
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We end this chapter with an application. Let K[x] be the algebra of polynomials
over the field K as in Example 2.2.7.

Definition 2.3.13. A sequence {sn}n∈N is called kth-order linearly recursive
over K if there exists a natural k and coefficients a0, . . . , ak−1 ∈ K such that for
all n ≥ 0, the following recurrence relation is satisfied

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + · · ·+ a1sn+1 + a0sn. (2.13)

The characteristic polynomial associated to the previous recurrence is

P (x) = xk − ak−1xk−1 − · · · − a1x− a0.

Proposition 2.3.14. The collection of kth-order linearly recursive sequences over
K of all orders k ≥ 0 can be identified with the finite dual K[x]◦.

Proof. Let {sn} be a kth-order linearly recursive sequence over K with recursive
relation sn+k = ak−1sn+k−1 + ak−2sn+k−2 + · · · + a1sn+1 + a0sn, for all n ≥ 0, and
characteristic polynomial P (x) = xk−ak−1xk−1−· · ·−a1x−a0, for a0, . . . , ak−1 ∈ K.

Note that we can identify {sn} with the element s =
∞∑
n=0

snϕn ∈ K[x]∗. Thus,

s(P (x)) =

( ∞∑
n=0

snϕn

)
(xk − ak−1xk−1 − · · · − a1x− a0) =

= sk − ak−1sk−1 − · · · − a1s1 − a0s0 =
(2.13)

0.

It follows that s(Q(x)P (x)) = 0, for all Q(x) =
n∑
i=0

bix
i ∈ K[x]:

Q(x)P (x) =
n∑
i=0

bix
iP (x)⇒ s(Q(x)P (x)) =

n∑
i=0

bis(x
iP (x)) =

=
n∑
i=0

bi(x
i+k − ak−1xi+k−1 − · · · − a1xi+1 − a0xi) =

=
n∑
i=0

bi(si+k − ak−1si+k−1 − · · · − a1si+1 − a0si) =
(2.13)

n∑
i=0

bi 0 = 0.

Hence s vanishes on the principal ideal I = (P (x)) ofK[x]. Clearly dim(K[x]/I) =
k. We conclude that s ∈ K[x]◦.

Conversely, let s =
∑

n≥0 snϕn ∈ K[x]◦. Then s vanishes on a coideal I ⊆ K[x].
Since K[x] is a principal ideal domain, there exists a polynomial P (x) ∈ K[x] of
degree k such that I = (P (x)). It is easy to check that s is a kth-order linearly
recursive sequence over K with characteristic polynomial P (x). �
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3 Bialgebras and module algebras

In this chapter, we introduce bialgebras. Then, we show how a bialgebra B can act
on an algebra giving it the structure of a left or right B-module algebra, and also
how the bialgebra can act on a coalgebra endowing it with the structure of right or
left B-module coalgebra. Finally, we prove the main result, which states that if B
is a bialgebra, its finite dual B◦ is a bialgebra too.

3.1 Bialgebras

In this section, we introduce bialgebras, which are vector spaces that are both
algebras and coalgebras such that comultiplication and counit maps are algebra
homomorphisms, and give some basic examples. We show that K[x] is a bialgebra
in exactly two distinct ways. Afterwards, we define biideals and discuss quotient
bialgebras and bialgebra homomorphisms.

Definition 3.1.1. A K-bialgebra is K-vector space B together with maps mB, λB,
∆B, εB that satisfy that (B,mB, λB) is a K-algebra, (B,∆B, εB) is a K-coalgebra
and ∆B, εB are K-algebra homomorphisms.

A K-bialgebra B is commutative if it is a commutative algebra; B is cocom-
mutative if it is a cocommutative coalgebra.

Remark 3.1.2. The requirement that ∆B : B → B ⊗ B is an algebra homomor-
phism implies that

1. ∆B(mB(a⊗ b)) = mB⊗B(∆B(a)⊗∆B(b))⇔ ∆B(ab) = ∆B(a)∆B(b), that is,

∑
(a,b)

(ab)(1)⊗(ab)(2) =

(∑
(a)

a(1)⊗a(2)
)(∑

(b)

b(1)⊗b(2)
)

=
∑
(a,b)

a(1)b(1)⊗a(2)b(2),

2. ∆B(λB(r)) = λB⊗B(r) = λB(r)⊗ 1B = r 1B ⊗ 1B, and so, in particular,

∆B(λB(1K)) = ∆B(1B) = 1B ⊗ 1B.

and the requirement that εB : B → K is an algebra homomorphism implies that

1. εB(mB(a⊗ b)) = mK(εB(a)⊗ εB(b))⇔ εB(ab) = εB(a)εB(b),

2. εB(λB(r)) = λK(r) = IK(r) = r, and so, in particular, εB(1B) = 1K .

Definition 3.1.3. Let B be a bialgebra. A primitive element of B is an element
b ∈ B such that ∆B(b) = 1⊗ b+ b⊗ 1.

Example 3.1.4. The field K as a vector space over itself is a commutative and
cocommutative K-bialgebra (see Examples 2.2.6 and 2.2.16). It is called the trivial
K-bialgebra.
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Example 3.1.5. Let G be a finite group. From Example 2.2.8 and Example
2.2.20, K[G] has the structure of an algebra and a cocommutative coalgebra, re-
spectively. It is easy to check that comultiplication and counit maps are algebra
homomorphisms, and so K[G] is a cocommutative bialgebra. It is called the group
bialgebra. It is commutative if, and only if, G is abelian.

Example 3.1.6. Let K[x] be the K-vector space of polynomials in the indeter-
minate x. From Example 2.2.7 and Example 2.2.21, K[x] has the structure of a
commutative algebra and a cocommutative coalgebra, respectively. It is easy to
check that ∆K[x] and εK[x] are algebra homomorphisms, and so K[x] is a commu-
tative and cocommutative bialgebra. One has that ∆K[x](x) = x ⊗ x. Hence it is
called the polynomial bialgebra with x grouplike.

Example 3.1.7. Let K[x] be the K-vector space of polynomials in the indeter-
minate x. From Example 2.2.7 and Example 2.2.22, K[x] has the structure of a
commutative algebra and a cocommutative coalgebra, respectively. It is easy to
check that ∆K[x] and εK[x] are algebra homomorphisms, and so K[x] is a commuta-
tive and cocommutative bialgebra. One has that ∆K[x](x) = 1⊗ x + x⊗ 1. Hence
it is called the polynomial bialgebra with x primitive.

Definition 3.1.8. Let B,B′ be K- bialgebras. Since B and B′ are algebras and
coalgebras, B ⊗B′ is an algebra and a coalgebra (Definitions 2.2.11 and 2.2.23). It
is easy to show that ∆B⊗B′ and εB⊗B′ are algebra homomorphisms, and hence the
tensor product of bialgebras B ⊗B′ has the structure of a K-bialgebra.

Definition 3.1.9. Let B be a K-bialgebra. A subspace I ⊆ B is a biideal of B if
it is both an ideal and a coideal.

Proposition 3.1.10. Let B be a K-bialgebra and let I be a biideal of B. Then the
quotient space is B/I is a K-bialgebra.

Proof. By Proposition 2.2.12, B/I is a K-algebra, and by Proposition 2.2.25, B/I is
a K-coalgebra. It is easy to show that ∆B/I and εB/I are algebra homomorphisms
since ∆B and εB are also algebra homomorphisms. Therefore, we conclude that
B/I is a K-bialgebra. �

Definition 3.1.11. Let B be a K-bialgebra and let I be a biideal of B. The
K-bialgebra B/I of the previous proposition is the quotient bialgebra B by I.

Definition 3.1.12. Let B,B′ be bialgebras. A K-bialgebra homomorphism
from B to B′ is a φ : B → B′ which is both an algebra and a coalgebra homo-
morphism. A K-bialgebra homomorphism that is injective and surjective is a K-
bialgebra isomorphism.

Surprisingly, the bialgebras structures on K[x] given in the previous examples
are the only bialgebra structures on K[x] up to algebra isomorphism.

Proposition 3.1.13. Suppose the polynomial algebra K[x] is given the structure of
a K-bialgebra. Then, there exists z ∈ K[x] for which K[z] = K[x] and z is either
grouplike or z is primitive.
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Proof. Let λ := λK[x], ∆ := ∆K[x], ε := εK[x] and I := IK[x]. Recall {xi ⊗ xj}i,j∈N
is a basis of K[x]⊗K[x]. Then, we write

∆(x) =
m∑
i=0

n∑
j=0

bi,j x
i ⊗ xj ∈ K[x]⊗K[x], for bi,j ∈ K.

Let l denote the highest degree of x that occurs in the left factors of the tensors
in the sum ∆(x). Then, bl,j 6= 0 for some j ∈ {0, . . . , n}; let j′ denote the maximal j
for which bl,j 6= 0. On the one hand,

(I ⊗∆)∆(x) =
m∑
i=0

n∑
j=0

c xi ⊗ xj1 ⊗ xj2 ∈ K[x]⊗K[x]⊗K[x].

Note that l is the highest degree of x that occurs in the left-most factors of the
tensors in the sum (I ⊗∆)∆(x). On the other hand,

(∆⊗ I)∆(x) = (∆⊗ I)

( m∑
i=0

n∑
j=0

bi,j x
i ⊗ xj

)
=

m∑
i=0

n∑
j=0

bi,j ∆(xi)⊗ xj =

=
m∑
i=0

n∑
j=0

bi,j (∆(x))i ⊗ xj =
m∑
i=0

n∑
j=0

bi,j

( m∑
α=0

n∑
β=0

bα,β x
α ⊗ xβ

)i
⊗ xj =

= bl+1
l,j′ x

l2 ⊗ xlj′ ⊗ xj′ + T,

where T is a sum of tensors in K[x]⊗K[x]⊗K[x] of the form c xi ⊗ xj ⊗ xk with
i ≤ l2, and, since bl,j′ 6= 0, bl+1

l,j′ x
l2 ⊗ xlj′ ⊗ xj′ is the term with the highest degree

of x that occurs in the left-most factors of the tensors in (∆ ⊗ I)∆(x) (that is, it
comes from making i = α = l and j = β = j′). In other words, l2 is the highest
degree of x that occurs in the left-most factors of the tensors in this sum. By the
coassociative property of ∆, we have l2 = l, and hence, either l = 0 or l = 1.

Now, let r denote the highest degree of x that occurs in the right factors of the
tensors in the sum ∆(x). Repeating the argument above, one has that either r = 0
or r = 1. Consequently, ∆(x) = b0,0(1⊗ 1) + b0,1(1⊗ x) + b1,0(x⊗ 1) + b1,1(x⊗ x).

Let y = x− ε(x). We see that ε(y) = 0:

ε(y) = ε(x− ε(x)) = ε(x− ε(x)1K) = ε(x− ε(x)1K[x]) = ε(x)− ε(x)ε(1K[x]) =

= ε(x)− ε(x)ε(λ(1K)) = ε(x)− ε(x)1K = ε(x)− ε(x) = 0.

Let ∆(y) =
m∑
i=0

n∑
j=0

ai,j y
i⊗yj. By comparing the leading coefficients in (∆⊗ I)∆(y)

and (I ⊗ ∆)∆(y) as above, we conclude that ai,j = 0 if i > 1 or j > 1. Thus,
∆(y) = a0,0 1⊗ 1 + a0,1 1⊗ y + a1,0 y⊗ 1 + a1,1 y⊗ y. Since ε(y) = 0, we also have
that a0,0 = 0 and a0,1 = a1,0 = 1. Indeed,
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y ⊗ 1 =
(2.6)

(I ⊗ ε)∆(y) =

= a0,0 1⊗ ε(1)︸︷︷︸
=1

+a0,1 1⊗ ε(y)︸︷︷︸
=0

+a1,0 y ⊗ ε(1)︸︷︷︸
=1

+a1,1 y ⊗ ε(y)︸︷︷︸
=0

⇔

⇔ y ⊗ 1 = a0,0 1⊗ 1 + a1,0 y ⊗ 1⇔ a0,0 = 0, a1,0 = 1.

Similarly, one has a0,1 = 1. Therefore, ∆(y) = 1⊗ y + y ⊗ 1 + a y ⊗ y, for some
a ∈ K. If a = 0, then z = y is primitive and K[z] = K[x] (since y = x−ε(x), where
ε(x) ∈ K). If a 6= 0, we define z = 1 + ay, and so z is grouplike and K[z] = K[x].

Indeed, at the one hand, we have

z ⊗ z = (1 + ay)⊗ (1 + ay) = 1⊗ 1 + a(1⊗ y) + a(y ⊗ 1) + a2(y ⊗ y).

At the other hand, since ∆ is K-linear and a K-algebra homomorphism, we have

∆(z) = ∆(1 + ay) = ∆(1) + a∆(y) = 1⊗ 1 + a(1⊗ y) + a(y ⊗ 1) + a2(y ⊗ y).

�

Remark 3.1.14. As we have seen in Proposition 2.3.14, K[x]◦ is the collection of
linearly recursive sequences over K. We have shown that K[x] is a bialgebra in
exactly two distinct ways, and so K[x]◦ has two different structures as a bialgebra
(by Theorem 3.3.3). Hence, there are just two distinct ways of multiplying sequences
in K[x]◦, which are called the Hadamard product and the Hurwitz product.
However, we are not going to discuss these topics.

3.2 Module algebras and module coalgebras

In this section, we show how a bialgebra B can act on an algebra or a coalgebra
endowing it with the structure of a right or left B-module algebra or coalgebra,
respectively. That leads us to define a certain right or left action on the dual alge-
bra B∗, so that B∗ has the structure of a right or left B-module algebra, respectively.

Let B be a K-bialgebra.

Definition 3.2.1. Let A be a K-algebra and a left (resp. right) B-module with
action denoted by “·”. Then A is a left (resp. right) B-module K-algebra if for
b ∈ B, a, a′ ∈ A, it satisfies

b · (aa′) =
∑
(b)

(b(1) · a)(b(2) · a′) and b · 1A = εB(b)1A

(resp. (aa′) · b =
∑
(b)

(a · b(1))(a′ · b(2)) and 1A · b = 1AεB(b) = 1AεB(b)).

Let A,A′ be K-algebras. A left (resp. right) B-module K-algebra homo-
morphism from A to A′ is a K-linear map φ : A → A′ which is both an algebra
and a left (resp. right) B-module homomorphism.
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Definition 3.2.2. Let C be a K-coalgebra and a right (resp. left) B-module with
action denoted by “·”. Then C is a right (resp. left) B-module K-coalgebra if
for b ∈ B, c ∈ C, it satisfies

∆C(c · b) =
∑
(c,b)

(c(1) · b(1))⊗ (c(2) · b(2)) and εC(c · b) = εC(c)εB(b) = εB(b)εC(c)

(resp. ∆C(b · c) =
∑
(b,c)

(b(1) · c(1))⊗ (b(2) · c(2)) and εC(b · c) = εB(b)εC(c)).

Let C,C ′ be K-coalgebras. A right (resp. left) B-module K-coalgebra
homomorphism from C to C ′ is a K-linear map φ : C → C ′ which is both a
coalgebra and a right (resp. left) B-module homomorphism.

Definition 3.2.3. Note that there is a right (resp. left) B-module structure on B∗

defined as (f ↼ a)(b) = f(ab) (resp. (a ⇀ f)(b) = f(ba)), for a, b ∈ B, f ∈ B∗.
The action ↼ is called the right (resp. left) translate action. For a ∈ B, f ∈ B∗,
the element f ↼ a is the right (resp. left) B-translate of f by a. Moreover,
f ↼ B = {f ↼ b : b ∈ B} (resp. B ⇀ f = {b ⇀ f : b ∈ B}) is a subspace of B∗.

Proposition 3.2.4. The right (resp. left) translate action endows B∗ with the
structure of a right (resp. left) B-module algebra.

Proof. In order to prove that B∗ is a right B-module algebra, we need to show three
things. Firstly, we see that B∗ is a K-algebra. Indeed, since B is a bialgebra, it is a
coalgebra, and by Theorem 2.3.2, B∗ is an algebra. Secondly, we show that B∗ is a
right B-module. Indeed, B∗ is a right B-module with vector addition given by the
vector addition as a dual vector space and scalar multiplication given by the right
translate action ↼.

Finally, we see that the right translate action satisfies

(fg ↼ a)(b) =

(∑
(a)

(f ↼ a(1))(g ↼ a(2))

)
(b) and (1B∗ ↼ a)(b) = (1B∗εB(a))(b).

On the one hand, for f, g ∈ B∗, a, b ∈ B, we have

(fg ↼ a)(b) = (fg)(ab) = mB∗(f ⊗ g)(ab) = ∆∗B(f ⊗ g)(ab) = (f ⊗ g)∆B(ab) =

= (f ⊗ g)∆B(a)∆B(b) = (f ⊗ g)

(∑
(a)

a(1) ⊗ a(2)
)(∑

(b)

b(1) ⊗ b(2)
)

=

= (f ⊗ g)

(∑
(a,b)

a(1)b(1) ⊗ a(2)b(2)
)

=
∑
(a,b)

f(a(1)b(1))g(a(2)b(2)) =

=
∑
(a,b)

(f ↼ a(1))(b(1))(g ↼ a(2))(b(2)) =
∑
(a,b)

((f ↼ a(1))⊗ (g ↼ a(2)))(b(1) ⊗ b(2)) =

=

(∑
(a)

(f ↼ a(1))⊗ (g ↼ a(2))

)(∑
(b)

b(1) ⊗ b(2)
)

=
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=

(∑
(a)

(f ↼ a(1))⊗ (g ↼ a(2))

)
∆B(b) =

= ∆∗B

(∑
(a)

(f ↼ a(1))⊗ (g ↼ a(2))

)
(b) =

(∑
(a)

∆∗B((f ↼ a(1))⊗ (g ↼ a(2)))

)
(b) =

=

(∑
(a)

mB∗((f ↼ a(1))⊗ (g ↼ a(2)))

)
(b) =

(∑
(a)

(f ↼ a(1))(g ↼ a(2))

)
(b).

On the other hand, recall that multiplication map on B∗ is a K-linear map
λB∗ : K∗ ∼= K → B∗ defined as

λB∗(r)(b) =

{
r1B∗(b) (Def. multiplication map)

ε∗B(r)(b) = rεB(b) (Theorem 2.3.2)

Thus, we have that
λB∗(1K) = 1B∗ = εB (3.1)

Hence, for a, b ∈ B, we have

(1B∗ ↼ a)(b) = 1B∗(ab) =
(3.1)

εB(ab) = εB(a)εB(b) =
(3.1)

1B∗(a)εB(b) = (1B∗(a)εB)(b).

We conclude that B∗ is a right B-module algebra. �

3.3 Duality

Finally, we prove the main result of this chapter, which sets that if B is a bialgebra,
then its finite dual B◦ is also a bialgebra. In order to do it, we need the next lemma
(we are not going to prove it) and the following remark.

Lemma 3.3.1. Let B be a K-bialgebra and let f ∈ B∗. Then the following state-
ments are equivalent:

1. dim(f ↼ B) <∞,

2. f ∈ B◦.

Remark 3.3.2. Let A be a K-algebra. For f ∈ A∗, the following equation holds

λ∗A(f) = f(1A) (3.2)

Indeed, for r ∈ K, f ∈ A∗, we have

λ∗A(f)(r) = f(λA(r)) = f(r1A) = rf(1A) = f(1A) r =
(K∼=K∗)

(f(1A))(r).
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Theorem 3.3.3. If B is a K-bialgebra, then B◦ is a bialgebra.

Proof. Recall that B is a K-vector space with maps mB, λB, ∆B, εB satisfying
that (B,mB, λB) is a K-algebra, (B,∆B, εB) is a K-coalgebra, and ∆B, εB are K-
algebra homomorphisms.

Firstly, we see that B◦ is an algebra. We need to construct a multiplication
map mB◦ and a unit map λB◦ . Since B is a coalgebra, by Theorem 2.3.2, B∗ is an
algebra with multiplication mB∗ = ∆∗B|B∗⊗B∗ and unit λB∗ = ε∗B|B∗ . We start with
multiplication. Since B◦ ⊆ B∗, mB∗ restricts to a K-linear map

mB◦ : B◦ ⊗B◦ → B∗

f ⊗ g 7→ mB◦(f ⊗ g) = mB∗(f ⊗ g) = fg

We show that mB◦(B
◦ ⊗B◦) ⊆ B◦. Since B is a bialgebra, by Proposition 3.2.4

the right translate action ↼ endows B∗ with the structure of a right B-module
algebra, and so, the following equation is satisfied

(fg ↼ a)(b) =

(∑
(a)

(f ↼ a(1))(g ↼ a(2))

)
(b), ∀ f, g ∈ B∗, a, b ∈ B.

In particular, it holds for f, g ∈ B◦. Thus fg ↼ B ⊆ span((f ↼ B)(g ↼ B)),
for all f, g ∈ B◦. By the previous lemma, we have

f, g ∈ B◦ ⇒ dim(f ↼ B) <∞, dim(g ↼ B) <∞⇒

⇒ dim(span((f ↼ B)(g ↼ B))) <∞⇒ dim(fg ↼ B) <∞⇒ fg ∈ B◦.

Therefore, mB◦(B
◦⊗B◦) ⊆ B◦. Moreover, mB◦ satisfies the associative property

since mB∗ does.

We continue with unit. Set λB◦ = λB∗ , which is K-linear

λB◦ : K → B∗

r 7→ λB◦(r) = λB∗(r) = ε∗B(r) = rεB

We show that λB◦(K) ⊆ B◦. Since λB◦(r) = rεB, for all r ∈ K, it remains to see
that εB vanishes on some cofinite ideal. Indeed, since εB : B → K is a K-linear,
ker(εB) is an ideal of B. εB clearly vanishes on ker(εB) and ker(εB) is cofinite

B/ker(εB) ∼= im(εB) ⊆ K ⇒ dim(B/ker(εB)) ≤ dimK(K) = 1 <∞.

Hence, λB◦(K) ⊆ B◦. Moreover, λB◦ satisfies the unit property since λB∗ does.

Secondly, we show that B◦ is a coalgebra. Indeed, since B is an algebra, by
Theorem 2.3.11, B◦ is a coalgebra with multiplication map ∆B◦ = m∗B|B◦ and
counit map εB◦ = λ∗B|B◦ .
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Finally, we see that ∆B◦ and εB◦ are K-algebra homomorphisms. We have to
check that they both satisfy the two conditions of Remark 3.1.2. We start with
comultiplication ∆B◦ : B◦ → B◦ ⊗B◦. We need to show that it satisfies

∆B◦(fg) = ∆B◦(f)∆B◦(g) and ∆B◦(λB◦(r)) = r 1B◦ ⊗ 1B◦ .

First of all, observe that, since B is a coalgebra, by Definition 2.2.23, B ⊗ B is
also a coalgebra. Moreover, since we have already seen that B◦ is an algebra, by
Definition 2.2.11, B◦⊗B◦ is an algebra too. Therefore, the following equation holds

∆∗B⊗B = mB◦⊗B◦ (3.3)

Indeed,

mB◦⊗B◦ = (mB◦ ⊗mB◦)(IB◦ ⊗ τB◦⊗B◦ ⊗ IB◦) =

=
(2.12)

(mB∗ ⊗mB∗)(IB∗ ⊗ τ ∗B⊗B ⊗ IB∗) = (∆∗B ⊗∆∗B)(I∗B ⊗ τ ∗B⊗B ⊗ I∗B) =

= (∆B ⊗∆B)∗(IB ⊗ τB⊗B ⊗ IB)∗ = ((IB ⊗ τB⊗B ⊗ IB)(∆B ⊗∆B))∗ = ∆∗B⊗B.

On the one hand, for f, g ∈ B◦, a, b ∈ B, ∆B◦(fg) = ∆B◦(f)∆B◦(g) holds:

∆B◦(fg)(a⊗ b) = ∆B◦(mB◦(f ⊗ g))(a⊗ b) = m∗B(mB◦(f ⊗ g))(a⊗ b) =

= mB◦(f ⊗ g)mB(a⊗ b) = mB◦(f ⊗ g)(ab) = ∆∗B(f ⊗ g)(ab) = (f ⊗ g)∆B(ab) =

= (f ⊗ g)∆B(a)∆B(b) = (f ⊗ g)

(∑
(a)

a(1) ⊗ a(2)
)(∑

(b)

b(1) ⊗ b(2)
)

=

= (f ⊗ g)

(∑
(a,b)

a(1)b(1) ⊗ a(2)b(2)
)

=
∑
(a,b)

f(a(1)b(1)) g(a(2)b(2)) =

=
∑
(a,b)

f(mB(a(1) ⊗ b(1))) g(mB(a(2) ⊗ b(2))) =

=
∑
(a,b)

m∗B(f)(a(1) ⊗ b(1)) m∗B(g)(a(2) ⊗ b(2)) =

=
∑
(a,b)

∆B◦(f)(a(1) ⊗ b(1)) ∆B◦(g)(a(2) ⊗ b(2)) =

= (∆B◦(f)⊗∆B◦(g))(IB ⊗ τ ⊗ IB)

(∑
(a,b)

a(1) ⊗ a(2) ⊗ b(1) ⊗ b(2)
)

=

= (∆B◦(f)⊗∆B◦(g))(IB ⊗ τ ⊗ IB)

[(∑
(a)

a(1) ⊗ a(2)
)(∑

(b)

b(1) ⊗ b(2)
)]

=

= (∆B◦(f)⊗∆B◦(g))(IB ⊗ τ ⊗ IB)(∆B(a)⊗∆B(b)) =

= (∆B◦(f)⊗∆B◦(g))(IB ⊗ τ ⊗ IB)(∆B ⊗∆B)(a⊗ b) =

= (∆B◦(f)⊗∆B◦(g))∆B⊗B(a⊗ b) = ∆∗B⊗B(∆B◦(f)⊗∆B◦(g))(a⊗ b) =

=
(3.3)

mB◦⊗B◦(∆B◦(f)⊗∆B◦(g))(a⊗ b) = (∆B◦(f)∆B◦(g))(a⊗ b).

32



On the other hand, for r ∈ K, a, b ∈ B, ∆B◦(λB◦(r)) = r 1B◦ ⊗ 1B◦ holds:

∆B◦(λB◦(r))(a⊗ b) = m∗B(λB◦(r))(a⊗ b) = (λB◦(r))mB(a⊗ b) =

= λB◦(r)(ab) = λB∗(r)(ab) = ε∗B(r)(ab) = rεB(ab) = rεB(a) εB(b) =

=
(3.1)

r1B∗(a)1B∗(b) = r1B◦(a)1B◦(b) = r(1B◦ ⊗ 1B◦)(a⊗ b).

We finish with counit εB◦ : B◦ → K. We need to show that it satisfies

εB◦(fg) = εB◦(f)εB◦(g) and εB◦(λB◦(r)) = r.

On the one hand, for f, g ∈ B◦, r ∈ K, εB◦(fg) = εB◦(f)εB◦(g) holds:

εB◦(fg)(r) = εB◦(mB◦(f ⊗ g))(r) = λ∗B(mB◦(f ⊗ g))(r) =

= (mB◦(f ⊗ g))λB(r) = (mB◦(f ⊗ g))(r1B) = r(mB◦(f ⊗ g))(1B) =

= r(mB∗(f ⊗ g))(1B) = r(∆∗B(f ⊗ g))(1B) = r(f ⊗ g)(∆B(1B)) =

= r(f ⊗ g)(1B ⊗ 1B) = rf(1B)g(1B) =
(3.2)

rλ∗B(f)λ∗B(g) =

= rεB◦(f)εB◦(g) =
(K∼=K∗)

(εB◦(f)εB◦(g))(r).

On the other hand, for r, s ∈ K, εB◦(λB◦(r)) = r holds:

εB◦(λB◦(r))(s) = λ∗B(λB◦(r))(s) = (λB◦(r))λB(s) =

= (λB◦(r))(s1B) = s(λB◦(r))(1B) = s(λB∗(r))(1B) =

= s(ε∗B(r))(1B) = srεB(1B) = sr1K = rs =
(K∼=K∗)

r(s).

Therefore, we conclude that B◦ is a K-bialgebra. �
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4 Hopf algebras and Hopf Galois extensions

In this chapter, we introduce the notion of Hopf algebra. We prove an important
result, which states that if H is a finite dimensional vector space, it is a Hopf algebra
if, and only if, its linear dual is a Hopf algebra too. Then, we see that there is a Hopf
algebra isomorphism between the dual of the group algebra K[G] and the algebra
of functions O(G). Afterwards, we give a characterization of Galois extensions in
terms of K[G] and use it to define Hopf Galois extensions. Finally, we discuss a
basic example.

4.1 Hopf algebras

In this section, we introduce Hopf algebras, which are bialgebras with an additional
map called the coinverse, and give some initial examples. We define convolution, a
binary operation on linear transformations, and use it to show that the coinverse is
an algebra anti-homomorphism and a coalgebra anti-homomorphism. Afterwards,
we define Hopf ideals and discuss quotient Hopf algebras and Hopf algebra homo-
morphisms. We also prove that if H is finite dimensional, it is a Hopf algebra if,
and only if, H∗ is also a Hopf algebra. Ultimately, we see that the Hopf algebras
K[G]∗ and O(G) are mutually dual.

Definition 4.1.1. A K-Hopf algebra is a K-bialgebra H = (H,mH , λH ,∆H , εH)
together with a K-linear map σH : H → H that satisfies the following condition:
for all h ∈ H,

mH(IH ⊗ σH)∆H(h) = (λHεH)(h) = εH(h)1H = mH(σH ⊗ IH)∆H(h) (4.1)

that is, using Sweedler notation,∑
(h)

h(1)σH(h(2)) = (λHεH)(h) = εH(h)1H =
∑
(h)

σH(h(1))h(2) (4.2)

Equivalently, the following diagram commutes

H ⊗H H ⊗H

H K H

H ⊗H H ⊗H

∆H

IH ⊗ σH

mH

εH λH

∆H

σH ⊗ IH

mH

The map σH is called the coinverse (or antipode) and Condition (4.1) is the
coinverse (or antipode) property.
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A K-Hopf algebra H is commutative if it is a commutative algebra; H is
cocommutative if it is a cocommutative coalgebra. A K-Hopf algebra that is
neither commutative nor cocommutative is a quantum group.

Example 4.1.2. The field K is a commutative and cocommutative K-Hopf algebra
with coinverse map σK : K → K defined as σK(r) = r = IK(r). It is called the
trivial K-Hopf algebra.

Example 4.1.3. Let G be a finite group. From Example 3.1.5, K[G] has the
structure of a cocommutative bialgebra. Hence, K[G] is a cocommutative K-Hopf
algebra with coinverse map σK[G] : K[G]→ K[G] determined by σK[G](g) = g−1. It
is called the group Hopf algebra. It is commutative if, and only if, G is abelian.

Example 4.1.4. Let K[x] be the polynomial bialgebra with x primitive (Example
3.1.7), which is commutative and cocommutative. Hence, K[x] is a commutative
and cocommutative K-Hopf algebra with coinverse map σK[x] : K[x]→ K[x] deter-
mined by σK[x](x

i) = (−x)i, for i ≥ 0.

Remark 4.1.5. The polynomial bialgebra with x grouplike (Example 3.1.6) can
not be endowed with the structure of a K-Hopf algebra.

In many ways, the group ring K[G] of Example 4.1.3 is the canonical exam-
ple that is generalized to the concept of Hopf algebra. Clearly, one has that
σK[G] ◦ σK[G] = IK[G], so the coinverse of K[G] has order 2. We wonder whether we
can generalize this result (we can not). However, we will see that there are some
properties of Hopf algebras that guarantee that its coinverse map has order 2.

Definition 4.1.6. Let C be a K-coalgebra and A be a K-algebra. Let HomK(C,A)
denote the collection of K-linear maps φ : C → A. We can define a multiplication
on HomK(C,A) called convolution: for f, g ∈ HomK(C,A), c ∈ C,

(f ∗ g)(c) = (mA(f ⊗ g)∆C)(c) =
∑
(c)

f(c(1))g(c(2)) (4.3)

Proposition 4.1.7. Let C be a K-coalgebra and let A be a K-algebra. Then
HomK(C,A) together with ∗ is a monoid.

Proof. We show that the three axioms for a monoid hold. Firstly, we see that ∗ is an
internal binary operation. Indeed, clearly f ∗ g = mA ◦ (f ⊗ g)◦∆C ∈ HomK(C,A).
Secondly, we see that ∗ is associative: for f, g, h ∈ HomK(C,A), c ∈ C, we have

(f ∗ (g ∗ h))(c) =
(4.3)

∑
(c)

f(c(1))(g ∗ h)(c(2)) =
(4.3)

∑
(c)

f(c(1))
∑
(c(2))

g(c(2)(1))h(c(2)(2)) =

=
∑

(c,c(2))

f(c(1))g(c(2)(1))h(c(2)(2)) =
(2.7)

∑
(c)

f(c(1))g(c(2))h(c(3)) =
(2.8)

=
∑

(c,c(1))

f(c(1)(1))g(c(1)(2))h(c(2)) =
∑
(c)

∑
(c(1))

f(c(1)(1))g(c(1)(2))h(c(2)) =

=
(4.3)

∑
(c)

(f ∗ g)(c(1))h(c(2)) =
(4.3)

((f ∗ g) ∗ h)(c).
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Finally, we show that λA◦εC is the left and right identity element in HomK(C,A):
for φ ∈ HomK(C,A), c ∈ C, we have

(λAεC ∗ φ)(c) =
(4.3)

∑
(c)

(λAεC)(c(1))φ(c(2)) =
∑
(c)

λA (εC(c(1)))︸ ︷︷ ︸
∈K

φ(c(2)) =

=
∑
(c)

εC(c(1))λA(1K)φ(c(2)) =
∑
(c)

εC(c(1))1A φ(c(2))︸ ︷︷ ︸
∈A

=
∑
(c)

εC(c(1))︸ ︷︷ ︸
∈K

φ(c(2)) =

= φ

(∑
(c)

εC(c(1))c(2)

)
=

(2.10)
φ(c)⇒ φ ∗ λAεC = φ.

A similar calculation yields λAεC ∗ φ = φ. Thus, we have obtained that

1(HomK(C,A),∗) = λA ◦ εC (4.4)

Therefore, we conclude that (HomK(C,A), ∗) is a monoid. �

Proposition 4.1.8. Let H be a K-Hopf algebra and let HomK(H,H) be the monoid
under convolution ∗. Then σH ∗ IH = λHεH = IH ∗σH . In other words, σH is a left
and right inverse of IH under ∗.

Proof. Since H is a K-Hopf algebra, H is both an algebra and a coalgebra. Thus,
by the previous proposition, one has that 1(HomK(H,H),∗) = λHεH (4.4).

We see that σH is a left and right inverse of IH under ∗: for h ∈ H, we have:

(σH ∗ IH)(h) =
(4.3)

mH(σH ⊗ IH)∆H(h) =
(4.1)

(λHεH)(h) =
(4.1)

mH(IH ⊗ σH)∆H(h) =

=
(4.3)

(IH ∗ σH)(h)⇒ σH ∗ IH = λHεH = IH ∗ σH .

Therefore, we conclude that σH is a left and right inverse of IH under ∗. �

Convolution can be used to show that the coinverse map is an algebra antihomo-
morphism and so to set that the coinverse is an algebra homomorphism whenever
the Hopf algebra is commutative.

Proposition 4.1.9. Let H be a K-Hopf algebra with coinverse map σH . Then the
following properties hold:

1. σH(ab) = σH(b)σH(a), for all a, b ∈ H,

2. σH(1H) = 1H .

Proof. Firstly, we see that σH(ab) = σH(b)σH(a). Since H is a Hopf algebra, it is a
coalgebra, and so H⊗H is also a coalgebra (Definition 2.2.23), with comultiplication
∆H⊗H = (IH⊗τ⊗IH)(∆H⊗∆H) given by ∆H⊗H(a⊗b) =

∑
(a,b) a(1)⊗b(1)⊗a(2)⊗b(2),

and counit εH⊗H defined as εH⊗H(a ⊗ b) = εH(a)εH(b). Moreover, since H is
a Hopf algebra, it is an algebra, so we consider HomK(H ⊗ H,H). Recall that
λHεH⊗H = 1(HomK(H⊗H,H),∗) (4.4). Note that mH ∈ HomK(H ⊗H,H).
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We define two additional elements of HomK(H ⊗H,H) as follows:

σHmH : H ⊗H → H
a⊗ b 7→ σH(ab)

φ = mH(σH ⊗ σH)τ : H ⊗H → H
a⊗ b 7→ σH(b)σH(a)

Note that, if we prove φ = σHmH , we have already finished. In order to show it,
we will see that the following equations hold

mH ∗ φ = λHεH⊗H = φ ∗mH (4.5)

mH ∗ σHmH = λHεH⊗H = σHmH ∗mH (4.6)

On the one hand, we prove (4.5): for a, b ∈ H, we have

(mH ∗ φ)(a⊗ b) =
(4.3)

mH(mH ⊗ φ)∆H⊗H(a⊗ b) =

= mH(mH ⊗ φ)

(∑
(a,b)

a(1) ⊗ b(1) ⊗ a(2) ⊗ b(2)
)

=

= mH

(∑
(a,b)

mH(a(1) ⊗ b(1))⊗ φ(a(2) ⊗ b(2))
)

=

= mH

(∑
(a,b)

a(1)b(1) ⊗ σH(b(2))σH(a(2))

)
=

=
∑
(a,b)

a(1)b(1)σH(b(2))σH(a(2)) =
∑
(a)

a(1)

(∑
(b)

b(1)σH(b(2))

)
σH(a(2)) =

=
(4.2)

∑
(a)

a(1) εH(b)︸ ︷︷ ︸
∈K

1H σH(a(2))︸ ︷︷ ︸
∈H

= εH(b)
∑
(a)

a(1)σH(a(2)) =
(4.2)

εH(b)︸ ︷︷ ︸
∈K

εH(a)︸ ︷︷ ︸
∈K

1H =

= εH(a)εH(b)1H = εH⊗H(a⊗ b)1H = λH(εH⊗H(a⊗ b)) = (λHεH⊗H)(a⊗ b).

A similar calculation yields φ ∗mH = λHεH⊗H , and so (4.5) holds.

On the other hand, we prove (4.6): for a, b ∈ H, we have

(mH ∗ σHmH)(a⊗ b) =
(4.3)

mH(mH ⊗ σHmH)∆H⊗H(a⊗ b) =

= mH(mH ⊗ σHmH)

(∑
(a,b)

a(1) ⊗ b(1) ⊗ a(2) ⊗ b(2)
)

=

= mH

(∑
(a,b)

mH(a(1) ⊗ b(1))⊗ (σHmH)(a(2) ⊗ b(2))
)

=

= mH

(∑
(a,b)

a(1)b(1) ⊗ σH(a(2)b(2))

)
=
∑
(a,b)

a(1)b(1)σH(a(2)b(2)) =
(4.2)

εH(ab)1H =

= εH(a)εH(b)1H = εH⊗H(a⊗ b)1H = λH(εH⊗H(a⊗ b)) = (λHεH⊗H)(a⊗ b).

A similar calculation yields σHmH ∗mH = λHεH⊗H , and so (4.6) holds.
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Now, from (4.5) and (4.6), we obtain

mH ∗ φ = mH ∗ σHmH ⇒ φ ∗ (mH ∗ φ) = φ ∗ (mH ∗ σHmH)⇒

⇒ (φ ∗mH) ∗ φ = (φ ∗mH) ∗ σHmH ⇒
(4.5)

λHεH⊗H ∗ φ = λHεH⊗H ∗ σHmH ⇒

⇒
(4.4)

1(HomK(H⊗H,H),∗) ∗ φ = 1(HomK(H⊗H,H),∗) ∗ σHmH ⇒ φ = σHmH .

Finally, we show that σH(1H) = 1H . Indeed,

1H = 1K1H = εH(1H)1H =
(4.1)

mH(IH ⊗ σH)∆H(1H) =

= mH(IH ⊗ σH)(1H ⊗ 1H) = mH(1H ⊗ σH(1H)) = 1H σH(1H)︸ ︷︷ ︸
∈H

= σH(1H).

Therefore, we conclude that σH is an algebra antihomomorphism. �

Corollary 4.1.10. Let H be a K-Hopf algebra with coinverse map σH . If H is
cocommutative, then σ2

H = IH (that is, σH has order 2).

Proof. Since H is cocommutative, the equation τ∆H = ∆H holds. We consider
HomK(H,H) endowed with convolution ∗. Note that σH , σ2

H , IH and λHεH are all
elements of HomK(H,H). Thus, for h ∈ H, we have

(σH ∗ σ2
H)(h) =

(4.3)
mH(σH ⊗ σ2

H)∆H(h) = mH(σH ⊗ σ2
H)τ∆H(h) =

= mH(σH ⊗ σ2
H)τ

(∑
(h)

h(1) ⊗ h(2)
)

= mH(σH ⊗ σ2
H)

(∑
(h)

h(2) ⊗ h(1)
)

=

= mH

(∑
(h)

σH(h(2))⊗ σH(σH(h(1)))

)
=
∑
(h)

σH(h(2))σH(σH(h(1))) =

=
(Prop 4.1.9, 1)

∑
(h)

σH(σH(h(1))h(2)) = σH

(∑
(h)

σH(h(1))h(2)

)
=

=
(4.2)

σH(εH(h)︸ ︷︷ ︸
∈K

1H) = εH(h)σH(1H) =
(Prop 4.1.9, 2)

εH(h)︸ ︷︷ ︸
∈K

1H =

= λH(εH(h)) = (λHεH)(h)⇒ σH ∗ σ2
H = λHεH =

(4.4)
1(HomK(H,H),∗).

On the one hand,

IH ∗ (σH ∗ σ2
H) = IH ∗ 1(HomK(H,H),∗) = IH .

On the other hand,

IH ∗ (σH ∗σ2
H) = (IH ∗σH) ∗σ2

H =
(Prop 4.1.8)

(λHεH) ∗σ2
H =

(4.4)
1(HomK(H,H),∗) ∗σ2

H = σ2
H .

Therefore, we conclude that IH = σ2
H . �
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Analogously, convolution can be used to show that the coinverse map is a coalge-
bra antihomomorphism and hence to state that the coinverse is a coalgebra homo-
morphism whenever the Hopf algebra is cocommutative (we are not going to prove
this because the proofs are very similar to the previous ones).

Proposition 4.1.11. Let H be a K-Hopf algebra with coinverse map σH . Then the
following properties hold:

1. τ(σH ⊗ σH)∆H = ∆HσH ,

2. εHσH = εH .

Corollary 4.1.12. Let H be a K-Hopf algebra with coinverse map σH . If H is
commutative, then σ2

H = IH (that is, σH has order 2).

Definition 4.1.13. Let H,H ′ be K-Hopf algebras. Since H and H ′ are bialge-
bras, H ⊗H ′ is a bialgebra (Definition 3.1.8). Therefore, the tensor product of
Hopf algebras H ⊗H ′ has the structure of a K-Hopf algebra with coinverse map
defined as

σH⊗H′ : H ⊗H ′ → H ⊗H ′
a⊗ b 7→ (σH ⊗ σH′)(a⊗ b) = σH(a)⊗ σH′(b)

Definition 4.1.14. Let H be a K-Hopf algebra. A subspace I ⊆ H is a Hopf ideal
of H if it is a biideal that satisfies σH(I) ⊆ I.

Proposition 4.1.15. Let H be a K-Hopf algebra and let I be a Hopf ideal of H.
Then the quotient space H/I is a K-Hopf algebra.

Proof. By Proposition 3.1.10, H/I is a K-bialgebra. Recall that multiplication is
defined as mH/I([a]I ⊗ [b]I) = [ab]I , unit is given by λH/I(r) = [λH(r)]I , comul-
tiplication is defined as ∆H/I([h]I) =

∑
(h)[h(1)]I ⊗ [h(2)]I and counit is given by

εH/I([h]I) = εH(h). So, we need to define a coinverse map σH/I which satisfies the
coinverse property. The following diagram illustrates the idea of the proof:

I I

H/I H/I

σH

π π

σH/I

Since I is a K-Hopf ideal, σH(I) ⊆ I, and considering the canonical surjection
π : I → H/I as K-vector spaces, σH induces a K-linear map σH/I : H/I → H/I
defined as σH/I([h]I) = [σH(h)]I . We see that σH/I satisfies the coinverse property:
for [h]I ∈ H/I, we have

mH/I(σH/I ⊗ IH/I)∆H/I([h]I) = mH/I(σH/I ⊗ IH/I)
(∑

(h)

[h(1)]I ⊗ [h(2)]I

)
=

= mH/I

(∑
(h)

σH/I([h(1)]I)⊗ IH/I([h(2)]I)
)

= mH/I

(∑
(h)

[σH(h(1))]I ⊗ [h(2)]I

)
=
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=
∑
(h)

[σH(h(1))h(2)]I =

[∑
(h)

σH(h(1))h(2)

]
I

=
(4.2)

[εH(h)︸ ︷︷ ︸
∈K

1H ]I = εH(h)[1H ]I =

= εH(h)1H/I = εH/I([h]I)1H/I ⇒ mH/I(σH/I ⊗ IH/I)∆H/I([h]I) = εH/I([h]I)1H/I .

Similarly, one has mH/I(IH/I ⊗ σH/I)∆H/I([h]I) = εH/I([h]I)1H/I . Therefore, we
conclude that H/I is a K-Hopf algebra. �

Definition 4.1.16. Let H be a K-Hopf algebra and let I be a Hopf ideal of H. The
K-Hopf algebra H/I of the previous proposition is the quotient Hopf algebra of
H by I.

Definition 4.1.17. Let H,H ′ be K-Hopf algebras with coinverse maps σH , σH′
(resp.). A K-Hopf algebra homomorphism from H to H ′ is a map φ : H → H ′

that is a K-bialgebra homomorphism and verifies φ(σH(h)) = σH′(φ(h)), for all
h ∈ H. A K-Hopf algebra homomorphism that is injective and surjective is a
K-Hopf algebra isomorphism.

Now, we prove one of the main results of this section.

Theorem 4.1.18. Let H be a finite dimensional K-vector space. Then H is a
K-Hopf algebra if, and only if, H∗ is a K-Hopf algebra.

Proof. Since H is finite dimensional, by Proposition 2.3.6, H◦ = H∗. Since H is a
Hopf algebra, it is a bialgebra, and by Theorem 3.3.3, H∗ is also a bialgebra. So
we need to define a coinverse map σH∗ which satisfies the coinverse property. We
consider the transpose of σH , σ∗H : H∗ → H∗, which is a K-linear map defined as
σ∗H(f) = f ◦ σH . Set σH∗ = σ∗H .

Observe that if we dualize the commutative diagram of the definition of the
Hopf algebra H, we obtain the commutative diagram of the definition of the Hopf
algebra H∗

H ⊗H H ⊗H

H K H

H ⊗H H ⊗H

mH∗

IH∗ ⊗ σH∗
∆H∗

λH∗ εH∗

mH∗

σH∗ ⊗ IH∗

∆H∗

Conversely if H∗ is a K-Hopf algebra, by the argument done before, H∗∗ = H is
a K-Hopf algebra. �

Now, we are going to do the scalar extension of a Hopf algebra, which will be
useful later on. But first of all, we need to observe the following things.

40



Remark 4.1.19. Let L|K be a field extension and let V be a vector space over
K. Since L is a K-vector space too, V ⊗K L is clearly a K-vector space. Moreover,
V⊗KL is an L-vector space with scalar multiplication defined as λ(v⊗Kr) = v⊗Kλr,
for all λ ∈ L, v ⊗K r ∈ V ⊗K L. Hence, if f : V1 → V2 is a K-linear map, then
f ⊗ IL : V1 ⊗K L→ V2 ⊗K L is an L-linear map.

Lemma 4.1.20. Let L|K be a field extension. Let V1 be a K-vector space and let
V2 be an L-vector space. Then there exists a K-vector space isomorphism

(V1 ⊗K L)⊗L V2 ∼= V1 ⊗K (L⊗L V2) (4.7)

Proof. Recall that, by the previous remark, V1⊗K L is an L-vector space. For every
v1 ∈ V1, there is an L-bilinear map fv1 : L × V2 → (V1 ⊗K L) ⊗L V2 defined as
fv1(r, v2) = (v1 ⊗K r)⊗L v2. Thus, by the definition of tensor product, there exists
an L-linear map f̃v1 as follows

L× V2 (V1 ⊗K L)⊗L V2

L⊗L V2

L-lin

fv1

f̃v1

Furthermore, there is a K-bilinear map h : V1 × L ⊗L V2 → (V1 ⊗K L) ⊗L V2
given by h(v1, α) = f̃v1(α). Thus, by the definition of tensor product, there exists
a K-linear map h̃ as follows

V1 × L⊗L V2 (V1 ⊗K L)⊗L V2

V1 ⊗K (L⊗L V2)

K-lin

h

∼= h̃

Since the elements of the form v1 ⊗K (r ⊗L v2) generate V1 ⊗K (L ⊗L V2) and
the elements of the form (v1⊗K r)⊗L v2 generate (V1⊗K L)⊗L V2, h̃ is a K-vector
space isomorphism, and we conclude that (V1 ⊗K L)⊗L V2 ∼= V1 ⊗K (L⊗L V2). �

Proposition 4.1.21. Let H be a K-Hopf algebra and let L be a field extension of
K. Then H ⊗K L is an L-Hopf algebra.

Proof. Note that by the associativity of tensor product, we have

(H ⊗K L)⊗L (H ⊗K L)︸ ︷︷ ︸
L−vector space

∼=
(4.7)

H ⊗K (L⊗L (H ⊗K L)︸ ︷︷ ︸
L−vector space

) ∼=

∼=
(2.11)

H ⊗K (H ⊗K L) ∼= (H ⊗K H)⊗K L.

By construction, this is a K-vector space isomorphism (Lemma 4.1.20), but
furthermore, it is an L-vector space isomorphism (Remark 4.1.19). Now, we define
multiplication, unit, comultiplication, counit and coinverse maps:

41



1. mH⊗KL : (H ⊗K L)⊗L (H ⊗K L) ∼= (H ⊗K H)⊗K L→ H ⊗K L is defined as
mH⊗KL = mH ⊗ IL,

2. λH⊗KL : L ∼= (K ⊗K L)→ H ⊗K L is given by λH⊗KL = λH ⊗ IL,

3. ∆H⊗KL : H ⊗K L→ (H ⊗K L)⊗L (H ⊗K L) ∼= (H ⊗K H)⊗K L is defined as
∆H⊗KL = ∆H ⊗ IL,

4. εH⊗KL : H ⊗K L→ L is given by εH⊗KL = εH ⊗ IL,

5. σH⊗KL : H ⊗K L→ H ⊗K L is defined as σH⊗KL = σH ⊗ IL.

By definition, they are K-linear maps, but furthermore, they are L-linear maps
(Remark 4.1.19). It is easy to check that they satisfy multiplication, unit, comul-
tiplication, counit and coinverse properties, respectively, since mH , λH ,∆H , εH , σH
do. Hence, we conclude that H ⊗K L is an L-Hopf algebra. �

We close this section with an example of a dual Hopf algebra.

Proposition 4.1.22. Let G be a finite group. There exists a K-Hopf algebra iso-
morphism between K[G]∗ and O(G) := KG = {f : G→ K}.

Proof. We start considering O(G) with basis {eg : g ∈ G}, where eg(h) := δg,h.
Note that O(G) is a K-vector space with operations defined from those of K. We
define multiplication, unit, comultiplication, counit and coinverse maps:

1. mO(G) : O(G)⊗O(G)→ O(G) is determined by mO(G)(eg⊗ eh) = δg,heg, that
is, mO(G)(eg ⊗ eh)(f) = δg,heg(f) = δg,hδg,f ;

2. λO(G) : K → O(G) is defined as λO(G)(r) =
∑
g∈G

reg, that is, λO(G)(r)(g) = r;

3. ∆O(G) : O(G) → O(G) ⊗ O(G) is determined by ∆O(G)(eg) =
∑
uv=g

eu ⊗ ev,

that is, ∆O(G)(eg)(h1 ⊗ h2) =
∑
uv=g

eu(h1)ev(h2) =
∑
uv=g

δu,h1δv,h2 = δg,h1h2 ;

4. εO(G) : O(G) → K ∼= K∗ is determined by εO(G)(eg) = δg,1G , that is,
εO(G)(eg)(r) = rδg,1G ;

5. σO(G) : O(G)→ O(G) is determined by σO(G)(eg) = eg−1 , that is, σO(G)(eg)(h) =
eg−1(h) = δg−1,h.

It is easy to check that they satisfy multiplication, unit, comultiplication, counit
and coinverse properties, respectively. Hence, O(G) is a K-Hopf algebra.

Now, we consider the K-Hopf algebra K[G] (Example 4.1.3), with multiplication
defined as mK[G](g ⊗ h) = gh, unit given by λK[G](r) = r1G, comultiplication de-
fined as ∆K[G](g) = g ⊗ g, counit given by εK[G](g) = 1K , and coinverse defined as
σK[G](g) = g−1. Its canonical basis is B = {g : g ∈ G}.
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We consider its linear dual K[G]∗ = {K[G]→ K linear}. The dual basis of B is
{ωg : ωg(h) = δg,h, for g ∈ G}. The map sending eg to ωg is a K-vector space
isomorphism from O(G) onto K[G]∗. Thus, from now on, we identify both of them
by means of this isomorphism.

Recall that, since K[G] is finite dimensional as a K-vector space, by Remark
2.3.9, (K[G]⊗K[G])∗ = K[G]∗⊗K[G]∗. So, it remains to show that m∗K[G] = ∆O(G),
λ∗K[G] = εO(G), ∆∗K[G] = mO(G), ε

∗
K[G] = λO(G) and σ∗K[G] = σO(G). Indeed,

1. m∗K[G] : K[G]∗ → K[G]∗ ⊗K[G]∗, m∗K[G](ω
g) 7→ ωg ◦mK[G] satisfies

m∗K[G](ω
g)(h1 ⊗ h2) = ωg(mK[G](h1 ⊗ h2)) = ωg(h1h2) =

= δg,h1h2 = ∆O(G)(eg)(h1 ⊗ h2);

2. λ∗K[G] : K[G]∗ → K ∼= K∗, λ∗K[G](ω
g) 7→ ωg ◦ λK[G] satisfies

λ∗K[G](ω
g)(r) = ωg(λK[G](r)) = ωg(r1G) = rωg(1G) = rδg,1G = εO(G)(eg)(r);

3. ∆∗K[G] : K[G]∗⊗K[G]∗ → K[G]∗, ∆∗K[G](ω
g⊗ωh) 7→ (ωg⊗ωh)◦∆K[G] satisfies

∆∗K[G](ω
g ⊗ ωh)(f) = (ωg ⊗ ωh)(∆K[G](f)) = (ωg ⊗ ωh)(f ⊗ f) =

= ωg(f)⊗ ωh(f) = δg,fδh,f = δg,hδg,f = mO(G)(eg ⊗ eh)(f);

4. ε∗K[G] : K → K[G]∗, ε∗K[G](r) = rεK[G] satisfies

ε∗K[G](r)(g) = rεK[G](g) = r1K = r = λO(G)(r)(g);

5. σ∗K[G] : K[G]∗ → K[G]∗, σ∗K[G](ω
g) = ωg ◦ σK[G] satisfies

σ∗K[G](ω
g)(h) = ωg(σK[G](h)) = ωg(h−1) = δg,h−1 = δg−1,h = σO(G)(eg)(h).

Therefore, the Hopf algebras K[G]∗ and O(G) are mutually dual. �

4.2 Hopf Galois extensions

In this section, we prove that L is a Galois extension of K with group G if, and
only if, it is a Galois K[G]-extension of K. This leads us to define Hopf Galois
extensions and to give the fundamental theorem of Hopf Galois theory. Finally, we
give a typical example of a Hopf Galois extension which is not Galois.

Let L be a finite field extension of K. Let AutKL denote the group of field
automorphisms of L that fix K elementwise and let G be a subgroup of AutKL.
Recall that K[G] is a K-Hopf algebra (Example 4.1.3).
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Observe L is a left K[G]-module with scalar multiplication given by(∑
g∈G

agg

)
· x =

∑
g∈G

agg(x), for all ag ∈ K, x ∈ L.

Proposition 4.2.1. Let L|K be a finite extension and let G be a subgroup of AutKL.
Then L is a left K[G]-module algebra.

Proof. Recall that K[G] is a K-Hopf algebra (Example 4.1.3), with comultiplication
defined as ∆(g) = g ⊗ g, and counit given by ε(g) = 1K . Recall also that L is an
algebra (Example 2.2.6) and a left K[G]-module. We need to prove that, for all
h ∈ K[G], x, y ∈ L, it is verified

h · (xy) =
∑
(h)

(h(1) · x)(h(2) · y) and h · 1L = ε(h)1L.

Let h =
∑
g∈G

agg, x, y ∈ L. Note that

∆(h) = ∆

(∑
g∈G

agg

)
=
∑
g∈G

ag g ⊗ g =
∑
(h)

h(1) ⊗ h(2) ⇒ h(1) = agg, h(2) = g.

On the one hand,

h · (xy) =

(∑
g∈G

agg

)
· (xy) =

∑
g∈G

agg(xy) =
∑
g∈G

agg(x)g(y) =

=
∑
g∈G

ag(g · x)(g · y) =
∑
g∈G

(agg · x)(g · y) =
∑
g∈G

(h(1) · x)(h(2) · y).

On the other hand,

h · 1L =

(∑
g∈G

agg

)
· 1L =

∑
g∈G

agg(1L) =
∑
g∈G

ag1L =

(∑
g∈G

ag

)
1L = ε(h)1L.

We conclude that L is a left K[G]-module algebra. �

Now, we give a characterization of Galois extensions. First of all, we need the
next lemma.

Lemma 4.2.2. The elements of G form a linearly independent set of vectors over L.

Proof. Since L|K is a finite extension and G ≤ AutKL, then G is finite, so we
write G = {g1, . . . , gn}. Reduction to absurdity. If {g1, . . . , gn} is not linearly
independent over L, there exists a smallest positive integer m ∈ {1, . . . , n}, a set of
distinct integers i1, . . . , im ∈ {1, . . . , n} and non-zero coefficients a1, . . . , am ∈ L for
which

a1gi1 + · · ·+ amgim = 0 (4.8)
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Since gim−1 6= gim , there exists a non-zero element y ∈ L such that gim−1(y) 6=
gim(y), and so gim(y) 6= 0. Now, note that, for any x ∈ L, we have

a1gi1(yx) + · · ·+ am−1gim−1(yx) + amgim(yx) = 0⇒

⇒ a1gi1(y)gi1(x) + · · ·+ am−1gim−1(y)gim−1(x) + amgim(y)gim(x) = 0⇒

⇒ a1gi1(y)gi1 + · · ·+ am−1gim−1(y)gim−1 + amgim(y)gim = 0,

and so,
a1gi1(y)gi1 + · · ·+ am−1gim−1(y)gim−1 + amgim(y)gim = 0 (4.9)

Now, dividing (4.9) by gim(y), which is non-zero, one has

a1
gi1(y)

gim(y)
gi1 + · · ·+ am−1

gim−1(y)

gim(y)
gim−1 + amgim = 0,

and substracting (4.8) gives(
a1

gi1(y)

gim(y)
− a1

)
︸ ︷︷ ︸

∈L

gi1 + · · ·+
(
am−1

gim−1(y)

gim(y)
− am−1

)
︸ ︷︷ ︸

∈L

gim−1 = 0

Finally, by hypothesis, am−1 6= 0, and since gim−1(y) 6= gim(y),
gim−1

(y)

gim (y)
6= 1.

Thus, we obtain am−1
gim−1

(y)

gim (y)
− am−1 6= 0, and so we have a contradiction of the

minimality of m. Therefore, we conclude that G is linearly independent. �

Since the field L is a K-vector space, we consider EndKL = HomK(L,L), which
is a K-vector space with addition defined pointwise as (φ+ψ)(x) = φ(x)+ ψ(x), and
scalar multiplication given pointwise by (rφ)(x) = rφ(x), for φ, ψ ∈ HomK(L,L),
r ∈ K, x ∈ L. Since G ≤ AutKL, G is a subgroup of EndKL. Hence, there is a
K-linear map

ϕ : L⊗K K[G] → EndKL
x⊗ g 7→ ϕ(x⊗ g) : L → L

y 7→ ϕ(x⊗ g)(y) = x(g · y) = xg(y)

Theorem 4.2.3. Let K be a field of characteristic 0. Let L|K be a finite extension
and let G be a subgroup of AutKL. Then the map ϕ : L ⊗K K[G] → EndKL is a
bijection if, and only if, L is a Galois extension of K with group G.

Proof. Let G = {g1, . . . , gn}. Suppose that G = Gal(L|K). We need to show that
ϕ is a bijection. Firstly, we see that it is an injection. It suffices to prove Ker(ϕ) = 0.

Indeed, let
n∑
i=1

aigi ∈ K[G], x, y ∈ L, and suppose

ϕ

(
x⊗

n∑
i=1

aigi

)
(y) = x

( n∑
i=1

aigi · y
)

= x

( n∑
i=1

aigi(y)

)
=

n∑
i=1

xaigi(y) = 0.
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By Lemma 4.2.2, {g1, . . . , gn} is linearly independent over L. Thus xai = 0, for
all i ∈ {1, . . . , n}, and so x = 0 or ai = 0, for all i ∈ {1, . . . , n}. Consequently

x⊗
n∑
i=1

aigi =
n∑
i=1

(x⊗ aigi) = 0. Therefore Ker(ϕ) = 0, and so, ϕ is injective.

Finally, to see that ϕ is a bijection, it suffices to show that dimK(L⊗K K[G]) =
dimK(EndKL). Indeed, since G = Gal(L|K), we have |G| = [L : K] = dimKL.

On the one hand, dimK(EndKL) = (dimKL)2. On the other hand,

dimK(L⊗K K[G]) = dimKL dimKK[G] = dimKL |G| = dimKL dimKL.

All in all, dimK(L⊗K K[G]) = dimK(EndKL), and so, ϕ is a bijection.

Conversely, suppose that ϕ is bijective. We need to show that G = Gal(L|K).
Since ϕ is a bijection,

dimK(L⊗K K[G]) = dimK(EndKL)⇒ dimKL |G| = (dimKL)2 ⇒

⇒ |G| = dimKL = [L : K]⇒ |G| = [L : K].

By the primitive element theorem, there exists α ∈ L such that L = K(α),
with P (x) = irr(α,K) of degree [L : K]. We see that L|K is Galois, that is, it
is normal and separable. Since char(K) = 0, L|K is separable. Since L = K(α)
and G ≤ AutKL, the elements of G are determined by the image of α. Moreover,
since |G| = [L : K] = deg(P (x)), every root of P (x) is the image of α by some
automorphism of G. Thus, each element of G moves α to some distinct root of
P (x), and so L is the splitting field of P (x) over K. Hence, L|K is normal, and
therefore, it is Galois, that is, AutKL = Gal(L|K).

By hypothesis, G ≤ AutKL = Gal(L|K), and since |Gal(L|K)| = [L : K] = |G|,
we conclude that G = Gal(L|K). �

The previous theorem motivates the notion of a Hopf Galois extension. We just
need to replace K[G] with a K-Hopf algebra.

Definition 4.2.4. A Hopf Galois extension with K-Hopf algebra H is a finite
field extension L|K with a K-Hopf algebra H such that L is a left H-module algebra
and ϕ : L⊗K H → EndKL, defined as ϕ(x⊗ h)(y) = x(h · y), is a K-vector space
isomorphism. The action of H on L is called Hopf action, and the pair of the
Hopf algebra H with the Hopf action is called Hopf Galois structure on L|K.

Remark 4.2.5. If L|K is a Hopf Galois extension of degree n, then the K-Hopf
algebra H has dimension n: indeed, since ϕ is an isomorphism,

dimK(L⊗K H) = dimK(EndKL)⇒ n dimKH = n2 ⇒ dimKH = n.

Remark 4.2.6. Whereas a Galois extension determines the Galois group (it is
unique), a field extension may be Hopf Galois with different Hopf Galois structures.
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The fundamental theorem of Hopf Galois theory in its general form says:

Theorem 4.2.7 ([G-P], Th 5.1, page 256). Let L|K be a Hopf Galois extension
with K-Hopf algebra H and let W be a sub-Hopf algebra of H. We define

Fix(W ) := {x ∈ L : w · x = ε(w)x, for all w ∈ W}.

Then the map Fix : {W ⊆ H sub-Hopf algebra} → {E field : K ⊆ E ⊆ L} is
injective and inclusion-reversing.

Observe the fundamental theorem of Galois theory is stronger than this one since
it gives a bijective correspondence, whereas the Hopf Galois theorem just gives an
injection. In the next chapter, we will give a bijective correspondence for a parti-
cular type of Hopf Galois extensions.

Finally, we close this chapter with an example of a Hopf Galois extension which
is not Galois.

Example 4.2.8. The extension Q( 3
√

2)|Q.

Let α := 3
√

2. We consider the extension Q(α)|Q, which is finite of degree 3,
since irr(α,Q)(x) = x3 − 2. Its basis is {1, α, α2}. We see that it is Hopf Galois.

We consider the Q-Hopf algebra H = Q[c, s]/(3s2+c2−1, (2c+1)s, (2c+1)(c−1)).
Its Q-basis is {1, c, s}, so it has dimension 3. Since H is a quotient of the polynomial
algebra, it is an algebra with usual quotient operations. Moreover, we can define
comultiplication, counit and coinverse maps so that H is a Hopf algebra:

∆(1) = 1⊗ 1, ∆(c) = c⊗ c− 3s⊗ s, ∆(s) = c⊗ s+ s⊗ c,

ε(1) = 1, ε(c) = 1, ε(s) = 0,

σ(1) = 1, σ(c) = c, σ(s) = −s,

Q(α) is a left H-module algebra: indeed, it is clearly an algebra, it is a left
H-module with action defined as follows

c · 1 = 1, c · α = −1
2
α, c · α2 = −1

2
α2,

s · 1 = 0, s · α = 1
2
α, s · α2 = −1

2
α2,

and the two conditions of the definition are satisfied: for x, y ∈ Q(α),

c · (xy) = (c · x)(c · y)− 3(s · x)(s · y), c · 1Q(α) = c · 1 = 1 = ε(c)1,

s · (xy) = (c · x)(s · y) + (s · x)(c · y), s · 1Q(α) = s · 1 = 0 = ε(s)1.

Finally, ϕ : Q(α)⊗QH → EndQ(Q(α)), which is given by ϕ(x⊗h)(y) = x(h · y),
is a Q-vector space isomorphism.

Note that Fix(H) = Q: indeed, if x ∈ Q(α), then

x ∈ Q ⇔ c · x = x = ε(c)x and s · x = 0 = ε(s)x.

47



5 Separable Hopf Galois extensions

In this chapter, we introduce first cohomology sets and define a vector space to be
a form of another when they become isomorphic under scalar extension. We show
that forms are classified by a first cohomology set and we apply this theory to Hopf
algebras in order to classify their forms. Next, we characterize the Hopf Galois
character of a separable field extension in terms of groups. Since proofs are beyond
the scope of this dissertation, we do not include them. Finally, we explain how the
Magma program works, summarize the main results and discuss an example.

5.1 Classification of forms

In this section, we consider two groups A and G such that A is a G-module and
introduce 1-cocycles, maps of G into A satisfying a certain condition, which leads
us to define the first cohomology group, if A is abelian, and more generally, the
first cohomology set. Afterwards, we define a tensor x of type (p, q) over a vector
space V and use it to set when (V, x) is a form of another one. Then, we classify
forms. Finally, we apply this theory to Hopf algebras in order to classify their forms.

Let A,G be groups such that A is a left G-module with action denoted by “·”.

Definition 5.1.1. A 1-cocycle of G into A is a map f : G → A satisfying the
identity f(gg′) = g · f(g′) + f(g). It is also called a crossed homomorphism. Let
C1(G,A) denote the collection of 1-cocycles of G into A.

Firstly, we consider the case in which A is abelian. In this case, it is easy to check
that C1(G,A) is an abelian group. Moreover, if the action is trivial, the condition
of being cocycle means that f is a group homomorphism.

Definition 5.1.2. Let f be a 1-cocycle of G into A. It is a 1-coboundary of G
into A if there exists a ∈ A such that f(g) = g · a− a, for all g ∈ G. Let B1(G,A)
denote the collection of 1-coboundaries of G into A, which is a normal subgroup of
C1(G,A) (since C1(G,A) is abelian).

Definition 5.1.3. The group H1(G,A) is defined as the quotient of C1(G,A) by
B1(G,A). It is called the first cohomology group of G with values in A. Note
that if G acts trivially on A, one has H1(G,A) = Hom(G,A).

In other words, B1(G,A) defines the following equivalence relation on C1(G,A):

f1 ∼ f2 ⇔ f2 − f1 ∈ B1(G,A)⇔ f2(g) = g · a− a+ f1(g), for some a ∈ A.

Now, we consider the case in which A is not abelian. Write A multiplicatively.
In this case, it has no interest to define B1(G,A), but we can also define H1(G,A).

Definition 5.1.4. The set H1(G,A) is defined as the quotient of C1(G,A) by the
equivalence relation ∼ defined as

f1 ∼ f2 ⇔ there exists a ∈ A such that f2(g) = a−1f1(g)(g · a).

It is called the first cohomology set of G with values in A.
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We define a specific type of tensors.

Definition 5.1.5. Let V be a vector space over K and let p, q be natural numbers.
A tensor of type (p, q) over V is an element of

⊗p V ⊗
⊗q V ∗.

Let V be a K-vector space provided with a fixed tensor x of type (p, q) over V .

Definition 5.1.6. Let V ′ be a K-vector space provided with a fixed tensor x′ of
type (p, q) over V ′. The pairs (V, x) and (V ′, x′) are K-isomorphic if there exists
a K-linear isomorphism f : V → V ′ such that

(⊗p f ⊗
⊗q(f−1)∗

)
(x) = x′.

Let L|K be a finite Galois extension with group G. Let VL = L ⊗K V be the
L-vector space obtained by extending scalars. Observe the tensor x defines a tensor
xL = 1L⊗Kx of type (p, q) over VL in the following way: since x ∈

⊗p
K V ⊗K

⊗q
K V

∗,
xL ∈ L⊗K

⊗p
K V ⊗K

⊗q
K V

∗ ∼=
⊗p

L VL ⊗L
⊗q

L V
∗
L .

Definition 5.1.7. Let V ′ be a K-vector space provided with a fixed tensor x′ of
type (p, q) over V ′. The pair (V ′, x′) is an L|K-form of (V, x) (or just a form) if
(VL, xL) and (V ′L, x

′
L) are L-isomorphic.

Let EV,x(L|K) denote the collection of K-isomorphism classes of pairs (V ′, x′)
which are forms of (V, x). Our goal is to interpret EV,x(L|K) as a first cohomology
set. In order to do it, we define AL = AutL(VL, xL) (it is not necessarily abelian),
and we will define a bijection between EV,x(L|K) and H1(G,AL).

We start seeing that the group G acts on AL. First of all, it acts on VL as follows:
for a fixed g ∈ G,

g ⊗ IV : L⊗K V → L⊗K V
r ⊗K v 7→ g(r)⊗K v

Next, given f ∈ AL, we define g · f := (g ⊗ IV ) ◦ f ◦ (g−1 ⊗ IV ), which is an
L-automorphism of VL. Thus, G acts on AL.

Now, we compare EV,x(L|K) with H1(G,AL). Let (V ′, x′) ∈ EV,x(L|K) and let
f : VL → V ′L be an L-isomorphism. We can generalize the previous action

g · f := (g ⊗ IV ′) ◦ f ◦ (g−1 ⊗ IV ).

We define the following element of AL: ρg := f−1 ◦ g · f . Furthermore, it is easy
to show that the following map is a 1-cocycle

ρ : G = Gal(L|K) → AL = AutL(VL)
g 7→ ρg = f−1 ◦ g · f

and that changing f has the effect of replacing ρ with an equivalent 1-cocycle.

49



Hence, [ρ] ∈ H1(G,AL) is well-determined, and we have defined a map

θ : EV,x(L|K) → H1(G,AL)
(V ′, x′) 7→ [ρ]

Theorem 5.1.8. The map θ just defined is a bijection, that is, L|K-forms of (V, x)
can be identified with 1-cocycles of Gal(L|K) into AutL(L⊗K V, 1L ⊗K x).

We can repeat this argument for a K-vector space V provided with a finite
number of tensors over V . In order to apply this result to Hopf algebras, we need
to make the following remark:

Remark 5.1.9. Let V be a finite dimensional vector space over K and let n,m be
naturals. There is a K-linear isomorphism

HomK(
⊗n V,

⊗m V ) ∼=
⊗n V ∗ ⊗

⊗m V

given by ω1 ⊗ · · · ⊗ ωn ⊗ v1 ⊗ · · · ⊗ vm 7→ ϕ, where ϕ ∈ HomK(
⊗n V,

⊗m V ) is
defined as ϕ(e1 ⊗ · · · ⊗ en) = ω1(e1) . . . ωn(en)(v1 ⊗ · · · ⊗ vm).

Let (H,mH , λH ,∆H , εH , σH) be a K-Hopf algebra. Observe we can see multipli-
cation, unit, comultiplication, counit and coinverse maps as tensors: indeed,

1. Multiplication: mH ∈ HomK(H ⊗H,H) ∼= H∗ ⊗H∗ ⊗H, so it is a tensor of
type (1,2) over H.

2. Unit: λH ∈ HomK(H0 := K,H) ∼= H, so it is a tensor of type (1,0) over H.

3. Comultiplication: ∆H ∈ HomK(H,H ⊗H) ∼= H∗ ⊗H ⊗H, so it is a tensor
of type (2,1) over H.

4. Counit: εH ∈ HomK(H,H0) ∼= H∗, so it is a tensor of type (0,1) over H.

5. Coinverse: σH ∈ HomK(H,H) ∼= H∗⊗H, so it is a tensor of type (1,1) over H.

Let L|K be a finite Galois extension with group G. We consider HL = L⊗K H,
which is the L-Hopf algebra obtained by extending escalars (Proposition 4.1.21).
Set t := {mH , λH ,∆H , εH , σH}. Observe that (H, t) isomorphisms are Hopf algebra
isomorphisms. Let EH,t(L|K) denote the collection of K-isomorphism classes of
pairs (H ′, t′) which are forms of (H, t), and let AL = AutL(HL, tL). Repeating the
previous construction, we define the map

θ : EH,t(L|K) → H1(G,AL)
(H ′, t′) 7→ [ρ]

Theorem 5.1.10. The map θ is a bijection, that is, L|K-forms of Hopf algebras
(H, t) can be identified with 1-cocycles of Gal(L|K) into AutL(L⊗K H, 1L ⊗K t).
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5.2 Hopf Galois character in terms of groups

In this section, we start reviewing and defining some important notions about
groups. Then, we characterize the Hopf Galois character of a separable field exten-
sion in terms of groups. Finally, we define a special type of Hopf Galois extensions
called almost classical Galois extensions, for which the Galois correspondence is
bijective.

Definition 5.2.1. Let G be a group. A subgroup H ⊆ G is normal in G, H�G, if
for every g ∈ G and for every h ∈ H, it is satisfied ghg−1 ∈ H, that is, gHg−1 ⊆ H.

Proposition 5.2.2. H ⊆ G is normal if, and only if, gH = Hg, for every g ∈ G.
In other words, H ⊆ G is normal if, and only if, left and right cosets coincide.

Definition 5.2.3. Let G be a group and let N ⊆ G be a subgroup. We define the
normalizer of N in G as NormGN = {g ∈ G : gng−1 ∈ N, for all n ∈ N}.

Let H ⊆ G be a subgroup. N is normalized by H if for every h ∈ H and for
every n ∈ N , it is satisfied hnh−1 ∈ N . Equivalently, N is normalized by H if, and
only if, H ⊆ NormGN .

Definition 5.2.4. Let G be a group and let G′ ⊆ G be a subgroup. A subgroup
N ⊆ G is a normal complement of G′ in G if N � G, |N | = [G : G′] and
NG′ = G.

Definition 5.2.5. A subgroup N of Sn is transitive if the action of N on {1, . . . , n}
is transitive, that is, for every i, j ∈ {1, . . . , n}, there exists m ∈ N such that
m(i) = j. N is also called transitive group of degree n. Moreover, N is regular
if it is transitive and this m is unique for every i, j ∈ {1, . . . , n}.
Proposition 5.2.6. N ⊆ Sn is regular if, and only if, N is transitive and |N | = n.

Let L|K be a finite separable field extension of degree n and let L̃ be its normal

closure. Let G = Gal(L̃|K) = AutKL̃ and G′ = Gal(L̃|L). By the primitive element
theorem, there exists α ∈ L such that L = K(α). Let f = irr(α,K), which has

degree n, and we denote {α1 := α, . . . , αn} its roots, so that L̃ = K(α1, . . . , αn).

�

�
G

L̃ = K(α1, . . . , αn)

L = K(α)

K

G′

n

L̃ normal closure of L|K

G = Gal(L̃|K), G′ = Gal(L̃|L)

G/G′ left cosets

Observe [G : G′] = n. Let S = G/G′ = {gG′ : g ∈ G} be the left cosets, and we
consider Perm(S) ∼= Sn. Clearly, G acts on G/G′, so there is a group homomorphism

λ : G → Sn ∼= Perm(G/G′)
g 7→ [hG′ 7→ ghG′]
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Next, we show that the action of G on G/G′ is equivalent to the Galois action
of G on {α1, . . . , αn}. Indeed, for g1, g2 ∈ G, we have

g1(α) = g2(α)⇔ (g−12 g1)(α) = α⇔ g−12 g1 ∈ G′ = AutK(α)L̃⇔ g1 ∈ g2G′.

Thus, there is an injective map of {conjugates of α} = {roots of irr(α,K)} into
{left cosets G/G′}, given by g(α) 7→ gG′. Since the cardinal of these two sets is the
same, we conclude that it is a bijection.

Since the Galois action of G on {α1, . . . , αn} is transitive and faithful, G is em-
bedded into Sn as a transitive group. Therefore, from now on, we will identify G
with its image by λ. Note that changing λ(G) by a conjugated subgroup in Sn is
equivalent to renumerate the roots {α1, . . . , αn}.

Now, we characterize the Hopf Galois character of a separable field extension in
terms of groups.

Theorem 5.2.7. Let L|K be a finite separable field extension of degree n and let L̃

be its normal closure. Let G = Gal(L̃|K). The following conditions are equivalent:

1. There exists a K-Hopf algebra H such that L|K is Hopf Galois with Hopf
algebra H,

2. There exists a regular subgroup N of Sn normalized by G.

More precisely, there is a bijection

{(H, ·) H-G structure on L|K} ↔ {N regular subgroup of Sn normalized by G}.

Moreover, the K-Hopf algebra H is an L̃|K-form of K[N ]. In other words,

L̃⊗K H ∼= L̃⊗K K[N ] ∼= L̃[N ].

In particular, H is cocommutative, so that by Corollary 4.1.10, its coinverse map
has ordre 2.

Definition 5.2.8. We refer to the isomorphism class of N as the type of the
Hopf Galois structure.

We are going to explain how we can construct a Hopf Galois structure given N .
Let {xi : i ∈ {1, . . . , [L̃ : K]}} be a K-basis of L̃ as a K-vector space. So, we write

L̃[N ] =

{∑
m∈N

λmm : λm ∈ L̃
}

, where λm =

[L̃:K]∑
i=1

µi,mxi, for µi,m ∈ K.

Note that L̃[N ] is a K-algebra (since it is an L̃-Hopf algebra) of dimension n[L̃ : K]:

dimK(L̃[N ]) = dimK(L̃⊗K H) = dimKL̃ dimKH = [L̃ : K][L : K] = [L̃ : K]n.
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We can define a sub-K-algebra of L̃[N ] as follows. Observe G acts on L̃[N ] (both
on coefficients λm and on elements m) as

g

(∑
m∈N

λmm

)
=
∑
m∈N

g(λm)gmg−1,

where g(λm) is the Galois action and gmg−1 ∈ N (since N is normalized by G). So

we define H as the subalgebra of L̃[N ] of fixed elements by the previous action

H := {x ∈ L̃[N ] : g(x) = x, for all g ∈ G}.

Note that, for all g ∈ G, x ∈ H, we have

g(x) = g

(∑
m∈N

λmm

)
=
∑
m∈N

g(λm)gmg−1 =
∑
m∈N

g(λg−1mg)m =
∑
m∈N

λmm = x,

so we have obtained the relation satisfied by the coefficients of elements in H

λm = g(λg−1mg), for all g ∈ G.

Finally, we enumerate left cosets of S from 1 until n: idG′ = G′, g2G
′, . . . , gnG

′.
Observe that elements in Sn can be seen as permutations of left cosets. In particular,
elements in N can also be seen as permutations of left cosets, so that given m ∈ N ,
m−1(1) corresponds to a certain giG

′, for i ∈ {1, . . . , n}. Therefore, we define the
following K-linear map on basic elements and extend it by linearity

ψ : L̃[N ] → EndKL̃
m ∈ N 7→ gi such that m−1(1) = giG

′ = [gi]

r ∈ L̃ 7→ [f 7→ rf ]

Since ψ(h)(x) ∈ L, for all h ∈ H, x ∈ L, ψ induces by restriction the Hopf action
ψH : H → EndKL. Finally, ϕ : L⊗KH → EndKL is a K-vector space isomorphism.

The previous theorem does not tell us whether the subgroup N is contained
in G ⊆ Sn or not. The case N ⊆ G leads to an interesting type of Hopf Galois
extension.

Proposition 5.2.9. Let L|K be a finite separable field extension of degree n and

let L̃ be its normal closure. Let G = Gal(L̃|K) and G′ = Gal(L̃|L). The following
conditions are equivalent:

1. There exists a normal complement N of G′ in G,

2. There exists a regular subgroup N of Sn normalized by G and contained in G.

Definition 5.2.10. If L|K is an extension satisfying the equivalent conditions of
the previous proposition, then L|K is an almost classical Galois extension.

Theorem 5.2.11. If L|K is an almost classical Galois extension, for the Hopf
Galois structure of L|K corresponding to the normal complement N of G′ in G, the
Galois correspondence is bijective.
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5.3 Examples of separable extensions of degree 8

In this section, we explain how the Magma program works and sum up the main
results obtained performing it for separable extensions of degree 8 (see Appendix for
the code and more results). Finally, we discuss a concrete example of an extension
of degree 8 of Q and, using Theorem 5.2.7, we make the construction of the Hopf
Galois structure corresponding to a regular subgroup of S8 given by the Magma
program.

We explain how the program works. Let L|K be a finite separable field extension
of degree 8 and let L′ be its normal closure. Let G = Gal(L′|K) and G′ = Gal(L′|L).
Recall that G acts transitively and faithfully on G/G′, and so there is a group ho-
momorphism G ↪→ S8

∼= Perm(G/G′). Therefore, considering all possible Galois
groups of L′|K is equivalent to consider all transitive groups of degree 8. We start
counting transitive groups of order i and degree 8. Those of order 8 correspond to
L|K Galois and are the regular subgroups of S8 (by Proposition 5.2.6). Then we
construct a function that finds a normal complement of a subgroup H of a group G
(if there exists any) and go on with the main program.

By Theorem 5.2.7, we determine all Hopf Galois structures looking for all regular
subgroups of S8 normalized by G. Moreover, by Proposition 5.2.9, we distinguish
almost classical Galois extensions looking for a normal complement of G′ in G. We
set G′ = St(1) = St([id]) because, since we have seen that the action of G on G/G′

is equivalent to the Galois action of G on {α1, . . . , αn}, then

St([id]) =
([id]=G′↔α1=α)

St(α) = {g ∈ G = AutKL
′ : g(α) = α} = AutK(α)L

′ = G′.

The output of the program is the whole list of regular subgroups for every G.

In the following table we show the number of Hopf Galois structures of each type
for a Galois extension L|K.

Table 1: Galois extensions

Hopf Galois structures
Galois group C8 C4 × C2 C2 × C2 × C2 D2·4 Q8

C8 2 0 0 2 2
C4 × C2 4 10 4 6 2

C2 × C2 × C2 0 42 8 42 14
D2·4 2 14 6 6 2
Q8 6 6 2 6 2
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Example 5.3.1. The extension Q( 8
√

2)|Q.

�

�
G

L̃ = Q(α, i)

L = Q(α)

K = Q

G′

x8 − 28

2

α := 8
√

2 satisfies α8 = 2

L|Q separable

L̃ normal closure of L|Q

[L̃ : Q] = 16

G = Gal(L̃|Q), G′ = Gal(L̃|L)

The Q-basis of L̃ is {1, α, . . . , α7, i, iα, . . . , iα7}. Let f := irr(α,Q)(x) = x8 − 2,

so that it roots are {α ξk}7k=0, where ξk := ξk8 =
(
1+i√

2

)k
=
(
1+i
α4

)k
are the eighth

roots of unity.

Firstly, we determine G. If g ∈ G = Gal(Q(α, i)|Q), g is determined by a
generator system of the extension, for instance, {α, i}. Thus

g(α) ∈ Roots(irr(α,Q)) = Roots(x8 − 2) = {α ξk}7k=0

g(i) ∈ Roots(irr(i,Q)) = Roots(x2 + 1) = {i,−i}

Since there are only 8 · 2 = 16 possible ways of defining automorphisms and |G| =
|Gal(L̃|K)| = 16, each of these 16 assignations actually define an automorphism.
We write

σ : α 7→ ξα
i 7→ i

τ : α 7→ α
i 7→ −i

Note that σ(ξ) = −ξ = ξ5 and τ(ξ) = ξ7: indeed,

σ(ξ) = σ
(
1+i
α4

)
= 1+i

ξ4α4 =
(ξ4=−1)

−1+i
α4 = −ξ

τ(ξ) = τ
(
1+i
α4

)
= 1−i

α4 = ξ7

Observe also that τ has clearly degree 2 and σ has degree 8: indeed,

α
σ7−→
1

ξα
σ7−→
2

ξ6α
σ7−→
3

ξ7α
σ7−→
4
−α σ7−→

5
ξ5α

σ7−→
6

ξ2α
σ7−→
7

ξ3α
σ7−→
8

α

Moreover, note that τστ = σ3: indeed,

τσ(τ(α)) = τ(σ(α)) = τ(ξα) = ξ7α = σ3(α),

τσ(τ(i)) = τ(σ(−i)) = τ(−i) = i = σ3(i),

Therefore, we conclude G = 〈σ, τ : σ8 = id, τ 2 = id, τστ = σ3〉. Recall that one has
λ : G ↪→ S8. We have observed that the transitive subgroup of S8 verifying these
relations is 8T8 = 〈(1, 2, 3, 4, 5, 6, 7, 8), (1, 3)(2, 6)(5, 7)〉.
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Now, we order the roots in order to identify correctly G as a Galois group with
8T8. We set

α1 = α, α2 = ξα, α3 = ξ6α, α4 = ξ7α, α5 = −α, α6 = ξ5α, α7 = ξ2α, α8 = ξ3α.

One has that σ gives (1, 2, 3, 4, 5, 6, 7, 8) and τ gives (2, 4)(3, 7)(6, 8). We can check
with Magma that they are well-identified as follows:

H1:=TransitiveGroup(8,8);

H2:=sub<Sym(8)|(1,2,3,4,5,6,7,8),(2,4)(3,7)(6,8)>;

IsConjugate(Sym(8),H1,H2);//we already know that they are conjugates

true Id

Secondly, we consider a regular subgroup of S8 normalized by G

N = 〈(1, 2, 3, 4, 5, 6, 7, 8)〉 = 〈ρ〉 = {id, ρ, . . . , ρ7} ∼= C8

and we determine the corresponding Hopf algebra

H =

{
x =

7∑
k=0

λρkρ
k ∈ L̃[N ] : g(x) = x, for all g ∈ G

}
.

In order to do it, recall that λρk = g(λg−1ρkg) holds for every g ∈ G = 〈σ, τ〉, that is,
for g = σ and g = τ . We calculate λρk for every k ∈ {0, . . . , 7}: since σ = ρ, observe

• λid = g(λid), for g = σ and g = τ , so that λid ∈ Q,

• λρk = σ(λσ−1ρkσ) = σ(λρ−1ρkρ) = σ(λρk)⇒ λρk = σ(λρk), so that λρk ∈ L̃〈σ〉 =

{x ∈ L̃ : σ(x) = x} = Q(i) = {r + si : r, s ∈ Q},

• λρk = τ(λτ−1ρkτ ) = τ(λτ−1σkτ ) = τ(λ(τ−1στ)...(τ−1στ)) =
(τστ=σ3)

τ(λσ3k) = τ(λρ3k),

so that λρk = τ(λρ3k) ⇔
(τ2=id)

λρ3k = τ(λρk).

Using these results, we obtain

• Since λid ∈ Q, we set λ := λid,

• ρ 7→ ρ3 7→ ρ9 = ρ, so that λρ = a + bi and λρ3 = τ(a + bi) = a − bi, where
a, b ∈ Q,

• ρ2 7→ ρ6 7→ ρ18 = ρ2, so that λρ2 = c+ di and λρ6 = τ(c+ di) = c− di, where
c, d ∈ Q,

• ρ4 7→ ρ12 = ρ4 ⇒ λρ4 ∈ L̃〈τ〉 ⇒
(λρ4∈L̃〈σ〉)

λρ4 ∈ L̃〈σ,τ〉 = L̃G = Q, so that µ := λρ4 ,

• ρ5 7→ ρ15 = ρ7 7→ ρ21 = ρ5, so that λρ5 = e+ fi and λρ7 = τ(e+ fi) = e− fi,
where e, f ∈ Q.

56



Hence, x ∈ H can be written as

x =
∑7

k=0 λρkρ
k = λid + (a+ bi)ρ+ (c+ di)ρ2 + (a− bi)ρ3 + µρ4+

(e+ fi)ρ5 + (c− di)ρ6 + (e− fi)ρ7

= λid + a(ρ+ ρ3) + b(ρ− ρ3)i+ c(ρ2 + ρ6)+

d(ρ2 − ρ6)i+ µρ4 + e(ρ5 + ρ7) + f(ρ5 − ρ7)i,

so that H is a Q-Hopf algebra with Q-basis

{id, ρ+ ρ3, (ρ− ρ3)i, ρ2 + ρ6, (ρ2 − ρ6)i, ρ4, ρ5 + ρ7, (ρ5 − ρ7)i}.

Finally, we determine the Hopf action ψ|H : H → EndQL. In order to do it, we

need to see how ψ : L̃[N ] → EndQL̃ is defined. Recall that ψ(ρk) = gj ∈ G such

that (ρk)−1(1) = gjG
′. Since G′ = AutQ(α)L̃ fixes α, then G′ = 〈τ〉, and so we can

write and enumerate left cosets as follows G/G′ = {[id]
1

, [σ]
2

, . . . , [σ7]
8

}.

Hence, we have the following K-linear map

ψ : L̃[N ] → EndQL̃
ρk ∈ N 7→ σ−k since ((ρk)−1)(1) = (ρ−k)(1) = [σ−k]

r ∈ L̃ 7→ [f 7→ rf ]

which induces by restriction the Hopf action

ψ|H : H → EndQL = EndQQ(α)
id 7→ id

ρ+ ρ3 7→ σ−1 + σ−3 = σ7 + σ5

(ρ− ρ3)i 7→ (σ−1 − σ−3)i = (σ7 − σ5)i
ρ2 + ρ6 7→ σ−2 + σ−6 = σ6 + σ2

(ρ2 − ρ6)i 7→ (σ−2 − σ−6)i = (σ6 − σ2)i
ρ4 7→ σ−4 = σ4

ρ5 + ρ7 7→ σ−5 + σ−7 = σ3 + σ
(ρ5 − ρ7)i 7→ (σ−5 − σ−7)i = (σ3 − σ)i

and doing simple calculations, one can see that ψ|H(H) is actually a subset of EndQL:

id(α) = α, (σ7 + σ5)(α) = −α5,

((σ7 − σ5)i)(α) = −α5, (σ6 + σ2)(α) = 0,

((σ6 − σ2)i)(α) = −α9, σ4(α) = −α,

(σ3 + σ)(α) = α5, ((σ3 − σ)i)(α) = α5.
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6 Conclusions

This memory shows the constructive theory we have had to develop in order to
reach, on the one hand, to Hopf Galois extensions and, on the other hand, to its
characterization in terms of groups. In the first part, we prove all the results in
detail whereas proofs of the last part are beyond the scope of this dissertation.
However, we came to understand the constructive idea well enough to apply it to
an example.

Since there is a characterization of the Galois character in terms of groups, we
use Magma to obtain all Hopf Galois structures of separable field extensions of de-
gree 8. Due to the degree of difficulty of this theory, we thought it would be more
complex to design computer software, but finally we have found a short and elegant
way to do it. In Appendix we show the whole code of the program.

An important part of the basic knowledge that we have needed to carry out this
project has been achieved in Algebraic Structures and Algebraic Equations, which
are obligatory subjects of the Mathematics Degree.
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A Magma code and some results

//Let L|K be a separable field extension of degree g=[L|K]=8

//Let L’ be its normal closure, G=Gal(L’|K), G’=Gal(L’|L)

g:=8;

S:=Sym(g); Order(S);

n:=NumberOfTransitiveGroups(g); n;

40320

50

//We calculate the number of transitive groups of Sg of order i

m:=1;

for i in [g..Order(S) by g] do

count:=0;

for j in [m..n] do

if Order(TransitiveGroup(g,j)) eq i then

m:=m+1;

count:=count+1;

elif count ne 0 then

print "The number of transitive groups of order"; i;

print "is"; count;

print "-----";

if i eq g then

triv:=count; //triv means that L|K is Galois

end if;

delete(count);

break;

end if;

end for; //j

end for; //i

print "The number of transitive groups of order";

Order(S); print "is 1";

delete(count);

The number of transitive groups of order 8 is 5

-----

The number of transitive groups of order 16 is 6

-----

The number of transitive groups of order 24 is 3

-----

The number of transitive groups of order 32 is 8

-----

The number of transitive groups of order 48 is 2

-----

59



The number of transitive groups of order 56 is 1

-----

The number of transitive groups of order 64 is 6

-----

The number of transitive groups of order 96 is 3

-----

The number of transitive groups of order 128 is 1

-----

The number of transitive groups of order 168 is 2

-----

The number of transitive groups of order 192 is 4

-----

The number of transitive groups of order 288 is 1

-----

The number of transitive groups of order 336 is 1

-----

The number of transitive groups of order 384 is 1

-----

The number of transitive groups of order 576 is 2

-----

The number of transitive groups of order 1152 is 1

-----

The number of transitive groups of order 1344 is 1

-----

The number of transitive groups of order 20160 is 1

-----

The number of transitive groups of order 40320 is 1

//We calculate subgroups G=Gal(L’|K) when L’=L

for i in [1..triv] do

TransitiveGroup(g,i);

print "----------";

end for;

Permutation group acting on a set of cardinality 8

Order = 8 = 2^3

(1, 2, 3, 4, 5, 6, 7, 8)

C(8)=8

----------

Permutation group acting on a set of cardinality 8

Order = 8 = 2^3

(1, 2, 3, 8)(4, 5, 6, 7)

(1, 5)(2, 6)(3, 7)(4, 8)

4[x]2
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----------

Permutation group acting on a set of cardinality 8

Order = 8 = 2^3

(1, 8)(2, 3)(4, 5)(6, 7)

(1, 3)(2, 8)(4, 6)(5, 7)

(1, 5)(2, 6)(3, 7)(4, 8)

E(8)=2[x]2[x]2

----------

Permutation group acting on a set of cardinality 8

Order = 8 = 2^3

(1, 2, 3, 8)(4, 5, 6, 7)

(1, 6)(2, 5)(3, 4)(7, 8)

D_8(8)=[4]2

----------

Permutation group acting on a set of cardinality 8

Order = 8 = 2^3

(1, 2, 3, 8)(4, 5, 6, 7)

(1, 7, 3, 5)(2, 6, 8, 4)

Q_8(8)

----------

//FUNCTION that calculates a normal complement

//of a subgroup H of G (if there exists any)

normcomp:=function(G,H)

NS:=NormalSubgroups(G);

for i in [1..#NS] do

N:=NS[i]‘subgroup;

if Index(G,H) eq Order(N) then

//if N=<S> and H=<T>, then NH=<SUT>

SUT:=[x: x in Generators(N) join Generators(H)];

NH:=sub<G|SUT>;

//In order to know if NH=G, it suffices to see

//that both of them have the same order

if Order(NH) eq Order(G) then

return N;

end if;

delete(SUT); delete(NH);

end if;

delete(N);

end for;

//if there is no N, it returns the trivial group

return sub<G|Id(G)>;

end function;
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//MAIN PROGRAM

TG:=[TransitiveGroup(g,i) : i in [1..triv]]; //Reg. subg. of Sg

NTG:=[Normalizer(S,TG[i]) : i in [1..triv]];

T:=[Transversal(S,NTG[i]) : i in [1..triv]];

Trans:=[[x : x in T[i]] : i in [1..triv]];

//Transversal calculates right cosets; since we want the left ones,

//we calculate TGij doing (Trans[i][j]^-1)*x*Trans[i][j]

//instead of Trans[i][j]*x*(Trans[i][j]^-1)

for k in [1..n] do

G:=TransitiveGroup(g,k); //it is contained in Sg

print "-------------------------------------------------------";

print "-------------------------------------------------------";

print "We are at the transitive group"; k; print "which is"; G;

print "-------------------------------------------------------";

print "-------------------------------------------------------";

//STABILIZER AND NORMAL COMPLEMENT: Almost classical Galois ext.

if k gt triv then

H:=Stabilizer(G,1); //H=G’

N:=normcomp(G,H);

if Order(N) gt 1 then //there exists N

print "------------------------------";

print "The stabilizer of 1 is"; H;

print "------------------------------";

print "The normal complement N of H in G is"; N;

print "------------------------------";

end if;

end if;

//REGULAR SUBGROUPS OF Sg NORMALIZED BY G

for i in [1..triv] do

count:=0;

for j in [1..#T[i]] do

//#T[i] is the number os conjugacy classes of TG[i]

TGij:=sub<S|{(Trans[i][j]^-1)*x*Trans[i][j]:x in Generators(TG[i])}>;

//we see whether TGij is normalized by G

NTGij:=Normalizer(S,TGij);

if G subset NTGij then

print "The regular subgroup"; TGij;

print "is normalized by G";

print "----------------";

count:=count+1;

end if;

delete(TGij); delete(NTGij);

end for; //j
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if count ne 0 then

if i eq 1 then

print "The number of subgroups conjugated to C8";

print "normalized by G is";

count; print "--------------------------";

elif i eq 2 then

print "The number of subgroups conjugated to C4xC2";

print "normalized by G is";

count; print "--------------------------";

elif i eq 3 then

print "The number of subgroups conjugated to C2xC2xC2";

print "normalized by G is";

count; print "--------------------------";

elif i eq 4 then

print "The number of subgroups conjugated to D4";

print "normalized by G is";

count; print "--------------------------";

elif i eq 5 then

print "The number of subgroups conjugated to Q8";

print "normalized by G is";

count; print "--------------------------";

end if;

end if;

delete(count);

end for;//i

delete(G);

if k gt triv then

delete(H); delete(N);

end if;

end for;//k

delete(g); delete(S); delete(n); delete(triv);
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As a sample of the results obtained performing this program, we list in the
following table the number of Hopf Galois structures of each type up to the first
five transitive groups, which are shown in Section 5.3.

Table 2: Non-Galois extensions

Hopf Galois structures
Transitive group C8 C4 × C2 C2 × C2 × C2 D2·4 Q8

8T6 2 0 0 2 2
8T7 2 0 0 2 2
8T8 2 0 0 2 2
8T9 0 10 4 6 2
8T10 0 6 4 0 0
8T11 2 6 2 6 2
8T12 0 0 2 0 2
8T13 0 0 2 0 2
8T14 0 0 4 0 0
8T15 2 0 0 2 2
8T16 0 0 0 2 2
8T17 0 0 0 2 2
8T18 0 6 4 0 0
8T19 0 2 2 0 0
8T20 0 2 2 0 0
8T22 0 6 2 6 2
8T23 0 0 0 0 2
8T24 0 0 2 0 0
8T25 0 0 1 0 0
8T26 0 0 0 2 2
8T29 0 2 2 0 0
8T32 0 0 2 0 2
8T33 0 0 1 0 0
8T34 0 0 3 0 0
8T36 0 0 1 0 0
8T37 0 0 2 0 0
8T39 0 0 2 0 0
8T40 0 0 0 0 2
8T41 0 0 1 0 0
8T48 0 0 1 0 0

Observe there are some transitive groups which do not give any Hopf Galois
structure; specifically, they are

8Ti, for i ∈ {21, 27, 28, 30, 31, 35, 38, 42, 43, 44, 45, 46, 47, 49, 50}.

Note that 8T49 = A8 and 8T50 = S8.
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