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General introduction 

Global change and nutrient cycles 

Humans are altering the natural processes of the Earth system in such a way that we 

could have already entered a new epoch called the “Anthropocene” (Waters et al., 

2016). Although global environment continually changes due to natural variability, 

the Holocene (~10000 years BP) has been a period of unusual stability. The human 

imprint was initially visible during the Industrial Revolution, but the previous 

stability was drastically and definitely altered about the mid-20th century with the 

“Great Acceleration” of population growth and industrialization (Steffen et al., 

2015a; Waters et al., 2016). Among the multiple processes involved in the global 

change, the alterations of nitrogen (N) and phosphorus (P) biogeochemical flows 

are particularly threatening to the stability of the Earth system (Rockström et al., 

2009; Steffen et al., 2015b). 

Reactive nitrogen (N) has notably increased as a consequence of fossil fuel 

combustion and agricultural activities, mainly the utilization of N-rich fertilizers 

obtained from the Haber-Bosch reaction and the cultivation of N2-fixing species 

(Galloway et al., 2008; Gruber & Galloway, 2008). This anthropogenic N can be 

retained by living organisms, denitrified, accumulated in soils and water, or emitted 

to the atmosphere (Schlesinger, 2009; Canfield et al., 2010). Once in the 

atmosphere, it is locally or regionally transported, and returned back to the 

ecosystems through deposition (Hietz et al., 2011; Kim et al., 2011). Thus, even the 

most remote and pristine ecosystems are exposed to this N fertilization (Bergström 

& Jansson, 2006; Holtgrieve et al., 2011). 

Phosphorus (P) has become a pollutant in some areas with intense pasture and 

excessive application of livestock slurry for land fertilization (Peñuelas et al., 2012). 

Although P does not have a gaseous form, it can be found in the atmosphere 

associated with particles (e.g. dust, sea-salt, biogenic particles, combustion ashes). 

Desert and dusty regions are then primary sources of atmospheric P to nearby 
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ecosystems (Mahowald et al., 2008). Some human land uses (e.g. livestock grazing) 

favoured dust emission (Neff et al., 2008). Moreover, fuel combustion and fires 

have a greater contribution to global P emissions than previously thought (Wang et 

al., 2014). Even though, the rise of N emissions in Europe and North America during 

the 1960-1990 period notably exceeded the increase of P emissions, and, 

consequently, nutrient depositional loads have become N-enriched. These N:P 

imbalances have altered the elemental composition of organisms, the productivity, 

the community structure, and thus the overall ecosystem functioning (Peñuelas et 

al., 2013). 

Primary producers: who they are, where they come from 

All complex life on Earth ultimately depends on a relatively small subset of 

metabolic pathways capable of reducing the inorganic carbon (i.e. CO2, HCO3
-) to 

complex organic compounds. The organisms that perform such reactions are called 

“primary producers” (or autotrophs) because they provide organic matter for all 

other organisms. Actually, in most ecosystems, the growth rate of primary producers 

determines the energy flow and the production of the upper trophic levels 

(Lindeman, 1942). Despite some Bacteria and Archaea can produce biomass from 

the oxidation of inorganic chemical compounds (i.e. chemoautotrophy), the most 

efficient and widespread way to accomplish the reduction of inorganic carbon is the 

photosynthesis (i.e. photoautotrophy) (Falkowski & Raven, 2007). More 

specifically, one kind of photosynthesis that requires water as electron donor and 

produces oxygen came to dominate all ecosystems, the oxygenic photosynthesis.  

All oxygenic photoautotrophs share a similar photosynthetic machinery, composed 

of two photochemical reaction centres derived from two anoxygenic photosynthetic 

groups, purple bacteria and green sulfur bacteria (Falkowski & Knoll, 2007). The 

first oxygenic photosynthetic organism, an ancestor of the current cyanobacteria, 

probably expanded about 2.300 million years ago when oxygen levels in the 

atmosphere started to increase (Falkowski, 2006). The oxygenation of Earth’s 
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atmosphere precipitated a huge increase of genomic and metabolic complexity, and, 

indeed, is considered a major transition in the history of life (Raymond & Segrè, 

2006). Then, oxygenic photosynthesis might spread via endosymbiosis to a wide 

variety of eukaryotic clades (Falkowski et al., 2004). The first endosymbiosis was, 

apparently, the engulfment of a cyanobacterium by a eukaryotic host cell that 

already contained a mitochondrion (Fig. 1). The engulfed cyanobacterium gradually 

lost functions, and ultimately became the plastid of the earliest photosynthetic 

eukaryote. Three clades directly evolved from this primary symbiont: glaucophytes, 

red algae (i.e. rhodophytes), and green algae and their descendants, the land plants. 

Glaucophytes currently constitute a quite small group of freshwater species that 

present plastids with only one kind of chlorophyll, chlorophyll a. Along the 

evolution of the green algae ancestor, a new accessory pigment appeared, the 

chlorophyll b, which characterizes the “green plastid lineage” (Falkowski et al., 

2004). This lineage includes groups rich in species such as green algae (e.g. 

chlorophytes and charophytes) and land plants, but also smaller groups derived from 

endosymbiotic events occurred a long time ago such as the euglenids and 

chlorarachniophytes, or more recently, as certain dinoflagellates. Although 

contemporary rhodophytes lack any chlorophyll apart from chlorophyll a, a second 

main plastid lineage might have born from the endosymbiosis of a red algae 

ancestor, and is now characterized by the presence of chlorophyll c (i.e. the “red 

plastid lineage”). This lineage includes a broad range of phylogenetically distant 

groups, and the endosymbiotic events that originated them are indeed quite 

uncertain (Lane & Archibald, 2008; Archibald, 2015). A recent study suggests that 

photosynthesis might have spread throughout the eukaryotic domain by some serial 

endosymbiosis: the incorporation of a red algae by a cryptophyte ancestor, followed 

by the adoption of this symbiont by an ochrophyte ancestor, and, finally, of this 

ochrophyte by a haptophyte (Fig. 1, Stiller et al., 2014). Dinoflagellates are 

photosynthetically promiscuous; therefore, it is not surprising that a lineage of this 

group had acquired a “red” plastid, and now also have chlorophyll c. 
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Figure 1 Distribution of oxygenic photosynthesis among the major phylogenetic groups of life. 
Heterotrophic lineages are represented in gray, while the autotrophic lineages are shown in 
different colours: blue for cyanobacteria, purple for glaucophytes, green for the “green plastid 
lineage” derived from a chlorophyte ancestor, and red for the “red plastid lineage”, derived from 
a rhodophyte ancestor. Hypothetical endosymbiotic events in the “red plastid lineage” (Stiller et 
al., 2014) are represented by arrows. Drawn from diverse sources (Fehling et al., 2007; Reyes-
Prieto et al., 2007). 

While photoautotrophy on land is markedly dominated by a single clade (i.e. the 

embryophyte land plants), in marine and freshwater ecosystems there is a 

phylogenetically diverse set of organisms (Fig. 1), traditionally known as “algae”. 

Algae come in many shapes and sizes (Graham et al., 2009), some being large 

enough to be seen with the unaided eye (macroalgae), while others being so small 
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that a microscope is needed (microalgae). Many microalgal species are unicellular, 

and always occur as solitary cells, but many others form colonies of few to several 

cells more or less organized (Fig.2). The size of organisms represents an additional 

difficulty in studying microalgae in comparison to macroalgae or land plants. The 

identification of microalgal species at the microscope based on morphological 

features is time-consuming and requires a high degree of expertise. Also, the 

estimation of algal biomass through the calculation of algal biovolume by 

assimilating cells to known geometric forms incorporates certain inaccuracy. In 

contrast, the pigments of an algal community can be readily analyzed at the 

laboratory (e.g. photometry, fluorimetry, chromatography). Hence, chlorophyll a 

has become a convenient proxy for algal biomass, and the concentrations of the 

accessory pigments provides taxonomic information about the sample (Buchaca, 

2005; Roy et al., 2011). 

Microalgae can live suspended in water bodies as part of phytoplankton, or attached 

to various types of substrates in periphyton. Although the term “periphyton” has 

been used in different ways, it generally refers to a complex mixture of algae, 

bacteria, fungi, detritus and inorganic particles embedded in a mucilaginous matrix 

above submerged surfaces. Therefore, in general, the term does not just include the 

autotrophic component, in contrast to phytoplankton. Periphyton usually develops 

attached to inorganic substrates such as rocks (epilithic) or sand (episammic), but it 

can also grow attached to plants, macroalgae or animals. Periphyton is an important 

source of organic matter in streams and shallow zones of lakes, especially if 

terrestrial vegetation is not well developed and the light path is not obstructed. The 

autotrophic component of freshwater periphyton is mostly dominated by 

cyanobacteria, green algae, and diatoms, but there might also be some 

representatives of red algae, chrysophyceans, and xanthophyceans. In turn, 

freshwater phytoplankton mainly consists of chlorophytes, chrysophyceans, 

dinophytes, cryptophytes, diatoms, and cyanobacteria, and the dominance of one or 

another group is highly dependent on trophic status.  
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Figure 2 Diversity of microalgal body forms commonly found in phytoplankton and periphyton 
of mountain ecosystems, by major phylogenetic groups: (A-F) cyanobacteria, chlorophytes, 
dinophytes, cryptophytes, bacillariophytes, chrysophyceans, respectively. Organisms are shown 
at different scales. Photos by M. Plewka and Wikimedia Commons. A more detailed compilation 
of algal diversity in the Pyrenees is provided by Cambra (2003). 



9 
 

Homeostatic regulation of C:N:P composition 

All living organisms are highly ordered systems in comparison to their surrounding 

environment, what is achieved through active, energetically costly, regulatory 

processes (e.g. negative feedbacks). Homeostasis is intrinsic to life, as metabolic 

processes only occur under certain physical and chemical conditions, and the 

external environment is rapidly changing. Homeostasis includes several regulatory 

processes, but one has taken particular interest in ecology: the control of the 

elemental composition, or “stoichiometric homeostasis” (Sterner & Elser 2002, 

Hessen et al. 2013). The elemental homeostasis is commonly evaluated as the effect 

of a change in resource elemental availability on the elemental composition of its 

consumer (i.e. the slope of the relationship, Fig. 3A). However, below or above 

certain levels of elemental imbalances, we do not expect any change in consumers’ 

composition, and, therefore, the range under which a consumer can regulate its own 

composition is also a measure of homeostasis (Fig. 3B).  

 

Figure 3 Alternative views of the elemental homeostasis (or flexibility) of an organism: as the 
rate of change in the consumer elemental composition produced by a change in the resource (A), 
or as the range of which the consumer elemental composition is affected by the resource elemental 
availability (B). The relationship between resources and consumers can be referred to nutrients 
and autotrophs, but also to autotrophs and herbivores, herbivores and predators, and so on. In the 
first case, the elemental ratio commonly used is the N:P, whereas, in the other cases, it is also 
possible to compare C:N, C:P, % N, % P, etc. 
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All living organisms share a core elemental “recipe” of ~20 elements, some in high 

proportions such as the macroelements (e.g. C, O, H, N, P, S), and others in lower 

amounts (e.g. Fe, Mg). Although all of them are in principle subject to homeostatic 

regulation, the focus has been overwhelmingly centred in just three elements, 

carbon (C), nitrogen (N), and phosphorus (P). They are considered surrogates of 

three main macromolecular components: carbohydrates, proteins, and nucleic acids. 

While C is the structural element of all organic compounds, N and P are particularly 

interesting because the demand for these nutrients by primary producers often 

exceeds the availability in the surrounding environment, what reduces or even stops 

their growth. Thus, N and P become quite often the “limiting” elements.  

Redfield (1958) noted that the proportion of these elements in marine plankton was 

remarkably uniform around 106C:16N:1P. Since then, this proportion has become 

a reference to talk about algal composition, as well as a convenient constant for 

modelling biogeochemistry and plankton processes (Falkowski, 2000). However, 

reviews indicate that C:N:P of seston and algal cultures is far less constrained 

(Geider & La Roche, 2002), and even propose a new global ratio of 166C:20N:1P, 

and varying power laws C:N, C:P, N:P at regional scales (Sterner et al., 2008). Some 

of this C:N:P variability in natural algal communities could be explained by the 

presence of species with different phylogenetic imprints in their elemental 

composition (Ho et al., 2003; Quigg et al., 2003). However, this phylogenetic signal 

seems rather small in comparison to the environmental signal. Studies with algal 

cultures show a considerable flexibility of some species (e.g. Scenedesmus; Rhee, 

1978), and, in general, autotrophs are less homeostatic than heterotrophs (Persson 

et al., 2010). This is mainly viewed as an adaptation of autotrophs to store elements 

when available in excess, and the possibility to use them later when external levels 

fall. The storage capacity of algal organisms has obviously certain limits (Fig. 3B, 

Hall et al., 2005), though they are not fully defined yet.  

Growth has been argued to be a relevant factor in homeostasis of microalgae, in that 

achieving the highest growth rates requires a more constrained C:N:P proportion 
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close to Redfield’s (Goldman et al., 1979; Klausmeier et al., 2008). Recent evidence 

suggests that fast-growing phytoplankton has a more confined elemental 

composition, and is also more P-rich (Hillebrand et al., 2013). Since the highest 

growth rates can only be achieved under nutrient excess conditions, which 

regulatory processes (e.g. ribosomes, P stores) do drive this pattern is a question not 

fully resolved. 

Physiological traits and constraints on resource utilization 

and growth 

The ecological niches of algal species are largely defined by their ability to acquire 

resources (nutrients, light), to convert them into growth and reproduction, and to 

avoid loss processes by grazing, infection, toxicity or sedimentation. Functional 

traits arise from the adoption of diverse ecological strategies among algal species, 

and physical and chemical constraints on physiological functions (Litchman & 

Klausmeier, 2008). The functional trait concept is indeed tightly linked to the trade-

off concept, as traits usually confer an advantage for performing one function, and, 

simultaneously, a disadvantage for playing another. Then, selective pressures are 

not unidirectional but multidirectional, thus preventing the appearance of 

“superspecies”, and promoting the coexistence and diversity.  

The ability to acquire and utilize nutrients has been typically characterized by 

laboratory measurements on cultured algae (reviewed in Edwards et al., 2012), and 

the subsequent fitting to just a few models: 

𝜇 = 𝜇∞ (1 −
𝑄𝑚𝑖𝑛

𝑄
)     (𝟏) 𝑫𝒓𝒐𝒐𝒑 𝒎𝒐𝒅𝒆𝒍, growth on internal resource quota 

𝜇 = 𝜇𝑚𝑎𝑥  
𝑅

𝐾𝑠 + 𝑅
         (𝟐) 𝑴𝒐𝒏𝒐𝒅 𝒎𝒐𝒅𝒆𝒍, growth on external resource conc. 

𝑉 = 𝑉𝑚𝑎𝑥  
𝑅

𝐾𝑚 + 𝑅
         (𝟑) 𝑴 − 𝑴, resource uptake on external resource conc. 
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The Droop model describes the algal growth on the cellular nutrient concentrations 

(Q), being µ∞ the theoretical growth rate at infinite quota, and Qmin the internal 

resource concentration at which µ=0 (Droop, 1973). Two Michaelis-Menten models 

describe the growth (Monod model) and the nutrient uptake depending on external 

nutrient concentrations, being the parameters µmax and Vmax the maximum growth 

and uptake rate, respectively, and K, the half-saturation constant (Fig. 4). Growth 

and uptake rates increase with the availability of the limiting nutrient, although all 

curves tend to saturation.  

According to resource competition theory (Tilman, 1982), the competitive ability 

of species improves decreasing Qmin, Ks, and Km, and increasing µ∞, µmax, and Vmax. 

Classic experiments of resource competition demonstrated the differential ability of 

Asterionella and Cyclotella in using P and Si, and tendency towards the replacement 

of one or the other species, or towards the coexistence, depending on the particular 

nutrient availability in the medium (Tilman, 1977). A literature review later noted 

that physiological traits related with NO3
- and NH4

+ utilization can vary notably 

among algal groups, and could be of great utility to understand the distribution 

patterns of phytoplankton along environmental gradients (Litchman et al., 2007). 

Later compilations have evidenced the significant influence of cell volume in 

explaining the variability of NO3
- and PO4

-3 utilization among algal species, as well 

as in explaining the correlations among these traits (Edwards et al., 2012).  

Actually, cell size is considered a “master” trait because it constrains many key 

organismal characteristics related to diverse ecological functions. Smaller cells have 

a higher affinity for nutrients simply due to physical diffusion, and dominate the 

extensive and nutrient-poor regions of the open ocean; contrastingly, nutrient-rich 

coastal and upwelling zones are generally dominated by larger phytoplankton cells. 

Cell size is also involved in a trade-off between nutrient storage capacity (Qmax) and 

rapid growth since smaller cells can grow faster but show lower storage capacity 

(Grover, 1991). Thus, small and fast-growing marine diatoms firstly respond to 

nitrogen pulses, while larger diatoms can maintain growth at later pulse phases, 
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when nutrients get depleted, by using the nitrate stored in vacuoles (Raven, 1987). 

Being large may confer other advantages, such as the capacity to eat other organisms 

(e.g. mixotrophy in dinoflagellates), but can be risky due to increased grazing 

pressures and sedimentation rates. 

Likely, the major trade-off in algae is that between equilibrium competitive ability 

(i.e., low Ks and Qmin) and maximum growth rate (i.e., high µ∞ and µmax), often 

referred as the K and r strategies (MacArthur & Wilson, 1967), or the gleaner-

opportunist trade-off (Fig. 4, Grover, 1997). The “K” strategy dominate under 

conditions of low nutrient availability, whereas the “r” is advantageous when 

nutrient supply is high and fluctuate intensely. Slow-growing chrysophytes are often 

taken as an example of good nutrient competitors, and are found abundantly in most 

oligotrophic lakes (Reynolds, 2006); conversely, fast-growing chlorophytes tend to 

dominate in most eutrophic lakes, and can also be abundant in oligotrophic lakes 

during the relatively short and nutrient-rich mixing periods. The capacity to grow 

fast may somehow impair the ability to deal with low-nutrient conditions, and, 

frequently, it also comes at the cost of lower yield or efficiency (Litchman et al., 

2015). Moreover, growth capacity may be linked with the elemental composition of 

organisms. For instance, seston C:N and C:P tend to decline as seston abundance 

increase, and, hence, C sequestration per unit of nutrient decrease with productivity 

(Sterner et al., 2008). Furthermore, the Growth Rate Hypothesis (GRH) states that 

achieving high growth rates requires high proportions of P-rich ribosomes, what 

reduces cellular N:P content in fast-growing organisms (Sterner & Elser, 2002; 

Vrede et al., 2004). Contrastingly, good competitors for nutrients and light may 

invest more in N-rich proteins dedicated to nutrient uptake and light-harvesting 

structures (e.g. chlorophylls), thus increasing their N:P content. While GRH appears 

to be valid for heterotrophs, its applicability to autotrophs is currently under 

discussion (Flynn et al., 2010; Hessen et al., 2013; Hillebrand et al., 2013). The key 

to this debate seems to be the influence of P storage compared to ribosomes in 

cellular P pools. 
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Figure 4 Monod model describing 
the algal growth based on the 
external availability of the limiting 
nutrient. Different nutrient 
utilization strategies can be found 
among algal species, basically from 
slow-growing good competitors 
(gleaners) to fast-growing bad 
competitors (opportunists). These 
strategies could have implications 
for the N:P content of organisms. 

Within each of these two major strategies we can also found relevant physiological 

trade-offs, such as in the utilization of different resources. For instance, there are 

selective pressures in oligotrophic waters to diminish internal requirements for 

limiting nutrients, but, at once, this pressure is compromised with the ability to 

absorb light at low irradiances, what requires N and Fe (Rhee & Gotham, 1981; 

Strzepek & Harrison, 2004). A trade-off in the utilization of N and P have also been 

proposed (Edwards et al., 2011), considering that cell surface and cell volume are 

limited, and, therefore, the uptake and structural machinery dedicated to one nutrient 

represents a drawback for the other. However, determining if a trait really constrain 

another trait can be rather complicated, especially for weak interactions. 

The trait-based approach to understanding algal communities (Litchman & 

Klausmeier, 2008) faces another problematic issue: the parameters estimated at the 

laboratory are not constant. For a single genotype, traits of resource utilization and 

growth vary depending on environmental factors and growth history (i.e., 

phenotypic plasticity). The kinetics of metabolic reactions tend to accelerate with 

temperature -up to an optimal level-, thus potentially affecting all estimates of 

uptake and growth (e.g., Reay et al., 1999). Also, it is long recognized that 

organisms can “acclimate” their light-harvesting structures to irradiance (Falkowski 

& LaRoche, 1991), and the uptake machinery to varying resource levels in a more 

or less extended time span (Collos et al., 2005). Recently, Van Mooy et al. (2009) 

showed that algae can also diminish their internal P requirements (Qmin) under 

conditions of P scarcity through the synthesis of non-phosphorus lipids. 
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Figure 5 Conceptual model showing some of the physiological interactions occurring in algae 
and the influence of the environmental control; all together ends up determining population 
dynamics (modified from Capblancq & Catalan, 1994). 

The physiological processes and constraints involved in the regulation of algae are 

still far to be totally deciphered (Fig. 5). Even if deeply understood, the prediction 

of algal communities would be unfeasible because they are not only driven by 

competence, but also by other ecological interactions (e.g. predation, mutualism, 

and commensalism) and physicochemical factors. Actually, studies that just 

consider competition and equilibrium conditions tend to result in the dominance of 

one or few species, and the exclusion of the others (Hardin, 1960), while in nature 

we commonly find a relatively high number of species. This question has been 

traditionally referred as the “paradox of the plankton” (Hutchinson, 1961), and its 

solution may precisely come from the influence of non-competitive ecological 
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interactions, fluctuations in environmental factors (Descamps-Julien & Gonzalez, 

2005), and spatial and temporal heterogeneity in resources (Károlyi et al., 2000). 

Aquatic ecosystems are indeed highly conditioned by its physical component. For 

instance, the stratification and mixing of the water column determine key processes 

such as the nutrient cycling, the sedimentation fluxes, and the interactions among 

organisms. 

Effects of nutrient availability on aquatic ecosystems  

By the late 1960’s, evidences accumulated of lakes suffering, or that had suffered, 

processes of eutrophication (Vollenweider, 1968). The uncontrolled increase of 

algal biomass, the depletion of oxygen in water, the mortality of fishes and other 

organisms, and the appearance of toxic species had become serious problems in 

many lakes. Limnological studies then broadly expanded, with the objective to 

understand the causes of eutrophication, and find mechanisms to control it. 

Edmondson (1970) demonstrated that algal biomass could be reduced in a lake 

through sewage diversion, given the control of N and P availability on algal growth. 

Further studies pointed that controlling P pollution is the best way to revert 

eutrophication, as the mere reduction of N can still originate blooms of N-fixing 

cyanobacteria (Schindler, 1974, 1977). Then, management policies aimed at 

reducing P loads in freshwaters began to be applied (e.g. the regulation of P-

containing detergents), and lakes became clearer and better oxygenated.  

After whole-lake nutrient enrichments realized in the Experimental Lake Area 

(Ontario), a general consensus developed in that primary production of lakes was 

primarily limited by P (Schindler, 1977). Later on, compilations of numerous 

nutrient enrichment experiments questioned this P limitation paradigm, and 

indicated that N was as likely as P to be limiting algal growth (Elser et al., 2007; 

Lewis & Wurtsbaugh, 2008). The relative importance of N, P, and other elements 

in autotrophic limitation is linked to some climatic, geologic and ecologic factors 

that determine their availability in a particular habitat; hence, a uniform and broad 
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picture of nutrient limitation is unfeasible. Actually, even the element (or elements) 

limiting primary production in the relatively homogeneous marine ecosystems 

markedly differ among regions (Moore et al., 2013). Recently, some studies stress 

the importance of synergistic interactions between N and P, and suggest that co-

limitation is more widespread than previously recognized (Harpole et al., 2011). 

Nutrient co-limitation has been invoked in a number of situations, being the simplest 

cases (a) when, in a single species, one nutrient aids in the uptake of the other, (b) 

when different species of a community are limited by different nutrients, and (c) 

when the simultaneous addition of both nutrients is required to get a response 

because both nutrients are at low levels (Arrigo, 2005). Currently, the framework of 

single-resource limitation appears to be shifting to a more complex framework 

including multiple nutrients (Kaspari & Powers, 2016), and where the main focus 

is not just total algal growth, but also key regulatory processes of algae such as their 

internal N:P content (Bracken et al., 2015).  

Although the effects of nutrient fertilization are relatively well-known in eutrophic 

and human-impacted ecosystems, the effects on freshwater oligotrophic ecosystems 

have received less attention. Indeed, the recognition that several pristine and remote 

ecosystems are being fertilized via atmospheric deposition have aroused much 

interest (Elser et al., 2009; Camarero & Catalan, 2012). The first and most direct 

effect of higher N and/or P availability may be the stimulus of primary production, 

what, in turn, may increase the transfer of energy and matter to upper trophic levels 

(i.e. a bottom-up effect). Moreover, the community of primary producers is 

expected to change due to a proportional increase of fast-growing species with high 

nutrient requirements. Algal N:P content could also be affected by these changes, 

particularly if nutrient inputs are unbalanced. Since both the “quantity” and the 

“quality” of primary producers affect the energy transfer to grazers, herbivores 

community and nutrient cycling may be altered as well (Hessen et al., 2013). 

Therefore, an entire re-organization of trophic network and ecosystem functioning 

can be expected.  



18 
 

Objectives 

The main objective of this dissertation was to determine the effects of N and P 

fertilization on the growth of major algal groups, and evaluate some indicators of 

the regulatory processes (e.g. N:P content, chlorophyll:biovolume) involved in the 

growth responses. To do so, we followed a field experimental approach of short-

term nutrient enrichments (21-25 days), using nutrient-diffusing substrates in the 

case of epilithic periphyton (Chapter 1), and mesocosms in the case of 

phytoplankton (Chapter 2 and 3). This experimental approach increases the 

complexity of the oversimplified laboratory studies, and reduces the complexity of 

the whole-lake nutrient enrichments. These experiments were performed in the lake 

district of the Pyrenees, a region of particular interest because the average 

conditions are just on the threshold between the N and P limitation of algal growth 

(Camarero & Catalan, 2012). As well, most lakes are oligotrophic, and its nutrient 

availability is highly conditioned by N and P inputs of atmospheric origin, which 

appear to be changing due to human activities and global change. The specific 

objectives of the experiments were: 

Objective 1 was to determine the main factors controlling the algal colonization of 

epilithic periphyton and examine the differences among major algal groups.  

We selected 9 lakes and 2 streams to account for environmental gradients of trophic 

status and water renewal, while the influence of N and P availability was evaluated 

in each location using nutrient-diffusing substrata. 

Objective 2 aimed to assess the influence of nutrient availability on the 

productivity, the composition of major phytoplankton groups, and the C:N:P 

proportions in seston, and evaluate the interrelationships among them.  
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Mesocosms were vertically deployed in Lake Redon and enriched with different 

amounts of P (phosphate) and N (ammonium or nitrate), so as to create a gradient 

of increasing P availability, another gradient of increasing N, and compare the 

effects produced by shifts in DIN dominant forms (ammonium vs. nitrate). 

Objective 3 aimed at understanding the relationships among nutrient availability, 

growth, and chlorophyll content per biovolume in phytoplankton. Specifically, we 

evaluated to what extent intense growth is associated with high chlorophyll a 

contents per biovolume, or with a major plasticity of that content. 

Pigment contents per biovolume and their plasticity were determined for all major 

algal groups by estimating non-linear, power-law based, models. The gradients of 

growth conditions were obtained from the nutrient-enriched mesocosms of the 

Objective 2. 
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Abstract 

We conducted periphyton colonization experiments in nine oligotrophic lakes and 

two streams of a high-mountain catchment to determine the factors controlling the 

algal development, especially of the two major algal groups: chlorophytes and 

diatoms. We selected the sites to account for trophic and water renewal gradients, 

and used nutrient-diffusing substrates to study the local effect of nutrient availability 

(non-enriched, N-enriched, P-enriched and N+P-enriched substrates). We estimated 

the diatom and chlorophyte biomass using marker pigments combined with 

CHEMTAX. Algal growth was then related with environmental gradients and 

experimental enrichments using multilevel regression models. The variation in 

biomass accrual among sites was higher than the differences related with the 

respective enrichments, mainly due to high variation in the development of diatoms. 

The “site effect” was mainly associated with trophic status (e.g., dissolved organic 

carbon, total phosphorus) and hydrodynamics (e.g., average water renewal), both 

factors enhancing total algal growth, although chlorophytes were not significantly 

affected by hydrodynamics. Diatoms dominated the periphyton at high water 

renewal, and were responsible of the highest total algal biomasses. Enrichments 

inhibited the growth of diatoms, particularly nitrogen, although enrichment effects 

were not independent of the water renewal. High water renewal mitigated the 

inhibitory effects on diatoms, and stimulated chlorophytes growth, particularly in 

N-enriched substrates. Trophic status also conditioned the response of chlorophytes 

to P and N+P treatments. Overall, the findings add evidence to the suggestion that 

nutrient fertilization caused by atmospheric deposition would favour chlorophytes 

at the expense of diatoms in high mountain periphyton communities, and highlights 

water renewal as a key factor in the colonization of littoral periphyton in lakes. 
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Introduction 

Periphyton communities are the primary source of energy for higher trophic levels 

in several freshwater ecosystems, particularly in unshaded streams with little 

allochthonous inputs (Biggs, 1996), and shallow oligotrophic lakes with poorly 

developed phytoplankton communities (Vadeboncoeur et al., 2008). The latter 

might be the case of many high-mountain lakes located above or near the tree line. 

Periphyton in high-mountain lakes is periodically affected by harsh conditions and 

disturbances that can alter or even reset the community (Rott et al., 2006; Uehlinger 

et al., 2010). In winter, for instance, the presence of a snowpack that prevents the 

arrival of light, the littoral scouring effect by ice, and the low temperatures have an 

impact on periphyton communities. Storms can be severe throughout the year, and 

the wind and high flows can disturb the development of periphyton. Moreover, algal 

biomass can be constrained by high UV radiation in the shallower zones 

(Vinebrooke & Leavitt, 1996). Under these circumstances, periphyton assemblages 

are periodically reset, particularly in shallow littoral waters. Despite the relevance 

for the system, little is known about which factors drives the early periphyton 

colonization in oligotrophic mountain lakes.  

Periphyton has long attracted research in freshwaters (Hoagland et al., 1982), but 

most of the studies have focused on streams rather than lakes (Cantonati & Lowe, 

2014). All in all, some factors can be anticipated as potentially relevant in mountain 

lakes. i) First, the size of the local pool of colonizers able to settle on the free 

substrates should accelerate the process. This pool is proportional to the lake trophic 

status and variables such as total phosphorus (TP) and dissolved organic carbon 

(DOC), which are correlated with carbon flow in mountain lakes (Catalan et al., 

2009a). ii) A second factor is water flow, which enhances the transport of colonizers 

from the pool sources to the substrates to be colonized. Water renewal, as a 

surrogate of average water flow, can range orders of magnitude in mountain lakes 

depending on the lake size and how it is connected to the surface drainage systems. 
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Energetic hydrodynamics might remove settlers, particularly if carrying mineral 

particles. This negative influence of water flow has been shown in some streams 

(Steinman & McIntire, 1990), and could be relevant in some mountain lakes 

exposed to strong winds and sandy littorals, in which case water flow would have 

an ambivalent role. iii) Finally, nutrient availability at a local scale (i.e. mesohabitat) 

compared with the average conditions of lake can favour some algal groups upon 

others. For instance, colonization of isolated large bare rocks should not proceed in 

the same way as in small pebbles close to organic sediments releasing nutrients. 

More generally, nutrient availability in the system and stoichiometric constraints 

may condition the colonization process interacting with other factors. P is usually 

the primary nutrient controlling lake productivity (Schindler, 1977), yet N limitation 

and N and P co-limitation conditions have also been reported (Maberly et al., 2002; 

Nydick et al., 2004; Elser et al., 2007). The increase in N atmospheric deposition 

during the last decades have driven some remote lakes towards enhanced P 

limitation (Elser et al., 2009); yet, P deposition may counteract such tendency in 

Pyrenean lakes, and lead them towards N limitation (Camarero & Catalan, 2012). 

In this study, our primary aim is to determine the main factors controlling early 

periphyton colonization in oligotrophic lakes, and whether they differ among the 

main algal groups. We followed an experimental approach in which we selected 

nine lakes in a mountain catchment covering a broad range of trophic conditions 

(always within the oligotrophy) and water renewal. Two stream experimental sites 

were also included to break the high correlation usually found between trophic state 

and water renewal in mountain lakes. In each experimental site, we assessed the 

periphyton early colonization rates using nutrient-diffusing substrates (NDS). This 

system allows us to increase phosphorus (P), nitrogen (N) or both nutrients (N+P) 

at a scale of mesohabitat over the background nutrient concentrations of the site.  

Periphyton includes a complex assemblage of evolutionarily diverse microalgal 

organisms (Stevenson, 1996a). Even experienced algologists cannot easily identify 
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all species present in a sample microscopically, and precise information about the 

community structure actually requires considerable effort and skill. For this reason, 

many studies only measure a surrogate of the total algal biomass (i.e. chlorophyll a) 

(Steinman et al., 2006); thus simplifying the understanding of the colonization 

process. A compromise between effort and information is achieved using group-

specific marker pigments determined by liquid chromatography (e.g., HPLC, 

UPLC) (Hagerthey et al., 2006). Based on these measures, the relative contribution 

of the main algal groups to total biomass was estimated using the CHEMTAX 

algorithm (Mackey et al., 1996). This procedure, originally developed for marine 

phytoplankton, has also been applied satisfactorily to phytoplankton and benthic 

algal assemblages in freshwater ecosystems (Buchaca et al., 2005; Majdi et al., 

2011). The periphyton growth and the relative contribution of the main algal groups 

were finally related to the experimental and background conditions by statistically 

fitting multilevel/hierarchical models. 

Methods 

Study sites 

The experiment was conducted in nine lakes and two stream sites from the St. 

Nicolau catchment of the Aigüestortes i Estany de St. Maurici National Park 

(Fig.1A), located in the Central Pyrenees. Siliceous bedrocks dominate the area and 

the lakes and streams are typically oligotrophic. The study sites expand from 1600 

to 2500 m.a.s.l. and include five locations (T, E, I, S and L) below the tree line and 

six above. Table1 summarises the main characteristics of sites, and indicates the site 

codes used in figures and tables. 
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Figure 1 A) Map of St. Nicolau catchment with the study sites (codes as in Table 1). B) Picture 
of the NDS experimental setting. 

Table 1 Location and morphometric characteristics of the study sites  

Site Code Type Lat N Long E 
Altitude 

(m) 
Watershed 

area (ha) 
Lake 

area (ha) 
Depth 

(m) 

Llebreta T lake 42.55065 0.89016 1620 5439 8 11.5 
Planell Llebreta E stream 42.55053 0.89209 1622 5439 - 0.3 
Planell Aigüestortes I stream 42.55306 0.92078 1826 3112 - 0.4 
Llong L lake 42.57504 0.95304 2000 1131 7.1 12.5 
Redó R lake 42.57984 0.95788 2116 307 6.3 12 
Sarradé S lake 42.56268 0.89702 2124 427 4.2 15 
Coma Amitges A lake 42.56243 0.96235 2272 183 1.8 10 
Nere N lake 42.56920 0.97435 2298 160 4.2 38 
Mussoles M lake 42.52927 0.93157 2359 169 1.5 10 
Bergús B lake 42.58722 0.95534 2447 126 6.2 51 
Gelat Bergús G lake 42.58989 0.96153 2494 24 1.4 8.5 

 

Environmental conditions  

We measured water temperature (Temp) and collected water samples from each 

study site two weeks before the beginning of the experiment. All samples were 

analysed for pH, conductivity, and alkalinity (Gran titration) immediately after 

collection. Total phosphorus (TP), dissolved reactive silica (DRSi), NH4
+ and NO2

- 

were determined using a segmented flow auto-analyser (AA3HR, 

Seal/Bran+Luebbe). TP was determined in samples previously digested by 
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persulphate oxidation (Grasshoff et al., 1983), followed by colorimetry based on a 

Murphy & Riley's (1962) method (Bran+Luebbe G-175-96). DRSi was determined 

using a molibdo-silicate reduction to heteropoly blue (B+L G-177-96), NH4
+ by the 

blue indophenol (Berthelot reaction) method (B+L G-171-96), NO2
- by the Griess 

reaction (B+L G-173-96), and NO3
- was determined by capillary electrophoresis 

(Quanta 4000, Waters). Dissolved inorganic nitrogen (DIN) was calculated as the 

sum of NO3
-, NO2

- and NH4
+. DOC was determined by catalytic combustion and 

infrared spectrometric detection of the CO2 produced (TOC5000 Shimadzu 

analyser). Water chemistry was analysed in five sites (T, E, I, L and R) three more 

times during and just after the experiment to estimate a coefficient of variation (CV) 

for each chemical variable during the incubation period. 

We characterized water renewal at each site using two variables, namely, water flow 

and characteristic velocity. We estimated the average water flow (Flow, L s-1) from 

the watershed area of the site, the rainfall during the experiment period (averaged 

from three weather stations within the valley), and the evapotranspiration estimated 

at two points in the catchment. In the case of T and E sites, we also took into account 

the amount of water diverted by a small dam. As similar water flows may be 

achieved through "channels" of different section (e.g., lake and stream), we 

estimated a characteristic mesohabitat velocity (Vel, cm s-1) dividing the water flow 

by the lake or stream section at the point where the diffusive substrates were 

deployed. 

Experimental substrates 

Nutrient-diffusing substrates (NDS ) were constructed using 36 ml plastic cups and 

lids with holes, following designs by Gibeau & Miller (1989) and Tank, Bernot & 

Rosi-Marshall (2006). The cups were filled with nutrient-enriched agar and a 2.5 

cm fritted glass disc (Leco, #528-042, porous cover) placed on top of the agar, which 

eventually was the surface for periphyton growth. Four nutrient treatments were 

prepared: non-enriched, N-enriched, P-enriched and N+P-enriched. Nitrogen was 
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added to the agar as 0.8M KNO3, and P was added as 0.025M K2HPO4 + 0.025M 

KH2PO4. Therefore, the N+P enrichment had a molar N:P ratio of 16:1. All 

treatments were buffered with 100µM NaHCO3 to approach pH 7. The treatments 

were randomly distributed in the supporting trays, but following the same pattern 

for each site. 

The experiments started between 6 and 9 September 2012 at the 11 study sites. A 

rack containing at least 12 randomly distributed NDS (3 replicates per treatment) 

was fixed to the ground at a depth of 0.46 ± 0.13 meters (Fig. 1B). After three weeks 

of colonization, the racks were collected, and the substrates retrieved. The discs 

were wrapped with aluminium foil and deep-frozen in liquid nitrogen to prevent 

pigment degradation. 

To check the NDS performance during the experiment, in one lake we retrieved the 

substrates after 3, 10, 17 and 21 days, and determined the nutrient release in the 

laboratory. We submerged each NDS in a pre-rinsed plastic container filled with 

500 ml deionized water for 2h, and subsequently analysed NO3
- and SRP 

concentrations. We found a decline in NO3
- and SRP release as the experiment 

proceeded, but nutrient release at the end of the experiment remained high, and the 

N:P ratio about 16 (Fig. 2). 

 

Figure 2 NDS diffusion rates for NO3
- and SRP after 3, 10, 17 and 21 days of colonization. 
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Pigment analysis 

The pigments were extracted in 3.5 ml 90% acetone with probe sonication 

(Sonopuls GM70 Delft, The Netherlands) (50W, 2 min). The extract was 

centrifuged (4 min at 3000 rpm, 4 ºC), filtered through Whatman Anodisc 25 (0.1 

μm) and analysed by ultra-performance liquid chromatography (UPLC). The UPLC 

system (Acquity, Waters, Milford, MA, U.S.A.) was equipped with an Acquity 

UPLC HSS C18 SB column (dimensions: 100 x 2.1 mm, particle size: 1.8 μm) and 

photodiode array (λ 300-800 nm). Two channels, set at 440 and 660 nm, were 

recorded for better carotenoid and phorbin detection, respectively. After sample 

injection (4.5-7.5 μl), pigments were eluted by linear gradient from 100% solvent B 

(51:36:13 methanol : acetonitrile : MilliQ water, v/v/v 0.3 M ammonium acetate) to 

75% B and 25% A (70:30 ethyl acetate : acetonitrile, v/v) for 3 min, followed by 

0.45 min of isocratic hold at 75% B and 2 min of linear gradient to 99.9% solvent 

A. Initial conditions (100% B) were linearly recovered in 0.65 min. The flow rate 

was 0.7 ml min-1. Pigments were identified checking retention times and absorption 

spectra against a library made based on standard commercial mixtures (DHI, PPS-

MiX-1), and extracts from pure cultures of algae and bacteria available in our lab. 

Final quantification was made using specific absorption coefficients at 440 nm.  

Contributions of the main algal groups to total algal biomass 

The degree of algal colonization was estimated determining the amount of 

chlorophyll a (Chla) per experimental substrate. The relative contribution of the 

main algal groups was assessed using indicative auxiliary photosynthetic pigments 

for each group, and the CHEMTAX algorithm (version 1.95, Mackey et al., 1996). 

The calculations were initialised using marker pigment to Chla ratios obtained from 

the literature (Majdi et al., 2011). We anticipated finding diatoms, chlorophytes, 

and cyanobacteria as major groups in the samples. However, after analysis, we did 

not find any marker pigment exclusive of the cyanobacteria. Zeaxanthin, a pigment 

present in both cyanobacteria and chlorophytes, was below the detection limit in 

58% of the samples, and at low concentrations in the rest. Zeaxanthin to chlorophyll 
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b ratios of the latter samples, and initial CHEMTAX calculations including 

cyanobacteria confirmed the negligible abundances of this algal group. Thus, we 

discarded the cyanobacteria contribution in the final CHEMTAX optimization, and 

focused the study on diatoms and chlorophytes. We estimated the Chla of these two 

groups using diadinoxanthin (Diadin), fucoxanthin (Fuco) and chlorophyll c (Chlc) 

as marker pigments of diatoms, and lutein (Lut) and chlorophyll b (Chlb) as marker 

pigments of chlorophytes. All available samples (n=132) were included at once to 

maximize CHEMTAX performance and comparability; no reasons for splitting 

them into different compositional sets were found.  

Data analysis 

The relationship between the response variables (total Chla, diatoms Chla, and 

chlorophytes Chla) and the experimental factors was established using regression 

and multilevel/hierarchical models (Gelman & Hill, 2007). The data analysis 

followed three phases with the aim of disentangling site vs. general variation, and 

the interactions among factors. The process led to three sets of models: site models, 

full models, and minimal models. 

Site models 

We modelled the effects of nutrient enrichment at each site separately using linear 

regression: 

lnChla ~ bI + bN N + bP P + bNxP NxP   (1) 

where lnChla is the natural logarithm of diatoms, chlorophytes or total Chla; bI, bN, 

bP, bNxP are the intercept value and the coefficients of the N enrichment, P 

enrichment, and NxP interaction effect, respectively. Following, we determined the 

two most influential environmental factors explaining the variability of each 

coefficient. An automatic model selection was applied (MuMIn, Bartroń 2009), and 

the better models were ranked according to the smaller sample Akaike information 

criterion (AICc). All environmental variables were entered as candidate predictors. 
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Flow and Vel were log-transformed due to their skewed distribution (lnFlow, 

lnVel), and TP because we observed non-linear effects. The automatic variables 

selection was followed by a final supervised selection based on two criteria: 1) the 

models that included two highly correlated variables were discarded, and 2) the 

appearance of new unnecessary variables was limited by preferentially selecting the 

same variables for diatoms, chlorophytes, and total Chla, when similar models 

(ΔAICc<4) were found. This second criterion allowed us to compare the effects of 

the same variables on the distinct algal groups, and verify whether the effects on 

total algal biomass were coherent with the effects on diatoms and chlorophytes. 

Full models 

We built a mixed (or multilevel) linear model for each algal group with all the 

available samples (n=132). The environmental variables selected in the previous 

step were included as fixed terms, whereas the nutrient enrichment effects (N, P, 

NxP) were included as both fixed and random terms of the model. Thus, the model 

considered the hierarchical design of the experiment, and the site-related variability 

of the intercept and the enrichment effects were accounted in the random part of the 

model. The continuous environmental variables were standardized by subtracting 

the mean and dividing by two standard deviations to facilitate the comparison of 

their respective effects (Gelman & Hill, 2007). The enrichments (N, P, NxP) were 

coded as binary factors with values 0 or 1. The adequacy of the selected predictors 

was subsequently checked, adding or excluding components in the respective full 

models. 

Minimal models 

Full models allowed the comparison of treatment and environmental effects among 

algal groups. However, a simplified model including the respective most essential 

factors can be sufficient for prediction. Automatic model selection (MuMIn) was 

applied, starting with the previous full models and simplifying so that the model 

with minimal AICc (“Minimal model”) was finally selected for diatoms, 
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chlorophytes, and total Chla. The enrichment effects were not forced to be in the 

fixed part of the model, and were discarded if appropriate. 

We used the statistical software R version 3.1.2  for data analysis (R Core Team, 

2014), and the extension package ggplot2 for graphical display (Wickham & Chang, 

2015). All models were fitted with classical Restricted Maximum Likelihood 

(REML) methods using the lme4 package (Bates et al., 2014). The estimation using 

Bayesian methods based on Markov chain Monte Carlo and uninformative priors 

gave nearly identical results (data not shown). 

Results 

Environmental gradients and correlations 

The selected sites differed in trophic, chemical, and water renewal characteristics 

(Table 2). TP placed within the assumed oligotrophy range in all sites (Wetzel, 

2001), ranging from 1.3 up to 4.9 µg·L-1. Lakes G and L were the sites with the 

lowest N availability (DIN:TP molar ratio ~30, DIN <70 µg·L-1), while the most P-

deficient sites were the lake S and the stream E (DIN:TP molar ratio~250, DIN >200 

µg·L-1). The two variables that showed more variability were TP and DOC, with a 

coefficient of variation ~20%. 

Table 2  Physico-chemical characterization of the study sites 

Site 
Flow  

L·s-1 

Vel 

cm·s-1 

Temp      

ºC 
pH 

Alkalinity 

µeq·L-1 

Conductivity 

µS·cm-1 

DOC 

mg·L-1 

DRSi 

mg·L-1 

TP      

µg·L-1 

DIN 

µg·L-1 

DIN:TP 

molar 

T 835 1.657 19 7.8 325 39.7 1.10 1.26 3.2 115 79 
E 835 46.39 16 7.5 313 39.8 0.56 1.88 1.8 202 251 
I 605 37.81 16 7.2 224 29.2 0.57 1.76 1.8 173 217 
L 220 0.453 19 7.4 209 25.5 1.02 0.73 4.8 62 29 
R 60 0.066 17 6.7 89 13.7 0.81 1.26 2.4 128 117 
S 83 0.084 17 7.0 118 19.4 0.62 1.43 2.5 281 251 
A 35 0.075 20 7.5 346 40.8 1.08 1.06 3.2 96 67 
N 31 0.051 19 7.6 248 31.5 0.89 0.59 1.7 87 111 
M 33 0.088 19 7.0 317 39.9 0.84 1.60 4.9 199 89 
B 25 0.031 16 7.0 74 11.4 0.60 1.01 1.3 123 204 
G 5 0.011 16 6.9 72 10.4 0.76 0.84 3.5 46 30 

CV 
Mean       1.6% 3.5% 4.3% 18.1% 6.0% 18.7% 14.7% 22.3% 
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The correlation patterns among variables were examined by Principal Components 

Analysis (PCA) (Fig. 3). The two first principal components accounted for 76% of 

total variation. The first axis was defined by the positive load of DIN, and the 

negative load of TP and DOC, thus reflecting changes in trophic status. The second 

axis was associated with two groups of variables loading positively: water renewal 

(lnFlow and lnVel), and water acidity (pH, alkalinity). The inclusion of two stream 

sites in the experiment helped to decrease the correlation between trophic status and 

water renewal. Streams, which obviously had the highest water velocities, showed 

the lowest DOC values, and medium to low TP concentrations. The correlations 

between DOC and lnVel (r = - 0.27), and TP and lnVel (r= -0.22) were not 

significant; thus, we could consider them as independent variables in the subsequent 

analyses. There were sites present in the four quadrants defined by the two axes, 

and, hence, the main environmental variability was covered with representative sites 

(Fig. 3). 

 
Figure 3 Principal component analysis biplot with the environmental variables (site codes as in 
Table 1). 



35 
 
Algal growth variability within and between sites 

After three weeks of colonization, the algal biomass grown on the substrates ranged 

more than two orders of magnitude, from 0.04 up to 5.38 µg Chla·cm-2. Higher 

variation was found among sites (CV = 90%) than among treatments in each single 

site (CVmean = 32%; CVmin = 8% in site A; CVmax = 47% in site M). In most sites, 

the highest algal biomass was recovered in non-enriched substrates, and the lowest 

in the N-enriched (Fig. 4). The exceptions occurred in sites with high periphyton 

colonization, the two streams (E, I) and the lake L. 

Visual inspection indicated that grazing effects by large organisms (e.g. snails) were 

negligible as a source of variation for sites and substrates. Furthermore, the 

detection of the grazing indicative pigment phaeophorbide a was limited to 5% of 

the samples, and in small amounts compared to Chla. Other Chla degradation 

products were undetected (phaeophytin) or extremely rare (chlorophyllide a). 

 
Figure 4 Chla obtained after three weeks of colonization for each experimental treatment (see 
legend), and for every site. Sites ranked by Chla levels in N+P treatment. Line ranges indicate ±1 
standard deviations of 3 replicates. Note that Y-axis is logarithmic. 



36 
 
Diatoms and chlorophytes contributions to algal growth 

The marker pigments of chlorophytes (Chlb and Lut) were detected in 95% of the 

samples, while the markers of diatoms (Diadin, Fuco and Chlc) were detected in 

>83% of the samples. Output marker pigment to Chla ratios of CHEMTAX placed 

within the typical range of these algal groups: 0.20 Chlb:Chla, 0.13 Lut:Chla, 0.12 

Diadin:Chla, 0.36 Fuco:Chla, and 0.09 Chlc:Chla. High algal biomasses generally 

coincided with the dominance of diatoms, while the samples with low algal 

biomasses were generally dominated by chlorophytes. This pattern was particularly 

marked in non-enriched and P-enriched substrates (Fig. 5A, B). The dominance of 

chlorophytes accentuated in N- and N+P-enriched substrates because chlorophytes 

growth tended to increase, and diatoms growth to decline (Fig. 5C, D). Diatoms 

were leading the wide variation of algal biomass among locations, while the growth 

of chlorophytes was more uniform. 

 
Figure 5 Estimated Chla of chlorophytes (circles) and diatoms (diamonds) in relation to total 
observed Chla in non-, P-, N-, and N+P-enriched substrates (A-D). For each treatment, n = 33. 
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Trophic status and water renewal determine algal growth and 

the response to nutrient enrichments 

The coefficients bI , bN , bP , and bNxP were extracted from the “site models” to 

explore the relationships with the environmental variables. DOC, TP, and lnVel 

were the three variables that better explained the periphyton colonization and the 

enrichment effects (Fig. 6). The colonization of periphyton in the absence of nutrient 

enrichment effects (bI) was well explained by DOC (mainly “lake” effects) and by 

lnVel (mostly “stream” effects) (R2=91%, p-value<0.0001, Fig. 6A). These two 

variables were also selected in the model of diatoms (R2=86%, p-value<0.0004). 

However, lnVel was not significant in chlorophytes, and, in this case, DOC alone 

explained the 66% of the variability (p=0.002). Consequently, lnVel was the 

environmental variable that better explained the changes in dominance between 

chlorophytes and diatoms (Fig. 7), which were predominant at low and high Vel, 

respectively. This shift occurred about 0.08 cm·s-1 in non-enriched and P-enriched 

substrates (Fig. 7A, B), and about 1.5 cm·s-1 in N- and N+P-enriched substrates 

(Fig. 7C, D). 

N enrichment had a negative effect on algal growth (most bN coefficients <0, Fig. 

6B), but this adverse effect was stronger for diatoms than for chlorophytes (Fig. 

7C). The factor that better explained bN coefficients of diatoms, chlorophytes, and 

total Chla models was lnVel, indicating that the adverse effect could be mitigated at 

the highest velocities (e.g. the streams). The relationship was not significant for total 

Chla due to the influential site T (Fig. 6B, R2=26%, p-value<0.1), marginally 

significant for diatoms (R2=39%, p-value=0.04) and significant for chlorophytes 

(R2=72%, p=0.001). 

LnVel was also the top ranked variable explaining the bP coefficients of all three 

models. In this case, however, the inclusion of log-transformed TP improved the 

models of chlorophytes and total Chla (R2=85%, p=0.0005, and R2=78%, p=0.002 

respectively). The four sites with TP concentrations below 2 µg L-1, including the 
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two streams, presented higher bP coefficients than the other sites for total Chla model 

(Fig. 6C). This negative effect of TP on P-enrichment response appeared to be rather 

non-linear. In contrast, TP positively affected the NxP interaction for chlorophytes 

(R2=44%, p=0.03), and total algal biomass (R2=59%, p=0.006, Fig. 6D). No 

environmental variables significantly explained the NxP effects for diatoms. 

 

 

Figure 6 Relationship between the coefficients bI, bN, bP, and bNxP of the site models for total Chla 
(Equation 1), and the respective best environmental predictors (A, B, C, D). The bubble area is 
proportional to log-transformed water velocity in A and C. X-axes are logarithmic in B and C. 
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Figure 7 Group-specific Chla (chlorophytes in circles; diatoms in diamonds) against average 
water velocity (both in logarithmic scale), for each treatment (A, B, C, D). Line ranges are ±1 sd. 

Quantifying the influence of the main factors driving algal 

growth 

In the following step, we quantified the relative influence of all factors -within and 

among sites- on algal growth by building the “full models” for total algal biomass 

(total Chla), diatoms, and chlorophytes (Fig. 8). In general, the estimated 

coefficients for total Chla were more accurate (i.e., lower deviation) than for 

diatoms and chlorophytes, and they used to place in between both groups, or 

somewhat closer to diatoms. LnVel was the most influent variable for diatoms and 

total Chla, but it did not affect chlorophytes. DOC had a similar positive influence 

on chlorophytes and diatoms, and was the second major driver of total algal growth. 

The effects of nutrient enrichments clearly differed between diatoms and 

chlorophytes. N enrichment had a substantial adverse effect on diatoms and total 
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Chla, but did not negatively affect chlorophytes (Fig. 8). LnVel interacted with N 

effects in both algal groups, mitigating the adverse effect of N enrichment on 

diatoms, and stimulating the growth of chlorophytes. P enrichment also hindered 

diatoms colonization, although with less intensity than N. Again, this negative effect 

on diatoms was reduced when lnVel was high. P enrichment did not affect 

chlorophytes growth or even produced a minimal positive effect, which was 

accentuated in sites with high lnVel and low TP concentrations. Finally, we detected 

that the interaction NxP had a positive effect on diatoms, which reduced the negative 

effects of N and P enrichments in N+P substrates. This positive effect of NxP 

interaction was only detected on chlorophytes in those sites with high TP 

concentrations. 

 
Figure 8 Estimated coefficients for the three “full models”. As all environmental variables were 
standardized, the position in the X-axis represents the relative influence of each factor on log-
transformed Chla (total, diatoms, chlorophytes), being the less influent factors closer to “0”. Those 
factors not included in the model are shown as a dot without line range at the “0” position. The 
thick and thin line ranges represent ±1 sd and ±2 sd, respectively.":" and "x" indicate interaction, 
and "ln" indicate that the variable was log-transformed. 
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We then evaluated to what extent some factors could be ignored for each response 

variable through the AIC-based simplification of “full models” to “minimal models” 

(Table 3). The model for total algal colonization was reduced to three influential 

variables (DOC, lnVel and the interaction P:lnVel) with a change in AICc of 10 

points. However, this simplification also produced a marked decline of the variance 

explained by fixed factors (Δmarginal-R2 =10). The full model for diatoms was 

already good regarding AICc, and, consequently, the simplification barely changed 

the AICc (ΔAICc < 2), and several factors were still maintained (lnVel, DOC, N, 

N:lnVel, P:lnVel). In this case, the exclusion of P and NxP effects diminished the 

negative effects of N enrichment. The AICc was significantly reduced in the 

minimal model for chlorophytes (ΔAICc=13), though the factors maintained in the 

model (DOC, N:lnVel, P:lnVel, NxP:TP) presented similar coefficients than the full 

model. The colonization of chlorophytes was harder to explain than the colonization 

of diatoms, what is clear comparing the values of marginal and conditional R2. 

 

Discussion 

Periphyton colonization and development is a complex process influenced by a 

mixture of autogenic and allogenic factors (McCormick & Stevenson, 1991; 

Stevenson & Peterson, 1991; Villeneuve et al., 2010). The increase in algal biomass 

during the experimental period results from the arrival and attachment of colonizing 

organisms (immigration), the reproduction of these organisms on the substrates 

Table 3 Regression coefficients of the fixed terms of the full and minimal models 

Response variable Intcpt lnVel DOC N N:lnVel P P:lnVel P:lnTP NxP NxP:TP AICc 

Marg. 

R2 (%) 

Cond. 

R2 (%) 

lnChla Total 

      Full -0.28 1.49 1.13 -0.51 0.46 -0.10 0.43 -0.30 0.42 0.55 148.1 83.5 93.8 
      Minimal -0.41 1.42 0.94    0.50    137.9 73.2 92.2 
lnChla Diatoms 

      Full -1.05 2.56 1.51 -1.14 0.57 -0.38 0.50  0.73  314.1 77.0 90.2 
      Minimal -1.17 2.53 1.49 -0.61 0.56  0.48    312.8 74.6 89.7 
lnChla Chlorophytes 

      Full -1.44  1.16 0.10 1.00 0.13 0.48 -0.23 0.03 0.70 271.2 45.7 77.9 
      Minimal -1.44  1.12  1.02  0.51   0.56 257.8 46.0 77.5 
AICc : small sample corrected AIC; Marginal R2: variance explained by fixed factors; Conditional R2: variance explained by 
both fixed and random factors; ":" and "x" indicate interaction and "ln" indicate that the variable was log-transformed. 
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(growth), and the loss of individuals by export, death or grazing (Stevenson & 

Peterson, 1991). All these processes are affected by distinct environmental factors, 

but trophic status and water-mediated transport may play a significant role, 

according to our results. 

Trophic status 

The immigration rate in a site depends on the pool of colonizers in the surroundings, 

and other parts of the system (Hamilton & Duthie, 1987). The size of this pool 

increases with trophic status. This overarching term can be operatively 

approximated using several variables. TP is the typical surrogate of trophic status 

in freshwater ecosystems. In alpine lakes, DOC is commonly correlated with TP, 

and can be considered an indicator of trophic status that present lower seasonal 

fluctuations than TP (Catalan et al., 2002, 2009a). Which of the two variables takes 

the leading explicative role in the statistical analysis of the periphyton colonization 

may be either circumstantial, due to specific values of data set, or it may be 

attributable to marginal differences among them. In our study, DOC was 

predominantly selected in the models, and we found a similar positive effect on both 

diatoms and chlorophytes. In addition to being a surrogate for the algal pool in the 

system, DOC may also correlate with the amount of prokaryotic colonizers, which 

may be crucial for preparing an initial biofilm in the new substrate, and thus 

facilitating the attachment of larger organisms (Jordan & Staley, 1976; Barranguet 

et al., 2005). DOC could also have an adverse impact on benthic primary production 

because it attenuates the light (Godwin et al., 2014). However, this is not the case 

of mountain lakes, where DOC is relatively low, and periphyton has to deal with 

high radiation, particularly UV (Laurion et al., 2000). In fact, DOC absorption 

properties reduce photoinhibition and enhance primary production in shallow 

littoral biofilms. 
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Water renewal 

In high-mountain environments, there is some correlation between water renewal 

and trophic status. Lakes located at the lower zones of the catchments show higher 

water flows, and higher nutrient and organic carbon loadings from the surrounding 

terrestrial systems than the upper lakes. The inclusion of the two streams in our 

experimental design broke the existing correlation, and permitted to differentiate 

the respective responses to both factors. Main streams and nearby lakes showed 

similar water flows but markedly different water renewal characteristic velocities 

(Vel). Selecting sites in streams revealed that water renewal was more relevant than 

trophic status (DOC, TP) for early periphyton colonization, yet exclusively 

mediated by diatoms growth. In fact, even when stream sites were excluded from 

the model, Vel and Flow were top ranked predictors for algal growth (data not 

shown). This indicates that the result was not statistically ill-conditioned by the 

stream leverage. 

The enhancement of diatom accrual by water renewal may comprise some causes 

related to transport, settlement, and growth of colonizers. Research on water-

mediated transport on lake periphytic communities is scarce (Lowe, 1996). In lotic 

systems, some studies reveal inverse relationships between water current and 

periphyton accumulation, likely because swift currents hinder the adherence and 

settlement of the organisms to the substrates (McIntire, 1966; Reisen & Spencer, 

1970; Stevenson, 1983). Thus, pool zones may present greater initial colonization 

rates than riffle zones (Korte & Blinn, 1983; Oemke & Burton, 1986). However, 

this does not seem to be the case in the lakes and streams considered, given the 

relatively low water currents. Instead, higher average flows upon a substrate might 

have increased the probability of arrival of colonizers from the surrounding source 

areas. Our results demonstrate that water renewal cannot be ignored in colonization 

experiments in lakes. This would be a critical factor in comparisons among sites 

with contrasting water flows. Methods estimating mesoscale water renewal as better 

as possible should be included in colonization experiments. 
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In addition to enhancing the arrival of new individuals, water renewal can also 

improve the growth of the population. An increase in local water renewal produces 

a steeper diffusion gradient that enhances the exchange of materials, solutes and 

gasses between the periphyton and the water column (Whitford & Schumacher, 

1961; McIntire, 1966; Horner & Welch, 1981). As water current also increases the 

shear effect and the drag of organisms (McIntire, 1966), moderate currents may be 

more beneficial than high velocities (Stevenson, 1996b). Our study demonstrates 

that diatoms are favoured upon chlorophytes by water velocity, at least during early 

colonization. McIntire (1966) described a dominance of diatoms on fast currents, 

and of chlorophyte filaments on slow currents, and argued that the latter could be 

controlled by shear stress. We observed that chlorophytes accrual in streams was 

relatively low under non-enriched conditions, but increased in enriched substrates, 

thus weakening this hypothetical shear stress influence.  

Chlorophytes vs. diatoms development 

The algal growth on the substrates varied considerably among sites. We observed 

that chlorophytes dominated the periphyton where total biomass was low, and 

diatoms where it was high. We may ask whether this was a final pattern of 

differentiation in periphyton, or the biofilms were at different successional stages. 

In fact, the pattern observed agrees with the succession of algal groups dominance 

described by Sekar et al. (2002, 2004) in a reservoir: initial chlorophytes dominance, 

followed by diatoms, and finally by cyanobacteria. Barranguet et al. (2005) also 

found a higher proportion of chlorophytes than diatoms during the first ten days of 

colonization, and negligible proportions of cyanobacteria until the fourth week of 

development. In streams, the presence of cyanobacteria in later stages of biofilm 

development (>2-3 weeks) was also observed by Korte & Blinn (1983), and could 

be related to their slow growth. According to previous studies, and our own 

observations, cyanobacteria may require more than three weeks to develop 

populations at the levels previously observed in these systems (Bartrons et al., 

2012). The different degree of biomass saturation among locations after 21 days of 
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colonization may be supported by a similar study performed the previous year, 

which only included six of the nine lakes, and lasted 52 days (Fig. 9). Chla 

concentrations at 21 days of colonization were close to the levels at 52 days in some 

lakes (e.g. Llong, L), whereas the differences between the two periods were still 

great in other lakes. Interestingly, the periphyton biomass obtained in the two 

studies was strongly correlated (r= 0.98), what reinforces the influence of the 

general environmental context associated with one site in determining algal growth. 

 

Figure 9 Chlorophyll a concentration (A) and increase rate (B) after 21 days of colonization 
(current experiment) compared with a previous study that lasted 52 days, and performed in only 
six lakes. 

Nutrient enrichments 

Diatoms suffered a severe inhibitory effect by N enrichment, and a slighter negative 

effect by P enrichment; contrastingly, chlorophytes were not so adversely affected 

by any nutrient. Water renewal clearly interacted with nutrient enrichment effects, 

since at the highest water renewal sites the inhibitory effects on diatoms were 

mitigated, and the slightly positive effects on chlorophytes were intensified. These 

results suggest that diatoms are especially sensitive to the nutrient perturbation 

produced by nutrient-enriched substrates, and that inhibitory effects are alleviated 

by high water renewal. Evidence of inhibitory effects produced by nutrient 
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enrichments have been previously reported in lakes and streams (Fairchild et al., 

1985; Tank & Dodds, 2003), and have been ascribed to different causes: an excess 

of the ion of interest (e.g. NO3
-, NH4

+, PO4
-), an excess of the ion that balances the 

charge of the ion of interest (e.g. K+, Na+), and the generation of toxic by-products 

when preparing the agar medium (Tanaka et al., 2014). Fairchild et al. (1985) 

observed a decline in algal biovolume on substrates enriched with 0.5M compared 

to 0.05M of K2HPO4, and hypothesized it could be related to an excess of phosphate 

(Rodhe, 1948) or potassium (Lehman, 1976). However, Luttenton & Lowe (2006) 

discarded the second hypothesis, as they used NaH2PO4 instead of K2HPO4 and also 

found P inhibition, especially when P was added in excess relative to N. They also 

discarded a negative effect of Na+, as all treatments had similar concentrations of 

this ion. Instances of inhibitory effects produced by N enrichment are also relatively 

common in the literature (Francoeur, 2001; Bernhardt & Likens, 2004; Schiller et 

al., 2007). Although our study does not allow us to determine the mechanisms 

causing the inhibitory effects, we recommend to enrich with lower concentrations 

(Maberly et al., 2002; Hogan et al., 2014), particularly in unproductive 

environments with low water renewal. 

The tolerance to high nutrient levels might vary across algal species and classes, in 

the same way that the optimal nutrient concentrations vary among taxa. In a recent 

review, Collos & Harrison (2014) observed that chlorophytes were the most tolerant 

algal group to toxic levels of ammonium, and the group with higher ammonium 

optimal concentrations. Consistently, in our experiment, high nutrient levels were 

better tolerated by chlorophytes than diatoms, and even positive effects of nutrient 

enrichment were detected in chlorophytes at high water velocity. Under these 

conditions, the growth of chlorophytes was more stimulated by N than by P (i.e. the 

relative influence of N:lnVel was greater than P:lnVel). In contrast, diatoms growth 

was only stimulated by P and N+P treatments in the streams, and they generally 

better tolerated P than N excess conditions. Consistently, chlorophytes were more 

favoured by N enrichment than diatoms and cyanobacteria in a recent study in two 
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Alpine lakes (Lepori & Robin, 2014). This evidence suggests that deposition-driven 

N:P imbalances can substantially affect the periphyton communities of these 

ecosystems, and that N fertilization could specifically favour chlorophytes. 

The effect of P enrichment appeared to be conditioned to TP concentrations, since 

the algal growth (and particularly the chlorophytes growth) responded more in 

locations with TP <2 µg·L-1 (Fig. 5C). Catalan et al. (2009) identified an ecological 

threshold in European alpine lakes at ~0.6 mgDOC L-1 or ~3 µgTP L-1, which fairly 

corresponds to the observed threshold. However, this P:lnTP factor was weak, and 

actually excluded of minimal models, possibly because the effect was rather non-

linear (Fig. 5C). The NxP interaction was also related with TP in chlorophytes, but, 

in this case, positively. A possible explanation may be that species with high 

requirements for both N and P are more abundant in the colonizer pool of locations 

with relatively high trophic status. In contrast to chlorophytes, the response of 

diatoms to nutrient enrichments seemed poorly conditioned by trophic status. 

Concluding remarks 

The early periphyton growth was mostly related to lake trophic status and water 

renewal, both accelerating it. The role of water renewal on periphyton development 

has been largely ignored in lakes; and this study highlights its relevance, especially 

for diatoms. Further research should aim to disentangle the mechanistic processes 

behind the observed phenomenological patterns. For instance, some remaining 

questions are: is there a higher dependence on water transport for diatoms dispersal 

and immigration than for chlorophytes? Does water velocity stimulate diatom 

growth? Which are the autogenetic and successional changes that favours the 

dominance of chlorophytes in the first stages, and of diatoms in the advanced ones?  

Grazing was not relevant in our experiment, yet it can cause sharp changes on 

periphyton communities (Feminella et al., 1995; Steinman, 1996). Since periphyton 

accumulation may increase the attraction of grazers, it might be interesting to 
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determine whether there is a tipping point in periphyton development at which 

herbivore effects become more likely, and how it depends on the kind of herbivores. 

In our experiment, N enrichments, and to lower extent also P enrichments, inhibited 

the growth of diatoms. Therefore, the fertilization of oligotrophic lakes does not 

directly imply enhanced algal growth, as unusually high levels may lead to toxicity 

for the existing communities. Regular nutrient dosage at low concentrations may be 

indeed more efficient than punctual high loadings, and much experimentation is 

already required in that respect in natural communities. From our experiment and 

other studies, there is increasing evidence that N fertilization comparatively favours 

chlorophytes over the other main algal groups in high-mountain benthic ecosystems. 

This is especially relevant in a context of high N atmospheric emissions, and 

discussion on effects of climate warming in remote ecosystems (Holtgrieve et al., 

2011; Catalan et al., 2013). 
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Abstract 

Human activities have increased nutrient supply and unbalanced N:P availability in 

aquatic ecosystems. Effects of changed nutrient availability on the productivity, 

C:N:P stoichiometry and structure of planktonic communities have been already 

reported, but there is a lack of studies that simultaneously compare their responses 

and patterns of change. We performed P (PO4
3-) and N (NH4

+ or NO3
-) additions to 

20 m deep and ~100 L tubular mesocosms in a P-limited lake, and analyzed the 

changes when the system is released from that limitation (“P enrichment”), when is 

supplied with N excess (“N:P imbalance”), and when NH4
+ becomes the dominant 

source of DIN. N excess conditions reduced the growth of autotrophs -especially 

chrysophyceans- and enhanced the differentiation of autotrophic community, but 

did not affect seston C:N:P. NH4
+ dominance tended to increase seston C:P and N:P 

ratios and stimulated the productivity and the differentiation of the autotrophic 

community when P limitation diminished. Particulate matter recovered from 

sediment traps was N-impoverished and P-enriched in relation to seston, thus 

strengthening P limitation of the system. Productivity was highly sensitive to low 

and medium P additions, but the response decelerated at high P additions. In 

contrast, the autotrophic community differentiated almost linearly, driven by the 

progressive substitution of chrysophyceans by diatoms and cryptophytes. Seston 

C:N:P remained fairly unchanged to low and medium P additions, but fell 

drastically and approached to Redfield’s at the highest P additions. The change of 

seston structure was not sufficient to explain this stoichiometric shift, that, instead, 

may be more related with a reorganization of macromolecular components in 

organisms. Overall, this study evidences that responses of productivity, community 

structure, and C:N:P composition to changed nutrient availability can be markedly 

decoupled, and reinforces the importance of studying them together to deepen their 

connections.  
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Introduction 

The biomass of all living organisms consists of more than 20 essential elements in 

quite defined proportions, and whichever of these elements is in shortest supply than 

demand may be limiting their growth (Hessen et al., 2013). Demand for nitrogen 

(N) and phosphorus (P) is high in all organisms (e.g. synthesis of proteins and 

nucleic acids) and, indeed, typically limit productivity in aquatic ecosystems (Elser 

et al., 2007). Human activities have not only increased the nutrient availability and 

productivity in many ecosystems, but also unbalanced natural N:P supplies and 

changed limiting conditions. Inputs of N and P into ecosystems through atmospheric 

deposition can be particularly unbalanced, as P -unlike N- has no gaseous phase and 

its presence in the atmosphere is necessarily associated with particles (e.g. dust, sea-

salt, biogenic particles, combustion ashes) (Mahowald et al., 2008). In general, non-

dusty regions of Europe and North America show N:P depositional ratios several-

fold higher than Redfield ratio (Peñuelas et al., 2013; Wang et al., 2014), what it is 

decreasing N-limitation and intensifying P-limitation in aquatic ecosystems (Elser 

et al., 2009).  

Enhanced P deficiency may not just alter the quantity but also the quality of the 

biomass (i.e. the C:N:P coupling). We now know that the elemental composition of 

autotrophs and seston in aquatic ecosystems is less constrained to 106C:16N:1P 

than previously thought (Geider & La Roche, 2002; Sterner et al., 2008). N and P 

availability in the environment could affect organisms C:N:P in two ways, through 

changes in growth rate, and in nutrient storage. Fast-growing phytoplankton present 

a more rigid and P-rich elemental composition, with N:P ratios frequently below 

16N:1P (Hillebrand et al., 2013). The growth rate hypothesis states that achieving 

high growth rates requires high concentrations of ribosomes, which are P-rich and 

increase the P content of organisms (Sterner & Elser, 2002). This hypothesis has 

been recently questioned for autotrophs (Flynn et al., 2010), and the role of different 

macromolecular components in C:N:P composition is still an open debate. The trend 
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of N:P on growth may also be explained by changes in P storage pools, if organisms 

accumulate P under optimal nutrient-replete growth conditions, and the reserves of 

P diminish as environmental conditions become P limited (Hillebrand et al., 2013). 

The increase of N:P and C:P ratios with P deficiency may stop at certain point, due 

to limits in the stoichiometric plasticity of the organisms, i.e. their maximum storage 

capacity and minimum P quota (Hall et al., 2005). However, there are still few 

pieces of evidence about this hypothetical stoichiometric threshold and its specific 

values. Determining to what extent P deficiency is translated to autotrophic C:N:P 

composition is of major relevance since the presence of P-poor phytoplankton 

affects the productivity of higher trophic levels, nutrient cycling, and carbon 

sequestration (Sterner & Elser, 2002; Hessen et al., 2013). 

One difficulty of stoichiometric studies in lakes and oceans is that seston is a 

mixture of autotrophs, heterotrophs and detritus that can be hardly separated. Since 

autotrophs are frequently the dominant fraction, and the major contributor to 

detritus, the C:N:P composition of seston is commonly assigned to primary 

producers. Heterotrophic C:N:P composition tends to be more homeostatic than the 

autotrophic (Persson et al., 2010), which supports the idea that changes in seston 

elemental composition are mainly related to autotrophs. Nevertheless, changes in 

nutrient availability and productivity may affect the proportion of different seston 

fractions, and the relative abundance of autotrophic groups. Major algal groups 

present distinguishable C:N:P compositions (Quigg et al., 2003), and, therefore, 

changes in the phytoplankton community could directly affect the seston C:N:P 

proportions. Despite the recognised connection among community structure, C:N:P 

composition and productivity, studies that simultaneously compare their patterns of 

change are scarce.  

An important issue in the context of P limitation is the degree of N:P imbalance. 

Higher atmospheric N inputs over already P-limited aquatic systems increase 

dissolved inorganic nitrogen (DIN) concentrations in water. Apparently, this excess 
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of N availability may produce minimum effects on productivity and community 

structure, although examples of enhanced release of extracellular phosphatases and 

toxins under N:P imbalanced conditions are reported (Raven, 2010). A greater 

availability of N may affect more importantly the elemental composition of seston 

(i.e. lower C:N and higher N:P ratios), as N can be stored in the organisms. Actually, 

stoichiometric studies have traditionally analysed the homeostasis of organisms 

linking seston N:P to supplies N:P (Hall et al., 2005; Persson et al., 2010). Yet, it 

has not been sufficiently analysed whether the simultaneous increase of N and P 

availability -maintaining the supply N:P unchanged- cause any change in seston N:P 

ratio when P is limiting.  

Human-induced changes in N cycle not solely affect the amount of N available for 

organisms, but also the relative abundance of N forms. For instance, the emissions 

of oxidized nitrogen into the atmosphere are typically associated with combustion 

processes, whereas the emissions of reduced nitrogen come primarily from 

agricultural activities (Fowler et al., 2013). Thus, the proportion of both forms in 

atmospheric deposition changes regionally and over time, depending on the extent 

of human activities and other meteorological conditioners (Dentener et al., 2006; 

Zhang et al., 2012; Liu et al., 2013). Although both nitrate (NO3
-) and ammonium 

(NH4
+) can be assimilated by primary producers, NH4

+ assimilation is energetically 

cheaper (Syrett, 1981) and preferentially used (Dortch, 1990; Harrison et al., 1996). 

The preference for NH4
+ contributes to lower NH4

+ concentrations in oceans, lakes, 

and streams compared to NO3
- (Berman & Bronk, 2003; Catalan et al., 2009b; 

Durand et al., 2011). As NH4
+ becomes more and more scarce, the pressures of 

organisms to assimilate NO3
- increase. These selection pressures on N assimilation 

might have evolutionary resulted in a broad range of NH4
+ and NO3

- uptake traits 

(and trade-offs) among phytoplankton groups (Litchman et al., 2007). Therefore, 

we may expect significant changes in the autotrophic community if NH4
+ becomes 

the dominant form of DIN (Donald et al., 2013). Lower costs in NH4
+ assimilation 

could also enhance primary production in such conditions, especially if P limitation 
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is not severe. Possible effects of NH4

+:NO3
- availability on seston C:N:P ratios are 

uncertain. 

In short, there is a growing interest in understanding the effects of P limitation on 

productivity, planktonic community and seston C:N:P composition of pelagic 

systems. We expected that absolute P availability would drive the main changes, 

though the excess of N availability (hereafter, the N:P imbalance) and changes in 

DIN dominant forms (NH4
+:NO3

-) could also have a role. To solve some of the 

unknowns stated above, we performed a perturbation experiment in a P-limited 

oligotrophic lake (Lake Redon). The experiment consisted in enrichments of 

phosphorus (PO4
3-) and nitrogen (NO3

- or NH4
+) using 20-m long columnar 

mesocosms installed during 25 days. The experiment was performed shortly after 

the onset of summer stratification. At this transition period, there is a high diversity 

of planktonic organisms in the water column, which provide enough seeding 

elements for potential contrasting responses to mesocosms treatments. Located in 

the Pyrenees, Lake Redon is quite sensitive to changes in atmospheric nutrient 

inputs, such as the human-induced increase in N deposition, and the events of P-

enrichment caused by northern Africa dust deposition (Camarero & Catalan, 2012). 

However, the experiment was not intended as a simulation of new conditions in this 

lake. Rather, the aim was to deepen in the directions and modes of response of 

planktonic communities in oligotrophic freshwaters to changes in nutrient 

availability, and better understanding the coupling of productivity, community 

structure, and seston C:N:P. 

Methods 

Study Site 

The experiment was performed in Lake Redon, an oligotrophic high-mountain lake 

located in the Central Pyrenees (42o38’33”N, 0º36’13”E, 2232 m asl). This lake has 

been the centre of intense limnological research for over 30 years (Catalan et al., 
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2006). It is a dimictic lake with a surface area of 24 ha, and maximum and mean 

depths of 73 and 32 m, respectively (Catalan, 1988). The lake is ice-covered about 

six months a year. During the ice-free period, the penetration of solar radiation is 

high, and the photic zone (40-50 m) extends beyond the seasonal thermocline (15-

20 m). Phytoplankton is the main fraction of planktonic biomass and is usually 

dominated by chrysophyceans (Felip et al., 1999). Others groups can be 

occasionally relevant during the mixing period (chlorophytes, diatoms), during 

summer stratification (dinoflagellates) or at greater depth (cryptophytes). 

Mesocosm installation and field procedures 

Mesocosms were constructed using tubular-shaped polythene bags (diameter: 8.5 

cm; length: 20 m) and two polyvinyl chloride (PVC) tubes, attached one at each 

extreme of the bag (Fig. 1). The PVC tube at the lower end (length: 0.5 m) was 

closed and served as a sediment trap, while the upper tube (length: 1.5 m) enabled 

the gaseous exchange with the atmosphere. An expanded polystyrene float was 

attached to the upper tube to hold the mesocosms at the water surface, and weight 

was tied at the sediment trap to stretch the bag. The mesocosm was filled with ~100 

L of water from 0 to 20 m lake depth, avoiding high disturbances for the organisms. 

The installation of the mesocosms consisted in three steps. First, the mesocosm was 

mounted: the polythene bag was folded around the upper tube, and this tube was 

held together with the sediment trap by a rope lacing. Second, the folded mesocosm 

was placed horizontally on the lake surface and filled with water. Third, the folded 

mesocosm began to sink to a depth of 20 meters, where it was stopped by a rope. At 

the moment the rope tensioned, the lacing that held the tubes together was released, 

and the upper tube started to float up to the lake surface, thus filling the bag with 

water from the upper 20 meters (Fig. 1). Once the mesocosms were installed, we 

proceeded to the specific enrichments. For each mesocosm, a 20 m long thin plastic 

tube was filled with 0.9 L of nutrient-enriched water. This thin tube was introduced 

inside the mesocosms, and its solution was released homogeneously along the water 

column as the tube was withdrawn from the mesocosm. 
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Figure 1 Mesocosms installation. A) Mesocosms were gradually filled with water as the upper 
tubes ascended from 20 m deep and unfolded the polythene bags. B) Mesocosms were subjected 
to a rope that went from the shore to a platform placed at the centre of the lake. C) Underwater 
view of the upper part of mesocosms. 

The mesocosms were deployed on 5-6 August 2013 and recovered 25 days later. An 

integrated water sample (i.e. ~5 L, from 0 to 20 m deep) was obtained from each 

mesocosm at the end of the experiment, using 20 m long plastic tubes and pumping 



58 
 
the water volume inside these tubes. The water sample was immediately filtered 

through a 250 µm pore size mesh to discard large zooplankton, which will not be 

considered in this study (its abundance was low and did not vary among 

mesocosms). The sediment trap was collected just before removing the mesocosm, 

and its water volume was decanted into a plastic bottle and kept until filtration in 

the laboratory. Once on the land, water samples were filtered for dissolved nutrient 

analyses through precombusted (5h, 450ºC) glass fiber filters (GF/F, Whatman), 

and the material on the filters was used for particulate analyses. Samples were 

frozen stored until analyses in the laboratory. Between one and two litres of water 

samples were also filtered on glass fibre filters for chlorophyll a (Chla) analyses, 

wrapped in aluminium foil and frozen in liquid nitrogen to prevent degradation. 

Two subsamples were fixed to estimate microbial abundance: a 10 ml subsample 

was processed for prokaryotes following Medina-Sánchez et al. (2005), whereas a 

200 ml subsample was preserved with 0.5% (vol/vol) alkaline Lugol’s solution for 

protists (Sournia, 1978). An integrated sample was collected on 6 August 2013, and 

processed as previously described, to assess Chla and microbial abundance at the 

beginning of the experiment. Regarding the initial levels of C, N and P in the 

dissolved and particulate fractions, we used a sample collected on 8 August 2013, 

coinciding with the monthly monitoring in Lake Redon. 

Experimental design 

To assess the effects of P limitation on planktonic communities we created one 

gradient of increasing P availability (“P enrichment”), and another gradient of 

increasing N availability (“N:P imbalance”). Both P and N were added in all 

enriched treatments because the concentrations were initially low for both nutrients, 

and the addition of only one nutrient would produce the other to become limiting 

quite fast. N and P were added in three different levels: low, intermediate and high 

(Fig. 2A). The concentrations of total dissolved phosphorus (TDP) and dissolved 

inorganic nitrogen (DIN) just after nutrient addition were estimated using the added 

mass of P and N, the water volume of the mesocosms, and the initial concentrations 
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of TDP and DIN in lake (TDP: 0.022 µmols L-1; DIN: 4.4 µmols L-1). Thus, P 

additions resulted in rounded TDP initial concentrations of 0.06, 0.21 and 1.90 

µmols L-1, whereas N additions resulted in rounded DIN initial concentrations of 

17, 35 and 73µmols L-1. The low P and N-enriched condition (N_P) intended to 

simulate the original DIN:TDP ratio (223:1), but with higher absolute TDP and DIN 

concentrations (Fig 2B). From the N_P condition, the P enrichment was obtained 

maintaining the DIN levels and increasing the P addition to medium (N_P+) or high 

levels (N_P++). Likewise, the N:P imbalance was obtained maintaining low TDP 

levels, and increasing the N addition to medium (N+_P) or high levels (N++_P). 

Figure 2 Experimental design and nutrient concentrations. A) Estimated initial DIN and TDP 
concentrations just after nutrient addition for each experimental condition (black dot). B) Change 
of DIN and TDP concentrations from the beginning (black dot) to the end of the experiment 
(squares, circles, diamonds). Squares, circles, and diamonds stand for non-enriched, NH4-
enriched and NO3-enriched conditions, respectively. Dashed lines indicate DIN:TDP molar ratios. 
Note that axes are shown in logarithmic scale. 

In lake, DIN concentrations were clearly dominated by nitrate (NO3
-: 4.2 µmol L-1; 

NH4
+: 0.2 µmol L-1). To determine the effects of changed NH4

+:NO3
- dominance on 

planktonic communities (“DIN form” effects), N was added as NH4Cl in five 

treatments and as KNO3 in the other five. P was always added as K2HPO4. To 

specify which form of DIN was added, the code include an “H” after the “N” when 

this form was NH4
+ (NH++_P, NH+_P, NH_P, NH_P+, NH_P++) and an “O” after 
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the “N” when this form was NO3

- (NO++_P, NO+_P, NO_P, NO_P+, NO_P++). A 

total of 22 mesocosms were installed, with two replicates for each treatment, plus 

two non-enriched control mesocosms. Unfortunately, we had technical incidences 

with some mesocosms (i.e. non-enriched, NO_P++, NH++_P), and we lost its 

replication in this study. When two replicates were available, we draw a line range 

among them and a symbol with its average in figures (e.g. Fig. 2B). 

Chemical analyses 

As regards the dissolved fraction, total dissolved phosphorus (TDP) was determined 

by colorimetry using a segmented flow auto analyser (AA3HR, Seal/Bran+Luebbe) 

with an automated method based on Murphy & Riley's (1962) method 

(Bran+Luebbe method G-175-96), with samples previously digested by the acid 

persulphate oxidation (Grasshoff et al., 1983). NH4
+ and NO2

- were determined by 

automated versions of the blue indophenol (Berthelot reaction) method (B+L G-

171-96) and the Griess reaction (B+L G-173-96), respectively, and analysed by 

colorimetry using the segmented flow auto analyser. NO3
- was measured by 

capillary electrophoresis (Quanta 4000, Waters). Dissolved inorganic nitrogen 

(DIN) was calculated as the sum of NO3
-, NO2

- and NH4
+. Dissolved organic carbon 

(DOC) was determined by catalytic combustion and infrared spectrometric 

detection of the CO2 produced (TOC5000 Shimadzu analyser). Regarding the 

particulate fraction, particulate C and particulate N were determined using a Carlo 

Erba elemental analyser. Filters for particulate P analyses were firstly digested using 

the acid persulphate wet oxidation, and the extracts analysed by the same 

colorimetric method already specified for TDP. 

Chlorophyll a (Chla) was firstly extracted in 5 ml 90% acetone with a probe 

sonicator (Sonopuls GM70 Delft, The Netherlands) (50W, 2 min), and the extracts 

were subsequently centrifuged (4 min at 3000 rpm, 4 ºC) and filtered through a 

Whatman Anodisc 25 (0.1 μm). Chla was analysed by ultra-performance liquid 

chromatography (UPLC, Acquity, Waters, Milford, MA, U.S.A.), as similarly 

reported in Buchaca et al. (2005). 
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Planktonic community and seston fractions 

The abundance of living protists (eukaryotic autotrophs and heterotrophs), cysts, 

resting stages and other particles (e.g. pollen, thecae) were estimated using the 

Utermöhl method (Sournia, 1978). Biovolume was determined by measuring the 

main cell dimensions, and assimilating its shape to known geometric forms 

(Hillebrand et al., 1999). The abundance of prokaryotic heterotrophs was estimated 

as DAPI counts. Cells were filtered through 0.2 µm polycarbonate filters (Millipore, 

GTTP, 25 mm filter diameter), stained with DAPI (4´,6´-diamidino-2-phenylindole; 

1µg mL-1 final concentration), and mounted on glass slides using Citifluor (Citifluor 

Ltd., UK). Slides were stored at -20 °C in the dark until counting at the 

epifluorescence microscope at x1000 magnification (>2000 cells per sample). We 

also examined the presence of autotrophic picoplankton at the chlorophyll a channel 

of the epifluorescence microscope, but its abundance was negligible, in accordance 

with previous studies in Lake Redon (Felip et al., 1999). 

We estimated C biomass of seston components with conversion factors previously 

applied in this lake (Felip et al., 1999). The biovolume of planktonic organisms and 

large particles was transformed to C using a conversion factor of 0.2 pg C µm-3. 

Although this factor could vary depending on biovolume, we decided to maintain it 

constant because the range of size was small compared to marine systems (Mullin 

et al., 1966; Menden-Deuer & Lessard, 2000). According to their mean biovolume 

(0.051 µm3), and the allometric equation proposed by Norland (1993), we 

transformed the abundance of prokaryotic cells to C biomass using a conversion 

factor of 0.014 pg C cell-1. The sum of prokaryotes, eukaryotes, and large particles 

was referred as “cellular” particulate C, while the difference between cellular C and 

total particulate C was referred as “extracellular” particulate C. 

Parameter calculations 

Net primary production (NetPP) was estimated by the change (final minus initial) 

of total organic carbon in the mesocosms. The carbon budget included the dissolved 
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(DOC) and particulate fractions in water, and the particulate C accumulated in 

sediment traps. We estimated the changes in the autotrophic community 

composition as the Hellinger distance (Legendre & Gallagher, 2001; Borcard et al., 

2011; Oksanen et al., 2016) between each enriched mesocosm and the non-enriched 

condition, using the biovolumes of major phylogenetic groups of autotrophs. More 

details on the planktonic community will be provided and analysed elsewhere.  

Results 

Productivity and export of C 

Net primary production (NetPP) increased with P enrichment (Fig. 3). The increase 

to P additions was more marked with NH4
+ (~2x) than NO3

- (~1.4x) treatments (Fig. 

3A) and was mainly driven by higher particulate C in water (~3.7x with NH4
+, and 

~2.8x with NO3
-, Fig. 3B). Taking into account the X-axes on Fig. 3 are shown in a 

log scale, the proportional increase of NetPP and particulate C was higher at N_P+ 

than at N_P++ conditions, and, therefore, the response to P enrichment tended to 

decelerate. 

Contrastingly, the response of NetPP to N:P imbalance paralleled the response of 

DOC, which was the dominant organic carbon fraction in water (Fig. 3D). DOC 

tended to decline at NO3:P imbalanced conditions, what resulted in a slight decline 

of NetPP in such conditions. In turn, DOC was similar -or even higher- at NH4
+:P 

imbalanced than at N_P conditions, and NetPP did not change. 

Between 3 and 13% of NetPP was exported to sediment traps during the experiment. 

Despite NetPP clearly increased at N_P+ and N_P++, the amount of particulate C 

accumulated in sediment traps did not increase (N_P+), or even decreased (N_P++) 

in such conditions (Fig. 3C). Therefore, the percentage of exported C was lower in 

the more productive conditions (6-8% at N_P+, and 3-4% at N_P++). 
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Figure 3 Effects of P enrichment and N:P imbalance on Net primary production (A), particulate 
C (B), sediment trap particulate C (C), and DOC (D). Squares, circles and diamonds stand for 
non-enriched, NH4-enriched and NO3-enriched conditions, respectively. Dashed lines indicate 
lake initial concentrations. Note that left y-axes on C and D indicate the relative change from 
initial concentrations, whereas right y-axes refer to the absolute concentrations. 

Seston components  

NetPP was highly correlated with the biovolume of autotrophs (n=19, p<0.0001, 

R2=91%). Indeed, they showed similar patterns of response to P enrichment: a steep 

increase at medium P additions and a decelerated increase at high P additions (Fig. 

4A). The increase of autotrophs at high P additions was also more intense with NH4
+ 

(~4.3x) than with NO3
- (~2.1x) dominance. Yet, the patterns of response to N:P 

imbalance differed slightly: the negative effect of NO3
-:P imbalance was more 

marked on the autotrophic biovolume than on NetPP, and the autotrophic biovolume 

declined with NH4
+:P imbalance, although NetPP did not. The autotrophic 

biovolumes achieved at N:P imbalanced conditions were similar to those initially 

present in the lake and in non-enriched conditions. Autotrophic biovolume and 
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chlorophyll showed extremely similar patterns (Fig. 4B), and thus were highly 

correlated (n=19, p<0.0001, R2 = 95%), indicating that the biovolume estimation 

was accurate. 

The biovolume of eukaryotic heterotrophs declined under non-enriched and low P-

enriched conditions compared to initial values (Fig. 4C). High P additions increased 

the biovolume of eukaryotic heterotrophs ~5x under NH4
+ dominance and ~2.3x 

under NO3
-. Broadly, the pattern of eukaryotic heterotrophs resembled that of 

autotrophs, though eukaryotic heterotrophs were not negatively affected by NH4
+:P 

imbalance. In contrast, the pattern of prokaryotic heterotrophs was markedly 

different (Fig. 4D). First, the response of prokaryotes to medium P additions was 

much smaller than to high P additions, and NH4
+ dominance did not enhance their 

growth (~2.4x under NH4
+ dominance; ~2.7x under NO3

- dominance). Moreover, 

higher prokaryotic abundances than initially were observed at all experimental 

conditions, and the effect of N:P imbalance on prokaryotic abundance was slightly 

positive. 

The biomass of autotrophs was always higher than that of heterotrophs (prokaryotes 

plus eukaryotes). The percentage of autotrophs to all these living organisms ranged 

from 55% up to 88%. Initially, this percentage was of 66%, and slightly declined 

under non-enriched conditions (62%). Lower percentages were observed at N:P 

imbalanced conditions (N++_Pmean = 59%; N+_Pmean = 64%) than at the rest of 

treatments (N_Pmean = 79%; N_P+mean = 86%; N_P++mean = 81%). The biomass 

associated with cysts and thecae was comparatively low (data not shown), and, 

hence, autotrophs were also the dominant fraction of cellular particulate biomass 

(48-86%). The high influence of autotrophs to cellular particulate was reflected in 

nearly identical patterns to P enrichment and N:P imbalance (Fig. 4E). 

The amount of cellular C was frequently exceeded by the amount of extracellular 

C, which was, however, less variable (Fig. 4F). The extracellular fraction ranged 

from 33% to 82% of total particulate C. From an initial percentage of 41%, it 
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increased up to 66% under non-enriched conditions. The extracellular fraction was 

proportionally higher at N:P imbalanced than P-enriched conditions (N++_Pmean = 

77%; N+_Pmean = 72%; N_Pmean = 60%; N_P+mean = 46%; N_P++mean = 45%). 

However, in absolute terms, the highest levels of extracellular C were found at the 

most P-enriched conditions. Extracellular particulate C tended to increase slightly 

with N:P imbalance, in particular, at the most NO3
-:P imbalanced condition. 

Figure 4 Effects of P enrichment and N:P imbalance on different seston components: autotrophs 
(A), eukaryotic heterotrophs (C), prokaryotic heterotrophs (D), cellular particulate C (E) and 
extracellular particulate C (F). In B, chlorophyll a levels are shown for comparison with 
autotrophic biovolumes. In A and C, left Y-axes show biovolume units, whereas right Y-axes 
show biomass units. In D, left Y-axis shows abundance units, whereas right Y-axis shows biomass 
units. In E and F, Y-axes just show biomass units. Squares, circles, and diamonds stand for non-, 
NH4-, and NO3-enriched conditions, respectively. Dashed lines indicate lake initial levels. 
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Structure of the autotrophic community 

Both P enrichment and N:P imbalance differentiated the autotrophic community in 

relation to the non-enriched mesocosm, though the effects produced by P 

enrichment were higher (Fig. 5A). NH4
+ addition increased the differentiation of 

autotrophic community at medium and high P additions. The abundance of 

chrysophyceans was a primary driver of changes in the autotrophic community 

since it was the dominant phytoplankton group (Fig. 5B). The relative abundance 

of chrysophyceans reached maximum values at N_P (61-71%) and declined with 

increasing P and N availability. Cryptophytes and diatoms became relevant groups 

and co-dominated the autotrophic community at the most P-enriched conditions; in 

the case of diatoms, the growth was more intense with NH4
+ than with NO3

-. 

Diatoms also became relevant at the most N:P imbalanced conditions. 

 

Figure 5 Effects of P enrichment and N:P imbalance on the structure of the autotrophic 
community. A) The Hellinger distance of each enriched mesocosm from the non-enriched 
condition is shown. B) Changes in the biomass proportion of the main phytoplankton groups: 
Chrysophyceae (purple), Bacillariophyta (orange) and Cryptophyta (red). The sum of these three 
groups represented from 66% up to 91% of total autotrophic biomass. Squares, circles, and 
diamonds stand for non-enriched, NH4-enriched and NO3-enriched conditions, respectively. 
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C:nutrient composition 

Seston C:N ratio declined in all experimental conditions in relation to an initial 

9.6C:1N (Fig. 6A). Seston C:N was highly constant at the end of the experiment, 

ranging from 8.1 up to 8.9, with the only exception of the most P-enriched condition, 

which ratios were lower (6.1 – 6.4). Conversely, seston C:P tended to increase at 

most experimental conditions in relation to an initial value of 285 (Fig. 6B), and 

typically ranged from 280 to 520. The most P-enriched conditions showed seston 

C:P ratios markedly lower (80 – 110). 

Since extracellular particulate matter could be particularly C-rich and nutrient-poor, 

we calculated the C:nutrient ratios using the “cellular” particulate C (Ccell) instead 

of total particulate C. Ccell:N ranged from 1.5 to 5.6, while Ccell:P ranged from 40 to 

260 (Fig. 6A and 6B). Both ratios tended to increase up to medium P additions, but 

at high P additions the tendency changed, and the ratios declined. Ccell:nutrient ratios 

also declined with increasing N:P imbalance. 

Particulate matter exported to sediment traps was markedly N impoverished under 

non-enriched conditions (C:N = 12.3) in relation to initial and final seston ratios 

(Fig. 6C). As observed for seston, the C:N ratio of sedimented matter markedly 

declined at high P additions. NO3
-:P imbalance did not affect the C:N of sediment 

trap matter, but NH4
+:P imbalance did lower slightly the C:N ratio. C:P of sediment 

trap matter was between the initial and final seston ratios under non-enriched 

conditions (C:P = 295, Fig. 6D). The sediment trap matter was P-richer (or C-

poorer) than seston at N_P and N_P+ conditions, but the differences between 

sediment and seston were considerably smaller at N_P++. 
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Figure 6 Effects of P enrichment and N:P imbalance on C:N and C:P ratios of particulate matter 
in water (A, B) and sediment trap matter (C, D). In A and B, C:nutrient ratios were calculated 
using the total particulate C (light blue) and the cellular particulate C (dark blue). Dashed lines 
indicate initial lake ratios calculated with particulate C, and dotted lines with cellular particulate 
C. Squares, circles and diamonds stand for non-enriched, NH4-enriched and NO3-enriched 
conditions, respectively. 

N:P stoichiometry 

The concentrations of DIN and TDP in mesocosms remained almost unchanged 

under non-enriched conditions (Fig. 2B). TDP concentrations declined importantly 

at low and medium P additions, but the decline of DIN was proportionately small. 

Consequently, DIN:TDP increased markedly at these conditions and P limitation 

accentuated. Net assimilation of TDP increased when DIN availability was higher 

(N:P imbalance). At high P additions, TDP fell even more sharply, but DIN also 

declined importantly, and DIN:TDP ratios barely changed (~10:1). The pattern of 

net DIN:TDP assimilation shifted between N_P+ and N_P++ treatments, when the 

initial DIN:TDP availability was experimentally reduced from ~64 to ~10. 
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The stoichiometric shift between medium and high P additions was also evident in 

the N:P ratios of seston and the sediment trap matter (Fig. 7). Seston N:P increased 

from an initial value of ~30 up to ~33-65 at most experimental conditions, but seston 

N:P decreased at N_P++ (~13-17, Fig.7A). The comparison between non-enriched 

and NO_P conditions -which had similar initial DIN:TDP but different absolute 

concentrations of DIN and TDP- showed that seston of NO_P did not become P-

richer than that of non-enriched treatment. As observed for seston C:P, seston N:P 

tended to increase when NH4
+ was the dominant form of DIN, though this may not 

apply for highly N:P imbalanced conditions. Contrastingly, DIN form did not affect 

the N:P ratio of the sediment trap matter (Fig. 7B). The sediment trap matter often 

became N-poorer (or P-richer) than initial seston N:P, and always N-poorer than 

final seston N:P. 

Figure 7 N:P stoichiometry of seston (A) 
and sediment trap matter (B). Strict 
stoichiometric flexibility is accomplished 
when N:P of consumers reflects N:P of 
supplies, following the same slope that 
the solid black line. In contrast, strict 
homeostasis appears when N:P of 
consumers stays constant, independently 
of supply (an horizontal line). Horizontal 
dotted line indicates the seston N:P ratio 
at the beginning of the experiment. 
Squares, circles and diamonds stand for 
non-enriched, NH4-enriched and NO3-
enriched conditions. 
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Discussion 

In this study, we described changes in productivity, community structure and C:N:P 

composition when a P-deficient system is released from limitation (“P 

enrichment”), when is supplied with N excess (“N: P imbalance”), and when NH4
+ 

becomes the dominant source of DIN (“DIN form”). We found that the responses 

of productivity, community structure, and seston C:N:P to varying levels of P 

enrichment can be markedly decoupled (Fig. 8). Productivity was highly sensitive 

to low P additions but tended to saturate at high P additions, whereas seston C:N:P 

remained fairly unchanged to low and medium P additions, but changed drastically 

with high P additions. The autotrophic community showed a pattern between both, 

since the community already differentiated at medium P additions, and the rate of 

change was maintained at high P additions (Fig.8). 

Potential drivers of the stoichiometric shift 

Seston C:N:P shifted drastically and approached the Redfield ratio (106C:16N:1P) 

when we added high amounts of P (TDPinitial ~2µM) and source DIN:TDP ratio 

placed below Redfield. This stoichiometric shift was the most unexpected and 

remarkable result of this study, since, to our knowledge, so marked shifts on N:P 

stoichiometry have never been reported (see, for instance, Hall et al., 2005). Given 

that seston components can have different elemental compositions, we may first ask 

whether this shift is related to an alteration of the relative abundance of these 

components, or to a change of the elemental composition of each seston component. 

Neither the proportion of cellular to total particulate nor the proportion of 

autotrophic to living biomass changed substantially between the treatments N_P+ 

and N_P++. The increase of prokaryotic abundance between these treatments was 

quite drastic, but prokaryotes only represented a small fraction of living biomass 

(from 5-8% in N_P+ up to 10-14% in N_P++). As living matter was clearly 

dominated by autotrophs (~80%), we may suspect that changes in the autotrophic 

community had a greater effect. 
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In general, diatoms present lower N:P ratios than the rest of phytoplankton groups 

(Quigg et al., 2003; Weber & Deutsch, 2010), although the variation among species 

of the same phylogenetic group is considerable. The relative abundance of 

chrysophyceans, diatoms and cryptophytes already changed at N_P+ compared to 

N_P, while the change of seston C:N:P between these treatments was small. 

Moreover, if chrysophyceans had higher N:P ratios than diatoms and cryptophytes, 

we would have expected higher seston N:P at NO_P++ (where they represented 

~29% of autotrophic biomass) than at NH_P++ conditions (~14% of autotrophic 

biomass), but the opposite was the case. Therefore, all evidence point that the 

stoichiometric shift was not driven by a change in seston structure, but, rather, by a 

change of C:N:P composition of the organisms (or most of them). 

 Figure 8 Patterns of change of productivity, 
autotrophic community (estimated as Hellinger 
distance) and seston C:N:P to P enrichment. 
Note that the elemental composition of seston is 
shown as N:C and P:N ratios (instead of C:N and 
N:P ratios) to easily compare the patterns of 
change in productivity and community structure. 
Only NO3

--dominated conditions are shown for 
simplicity. Original values were standardized 
using the mean and standard deviation of NO_P, 
NO_P+ and NO_P++ mesocosms. Solid lines 
indicate the tendency within the study range, 
whereas dashed lines extend that tendency to 
lower and higher P availability. The non-
enriched condition (squares) had lower DIN 
concentrations initially than the other conditions 
(diamonds), and, consequently, it is only shown 
as a reference. 
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N and P availability control the elemental composition of autotrophs through 

changes in the relative abundance of structural macromolecules and nutrient stores 

(Rhee, 1978; Elrifi & Turpin, 1985). Ribosomes have received much attention 

because they are a relevant pool of P in organisms (Geider & La Roche, 2002), and 

are related to the growth capacity of organisms. According to the “Growth rate 

hypothesis” (GRH), organisms upregulate ribosomes synthesis under non-limiting 

conditions and maximum growth rates, what increases their P content (Sterner & 

Elser, 2002). Thus, GRH offers a framework to understand the decline of 

phytoplankton N:P ratio at increasing growth rates (Goldman et al., 1979; 

Hillebrand et al., 2013). However, in our study, productivity and seston N:P were 

clearly decoupled (Fig.8), as seston N:P declined substantially at N_P++ compared 

to N_P+, but the increase of NetPP and autotrophic growth between these treatments 

was rather low. Some theoretical models predict non-linear and drastic transitions 

from the “optimal” N:P states at N- and P-limited conditions, towards the “optimal” 

N:P state at exponential growth conditions (Klausmeier et al., 2004). Our results 

also suggest phytoplankton can shift its C:N:P content in that nonlinear way when 

released from P-deficiency. However, whether this shift is driven by higher growth 

rates and ribosomes upregulation is more uncertain. 

GRH have been recently questioned for phytoplankton (Flynn et al., 2010), among 

other reasons, because most phytoplankton accumulates P in non-ribosomic pools 

under optimal nutrient-replete conditions, and lose these reserves under P stress. 

Then, changes in “other” P-pools, more related to nutrient availability, could 

actually underlie the pattern of N:P with growth (Hillebrand et al., 2013). The role 

of other P pools and their regulation by phytoplankton is increasingly addressed. 

For instance, it has been shown that phytoplankton can use non-phosphorus lipids 

under P deficiency, but increase phospholipid synthesis when it is more available 

(Van Mooy et al., 2009). Besides, a considerable amount of P can be adsorbed at 

the cellular surface of phytoplankton (Sañudo-Wilhelmy et al., 2004; Fu et al., 

2005), what may directly link P availability in the medium and P content of 



73 
 
organisms. However, seston C:N also declined substantially at high P additions, 

and, therefore, the stoichiometric shift was not only related to a change of P content. 

The regulation of P content in phytoplankton appears to be connected with C and N 

content, but, unfortunately, we still do not know the macromolecular 

reorganizations involved. 

Effects of N availability on seston C:N:P 

Non-enriched and NO_P conditions were compared because they had similar 

DIN:TDP ratios at the beginning of the experiment, but different concentrations of 

DIN and TDP. Considering the P deficiency of the lake, we expected that seston of 

NO_P treatment would become P-richer than seston of non-enriched treatment. 

Although seston P increased at NO_P compared to non-enriched conditions, the 

increase of seston N was proportionately similar, or even higher, and seston N:P 

actually increased slightly. In contrast, productivity was considerably higher at 

NO_P than at non-enriched conditions, and, thus, the responses of productivity and 

seston N:P were also decoupled at higher DIN:TDP availability. The increase in 

productivity between non-enriched and NO_P conditions had a similar rate of 

change than between NO_P and NO_P+ (Fig. 8), indicating that such increase was 

more affected by the addition of P than N. While productivity was mainly controlled 

by P availability, seston C:N:P depended on both P and N availability (DIN:TDP). 

High DIN additions (>17µM DINinitial; >256:1 molar DIN:TDPinitial) did not produce 

any effect on seston N:P. Increasing seston N:P beyond ~60 appears unlikely, 

regarding the maximum values annually detected in this lake (Ventura & Catalan, 

2005). In a recent meta-analysis of seston C:N:P, more than 90% of N:P ratios also 

placed below ~60 (Sterner et al., 2008). Some constraints may prevent higher seston 

N:P imbalances, such as the minimum P quotas and maximum N storage capacity 

of organisms (Hall et al., 2005). N excess availability did not lower seston C:N 

either. Indeed, seston C:N:P was remarkably insensitive to varying DIN and TDP 

levels above ~64DIN:1TDP. Wider ranges for seston C:N:P are reported in Lake 

Redon along the year (Ventura & Catalan, 2005), suggesting that other factors (e.g. 
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light) may also affect seston C:N:P importantly (Hessen et al., 2013). 

Interestingly, this study reveals that seston C:N:P composition can be affected by 

the relative abundance of NH4
+:NO3

-. Specifically, NH4
+ dominance tended to 

increase seston C:P and N:P without altering seston C:N. There is a lack of studies 

addressing the influence of DIN forms on seston C:N:P, and, thus, the mechanisms 

underlying this pattern are fairly unknown. The fact that increased seston C:P and 

N:P ratios were more preferentially associated with higher concentrations of seston 

C and N than to lower seston P suggests that protein synthesis could have been 

stimulated under NH4
+dominance. Even though, this change might not be only 

attributed to an internal increase of C and N in the organisms. The differential 

increase of seston C between NH4
+- and NO3

--dominated conditions was associated 

with the cellular fraction at N_P++, but with the extracellular fraction at the other 

conditions (Fig. 4).  

Sedimentation of particulate matter and mineralization 

C:P and N:P ratios of sedimented matter were not higher at NH4
+- than NO3

--

dominated conditions, and frequently differed from final seston ratios. The observed 

differences among seston and sediment trap C:N:P cannot be directly associated 

with mineralization (e.g. higher decomposition of C and N compounds under NH4
+ 

dominance) because sediment traps integrated what occurred during all the 25 days 

of experiment, and we may speculate whether its composition was more related with 

the seston of the first stages of the experiment than to the final. For instance, it 

cannot be discarded that seston became C- and N-enriched at the final stages of the 

experiment, and that this material had not already reached sediment traps. Temporal 

changes of seston C:N:P were presumably smaller under non-enriched conditions 

(e.g. DIN and TDP levels barely changed between the beginning and the end of the 

experiment), and the initial seston C:N:P may be representative of the first stages of 

the experiment. Under non-enriched conditions, sediment trap matter was markedly 

N-impoverished in relation to the initial and final C:N:P composition, indicating 

that mineralization of particulate N could be higher than that of C and P. In turn, 
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C:P of sediment trap matter placed between the initial and final seston C:P under 

non-enriched conditions, suggesting that mineralization of both elements was 

similar. The low mineralization of P in comparison to N (or even C) has been 

previously described for lakes (Elser & Foster, 1998). This suggests that some P-

containing molecules and aggregates (e.g. polyphosphates) could be difficult to 

mineralize in the water column (Diaz et al., 2008), and thus contribute to P 

deficiency in the ecosystem. 

Sedimentation rates within the mesocosms ranged from ~0.63 to 1.26 g C m-2 

month-1, which are slightly higher than previously estimated for the entire water 

column in this lake (Camarero et al., 1999). Absolute C sedimentation did not 

substantially vary among experimental conditions, and, hence, the percentages of 

sedimented C to NetPP declined as P availability and productivity increased (from 

~10% up to ~3% at N_P++). Lower organisms’ mortality and enhanced 

mineralization of dead particulate matter under P-enriched conditions may drive that 

tendency.  

Responses of productivity and autotrophic community to 

nutrient enrichments 

NetPP and autotrophic growth were particularly sensitive to low P additions, but the 

response decelerated at high P additions (2µM of TDPinitial) (Fig. 8). 

Chrysophyceans were the dominant phytoplankton group and mostly responsible 

for the observed pattern. The highest chrysophyceans biovolumes were found at 

medium instead of high P additions, what contributed to the saturation shape of 

productivity (Fig. 8). However, the factors that impaired the growth of 

chrysophyceans at N_P++ are quite unknown (e.g. higher grazing pressures, P 

toxicity). In relative terms, the proportion of chrysophyceans diminished 

progressively from N_P to N_P++ conditions (Fig. 5). Thus chrysophyceans 

appeared to be less favoured by higher P availability than other phytoplankton 

groups (e.g. diatoms, cryptophytes). The progressive substitution of 
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chrysophyceans was the primary driver of changes in the autotrophic community. 

The differentiation of autotrophic community increased almost linearly with P 

addition (Fig. 8), and thus followed a different pattern than the observed for 

productivity. Community structure is expected to be more stable and responds more 

slowly to changes in nutrient availability than productivity, but if new conditions 

are sufficiently different and maintained over time, changes in community structure 

may end up being more relevant. 

Higher differentiation of autotrophic community under NH4
+ dominance was 

previously expected since NO3
- typically dominates DIN in Lake Redon. Our study 

shows that DIN form effect is inexistent under severe P limitation, but increases 

when the system gets released from that limitation (Fig. 5A). Productivity was also 

stimulated by NH4
+ dominance at the most P-enriched conditions. Diatoms were 

fairly responsible of DIN form effects observed on community structure and 

productivity because increased more importantly at N_P++ when NH4
+ was added. 

This could be an attribute of freshwater or mountain lake diatoms, given the general 

idea is that marine diatoms are good competitors for NO3
- (Berg et al., 2003; 

Litchman et al., 2007; Glibert et al., 2014). 

N excess availability (N:P imbalance) resulted in the decline of total phytoplankton 

biomass, and the alteration of the community structure (Fig. 4A-B and 5A-B). The 

positive effect of low P additions was offset by this negative effect, and the 

autotrophic biovolume of N:P imbalanced conditions approached the levels of non-

enriched conditions. A possible increase of grazing under N:P imbalanced 

conditions was discarded, since the abundance of eukaryotic heterotrophs rather 

declined. More likely, high DIN concentrations could be toxic for some 

phytoplankton species. High toxins release by cyanobacteria is reported under N:P 

imbalanced conditions (Raven, 2010), but the abundance of this group in 

mesocosms was low. The decline of autotrophic biomass was not paralleled by a 

similar reduction of particulate C, due to slight increases of prokaryotic and 

extracellular C. Indeed, these planktonic compartments are expected to respond to 
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the presence of dead organisms. Lower TDP levels at the end of the experiment 

under N:P imbalanced conditions (Fig. 2B) might be regarded as a consequence of 

increased prokaryotic activity, or even, a cause of the autotrophic decline. On the 

other hand, high N availability may favour the growth of prokaryotes associated 

with DIN transformations (e.g. nitrifiers). Accordingly, final DOC levels were 

slightly higher under NH4
+:P than NO3

-:P imbalanced conditions, and prokaryotic 

abundance was also higher at NH+_P.  

Dissolved and extracellular organic matter 

In general, DOC was quite insensitive to different nutrient enrichments (ranging 

from 0.7 up to 0.9 mg C L-1). In relation to initial lake levels, DOC almost doubled 

in all mesocosms, what could be a side effect of water enclosures. Extracellular 

particulate C also increased under non-enriched conditions, what could be related 

to higher DOC levels. It has been shown that DOC is highly correlated with 

particulate C, probably through a link with the extracellular -or detrital- fraction 

(Camarero et al., 1999). Flocculation of DOC molecules in large aggregates could 

explain this correlation, and, besides, the considerable amount of “invisible” 

extracellular particulate (about half the total particulate C). On the other hand, 

microscope observation shows that debris of death organisms, prokaryotes and also 

eukaryotes are often found within mucilaginous lumps or aggregates, what could 

also contribute to extracellular particulate matter. Higher amounts of extracellular 

particulate were detected at the most P-enriched conditions, when the visual 

detection of these mucilaginous aggregates also increased. Prokaryotic abundance 

and extracellular particulate presented similar patterns to experimental conditions 

(Fig. 4), which suggests that prokaryotes could be favoured by the presence of these 

mucilaginous aggregates, or, as occurs in “marine snow”, actively contribute to their 

formation (Azam & Malfatti, 2007). The main components that comprise 

extracellular biomass are not well-known, even though it is a considerable fraction 

of particulate, and its influence on seston C:N:P composition is relevant (Frigstad 

et al., 2011). The hypothesis that extracellular matter is only constituted by C 
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(totally lacking N and P) was evaluated: we calculated the C:N and C:P ratios of 

planktonic organisms using the cellular particulate C (i.e. Ccell:N and Ccell:P), and 

checked if the resulting values were reliable or not. Ccell:N  placed below the 

minimal C:N ratios commonly reported for seston (~4C:1N, Sterner et al., 2008), 

and most algal cultures (Geider & La Roche, 2002). Ccell:P of non-enriched 

treatment placed close to Redfield ratio (106C:1P), which is relatively low for lake 

seston (Sterner et al., 2008). The minimum Ccell:P ratios of N_P++ treatment 

(~50C:1P) are considerably low, and, as occurred for Ccell:N, appeared unrealistic 

for natural organisms. Therefore, the extracellular matter was not entirely 

constituted by C, and organisms’ C to nutrient ratios should place between the 

Ccell:nutrient and the C:nutrient ratios.  

Concluding remarks 

This study points that even small increases of P atmospheric inputs can substantially 

increase productivity and phytoplankton growth in this P-deficient oligotrophic 

lake. With some delay, these changes may eventually translate to the structure of 

the autotrophic community. In turn, low and medium nutrient additions may not 

produce great changes in seston C:N:P. Drastic changes of seston C:N:P were only 

detected when the system was brought out of the typical TDP levels in the lake, and 

DIN:TDP approached the Redfield ratio. Interestingly, we observed that this 

stoichiometric shift was clearly decoupled from productivity. The change appears 

more related to the readjustment of macromolecular components of the organisms 

than to changes in the structure of the planktonic community. 
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Abstract 

The transition from nutrient-deficient to nutrient-replete conditions precipitate a 

number of changes in the regulation of phytoplankton that ultimately alter their 

growth rate. Some laboratory studies show that chlorophyll a (Chla) content is one 

of these altered physiological traits, since Chla is generally upregulated under 

nutrient-replete conditions (or downregulated under nutrient-limitation). Although 

this plasticity may vary among algal taxa, the reported evidence is rather scarce. 

Here, we evaluate the relationships between growth conditions and Chla content per 

biovolume (BV) of the major phytoplankton groups in a high-mountain oligotrophic 

lake. We installed 20 m deep mesocosms (~100L) and enriched them with different 

amounts of P (phosphate) and N (nitrate or ammonium), thus creating gradients of 

growth conditions. Chla contents per BV were estimated using power law-based 

equations and Bayesian methods that allowed us to include a priori information on 

accessory pigment to Chla ratios. The power law between Chla and total 

phytoplankton BV gave a scaling exponent 1.26, indicating that Chla content tended 

to increase with P supply. The exponents were slightly higher than 1 in 

Chrysophyceae, Dinophyceae and Cryptophyta, 1.22 in Bacillariophyta, and 1.97 in 

Chlorophyta. These two last groups also showed the highest Chla contents per BV 

under P-replete conditions, and the highest increases of BV in relation to the initial 

levels of the lake. The study suggests that the high growth capacity of diatoms and 

chlorophytes could be associated with their ability to increase the Chla content per 

BV when nutrient supply increases. 
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Introduction 

Chlorophyll a (Chla) is shared by all oxygenic photoautotrophs due to its key role 

in photosynthesis, both as a major constituent of light-harvesting antennas and as a 

primary electron donor in reaction centres. In addition, Chla can be easily analysed 

by different techniques, and has actually become a convenient surrogate for algal 

biomass. However, the role of Chla as indicator of biomass is inaccurate (Kruskopf 

& Flynn, 2006) because the Chla content per biovolume (or per cell, or per carbon) 

can vary considerably between species, and also within a single species (Reynolds, 

1984, 2006). 

Light-harvesting complexes in oxygenic photoautotrophs have gradually diverged 

from a common ancestor. This evolutionary process becomes apparent in that main 

phylogenetic groups now differ in the composition and proportions of auxiliary 

pigments. One may expect that other physiological traits such as the Chla content 

per biovolume (BV) and its plasticity could also be shared among species within 

major algal groups. A certain phylogenetic imprint has been noted in that 

chlorophytes generally show higher Chla content per BV than diatoms and 

cyanobacteria (Reynolds, 1984). However, Chla:BV ratios are still only reported for 

a relatively small number of species, and the intra-groups variability appears to be 

quite high (Llewellyn & Gibb, 2000). Thus, distinguishing group-specific traits 

from general variation among species is rather complicated. In addition to between 

species variation, “acclimation” have a major influence on Chla:BV variability. 

There is broad evidence that individuals of a species can regulate the synthesis of 

Chla and other pigments depending on external factors such as irradiance and 

nutrient availability (Rodríguez et al., 2006; Ruivo et al., 2011; Zhang et al., 2015). 

In natural systems, the peak of Chla may not correspond with the peak of 

phytoplankton BV because the phytoplankton of deeper depths, or under an ice-

cover, contain more Chla per BV to offset the lower irradiance (Felip & Catalan, 

2000). In contrast, Chla per BV tend to decline with nitrogen (N) and phosphorus 
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(P) deficiency due to down-regulation of Chla synthesis both pre- and post-

translationally (Latasa & Berdalet, 1994; Juergens et al., 2015). Physiological 

processes influenced by nutrient deficiency are not just limited to pigment content, 

but the overall regulation and the growth rate is ultimately altered. The plasticity of 

Chla content to growth conditions is usually determined at the laboratory comparing 

samples taken at the exponential and stationary phases. For instance, Ruivo et al. 

(2011) observed that the Chla cell content reduced 1.3 to 4.4 times from the 

exponential to the stationary phase, depending on the algal species. Goericke & 

Montoya (1998) also found marked changes in Chla:cell, and observed that it 

increased linearly with growth rate in continuous algal cultures.  

In the field, determining the interdependence between growth and Chla content is 

far more complicated. One possible way is through the estimation of power law (or 

allometric) equations between Chla and BV. If all samples come from the same 

initial condition, and the effect of grazing is low, BV change can be taken as a 

measure of growth. Thus, in a Chla to BV log-log plot, a slope of one would indicate 

that Chla:BV remains constant regardless of growth, whereas a slope higher than 

one would mean that Chla increases faster than BV. In the latter case, higher growth 

rates would be achieved, as more energy will be available for a faster biosynthesis 

and reproduction. Concluding about the relationship between Chla:BV and growth 

rates from pure field observations is, however, extremely difficult because common 

initial conditions and different growth gradients are rare to be clearly distinguished.  

Field experimental mesocosms provide a useful alternative that combines the 

advantages of lab manipulations and the realism of complex field communities. 

Starting with an epilimnetic plankton community of an oligotrophic lake (Lake 

Redon, Pyrenees), we used mesocosms and enriched them with different amounts 

of N and P, thus creating a wide range of growth conditions for phytoplankton. We 

estimated the power law between Chla and BV using a recently developed program 

based on Bayesian statistics (Bürkner, 2015), which allows the incorporation of 

prior knowledge about the parameters and thus restrict the possible outcomes to 
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those with biological sense. Although the available information about the Chla:BV 

ratios of the major algal groups is scarce, or presents wide ranges of variation, priors 

can be established based on the information provided by the accessory pigments. 

The knowledge about the presence of each accessory pigment on each algal group, 

and the proportion of these pigments to Chla have notably increased in recent years 

(Roy et al., 2011), and is worth considering it to estimate Chla content of major 

phytoplankton groups. 

Methods 

Experimental procedures and design 

We installed the mesocosms in Lake Redon, an oligotrophic lake located in the 

Central Pyrenees (42o38’33”N, 0º36’13”E, 2232 m asl) (see further information in 

Chapter 2; Catalan, 1988; Catalan et al., 2006). Chrysophyceae are usually the 

dominant group in the lake’s phytoplankton, whereas other groups can be also 

relevant during the mixing period (Chlorophyta, Bacillariophyta), during summer 

stratification (Dinophyceae) or at greater depths (Cryptophyta) (Felip et al., 1999). 

Mesocosms consisted of tubular-shaped polythene bags (diameter: 8.5 cm; length: 

20 m, water volume: ~100L) (see a further description of mesocosms and 

installation process in Chapter 2). Mesocosms were placed in the lake on 5-6 August 

2013 and recovered 25 days after. We obtained integrated water samples (i.e. ~5 L, 

from 0 to 20 m depths) from the lake at the beginning of the experiment, and from 

each mesocosm at the end of the experiment. Water samples were immediately 

filtered through a 250 µm pore size mesh to discard large zooplankton. Once in the 

shore, between one and two litres of water sample were filtered on glass fibre filters 

for pigment analyses, wrapped in aluminium foil and frozen in liquid nitrogen to 

prevent degradation. A 200 ml subsample was preserved with 0.5% (vol/vol) 

alkaline Lugol’s solution to estimate protists abundance (Sournia, 1978).  
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The experimental design consisted in one gradient of increasing P availability, and 

another gradient of increasing N availability, that together created a gradient of 5 

N:P conditions (see further details in Fig. 2 of Chapter 2). The low P- and N-

enriched condition (N_P) intended to simulate the original DIN:TDP ratio of the 

lake, but with higher absolute TDP and DIN concentrations. From the N_P 

condition, we maintained the N addition but increased the P addition to medium 

(N_P+) or high levels (N_P++), and maintained the P addition but increased the N 

addition to medium (N+_P) or high concentrations (N++_P). P was always added 

as K2HPO4, but N was added as NH4Cl in five treatments (NH++_P, NH+_P, NH_P, 

NH_P+, NH_P++), and as KNO3 in another five (NO++_P, NO+_P, NO_P, 

NO_P+, NO_P++). Thus, with two replicates for each treatment, and two non-

enriched control mesocosms, we installed a total of 22 mesocosms. We had 

technical incidences with some mesocosms (i.e. non-enriched, NO_P++, NH++_P) 

and with one pigment sample (NH_P+), and these replicates were discarded in this 

study, making a final number of 18 observations plus the initial.  

Pigment analyses 

Pigments were extracted in 5 ml of 90% acetone with a probe sonicator (Sonopuls 

GM70 Delft, The Netherlands) (50W, 2 min). The extract was centrifuged (4 min at 

3000 rpm, 4 ºC) and filtered through Whatman Anodisc 25 (0.1 μm) and analysed 

by ultra-performance liquid chromatography (UPLC). The UPLC system (Acquity, 

Waters, Milford, MA, U.S.A.) was equipped with an Acquity UPLC HSS C18 SB 

column (dimensions: 100 x 2.1 mm, particle size: 1.8 μm) and photodiode array (λ 

300-800 nm) and fluorescence (λ excitation 440 nm, emission 660 nm) detectors. 

The detector was set at 440 and 660 nm for carotenoid and phorbin peak integration, 

respectively. After sample injection (7.5 μL), pigments were eluted by linear 

gradient from 100% solvent B (51 : 36 : 13 methanol : acetonitrile : MilliQ water, 

v/v/v 0.3 M ammonium acetate) to 75% B and 25% A (70 : 30 ethyl acetate : 

acetonitrile, v/v) for 3 min, followed by 0.45 min of isocratic hold at 75% B and 2 

min of linear gradient to 99.9% solvent A. Initial conditions (100% B) were linearly 



86 
 

recovered in 0.65 min. The flow rate was 0.7 ml min-1. Pigments were identified 

checking retention times and absorption spectra against a library based on standard 

commercial mixtures (DHI, PPS-MiX-1) and extracts from pure cultures of algae 

and bacteria. 

Biovolume estimation 

The abundance of living protists was estimated using the Utermöhl method 

(Sournia, 1978). Biovolume was determined by measuring the main cell 

dimensions, and assimilating its shape to known geometric forms (Hillebrand et al., 

1999). We also examined the presence of autotrophic picoplankton at the 

chlorophyll a channel of the epifluorescence microscope, but its abundance was 

negligible, in accordance with previous studies in Lake Redon (Felip et al., 1999). 

Chla-BV relationship 

The estimation of the Chla-BV relationships for the various algal groups was 

performed in a stepwise procedure. We constrained the estimation of Chla to be 

consistent with the data obtained for the accessory pigments. In general, accessory 

pigments are not shared by all algal groups, so the estimation of the power laws 

between accessory pigments and biovolumes are simpler than Chla-BV estimations. 

We firstly estimated these simpler models, and then we estimated more and more 

complex models up to the final Chla model. The estimated models were based on 

power law equations: 

𝑃 =  ∑(𝑘𝑖 · 𝐵𝑖
𝑎𝑖)

𝑛

𝑖=1

                               (𝐸𝑞. 1) 

where “P” is the pigment concentration in µg/L; “B” is the biovolume of the algal 

group in mm3/L; “k” is a parameter related to pigment content per BV (µg /mm3), 

and “a” is the scaling exponent. The “i” goes from 1 to “n”, the number of algal 

groups with that pigment. 
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The models were simple power law equations when n=1, such as for accessory 

pigments exclusive of one algal group (e.g. alloxanthin (Allo) and lutein (Lut)), and 

for the relationship Chla-total autotrophic BV: In the case of violaxanthin (Viol) n 

was 2 (i.e. Chlorophyta and Chrysophyceae); for fucoxanthin (Fuco) n was also 2 

(i.e. Chrysophyceae and Bacillariophyta); for zeaxanthin (Zea) n was 3 (i.e. 

Chlorophyta, Chrysophyceae and Bacillariophyta) and for chlorophyll c (Chlc) n 

was 4 (i.e. Chrysophyceae, Bacillariophyta, Cryptophyta and Dinophyceae). 

Finally, this equation was also used to estimate the Chla of the five mentioned 

phytoplankton groups. 

All models were estimated using Bayesian methods with the R package “brms” 

(Bürkner, 2015), that offers the advantage to support non-lineal models. We used 

the family “Gaussian”, the link “identity”, and the default settings for the 

simulations: 4 chains of 2000 iterations, that, after discarding the first 1000 

iterations (warm up), produced a total of 4000 posterior samples. Entering 

appropriate priors for the parameters is required to estimate non-lineal models with 

“brms”. We always used normal priors for the parameters k and a, but we forced 

the parameters to be positive. We entered weakly informative priors for k and a 

(mean = 1, SD >0.5) when the knowledge about the expected values of the 

parameters was low, but, as the simpler models were estimated, the knowledge 

about these possible values increased. The scaling exponents are expected to be 

similar for all pigments of an algal group, given that they are found in light-

harvesting antennas in certain proportions. On the other hand, the mean of k priors 

in complex models can also be refined multiplying the parameters k estimated in 

simpler models by pigment:Chla ratios described in the literature: for instance, 

refined k prior for Chlorophyta Viol = (lutein:BV)estimated x (Chla:lutein)Chlorophyta x 

(Viol:Chla)Chlorophyta . We performed exploratory runs with fairly unconstrained 

priors (i.e. relatively high SD) at the beginning, and used more constrained priors 

(SDa=0.1; SDk=0.5) for the definitive runs. The criterion used to evaluate the model 

fit and compare models was the WAIC (Watanabe, 2010), which is directly 
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calculated by the “brms” package. Definitive models were selected on the basis of 

minimum WAIC, with the constraint that the estimated accessory pigment to Chla 

ratios had to be consistent with the ratios reported in the literature. Specifically, the 

estimated accessory pigment to Chla ratios were not allowed to be 2-fold higher or 

lower than the maximum and minimum ratios reported in Schlüter et al. (2006) and 

Lauridsen et al. (2011), which include freshwater algal cultures under stationary and 

exponential phases, and under different levels of irradiance. 

Results 

Biovolume of phytoplankton groups 

The biovolume of all phytoplankton groups was higher at P-rich conditions than at 

N-rich conditions (Fig. 1). N enrichment (i.e. N+_P and N++_P) had an adverse 

effect on the growth of Chrysophyceae, Dinophyceae, and Cryptophyta, but barely 

affected Bacillariophyta and Chlorophyta. The BV of these two groups, in particular 

Bacillariophyta, increased markedly in all mesocosms compared with the initial lake 

levels. The response of phytoplankton to the most P-enriched conditions also varied 

among algal groups: the BV kept increasing at N_P++ compared to N_P+ in 

Chlorophyta and Cryptophyta; no longer increased (or even declined) in 

Chrysophyceae; and only kept increasing when NH4
+ was the added form of N in 

Bacillariophyta and Dinophyceae.  
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Figure 1 Relative BV change of the phytoplankton groups in relation to the initial lake levels. 
The mesocosms that were enriched with NH4

+ are shown in A, whereas the mesocosms enriched 
with NO3

- are shown in B. The symbols (see legend in A) show the mean of two mesocosms -
when available-, whereas the line range goes from the value of one to the other mesocosm. The 
relative BV change of the non-enriched mesocosm is not shown in figures for simplicity: the 
values were 1.65 in Bacillariophyta, 0.33 in Chlorophyta, -1.83 in Cryptophyta, 0.27 in 
Chrysophyceae and -0.55 in Dinophyceae. 

Accessory pigments content 

The estimated power law between alloxanthin and BV of Cryptophyta gave 

parameters k and a of 1.40 and 1.08, respectively (Fig. 2). This relationship was 

particularly robust for high biovolumes (Fig. 3A), and, consequently, the k 

parameter presented a relatively narrow credible interval. The observed Allo:BV 

ratio ranged from 0.25 to 3 µg/mm3, whereas the estimated content went from ~0.9 

µg/mm3 at minimum growth rates up to ~1.4 µg/mm3 at maximum growth rates 

(Fig. 3A). Lutein was detected in P-enriched mesocosms (N_P+ and N_P++), but 

fell below the detection limit in the other mesocosms. We used lutein instead of 

chlorophyll b as marker pigment of Chlorophyta precisely because it was better 

detected in N_P+. The exponent of the power law between Lut and the BV of 

Chlorophyta was clearly higher than 1 (~1.8, Fig. 2). Therefore, Lut:BV ratio more 

than doubled from N_P+ (~0.25-0.5 µg/mm3) to N_P++ (~0.8-1.4 µg/mm3) (Fig. 

3B). 
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Figure 2 Parameters k and a of the six estimated models for the accessory pigments: alloxanthin, 
lutein, violaxanthin, fucoxanthin, zeaxanthin and chlorophyll c. The white point indicates the 
mean of the posterior distribution, the thick line range indicates the 50% credible interval, and the 
thin line range indicates the 95% credible interval. 

 

Figure 3 Relationships between alloxanthin and biovolume of cryptophytes (A), and between 
lutein and biovolume of chlorophytes (B) in log-log space. Black solid lines are the slopes 
obtained from the punctual estimations of parameters k and a. Grey solid lines indicate the 
uncertainty of the estimation; 1000 slopes are drawn from the 4000 available in the posterior 
distribution. Dashed lines indicate the pigment content per BV (µg/mm3), as the slope is 1. The 
treatment of each sample is indicated by different symbols (circles, NH4

+ was dominant; 
diamonds, NO3

- was dominant) and colors, as shown in the legend. 
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The estimated exponents of the violaxanthin model were 0.98 in Chrysophyceae 

and 1.72 in Chlorophyta, while the estimated k parameters were 0.38 in 

Chrysophyceae and 1.36 in Chlorophyta (Fig. 2). Considering these estimations and 

the observed BV ranges, the Viol:BV ratios were 0.38-0.40 µg/mm3 in 

Chrysophyceae and 0.04-0.46 µg/mm3 in Chlorophyta. 

The estimated exponents of the fucoxanthin model were 1.18 in Chrysophyceae and 

1.13 in Bacillariophyta, whereas the estimated k parameters were 1.65 in 

Chrysophyceae and 1.74 in Bacillariophyta (Fig. 2). These estimations resulted in 

similar Fuco:BV ratios for both groups within the observed BV range: 0.96-1.61 

µg/mm3 in Chrysophyceae, and 1.1-1.56 µg/mm3 in Bacillariophyta. 

Even though zeaxanthin is a pigment found in some species of Chrysophyceae and 

Bacillariophyta but not in others, the model that incorporated these groups had a 

better adjust than the model without these groups. The estimated exponents of the 

zeaxanthin model were 1.29 in Chrysophyceae, 1.48 in Bacillariophyta and 1.80 in 

Chlorophyta, while the estimated k parameters were 0.06 in Chrysophyceae, 0.46 in 

Bacillariophyta and 2.19 in Chlorophyta (Fig. 2). These parameters resulted in 

Zea:BV ratios of 0.03-0.06 µg/mm3 in Chrysophyceae, 0.06-0.31 µg/mm3 in 

Bacillariophyta, and 0.05-0.66 µg/mm3 in Chlorophyta for the observed ranges of 

BV. 

The exponents of the chlorophyll c model were estimated close to 1 in 

Chrysophyceae, Cryptophyta and Bacillariophyta; hence, the Chlc:BV ratios were 

almost constant within the observed BV range: 0.24-0.28 µg/mm3 in 

Chrysophyceae, 0.26-0.27 µg/mm3 in Cryptophyta and 0.46-0.48 µg/mm3 in 

Bacillariophyta (Fig.2). The estimated exponent of Dinophyceae was slightly higher 

(~1.16), what resulted in Chlc:BV ratios of 0.13-0.20 µg/mm3. 
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Chlorophyll a content 

The power law between Chla and BV of all autotrophs gave an exponent of 1.26, 

and a parameter k of 2.93 (Fig. 4). The Chla:BV ratio was close to 2 µg/mm3 in 

those mesocosms with lower growth (N++_P, N+_P, non-enriched), but increased 

up to 3-4 µg/mm3 in those mesocosms with higher growth (N_P+, N_P++) (Fig. 

5A).  

Finally, the model that related Chla with the BV of the phytoplankton groups 

resulted in exponents slightly higher than 1 in Dinophyceae, Cryptophyta and 

Chrysophyceae (1.08, 1.08, 1.05, respectively), 1.22 in Bacillariophyta, and 1.97 in 

Chlorophyta (Fig. 4). The parameter k was estimated at 2.10 in Dinophyceae, 2.38 

in Cryptophyta, 2.98 in Chrysophyceae, 5.78 in Bacillariophyta and 34.99 in 

Chlorophyta. The estimated Chla:BV ratio of Dinophyceae went from 1.5 µg/mm3 

when the growth was minimum up to 1.8 µg/mm3 when it was maximum (Fig. 5B). 

Cryptophyta presented similar Chla contents, which ranged from 1.5 µg/mm3 up to 

2.3 µg/mm3 (Fig. 5C). Chrysophyceae had slightly higher Chla:BV ratios, which 

moved from 2.6 to 3.0 µg/mm3 (Fig. 5D). 

Figure 4 Parameters k and a of the two estimated models for Chla: the first including the whole 
autotrophic biovolume as a predictor, and the second with the biovolumes of the five major algal 
groups as predictors. The white point indicates the mean of the posterior distribution, the thick 
line range indicates the 50% credible interval, and the thin line range indicates the 95% credible 
interval.  
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Figure 5 Relationships between the observed Chla and the BV of all autotrophs (A), and between 
the estimated Chla and the BV of the major algal groups (B, C, D, E, F) in log-log space. The 
vertical dashed red lines indicate the BV at the beginning of the experiment, and the ticks on axes 
represent duplications or divisions from this initial BV. Other specifications as in Fig. 2. 
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The estimated Chla content changed more importantly in Bacillariophyta (Fig. 5E), 

with Chla:BV ratios that increased from 2.3 µg/mm3 when the growth was minimum 

(i.e. non-enriched mesocosm), up to 4.8 µg/mm3 when it was maximum (i.e. N_P++ 

mesocosm enriched with NH4
+). Even more marked was the increase of 

Chlorophyta, since the Chla:BV was below 1 µg/mm3 under non-enriched, N_P, 

N+_P, and N++_P conditions, but increased up to 1.6-3.1 µg/mm3 at N_P+, and 

further increased up to 5.4-8.1 µg/mm3 at N_P++ (Fig. 5F). 

Accessory pigment to Chla ratios 

We calculated the accessory pigment to Chla ratios using the estimated parameters 

shown in Fig. 2 and Fig. 4. Since the exponents of the accessory pigments and the 

Chla models of an algal group were not necessarily the same, accessory pigment to 

Chla ratios could change depending on the BV (i.e. the growth) of that algal group. 

In the case of Cryptophyta, the exponents of Allo and Chla were the same, and, 

therefore, the estimated Allo:Chla ratio was constant at 0.59 (Fig. 6). In contrast, 

the exponent of Lut in chlorophytes was lower than the exponent of Chla, and, 

consequently, the Lut:Chla ratio tended to decline as growth increased (from 0.24 

to 0.14). Most of the accessory pigment to Chla ratios tended to decline with growth, 

or remained practically unchanged along the BV range (Fig. 6). The only exception 

was the Fuco:Chla ratio of Chrysophyceae, which tended to increase as BV 

increased (from 0.41 to 0.54).  
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Figure 6 Accessory pigment to Chla ratios (mass/mass). Boxplots correspond to ratios reported 
in the literature and taken as a reference in this study (Schlüter et al., 2006; Lauridsen et al., 2011). 
Red ranges are the ratios estimated in this study, calculated with the means of parameters k and a 
shown in Fig. 1 and Fig. 3, and the minimum and maximum biovolumes observed for each algal 
group. When the exponents of accessory pigments and Chla were rather different, the 
pigment:Chla ratio depended on the BV of the algal group, what is represented as an arrow that 
goes from the minimum observed BV (lower growth) towards the maximum observed BV (higher 
growth). 

Discussion 

Effects of nutrient availability on phytoplankton growth 

During the study period, P was limiting phytoplankton growth, what was evidenced 

by significant changes in the biovolume of all algal groups along the P enrichment 

gradient. However, not only P availability differentiated the biovolumes collected 

at the end of the experiment, but DIN availability also played a role. N enrichment 

(i.e. higher N:P imbalance) negatively affected the growth of Chrysophyceae, 

Dinophyceae and Cryptophyta, but barely affected the growth of Bacillariophyta 
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and Chlorophyta. One possible explanation might be that the concentrations of DIN 

added to the mesocosms (N+_P = 37µM, N++_P = 73uM) were toxic for the three 

mentioned groups (as already discussed in Chapter 2). In this case, the species of 

Bacillariophyta and Chlorophyta of lake Redon might be more tolerant to high NO3
- 

and NH4
+ concentrations. Collos & Harrison (2014) reviewed the effects of NH4

+ 

on the growth of different algal groups and found that Chlorophyta are especially 

tolerant to high NH4
+ concentrations. However, they also pointed out that an adverse 

effect of NH4
+ on any microalgae species would be unlikely with field 

concentrations below 100 µM. We cannot discard the effect of other interactions to 

explain these results, but the toxic effect still seems the most parsimonious 

hypothesis. 

The response to the most P-enriched condition also varied among phytoplankton 

groups. While the BV of Chlorophytes and Cryptophyta kept increasing at N_P++ 

respect to N_P+, the response of Chrysophyceae declined at N_P++, and 

Bacillariophyta and Dinophyceae only kept increasing when NH4
+ was the 

dominant form of DIN. Phytoplankton taxa have evolved different capacities of 

nutrient utilization and growth (Litchman et al., 2007), consequently covering the 

wide range of environmental conditions present in a lake. Indeed, the enhanced 

Chlorophyta growth at P-enriched conditions is consistent with a greater abundance 

of this group during the autumn mixing period (Felip et al., 1999), when part of the 

P of the deepest layers and sediments distributes all over the water column. The 

abundance of Cryptophyta is proportionately higher at the deepest layers (Felip et 

al., 1999), what could also be related to P availability given the results shown here. 

Bacillariophyta may take advantage of their high growth capacity during the spring 

bloom of phytoplankton, a short period before the stratification of the lake when the 

nutrient availability is already quite high. In contrast, Dinophyceae, the most 

representative group of summer stratification, might be more adapted to withstand 

nutrient scarcity, since it was the most insensitive group to nutrient enrichments. 

The limited response of Chrysophyceae -usually the dominant group in this lake- to 
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N_P++ conditions may respond to and adaptive trade-off, as having high 

competitive abilities for low nutrient concentrations may compromise the maximum 

growth capacity at high concentrations (Litchman et al., 2007). 

Chla content per BV and growth conditions 

Chla content per biovolume of the entire phytoplankton community was previously 

estimated in Lake Redon both spatially and temporally (Felip & Catalan, 2000), 

giving ratios of 9.1 ± 5 µg/mm3 (mean ± SD), and minimum and maximum ratios 

of 0.5 and 23.6 µg/mm3, respectively. Therefore, the ratios presented here (1-4 

µg/mm3) were in the lower end of that range. This experiment included the upper 

layer of the water column (0-20 meters), while the previous observational study also 

considered situations where the light was limiting phytoplankton growth, and, 

hence, increasing the Chla content (e.g. deeper layers, ice-covered layers). If we 

only consider the most superficial layers and the ice-free period, the differences 

between both studies are much lower, and concentrated about the autumn 

phytoplankton bloom, when the Chla:BV ratios are higher (5-10 µg/mm3) and 

chlorophytes are intensely growing. We observed that Chlorophyta was the 

phytoplankton group with the highest Chla content at the most P-enriched 

conditions (5-8 µg/mm3), what may contribute to explain those ratios. Reynolds 

(1984, 2006) also reported comparatively high Chla:BV ratios for Chlorophyta 

species (4.5-20 µg/mm3). Bacillariophyta also showed a relatively high Chla content 

at maximum growth conditions (≥ 4 µg/mm3) in comparison to the other groups. 

The lowest Chla:BV ratio for Dinophyceae is also in agreement with a previous 

study in this lake that estimated the Chla of the groups using the CHEMTAX 

program (Buchaca et al., 2005). Therefore, we notice that the groups that grew more 

intensely under P-replete conditions (e.g. Chlorophyta and Bacillariophyta) tended 

to show higher Chla contents per BV than the groups with lower growth (e.g. 

Dinophyceae). Indeed, greater capacity to absorb light energy may provide the 

chemical energy necessary to sustain high growth rates. 
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Interestingly, we obtained a good allometric relationship between Chla and the 

biovolume of all autotrophs, with a scaling exponent of 1.26 (i.e. the higher the algal 

growth, the higher the Chla:BV). In principle, if the different phytoplankton groups 

have different Chla:BV ratios, a change of the phytoplankton community structure 

could itself explain that change in Chla:BV ratios (e.g. a higher proportion of those 

algal groups with high Chla contents as P is more available). However, we found 

that allowing the Chla:BV of algal groups to change undoubtedly improved the 

fitting of the model. Indeed, none of all five scaling exponents was exactly estimated 

at 1, what would have mean constancy in the Chla content per BV. Although all 

groups shared the tendency to increase the Chla content at higher growth conditions, 

such tendency was stronger in Bacillariophyta, and, particularly, in Chlorophyta, 

than in the other groups. Within these two groups, the proportional increase of 

species with high Chla contents at P-enriched conditions could in principle explain 

the estimated exponents. However, the changes in the proportion of Chlorophyta 

and Bacillariophyta species do not seem enough to fully explain these exponents 

(Zufiaurre et al., in prep.), and, consequently, a change of the pigment ratios within 

the species (i.e. plasticity) is the most plausible explanation for our observations. 

Actually, 1.3- to 4.5-fold changes in Chla:BV ratios are reported between the 

exponential and the stationary phases of cultured phytoplankton species (Ruivo et 

al., 2011), and even higher changes in the Chla content per cell of some species 

across gradients of N limitation (Goericke & Montoya, 1998). In contrast to the 

mentioned studies, our results suggest that the Chla content of Chlorophyta, and to 

lower extent also Bacillariophyta, are more plastic than the other groups, what may 

be convenient for life forms based on episodic and intense growth rates when the 

environmental conditions are appropriate. 

With the only exception of the fucoxanthin of Chrysophyceae, the scaling exponent 

of the Chla was similar or higher than that of the accessory pigment. Therefore, in 

general, the accessory pigment to Chla ratios remained unchanged or decreased at 

high growth conditions, which is consistent with previous studies (Latasa & 
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Berdalet, 1994; Schlüter et al., 2000; Henriksen et al., 2002; Ruivo et al., 2011). 

The increase of accessory pigment to Chla ratios from the exponential phase to the 

stationary phase has been interpreted as a change in the proportion between light 

harvesting complexes and reaction centres in the structure of photosystems (Ruivo 

et al., 2011). 

Methodological considerations 

The CHEMTAX program (Mackey et al., 1996) is, at the moment, the most widely 

used method to estimate the Chla of phytoplankton groups from accessory pigments. 

The initial weaknesses of the program such as its sensibility to the seed ratios could 

be apparently overcome providing several initial seed ratios and running the 

simulations successively (Latasa, 2007). A requirement of the method is that marker 

pigments to Chla ratios have to be relatively constant; otherwise, we should run 

predefined subsets of samples separately (e.g. if we suspect light is affecting the 

ratios, we may subset the samples by depth). However, in this study, the factor 

expected to influence the pigment to Chla ratios was growth in a gradient of nutrient 

limitation hardly separable in subsets. For this reason, we used a new method to 

estimate the Chla of phytoplankton groups based on fitting power law equations, 

using biovolumes as predictors and pigments as the response variable. The R 

package “brms” facilitated the estimation of the non-lineal equations and the 

incorporation of the prior knowledge (Bürkner, 2015). The possibility to fit models 

with multiple response variables would significantly improve the capabilities of this 

routine for chemotaxonomy purposes.  

Concluding remarks 

Our study evidenced that Chla content per BV increases when the system is released 

from P limitation. Chlorophyta and Bacillariophyta were the main responsible for 

this trend, although Chla content of the other phytoplankton groups also tended to 

increase at high growth conditions. Studies that use Chla as a proxy of 

phytoplankton biomass should be aware of this tendency, particularly those focused 
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on periods of high variability in growth conditions (e.g. during and after a 

phytoplankton bloom). Failure to consider that variation in Chla:BV may result in 

the overestimation of phytoplankton biomass during high growth conditions, and 

the underestimation during low growth conditions. Biovolume estimates of algal 

species are hardly found in most studies working with pigments, yet the pigment 

content per biovolume is valuable information to deepen in the regulatory processes 

occurring in phytoplankton. 
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Experimental considerations 

The eco-physiological responses of major algal groups to external nutrient 

availability in oligotrophic freshwater ecosystems is the leitmotif of this 

dissertation. The change of nutrient availability triggers a number of physiological 

processes in algae to acclimate to new conditions. As internal N and P availability 

constrains fundamental processes of organisms, such as the synthesis of proteins or 

nucleic acids, this physiological re-organization often implies the alteration of the 

growth rate. The response period of 21-25 days in our experiments was long enough 

to allow the differentiation of algal biomass among treatments and species, and, at 

the same time, it was short enough to avoid a significant influence of experimental 

side-effects. 

Although algal cells can regulate their internal functioning depending on the 

features of their surrounding environment, such plasticity has certain limits, and 

each genotype is specifically adapted to a range of nutrient concentrations. The 

influence of nutrient availability on algal growth is generally described by a 

Michaelis-Menten curve (Fig. 4 in general introduction) so that growth is stimulated 

up to certain nutrient concentrations, and, then, the response tends to saturate (i.e. 

the specific nutrient no longer “limits” the algal growth). In some cases, this 

saturation phase is followed by a new phase where growth rate decreases due to 

harmful effects of nutrient excess (Fairchild et al., 1985). In our mesocosms 

experiment, for instance, the highest growth of chrysophyceans was not observed at 

the most P-enriched conditions, but at intermediate P enrichments (Fig. 1 in chapter 

3). This kind of response could not have been detected if we had designed the 

experiment with discrete treatments of nutrient excess, such as in the case of four 

treatments (control, N, P, N+P) applied to nutrient-diffusing substrates (NDS). 

Given that growth inhibition by nutrient excess may be more common than we 

previously expected, an experimental design based on nutrient enrichment gradients 

appears more convenient to unveil the eco-physiological responses of algal taxa 

accurately. This approach of enrichment gradients is, at the moment, not so 
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widespread in the research field of nutrient enrichment bioassays (Tank & Dodds, 

2003; Marcarelli & Wurtsbaugh, 2007; Elser et al., 2009; Smith et al., 2009). 

Although using enrichment gradients represent an extra cost of sampling and 

analysis, given the adverse effects produced by not sufficiently adequate nutrient 

concentrations, it seems worth paying this cost. Future studies with benthic 

substrates should consider applying experimental designs based on gradients of 

nutrient availability, as well as performing relatively small alterations of nutrient 

levels, especially in oligotrophic systems. The amounts of nutrients added to NDS 

should be in accordance with the basal concentrations of the site instead of using 

the same enrichments everywhere, which is the typical practice (Tank et al., 2006). 

The adverse effects caused by nutrient enrichments lead us to ask how it is possible 

too much of a good thing. This question has been already formulated in the case of 

grazers, as multiple observations indicate that P excess in the elemental content of 

autotrophs has a negative effect on their growth (Boersma & Elser, 2006; Hessen et 

al., 2013). The physiological basis involved in the impaired performance of algae 

(and other organisms) under nutrient excess is still not well understood. In principle, 

adverse effects may come from higher metabolic costs of maintaining the internal 

homeostasis (e.g. increased excretion, pH control), or from overt toxicity (e.g. 

oxidizing radicals). Collos & Harrison (2014) reviewed observations of ammonium 

toxicity in unicellular algae, and noticed that tolerance to toxic levels varied 

considerably among algal groups. Chlorophytes are especially tolerant to high 

ammonium levels, and, likely, also to nitrate and phosphate considering the results 

of this dissertation. The growth of phytoplankton diatoms was not negatively 

affected by N excess (Fig. 1 in chapter 3). Contrastingly, the growth of periphytic 

diatoms was clearly inhibited by N, likely because nutrient enrichments in NDS 

were higher than in mesocosms. The decline of algal biomass at N++_P and N+_P 

treatments in relation to N_P was driven by chrysophyceans, cryptophytes, and 

dinoflagellates, which appear to be the least tolerant groups to high N 

concentrations. Dinoflagellates were also particularly susceptible to high 

ammonium concentrations (Collos & Harrison, 2014). 
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Physiological acclimation to nutrient availability 

Algae can acclimate to changes in nutrient availability up- or down-regulating 

several physiological traits and processes, such as the nutrient uptake machinery 

(e.g. membrane transporters and ecto-phosphatases), the nutrient stores, the 

transcriptional machinery, or the metabolic activity (Fig. 5 in general introduction). 

In this dissertation, we have focused in two of them: the C:N:P content, and the 

chlorophyll a (Chla) content per biovolume. 

One of the most interesting results of this thesis has been the evidence that the seston 

N:P ratio can abruptly approach the Redfield ratio at a certain P supply, in line with 

the transition from oligotrophic to eutrophic conditions (Fig. 7 in chapter 2). This 

result indicates that the regulation of N:P content does not follow DIN:TDP in a 

linear and gradual way; rather, there might be preferential “homeostatic states”, and 

stepwise transitions among them. Future studies should characterize this transition 

in more detail: first, including DIN:TDP treatments in between our N_P+ and 

N_P++ treatment concentrations, and also beyond the N_P++ levels (lower 

DIN:TDP ratios); and second, performing similar DIN:TDP gradients with different 

DIN and TDP absolute concentrations, so as to disentangle the strict “DIN:TDP” 

effect, from the axis “deficiency – no deficiency” associated with growth. Actually, 

both factors are known to affect the N:P content of phytoplankton (Klausmeier et 

al., 2008), being the first more associated with the regulation of nutrient stores and 

non-structural components, and the second with the regulation of structural 

components such as the proportion of proteins to ribosomes (e.g. the Growth Rate 

Hypothesis, Sterner & Elser, 2002). The relative influence of both factors in 

explaining algal N:P variability is a question under current discussion (Hillebrand 

et al., 2013). A recent study suggests that the observed phytoplankton N:P ratios 

cannot be explained uniquely considering the rRNA:protein allocation and 

additional contributions from phospholipids and P storage compounds may also 

play a role (Daines et al., 2014). Thus, understanding the regulatory mechanisms 

used by algae to acclimate and adapt to changes in P availability proves to be an 
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interesting direction for future research (Lin et al., 2016). 

Determining the N:P content of single algal groups in periphyton or plankton is 

unfeasible with the current techniques. Contrastingly, we were able to estimate the 

Chla contents per biovolume (BV) of major phytoplankton groups, and evaluate its 

plasticity depending on growth conditions. We observed that Chla content per BV 

tended to increase with P availability and growth. All algal groups showed this 

pattern, but it was more marked in diatoms, and, especially, in chlorophytes. The 

ability to increase the Chla content per cell when nutrient conditions are favourable 

may allow these groups to increase the chemical energy available for metabolic 

reactions, and, ultimately, for achieving high growth rates (Geider et al., 1997, 

1998). Thus, our results suggest the greater plasticity of chlorophytes and diatoms 

is an adaptation that allows them to rapidly rearrange the photosynthetic capacity to 

obtain fast growth rates when nutrient availability increases. 

A great leap forward in the understanding of the eco-physiological regulation of 

organisms is expected with the development of meta’omic approaches: 

metagenomics, metatranscriptomics, metaproteomics, and metametabolomics. 

These methods are rapidly progressing, but the experimental and computational 

techniques have not attained a standardized pipeline yet (Segata et al., 2013). It is 

also true that many genomic and transcriptomic data cannot be related to known 

physiological functions at the moment. Nevertheless, the potential shown by these 

techniques, and the rapid development, seem to indicate that these drawbacks may 

be overcome in the next few years. For instance, comparative metatranscriptomics 

has been satisfactorily used to understand changes in gene expression of 

phytoplankton after an iron-enrichment (Marchetti et al., 2012). Metabolomics open 

the opportunity to determine how macromolecular components affect the elemental 

stoichiometry (or other physiological traits) of organisms in response to changing 

environmental conditions (Rivas-Ubach et al., 2012). These techniques may also 

help to understand how the evolutionary pressures in diminishing the requirements 

for limiting elements are coded in genomes (Elser et al., 2011). 
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Growth of the major algal groups 

The response of total algal biomass to nutrient enrichments is an integration of the 

multiple physiological responses of the initial pool of organisms, which, in our case, 

were adapted and acclimated to low nutrient concentrations. Species of an algal 

group may obviously share many physiological traits due to their common past; but, 

beyond this phylogenetical imprint, species have evolved and adapted to different 

environmental conditions. A recent compilation of phytoplankton communities in 

European lakes showed that Cyanobacteria are typical of eutrophic and 

hypereutrophic conditions, Chrysophyceae are found in oligotrophic conditions, 

while Cryptophyceae, Chlorophyceae, and Bacillariophyceae show a wider range 

of distribution along the trophic status gradient (Phillips et al., 2013). Chlorophytes 

and cyanobacteria are known to generate the highest algal blooms under eutrophic 

and hypereutrophic conditions, the latter particularly when N:P availability is rather 

low, and N-fixation is favourable (Vrede et al., 2009). Given that the initial pool of 

cyanobacteria in Lake Redon is negligible (Felip et al., 1999), we did not expect a 

noticeable response of this group in the mesocosms. We did expect a response of 

cyanobacteria to NDS because they are abundant in the epilithic communities of 

mountain lakes (Bartrons et al., 2012). However, in view of our results and previous 

studies, it seems that this group would appear at later phases of the periphyton 

colonization process (Korte & Blinn, 1983; Sekar et al., 2004). Chlorophytes were 

in low abundances at the beginning of mesocosms experiment but increased 

markedly with P supply (Fig. 1 in chapter 3). This result is in agreement with 

previous P enrichments in mountain lakes (Gardner et al., 2008). The growth of 

periphytic chlorophytes was also stimulated by nutrient-enriched substrates when 

water renewal was high. Therefore, chlorophytes may present the ability to grow 

fast when nutrient availability is sufficiently high (Fig. 4 in general introduction). 

The biovolume of planktonic diatoms increased even more than planktonic 

chlorophytes, and may also have high growth capacities at the expense of high 

nutrient requirements. Dinoflagellates may be the opposite case, as their growth was 

the least stimulated by P additions. This group could then achieve optimal growth 
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rates at relatively low nutrient supplies. Cryptophytes may require relatively high P 

concentrations to grow fast, as their biovolumes notably increased from low to high 

P availability. In contrast, chrysophyceans were proportionally more stimulated at 

low and intermediate P additions, and the response saturated (or even declined) at 

high P supply. Then, chrysophyceans may be able to attain relatively high growth 

rates with rather low nutrient concentrations. Which are the physiological, 

ecological and evolutionary bases for these empirical patterns constitute an exciting 

field for coming research. 

Temporal patterns of phytoplankton composition and 

nutrient cycling 

The responses of phytoplankton groups to nutrient enrichments were consistent with 

the seasonal patterns of phytoplankton composition in Lake Redon (Felip, 1997; 

Felip et al., 1999). Planktonic diatoms are poorly represented in Lake Redon, and 

their biovolumes only occur in significant numbers during the mixing periods. 

Chlorophytes are also characteristic of mixing periods, especially of autumn, when 

they can achieve quite high biovolumes, and co-dominate the phytoplankton 

community. The competitive abilities of these two groups may allow them to take 

advantage of nutrient pulses during the mixing periods, but strongly decline when 

P availability is low. Cryptophytes often co-dominate the phytoplankton biomass 

during -or close to- the mixing periods at deep layers (>45 meters). P availability is 

there relatively high due to the proximity to sediments, what may explain their 

sensitivity to P enrichments. Although chrysophyceans are also responsible for 

spring and autumn phytoplankton blooms, it is during the months of July and August 

when their dominance is more accentuated due to the decline of other phytoplankton 

groups. Dinoflagellates are also relevant during summer months, particularly in the 

epilimnetic layer. Then, these two last groups may be the better adapted to cope 

with low-P stress. 
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The seasonal ecosystem dynamics of Lake Redon is highly-conditioned by weather 

conditions and physical processes that determine, among others, the intensity of the 

mixing events, and the duration of ice cover and water stratification (Catalan, 1988). 

In 2012, we monitored Lake Redon from the ice-cover melting to the establishment 

of summer stratification (Fig. 1). Just after the ice-cover melting, the water column 

became totally mixed; some sediments were resuspended, and the deep nutrient-rich 

waters were mixed throughout the water column (Fig. 1D). During this period 

phytoplankton has to deal with rapidly changing light conditions, going from light 

excess at the surface layers to light limitation at the deep layers. Thus, the 

phytoplankton bloom generally occurs at the very beginning of thermal 

stratification. In our monitoring, the phytoplankton bloom was observed at a depth 

of ~20 m, June 20th (Fig. 1C), associated with an increase in primary production, 

and a decline of seston δ 13C (Fig. 1D). Simultaneously, the concentrations of total 

phosphorus (but not total nitrogen) peaked at the deepest layers (Fig. 1F). This peak 

was in the particulate fraction, and may be associated with the sedimentation of 

mineral particles, detritus, and organisms, although we cannot discard a certain 

resuspension of sediments. The pattern of some pigments, such as the diatoxanthin 

(marker pigment of diatoms), suggests that the sedimentation of organisms could be 

important in originating this peak (Fig. 1E), though this point should be confirmed 

in future studies. 

 In any case, after two weeks, the thermocline was already entirely constituted, TP 

concentrations had declined throughout the water column, and seston was clearly P-

impoverished (Fig. 1G-H). This tendency towards increased P deficiency as summer 

advanced might have influenced the great response of phytoplankton in P-enriched 

mesocosms (installed in August 2013). The decline of TP during summer 

stratification was not linked to a similar decline of TN, what may be in agreement 

with the observation of mesocosms that particulate matter recovered from sediment 

traps was P-enriched and N-impoverished in relation to seston. This evidence 

suggests that N recycling in the water column may be more efficient than P 
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recycling, in agreement with previous studies of sedimentation in lakes (Elser & 

Foster, 1998). The mechanisms driving this process are not deeply understood, but, 

apparently, N-containing compounds may be more soluble, and rapidly released 

from dead organisms than certain P-containing compounds (e.g. polyphosphates) 

(Diaz et al., 2008). Moreover, adsorption of P onto mineral surfaces (e.g. iron 

oxides) and cell membranes could also be relevant in promoting this N:P cycling 

imbalance (Fu et al., 2005; Lin et al., 2016). 

Although not contemplated in our short-term nutrient enrichments, grazers are key 

determinants of nutrient regeneration at somewhat larger temporal scales. The 

dynamic relationship between autotrophs and grazers often lead to two big scenarios 

(Hessen et al., 2013): periods of high grazing pressures and rapid nutrient 

regeneration maintain autotrophic biomass at low levels, but this biomass is of high 

quality (e.g., low C:P) and grow fast; conversely, periods of low grazing pressures 

and slow nutrient recycling are associated with high autotrophic biomass of low 

quality (e.g., high C:P). Then, grazers are mainly controlled by the “quantity” of 

autotrophic biomass in the first case, and by the “quality” in the second (Sommer, 

1992). Zooplankton species of Lake Redon typically reproduce only once per year 

(Ventura & Catalan, 2005); as a consequence, their capacity to control the seasonal 

patterns of phytoplankton is limited, and their responses always come with a 

temporal delay. Given that major zooplankton groups have varying nutrient 

requirements (e.g. cladocerans are P-rich in comparison to copepods, Ventura & 

Catalan, 2005), changes in zooplankton structure (and, hence, in nutrient cycling) 

can induce trophic cascades and shift nutrient limitation of autotrophs (Sterner et 

al., 1992).  
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Figure 1 Representative variables of the period going from the ice-cover melting until the plenty 
establishment of summer stratification in Lake Redon (May 27 – July 17, 2012). 
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Nutrient availability and productivity in Pyrenean lakes 

The beginning of this thesis coincided with the recognition that DIN levels in 

Pyrenean lakes had markedly declined so that average concentrations in 1987 

reduced by half in 2011 (Camarero & Catalan, 2012). According to the Chla:TP to 

DIN relationship, the lake district of Pyrenees was on the boundary between the N- 

and P-limitation domains at that moment, and, hence, the continued decrease in DIN 

could lead these ecosystems towards N-limitation. Thus, a notable response of algal 

growth to N enrichments was initially expected in our experiments. Our results 

showed that phytoplankton growth in Lake Redon was constrained by P, and 

periphytic algal growth in other lakes was also higher in P- than N-enriched 

substrates. Although N deficiency may condition algal growth in next future, the 

productivity still seems to be mainly controlled by P in the study lakes, and, likely, 

in many lakes of the Pyrenees.  

Atmospheric P deposition then arises as a major driver of productivity variation in 

these lakes, as occurs in several mountain lake districts around the planet (Brahney 

et al., 2015). Here, atmospheric P deposition is primarily related to certain weather 

conditions that favour dust transport from northern Africa and Iberian Peninsula 

(Camarero & Catalan, 2012). Land uses and climate change could accentuate the 

severity of droughts, soil erosion, and desertification in these regions (Rodriguez-

Lloveras et al., 2016). Therefore, increased dust emissions can be reasonably 

expected in the near future, as well as a higher risk of wildfires and combustion-

derived P emissions (Pausas, 2012). Higher P deposition may enhance the algal 

growth and N consumption in lakes, thus lowering DIN availability in waters 

(Camarero & Catalan, 2012). Moreover, higher P availability and productivity could 

also stimulate denitrification and N export in sediments (Finlay et al., 2013). 

Although N emissions notably exceeded P emissions during the 20th century, 

current N emissions are stabilized or even declining in Europe and North America 

(Monks et al., 2009). 
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Taken together all this evidence suggests that Pyrenean lakes could become more 

productive, and present lower N concentrations in next years. This prediction is 

naturally conditioned by climate change, as well as by several smaller-scale 

processes and interactions within the ecosystems, such as the whole-ecosystem N:P 

recycling, the re-organization of community structures, and the regulation of the 

C:N:P composition of the organisms. In this future scenario, our results suggest that 

chlorophytes, diatoms, and cryptophytes may be particularly favoured in plankton, 

while chlorophytes should increase in periphyton. Higher growth rates may increase 

the Chla content, and decrease the N:P and C:P ratios of autotrophs. In turn, these 

changes may alter grazers community (e.g. a hypothetical increase of cladocerans), 

the nutrient cycling, and, hence, the matter and energy fluxes of these ecosystems.
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1. Water renewal has a significant positive effect on the colonization of epilithic 

periphyton in mountain lakes. Water renewal facilitated diatoms colonization 

but does not affect chlorophytes colonization. Lake trophic status (i.e. DOC) 

is the second most influential factor in the algal colonization. 
 

2. High N:P availability tend to favour chlorophytes over diatoms in the 

colonization of periphyton in oligotrophic lakes. 
 

3. Experiments with mesocosms and artificial substrates in oligotrophic lakes 

should apply gradients of nutrient availability rather than “saturating 

concentrations”. The usual nutrient levels added in bioassays can produce 

adverse effects. Chlorophytes are the algal group that better tolerate high 

nutrient levels. 
 

4. The response of productivity, community structure, and seston C:N:P to 

increasing P availability is not strictly coherent in oligotrophic conditions. 

Productivity is more sensitive to low and intermediate P additions, while 

seston stoichiometry is only markedly changed under high P supply. 
 

5. The P-enrichment lead seston C:N:P toward Redfield proportions in a non-

linear way. This shift was more associated with a change in the regulation of 

phytoplankton than with a reorganization of the community structure. We 

suggest alternative homeostatic states as the response of phytoplankton to a 

continuum of nutrient availability. 
 

6. High NH4 availability tends to increase seston C:P and N:P ratios. It can also 

stimulate productivity and alter phytoplankton structure when P stress 

diminishes. 
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7. Diatoms and chlorophytes are especially favoured by N and P pulses in deep 

mountain lakes due to their high growth capacity. The other phytoplankton 

groups are also stimulated by P enrichment, but to a lower extent. 

Cryptophytes may present comparatively higher P requirements than 

chrysophyceans and dinoflagellates. 
 

8. The high growth capacity of diatoms and chlorophytes could be associated 

with their ability to increase the chlorophyll content per biovolume when 

nutrient supply increases.  
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