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Abstract

A double transformation kernel density estimator that is suitable for heavy-tailed distributions is
presented. Using a double transformation, an asymptotically optimal bandwidth parameter can be
calculated when minimizing the expression of the asymptotic mean integrated squared error of
the transformed variable. Simulation results are presented showing that this approach performs
better than existing alternatives. An application to insurance claim cost data is included.
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1. Introduction

Kernel density estimation is nowadays a classical approachto study the form of a density
with no assumption on its global functional form.

Let X1, . . . ,Xn a random sample ofiid observations of a random variable with density
function f , then the kernel density estimator at pointx is:

f̂c(x) =
1
n

n

∑
i=1

Kb (x−Xi) , (1)

whereb is the bandwidth or smoothing parameter,Kb (t) = 1
bK
(

t
b

)
andK is the kernel

function, usually it is a symmetric density function bounded or asymptotically bounded
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and centred at zero. In this work I use the Epanechnikov kernel, Silverman (1986) proves
that this kernel is optimal for kernel density estimator. The Epanechnikov kernel is:

k(t) =

{
0.75

(
1− t2

)
si |t| ≤ 1

0 si |t|> 1

Silverman (1986) or Wand and Jones (1995) provide an extensive review of classical
kernel estimation. In order to implement kernel density estimation bothK andb need to
be chosen. The optimal choice for the value ofb depends inversely on the sample size,
so the larger the sample size, the smaller the smoothing parameter and conversely.

When the shape of the density to be estimated is symmetric andhas a kurtosis that
is similar to the kurtosis of the normal distribution, then it is possible to calculate
a smoothing parameterb that provides optimal smoothness or is close to optimal
smoothness over the whole domain of the distribution. However, when the density is
asymmetric, it is not possible to calculate a value for the smoothing parameter which
captures both the mode of the density shape and the tail behaviour. In fact, optimal
smoothness in the tail is much larger than in the main mode andthis is due to the fact
that available sampling information in the mode is much moreabundant than in the tail
of the density, where there are not many observations.

The majority of economic variables that measure expenditures or costs have a strong
asymmetric behaviour to the right, so that classical kerneldensity estimation is not
efficient in order to estimate the values of the density in theright tail part of the
density domain. This is due to the fact that the smoothing parameter which has been
calculated for the whole domain function is too small for thedensity in the tail. Using a
variable bandwidth can be a convenient solution, but this approach has many difficulties
as discussed by Jones (1990). Our aim is to propose a double transformation kernel
density estimator, where the bandwidth is optimal and can bechosen automatically. The
optimal bandwidth has a straightforward expression and it is obtained by minimizing
the asymptotic mean integrated squared error.

An alternative to kernel estimation defined in (1) is transformation kernel estimation
that is based on transforming the data so that the density of the transformed variable
has a symmetric shape, so that it can easily be estimated using a classical kernel
estimation approach. We say it can be easily estimated in thesense that using a Gaussian
kernel or an Epanechnikov kernel, an optimal estimate of thesmoothing parameter can
be obtained by minimizing an error measure over the whole density domain. In the
specialized literature several transformation kernel estimators have been proposed, and
their main difference is the type of transformation family that they use. For instance,
Wand et al. (1991), Bolanće et al. (2003), Clementset al. (2003) and Buch-Larsen
et al. (2005) propose different parametric transformation families that they all make
the transformed distribution more symmetric that the original one, which in many
applications has usually a strong right-hand asymmetry. Also Bolanćeet al.(2008) used
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the transformation kernel estimation to approximate the conditional tail expectation risk
measure.

Given a density estimator̂f of a density f , the Mean Integrated Squared Error
(MISE) is defined as:

MISE
(

f̂
)
= E




+∞∫

−∞

(
f̂ (t)− f (t)

)2
dt


 .

Let T(·) a concave transformation, the transformed sample isY1 = T(X1), . . . ,Yn =

T(Xn), the classical kernel estimator of the transformed variable is:

f̂c(y) =
1
n

n

∑
i=1

Kb(y−Yi) =
1
n

n

∑
i=1

Kb(T(x)−T(Xi)) (2)

and the transformation kernel estimator of the original variable is:

f̂ (x) =
1
n

n

∑
i=1

Kb(T(x)−T(Xi))T ′(x). (3)

Wand et al. (1991) show that there exists a relationship between the value of MISE
obtained for the classical kernel estimator of the transformed variable and theMISE
obtained with the transformation kernel estimator of the original variable. They also
show that there exists an optimal transformation that minimizes both expressions.

Based on the work by Buch-Larsenet al. (2005), Bolanće et al. (2008) proposed
a double transformation with the purpose of obtaining a transformed variable whose
density is as close as possible to a density that maximizes smoothness

∫ { f ′′ (x)}2dx
and at the same time that minimizes the asymptotic Mean Integrated Squared Error
(A−MISE) of the kernel estimator defined in (1) and obtained with the transformed
observations. Terrell and Scott (1985) showed that among the vast family of densities
with domain D that have a Beta distribution, one of them has the largest possible
smoothness.

Since the density of a Beta distribution in the bounds of its domain is zero, the bias
of kernel estimation near the boundaries of the domain is strictly positive, and therefore
this implies a larger bias in the transformation kernel estimation in the extremes of the
density of the original variable (in the right tail and in thevalues near the minimum). In
order to correct for this positive bias, Bolancé et al. (2008) proposed to transform their
data into a new set of data so that they have a density that is similar to the Beta density
in a domain in the interior ofD. Then they correct the resulting density estimate so that
it integrates to one, but in their contribution they do not indicate how to optimize this
second transformation. In the next section, a method based on minimizingA−MISE is
proposed. One of its main features is that it can become fullyautomated, which is very
suitable for practical applications.
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Let g(·) andG(·) be the density and distribution functions of a Beta random variable,
which we denote byB(β ,β) with domain in[−α,α], if Z is a random variable with a
uniform distribution, thenY = G−1 (Z) is a random variable with distributionB(β ,β).
The method proposed by Bolancé et al. (2008) suggests to do a first transformation on
the original sample of observationsX1, . . . ,Xn so thatZi = T (Xi), i = 1, . . . ,n. If T(·) is
a cumulative distribution function thenZi , i = 1, . . . ,n can be a sample of independent
observations that are close to have been generated by a uniform distribution. Then
they definel as a probabililty close to 1, namely 0.98 or 0.99, so thatT̃ (Xi) = Z̃i =

(2l −1)Zi +(1− l) and, therefore, the density that is associated with the datagenerating
processYi = G−1

(
Z̃i
)

coincides with the density function of a Beta density,B(β ,β)
in a domain[−a,a], whereα > a = G−1 (l). Then, the resulting transformation kernel
estimator, where′ denotes the first derivative, is:

f̂ (x) =
1

(2l −1)n

n

∑
i=1

Kb
(
G−1

(
T̃(x)

)
−G−1

(
T̃(Xi)

))(
G−1

)′ (
T̃(x)

)
T̃ ′(x)

=
1
n

n

∑
i=1

Kb
(
G−1

(
T̃(x)

)
−G−1

(
T̃(Xi)

))(
G−1

)′ (
T̃(x)

)
T ′(x). (4)

We note that the optimality of (4) depends on whether the firsttransformationT (·)
is successfully transforming the data into a sample that is likely to have been generated
by a Uniform(0,1). It is obvious that the transformationT (·) must be a distribution
function. Bolanćeet al. (2008) propose to use the generalized Champernowne cdf:

Tα,M,c(x) =
(x+c)α−cα

(x+c)α+(M+c)α−2cα
x≥ 0, (5)

with parametersα> 0, M > 0 andc≥ 0, that can be estimated by maximum likelihood.
This is certainly a flexible distribution, because it can have many shapes near zero and
also different behaviours in the tail. Degen and Embrechts (2008) analyzed the tail
modified Champernowne distribution convergence to the tailbehaviour supposed by
extreme value theory, and they concluded that convergence is stronger if we compare
it to the tail distribution for the Loggamma, the g-and-h andthe Burr and lighter if we
compare it to the Generalized Beta distribution (GB2).

In this work we propose a method to find an asymptotically optimal value forl , that
is obtained when one finds the Beta truncated distribution with density g(·)

(2l−1) , defined

on [−a,a] , with a= G−1 (l), whose kernel estimation minimizesMISE asymptotically.
This result is developed in Section 2. Section 3 presents theresults of a simulation study
that uses the same samples as in Buch-Larsenet al.(2005) and in Bolanćeet al.(2008).
By means of the results of the simulation we analyze the behaviour of the estimation
method that is being proposed and we see that the value of the optimal choice forl
considerably reduces the distance between the true theoretical density and the density
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estimate for all the asymmetric shapes that have been analyzed and, in many cases, also
if the sample size is small. In Section 4 we show an application to data on costs arising
from automobile insurance claims. These data were also usedby Bolanće et al. (2009).
Finally, in Section 5 we conclude.

2. Asymptotically optimal truncated inverse Beta transformation

Terrell and Scott (1985, Lemma 1) showed thatB(3,3) defined on the domain
(−1/2,1/2) has

∫ {g′′ (t)}2dt minimal within the set of Beta densities with same sup-
port, whereg(·) is the pdf and is given by:

g(t) =
15
8

(
1−4t2

)2
,−1

2
≤ t ≤ 1

2
(6)

andG(·) is the cdf and is given by:

G(t) =
1
8

(
4−9t +6t2

)
(1+2t)3 . (7)

Using the Epanechnikov kernel for the upper bound (or the lower bound since the
domain of the distributionB(3,3) is symmetric) the expectation of the classical kernel
estimation is (see, Wand and Jones 1995, p. 47):

∫ 0

−1
K (t)g

(
1
2
−bt

)
dt =

∫ 0

−1

3
4

(
1− (t)2

) 15
8

(
1−4

(
1
2
−bt

)2
)2

dt

= 1.2857b4+3.75b3+3b2 > 0 if b> 0. (8)

The value of the density defined in (6) in the boundaries of thedomain is zero,
however, as we have noted in (8), the value of the classical kernel estimation of the
density is positive∀b > 0, and thereforef̂c(x) over-estimates the beta density in the
tails.

Silverman (1986) shows that asymptotically the MISE for (1)is:

A−MISE
{

f̂c
}
=

1
4

b4k2
2

∫
f ′′ (x)2dx+

1
nb

∫
K (t)2dt,

wherek2 =
∫

t2K (t)dt. The asymptotically optimal bandwidth is:

bopt =

( ∫
K (t)2dt

k2
2

∫
f ′′ (x)2dx

) 1
5

n−
1
5 ,
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replacingbopt in A−MISE
{

f̂c
}

we obtain the value ofA−MISE for the asymptotically
optimal bandwidth:

A−MISE∗ ( f̂c
)
=

5
4

k
2
5
2

(∫
K (t)2dt

) 4
5
(∫

f ′′ (x)2dx

) 1
5

n−
4
5 . (9)

Let Y be a transformed random variable with distributionB(3,3) . Let g(y)
2la−1, with

la = G(a), be the truncated Beta density in the domain[−a,a]. If one just uses the same
development that is being used to obtain (9), a value forA−MISE∗ ( f̂c(x) ,a

)
can easily

be obtained. Replacing in Silverman’sA−MISE proofg(y) by g(y)
2la−1 we obtain:

A−MISE{ĝc,a}=
1
4

b4 k2
2

(2la−1)2

∫ +a

−a
g′′ (x)2dx+

1
nb

∫
K (t)2dt,

then

bopt (a) =




∫
K (t)2dt

k2
2

(2la−1)2
∫ +a
−a g′′ (x)2dx




1
5

n−
1
5 , (10)

and replacingbopt (a) in A−MISE
{

f̂c,a
}

we obtain:

A−MISE∗ {ĝc,a}=
5
4

k
2
5
2

(∫
K (t)2dt

) 4
5

(2la−1)−
2
5

(∫ +a

−a
g′′ (x)2dx

) 1
5

n−
4
5 .

We then analyze the behaviour ofA−MISE∗ {ĝc,a} as a function ofa in order to
estimate the truncated densityg(y)2la−1 whenever the objective is that the distribution of

the transformed variable isB(3,3). Using the Epanechnikov’s kernelK (t) = 3
4

(
1− t2

)
,

|t| ≤ 1 for the density of aB(3,3) we obtain:

A−MISE∗ {ĝc,a}=
5
4

(
9

125

) 2
5
(

360a
(
−40a2+144a4+5

)
(

1
4a(−40a2+48a4+15)

)2

) 1
5

n−
4
5 . (11)

If we also analyze the shape of expression (11), we observe that there exists a value
of a that minimizes the corresponding expression forA−MISE∗. In Figure 1 we show
a plot of (11) as a function ofa, where we have eliminated the effect of the sample size
factor (n−

4
5 ).

As a result, there exists a truncated densityg(y)
2la∗−1 that depends on an optimala which

is related toB(3,3) that minimizes (11). The objective of our proposed transformation
kernel estimation method is to obtain a sample of transformed observations whose
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Figure 1: A−MISE∗
B(3,3) {ĝc,a}n

4
5 vs a.

density is as close as possible to an optimally truncated Beta density, so that the
optimality of the kernel estimation of the transformed variable is transferred to an
optimal transformation kernel estimation of the original variable. Then we propose:

f̂ ∗(x) =
1
n

∑n
i=1 Kb

(
G−1

(
T̃ ∗(x)

)
−G−1

(
T̃ ∗(Xi)

))(
G−1

)′ (
T̃ ∗(x)

)
T̃ ∗′(x)

(2la∗ −1)

=
1
n

n

∑
i=1

Kb
(
G−1

(
T̃ ∗(x)

)
−G−1

(
T̃ ∗(Xi)

))(
G−1

)′ (
T̃ ∗(x)

)
T ′(x) (12)

whereT̃ ∗ (Xi) = Z̃∗
i = (2la∗ −1)Zi +(1− la∗). Holdingn fixed, when we minimize (11)

we obtain an optimala, which we call a∗ equal to 0.389121. Therefore,la∗ =

G(0.389121) = 0.98854. We call the estimator defined in (12) optimal double trans-
formation kernel density estimator or optimal Kernel Inverse Beta Modified Champer-
nowne Estimator (KIBMCE) if we use the same name given in Bolancé et al. (2008).

In order to obtain the estimator in (12) the procedure is:

1. With the sample of observationsX1, . . . ,Xn we estimate parametersα, M and
c of the generalized Champernowne by maximum likelihood (see, for instance,
Burch-Larsenet al., 2005) and calculate (5)Zi = Tα̂,M̂,ĉ(Xi) and T̃ ∗ (Xi) = Z̃∗

i =

(2 ·0.98854−1)Zi +(1−0.98854).
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2. CalculateYi =G−1
(
T̃∗(Xi)

)
and obtain the classical kernel estimatorf̂c(y) defined

in (1). The smoothing parameterb∗ is estimated by the value that is asymptotically
optimal when estimating aB(3,3) on the domain(−a∗,a∗), and therefore its
expression is:

b∗ = k
− 2

5
2

(∫ 1

−1
K (t)2dt

∫ a∗

−a∗
g(y)dy

) 1
5
(∫ a∗

−a∗

{
g′′ (y)

}2
dy

)− 1
5

n−
1
5

= 0.5416079n−
1
5 . (13)

The difference between the smoothing parameterbopt (a) in (10) andb∗ in (13) is
that first is optimal for the classical kernel estimation of truncate Beta density and
second is optimal for the classical kernel estimation of Beta density in[−a∗,a∗].

3. Obtain the optimal double transformation kernel estimator in (12) as:

f̂ ∗(x) = f̂c(y)
(
G−1

)′ (
T̃∗(x)

)
T ′(x).

It is obvious that the estimator in (12) is optimal if the transformed random variable
Z = T (X) is distributed as a Uniform(0,1), and this certainly depends on the quality
of the generalized Champernowne cdf defined in (5) and how well it approximates the
original variable. This is going to be discussed in the next section, where simulation
results are also shown.

Next we are going to present a simulation study where we show to what extend, for
finite sample, and with the transformation kernel estimation expressed in (12) the results
shown in Buch-Larsenet al. (2005) can be improved. Therefore it also improves Wand
et al. (1991) and Clementset al. (2003).

3. Simulation study

This section presents a comparison of our inverse beta double transformation method
with the results presented by Buch-Larsenet al. (2005) based only on the modified
Champernowne distribution. Our objective is to show that the second transformation,
that is based on the inverse of a Beta optimal truncated distribution, improves density
estimation for a wide range of asymmetric densities that arecommonly found in
practice.

In this work we analyze the same simulated samples as in Buch-Larsenet al. (2005)
and Bolanćeet al. (2008), which were drawn from four distributions with different tails
and different shapes near 0. The distributions and the chosen parameters are listed in
Table 1.
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Table 1: Distributions in simulation study.

Distribution Density Parameters

Mixture of pLognormal(µ,σ)

and(1− p)Pareto(λ,ρ,c)

f (x) = p
1√

2πσ2x
e−

(logx−µ)2
2σ2 +

+ (1− p)(x−c)−(ρ+1)ρλρ

(p,µ,σ,λ,ρ,c)

= (0.7,0,1,1,1,−1)

= (0.3,0,1,1,1,−1)

= (0.1,0,1,1,1,−1)

= (0.9,2.5,0.5,1,1,−1)

Lognormal(µ,σ) f (x) =
1√

2πσ2x
e−

(logx−µ)2
2σ2 (µ,σ) = (0,0.5)

Weibull(γ) f (x) = γx(γ−1)e−xγ γ= 1.5

Truncated logistic f (x) =
2
s

e
x
s

(
1+e

x
s

)−2
s= 1

In Figure 2 we present the result of the ratio between the distribution functionF (x)
that is associated to each of the densities in Table 1 and the Champernowne distribution
Tα̂,M̂,ĉ(x) that is estimated by means of a sample with size 1000, obtained from each of
the five distribution. The right-hand plots focus on the ratio in the tail. In Table 2, we
show the distance measuresL1 andL2 betweenF (x) andTα̂,M̂,ĉ(x):

L1
(
F,Tα̂,M̂,ĉ

)
=

+∞∫

−∞

∣∣Tα̂,M̂,ĉ(t)−F(t)
∣∣dt

and

L2
(
F,Tα̂,M̂,ĉ

)
=

+∞∫

−∞

(
Tα̂,M̂,ĉ(t)−F(t)

)2
dt.

Table 2: Distance between the true distribution and the Champernowne distribution.

Lognormal Log-Pareto Weibull Tr. Logist.

p= 0.7 p= 0.3

L1 0.0445 1.4423 2.1270 0.0422 0.0940

L2 0.0225 0.0409 0.0544 0.0240 0.0343

It is obvious that the improvement in the KIBMCE method with respect to the Kernel
Modified Champernowne Estimator (KMCE) proposed by Buch-Larsenet al. (2005) is
larger in those cases where the shape of the true cdf is similar to the Champernowne. In
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a) Lognormal

b) 70% Lognormal-30% Pareto

c) 30% Lognormal-70% Pareto
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d) Weibull

e) Truncated Logistic

Figure 2: Ratio of F(x) and T̂α,M̂,ĉ(x) in the (0,5) domain interval on the left and in the(5,20) domain
interval on the right, for five distributions given in Table 1.

the case of a mixture between a lognormal and a Pareto, Figures 2b and 2c show that
the Champernowne distribution tends more rapidly to one that the true cdf. and this can
also be seen when looking at the values of theL1 distance between the two functions.
The results of Figure 1 and Table 2 show us that the improvement in KIBMCE is larger
in the estimation of a density that has a Lognormal, a Weibulland a Truncated Logistic
shape.

Buch-Larsenet al. (2005) evaluate the performance of the KMCE estimators com-
pared to the estimator described by Clementset al. (2003) the estimator described by
Wandet al. (1991) and the estimator described by Bolancéet al. (2003). The Champer-
nowne transformation substantially improve the results from previous authors. Bolancé
et al. (2008, 2009) compare his truncated inverse beta second transformation with
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Table 3: The estimated error measures for KMCE and KIBMCE.

Lognormal Log-Pareto Weibull Tr. Logist.

la∗ p= 0.7 p= 0.3

N =100 L1 KIBMCE 0.9885 0.1348 0.1240 0.1202 0.1391 0.1246

KMCE 0.1363 0.1287 0.1236 0.1393 0.1294

L2 KIBMCE 0.9885 0.1001 0.0851 0.0853 0.1095 0.0739

KMCE 0.1047 0.0837 0.0837 0.1084 0.0786

WISE KIBMCE 0.9885 0.0992 0.0819 0.0896 0.0871 0.0969

KMCE 0.1047 0.0859 0.0958 0.0886 0.0977

N =1000 L1 KIBMCE 0.9885 0.0561 0.0480 0.0471 0.0589 0.0510

KMCE 0.0659 0.0530 0.0507 0.0700 0.0598

L2 KIBMCE 0.9885 0.0405 0.0362 0.0381 0.0482 0.0302

KMCE 0.0481 0.0389 0.0393 0.0582 0.0339

WISE KIBMCE 0.9885 0.0404 0.0359 0.0402 0.0378 0.0408

KMCE 0.0481 0.0384 0.0417 0.0450 0.0501

Table 4: Ratio between the error measures of KIBMCE and KMCE.

Lognormal Log-Pareto Weibull Tr. Logist.

p= 0.7 p= 0.3

N = 100 L1 0.9888 0.9637 0.9725 0.9982 0.9629

L2 0.9563 1.0162 1.0190 1.0100 0.9398

WISE 0.9470 0.9538 0.9350 0.9835 0.9916

N = 1000 L1 0.8517 0.9059 0.9295 0.8413 0.8522

L2 0.8410 0.9295 0.9695 0.8284 0.8911

WISE 0.8390 0.9340 0.9637 0.8392 0.8150

l = 0.99 andl = 0.98 with Buch-Larsen method and shows that double-transformation
method improves the results presented in Buch-Larsenet al. (2005). In this work, we
compare the results obtained when using an optimal trimmingparameterla∗ for B(3,3).

We measure the performance of the estimators by the error measures based inL1

norm, L2 norm andWISE. This last weighs the distance between the estimated and
the true distribution with the squared value ofx. This results in an error measure that
emphasizes the tail of the distribution:




∞∫

0

(
f̂ (x)− f (x)

)2
x2dx




1/2

.



Catalina Bolancé 235

The simulation results can be found in Table 3. For every simulated density and
for sample sizesN = 100 andN = 1000, the results presented here correspond to the
following error measuresL1, L2 andWISE. The benchmark results are labeled KMCE
and they correspond to those presented in Buch-Larsenet al.(2005). In Table 4 we show
ratios between the error measures of KIBMCE and KMCE, if thisratio is smaller than
1 then KIBMCE improves on the results of KMCE.

In Table 4 we show that forN = 100 the ratios associated toL1 andWISEare always
below one, and this indicates the KIBMCE method improves thefit of the density in the
tail values of the density even for a small sample size. WhenN = 1000 then KIBMCE
has always smaller values than KMCE, both forL1, L2 and forWISE. The best results
can be obtained for the Lognormal, the Weibull and the Truncated Logistic, where in all
cases the errors of KMCE are reduced by more that a 10% when using the new method.

For the mixtures of a Lognormal and a Pareto the results show that whenp = .7
(70% Lognormal) the improvement is almost 10% forL1 and is around 7% forL2 and
WISE. Whenp= .3 (30% Lognormal)L1 is reduced by 7%, and bothL2 andWISEare
reduced in slightly more than 3%.

4. Data analysis

In this section, we apply our estimation method to a data set that contains automobile
claim costs from a Spanish insurance company for accidents occurred in 1997. It is a
typical insurance cost of individual claims data set, i.e. alarge sample that looks heavy-
tailed. The data are divided into two age groups: claims frompolicyholders who are
less than 30 years old, and claims from policyholders who are30 years old or older.
The first group consists of 1,061 observations in the interval [1;126,000] with mean
value 402.70. The second group contains 4,061 observationsin the interval [1;17,000]
with mean value 243.09. Estimation of the parameters in the modified Champernowne
distribution function for the two samples of is, for young driversα̂1 = 1.116, M̂1 = 66,
ĉ1 = 0.000 and for older driverŝα2 = 1.145, M̂2 = 68, ĉ2 = 0.000, respectively. We
notice thatα1 < α2, which indicates that the data set for young drivers has a heavier tail
than the data set for older drivers.

To produce the graphics, the claims have been split into three categories:Small
claimsin the interval (0; 2,000), moderately sized claimsin the interval [2,000; 14,000),
andextreme claimsin the interval [14,000;∞). In Figure 3 we show the density function
in the three categories for younger and older drivers.

Figure 3 shows that the KIBMCE method corrects the results ofKMCE. In general,
the density that is estimated using a KIBMCE method is smoother and larger in the
mode, if compared with the KMCE estimate. In the tail and compared to the KMCE,
the KIBMCE estimates a larger density in the tail, when the tails heavier, as for younger
drivers, and it also estimates a smaller density when the tail is lighter, as for older drivers.
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a) Younger drivers b) Older drivers

Figure 3: Optimal KIBMCE estimates (thick) versus KMCE estimates (light) of insurance claims cost
densities. Upper plots show small claims, middle plots showmoderate claims and lower plots show large
claims.
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5. Conclusions

In this work we have proposed a transformation kernel density estimator that can provide
good results when the density to be estimated is very asymmetric and has extreme
values. Moreover, the method presented here has a very straightforward method to
calculate the smoothing parameter. This method provides a rule of thumb method to
calculate the bandwidth in the context of transformation kernel density estimation that
is comparable to Silverman’s rule of thumb in the context of classical kernel density
estimation. For large sample sizes, like the ones shown in the application, the simulation
study shows that this method outperforms existing alternatives.
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