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Optimal inverse Beta(3,3) transformation
in kernel density estimation

Catalina Bolang*
University of Barcelona

Abstract

A double transformation kernel density estimator that is suitable for heavy-tailed distributions is
presented. Using a double transformation, an asymptotically optimal bandwidth parameter can be
calculated when minimizing the expression of the asymptotic mean integrated squared error of
the transformed variable. Simulation results are presented showing that this approach performs
better than existing alternatives. An application to insurance claim cost data is included.
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1. Introduction

Kernel density estimation is nowadays a classical appruestiudy the form of a density
with no assumption on its global functional form.

LetXy,..., X, arandom sample oid observations of a random variable with density
function f, then the kernel density estimator at poins:

f‘c<x>=%_§r<b<x—>ﬁ>, )

whereb is the bandwidth or smoothing paramet&(t) = K (%) andK is the kernel
function, usually it is a symmetric density function boudae asymptotically bounded
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and centred at zero. In this work | use the Epanechnikov keBileerman (1986) proves
that this kernel is optimal for kernel density estimatore Hpanechnikov kernel is:

0.75(1—-t?) sift[<1
k(t) =
0 sift|>1

Silverman (1986) or Wand and Jones (1995) provide an extemsview of classical
kernel estimation. In order to implement kernel densitynestion bothK andb need to
be chosen. The optimal choice for the valudafepends inversely on the sample size,
so the larger the sample size, the smaller the smoothingnedea and conversely.

When the shape of the density to be estimated is symmetribasi@ kurtosis that
is similar to the kurtosis of the normal distribution, thenid possible to calculate
a smoothing parametdy that provides optimal smoothness or is close to optimal
smoothness over the whole domain of the distribution. Hernewhen the density is
asymmetric, it is not possible to calculate a value for theatmng parameter which
captures both the mode of the density shape and the tail loelmain fact, optimal
smoothness in the tail is much larger than in the main moddtlsdads due to the fact
that available sampling information in the mode is much namendant than in the tail
of the density, where there are not many observations.

The majority of economic variables that measure experehtar costs have a strong
asymmetric behaviour to the right, so that classical kedwglisity estimation is not
efficient in order to estimate the values of the density in fiight tail part of the
density domain. This is due to the fact that the smoothingupater which has been
calculated for the whole domain function is too small for tlemsity in the tail. Using a
variable bandwidth can be a convenient solution, but this@gch has many difficulties
as discussed by Jones (1990). Our aim is to propose a doablsfdrmation kernel
density estimator, where the bandwidth is optimal and carhbsen automatically. The
optimal bandwidth has a straightforward expression ans @htained by minimizing
the asymptotic mean integrated squared error.

An alternative to kernel estimation defined in (1) is transfation kernel estimation
that is based on transforming the data so that the densitiyeofransformed variable
has a symmetric shape, so that it can easily be estimated asitlassical kernel
estimation approach. We say it can be easily estimated isethge that using a Gaussian
kernel or an Epanechnikov kernel, an optimal estimate ostheothing parameter can
be obtained by minimizing an error measure over the wholeitledomain. In the
specialized literature several transformation kerneiregbrs have been proposed, and
their main difference is the type of transformation famitat they use. For instance,
Wand et al. (1991), Bolané et al. (2003), Clement®t al. (2003) and Buch-Larsen
et al. (2005) propose different parametric transformation fagithat they all make
the transformed distribution more symmetric that the oagione, which in many
applications has usually a strong right-hand asymmetigo Blolané et al. (2008) used
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the transformation kernel estimation to approximate thel@mnal tail expectation risk
measure.

Given a density estimatof of a densityf, the Mean Integrated Squared Error
(MISE) is defined as:

MISE(f) =E (/( a)—fagzdt

— 00

Let T(-) a concave transformation, the transformed samp¥¢ is T (X;),...,Ys =
T(Xn), the classical kernel estimator of the transformed vagigbl

A 12 12
o) =1 2 Koy =¥) = 1 3 Ko(T( = T(X) (2)
and the transformation kernel estimator of the originaialze is:
. 10 .
f(x):ﬁi;Kb(T(x)_T(Xi))T(X)- 3)

Wandet al. (1991) show that there exists a relationship between thgevaf MISE
obtained for the classical kernel estimator of the tramséat variable and th#ISE
obtained with the transformation kernel estimator of thiginal variable. They also
show that there exists an optimal transformation that miresiboth expressions.

Based on the work by Buch-Larsen al. (2005), Bolané et al. (2008) proposed
a double transformation with the purpose of obtaining adi@emned variable whose
density is as close as possible to a density that maximizestsmess/ { f” (x)}dx
and at the same time that minimizes the asymptotic Mean riaited) Squared Error
(A— MISE) of the kernel estimator defined in (1) and obtained with ta@gformed
observations. Terrell and Scott (1985) showed that amoagadist family of densities
with domainD that have a Beta distribution, one of them has the largestilples
smoothness.

Since the density of a Beta distribution in the bounds of @sdin is zero, the bias
of kernel estimation near the boundaries of the domainitistpositive, and therefore
this implies a larger bias in the transformation kernelneation in the extremes of the
density of the original variable (in the right tail and in tvelues near the minimum). In
order to correct for this positive bias, Bolanet al. (2008) proposed to transform their
data into a new set of data so that they have a density thahiksio the Beta density
in a domain in the interior oD. Then they correct the resulting density estimate so that
it integrates to one, but in their contribution they do naticgate how to optimize this
second transformation. In the next section, a method basetdmmizingA— MISE is
proposed. One of its main features is that it can become éuitpmated, which is very
suitable for practical applications.
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Letg(-) andG(-) be the density and distribution functions of a Beta randoriabie,
which we denote b¥(f3, ) with domain in[—a,a], if Z is a random variable with a
uniform distribution, thery = G=1(Z) is a random variable with distributioB(j3, 3).
The method proposed by Bolanet al. (2008) suggests to do a first transformation on
the original sample of observatioXs,..., X, so thatzy =T (X),i=1,...,n. If T(:) is
a cumulative distribution function thefy, i = 1,...,n can be a sample of independent
observations that are close to have been generated by amnifistribution. Then
they definel as a probabililty close to 1, namely9® or 099, so thatl (X) = Z; =
(2l —1)z + (1—1) and, therefore, the density that is associated with thegiatarating
processY, = G~* (Z) coincides with the density function of a Beta densByg. )
in a domain[—a, a), wherea > a= G 1(I). Then, the resulting transformation kernel
estimator, wherédenotes the first derivative, is:

10 = g 3, Ko (G (F(0) 6 (F06) (67 (To0)

—2
~~
x
~—
N

—x

- %-iKb (61 (T() -G (T0) (6 (T T'x. (4)

We note that the optimality of (4) depends on whether theftfisstsformatiorir (-)
is successfully transforming the data into a sample thditédylto have been generated
by a Uniform(0,1). It is obvious that the transformation(-) must be a distribution
function. Bolané et al. (2008) propose to use the generalized Champernowne cdf:

B (Xx4c)*—c*
Tame(x) = (X+ )%+ (M +c)* — 2c* x=0, ®)

with parameters > 0, M > 0 andc > 0, that can be estimated by maximum likelihood.
This is certainly a flexible distribution, because it canénavany shapes near zero and
also different behaviours in the tail. Degen and Embrech@)8) analyzed the tall
modified Champernowne distribution convergence to theblilaviour supposed by
extreme value theory, and they concluded that convergensednger if we compare
it to the tail distribution for the Loggamma, the g-and-h d@hne Burr and lighter if we
compare it to the Generalized Beta distribution (GB2).

In this work we propose a method to find an asymptoticallyroptivalue for, that
is obtained when one finds the Beta truncated distributidgh Mnsity%, defined
on[—a,a] , witha= G 1(I), whose kernel estimation minimiz&4 SE asymptotically.
This result is developed in Section 2. Section 3 presentsethéts of a simulation study
that uses the same samples as in Buch-Lagsah (2005) and in Bolanget al. (2008).
By means of the results of the simulation we analyze the hebawof the estimation
method that is being proposed and we see that the value ofptit@ad choice forl
considerably reduces the distance between the true tiedréénsity and the density
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estimate for all the asymmetric shapes that have been athfyrd, in many cases, also
if the sample size is small. In Section 4 we show an applioatiadata on costs arising
from automobile insurance claims. These data were alsolmsBdlané et al. (2009).
Finally, in Section 5 we conclude.

2. Asymptotically optimal truncated inverse Beta transformation

Terrell and Scott (1985, Lemma 1) showed th&¢3,3) defined on the domain
(=1/2,1/2) has [ {g" (t)}*dt minimal within the set of Beta densities with same sup-
port, whereg(-) is the pdf and is given by:

15

221 at2)? _1'< <1‘
andG(-) is the cdf and is given by:
G(t) = 1 (4—9t+6t%) (1+2t)°, @)

8

Using the Epanechnikov kernel for the upper bound (or theefdwound since the
domain of the distributio (3,3) is symmetric) the expectation of the classical kernel
estimation is (see, Wand and Jones 1995, p. 47):

2
0 1 03 - 15 1 2
/71K(t)g (E —bt) dt = le (1—(t) ) = (1_4<§ —bt) ) dt
=1.285Mh*+3.75°+3b% > 0if b > 0. (8)
The value of the density defined in (6) in the boundaries ofdbmain is zero,
however, as we have noted in (8), theAvaIue of the classiaalekestimation of the
density is positivevb > 0, and therefore (x) over-estimates the beta density in the

tails.
Silverman (1986) shows that asymptotically the MISE foril)

_ ey _Liao [enin2 i/ 2
A-MISE{f.} = ;b kz/f (0%dx+ - [ K ©°dt,

wherek, = [t?K (t)dt. The asymptotically optimal bandwidth is:

bopt: fK(t)zdt En—
k2 [ 7 (x)%dx ’

Ul
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replacingo®in A—MISE{ f.} we obtain the value ok — MISEfor the asymptotically
optimal bandwidth:

A-MISE (f.) = Zkf </K (t)zdt> ’ </ £ (x)zdx> "t )

LetY be a transformed random variable with distribut®(8,3) . Let %, with
la=G(a), be the truncated Beta density in the domiain, aJ. If one just uses the same
development that is being used to obtain (9), a valu&feiMISE* (fC (x) ,a) can easily

be obtained. Replacing in Silvermams- MISE proofg(y) by % we obtain:

2 +a
k2

- 1
A— MISE{gC,a} - Zb‘lw a
a— —

1
g’ (X)2dx+ H)/K(t)zolt,

then

gl

2
bopt (a) — IK (t) dt n—%’ (10)

2
it 29 (070X

and replacing°®? (a) in A— MISE{ f},a} we obtain:

A S 2 2 % —2 ra 1" 2 % -2
A—MISE*{gc,a}:Zkf </K(t) dt) (25—-1) 5< ) g’ (x) dx) n-s.

We then analyze the behaviour Af- MISE* {§.,a} as a function of in order to
estimate the truncated densiﬁ%ﬁ—)l whenever the objective is that the distribution of
the transformed variable B(3,3). Using the Epanechnikov’s kernil(t) = 3 (1—t2),
t| < 1 for the density of 8 (3,3) we obtain:

A—MISE {Go.a} = > (

i

(11)

1
9 >§ <360a(—40a2+144a4+5) ) .
4

125/ \ (la(—408?+48a%+15))°

If we also analyze the shape of expression (11), we obseatditare exists a value
of a that minimizes the corresponding expression&er MISE". In Figure 1 we show
a plot of (11) as a function af, where we have eliminated the effect of the sample size
factor (n‘%).

As aresult, there exists a truncated denﬁggﬂ—l that depends on an optimalvhich
is related toB(3,3) that minimizes (11). The objective of our proposed transftion
kernel estimation method is to obtain a sample of transfdrimleservations whose
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a

Figurel: A— MISE§(3_3) {Gc,a} ns vsa.

density is as close as possible to an optimally truncated Bensity, so that the
optimality of the kernel estimation of the transformed ahte is transferred to an
optimal transformation kernel estimation of the originafieble. Then we propose:

13K (G (Tr(0) ~ 6 (T2 00)) (67 (Tr ) T(%)
" (@ —1)

f*(x)

Sl
=}

Ko (G2(T*(x) =G 1 (T*(%))) (G (T* (%) T'(%) (12)

whereT* (X)) = Z* = (25 — 1) Z + (1 —l5). Holdingn fixed, when we minimize (11)
we obtain an optimala, which we call a* equal to 0389121. Thereforely =
G(0.389121) = 0.98854. We call the estimator defined in (12) optimal dould@gr
formation kernel density estimator or optimal Kernel IrseeBeta Modified Champer-
nowne Estimator (KIBMCE) if we use the same name given in Badat al. (2008).

In order to obtain the estimator in (12) the procedure is:

1. With the sample of observations,..., X, we estimate parametets, M and
c of the generalized Champernowne by maximum likelihood, (8&einstance,
Burch-Larseret al., 2005) and calculate (5 = T; 3 ¢(%) andT*(X) = Z* =
(2-0.98854—1)7Z + (1—0.98854. ’



230 Optimal inverse Beta(3,3) transformation in kernel density estimation

2. Calculate; = G~ (T*(X)) and obtain the classical kernel estimafgfy) defined
in (1). The smoothing parametet is estimated by the value that is asymptotically
optimal when estimating 8(3,3) on the domain(—a*,a*), and therefore its
expression is:

it ([ ke[ oma) ([ tgmre) o

— 054160791 5. (13)

gl

The difference between the smoothing paramkt&i(a) in (10) andb* in (13) is
that first is optimal for the classical kernel estimationrahicate Beta density and
second is optimal for the classical kernel estimation obREnsity in[—a*, a*].

3. Obtain the optimal double transformation kernel estomat (12) as:

It is obvious that the estimator in (12) is optimal if the tséormed random variable
Z =T (X) is distributed as a UniforitD, 1), and this certainly depends on the quality
of the generalized Champernowne cdf defined in (5) and howitxsgbproximates the
original variable. This is going to be discussed in the necdtisn, where simulation
results are also shown.

Next we are going to present a simulation study where we shavhat extend, for
finite sample, and with the transformation kernel estinmagigpressed in (12) the results
shown in Buch-Larsent al. (2005) can be improved. Therefore it also improves Wand
et al.(1991) and Clementst al. (2003).

3. Simulation study

This section presents a comparison of our inverse beta ddrdnisformation method
with the results presented by Buch-Larsenal. (2005) based only on the modified
Champernowne distribution. Our objective is to show thatdhcond transformation,
that is based on the inverse of a Beta optimal truncatedhlision, improves density
estimation for a wide range of asymmetric densities that cmmmonly found in
practice.

In this work we analyze the same simulated samples as in Bacsenet al. (2005)
and Bolané et al. (2008), which were drawn from four distributions with diféat tails
and different shapes near 0. The distributions and the chpammeters are listed in
Table 1.



Catalina Bolancé 231

Table 1: Distributions in simulation study.

Distribution Density Parameters
(p,u,0,2,p,C)
— lopep? =(0.7,0,1,1,1,—1)
Mixture of pLognorma fx) =p e =z + B
bdire ol p~og (b, ) V2ro2x —(03,0,1,1,1,-1)
and(1— p)ParetdA,p,c)
+ (1*p)(X*C)_(p+l)pAp = (0'17071~,1717_1)
=(0.9,25,05,1,1,-1)
1 _ (logx-p)2
Lognormalu, o) f(x) = e 2?2 (u,0)=(0,0.5)
2m 02X
Weibull (y) f(x) = yxr-De X y=15
. 2 X X -2
Truncated logistic f(x)= geé <1+eé) s=1

In Figure 2 we present the result of the ratio between theiligion functionF (x)
that is associated to each of the densities in Table 1 andhiben@ernowne distribution

a

Tame(X) that is estimated by means of a sample with size 1000, oltdiom each of

the five distribution. The right-hand plots focus on theaati the tail. In Table 2, we
show the distance measutesandL, betweerF (x) andT; y «(X):

+o00

Tame(t) —F ()] dt

and
+o0
Lo (F Tamie) = / (Tamie(t) — F(t))zdt
Table 2: Distance between the true distribution and the Champerrodistribution.
Lognormal Log-Pareto Weibull Tr. Logist.
p=0.7 p=0.3
Lq 0.0445 14423 21270 00422 00940
Lo 0.0225 00409 00544 00240 00343

Itis obvious that the improvement in the KIBMCE method wigéispect to the Kernel
Modified Champernowne Estimator (KMCE) proposed by Buchskget al. (2005) is
larger in those cases where the shape of the true cdf is siimithe Champernowne. In
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d) Weibull
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e) Truncated Logistic
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Figure 2: Ratio of F(x) and T y; +(X) in the (0,5) domain interval on the left and in th&, 20) domain
interval on the right, for five distributions given in Table 1

the case of a mixture between a lognormal and a Pareto, Bi@wrand 2c show that
the Champernowne distribution tends more rapidly to onettieatrue cdf. and this can
also be seen when looking at the values of lthalistance between the two functions.
The results of Figure 1 and Table 2 show us that the improvemé«IBMCE is larger

in the estimation of a density that has a Lognormal, a We#nudl a Truncated Logistic
shape.

Buch-Larseret al. (2005) evaluate the performance of the KMCE estimators com-
pared to the estimator described by Clemaesttal. (2003) the estimator described by
Wandet al. (1991) and the estimator described by Bokatal. (2003). The Champer-
nowne transformation substantially improve the resutisfprevious authors. Bolaac
et al. (2008, 2009) compare his truncated inverse beta secondfdramtion with
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Table3: The estimated error measures for KMCE and KIBMCE.

Lognormal Log-Pareto Weibull  Tr. Logist.
la p=07 p=03
N =100 L1 KIBMCE  0.9885 01348 01240 01202 01391 01246
KMCE 0.1363 01287 01236 01393 01294
Lo KIBMCE 0.9885 01001 00851 00853 01095 00739
KMCE 0.1047 00837 00837 01084 00786
WISE KIBMCE 0.9885 00992 00819 00896 00871 00969
KMCE 0.1047 00859 00958 00886 00977
N =1000 L1 KIBMCE 0.9885 00561 00480 00471 00589 00510
KMCE 0.0659 00530 00507 00700 00598
() KIBMCE  0.9885 00405 00362 00381 00482 00302
KMCE 0.0481 00389 00393 00582 00339
WISE KIBMCE 0.9885 00404 00359 00402 00378 00408
KMCE 0.0481 00384 00417 00450 00501

Table 4: Ratio between the error measures of KIBMCE and KMCE.

Lognormal Log-Pareto Weibull  Tr. Logist.

p=07 p=03

N =100 L1 0.9888 09637 09725 09982 09629
Lo 0.9563 10162 10190 10100 09398

WISE 0.9470 09538 09350 09835 09916

N = 1000 L1 0.8517 09059 09295 08413 08522
L, 0.8410 09295 09695 08284 08911

WISE 0.8390 09340 09637 08392 08150

| =0.99 andl = 0.98 with Buch-Larsen method and shows that double-transfthom
method improves the results presented in Buch-Laeteal. (2005). In this work, we
compare the results obtained when using an optimal trimmpargmetel,- for B(3,3).

We measure the performance of the estimators by the errosuresabased ih;
norm, L, norm andWISE This last weighs the distance between the estimated and
the true distribution with the squared valuexofThis results in an error measure that
emphasizes the tail of the distribution:

1/2

/°° (fA(x) - f(x))zxzdx
0
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The simulation results can be found in Table 3. For every kited density and
for sample size®N = 100 andN = 1000, the results presented here correspond to the
following error measurek;, L, andWISE The benchmark results are labeled KMCE
and they correspond to those presented in Buch-Lasain(2005). In Table 4 we show
ratios between the error measures of KIBMCE and KMCE, if thi® is smaller than
1 then KIBMCE improves on the results of KMCE.

In Table 4 we show that faX = 100 the ratios associatedltp andwW ISEare always
below one, and this indicates the KIBMCE method improveditha the density in the
tail values of the density even for a small sample size. Wkien 1000 then KIBMCE
has always smaller values than KMCE, both ffgr L, and forWISE The best results
can be obtained for the Lognormal, the Weibull and the Trtetchogistic, where in all
cases the errors of KMCE are reduced by more that a 10% wheg tie new method.

For the mixtures of a Lognormal and a Pareto the results shatwthenp = .7
(70% Lognormal) the improvement is almost 10% ffgrand is around 7% fok, and
WISE Whenp = .3 (30% Lognormal)., is reduced by 7%, and botly andW ISEare
reduced in slightly more than 3%.

4. Data analysis

In this section, we apply our estimation method to a datatsdtdontains automobile
claim costs from a Spanish insurance company for acciderttgreed in 1997. It is a
typical insurance cost of individual claims data set, i.large sample that looks heavy-
tailed. The data are divided into two age groups: claims fpmtficyholders who are
less than 30 years old, and claims from policyholders who3@rgears old or older.
The first group consists of 1,061 observations in the intgiyd26,000] with mean
value 402.70. The second group contains 4,061 observatidhs interval [1;17,000]
with mean value 243.09. Estimation of the parameters in tbdified Champernowne
distribution function for the two samples of is, for youngversa; = 1.116, Ml = 66,
¢ = 0.000 and for older driversi, = 1.145 M, = 68, ¢, = 0.000, respectively. We
notice thatx; < ay, which indicates that the data set for young drivers has aiéetail
than the data set for older drivers.

To produce the graphics, the claims have been split intcetibetegoriesSmall
claimsin the interval (0; 2,00Q)moderately sized claims the interval [2,000; 14,000),
andextreme claim# the interval [14,000¢). In Figure 3 we show the density function
in the three categories for younger and older drivers.

Figure 3 shows that the KIBMCE method corrects the resultSMCE. In general,
the density that is estimated using a KIBMCE method is snero#timd larger in the
mode, if compared with the KMCE estimate. In the tail and cared to the KMCE,
the KIBMCE estimates a larger density in the tail, when tlis teeavier, as for younger
drivers, and it also estimates a smaller density when this tajhter, as for older drivers.
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a) Younger drivers

b) Older drivers
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Figure 3: Optimal KIBMCE estimates (thick) versus KMCE estimatagh{)i of insurance claims cost
densities. Upper plots show small claims, middle plots shmmalerate claims and lower plots show large

claims.

000016

000014

000012

00001

0.000008

0000006

0000004

0000002

00000003

000000025

00000002 |

000000015

00000001

000000005

8000

00

0001000 12000 13000 100

1400

24000

o

4000

54000

64000

40

84000

94000

000016

[t

(i)

00001

0000006

0000006

0000004

0000002

00000003

000000025

00000002

000000015

00000001

000000005

0 N0 M0 N0 600 0 HD N0

0000 10 200 1000 100

14000

24000 300 4000 54000 B000 7400 4000 94000



Catalina Bolancé 237

5. Conclusions

In this work we have proposed a transformation kernel dgesiimator that can provide
good results when the density to be estimated is very asyriuratd has extreme
values. Moreover, the method presented here has a verghgfaaivard method to
calculate the smoothing parameter. This method provideseaaf thumb method to
calculate the bandwidth in the context of transformatiomkiedensity estimation that
is comparable to Silverman’s rule of thumb in the context lagsical kernel density
estimation. For large sample sizes, like the ones showreiapiplication, the simulation
study shows that this method outperforms existing altaresit
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