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ABSTRACT 

_____________________________________________________________ 
 

The complexity of financial analysis, particularly on selection process or 
decision making problems, has increased rapidly over several decades. As a 
result, much attention has been focused on developing and implementing the 
efficient mathematical models for supporting this kind of problems. Multiple 
criteria decision analysis, an advanced field of operations research provides 
analysts or decision makers a broad range of methodologies, which are all 
suited to the complexity of financial decision analysis. In the financial 
modeling, uncertainty problems are inevitable, owing to the fact that the 
consequences of events are not precisely known. In addition, human 
judgments as part of analysis also contribute to it intricacy. Correspondingly, 
many studies have been concentrated on integrating uncertainty theories in 
modeling the real financial problems. One area of interest is on the inclusion 
of the element of human behavior or attitudinal character of decision makers. 
Aggregation operator in this case can offer a wide spectrum of analysis or 
flexibility in modeling the human behavior in financial decision analysis.  

In general, the main purpose of this work is on the study of financial 
selection problems from the perspective of decision analysis, uncertainty 
theories and aggregation operators. To be specific, the decision problems 
under a finite or discrete case and multidimensional factors are studied. The 
emphasis is given on the group decision making models, notably, the 
Dempster-Shafer theory (DST) of belief structure, the analytic hierarchy 
process (AHP) and the technique for order performance by similarity to ideal 
solution (TOPSIS). Moreover, the uncertainty theories based on fuzzy set 
theory and imprecise probability are employed, together with information 
fusion based on the ordered weighted average (OWA) operators. Quantitative 
and qualitative preferences, decision strategies based on the attitudinal 
character of decision makers, and majority concepts for group consensus are 
highlighted. The specific contributions of this work are summarized as the 
following. 

The first contribution is on developing the multi-expert multi-criteria 
decision making (ME-MCDM) model with respect to two-stage aggregation 
processes. In specific, the aggregation of criteria is based on the integration of 
weighted arithmetic mean (WA) and OWA. The main attention is given to the 
proposed alternative OWAWA operator as an extension of immediate WA 
and OWAWA operators. Two approaches for modeling the majority opinion 
of experts are studied, in which based on the induced OWA (IOWA) 
operators. Some modifications to the support functions are suggested as to 
derive the order-inducing variables. The analysis of ME-MCDM model based 
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on these aggregation processes then is conducted. In this study the selection of 
investment strategy is used as to exemplify the model. 

The weighted-selective aggregated majority-OWA operator may be 
considered as the second contribution. It is an extension of the SAM-OWA 
operator, where the reliability of information sources is considered. The 
WSAM-OWA then is generalized to the quantified WSAM-OWA by 
incorporating the concept of linguistic quantifier, mainly for the group fusion 
strategy. The QWSAM-IOWA with an ordering step is proposed for the 
individual fusion strategy. These aggregation operators are then implemented 
to the case of alternative scheme of heterogeneous group decision analysis, in 
particular for a selection of investment problem. 

The third contribution is represented by the development of linguistic 
group decision making with Dempster-Shafer belief structure. Different type 
of linguistic aggregation operator such as the 2-tuple induced linguistic OWA 
operator is suggested. Specifically, it is based on order-inducing variables in 
which the ordering of the arguments and uncertain situations can be assessed 
with linguistic information. Then, by using the 2-TILOWA in the D-S 
framework, the belief structure-2-TILOWA operator can be formed. Some of 
its main properties are studied. This model is applied in a selection of financial 
strategies. 

The extension of AHP for group decision making model is given as the 
fourth contribution, notably, based on the inclusion of IOWA operators. 
Two-stage aggregation processes used in the AHP-GDM model are extended. 
Firstly, a generalization of weighted maximal entropy OWA under the IOWA 
operator is proposed as to aggregate the criteria. Further, the majority concept 
based on the IOWA and Minkowski OWA-based similarity measure is 
suggested to determine a consensus among experts. This model provides a 
variant of decision strategies for analyzing the individual and the majority of 
experts. The application in investment selection problem is presented to test 
the reliability of the model. 

The fifth contribution is on the integration of heavy ordered weighted 
geometric (HOWG) aggregation operators in AHP-GDM model. In the sense 
of heavy OWA operator (HOWA), the heavy weighted geometric (HWG) and 
HOWG are introduced as extensions of the normal weighted geometric mean 
(WG) and the OWG by relaxing the constraints on the associated weighting 
vector. These HWG and HOWG operators then are utilized in the 
aggregation process of AHP-GDM, specifically on the aggregation of 
individual judgments procedure. The main advantage of the model, besides the 
complete overlapping of information such in classical methods, is that it can 
also accommodate partial and non-overlapping information in the 
formulation. An investment selection problem is applied to demonstrate the 
model. 
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The extension of TOPSIS for group decision making model by the 
inclusion of majority concept may be considered as the sixth contribution. The 
majority concept is derived based on the induced generalized OWA (IGOWA) 
operators. Two fusion schemes in TOPSIS model are designed. First, an 
external fusion scheme to aggregate the experts’ judgments with respect to the 
concept of majority opinion on each criterion is suggested. Then, an internal 
fusion scheme of ideal and anti-ideal solutions that represent the majority of 
experts is proposed using the Minkowski OWA distance measures. The 
comparison of the proposed model with some other TOPSIS models with 
respect to distance measures is presented.  Here, a general case of selection 
problem is presented, specifically on the human resource selection problem.  

Finally, the group decision making model based on  
(CBFS) is proposed. Precisely, the subjective judgments of experts, mainly 
from positive and negative aspects are considered simultaneously in the 
analysis. Moreover, the weighting method for the attribute (or sub-attribute) is 
subject to the integration of subjective and objective weights. The synthesis of 
CBFS in the model is naturally done by extending the fuzzy evaluation in 
parallel with the intuitionistic fuzzy set. A new technique to compute the 
similarity measure is proposed, in which, being the degree of agreement 
between the experts. The model then is applied in the case study of ood 
control project selection problem. 

To sum up, the presented thesis dealt with the extension of multi-criteria 
decision analysis models for the financial selection problems (as a specific 
scope) and also the general selection problems with the inclusion of attitudinal 
character, majority concept, and fuzzy set theory. In particular, the group 
decision making model, Dempster-Shafer belief structure, AHP, and TOPSIS 
are proposed to overcome the shortcoming of the existing models, i.e., related 
to the financial decision analysis. The applicability and robustness of the 
developed models have been demonstrated and some sensitivity analyses are 
also provided. The main advantages of the proposed models are to provide 
more general and flexible models for a wider analysis of the decision 
problems. 
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RESUM 

_____________________________________________________________ 
 

La complexitat de l’anàlisi financera, sobretot en els processos de selecció o en 
problemes de presa de decisions, s’ha incrementat molt en les darreres 
dècades. Un efecte d’això ha estat el major desenvolupament i implementació 
de models matemàtics eficients per donar suport a aquest tipus de problemes 
complexos. L’anàlisi de decisions multicriteri, un àmbit avançat de la 
investigació operativa, proporciona als analistes i als decisors una àmplia 
gamma de metodologies que s’adapten a la complexitat de l’anàlisi de decisions 
financeres. En els models financers, els problemes d’incertesa són inevitables, 
perquè els efectes i esdeveniments futurs no es coneixen amb precisió. A més, 
els judicis i opinions humans com a part de l’anàlisi també contribueixen a 
incrementar la complexitat de la decisió. En conseqüència, molts estudis s’han 
concentrat en la integració de les teories d’incertesa en el modelatge dels 
problemes financers de la vida real. Una àrea d’interès, dins d’aquesta 
integració, és la inclusió de l’element del comportament racional humà o del 
caràcter conductual dels decisors. En aquests casos, els operadors d’agregació 
poden oferir un ampli espectre d’anàlisi o flexibilitat en la modelització del 
comportament humà en l’anàlisi de decisions financeres. 

En general, l’objectiu principal d’aquest treball és l’estudi dels problemes de 
selecció financera des de la perspectiva de l’anàlisi de decisions, les teories de 
la incertesa i els operadors d’agregació. En concret, s’estudien els problemes de 
decisió en virtut d’un conjunt finit d’alternatives (cas discret) i de factors 
multidimensionals. L’èmfasi se situa en els models de presa de decisions en 
grup i, en particular, en l’estructura de creences de Dempster-Shafer (D-S), el 
procés analític jeràrquic (AHP) i la tècnica d’ordre de preferència per similitud 
amb la solució ideal (TOPSIS). A més, es fan servir les teories d’incertesa 
basades en conjunts borrosos i de probabilitats imprecises juntament amb la 
fusió de la informació basada en operadors de mitjana amb pesos ordenats 
(OWA). També es destaquen les preferències quantitatives i qualitatives, les 
estratègies de decisió basades en el caràcter actitudinal dels decisors, i el 
concepte de majoria en el consens grupal. La recerca feta es pot sintetitzar en 
set aportacions específiques a l’state-of-the-art de l’anàlisi de decisions i els 
operadors d’agregació en els problemes de selecció financera. Es resumeixen a 
continuació: 

La primera contribució té a veure amb el desenvolupament del model de 
presa de decisions multicriteri amb diversos experts (ME-MCDM) en els 
processos d’agregació en dues etapes. En particular, l’agregació dels criteris es 
basa en la integració de la mitjana aritmètica ponderada (WA) i els operadors 
de mitjana amb pesos ordenats (OWA). Es presta una atenció especial a 
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l’alternativa proposada de l’operador OWAWA com a extensió dels operadors 
immediats WA i OWAWA. S’estudien dos enfocaments per a la modelització 
de l’opinió de la majoria dels experts, els quals es basen en els operadors OWA 
induïts (IOWA). També se suggereixen algunes modificacions en les funcions 
de suport per derivar les variables d’ordre induït. A continuació, es porta a 
terme l’anàlisi del model ME-MCDM, basat en aquests processos d’agregació. 
La selecció de l’estratègia d’inversió es fa servir per exemplificar el model i la 
seva utilitat en els problemes de selecció financera.  

L’operador OWA de majoria agregada selectiva ponderada es pot 
considerar la segona aportació. És com una extensió de l’operador SAM-
OWA, en què es considera la fiabilitat de les fonts d’informació. L’operador 
WSAM-OWA es pot generalitzar en la forma quantificada de WSAM-OWA, 
mitjançant la incorporació del concepte de quantificador lingüístic, 
principalment en l’estratègia de fusió grupal. Es proposa l’operador QWSAM-
IOWA amb una etapa d’ordenació per a l’estratègia de fusió individual. 
Aquests operadors d’agregació s’implementen per al cas d’un esquema 
alternatiu d’anàlisi de decisions en grups heterogenis, particularment en 
problemes de selecció d’inversions. 

La tercera contribució es constata en el desenvolupament de la presa de 
decisions grupal amb quantificador lingüístic dins de l’estructura de creences 
Dempster-Shafer (D-S). Es suggereixen diferents tipus d’operadors 
d’agregació lingüística, com ara l’operador OWA induït de 2 tuples amb 
quantificador lingüístic (2-TILOWA). En concret, es basa en variables d’ordre 
induït en les quals l’ordre dels arguments i situacions d’incertesa es pot avaluar 
amb la informació lingüística. Així doncs, mitjançant l’ús del 2-TILOWA en el 
marc D-S, es pot formar l’operador 2-TILOWA amb l’estructura de creences. 
Se n’estudien algunes de les propietats principals i s’aplica aquest model a una 
selecció d’estratègies financeres.  

L’extensió del model AHP per a la presa de decisions grupal, en particular, 
sobre la base de la inclusió dels operadors IOWA, configura la quarta 
aportació. Els processos d’agregació en dues etapes que es fan servir en el 
model AHP-GDM s’estenen per proporcionar un marc d’anàlisi de decisions 
més general. En primer lloc, es proposa com a agregació de criteris una 
generalització de l’operador OWA d’entropia màxima ponderada sota 
l’operador IOWA, amb la finalitat d’agregar els criteris. En segon lloc, se 
suggereix el concepte de majoria basat en la mesura de similitud dels operadors 
IOWA i OWA de Minkowski per tal de determinar el consens entre els 
experts. Aquest model proporciona un conjunt alternatiu d’estratègies de 
decisió dins de l’anàlisi de l’expert individual o de la majoria d’experts. Per 
provar la fiabilitat del model se’n presenta l’aplicació a un problema de selecció 
d’inversions. 
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La cinquena contribució es correspon a la integració d’alguns operadors 
d’agregació geomètrics ponderats ordenats pesats (HOWG) en el model AHP-
GDM. Així, en el sentit de l’operador OWA pesat (HOWA), l’operador 
geomètric ponderat pesat (HWG) i l’operador HOWG s’introdueixen com a 
extensions de la mitjana normal geomètrica ponderada (WG) i l’OWG, a partir 
de relaxar les restriccions en el vector de pesos associats. Aquests operadors 
HWG i HOWG aleshores s’utilitzen en el procés d’agregació d’AHP-GDM, 
específicament en el procés d’agregació de judicis o opinions individuals. 
L’avantatge principal d’aquest model, a més de la superposició completa 
d’informació com en els mètodes clàssics, és que també pot adaptar 
informació parcial i no superposada en la formulació. Per demostrar la bondat 
del model s’aplica a un problema de selecció d’inversions. 

L’extensió del model TOPSIS per a la presa de decisions grupal a través de 
la inclusió del concepte de majoria, es pot considerar la sisena aportació. El 
concepte de majoria es desenvolupa sobre la base dels operadors OWA 
generalitzats induïts (IGOWA). Es presenten dos esquemes de fusió en el 
model TOPSIS. En primer lloc, se suggereix un esquema de fusió externa per 
agregar els judicis o opinions dels experts pel que fa al concepte d’opinió 
majoritària en cada criteri. En segon lloc, es proposa un esquema de fusió 
interna de les solucions ideals i anti-ideals que representa la majoria dels 
experts fent servir les mesures de distància OWA de Minkowski. Es fa una 
comparació de les mesures de distància entre el model proposat i altres models 
TOPSIS. Novament, es fa un estudi aplicat a un problema de selecció, 
concretament a un problema de selecció de recursos humans. 

Finalment, la setena aportació que es desenvolupa és la proposta d’un 
model de presa de decisions grupal basat en els conjunts borrosos en conflicte 
(CBFS). Específicament, l’anàlisi té en compte de manera simultània els judicis 
o opinions subjectius dels experts, principalment pel que fa a aspectes positius 
i negatius. Així mateix, el mètode de ponderació per a l’atribut (o atribut 
secundari) està subjecte a la integració de pesos subjectius i objectius. La 
síntesi del CBFS en el model es porta a terme de manera natural ampliant 
l’avaluació borrosa en paral·lel amb el conjunt borrós intuïcionista. Es proposa 
una nova tècnica per calcular la mesura de similitud, és a dir, establir el grau 
d’acord entre els experts. El model s’aplica a un cas de problema de selecció, 
en concret, a un problema de control d’inundacions. 

En resum, la tesi desenvolupa una extensió dels models d’anàlisi de 
decisions multicriteri que es fan servir en la resolució dels problemes de 
selecció financers (com a àmbit específic), però també en els problemes de 
selecció generals, amb la inclusió del caràcter actitudinal, el concepte de 
majoria i la teoria dels conjunts borrosos. En particular, proposa els models 
AHP i TOPSIS, juntament amb el model de presa de decisions grupal i 
l’estructura de creences Dempster-Shafer, per tal de superar les deficiències 
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dels models existents en relació amb l’anàlisi de decisions financeres. Es 
demostra l’aplicabilitat i la robustesa dels models desenvolupats, que també es 
reforça amb algunes anàlisis de sensibilitat. Els avantatges principals dels 
models proposats són que es tracta de models més generals i flexibles per a 
una anàlisi més àmplia dels problemes de decisió, i en particular dels de 
selecció financera. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
 

1.1 General Background 
 

Financial modeling is one of the main research areas in the field of finance or 
economics. The topic has been studied widely from various perspectives. 
Among the major interests in this topic are the financial analysis and decision 
making problems, such as portfolio selection problems, asset allocation 
problems, and selection of financial products, to name a few. The selection 
process, generally, is a complex procedure which involves decision under 
various conditions (e.g., certainty and uncertainty) and multidimensional aspects 
(e.g., multi-criteria and multi-expert judgments). Many mathematical models, 
methods or techniques have been developed to deal with such problems. Closely 
related to this topic is the subject of decision theory, which is under the field of 
operations research or management science.  

Decision theory is fundamental in decision analysis or decision making 
models. Decision analysis can be explained as a careful analysis in deciding upon 
a course of action. The prominent work on this topic is due to von Neumann 
and Morgenstern (1944) in modeling human rational behavior, precisely in the 
realm of economics. In specific, it is based on a decision analysis under 
uncertainty (or risk) and is modeled using a probability theory, i.e., objectively 
defined. In this case, the alternatives to be analyzed are based on a set of 
uncertain states of the world (or nature) and the final decision is determined by 
the maximum expected utility. Basically, the maximum expected utility theory is 
subject to a one-dimensional set of consequences. The extended version of this 
model under the multidimensional factors is represented by a multi-attribute 
utility theory (MAUT), or a multi-attribute value theory (MAVT) in the case of 
certainty. The review on this topic is provided in Chapter 2. 

The underlying concept in the existing decision making models is based on 
either the utility theory or the value theory, with respect to the preference 
relation approach. Lay upon the same concept, many other decision making 
models have been developed in the literature, such as the analytic hierarchy 
process (AHP), measuring attractiveness by a categorical based evaluation 
technique (MACBETH), technique for order performance by similarity to ideal 
solution (TOPSIS), preference disaggregation analysis, outranking models, e.g., 
elimination and choice expressing reality (ELECTRE) and preference ranking 
organization method for enrichment evaluation (PROMETHEE), among 
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others (see Saaty, 1980; Bana e Costa & Vansnick, 1994; Hwang & Yoon, 1981; 
Jacquet-Lagréze & Siskos, 1982; Roy, 1991; Brans & Vincke, 1985). All these 
models are classified under the general class of decision analysis known as a 
multi-criteria decision analysis (MCDA). Besides, the models are also applicable 
for the case of multi-expert (or group) decision making problems. 

Alternatively, to deal with uncertain decision problems, such as in the case of 
the absence of objective probability, Savage (1954) then proposed the subjective 
expected utility model which is based on a subjective probability theory. This 
type of probability is an alternative of the objective probability (i.e., random or 
chance phenomena), where it is derived from an individual’s personal judgment 
(i.e., the degree of belief or perception) (see Ramsey, 1931; de Finetti, 1937). 
The Bayesian decision model (Berger, 1985; Savchuk & Tsokos, 2011) was the 
product of the subjective probability and later was extended by Dempster (1967) 
and Shafer (1976) for the new approach known as Dempster-Shafer belief 
structure, (i.e., the theory of evidence). This method can be considered as a 
general framework for reasoning with uncertainty, with the connections to the 
other frameworks such as probability, possibility and imprecise probability 
theories. 

In addition to the probability theory, another well-known theory in modeling 
uncertainty problems is a fuzzy set theory by Zadeh (1965). This theory has 
been successfully applied in the domain of decision analysis. The essence of this 
theory is to deal with decision problem under the imprecision, vagueness and 
partially truth condition. Billot (1992) classifies the application of fuzzy set 
theory, specifically under the field of economics, into two categories. First, the 
direct application of the concept of fuzzy sets via the extension principle, which 
is from the world of crisp numbers and all its restrictions to the world of fuzzy 
numbers with flexibility in data representation. This includes fuzzy number 
arithmetic, ranking of fuzzy numbers, fuzzy preference relations, fuzzy 
mathematical programming, fuzzy multi-criteria decision problems, etc. The 
second is, the introduction of fuzzy measure or non-additive probability as a 
necessary tool to avoid well-known paradoxes, such as the Ellsberg paradox. 
This branch includes possibility theory, non-additive expected utility, and also 
the Dempster-Shafer theory.  

Another important issue in decision analysis is the aggregation process or 
information fusion. Under the fuzzy measures, in particular Choquet and 
Sugeno integrals, a wide range of aggregation operators can be derived and 
integrated with decision making models (see Beliakov et al., 2007; Torra & 
Narukawa, 2007; Grabisch et al., 2009). The OWA operator (Yager, 1988; Yager 
& Kacprzyk, 1997) is a sub-class of these general operators of fuzzy measures. 
It provides a unified framework of mean-type aggregation operators such as the 
average, the maximum, the minimum, and a convex sum of the maximum and 
the minimum. With respect to the OWA operators, there are many other 
families, extensions and generalizations of aggregation operators, such as a 
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generalized OWA, an induced generalized OWA, a weighted OWA and a 
majority additive-OWA, etc (see, for example, Yager, 1996; Merigó & Gil-
Lafuente, 2009; Torra, 1997; Peláez & Doña, 2003). Recently, Yager (2003a) 
generalized the fuzzy measures to monitored heavy fuzzy measures which 
include a more general class of aggregation operators. In specific, these 
operators include both, the mean aggregation and the total aggregation 
operators. Heavy OWA, for instance, is a type of this general class aggregation 
operator. The general overview of aggregation operators can be referred in 
Chapter 3. 

It can be noticed that the main development of decision analysis has been 
concentrated on the problems of multidimensional aspects, modeling 
uncertainty and the fusion of information. Highlighting on the aforementioned 
problems, this study is focused on extending and revising some of the decision 
making models, namely the general group decision making model, Dempster-
Shafer belief structure, AHP and TOPSIS models with respect to the fuzzy set 
theory and the OWA-based aggregation operators. Then, analyses on the 
financial selection problems are studied for the specific scope of this research. 
In addition, other general applications such as human resource selection 
problems and flood control project selection are also presented to demonstrate 
the applicability of the developed models. In the subsequent section, the 
justification for the application of MCDA models in the domain of financial 
analysis is presented. 

 
 

1.2 Multi-dimensional Aspects in Financial Decision Analysis 
 

Financial modeling has demonstrated a huge amount of literature related to 
developing and integrating financial theory, tools of operations research and 
mathematical models for specific financial problems. For example, numerous 
studies have been devoted to portfolio analysis, particularly after the work by 
Markowitz (1952). The mean-variance model was proposed to construct an 
efficient frontier of optimal portfolios, offering the maximum possible expected 
return for a given level of risk, or vice versa.  

The central directions of portfolio theory can be divided into two main 
approaches. They are the portfolio optimization and the portfolio selection 
problems. Portfolio optimization which stems from Markowitz’s model is based 
on mathematical optimization techniques (see, for example, Focardi & Fabozzi, 
2004; Mansini et al., 2015). On the other hand, portfolio selection is based on 
decision rules or decision strategies (see Grinold, 1999; Gosling, 2010, among 
others). The mean-variance model was introduced considering the bi-criteria 
evaluations (i.e., return and risk). The model was an extension of the classical 
one-dimensional approach of investment (i.e., focus exclusively on expected 
value or mean return). However, relying on the two factors of return and risk is 
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not providing complete analysis for the portfolio performance. Spronk and 
Hallerbach (1997) stated that variance as a risk measure may miss its link with 
an investor’s preference structure of the distributions of security and portfolio 
returns. Moreover, information concerning mean and variance is not always 
sufficient to adequately discriminate between investment alternatives. In this 
way, it can be said that the mean-variance framework deducts the multi-
dimensional aspects that may be perceived by the investor. Hence, the portfolio 
management or selection process has been extended to the case of 
multidimensional factors to better model this kind of problem. 

In the literature, there a substantial amount of MCDA models that have been 
applied in portfolio selection problems. Examples include, the AHP method 
(Saaty & Vargas, 1982; Tiryaki & Ahlatcioglu, 2005), the MACBETH (Bana e 
Costa & Soares, 2004; Hurson et al., 2012), the TOPSIS and outranking 
methods (Martel et al., 1988; Vetschera & de Almeida, 2012; Tavana et al., 2015). 
In addition to portfolio selection and management, other areas of finance, such 
as venture capital investments, bankruptcy prediction, financial planning, 
corporate mergers and acquisitions, country risk assessment, etc. have been 
studied under the realm of MCDA. The review of applications of MCDA 
models in the domain of finance can be referred to, for instance, in Zopounidis 
and Doumpos (2002), Spronk et al. (2005) and Dymowa (2011). 

In other application, such as project assessments, the cost-benefit analysis 
(CBA) is another model that normally used in decision analysis. The model is 
mainly based on the net value, e.g., cash flow, etc. However, the same critique 
has been posed to the CBA model as the main consideration is bi-criteria on the 
monetary values (Munda, 1996; Bouyssou, 2000; Bana e Costa, 2004). This then 
limits the inclusion of the other qualitative factors (or non-monetary values) 
such as technical, social, environmental criteria. As a result, the MCDA models 
have been applied to provide a comprehensive analysis of the problem at hand. 

In addition to the multi-criteria assessments, group decision problem is also 
vital in the financial decision analysis. According to Forsyth (2006) and Bonner 
et al. (2002), groups undeniably have advantages over decisions made by 
individuals. In general, it provides a potential of synergy and sharing of 
information. For instance, synergy can be interpreted as the idea that the whole 
group is better than the sum of its individual members. When a group makes a 
decision collectively, its judgment can be more incisive than that of any of its 
members. On the other hand, the sharing of information can be explained as 
taking into account a broader scope of information since each group member 
may contribute unique information and expertise. Some works on the group 
decision making in the finance research can be referred in Mottola and Utkus 
(2009), Baddeley and Parkinson (2012) and Huang et al. (2013), among others. 
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1.3 Problem Statements and Motivation 
 

In the previous section, justifications for the application of MCDA models in 
the domain of finance have been discussed. In this section, the issues and main 
motivation related to the integration of OWA-based aggregation operators and 
uncertainty theories are presented.  

Most of the MCDA models are developed based on the weighted arithmetic 
mean (WA) for the aggregation of criteria. The emphasis is only given on the 
weights concept in which all the criteria are associated with specific degrees of 
importance. However, in this respect, the analysis is very limited since there is 
no consideration for the behavioral or attitudinal character of experts. Thus, a 
broader analysis of the problem, such as the assessment with respect to different 
decision strategies (i.e., ranging from optimistic to pessimistic views of experts) 
cannot be performed. Alternatively, OWA operator (Yager, 1988) provides the 
inclusion of the attitudinal character of experts in the aggregation process. Its 
main focus is on the structure concept, for instance, the relationship between 
the criteria as perceived by the experts. In this case, different semantics can be 
associated to OWA operator by the construction of its weighting vector. 
Recently, OWA aggregation operators have been applied in the field of finance 
(see, for example, Engemann et al., 1996; Merigó & Gil-Lafuente, 2010; Belles-
Sampera et al., 2013; Vigiera et al., 2016; Laengle et al., 2016).  

In spite of that, OWA operator is only taken into account the case where the 
criteria are associated with equal degrees of importance (i.e., with respect to the 
weight concept). Then, this again not well representing the general decision 
making model where each of the criteria is associated with the different degree 
of importance. As a solution, the integration of WA and OWA operators has 
been proposed to include not only the degrees of importance but also, with the 
inclusion of the attitudinal character of experts (see Yager, 1988; Torra, 1997; 
Merigó, 2012, among others). Hence, the MCDA models for financial selection 
problems need to incorporate this type of aggregation operators as an additional 
feature to improve the modeling process. 

As can be noted, the OWA is based on the permutation of the input vector 
according to the magnitude of its arguments. However, in some cases, it makes 
sense that the inputs be reordered by values different to those used in the 
calculation. In a more general framework, it can be represented as a two-tuple 
(or OWA pair), in which the argument is a component of a more complex object 
together with the order inducing variable. This particular aggregation operator 
is known as the induced OWA operator (Yager & Filev, 1999). The order 
inducing variable may be represented by the auxiliary variable or the function of 
argument values. Examples include the reliability of sources, nearest-neighbor 
rules, best-yesterday models, etc. (see Yager & Filev, 1999; Chiclana et al., 2007; 
Merigó & Gil-Lafuente, 2009; Beliakov & James, 2011). Analogously, IOWA 
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operator can be integrated with the WA and then applied in the MCDA models 
to provide a general framework of the aggregation process. 

It is clear that OWA is a mean type of aggregation operator where the 
estimation is respect to the spatial partition. Generally, it is based on the 
overlapping information of the same variable, as such, all the experts are 
evaluating the same space. Therefore, this provides freedom and flexibility to 
represent the information in the aggregation process. In addition to that, heavy 
OWA (Yager, 2002) as another extension of OWA is based on the totaling-type 
aggregation. The estimation is generated from the partition space or disjoint 
region. Hence, the information is non-overlapping and each space reflects 
different variable. In this case, all the information must be employed because 
they are totally independent. An interesting feature is, it provides a wider class 
of aggregation processes, in between the mean-type and totaling-type, 
specifically in the cases of partial-overlapping information. To deal with this 
type of problems in the financial analysis, the MCDA models can be integrated 
with the HOWA operators. Accordingly, this can accommodate more complex 
problems and wider decision strategies for the extensive analysis. 

Another issue that may arise in MCDA problems is when dealing with the 
consensus measure of the experts. Similarly, WA or weighted geometric mean 
(WG) is applied as the group aggregator. In this situation, all experts are included 
in the evaluation process without an exception, even though there may be some 
biases of certain experts. Hence, this result will influence the validity of the 
overall judgment. However, in most cases, it is difficult to achieve a unanimous 
agreement when dealing with group evaluation. As an alternative, consensus 
measure among a majority of experts can be tolerated as a representative result. 
Thus, soft agreement to represent the majority concept can be conducted by 
specifying the appropriate semantics to the aggregation process. In the literature, 
there are some approaches which have been proposed recently to model the 
majority concept, notably, the IOWA-related models (Pasi & Yager 2006; 
Bordogna & Sterlacchini, 2014) and neat-OWA based models (Peláez & Doña, 
2003a).  

In general, the methodology for generating the consensus measure with 
respect to majority concept can be divided to several perspectives. First is 
dealing with the classes of group decision making model, either homogeneous 
case or heterogeneous case. For the homogeneous case, the majority can be 
achieved with respect to the most similar opinion of experts. On the other hand, 
in the case of heterogeneous group decision making, the integration of similarity 
of opinion and the degree of reliability is considered simultaneously. Another 
perspective in applying the majority concept is related to the decision scheme. 
Specifically, there are two different schemes of group decision model, namely, 
the classical scheme and the alternative scheme. Most of the GDM models rely 
heavily on the classical scheme, where the global judgment is referred to the 
final ranking of individual experts. Prior to that, the local judgment implicates 
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the separate attitudinal character of each expert. On the contrary, for the 
alternative scheme, the global judgment is conducted with respect to each 
specific criterion of experts. Then, the final judgment is represented by the 
attitudinal character of the group of experts collectively. The development of 
MCDA models under group environment needs to be emphasized on these 
aspects for the holistic analysis. Then, the decision problems can be conducted 
for the specific purpose. 

The uncertainty problems have been noticed as the main issue in the finance 
research over several decades. In reality, the future state of a system might not 
be known completely due to lack of information. Therefore, the investment 
analysis is often uncertain in various conditions. One way to deal with this 
uncertainty problem is by using the probability theory. There are a number of 
developments on the probability theory in the literature, such as objective, 
subjective and imprecise probability theories. However, it is assumed that not 
all uncertainty problems easily fit the probabilistic classification. The human 
judgment of events, for instance, may be significantly different based on 
individuals’ subjective perceptions or personality tendencies. Thus human 
judgment is often vague and fuzzy. The source of uncertainty may also come 
from subjective attributes that urge the subjective evaluation of experts, as such, 
the preferences or estimation with respect to linguistic assessments is preferred 
than the exact assessments. For this purpose, fuzzy set theory (Zadeh, 1965) has 
been introduced as the alternative of probability theory to deal with this type of 
problem. There are many applications of fuzzy set theory in the finance domain, 
some of them can be referred in Terceño et al. (2003), Aliev et al. (2004), Gil-
Lafuente (2005), Wang and Lee (2010) and Dymowa (2011). 

As previously mentioned, the attitudinal character in OWA operators is 
characterized by specific semantics. The linguistic quantifiers (Zadeh, 1983) of 
fuzzy set theory provide tools in representing these semantics for the 
aggregation process. In addition, there are a lot of developments in the fuzzy 
linguistic variable towards computing with words or natural language. Many 
approaches have been proposed recently to model the linguistic information. 
One of them is by applying the 2-tuple linguistic representation model as 
proposed by Herrera and Martínez (2000a; 2000b). By using this approach, the 
linguistic analysis can be conducted without loss of information in the 
computing process. In other related work, Bordogna et al. (1997) proposed the 
conversion of linguistic labels to the numerical values to deal with the operations 
in the numerical environment. Accordingly, there are lots of developments on 
the linguistic aggregation operator, notably with respect to the OWA-based 
aggregation operators. Therefore, the inclusion of fuzzy set ideas into MCDA 
models need to focus on both expressions, i.e., the fuzzification of the 
preference information and the integration of soft aggregation processes. 
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1.4 Objectives 
 

According to the aforementioned problems, in this study, some of the MCDA 
models, namely the general group decision making, Dempster-Shafer belief 
structure, AHP, and TOPSIS are proposed to overcome the shortcoming of the 
existing models. In order to make this research clear and consistent, the 
objectives of the research are defined as the followings. 

i) To extend some of the MCDA models by the inclusion of attitudinal 
character of experts in the aggregation process. This can be done by 
incorporating the OWA-based aggregation operators, specifically: 
 the integration of WA and OWA for criteria aggregation, 
 generating the OWA using linguistic-functional specification 

(generalized quantifier) and characterizing feature (maximum 
entropy OWA), 

 applying the heavy OWA-based aggregation operators. 
ii) To propose the majority concepts based on OWA and IOWA as the 

group aggregators for homogeneous and heterogeneous group 
decision making models. In particular: 
 majority concept based on induced OWA, 
 majority concept based on neat-OWA. 

iii) To study and compare the group decision making models from two 
different perspectives, notably: 
 the classical scheme – aggregation of experts with respect to 

individual ranking of alternatives, 
 alternative scheme – aggregation of experts with respect to the 

specific criterion. 
iv) To employ fuzzy linguistic information in representing the 

uncertainty of data, such as the imprecise knowledge, vague concepts 
and human subjective judgments (i.e., towards computing with words 
or natural language). In specific: 
 the 2-tuple linguistic approach, 
 the general linguistic labels. 

v) To provide a complete analysis of the decision making problems by 
using the generalized version of OWA (GOWA) and IOWA 
(IGOWA). These provide a wide spectrum of results to be compared 
for the final decision making process. 

vi) To implement or apply the developed models to the financial 
decision analysis and non-financial problems such as human resource 
selection problem and flood control project selection problem. 
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A list of contributions generated from this study is presented in the subsequent 
section. 

 
 

1.5 Publications 
 

Most ideas or contributions in this thesis have previously appeared in the 
following articles. Here is the list of chapters of this thesis to which they are 
related: 
 

i) OWA-based aggregation operations in multi-expert 
MCDM model – with José Maria Merigó Lindahl and 
David Ceballos Hornero. Article accepted for publication 
in Journal of Economic Computation and Economic 
Cybernetics Studies and Research (ECECSR), 2017. 
The short version of this article has been published in 
Proceedings of IMST 2015-FIM XXIV Conference 
on Interdisciplinary Mathematics, Statistics and 
Computational Techniques. 
 

 Chapter 4 

ii) Weighted selective aggregated majority-OWA 
operator and its application in linguistic group 
decision making model – with José Maria Merigó 
Lindahl and David Ceballos Hornero. Article submitted 
to International Journal of Intelligent Systems (IJIS), 
August 2016. 

 

Chapter 4 

iii) Linguistic decision making with Dempster-Shafer 
theory and induced linguistic aggregation operators – 
with José Maria Merigó Lindahl, Montserrat 
Casanovas and Ligang Zhou. Article accepted for 
publication in Applied Mathematics and Information 
Sciences Journal (AMIS), 2017. 

 

Chapter 4 

iv) Generalized AHP for group decision making model 
using induced OWA operators – with José Maria 
Merigó Lindahl and David Ceballos Hornero. Article 
accepted for publication in Kybernetes Journal, 2017. The 
short version of this article has been published in Lauren et 
al. (Eds.): IPMU 2014, Part 1 CCIS 442, pp. 476-485, 
2014. (Chapter in book) Springer-Verlag.  

 

Chapter 5 
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v) Heavy weighted geometric aggregation operators in 
AHP group decision making – with José Maria 
Merigó Lindahl and David Ceballos Hornero. Article 
published in Proceedings of International Conference 
on Fuzzy Systems, IEEE-FUZZ 2015. The short 
version of this article has been published in Book of 
Abstracts - International Student Conference on 
Applied Mathematics and Informatics (ISCAMI), 
April 2015. 

 

Chapter 5 

vi) TOPSIS model with the OWA-based aggregation – 
with José Maria Merigó Lindahl and David Ceballos 
Hornero. Article submitted to Computer and Industrial 
Engineering Journal, (CAIE), May 2016. The short 
version of this article has been published in Proceedings of 
IMST 2015-FIM XXIV Conference on 
Interdisciplinary Mathematics, Statistics and 
Computational Techniques (November 2015). 

 
In addition, the work produced from the master thesis 
in which generated as an output of another publication 
is also linked to some of the contents in the present 
thesis: 

 

Chapter 6 

vii) Conflicting bifuzzy multi-attribute group decision 
making model with application to flood control 
project – with Che Mohd Imran Che Taib, Mohd 
Lazim Abdullah and Abdul Fatah Wahab. Article 
published in Group Decision and Negotiation (2016), 
25(1), 157–180. 
 

I have been authorized by the co-authors of the stated 
publications, to compile all those ideas, tables and 
figures in the present work, and to be considered, to all 
effects, the author of this thesis. 
 
 
 
 
 
 
 
 

Chapter 6 
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1.6 Thesis Structure 
 

This thesis is composed of seven chapters. The organization of this study is 
presented as the followings. 

Chapter 1 – The first chapter covers research backgrounds, motivation and 
problem statements, objectives of the study and also publications resulted from 
this work.  

Chapter 2 – This chapter is devoted to a general overview of decision 
analysis, specifically in the case of multi-criteria and multi-expert decision 
making problems. A summary of methods used in this study is outlined, such as 
general group decision making models, Dempster-Shafer belief structure, AHP 
and TOPSIS models. In addition, the theories for modeling uncertainty 
problems are also highlighted. 

Chapter 3 – This chapter provides a review of some aggregation operators 
and their potential application in the realm of decision analysis. In particular, 
the emphasis is given on the OWA-based aggregation operators. The main 
properties, measures associated to OWA operators and also their variant of 
families are presented. Besides, the more general classes of aggregation 
operators are provided to complete this chapter, notably, fuzzy measures and 
monitored heavy fuzzy measures. 

Next, the main contributions of the study are presented in Chapters 4, 5 and 
6, respectively. With respect to the list of publications in the previous section, 
the specific methods and techniques applied in this study are explained. 

Chapter 4 – This chapter is based on the compilation of three main articles. 
Firstly, the multi-expert MCDM model with the integration of WA and OWA 
operators is presented. Moreover, the analysis of majority aggregation operators 
under homogeneous and heterogeneous group decision making with respect to 
the classical and alternative schemes is conducted. Secondly, the neat OWA-
based aggregation operators are studied, particularly for the alternative 
representation of majority aggregation operators. In this work, the selective 
aggregated majority-OWA has been extended and generalized to the case of 
weighted SAM-OWA and WSAM-IOWA operators. The linguistic group 
decision analysis then is developed based on these aggregation operators. 
Finally, the decision analysis based on Dempster-Shafer theory and linguistic 
group decision making models are demonstrated. For Dempster-Shafer belief 
structure model, the induced linguistic aggregation operators based on 2-tuple 
linguistic information and IOWA is developed. All these developed models then 
are applied in the case of financial selection problems. 

Chapter 5 – This chapter is composed with respect to two main articles, in 
which devoted to the AHP model. Firstly, the induced weighted maximum 
entropy OWA (IWMEOWA) is proposed. Then, its generalization includes the 
induced generalized and induced quasi-WMEOWA are studied. In addition, the 
majority concept based on the IOWA operators is presented. The two-stage 
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aggregation processes in the AHP-GDM model (i.e., the criteria and group 
stages) then is developed based on the aforesaid methods. Next, in the second 
article, the application of heavy WG and heavy OWG aggregation operators in 
the AHP-GDM model is considered and examined. 

Chapter 6 – This chapter consist of two main articles related to the TOPSIS 
model. In specific, the TOPSIS with OWA-based aggregation operators is 
outlined in the first section. The model is applied in the human resource 
selection problem. In the second section, the TOPSIS model under conflicting 
bifuzzy condition for the selection of flood control project is presented.  

Chapter 7 – Finally, the conclusions and recommendation for future research 
are presented in this chapter.  
 
 
1.7 Summary 

 
In summary, this chapter provides a basic guide to the direction of the overall 
study. This research will be driven towards achieving the objectives that have 
been stated and discussed earlier. 
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CHAPTER 2 
 
 

DECISION ANALYSIS AND 
UNCERTAINTY THEORIES 

 
 
 
2.1 Introduction 
 
In this chapter, the overview of decision analysis is presented, specifically in the 
case of multidimensional aspects (multi-criteria and multi-experts assessments) 
and uncertain environments. Firstly, in Section 2.2 the general definition of 
decision making models is briefly outlined. Next, Section 2.3 provides a review 
of multi-criteria decision analysis (MCDA) as a basis for the later developments 
and extensions, in particular, the analytic hierarchy process (AHP) and the 
technique for order performance by similarity to ideal solution (TOPSIS). In 
Section 2.4, the decision under group environment is discussed. Further, Section 
2.5 and Section 2.6 review the related uncertainty theories for modeling decision 
analysis, precisely, the probability theory and the fuzzy set theory, respectively. 
In addition, a decision analysis based on the generalization of probability theory 
which called as Dempster-Shafer theory of belief structure is provided. Finally, 
in Section 2.7 the summary is given to end this chapter. 
  
 
2.2 General Definition of Decision Making Models 
 
Decision analysis is a procedure used in dealing with complex decision making 
problems. In principle, it consists of a set of actions (or alternatives) to be 
selected, with a collection of criteria and/or a given amount of knowledge about 
the situation to be assessed. A number of authors have classified the decision 
making problems by several different ways. For instance, Luce and Raiffa 
(1957), French (1985) and Grabisch et al. (1995) have divided them into three 
main categories based on how much certainty there is about the outcomes of 
various actions. They are the decision making under certainty, decision making 
under uncertainty (or risk) and decision making under strict uncertainty (or 
ignorance). In general, the decision making problems can be defined in the 
following ways. 
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Definition 2.1 (Grabisch et al., 1995). A decision making problem is a 5-
tuple ( , , , , ), where: 

  is a set of actions (or alternatives), among which the decision maker 
(or expert) must choose, 
  is a set of consequences or results, and these consequences come from 
the choice of action, 

 is the set of states of the world (or nature); according to the state of 
the world  (usually unknown) and the consequences of the choice 
of an alternative  may differ (finite number of mutually exclusive 
states), 

 is a map ×  which specifies for each state of the world  and 
each alternative  the resulting consequence = ( , ), 

 is a weak preference relation on , that is, a binary relation satisfying 
the properties of: 
i) Complete:  or , for , , and 
ii) Transitivity: That is,  and  imply . 

 
The notation  is the preference relation which characterizes the decision 
maker. More precisely, the ordinary preference relation on numbers,  
means that  satisfies, but not  (strict preference) and  means 
that both  and  holds (indifference preference). This definition is 
mainly based on the utility theory, which underlies most of the classical decision 
making models. Basically, the idea behind the utility theory is to transform the 
weak preference relation  on  into a normal order   on the real numbers by 
mean of a so-called utility function, :  whose the basic property is that 

 if and only if ( ) > ( ) (see, for example, Fishburn, 1970; Robert, 
1985; Grabisch et al., 1995).  
  
2.2.1 Decision making under certainty 
 
In particular, the decision making under certainty can be given as the condition 
where the state of the world  is always known. Thus  is defined on , such 
that, for each action  there is exactly one consequence . However in practice, 

 is normally a multidimensional, that is,  is an n-tuple ( , , … , ),
, where the  are representing criteria. For each alternative , the final 

decision is simply the result of linear weighted average (or weighted arithmetic 
mean) of the criteria,  (under some specific models). In the literature, this type 
of decision making problems is generally known as a multi-attribute value theory 
(MAVT) or multi-criteria decision analysis/making (MCDA/MCDM) (see 
Figueira et al., 2005). In this thesis, both MCDA and MCDM will be used 
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interchangeably. Notice that, the term value theory is used to represent the 
decision under certainty, whilst the utility theory is meant for decision making 
under uncertainty as will be explained in the following. 
 
2.2.2 Decision making under risk 
 
The decision making under uncertainty (or risk) is a condition in which the (true) 
state of the world is unknown. In other words, the consequences of a decision 
are unpredictable. However, in this case, an uncertainty measure, such as a 
probability on , is known. This model is rooted from the classical works of 
von Neumann and Morgenstern (1944), which is based on the maximum 
expected utility theory. The expected utility can be formalized as: , , where  is the probability that event  occurs 

and ,  is the utility of consequence . An action with the largest 
possible expected utility is preferred as the optimal decision (maximum expected 
utility). Note that, the von Neumann-Morgenstern model is mainly based on the 
objective probability theory. On the same basis, Savage (1954), proposed the 
maximum expected utility model by employing the subjective probability theory 
as an alternative approach. The details of different notions of probability theory 
will be presented in the succeeding section. Basically, the expected utility model 
was defined under the one-dimensional set of consequences. However, it is 
extendable to the case of multidimensional factors and in the literature this type 
of model is known as a multi-attribute utility theory (MAUT) (Keeney & Raiffa, 
1976; Dyer, 2005).  
 
2.2.3 Decision making under strict uncertainty 
 
The decision making under strict uncertainty (or ignorance), in contrast to the 
decision making under risk, is based on an uncertainty measure with probability 
on  is unknown. In this case, there are several classical criteria (or rules) 
proposed to be used under this condition, such as: 

criterion of Laplace or the principle of insufficient reason – the 
alternative which maximizes the average utility:  max 1 , , 
criterion of the max-min (Wald, 1950) – choose the best alternative 
under the assumption that the most unfavorable  happens (known as a 
security level of  or pessimistic criterion of choice): 
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max  min , , 
criterion of the max-max (Wald, 1950) – choose the best alternative 
under the assumption that the most favorable  happens (optimistic 
criterion of choice): max  max , , 
criterion of Hurwicz (Hurwicz, 1951) – the criteria of the max-min 
(pessimist) and the max-max (optimist) are mixed in a ratio [0,1], 
that is, max  max , +  (1 ) min , , 
criterion of minimax regret (Savage, 1954) – choose the best alternative 
with the minimum regret: min max , 
where = max , , ,  the difference 

between the value resulting from the best action given that  is the true 
state of the world and the value resulting from  under . 
 

Moreover, the decision making models can be divided into two general forms 
of decision theory. They are the normative (or prescriptive) decision theory and 
the descriptive decision theory (Robert, 1985). These categories are 
fundamentally based on the axioms of the representation theorem. The 
normative interpretation looks at the axioms as the conditions of rationality. In 
specific, the normative statements assert about how things should be made or 
how to value them (judgments that satisfy the axioms). These types of models 
normally developed in the economic literature. For instance, the von Neumann-
Morgenstern’s expected utility model and the MAUT model are based on the 
normative approach. On the other hand, descriptive statements describe types 
of theories, beliefs or propositions; claim to be factual statements that attempt 
to describe reality. To be precise, it analyzes how decision maker actually makes 
decisions. This type of models is commonly established in the psychological 
literature. Examples of this category can be observed in most of the MCDM 
models. However, there are a number of models in which are developed, 
simultaneously based on the normative and descriptive approaches. The details 
on this subject can be referred to, for instance, in Robert (1985) and Peterson 
(2009). In the followings, the specific topics related to this study are presented. 
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2.3 Multi-Criteria Decision Making Categories 
 
The MCDM as one of the well-known decision making methods can be defined 
as a process of ranking or evaluating alternatives with respect to multiple 
conflicting criteria. Others common names are multi-criteria decision analysis 
and multi-criteria decision aid. Based on the properties of the problem, MCDM 
can be characterized by several categories. Zeleny (1982), as well as Kahraman 
(2008) characterized MCDM into two categories which are multi-attribute 
decision making (MADM) and multi-objective decision making (MODM). The 
main distinction between these two categories is mainly based on the number 
of alternatives under consideration.  

The MADM is referred to making a decision in the discrete decision spaces 
and focuses on how to select or to rank different predetermined alternatives 
(finite case). MADM has been developed depending on the type and the 
characteristic of the problem such as the Analytic Hierarchical Process (AHP), 
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), 
Simple Additive Weighting (SAW), outranking methods like PROMETHEE 
and ELECTRE, etc. See Figueira et al. (2005) for the complete review of these 
models. 

The MODM approach, in contrast to the MADM, is concentrated on 
continuous decision space where the realization of the best solution is done with 
respect to several objective functions. Solving MODM problems often involves 
modifying classical optimization methods for situations where multi-objectives 
must be satisfied. The well-known approaches in this category are based on 
mathematical programming models. 

In this study, the main emphasis is on the MADM models. Hence, some 
related models, namely, AHP and TOPSIS models are briefly discussed here. 

 
2.3.1 Analytic hierarchy process model 
 
The AHP model as one of the MADM techniques was developed by Saaty 
(1980).  The AHP is formulated to support the decision makers in some decision 
problems that are hard to conceptualize or even clearly defined. The AHP is 
based on the following two steps: structuring the decision as a hierarchical 
model and then, using a pairwise comparison of all attributes and alternatives to 
calculate the weight of each criterion and the score of each alternative. This 
approach allows decision makers to examine the complex problem in a detailed 
rational manner. The hierarchical representation helps in dealing with the 
decision problems, which are usually complex in nature. The decisions are made 
one level at a time, from the bottom up, to more aggregate strategic levels. The 
advantages of AHP include highly structured and more easily understood 
models and consistent decision making (or at least a measure of the level of 
consistency – the decision maker is always free to remain inconsistent in 
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preferences and scores). Moreover, the AHP is one of the most popular MADM 
methods since it is generally perceived as being intuitive and flexible enough to 
help decision makers to address variety problems (Figueira et al., 2005; Brunelli, 
2015).  
 
2.3.2 Technique for order performance by similarity to ideal solution 
 
The TOPSIS model was first proposed by Hwang and Yoon (1981) based on 
the concept of ideal solutions of alternatives. In specific, an ideal solution is a 
collection of ideal ratings for all attributes under the consideration. The 
composite of the best attribute ratings attainable is known as the positive ideal 
solution (PIS). Whilst the composite of all the worst attribute ratings attainable 
is the negative ideal solution (NIS). TOPSIS uses an evaluation index which 
measures each alternative’s relative closeness to the PIS by scoring alternatives 
both in terms of closeness to the PIS and remoteness from the NIS. The 
Euclidean distance measure is used to calculate each alternative’s distance from 
the PIS and NIS. However, it is extendable to other distance measures. Thus, 
TOPSIS simultaneously considers an alternative’s best and worst characteristics 
with respect to identified decision attributes. The advantages of using this 
concept have been highlighted by: its intuitively appealing logic, its simplicity 
and comprehensibility, its computational efficiency, its ability to measure the 
relative performance of the alternatives with respect to individual or all 
evaluation criteria in a simple mathematical form, and its applicability in solving 
various practical MADM problems (Deng et al., 2000). This concept has been 
widely used and has been successfully applied to various decision contexts 
(Chen & Hwang, 1992; Olcer & Odabasi, 2005). 
 
 
2.4 Decision under Group Decision Making 
 
Another distinction to make aside from the uncertainty and multiple criteria 
problems is, either the decision analysis involves an individual or a group 
judgments. Clearly, the complexity of decision analysis encourages group 
decision as a way to combine interdisciplinary skills and improve management 
of the decision making process. Multi-expert decision making (MEDM) or 
group decision making (GDM) deals with the complex problem of identifying 
the most preferred alternative(s) for both individual decision makers and an 
aggregated group of individual decision makers (Chen & Hwang, 1992). Many 
times a group of experts needs to make a decision that represents the individual 
opinions and yet is mutually agreeable. GDM not only take into account the 
conflicting objectives/attributes and goals of individual decision makers, but 
also the conflicts that exist between the various members of a group. Decision 
analysis under GDM problems are often made more difficult because individual 
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decision makers may not be able to evaluate alternatives using common criteria, 
depending on factors such as each individual’s knowledge, experience, and the 
availability of data (Hwang & Lin, 1987; Jackson, 1999).  

The issue of conflict between the individuals (or groups) and the solution for 
the collective decision has been studied by many authors (see Arrow, 1950; Luce 
& Raiffa, 1957; Fishburn, 1972, for the classical works on this topic). In 
addition, the recent developments on consensus measure in group decision 
making can be referred to Pasi and Yager (2006), Bordogna and Sterlacchini 
(2014) and Peláez and Doña (2016), among others. Note that, these latter 
developments of consensus measure will be studied in this study. 
 
 
2.5 Probability Theory for Modeling Uncertainty in Decision Analysis 
 

As explained in Section 2.2, the uncertainty theory traditionally used in decision 
analysis is based on the probability theory. In the literature, there are several 
categories of probability theory, namely the objective probability and subjective 
probability, as well as the classical notion of probability theory. The expected 
utility and the subjective expected utility were built based on the objective 
probability and the subjective probability, respectively. In addition, with respect 
to the subjective probability, the Bayesian approach has emerged as one of the 
tools for decision analysis. This model then has led to the development of the 
Dempster-Shafer theory of belief structure, in which, the subjective probability 
has been extended to the imprecise probability (interval-valued probability). 
This section provides a summary of probability theory and the generalization of 
probability to imprecise probability under the Dempster-Shafer theory. 

As previously mentioned, there are three types of probability theory that have 
been reported in the literature. All these types of probability theory obey the 
general axioms of mathematical probability (or Kolmogorov’s laws) as follows: 0 1 for every events ,  ( ) = 1, and, 

if =  then = + ( ).  
In specific, these can be explained as i) the probability of any event is a 
nonnegative real number, ii) the assumption of unit measure: the probability of 
the entire sample space (or certain space) is one, and iii) if an event can occur in 
one of two mutually exclusive ways, then its probability is the sum of the 
probabilities of the mutually exclusive ways (French, 1985; Robert, 1985).  

In the classical notion of probability, it is assumed that a partition of events 
is set as equally probable (or equally likely), e.g., a simple fair dice game. This 
also expressed as a principle of insufficient reason due to Laplace. Suppose that 
a particular event occurs a certain number times out of a total possible number 
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of other events. The probability that the desired event will occur can be 
represented by ( ) = / , where, ( ) is the probability of event  occur, 

 is the number of times event  could occur, and  as the total number 
possible events. However, this classical notion has been criticized because of its 
restrictive condition. Practically, in most uncertain circumstances it is impossible 
to categorize the future into equally likely possibilities, such as the movement 
of the stock exchange index, etc. As in the simple dice games, this does not 
provide any problems, but, in the complex situation, ambiguous can arise.  

Meanwhile, the objective probability is viewed as the long-run relative 
frequency with which a system is observed in a particular state (French, 1985). 
It can be explained as a likelihood of a specific occurrence, based on repeated 
random experiments and measurements. The probability that a particular event 
of the experiment will occur is given by the relative frequency as: ( ) =lim ( / ). However, not all uncertainty problems can be modeled using the 
objective probability theory based on the relative frequency. For example, in 
making a decision about alternative sources of energy, the probabilities that 
various significant events will take place are not known exactly. Similarly, in the 
case of betting a horse race where the probability of a particular horse will win 
is not known. Most of the time, the decision makers have some ideas of how 
probable different outcomes are, or at least that one outcome is more probable 
than another. Hence, the degree of belief of decision maker is more appropriate 
in this case which can be modeled by the subjective probability.  

The subjective probability is based on the experience or personal belief of 
decision maker, rather than theoretical or experimental work. This experience is 
then used to predict the probability of future events. In specific, ( ) represents 
the decision maker’s degree of belief that state  will occur, such that, the 
stronger his belief, the greater is ( ). In this case, for different observers, the 
different probabilities may assigned to the same event. Probability is therefore 
personal; it belongs to the observer or subjective. It can be interpreted as 
quantifying a personal degree of belief. Foundation works on this subject are 
due to de Finetti (1937), Ramsey (1931) and Savage (1954). For the detailed 
discussion on the objective probability and the subjective probability, they can 
be referred in Ramírez (1988) and Howson and Urbach (2006). 

 
2.5.1 Dempster-Shafer theory of belief function 
 
The Dempster-Shafer theory or evidence theory was first developed by 
Dempster (1967) on the concept of upper and lower probabilities and then 
extended by Shafer (1976) on belief functions. These works have laid the 
foundation for a new theory of probabilistic reasoning based on the 
generalization of classical probability. Central to this theory is its ability to model 
imprecision and also randomness. Hence, this often makes the D-S theory 
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superior to Bayesian approaches in modeling knowledge of uncertainty 
problems. Since then, the applications of the model have been evolved, 
specifically in decision analysis (see Merigo & Casanovas, 2009; Yager & Alajlan, 
2015). Review on the D-S theory can be referred in Yager and Liu (2008).  

The D-S model can be explained as the following. A D-S belief structure  
on the space  is defined via a collection of non-empty subsets of , focal 
elements , , … , , and a mapping [0,1] such that > 0 
and = 1. Here  (a mass function or basic probability 
assignment) indicates an amount of probability allocated to the elements in  
in some unknown matter. The D-S belief structure can be viewed as a 
probability distribution with imprecise probabilities. For example, the 
probability of  can be represented as a range of ,  instead of . 
Therefore, D-S can be viewed as a piece of information that contains two types 
of uncertainty, probabilistic, randomness, and imprecision in the parameters 
associated with the probability distribution (Yager & Alajlan, 2015). A belief 
structure has the ability to represent in a unified way many different types of 
information about this variable. Two important measures can be associated with 
a belief function . These are called the measures of plausibility and belief 
(Shafer, 1976). Assume  is a subset of  then: Pl( ) = ,    (Plausibility), and Bel( ) = ,      (Belief). 

It is known that Pl( ) Bel( ) for all . And it is also known that Pl( ) =Bel( ) = 1 and Pl( ) = Bel( ) = 0. These measures are also monotonic, if 
 then Pl( ) Pl( ) and Bel( ) Bel( ). Note that, Dempster 

(1967) referred to these as the upper and lower probabilities of . In this 
perspective, Bel( ) Prob( ) Pl( ).  Hence, it can be seen that a belief 
structure provides information about the probability of a set in an imprecise 
manner by giving the interval in which the probability lies. 
 
 
2.6 Fuzzy Set Theory for Modelling Uncertainty in Decision Analysis 
 
Fuzzy set theory was introduced by Zadeh in 1965. It was intended to improve 
the mathematical model, by developing a more stable and flexible model in 
order to solve real-world complex problems, i.e., involving human aspects. The 
theory of fuzzy set, unlike probability theory, represents imprecision by the fact 
that the certain objects (or certain classes of objects) have poorly or ill-defined 
boundaries. It is assumed that not all uncertainties easily fit the probabilistic 
classification (Bender & Simonovic, 2000). Fuzzy set theory and probabilistic 
approach can be considered as complement to each other, in which fuzzy set is 
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used as an alternative way to deal with the uncertainty and imprecision that 
cannot be modeled by the probabilistic approach. In fuzzy set theory, the key 
elements in human thinking are not numbers but the labels of fuzzy sets (Zadeh, 
1975). This condition makes the fuzzy set a powerful tool to handle imprecise 
data and fuzzy expressions that are more natural for humans than rigid 
mathematical rules and equations (Olcer & Odabasi, 2005). Since the 
effectiveness of fuzzy set theory in modeling imprecision, it has been applied in 
almost every field, including decision making. 

Note that, the fuzzy set theory is an extension of the classical set. Traditional 
mathematics and logic assign a membership of ‘1’ to items which are members 
of a set, and ‘0’ to those which are not. In another way, it can be explained as 
objects either belong to or do not belong to a certain class. The type of a 
function that describes this is called a characteristic function. This is the 
dichotomy principle such a strong principle inevitably ran into philosophical 
problems. The definition of the classical set or crisp set can be given as follows: 

 
Definition 2.2 (Dubois & Prade, 2000). Let  be a classical set of objects, called 
the universe, whose generic elements are denoted . Membership in a classical 
subset  of  is often viewed as a characteristic function ( ) from  to {0,1} 
such that: 
 ( ) = 1,  ,0,  ,  

where {0,1} is called a valuation set. It should be noted that ‘iff’ is short for ‘if 
and only if’. 
 

Since the limitation condition of crisp set in modeling the real life problems, 
then, the fuzzy set theory was introduced as an extension of the classical set. 
Fuzzy set theory offers a logic which closely imitates the human thought process 
by allowing for possibilistic reasoning and vagueness. It allows a proposition to 
be neither fully true, nor fully false, but partly true and partly false to a given 
degree. Zadeh (1965) introduced fuzzy set to deal with uncertainty, vague or 
imprecise in concepts. The fuzzy set definition can be given as the followings. 
 
Definition 2.3 (Zadeh, 1965). Let a set  be non-empty and finite. A fuzzy set 

 on  is an expression given as follows: 
 = { , ( ) | }, 
  
where : [0,1] is the membership function of the fuzzy set ,  in 

. 
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Based on the fuzzy set definition, the closer the membership ( ) is to ‘1’, the 
more  belongs to . Other properties fuzzy set can be referred to Dubois and 
Prade (1980). 
 
2.6.1 Linguistic variables 
 
The concept of linguistic variable is very useful in dealing with situations, which 
are too complex or ill-defined to be reasonably described in conventional 
quantitative expressions (Zadeh, 1975). Since its inception, the linguistic 
variables have been used extensively in the decision making process (see, for 
instance, Herrera et al., 1995; Herrera et al., 2008). According to Zadeh (1975), 
linguistic variables can be described as variables whose values are not numbers 
but words or sentences in a natural or artificial language; and these values of 
linguistic variables are called linguistic labels or linguistic terms. Each linguistic 
term is presented by fuzzy number. The definition of the linguistic variable can 
be given as the following. 
 
Definition 2.4 (Zadeh, 1975). A linguistic variable is characterized by a 
quintuple (x, T(x), U, G, M) in which x is the name of the variable; T(x) denotes 
the term set of x, i.e., the set of names of linguistic values of x, which each value 
being a fuzzy variable denoted generically by x and ranging across a universe of 
discourse U which is associated with the base variable u; G is a syntactic rule 
(which usually takes the form of a grammar) for generating the names of values 
of x; and M is a semantic rule for associating its meaning with each x, M(x), 
which is a fuzzy subset of U.  
 

There are many extensions of the linguistic variables have been proposed in 
the literature. For example, Herrera and Martinez (2000) proposed the 2-tuple 
fuzzy linguistic representation model for computing with words, unbalanced 
fuzzy linguistic information (Herrera-Viedma & López-Herrera, 2007), 
linguistic aggregation operators (Bordogna et al., 1997; Merigó et al., 2010), 
multi-granular fuzzy linguistic information (Herrera et al., 2000), etc. Reviews 
on the latest development in fuzzy linguistic information can be referred to Xu 
(2012). In this study, the 2-tuple fuzzy linguistic representation (Herrera & 
Martinez, 2000) and the linguistic aggregation technique (Bordogna et al., 1997) 
will be implemented. 
 
2.6.2 Fuzzy multi-criteria decision making 
 
Much of the decision making problems take place in an environment in which 
the goals, the constraints and the consequences of possible actions are not 
known precisely (Bellman & Zadeh, 1970). In the preceding section, the MCDM 
or specifically the TOPSIS and the AHP models, are mainly based on the crisp 
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data. The performance ratings and weights of the attributes, in specific, are given 
as crisp values as priori. However, under many conditions, crisp data are 
inadequate or insufficient to model real life decision problems. Since human 
judgments as preferences are always uncertain or imprecise in nature, then, it 
may not be appropriate to represent them by accurate numerical values. A more 
realistic approach could be to use linguistic variables to model human judgments 
that is, to suppose that the ratings and weights of the attributes in the decision 
making problem are assessed by means of linguistic variables (Zadeh, 1975). 
Hence, one of the most important aspects for a useful decision making model 
is to provide an ability to handle imprecise and vague information by fuzzy 
concepts. In addition, the theory is also extended and generalized by means of 
the theories of triangular norms and co-norms, and aggregation operators (see, 
for example, Dubois & Prade, 1988; Klir & Folder, 1988).  
 
 
2.7 Summary 
 
In this chapter, the general definition of decision making models has been given. 
This definition provides an overview of the main decision making problems in 
the literature, such as decision under certainty, risk and strict uncertainty. 
Afterward, the class of MCDM techniques is reviewed and the specific models 
namely, the AHP and the TOPSIS are presented. The general theories in 
modeling uncertainty then are given, such as the probability theory and the fuzzy 
set theory. The probabilistic model of Dempster-Shafer belief structure is 
outlined as one of the decision analysis approaches. In this study, the AHP, 
TOPSIS, D-S theory and together with the general GDM models will be 
extended using the fuzzy set concept. Besides, they are extended using the 
OWA-based aggregation operators that will be outlined in the next chapter. The 
application of fuzzy set theory in this study is demonstrated by two forms. The 
first one is the application of fuzzy linguistic variables or fuzzy numbers to 
represent subjective judgments or uncertain information. Then, the second one 
is by using the concept of linguistic variables for information fusion under the 
OWA-based aggregation operators. These aggregation operators can be 
explained as an extension of the classical WA, with several advantages. Among 
them are the inclusion of attitudinal character (or behavior) of expert(s) in 
aggregating the inputs, a flexibility for soft consensus (majority concept) of 
experts in group decision making models and analysis of complex decision 
making problems using order-inducing variables. 
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CHAPTER 3 
  

 
 AGGREGATION OPERATORS 

 
 
 

3.1 Introduction 
 
In this section, a review of some aggregation operators is provided, mainly on 
the OWA-based aggregation operators. For the scope of this study, the main 
consideration is focused on the means (or average) based on discrete space. 
Firstly, in Section 3.2, the classical mean-type aggregation operators are 
presented. Then, the OWA and its variants are provided in Section 3.3. The 
properties, characteristic measures, and families of OWA operators are 
discussed. In Section 3.4, a brief of more general classes of aggregation 
operators and their relation with OWA operators is given. Specifically, fuzzy 
measures and monitored heavy fuzzy measures with respect to the Choquet 
integrals are presented. 
 
 
3.2 Classical Mean Type Aggregation Operators 
 

Aggregation operators (or aggregation functions) have been extensively 
employed in decision analysis as a way to combine inputs or arguments of 
criteria (or experts) into a single representative value (Grabisch et al., 2009). By 
definition, assume that = [ , + ] (or { , + } ) is the extended real 
line and  be any type of non-empty real interval in , bounded or not. Also, 
suppose that  be any non-zero natural integer which represent the arity 
of aggregation function, such as, vector = ( , , … , ). The general 
aggregation operator can be defined as the following. 
 
Definition 3.1 (Grabisch et al., 2009). An aggregation oprator in  is a function ( ): , that is non-decreasing in each variable and fulfills the boundary 
conditions, inf ( ) = inf , sup ( ) = sup  and ( )( ) = , . 

 
For instance, as in the case of = [0,1], the boundary conditions are given as ( )(0, … ,0) = 0 and ( )(1, … ,1) = 1.  Note that, the aggregation function 
can simply be expressed as  instead of ( ) when no confusion appear. The 
most basic aggregation operator that traditionally used in the literature is the 
arithmetic mean. Based on that, the generalized version called the quasi-
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arithmetic mean has been proposed which provide a unified version of mean 
type aggregation functions (see, for example, Aczél, 1948; Bullen, 2003; 
Grabisch et al., 2009). The definition of quasi-arithmetic mean is given as the 
following.  
 
Definition 3.2 (Grabisch et al., 2009). Let :  be a continuous and strictly 
monotonic function. The -ary quasi-arithmetic mean generated by  is the 
function :  defined as:  
 ( , , … , ) = 1 =1 . 

 
The function  is called generator of ( , , … , ) and is determined up to 
a linear transformation (Aczél, 1948). In addition, it fulfills symmetric and 
idempotent properties. Examples of some basic aggregation functions are 
presented in Table 3.1. 
 
 

Table 3.1.  Examples of quasi-arithmetic means 
 ( ) ( ) Name 

 1
 

Arithmetic mean 

 1 /
 

Quadratic mean 

log  /
 

Geometric mean 

 11 1  
Harmonic mean 

( {0}) 1 /
 

Root-mean-power 

( {0}) 1 ln 1
 

Exponential mean 

Source: Grabisch et al. (2009) 
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Afterward, the quasi-arithmetic means have been extended to the concept of 
weighted quasi-arithmetic means (also called as quasi-linear means). Its 
definition is given as follows. 
 
Definition 3.3 (Grabisch et al., 2009). The function :  is continuous, 
strictly increasing, idempotent and bounded if and only if there exists a 
continuous and strictly monotonic function :  and real numbers , , … , > 0 satisfying  = 1 such that:  
 ( , , … , ) = , 
for all . 
 

However, as mentioned in Grabisch (1996), they are not stable under linear 
transformation (except for = Id, identity function). As can be noticed, the 
weighted arithmetic mean (WA) is simply a weighted quasi-arithmetic mean for 
which the generator  is the identity function. Table 3.2 provides some 
examples of weighted quasi-arithmetic means.  
 
 

Table 3.2.  Examples of weighted quasi-arithmetic means 

 ( ) ( ) Name 

  Weighted arithmetic mean 

 /
 

Weighted quadratic mean 

log  
 

Weighted geometric mean 

( {0}) /
 

Weighted root-mean 
power 

Source: Grabisch et al. (2009) 
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In the context of decision analysis, the WA is fundamental in most of the 
decision making models, see for instance, in MAUT, AHP and TOPSIS models. 
In general, it is based on the association of degrees of importance (also called as 
relative importances, weights or priorities) with the criteria, so that its influence 
on overall aggregation process is considered. In addition, the ordered weighted 
average (OWA) operator is a different type of aggregation fusions that allowing 
the relationship (or structure) between the criteria as perceived by decision 
maker. In fact, this operator is taken into account the attitudinal character (also 
called behavior or tolerant) of decision maker for the overall decision. The 
OWA operator and its variant will be explained in the next sub-section. 
 
 
3.3 Ordered Weighted Average Operators 
 

The OWA operator was first introduced by Yager (1988) mainly for the 
application in multiple criteria decision analysis. In general, it provides a 
parameterized family of aggregation operators that include two extreme cases: 
the maximum and the minimum, and also the average criteria (arithmetic mean) 
as a special case. It can be defined as the following. 
 
Definition 3.4 (Yager, 1988). An OWA operator of dimension  is a function :  that has an associated weighting vector = ( , … , ) 
such that = 1 and [0,1], given by: 
 

 ( , , … , ) = ( ), 
 

where ( ) is the argument value  being ordered in non-increasing order, ( ) ( ) ( ). 
 

The prominent characteristic of the OWA operator is that the arguments are 
reordered based on their values or magnitudes, and the weights are associated 
with the ordered positions of the arguments rather than with a specific argument 
as in the case of WA.  

It can be seen that different OWA operators are distinguished by their weight 
function. Three important special cases of OWA aggregation are as the 
following: 

 
 
 



29 
 

, in this case = = [1,0, … ,0] , 
, in this case = = [0,0, … ,1] , 

, in this case = = [1/ , 1/ , … ,1/ ] . 
 

Moreover, from a generalized perspective of the reordering step, OWA can 
be distinguished between descending OWA (DOWA) and ascending OWA 
(AOWA) (Yager, 1993). Note that the weighting vectors are related by =

 where  is the jth weight of the DOWA (or OWA) operator and 
 the jth weight of the AOWA operator.  

 
In the similar way, the OWA operator can be generalized to the quasi-OWA 

operator as the following definition. 
 
Definition 3.5 (Grabisch et al., 2009). A Quasi-OWA operator of dimension  
is a mapping , :   that has an associated weighting vector  of 
dimension  such that = 1 and [0,1], defined by: 
 

, ( , , … , ) =  ( )=1 , 
 
where the generator :  is a continuous strictly monotonic function and  ( ) is the th largest argument . 
 

Formerly, Yager (2004a) proposed the generalized OWA (GOWA) operator 
focuses only on the ordered weighted root-mean-power, where ( ) =( )  with ( {0}). 
 
3.3.1 Properties of OWA operators 
 
In the following, the fundamental properties of OWA operators are presented. 
 
PProperty 1 (Commutative). The OWA operator is commutative (or also called 
symmetry, neutrality or anonymity) where the indexing of the arguments is 
irrelevant. Let , , … ,  be a bag of arguments and let , , … ,  
be a permutation of , = 1,2, … , . Then for any OWA operator, 
 ( , , … , ) = ( , , … , ). 
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PProperty 2 (Monotonicity). Assume that  and  are a collection of arguments, = 1,2, … ,  such that , . Then,  
 ( , , … , ) ( , , … , ), 
 
where  is some fixed weight OWA operator. 
 
Property 3 (Idempotency). Third property associated with these operators is 
idempotency. If , = , then any OWA operator, 
 ( , , … , ) = . 
 
Property 4 (Boundedness). For any OWA operator  
 Min ( , , … , ) Max . 

 
All these properties imply that the OWA operator is a class of mean type 

aggregation operator. By adjusting the weights of the weighting vector , from 
the min (logical and) to the max (logical or), then a full spectrum of mean type 
aggregation operators can be derived. For example, in the decision analysis 
under certainty or uncertainty, the aggregation from one extreme of requiring 
‘all the criteria’ to the other extreme of requiring ‘at least one criterion’ to be 
satisfied can be determined. Analogously, for the decision under strict 
uncertainty it provides a unified framework with different decision strategies, 
such as maximax (optimistic), maximin (pessimistic), equally likely (Laplace), 
and the Hurwicz procedure, where each is characterized by a specific OWA 
weighting vector. Thus, these processes delineate the attitudinal character of 
decision maker, either toward pessimistic or optimistic decision making. 
 
3.3.2 Measures associated to OWA operators 
 
Another important topic in the aggregation operators is the characteristic 
measure. There are various measures associated with OWA operators that can 
be found in the literature and the main ones are briefly explained here. A 
summary of these measures, their analytical expressions and references are 
provided in Table 3.3. 
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Table 3.3.  Summary of measures associated with OWA operators 
 

Measure Analytical expression Reference 

Degree of orness ( ) = 1  

 

Yager (1988) 

Dispersion  
(Shannon entropy) 

( ) = ln  

 

Yager (1988) 

Degree of balance ( ) = ( + 1 2 )1  

 

Yager (1996) 

Divergence ( ) = 1 ( )  

 

Yager (2002) 

Variance measure ( ) = 1 1
 

 

Fuller and 
Majlender (2003) 

Renyi entropy 
 ( 1) 
 

( ) = 11 log  
Majlender (2005) 

Source: Belles-Sampera et al. (2014) 

 

Degree of orness: The degree of orness is a measure of attitudinal character 
of decision maker. It can be shown that [0,1]. In general, the more 
of the weight is concentrated near the top of , the closer  approaches 
1. On the other hand, the more of the weight is concentrated toward the 
bottom of , the closer  approaches 0. Note that the tolerant (or 
optimistic) decision maker can be demonstrated as ( ) = 1 and 
intolerant (or pessimistic) decision maker as ( ) = 0. Whilst ( ) = 0.5 as a neutral decision maker. Moreover, the measure of 
andness as a dual of orness measure can be defined as: ( ) =( ) = 1 ( ). 

Dispersion: The dispersion is a measure of entropy. It is a well-known 
concept introduced by Shannon (1949) based on the information theory. 
Generally, it used to measure the amount of information given by a 
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vector of arguments that is used in the aggregation. In a certain sense, 
the more disperse the weighting vector , the more of the information 
about the individual criteria is being used in the aggregation. For 
instance, if = 1/  for all , then ( ) = ln , and the amount 
of information employed is maximum. If = 1 for some , then ( ) = 0, and the least amount of information is used. 

Degree of balance: Another measure used for the analysis of the weighting 
vector  is called the balance measure. It used to analyze the balance 
between favouring the arguments with high values or the arguments with 
low values. It can be shown that ( ) [ 1,1]. To measure the 
degree of balance between favoring the higher-valued elements or lower-
valued elements the degree of balance is introduced, where ( ) =1 represents an optimist criteria, ( ) = 1 a pessimist criteria and ( ) = 0 is the Laplace criteria or arithmetic mean. 

Divergence: The divergence measure is useful in the case where the degree 
of orness and the dispersion measure are not enough to analyze the 
weighting vector  of an aggregation. For instance, let = 7 be the 
number of inputs to aggregate with = (0.5, 0, 0, 0, 0, 0, 0.5) and = (0, 0, 0.5, 0, 0.5, 0, 0) be the associated weighting vectors. In this 
case ( ) = ( ) = 0.5 and ( ) = ( ) = ln(2), then 
no significant information can be extracted from these measures. 
However, as can be noticed ( ) = 0.25 and ( ) = 0.027. 
Hence, the divergence measure provide a useful information in 
distinguishing between these weighting vectors. 

Variance: The variance measure is used to compute the variance of the 
weighting vector  where each input is considered equally probable. In 
general, it is used to determine the analytical expression of a minimum 
variability of OWA aggregation operator. 

Renyi entropy: Another characterization of OWA operator is the Rényi 
entropy (Rényi, 1961) as proposed by Majlender (2005). In specific, it is 
an extension or a generalization of the Shannon entropy measure. For 
any aggregation, ( ) can be considered as the Rényi entropy of 
degree . Whenever lim ( ), then, it reduces to the Shannon 

entropy ( ) = log  as can be proved by using 
l’Hôpital rule. 
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3.3.3  Families of OWA operators 
 
An interesting feature of OWA operator is that it provides a parameterized 
family of aggregation operators between the maximum and the minimum. These 
families can be obtained by selecting a different manifestation in the weighting 
vector. In the following, a summary of some families of OWA operators is 
presented. More detail on this topic can be referred in Yager (1993). 
 

Step-OWA: The step-OWA (or order statistics) sets = 1 and =0, . Note that, if = 1, the step-OWA is transformed to the 
maximum operator, and it becomes the minimum operator if = . 

Window-OWA: The window OWA can be obtained when = 1/  for < +  and = 0 for +  and < . Note that  and 
 must be positive integers such that + 1 , where  is the 

cardinality of the OWA aggregation.  

Olympic-OWA: The Olympic-OWA is generated when = = 0, 
and for all others, = 1/( 2). The general form of the Olympic-
OWA can be given as = 1/( 2 ), where < /2, such that = 0 for = 1,2, … , , , 1, … , + 1. Note that if = 1, 
then this general form is reduced to the usual Olympic-OWA. If =( 1)/2, then this general form becomes the median-OWA 
aggregation. That is, if  is odd, then ( )/ = 1 is assigned, and = 0 for all other values. If  is even, then / = ( / ) = 0.5 
are assigned and = 0 for all other values. In the similar way, the 
general form of Olympic-OWA can be derived for the case of =(1/2 ). 

S-OWA: Another interesting family is the S-OWA. It can be subdivided 
into three classes: the ‘or-like’, the ‘and-like’ and the generalized S-OWA 
operators. The generalized S-OWA operator is obtained if =(1/ ) 1 ( + ) + , = (1/ ) 1 ( + ) + , and =(1/ ) 1 ( + )  for = 2 to 1, where , [0,1] and +1. The generalized S-OWA operator becomes the ‘and-like’ S-
OWA if = 0, and it becomes the ‘or-like’ S-OWA if = 0. Also note 
that if + = 1, then it is the Hurwicz criteria. 

Centered OWA: An OWA operator is defined as a centered aggregation 
operator (Yager, 2007) if it is symmetric, strongly decaying and inclusive. 
It is symmetric if = . It is strongly decaying when <( + 1)/2, then <  and when > ( + 1)/2, then > . 
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It is inclusive if all the > 0. Note that, it is possible to consider 
softening of the second condition by using . A special type of 
centered OWA operator is the Gaussian-OWA (Yager, 2007), 
constructed by analogy to the Gaussion-OWA weights suggested by Xu 
(2005). 

Neat OWA: The neat OWA (or aggregate dependent weights) can be 
defined as = ( )/ ( ), where 0, and ( ) are the 
arguments  ordered in decreasing order. Note that, = 1 and [0,1]. In specific, this function is known as BADD-OWA (basic 
defuzzification distribution). Similarly, the neat OWA can be represented 
as = 1 ( ) / 1 ( )  and = 1/ ( ) / 1/

( ) . 

Monotone quantifiers: Another useful approach to obtain the weights is by 
using the monotone quantifiers. This family of OWA operator can be 
summarized as follows. Let  be a function : , where = [0,1], 
such that (0) = 0, (1) = 1 and  ( ) ( ) if  > . This 
function is known as regular increasing monotone (RIM) quantifier (or 
also called basic unit interval monotonic (BUM) function). Based on 
RIM, the weights , for = 1,2, … ,  can be given as = ( / )(( 1)/ ). Alternatively, the non-monotone quantifiers can be 
implemented which is based on the regular decreasing monotone 
quantifiers (see, Yager, 1993). 

Maximum entropy-OWA: The MEOWA (O’Hagan, 1988) can be achieved 
by solving the mathematical programming problem, which is maximize 
the dispersion, ( ), with respect to the degree of orness, ( ) 
and the weights’ constraints, = 1 with [0,1]. The 
procedure is done by, first, select a desired value of orness (optimism or 
maxness), then, find the weights that maximize the dispersion. 
 
 

3.4 Fuzzy Measures and Choquet Integral 
 

In the preceding sections, the WA and OWA operators have been presented for 
the aggregations in the decision analysis. In this section, the more general classes 
of aggregation operators and their relation with the WA and OWA operators 
are discussed. Specifically, the concepts of fuzzy measure and monitored heavy 
fuzzy (MHF) measure under the Choquet integral (Choquet, 1953) are 
presented.  
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Basically, fuzzy measure theory is an extension of the classical measure theory 
in which the additive property is substituted by the weaker property of 
monotonicity. Other common names of fuzzy measure are capacities, non-
additive measure and monotone measure. The definition of fuzzy measure can 
be given as the following. Let = ( , , … , ) be the set of criteria and ( ) the power set of , i.e., the set of all subsets of .  
 
Definition 3.6 (Sugeno, 1977). A fuzzy measure on the set  of criteria is a set 
function : ( ) [0,1] satisfying the following axioms: 

(i) ( ) = 0, ( ) = 1(boundary condition), 
(ii)  ( ) ( ) implies  (monotonicity condition). 

 
In this context, ( ) represents the weight of importance of the set of criteria 

. Hence, in addition to the usual weights on criteria taken separately, weights 
on any combination or subset of criteria are also defined. Some interesting cases 
of fuzzy measure can be given as follows: 

Additive property: A fuzzy measure is said to be additive if ( ) =( ) + ( ) whenever = ,  
Non-additive property: It is said to be superadditive if ( )( ) + ( ) and subadditive ( ) ( ) + ( ) whenever = , 
Moreover, a fuzzy measure is said to be cardinal or symmetric if it 
depends only on the cardinality of sets, i.e., ( ) = ( ) whenever | | = | |. 

 
 The fuzzy measure can be implemented in the Choquet integral as the general 
aggregation operators. Given that, = ( , , … , ) as the vector of 
arguments for the set of criteria , the Choquet integral as an aggregation 
function over  can be defined as the following. 
 
Definition 3.7 (Sugeno, 1977). The discrete Choquet integral with respect to a 
fuzzy measure  is given by: ( , , … , ) = ( ) ( ) ( ) , 
 
where ( ) is permutation of  elements such that ( ) ( ) ( ), 
with the convention ( ) = 0 and ( ) = ( ), … , ( ) .  
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The equivalent formula can be given as: 
 ( , , … , ) = ( ) ( ) ( ) , 
 
where ( ) is the argument value  being ordered in non-decreasing order, ( ) ( ) ( ) and ( ) = .  
 
 The Choquet integrals are idempotent, continuous, monotonically non-
decreasing operators and bounded (Grabisch, 2009). It can be demonstrated 
that, the Choquet integral is the general form of the WA and the OWA operator 
as given in the following: 

If the fuzzy measure is additive, then the Choquet integral reduces to a 
weighted arithmetic mean: ( , , … , ) = . 
 
If the fuzzy measure is symmetric, then the Choquet integral reduces to 
an OWA operator: ( , , … , ) = ( ), 
 

with weights  defined by = , = 1,2, … , , where 
 denotes any set of  elements. Note that, the permutation with respect to 

non-decreasing order ( ) is used here instead of non-increasing order ( ) as 
in the original OWA. However, it can be manipulated directly to the non-
increasing order ( ), whenever = . 
 A related function to the Choquet integral is the Sugeno integral (Sugeno 
1974), which similarly, is defined with respect to a fuzzy measure. Sugeno 
integrals are often used for ordinal data as they are able to operate on finite 
ordinal scales, whilst Choquet integral suitable for the cardinal scales. A 
complete review on these type of aggregation operators under discrete and 
continuous spaces, can be referred, for instance in Beliakov et al. (2007). Torra 
and Narukawa (2009) and Grabisch et al. (2009). 
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3.5 Monitored Heavy Fuzzy Measures and Choquet Integral 
 

A MHF measure has been proposed by Yager (2003a) as an extension or a 
generalization of fuzzy measure. In specific, under the Choquet integral it allows 
a unified representation of mean type aggregation with totaling type aggregation 
operators. The definition of MHF measure can be given as the following. 
 
Definition 3.8 (Yager, 2003a). Let  be finite set of criteria and let [1, ]. 
A MHF measure on the set  is a set function : ( ) [0, ] satisfying the 
following conditions: 

(i) ( ) = 0, ( ) =  (boundary condition), 
(ii) ( ) ( ) implies  (monotonicity condition), 
(iii) for any , then ( { }) ( ) + 1. 

 
In general, these MHF measures contrast from the ordinary fuzzy measure in 
two cases. Firstly, the range of the measure is allowed to be 0 to  rather than 0 
to 1. Secondly, these measures are constrained or monitored such that the 
addition of one element can at most increase the measure by one. Note that, the 
condition (iii) can alternatively be expressed as, if  and | | = | | + 1 then ( ) ( ) + 1, where | | is the cardinality of . 
 
Two important special classes of these MHF measures are worth pointing out 
here as follows: 

If = 1, then  is reduced to an ordinary fuzzy measure . The 
condition (iii) is automatically satisfied for = 1 since ( ) 1,  
If = , then ( ) = | | for all . In this case, there exists only one 
MHF measure, which is the total measure. 

 
Definition 3.9 (Yager, 2003a). A MHF measure  for which there exists some 
subset  and some element  such that ( { }) ( ) = 1 is said to 
be saturated. 
 
Definition 3.10 (Yager, 2003a). Let  be a set of cardinality  and let  be a 
MHF measure on  of magnitude , the beta value of  can be defined as =( 1) ( 1), such that [0,1]. 
 

It can be shown that, for = 1, as the case of ordinary fuzzy measure, then 
value = 0 is derived. On the other hand, for = , then value = 1 is 
attained, which is the total measure. Hence, the fuzzy measure and the total 
measure provide the extreme cases of beta values. Another interesting measure 
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is for 0 < < 1, which provide the characterization of the magnitude  in 
between these two extreme cases. 
 Analogously, the MHF measure can be implemented in the Choquet integral 
as a wider class of aggregation operators. It can be shown that the heavy 
Choquet integral under this measure is the general form of the WA and the 
OWA operator as given in the following: 

If the MHF measure is additive, then the heavy Choquet integral reduces 
to a heavy weighted arithmetic means and similarly, it reduces to a WA 
whenever = 1. 
If the MHF measure is symmetric, then the heavy Choquet integral 
reduces to a HOWA operator and it is reformulated as the OWA if =1. Recently, Yager (2002) has proposed the HOWA operators in the 
decision making under uncertainty. 

 
Thus, it can be noticed that the MHF measures provide a general form of 

aggregation operators, which consist of all the particular cases of mean type 
aggregation operators as previously discussed. Yager (2003) has also 
demonstrated the application of these measures in the decision making under 
uncertainty.  

 
 

3.6 Summary 
 

In this chapter, the review of the related concepts of aggregation operators is 
presented. In particular, the emphasis is given on the OWA operators. There 
are many extensions and generalization of the OWA operators that have been 
proposed in the literature. Among them are the integration of WA and OWA 
operators in the same formulation, the induced OWA operators and also the 
generalization of HOWA operators. In the next chapters, the main attention is 
given on these particular topics with the applications in the multi-criteria and 
multi-expert decision making models. The specific definition of those 
mentioned aggregation operators will be presented in the following Chapters. 
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CHAPTER 4 
 
 

GROUP DECISION MAKING MODELS WITH OWA OPERATORS 
FOR FINANCIAL SELECTION PROBLEMS 

 
 
 

4.1 Introduction 
 

In this chapter, the extensions of group decision making models with OWA 
operators are presented. Specifically, in Section 4.2, the proposed method on 
OWA-based aggregation operators in multi-expert multi-criteria decision 
making model is put forward. Next, Section 4.3 provides the weighted selective 
aggregated majority-OWA operator and its application in linguistic group 
decision making model. Section 4.4 presents the method on the linguistic group 
decision making with Dempster-Shafer theory and induced linguistic 
aggregation operators. All these developed models then are applied in the case 
of financial selection problems. Finally, in Section 4.5, summary is given to 
conclude this chapter. 
 
 
4.2 On OWA-based Aggregation Operations in ME-MCDM Model 

 
Abstract.  In this study, an analysis of multi-expert multi-criteria decision 
making (ME-MCDM) model based on the ordered weighted averaging (OWA) 
operators is presented. The main focus is given on the aggregation processes, 
specifically on the fusion of criteria and the fusion of experts’ judgments. Firstly, 
two methods of modeling the majority opinion are studied as to aggregate the 
experts’ judgments, in which based on the induced OWA (IOWA) operators. 
Some modifications to the support functions are suggested as to derive the 
order-inducing variables. Secondly, an overview of OWA operators with the 
inclusion of different degrees of importance or weighted arithmetic mean (WA) 
is provided for aggregating the criteria. An alternative OWA operator with a 
new weighting method then is proposed which termed as alternative OWAWA 
(AOWAWA) operator. Some extensions of ME-MCDM model with respect to 
two-stage aggregation processes are developed based on the classical and 
alternative schemes. A comparison of results of different decision schemes then 
is conducted. Moreover, with respect to the alternative scheme, a further 
comparison is given for different techniques in integrating the degrees of 
importance. A numerical example in the selection of investment strategy is used 
as to exemplify the model and for the analysis purpose. 
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A.1 Introduction 
 
In the past, various multi-criteria decision making methods have been developed 
as tools for modeling human decision making and reasoning (see Figueira et al., 
2005; Gal et al., 1999; Hwang & Yoon, 1981, for the state-of-art surveys). The 
methods have been extensively used in numerous applications to deal with the 
prioritizing, ranking and selection of option (or alternative). In complex decision 
making problems, normally a group of experts (or decision makers) involved in 
which each of them offsets and/or support the others for an exhaustive 
judgment. Since then, the expansion of such models to multi-expert multi-
criteria decision making (ME-MCDM) problems has become the main focus in 
the literature of decision science (see Canfora & Troiano, 2004; Taib et al., 2016; 
Tsiporkova & Boeva, 2006). 

Central to the ME-MCDM problems, aggregation process plays a crucial role 
in obtaining the final decision, either to aggregate the criteria or to aggregate the 
overall judgment of experts. An overview of the main aggregation operators and 
their properties can be referred, for example, in Beliakov et al. (2007), Grabisch 
et al. (2009), and Torra and Narukawa (2007). Weighted arithmetic mean (WA) 
and ordered weighted averaging (OWA) operators are among the most widely 
used aggregation operators in the decision making models. The OWA (Yager, 
1988; Yager & Kacprzyk, 1997) provides a general class of mean-type 
aggregation operators which can be ranged from two extreme cases; a minimum 
operator (‘and’ – requiring all the criteria to be satisfied) to a maximum operator 
(‘or’ – requiring at least one of the criteria to be satisfied). The OWA operator 
modifies the basic aggregation process used in decision making model by 
applying the concept of fuzzy set theory, precisely, using the fuzzy linguistic 
quantifiers (Zadeh, 1983) for a soft aggregation process (Kacprzyk, 1986; 
Kacprzyk et al., 1992). In comparison to the WA which represents the degrees 
of importance (or relative weights) associated with particular criteria, the weights 
in OWA reflect the importance or satisfaction of values with respect to ordering 
(i.e., ordered weights). By appropriately selecting the weighting vector, different 
kinds of relationships between the criteria can be modeled, see (Yager, 1993) 
for the distinct families of OWA operators. In other different case, the WA is 
necessary in representing the MCDM problems. For example, some experts may 
prefer to associate a specific weight for each criterion based on its degree of 
importance. Hence, considering the advantages of both WA and OWA in 
modeling the real applications, Yager, (1988) then proposed the inclusion of 
unequal degrees of importance in OWA as an integrated approach. 
Consequently, a number of other techniques to deal with the same problem 
have been developed. According to Bordogna et al., (1997), the integration of 
these weighting methods has been formalized in two different approaches. In 
the first approach, the relative weights are only used to modify the argument 
values to be aggregated, specifically without the direct integration with ordered 
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weights. Examples in this category include the method based on max-min and 
product (Yager, 1988), fuzzy system modeling (Yager, 1998) and hybrid 
weighted average (Xu & Da, 2003). On the other hand, in the second approach, 
the relative weights and ordered weights are directly integrated as a new set of 
weights, e.g., method based on linguistic quantifiers (Yager, 1996), weighted 
OWA (WOWA) (Torra, 1997), OWA-WA (Merigó, 2012) and immediate WA 
(IWA) (Llamazares, 2013). 

Another important variant of OWA is an induced OWA (IOWA) operator 
(Yager & Filev, 1999). Generally, it is an extension of OWA which involves a 
pair of values, such as, the additional parameter (order-inducing variables) used 
to induce the argument values to be aggregated. Analogously, with respect to a 
group decision making, the majority agreement among experts can be 
implemented using the IOWA operators, which synthesizes the opinions of the 
majority of experts. In this case, the majority opinion refers to a consensual 
judgment of majority of experts who have similar opinions. In general, the 
OWA and IOWA operators provide a more flexible model for combining the 
information in decision making problems, specifically in the complex 
environment where the attitudinal character of experts is considered. 

On the basis of previous discussion, the purpose of this study is on extending 
and analyzing the ME-MCDM model with respect to two-stage aggregation 
processes, i.e., the aggregation of criteria and the aggregation of experts’ 
judgments. Firstly, two models based on majority concept for aggregating the 
experts’ judgments are reviewed, particularly the methods as introduced by Pasi 
and Yager (2006) and its extension by Bordogna and Sterlacchini (2014). The 
differences between the two methods can be divided into three main categories, 
specifically, on assigning weights to the experts, the type of proximity measure 
employed to calculate the support between experts and the approach used in 
deriving the agreement between the majority of experts, i.e., either based on the 
classical scheme or the alternative scheme. Pasi and Yager (2006) proposed the 
method in case of the weights between experts are considered as identical 
(homogeneous group decision making) and used a support function based on 
distance measure to compute the majority agreement between experts. Besides, 
the support between experts is calculated with respect to the final rankings of 
options which derived primarily by each individual expert (classical scheme). On 
the contrary, Bordogna and Sterlacchini (2014) then extended this idea to 
include the case where the experts are assigned with different degrees of 
importance (heterogeneous group decision making) and utilized the similarity 
measure based on Minkowski OWA (MOWA) to calculate the majority support 
between experts. Instead of focusing on the individual ranking on options of 
each expert, they provide the similarity measure with respect to each specific 
criterion (alternative scheme). In this study, for the purpose of comparison, 
some modifications have been made to both methods. In specific, the extension 
of Pasi-Yager method from the classical scheme to the alternative scheme has 
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been made. Likewise, the Bordogna-Sterlacchini method has been modified to 
deal with the classical scheme. Hence, these methods with the existing original 
methods are applied in the ME-MCDM model and then a comparison as to 
examine the results of different schemes is conducted.  

Secondly, some methods based on the integration of OWA and WA for the 
purpose of aggregating the criteria are presented. In addition, an alternative 
OWAWA (AOWAWA) operator which combines the characteristics of OWA 
and OWAWA using the idea of geometric mean is proposed. As a comparison, 
the ME-MCDM model with respect to Bordogna-Sterlacchini approach on the 
alternative scheme is applied as to observe the results of distinct weighting 
techniques in the aggregation process. The outline of this study is as follows. In 
Section A.2 the definitions of OWA, IOWA and MOWA distance measures are 
presented. In Section A.3 the aggregation techniques for modeling the majority 
opinion are discussed and then Section A.4 reviews the integrated weighting 
methods based on WA and OWA as well as the proposed AOWAWA operator. 
In Section A.5, the general frameworks of ME-MCDM model based on classical 
and alternative schemes are outlined. Then, a numerical example in a selection 
of investment strategy is provided in section A.6. 

 
 

A.2 Preliminaries 
 
This section provides the definitions and basic concepts related to OWA, 
IOWA and MOWAD aggregation operators that will be used throughout the 
study. 
 

A.2.1 OWA operator 
 
Definition A.1 (Yager, 1988). An OWA operator of dimension  is a mapping :  that has an associated weighting vector = ( , , … , ) 
of dimension , such that [0,1] and = 1, given by the following 
formula:  

 ( , … , ) = ( ) (A.1) 

 
where ( ) is the argument value  being ordered in non-increasing order ( ) ( ) ( ). 
 
Note that, the reordering process makes the OWA operator is no longer a 
standard linear combination of weighted arguments, but it is rather a piecewise 
linear function (Beliakov & James, 2011). The OWA operators meet 
commutative, monotonic, bounded and idempotent properties. 
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Given that a function : [0,1] [0,1] as a regular monotonically non-
decreasing fuzzy quantifier and it satisfies: i) (0) = 0, ii) (1) = 1, iii) >  
implies ( ) ( ), then the associated OWA weights can be derived using 
this function as follows (Yager, 1988): 

 
 = 1 , = 1,2, … ,  (A.2) 

 
such that [0,1] and = 1. 

 
The linguistic quantifier  (Zadeh, 1983) can be presented in the form of ( ) = , > 0 with the main characteristics such that: 0, then =
, where = (1,0, … ,0); = 1 then = / , where / =(1/ , 1/ , … ,1/ ); and  then = , where = (0,0, … ,1). 

Moreover, Yager (1988) defined two measures, namely the orness measure and 
the entropy (or dispersion) measure to characterize the type of aggregation 
associated with a given weighting vector .  

 
Definition A.2 (Yager, 1988). Suppose that  is the associated weighting 
vector such that [0,1] and = 1, then the orness measure (or 
degree of optimism) of OWA can be given as the following: 

( ) = 1 1 ( ) . (A.3) 

 
It can be demonstrated that for any , the value of ( ) lies in unit interval [0,1]. For instance: i) if =  then ( ) = 0, ii) if = /  then / = 1/2, and iii) if =  then ( ) = 1.  
 
Definition A.3 (Yager, 1988). Suppose that  is the associated weighting 
vector such that [0,1] and = 1, then the entropy of OWA can be 
given as follows: ( ) = . (A.4) 

The entropy is used to measure the degree of information that employed in the 
OWA aggregation. It can be shown that 0 ( ) ( ), in which ( ) = ( ) = 0 and / = ( ).  
 



44

A.2.2 IOWA operator 
 
Definition A.4 (Yager & Filev, 1999). An IOWA operator of dimension  is 
mapping :  that has an associated weighting vector  such that [0,1] and = 1, given by the following formula:  
 ( , , , , … , , ) = ( ) (A.5) 

 
where ( ) is the argument value of pair ,  of order-inducing variable , 
reordered such that ( ) ( ) ( ) and the convention that if  
of the ( ) are tied, i.e., ( ) = ( ) = = ( ), then, the value ( ) is given as follow (Yager and Filev, 1999; Beliakov and James, 2011): 
 

 ( ) = 1 ( )
( )  (A.6) 

 
The IOWA operators are all satisfying commutative, monotonic, bounded and 
idempotent properties.  
 
A.2.3 Minkowski OWA distance 
 
Definition A.5 (Merigó & Gil-Lafuente, 2008). A MOWAD operator of 
dimension  is a mapping : ×  that has an associated 
weighting vector W of dimension n such that = 1 with [0,1] and 
the distance between two sets  and  is given as follows: 
 

 ( , , … , ) = ( ) / , (A.7) 

 
where ( ) is the component of  being ordered in non-increasing order ( ) ( ) ( ) and  is the individual distance between  and , 
such that =  with  is a parameter in a range {0}. 
 
The MOWAD operators meet commutative, monotonic, bounded and 
idempotent properties. By setting different values for the norm parameter , 
some special distance measures can be derived. For example, if = 1, then the 
Manhattan OWA distance can be obtained, = 2 then the Euclidean OWA 
distance can be acquired, =  then Tchebycheff OWA is derived, etc. 
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Equivalently, OWA and IOWA operators can be generalized in the similar way 
(see Merigó & Gil-Lafuente, 2009; Merigó & Yager, 2013; Yager, 2004; Yusoff 
& Merigó, 2014). 
 
 
A.3 Aggregation Methods based on Majority Concept 
 
In this section, the methods for aggregating experts’ judgments by the inclusion 
of majority concept are presented. In particular, the method by Pasi and Yager, 
(2006) and its extension by Bordogna and Sterlacchini (2014) are studied.  
 
A.3.1 Pasi-Yager approach 
 
In the following, a brief description of the mentioned methods is given. Two 
fundamental steps in both methods are on determining the order-inducing 
variable and on deriving the associated weights of experts. The methodology 
used to obtain the majority opinion based on Pasi and Yager, (2006) can be 
expressed as the following. Figure A.1 illustrate the procedure of this approach. 

Suppose that a set of individual opinions of  experts ( = 1,2, … , ) is 
given as the vector = , , … , , i.e., with respect to each option , ( = 1,2, … , ). For a simple notation,  can be used instead of  since 
each option can be evaluated independently using the same formulation. For a 
single option, the similarity of each expert can be calculated using the support 
function as follows: 

 
 ( , ) =   1      | | < ,0              .  (A.8) 

 
The support function represents the similarity or dissimilarity between expert  
with each of the other experts , ( = 1,2, … , ) (not include himself/herself), 
such that . Then the overall support for each individual expert  can be 
given as: 
 

 = ( , ),  
(A.9) 

 
where  constitute the values of order-inducing variable = ( ), … , ( )  
which ordered in non-decreasing order, such that ( ) ( ) ( ).  
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In consequence, to compute the weights of the weighting vector, define the 
values  based on an adjustment of the  values, such that: = + 1 
(including himself/herself, ( , ) = 1). The  values are in non-
decreasing order, . On the basis of  values, the weights are 
computed as follows: = ( )( ). (A.10) 

 
The value ( ) denotes the degree to which a given member of the 
considered set of values represents the majority. The quantifier  with semantic 
‘most’ for the majority opinion of experts can be given as follows: 
 

 ( ) = 1         0.9,2 0.8       0.4 < < 0.9,0         0.4,   (A.11) 

 
where = . As can be seen, the weight of experts here is derived based on 
the arithmetic mean (AM) where each expert is considered as having an equal 
degree of importance or trust, e.g., reflect the average of the most of the similar 
values. Then, the final evaluation is determined using the IOWA operators. 
Note that, here the values of order-inducing variable are reordered in non-
decreasing order instead of non-increasing order as in the original IOWA, such 
in Eq. (A.5). This type of ordering reflects the conformity of quantifier ‘most’ as 
to model the majority concept (see Pasi & Yager, 2006) for detailed explanation. 
Note also that, the quantifier  here is an alternative representation of ( ) =

. For representing the majority opinion of experts, this type of quantifier will 
be used throughout the study. 

However, in some cases, the values of the vector = , , … , , 
which derived after the first stage of aggregation process show a very slight 
different between the values due to, for example, the normalization process. 
This case then leads to the values of | | less differentiable and cause a 
difficulty in assigning a value for . Hence, in this study, a slight modification 
to the support function in Eq. (A.8) is suggested and the formulation is given as 
follows: 

 ( , ) =   1      | |max| | < ,0        .           (A.12) 

 
where max| | is the maximum distance between all experts. 
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Example A.1: Suppose that a set of individual opinion of experts is given as =( , , … , ) = (0.7, 0.86, 0.76, 0.72, 0.6) with respect to each option, . 
Then, the final majority opinion of experts can be calculated as follows: 
 

            
 0.7 0.86 0.76 0.72 0.6 

divided by 
 max| | 

 
 

0.7 0.86 0.76 0.72 0.6 

,  - 0.16 0.06 0.02 0.1 - 0.62 0.23 0.08 0.39 ,  0.16 - 0.1 0.14 0.26 0.62 - 0.39 0.54 1 ,  0.06 0.1 - 0.04 0.16 0.23 0.39 - 0.15 0.62 ,  0.02 0.14 0.04 - 0.12 0.08 0.54 0.15 - 0.46 ,  0.1 0.26 0.16 0.12 - 
 

0.39 1 0.62 0.46 - 

 

By setting = 0.4, then the overall support for each expert can be calculated, 
such as: = 3, = 1, = 3, = 2, and = 1. In case of ‘ties’, the stricter 

 can be imposed, such as, = 0.1 in this example to order the  values. The 
vector of order-inducing variable then can be given as = ( ), … , ( ) =(1,1, 2, 3, 3) and the weighting vector can be obtained as =( , … , ) = (0, 0 , 0.2, 0.4, 0.4). The final majority opinion of experts can 
be calculated as follows:  
 ( 1, 0.6 , 1, 0.86 , 2, 0.72 , 3, 0.76 , 3, 0.7  ) = (0 × 0.6) +(0 × 0.86) + (0.2 × 0.72) + (0.4 × 0.76) + (0.4 × 0.7) = 0.73. 
 

A.3.2 Bordogna-Sterlacchini approach 
 
In the following, the method based on Bordogna and Sterlacchini, (2014) is 
presented. Contrary to the previous method, here the majority opinion of 
experts with respect to each specific criterion is considered (see Figure A.2). 
Suppose that a collection of judgment of  experts is given as vector =, , … ,  for criterion , ( = 1,2, … , ). In this method, instead of using 
the support function based on distance measure, they used the Minkowski 
OWA-based similarity measure to obtain the  for an order-inducing 
variable. The  of each expert  can be defined as follows: 
 

 = ( , ) = ( , … , )= ( )
/  , (A.13) 
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where = ( , ) = 1 | | is a similarity measure between expert  
with each of the other experts  (includes himself), given that  and ( ) 
are ordering of ( , … , ) in non-increasing order ( ) ( )( ) . Meanwhile  are the ordered weights with the inclusion of importance 
degrees of experts , = 1,2, … , , given as = ( )( ) ,  such that  , [0,1] and ( = = 1). The 
norm parameter {0} provides a generalization of the model. Here the 
quantifier ( ) =  is employed. The OWA weights  will be explained in 
great detail in the next section. 
 
With respect to the Eq. (A.13), the order inducing vector can be given as: 
 = ( , … , )= ( , ), … , ( , ) , (A.14) 

 
Moreover,  as generalized quantifiers can take any semantics to modify the 
weights of experts (or trust degrees) for different strategies. When ( ) =  
as for ( = 1 ) , then  is reduced to: 
 

 = ( , ) = , (A.15) 

 
which is the Minkowski WA-based similarity measure. Formally,  can 
be ranged in between ( ) for 0, to ( ) for . 

Afterwards, the weights for the IOWA operator can be derived using the 
following formula: 

 = ( , … , )( , … , ), (A.16) 

 
where  are reordered in non-decreasing order. Analogously, given the 
quantifier  as in Eq. (A.11) for the majority opinion, the weighting vector = ( , … , ) can be computed as follows: 

 = ( )( ) . (A.17) 
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Note that, the general weights  represent the quantification of majority of 
experts for the final agreement on each criterion, whilst the weights  reflect 

 for deriving the order-inducing values. 
Next, the overall aggregation process can be computed using the IOWA 

operator such in Eq. (A.5). Similarly, the non-decreasing inputs ,  is 
implemented as explained in previous sub-section. Moreover, it can be shown 
that, the coherence function Eq. (A.15) can be represented also as the dual of 
similarity measure, which is the distance measure: 

 ( , ) = (1 | |) /

= 1 | | / , (A.18) 

 
such that for any  and  with ( , ) [0,1], the properties:  

i) ( , ) = 1 (reflexive) and, 
ii) ( , ) = ( , ) (symmetric) are fulfilled for each single value 

of  and . 
 

Similarly to the previous section, to more differentiate between values and to 
avoid the ‘ties’ problem, in this study a simple modification to the similarity 
measure is suggested as follows:  

 
 ( , ) = 1 | |max| | , (A.19) 

 
where max| | is the maximum distance between all experts.  
 
Correspondingly, the weights for IOWA aggregation process Eq. (A.17) can 
also be modified to the following formula: 
 

 = ( , … , )( , … , ) . (A.20) 
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Figure A.1. Classical scheme of multi-expert decision making 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
   Figure A.2. Alternative scheme of multi-expert decision making 
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Example A.2: Suppose that a set of opinion of experts on a single criterion  
 is given as = ( , , … , ) = (0.31, 0.34, 0.30, 0.28, 0.11). The 

majority agreement of experts can be calculated as follows: 
 

      
 

     
 

 0.31 0.34 0.3 0.28 0.11        

 1 0.85 0.96 0.90 0.15  
 ×

 

0.3 0.3 0.2 0.1 0.1 0.85 ,  0.85 1 0.87 0.75 0 0.3 0.3 0.2 0.1 0.1 0.79 ,  0.96 0.81  0.94 0.19 0.3 0.3 0.2 0.1 0.1 0.84 ,  0.9 0.75 0.94 1 0.26 0.3 0.3 0.2 0.1 0.1 0.81 ,  0.15 0 0.19 0.26 1 0.3 0.3 0.2 0.1 0.1 0.21 

 

where = =1 . In this case, for ( ) =  and by setting = 1, then, 
the vector of order-inducing variables can be derived, = ( ), … , ( ) =(0.21, 0.79, 0.81, 0.84, 0.85). Next, by using the quantifier  with semantics 
‘most’ for majority, the weighting vector = ( , … , ) =(0, 0, 0.20, 0.40, 0.40) can be obtained. The final majority opinion of experts 
can be calculated using the IOWA operator as follows: 
 ( 0.21, 0.11 , 0.79, 0.34 , 0.81, 0.28 , 0.84, 0.30 , 0.85, 0.31 ) = (0.20 × 0.28) + (0.40 × 0.30) + (0.40 × 0.31) = 0.30. 
 
 
A.4 OWA Operators with the Inclusion of Degrees of Importance 
 
In this section, some OWA aggregation operators with their weighting methods 
are reviewed, in particular, the weighting methods based on the inclusion of the 
degrees of importance (WA). In addition, an alternative weighting method with 
its respective aggregation operator called as alternative OWAWA (AOWAWA) 
operator is proposed. 
 

A.4.1 Some of the existing methods 
 
Prior to the definition of integrated weighting methods, the general definition 
of WA is given as the following. 
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Definition A.6. Let = ( , , … , ) be a weighting vector (degrees of 
importance) of dimension  such that [0,1] and = 1, then a 
mapping :  is a weighted arithmetic mean (WA) if ( , , … , ) = . 
 
The WA satisfies monotonic, idempotent and bounded properties, but it is not 
commutative (Beliakov et al., 2007; Grabisch et al., 2009; Torra, 1997).  
 

There are a number of methods in the literature which have been proposed 
for obtaining weights for OWA aggregation operators (see Xu, 2005). One of 
them is by using the linguistic quantifiers as defined in the preliminaries section, 
refer to Eq. (A.2). Throughout the study, the OWA weighting vector  is 
exclusively referred to this type of weights, specifically to be integrated with the 
weighting vector,  (except for the methods in Definitions A.10 and A.11 as 
will be explained later). 

 
Definition A.7 (Yager, 1988). Let  and  be two weighting vectors of 
dimension , then a mapping :  is an OWA-MP operator of 
dimension  if: 
 , ( , , … , ) =  ( ), (A.21) 

 
where ( ) is the value  being ordered in non-increasing order ( )( ) ( ) such that = , =  and  is 
the orness measure and  = 1  is its complement.  
 
This is the unified formulation of the methods which proposed earlier in Yager 
(1978) and Yager (1987), specifically based on the max-min and product 
approaches. In this study, it is denoted as OWA-MP. Notice that in the special 
cases: if = 0, then it can be reduced to a pure ‘and’ operator. Specifically, given 
that  =  with = , then ( ) is generated, which is the smallest value 
of ( ). Conversely, if = 1, then it can be reduced to a pure ‘or’ operator. 
Given that =  with = , then ( ) is generated, which is the 
largest value of ( ). The OWA-MP operators meet monotonic and 
idempotent properties, however they are not commutative as involve WA. 
Moreover they are also not bounded, as in the case of argument value, [0,1], the modified argument values  are always greater than or equal to the 
argument values, . 
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Definition A.8 (Yager, 1998). Let  and  be two weighting vectors of 
dimension , then a mapping :  is an OWA-FSM operator of 
dimension  if: 
 , ( , , … , ) = ( ), (A.22) 

 
where ( ) is the value of  being ordered in non-increasing order ( )( ) ( ) given that  = , = +  and  = 1 , 
that is the complement of orness.  
 
This method is based on fuzzy system modeling and is termed as OWA-FSM 
in this study. Notice that in the special cases: if = 0, then it reduces to a pure 
‘and’ operator. Specifically, given that  = +  and = 1, then ( ) 
is generated, which is the smallest value of ( ). Whilst, if = 1, then it is a 
pure ‘or’ operator. Given that  =  and = 1, then ( ) is generated, 
which is the largest value of ( ). The OWA-FSM operators meet monotonic 
and idempotent properties, but, they are not commutative as involve WA. 
Moreover, they are also not bounded, as in the case of [0,1], then  

. 
 
Definition A.9 (Xu & Da, 2003). Let  and  be two weighting vectors of 
dimension , then a mapping :  is a hybrid averaging (HA) operator 
of dimension  if: 
 , ( , , … , ) = ( ), (A.23) 

 
where ( ) is the argument value  being ordered in non-increasing order ( ) ( ) ( ) given that =  and  is the balancing 
coefficient. 
 
It can be shown that when = (1/ , 1/ , … ,1/ ), then HA operator reduces 
to WA, whilst when = (1/ , 1/ , … ,1/ ), HA operator reduces to OWA 
(Llamazares, 2013). HA operators meet monotonic property, however, they are 
neither idempotent nor bounded. As can be seen, the Definitions A.7-A.9 are 
based on the approach where the degrees of importance,  are used to modify 
the argument values to be aggregated. In the following, the approaches based 
on the direct integration between  and  are presented. 
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Definition A.10 (Torra, 1997). Let  and  be two weighting vectors of 
dimension , then a mapping :  is a weighted ordered weighted 
averaging (WOWA) operator of dimension  if: 
 
 , ( , , … , ) = ( ), (A.24) 

 
where ( ) is the argument value of  being ordered in non-increasing order ( ) ( ) ( ) and = ( ) ( )  with  
being a monotonic non-decreasing function that interpolates the points ( / ),  together with the point (0,0). The function   required to be 
a straight line when the points interpolated in this way.  
 
Similarly, it can be demonstrated that when = (1/ , 1/ , … ,1/ ), then 
WOWA operator reduces to WA, whilst when = (1/ , 1/ , … ,1/ ), 
WOWA operator reduces to OWA (Llamazares, 2013). Moreover, they are 
monotonic, idempotent, and bounded. Equivalently, the WOWA operator can 
be transformed to the OWA operator with the inclusion of degrees of 
importance (Yager, 1996), if a regular monotonically non-decreasing fuzzy 
quantifier  is used as the function  and it can be defined as the following. 

 
Definition A.11 (Yager, 1996). Let  and  be two weighting vectors of 
dimension , then a mapping :  is an OWA operator of 
dimension  if : 
 , ( , , … , ) = ( ), (A.25) 

 
where ( ) is the argument value  being ordered in non-increasing order ( ) ( ) ( ) and = ( ) ( )  such 
that [0,1] and = 1. 
 
Definition A.12 (Llamazares, 2013). Let  and  be two weighting vectors of 
dimension , then a mapping :  is an immediate weighted 
averaging (IWA) operator of dimension  if: 
 
 , ( , , … , ) = ( ), (A.26) 

 
where ( ) is the argument value  being ordered in non-increasing order ( ) ( ) ( ) and  = / .  
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As can be seen, the IWA is a manipulation of immediate probability (Engemann 
et al., 1996; Merigó, 2012; Yager et al., 1995) by using the WA instead of the 
probability distribution. IWA operators satisfy the generalization properties as = (1/ , 1/ , … ,1/ ), it reduces to OWA and when = (1/ , 1/ , … ,1/), IWA reduces to WA (Llamazares, 2013). IWA operators meet monotonic, 
idempotent, bounded properties. 
 
Definition A.13 (Merigó, 2012). Let  and  be two weighting vectors of 
dimension , then a mapping :  is an ordered weighted 
averaging-weighted average (OWAWA) operator of dimension  if: 
 
 , ( , , … , ) = ( ), (A.27) 

 
where ( ) is the argument value of  being ordered in non-increasing order ( ) ( ) ( ) and  = + (1 ) ( ) with [0,1]. 
 
OWAWA operators satisfy monotonic, idempotent, bounded properties. 
Moreover, the value returned by the OWAWA operator lies between the values 
returned by the WA and OWA, and coincides with them when both are equal. 

In addition, by taking the advantages of IWA and OWAWA operators, a new 
weighting method can be derived as in the next sub-section. 

 
A.4.2 Alternative OWAWA operator 
 
Definition A.14. Let  and  be two weighting vectors of dimension , then 
a mapping :  is an alternative ordered weighted averaging-
weighted average (AOWAWA) operator of dimension  if: 
 
 , ( , , … , ) = ( ), (A.28) 

 
where ( ) is the argument value of  being ordered in non-increasing order ( ) ( ) and  = ( )( ) ( )( )  
with [0,1], by convention that (0 = 0). 
 
The AOWAWA operator are monotonic, bounded, idempotent. However, it is 
not commutative because the AOWAWA operator includes the WA. The 
AOWAWA operators generalized to WA and OWA when = 0 and = 1, 
respectively. 
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TTheorem A.1 (Monotonicity) Assume that  is the AOWAWA operator, let = ( , , … , ) and = ( , , … , ) be two sets of arguments. If 
, (1,2, … , ), then:  

 ( , , … , ) ( , , … , ). 
 
Proof. It is straightforward and thus omitted. 
 
Theorem A.2 (Idempotency) Assume  is the AOWAWA operator, if = , (1,2, … , ), then: ( , , … , ) = . 
 
Proof. It is straightforward and thus omitted. 
 
Theorem A.3 (Bounded) Assume  is the AOWAWA operator, then: 
 ( , , … , )  
 
Proof. It is straightforward and thus omitted. 
 
 
A.5 General Frameworks of ME-MCDM Model based on Different 

Decision Schemes 
 
In this section, the general frameworks of ME-MCDM model based on the 
classical and alternative schemes are presented. In addition to the original 
methods by Pasi and Yager (2006) and Bordogna and Sterlacchini (2014), some 
extensions have been made as the following. First, the majority concept of Pasi-
Yager method which is originally based on the classical scheme is extended to 
the case of alternative scheme. Secondly, the Bordogna-Sterlacchini method 
which is based on the alternative scheme is modified to the case of the classical 
scheme. These methods are used for the comparison purpose in the next 
section. The algorithms for the model are structured as in the following. 
 
A.5.1 Classical scheme 
 

Stage I: Internal aggregation (Local aggregation) 
 

Step 1: First, a decision matrix for each expert , = 1,2, … , , is constructed 
as follows: 
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                  …    = , (A.29) 

 
where  indicates the option/alternative  ( = 1,2, … , ) and  
denotes the criterion  ( = 1,2, … , ). Meanwhile the  represents the 
preference for option  with respect to criterion , such that [0,1]. 

Step 2: Next, determine the weighting vector for all the expert using one of the 
available methods, such as in Eqs. (A.21-A.28). Note that, in this case, 
the proportion of criteria to be considered is subject to the attitudinal 
character of individual experts. Hence, each expert can provide distinct 
decision strategies separately. 

Step 3: Aggregate the judgment matrix of each expert by the weighting vector as 
determined in Step 2. At this stage, each expert derives the ranking of all 
options individually. 

 
Stage II: External aggregation (Global aggregation) 
 

With respect to the type of aggregation methods, the consensus measure for the 
majority of experts can be calculated as follows:  
 
(P-Y*) The Pasi-Yager method (Homogeneous group decision making): 
 
Step 4: Determine the order-inducing variable using the Eqs. (A.8-A.9) or in 

the case where the argument values are very close to each other, use the 
modified support function such in Eq. (A.12). 

Step 5: Calculate the weighting vector which represents the majority of experts 
using the Eq. (A.10) based on quantifier ‘most’ as in Eq. (A.11). In this 
case, the weight of each expert is considered as equal (the same degrees 
of importance).  

 
(B-S*) The modified version of Bordogna-Sterlacchini method (Heterogeneous group decision 

making): 
 
Step 4:  Determine the order-inducing variable using the Eqs. (A.13-A.15) or in 

the case where the argument values are very close to each other, then 
use the modified similarity measure such in Eq. (A.19). 
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Step 5:  Calculate the weighting vector using the Eqs. (A.16-A.17). In this         
case, the weight or trust degree is associated to each expert.  

 
A.5.2  Alternative scheme 
 

Stage I: External aggregation 
 

Step 1:  By the similar way, a decision matrix for each expert is constructed such 
in Eq. (A.29). Then, the aggregation based on majority concept can be 
implemented using one of the following methods: 

 
(B-S**)  The Bordogna-Sterlacchini method (Heterogeneous group decision making):  
 
Step 2:  Determine the order-inducing variable such in Step 4(B-S*) of the 

classical scheme. But, instead of aggregate the opinion of experts with 
respect to each option, in this step, the aggregation process is 
conducted on each criterion. 

Step 3:  Calculate the weighting vector such in Step 5(B-S*) of the classical 
scheme using the values of the order-inducing variable in the previous 
step. 

 
(P-Y**)  The extension of Pasi-Yager method (Homogeneous group decision making): 
 
Step 2:  Determine the order-inducing variable as in Step 4(P-Y*) of the classical 

scheme. But, instead of aggregate the opinion of experts with respect 
to each option, here, the aggregation process is conducted on each 
criterion. 

Step 3:  Calculate the weighting vector such in Step 5(P-Y*) of the classical 
scheme using the order-inducing variable derived in the previous step. 

 
Stage II: Internal aggregation (Global aggregation) 
 

Step 4:  Determine the weighting vector using one of the methods as shown in 
Eqs. (A.21-A.28).  

Step 5:  Finally, aggregate the judgment matrix of the majority of experts with 
respect to the weighting vector derived in Step 4. Note that here, the 
proportion of criteria is subject to the attitudinal character of the 
majority of experts. 
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A.6 Numerical Example 
 
In the following, a numerical example is presented. In this case, an investment 
selection problem is studied where a group of experts or analysts are assigned 
for the selection of an optimal strategy. Assume that a company plans to invest 
some money in a region. Primarily, they consider five possible investment 
options as follows: = invest in the European market, = invest in the 
American market, = invest in the Asian market, = invest in the African 
market, = do not invest money. In order to evaluate these investments, the 
investor has brought together a group of experts. This group considers that each 
of investment options can be described with the following characteristics: = 
benefits in the short term, = benefits in the mid-term, = benefits in the 
long term, = risk of the investment, = other variables. The available 
investment strategies depending on the characteristic  and the option  for 
each expert are shown in Table A.1. 

 
  

Table A.1.  Available investment strategies of each expert,  
 

 
 
 
 
 
 
 

 
 
 
 
 

 

                 

     
 

     
 

     

0.7 0.6 0.7 0.6 0.9  0.6 0.9 1 0.9 0.9  0.5 0.7 0.9 0.8 0.9 

0.8 1 0.2 1 0.6  1 0.7 0.1 1 0.8  0.9 0.9 0.2 1 0.7 

0.6 0.7 0.6 0.6 0.5  0.4 0.9 0.8 0.7 0.6  0.8 0.8 0.7 0.7 0.6 

0.9 0.6 0.8 1 0.9  0.9 0.5 0.7 1 0.9  0.9 0.5 0.8 1 0.7 

0.3 0.7 0.7 0.8 0.9  0.7 0.7 0.9 0.9 0.9  0.8 0.7 0.8 0.9 0.8 

             

        
  

     

 0.4 0.7 0.9 0.8 0.8   0.5 0.6 0.7 0.6 0.8 

 0.9 0.7 0.1 0.9 0.6   0.9 0.8 0.4 0.9 0.5 

 0.6 0.6 0.5 0.8 0.4   0.6 0.6 0.5 0.8 0.7 

 0.7 0.5 0.7 0.7 0.9   0.8 0.7 0.6 0.9 0.8 

 0.4 0.6 0.7 0.8 0.9   0.2 0.6 0.8 0.6 0.8 
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In this study, two analyses are conducted. First is to analyze the effect of 
different decision schemes for homogeneous and heterogeneous cases. The 
aggregated results of the analysis are presented in Table A.2. Note that, in this 
case, all the criteria are set to have equal degrees of importance. In addition, for 
the heterogeneous case (i.e., Bordogna-Sterlacchini method), the expert’s weight 
is given as 0.3, 0.1, 0.1, 0.4, 0.1 for expert , , ,  and , respectively. 
As can be seen, there is a slight difference between the results which derived 
from both majority aggregation approaches (Pasi-Yager and Bordogna-
Sterlacchini methods) with respect to different decision schemes. The majority 
opinion of experts with respect to the classical scheme provides  , , ,  
and  as the final ranking for both methods (ME-MCDM-PY* and ME-
MCDM-BS*). Whilst the majority opinion of experts computed with respect to 
alternative scheme exhibits the ranking of , , ,  and  for ME-
MCDM-PY** and ME-MCDM-BS**. Hence, the aggregated results 
demonstrated the effect on different decision schemes in ranking the options. 

 
 

Table A.2.  The aggregated results 
 

 
Homogeneous case, = 1/  

Heterogeneous case, 

 1/  
 ME-MCDM-

PY* 
ME-MCDM-

PY** 
ME-MCDM-

BS* 
ME-MCDM-

BS** 

 0.7143 (R3) 0.7726 (R2) 0.7169 (R3) 0.7989 (R2) 
 0.7178 (R2) 0.6992 (R4) 0.7200 (R2) 0.6580 (R4) 
 0.6280 (R5) 0.6361 (R5) 0.5952 (R5) 0.6057 (R5) 
 0.7886 (R1) 0.8027 (R1) 0.7800 (R1) 0.8000 (R1) 
 0.7029 (R4) 0.7225 (R3) 0.6800 (R4) 0.6969 (R3) 

Note: ‘*’ refers to the classical scheme and ‘**’ refers to the alternative scheme;   
R = ranking. 

 
 
Secondly, as a further analysis, the method of ME-MCDM-BS** based on 

the integration of WA and OWA weights is conducted. Table A.3 shows the 
aggregated results of available financial strategies. The weights  (the degrees 
of importance) for the criteria are given as 0.1, 0.2, 0.3, 0.3, 0.1 and the ordered 
weights,  are represented as ‘most’ ( = 10) “i.e., most of the criteria have to 
be satisfied”. As can be noticed, the proposed AOWAWA operator with =
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0.5 indicates the similar ranking as the WOWA and IWA methods, , , , 
 and . Concurrently, the rest weighting techniques show slightly different 

results. 
 

Table A.3.  The aggregated results with respect to ME-MCDM-BS** model 
 

OWA 
(Q) WOWA IWA OWA-

WA 
AOWA 

-WA 
OWA 
(FSM) 

OWA 
(MP) HA 

0.6957 0.6992 0.6972 0.7526 0.7076 0.9177 0.9053 0.3598 
0.1543 0.1147 0.1207 0.3866 0.2124 0.7325 0.5319 0.167 
0.4837 0.5080 0.4988 0.5547 0.5158 0.8564 0.8279 0.2455 
0.5227 0.5217 0.5302 0.6563 0.5736 0.8791 0.8493 0.4504 
0.4185 0.4946 0.4472 0.5685 0.5085 0.8926 0.8742 0.2215 

 

Note that in this case, the decision strategy is subject to the attitudinal 
character of the majority of experts. By selecting any parameter  to represent 
the linguistic quantifier, various decision strategies can be derived. Specifically 
for 0 (at least one criteria is considered), = 1 (averagely all) and  
(all criteria are considered). The aggregated results of AOWAWA operator with 
different decision strategies are presented in Tables A.4.  
 

Table A.4.  Decision strategies based on AOWAWA operator 
 

At least one 0 

Few = 0.1  

Some = 0.5 

Half (average) = 1 

Many = 2 

Most = 10 

All 

 

0.8989 0.8463 0.8202 0.8038 0.7801 0.7076 0.6945 
0.9976 0.8397 0.7188 0.6375 0.5249 0.2124 0.1000 
0.6994 0.6628 0.6354 0.6169 0.5908 0.5158 0.4727 
0.9986 0.9071 0.8379 0.7926 0.7320 0.5736 0.5000 
0.8976 0.7871 0.7367 0.7084 0.6695 0.5085 0.3846 
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In addition, the rankings of AOWAWA operator with different values of  
can be seen in Table A.5. These values show the effect of the selection WA and 
OWA in the final evaluation process. For example, if only WA is applied, then = 0, whilst = 1 implies only OWA is used.  

 

Table A.5.  Aggregated results of AOWAWA operator based on  values 
 = 0 = 0.2 = 0.4 = 0.6 = 0.8 = 1 

0.6957 0.6975 0.7024 0.7160 0.7493 0.8094 
0.1543 0.1699 0.1942 0.2376 0.3338 0.6190 
0.4837 0.4925 0.5065 0.5270 0.5590 0.6257 
0.5227 0.5370 0.5589 0.5916 0.6459 0.7900 
0.4185 0.4426 0.4816 0.5410 0.6223 0.7185 

 

 
4.3 Weighted Selective Aggregated Majority-OWA Operator and Its 

Application in Linguistic Group Decision Making Model 

 
Abstract. This study focuses on the aggregation process in group decision 
making model based on the concept of majority opinion (neat-OWA-based 
method). The weighted-selective aggregated majority-OWA (WSAM-OWA) 
operator is proposed as an extension of the SAM-OWA operator, where the 
reliability of information sources is considered in the formulation. The WSAM-
OWA operator is generalized to the quantified WSAM-OWA operator by 
including the concept of linguistic quantifier, mainly for the group fusion 
strategy. The QWSAM-IOWA operator, with an ordering step, is introduced to 
the individual fusion strategy. The proposed aggregation operators are then 
implemented to the case of alternative scheme of heterogeneous group decision 
analysis. The heterogeneous group includes the consensus of experts with 
respect to each specific criterion. The exhaustive multi-criteria group decision 
making model under the linguistic domain, which consists of two-stage 
aggregation processes, is developed in order to fuse the experts’ judgments and 
to aggregate the criteria. The model provides a greater flexibility when analyzing 
the decision alternatives with a tolerance that considers the majority of experts 
and the attitudinal character of experts. A selection of investment problem is 
given to demonstrate the applicability of the developed model. 
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B.1 Introduction 
 
An aggregation process is central in many applications which involve 
information processing, such as decision analysis, information retrieval, and 
pattern recognition. Group decision making (GDM), one of the research topics 
in multiple criteria decision analysis (MCDA), relies on the aggregation process 
to obtain a representative value for a group of experts. Two general frameworks 
or schemes that are normally used in GDM can be classified as classical and 
alternative schemes (Bordogna & Sterlacchini, 2014). These schemes, in general, 
have different approaches for aggregating the experts’ judgments as the final 
group decision. In particular, the classical scheme refers to the consensus of 
experts for each ranking of alternative, whilst the alternative scheme deals with 
the consensus for each criterion. Principally, there are two main aggregation 
processes in GDM; they are the aggregation of criteria and the aggregation of 
experts. There are many aggregation functions that have been proposed as the 
fusion method in GDM models. One of the most commonly used aggregation 
operators is the ordered weighted averaging (OWA) operator introduced by 
Yager (1988). The OWA can be explained as a general class of aggregation 
functions that encompasses the operations between the min and max operators. 
The induced OWA (IOWA) operator, as another OWA extension, has also been 
applied to most of the GDM models. Recent development of OWA-related 
aggregation operators from theoretical and application perspectives can be 
referred to, for instance, in Yager and Kacprzyk (1997), Yager and Filev (1999), 
Merigó and Gil-Lafuente (2009), Merigó and Casanovas (2010) and Merigó and 
Yager (2013). 

Fuzzy set theory (Zadeh, 1965), on the other hand, provides MCDA models 
with a flexibility in the representation and/or the aggregation of information. 
The information used in MCDA problems, in general, is either quantitative 
and/or qualitative. Quantitative information may be expressed by numerical 
values; whereas qualitative information may be represented by linguistic 
assessments in order to capture the vagueness and uncertainty of the 
information. Human judgments, for example, involve subjective evaluations 
that are more suitably and conveniently modeled by the fuzzy linguistic 
approach. They can be represented by linguistic values using linguistic variables, 
i.e., the variables whose values are not numbers but words or sentences in a 
natural or artificial language (Zadeh, 1975). This approach is adequate for 
qualifying phenomena related to human perception. Many approaches have 
been proposed recently to model linguistic information (see Bordogna et al., 
1997; Delgado et al., 1993; Herrera & Herrera-Viedma, 2000; Merigó et al., 
2010).  

Fuzzy set theory is also useful in modelling the aggregation process. Soft 
aggregation processes can be implemented, specifically, by the inclusion of 
linguistic quantifiers in OWA operator (Yager, 1988; 1996). In this way, various 
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decision strategies can be determined in order to provide a complete picture of 
the decision analysis. For example, considering a portion of criteria to be 
satisfied from ‘at least one’ criterion (existential quantifier) to ‘all’ criteria 
(universal quantifier). Analogously, with respect to the GDM, the soft majority 
agreement among experts can be modeled, for instance by using semantics such 
as ‘at least 80%’ and ‘most’. However, the linguistic quantifiers used to represent 
the majority concept as a group consensus is manipulated differently than that 
of the regular quantifiers in the classical OWA. For instance, instead of defining 
“Q of the values need to be satisfied,” where the argument values are seen as 
truth values or degrees of satisfaction and Q represents any semantic, 
alternatively “Q of the similar values” is used to model the meaning of majority 
(Pasi & Yager, 2006; Peláez et al., 2007). 

In most cases, it is difficult to achieve a unanimous decision when dealing 
with a group of experts. As an alternative, agreement among a majority of 
experts can be tolerated. In the literature, there are some approaches which have 
been proposed to model the majority concept using OWA operators. Pasi and 
Yager (2006) proposed two approaches to deal with this issue. The first is based 
on the use of the IOWA operator, where the support function is applied to 
derive a set of order-inducing, scalar-valued variables, i.e., reordered based on 
the most similar opinions. While, the other approach is based on a fuzzy subset, 
that represents the majority opinion under the vague concept. Correspondingly, 
Bordogna and Sterlacchini (2014) extended the Pasi-Yager method, specifically 
based on the IOWA operator, by employing the Minkowski OWA-based 
similarity measure to obtain the order-inducing variables. Moreover, in their 
method, instead of synthesizing the consensus on each ranking of alternative 
(classical scheme), they proposed an alternative approach where the consensus 
measure on each specific criterion (alternative scheme) is implemented. 
Furthermore, they proposed to apply the importance degrees of experts to 
heterogeneous GDM.  

In other related research, Peláez and Doña (2003a) proposed the majority 
additive OWA operator (MA-OWA) to aggregate the argument values that have 
cardinality greater than one. Particularly, this operator is an extension of the 
simple arithmetic mean (AM) since it is the ‘arithmetic mean of arithmetic 
means’. Peláez and Doña (2003a) notes that for classical aggregation operators 
such as the AM, the aggregated value is not representative of the majority 
aggregation since the result is affected by the extreme values. This results in an 
aggregated value that is correlated to the symmetric tendency between the 
values. Even though the OWA operators can be implemented as an alternative 
approach, they have distribution problems when aggregating arguments with 
cardinalities (Peláez & Doña, 2003a). Hence, the MA-OWA can be used to treat 
this type of problem more effectively. Furthermore, in this case, the overall 
value of the majority opinion is determined without elimination of the minority 
opinion. In other words, all the information is employed in the aggregation 
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process. Since its inception, some extensions of the MA-OWA operator have 
been proposed in the literature, such as: the linguistic aggregation MA-OWA, 
the majority multiplicative-OWA, the quantified MA-OWA and the work 
committee-OWA (Peláez & Doña, 2003b; Peláez et al., 2005; Peláez et al., 2007; 
La Red et al., 2011). Recently, Karanik et al. (2016) has proposed the selective 
MA-OWA (SMA-OWA) operator to deal with the problem of fast convergence 
of the associated weights. More precisely, when the difference between the 
cardinalities of the aggregated values is huge, then, only the argument value with 
the highest cardinality is taken into account, whilst the other may be excluded. 
As a solution, the cardinality relevance factor (CRF) was introduced as a degree 
of tolerance to modify the associated weights so that all the argument values can 
be included. In addition, Peláez et al. (2016) has proposed the selective 
aggregated majority OWA (SAM-OWA) operator where the cardinality is used 
to calculate the individual weight for each group of argument values. Previously, 
in the MA-OWA and SMA-OWA operators, the individual weights were set as 
equally important.  

Nevertheless, the SAM-OWA operators are limited to the case of 
homogeneous GDM problems. Although the SAM-OWA is associated with a 
set of weights that are based on cardinalities, the argument values are still 
considered equally important. In addition, the information to be aggregated is 
not associated with the reliability of information sources as in the case of 
heterogeneous GDM problems. In the context of GDM, each expert has an 
associated degree of importance that reflects his/her expertise, knowledge, skill, 
etc. Motivated by the heterogeneous GDM problems, the inclusion of the 
reliability of information sources (or degree of importance) is suggested as the 
extension of SAM-OWA and it is denoted as the weighted SAM-OWA 
operator. Furthermore, by integrating over the linguistic quantifiers, the 
WSAM-OWA is extended to the quantified WSAM-OWA to provide a greater 
flexibility in the aggregation process, specifically for the group fusion strategy. 
While in the individual fusion strategy, QWSAM-IOWA is introduced to deal 
with the ordering problem and to better represent the majority opinion of 
experts. Finally, based on the proposed aggregation operators, the multi-expert 
GDM model with respect to the alternative scheme is developed under the 
linguistic domain. A selection of investment problem is given as an example of 
the applicability of the developed model. This study is structured as the 
followings. Section B.2 provides some preliminaries include the definitions and 
basic concepts of OWA, neat OWA, IOWA and linguistic labels. In Section B.3, 
a review of MA-OWA, SMA-OWA and SAM-OWA operators is provided. In 
section B.4, the proposed WSAM-OWA, QWSAM-OWA and QWSAM-
IOWA are presented. Then, in Section B.5, the multi-criteria GDM model is 
developed based on the proposed aggregation operators and finally, in Section 
B.6, a numerical example is provided.  
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B.2 Preliminaries 
 
In this section, some definitions and basic concepts related to the OWA, neat 
OWA and IOWA operators and also the linguistic labels are presented.  
 

B.2.1  OWA, Neat-OWA and IOWA Operators 
 

Definition B.1 (Yager, 1988). An OWA operator of dimension  is a mapping :  that has an associated weighting vector = [ , , … , ] 
such that [0,1] and = 1, defined as: 
 ( , , … , ) = ( ), (B.1) 

 
where ( ) is the argument value  being ordered in non-increasing order ( ) ( ). 
 
As can be seen, the OWA is a nonlinear aggregation operator since it involves 
the ordering process. Moreover, it is a mean-type aggregation operator that 
meets all the commutative, monotonic, bounded and idempotent properties. 
The type of aggregation performed by OWA operator is mainly affected by the 
weighting vector . It can be shown that a number of well-known aggregation 
operators are included in the OWA operator such as min and max operators, 
simple average, median, to name a few. Other families of OWA operators can 
be referred to Yager (1993) or Section 3.2.3 of Chapter 3. 

Different approaches have been suggested to derive the weights for OWA 
operator, such as, using the linguistic quantifiers, maximum entropy, minimal 
variability, and learning method. See Xu (2005) for a complete review of the 
other approaches. In particular, Yager (1988) defined the OWA operator from 
the proportional linguistic quantifiers  (i.e., based on monotonic non-
decreasing function) by defining the weights in the following way: 
 

 
 = 1 , = 1,2, … , , (B.2) 

 
where  represents the increase of satisfaction in getting  with respect to 1 criteria satisfied. In this case, all the criteria are associated with the identical 
degrees of importance, = 1/ , as shown when ( ) = . However, in the 
case where each of the criteria  to be aggregated has an importance degree  
associated with it, such that ( , ), the inclusion of importance degrees in 
OWA operators from  can be defined as follows (Yager, 1996): 
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= ( ) ( ) , (B.3) 

 
where ( ) are the degrees of importance associated with the criteria that has 
the ith largest satisfaction , such as ( ), ( )  and = ( ), the total 
sum of degrees of importance. The linguistic quantifiers  can be presented in 
the form of (Zadeh, 1983): 
 

( ) = 0           ,  ( )( )   < < ,1           ,  (B.4) 

 
with , , [0,1]. For example, the semantic ‘most’, ‘almost all’ and ‘at least half’ 
can be given as parameters ( , ) with (0.35, 0.7), (0, 0.5) and (0.5, 1), 
respectively. 

Alternatively, the associated weights for the OWA operator can be obtained 
directly from its argument values. This method is known as the neat OWA 
operator and it can be defined as the following. 
 
Definition B.2 (Yager, 1993). Neat OWA or weight-dependent OWA operator 
is a function : , defined as: 
 ( , , … , ) = ( ), ( ), … , ( ) ( ) (B.5) 

 
where ( ) is the argument value  with any permutation and the vector valued 
function : [0,1]  is normalized such that ( , , … , ) = 1. 
 
The neat OWA meets the properties of idempotency, commutativity and 
boundedness. However the monotonicity property is generally lost. The 
arithmetic mean is one of the examples of neat OWA. 

In addition, the induced OWA operator is another useful aggregation 
operator that deal with the different ordering step. Instead of ordering the 
arguments with respect to their magnitudes such in the OWA operator, the 
additional parameters called order-inducing variables are used to induce the 
arguments. The definition of IOWA can be given as follows. 
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Definition B.3 (Yager & Filev, 1999). An IOWA operator of dimension  is 
mapping :  that has an associated weighting vector  such that [0,1] and = 1, given by the following formula:  
 ( , , , , … , , ) = ( ) (B.6) 

 
where ( ) is the argument value of pair ,  of order-inducing variable , 
reordered such that ( ) ( ). The IOWA operators are all satisfying 
commutative, monotonic, bounded and idempotent properties.  
 
B.2.2  Linguistic labels 
 
The input of the decision analysis can be represented in various forms, such as 
in qualitative and quantitative forms. In the case of qualitative form, the 
linguistic labels are used to capture the information based on the subjective 
evaluation such as ‘poor’, ‘good’, ‘very good’, etc. The general definition of linguistic 
labels can be given as follows: 
 
Definition B.4 (Herrera & Herrera-Viedma, 2000). Let a set of linguistic labels, = { , , … , } be uniformly distributed on a scale, then, the ordering is 
defined as ( , ) , < <  with  and  are the lowest and 
the highest elements, respectively. The  is given as | | 1, where | | 
denotes the cardinality of .  
 

As stated by Herrera and Herrera-Viedma (2000), the cardinality of  must 
be small enough so as not to impose useless precision on the experts and it must 
be rich enough in order to allow discrimination of the performances of each 
object in a limited number of grades. In the literature, there are many approaches 
which proposed to compute with the linguistic labels. In this study, the method 
by Bordogna et al. (1997) is applied, where the linguistic labels are converted 
directly to the numerical values to deal with the operations in numerical 
environment. Finally, the results based on numerical values are reconverted to 
the linguistic labels as the final ranking purpose.  
 
Definition B.5 (Bordogna et al., 1997). The conversion of the linguistic labels 
to the numbers in unit interval [0,1] can be conducted by using the function 

 defined as: : [0,1], ( ) = | |   with =0,1, … , . Whilst, the retranslation from the numerical values into the 
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linguistic labels can be given as: ( ) =  for | | < | | , =0,1, … ,  and  (1) = . 
 
 
B.3 Aggregation Functions based on Majority-Additive OWA 

 
In this section, a review of the definitions and basic properties of MA-OWA, 
selective MA-OWA and selective aggregated majority-OWA operators are 
presented prior to the definitions of WSAM-OWA and QWSAM-OWA 
operators. 
 
Definition B.6 (Peláez & Doña, 2003a). A MA-OWA operator is a function : ×  defined as: 
 

 
 ( , , … , ) = , ( ), (B.7) 

 
where = max  and  denotes a permutation of group of argument  with 
respect to the cardinality , such that ( )  ( ). The weights associated 
to the arguments are defined by the recurrence relations: 
 

, = 1 = 1: = , (B.8) 

  

, = , + , : , 2 , (B.9) 

 
where = 1 + , , and  , = 1, for = , such that: 

 , = 1    0   ( ) ,. (B.10) 

 
Note that  factor represents the current cardinality considered at a moment in 
the aggregation process. The MA-OWA operators meet all the bounded, 
idempotent and commutative properties. However the monotonicity is 
preserved if only if the cardinality vector,  is exactly the same in both aggregate 
sets, i.e., , ( , ) , ( , ), , . Moreover, the MA-OWA 
reduces to arithmetic mean, ( , , … , ) = ( , , … , ) if all 
cardinalities, = 1 (Peláez & Doña, 2003a). 
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Example B.1. Assume that = , … , … , ×  where =( , ) represents the aggregate value , and its cardinality > 0.  For ={(0.6, 1), (0.2, 1), (0.1, 3)}, the MA-OWA can be computed as the following. 
 
 

Table B.1.  Values of ,  and  
 

 ( ) ( ) ( )  

 
0.6 0.2 0.1 

 
 ( ) ( ) ( ) = 1 

,  1 1 3  ,  1 1 1 3 ,  0 0 1 2 ,  0 0 1 2 

 
The cardinal-dependent weights can be given as: 
 

, = 12 0 + 12 0 + 13 1 = 112 , 
, = 12 0 + 12 0 + 13 1 = 112 , 
, = 12 1 + 12 1 + 13 1 = 56 , 

 
Then, the MA-OWA operator for = 1 can be derived as: 
 ({(0.6, 1), (0.2, 1), (0.1, 3)}) = 0.6 112 + 0.2 112 + 0.1 56 = 0.150. 
 
Whilst for = 0.5, the MA-OWA operator yields: = = 0.220. 
 
As can be seen, the MA-OWA indicates the better result for the majority 
opinion than AM, as 80% of the argument values are equal and less than 0.2 and 
60% is 0.1. Hence, the representative value should be in between these two 
values or closer to 0.1.  

As mentioned earlier, the main goal of the MA-OWA operator is to 
determine a synthesized value with considering all the information, i.e., the 
majority opinion and the minority opinion. However in certain cases, the 
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minority opinion is excluded in the aggregation process due to the huge different 
between the cardinalities of arguments. In this case, the weight , = 0 is 
obtained for the minority opinion, whilst , = 1 is given for the majority 
opinion. To deal with this problem, Karanik et al., (2016) proposed the selective 
MA-OWA operator where the cardinality relevance factor (CRF) is introduced 
to weaken the ,  values in MA-OWA as to obtain the weight, , > 0 for 
the minority opinion. 

 
Definition B.7 (Karanik et al., 2016). A SMA-OWA operator is a function : ×  defined as:  

 
 
 
 

( , , … , ) = , ( ), (B.11) 

where = max  and  denotes a permutation with respect to the cardinality 
, such that ( )  ( ). Their weights are defined by the recurrence 

relations, such in Eq. (B.8) and Eq. (B.9), given that = 1 + ,  and  , = 1, for = , such that: 
 

, =     1    ( ) ,. (B.12) 

 
The parameter  is the cardinality relevance factor (CRF) with [0,1]. 
 
By assigning the appropriate value for CRF, the minority opinion can be 
included in the aggregation process, specifically, by increasing its associated 
weight, such that, , > 0. The behavior of CRF value can be explained as the 
following. For 1, the opinion with the largest cardinality (majority of 
opinion) is more emphasized than the opinion with the smallest cardinality. 
Hence, it is given a higher weight than the others. On the contrary, if 0, 
the opinion with the smallest cardinality is given more priority than the largest 
cardinality. Meanwhile, if = 0.5, the AM of the arguments is obtained, =  such that all the cardinalities of arguments are reduced to 
cardinality = 1. It can be demonstrated that the properties of idempotency, 
commutativity and boundedness hold for the SMA-OWA. However, the 
monotonicity is preserved only if the cardinality vector is exactly the same in 
both aggregate sets (Karanik et al., 2016). 

In other related work, Peláez et al. (2016) proposed the selective aggregated 
majority-OWA operator as a generalization of the SMA-OWA where weights 
are assigned to different group of arguments based on their cardinalities. The 
definition of SAM-OWA operator can be given as the following. 
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Definition B.8 (Peláez et al., 2016). A SAM-OWA operator is a function 
 defined as: 

 (B.13) 
 

where  and  denotes a permutation with respect to the cardinality 
, such that . The associated weights are defined by the 

recurrent relations:  
 
 
 

 

 
(B.14) 

 
 
 
 

 

 
(B.15) 

 
 
 
 

 (B.16) 

 
 
 
 
 

 

 

(B.17) 

where  is defined in the similar way as Eq. (B.12),  is the cardinality 
relevance factor (CRF) such that  and , . 
 
Example B.2. Consider again the previous example where a set of aggregated 
values is given as . The weights  then 
can be obtained as: ,  and . 
 
The final cardinal-dependent weights are derived as: 

 

and the SAM-OWA operator for  yields: 
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However, as can be noticed, the individual weights in the MA-OWA and 
SMA-OWA operators are distributed uniformly to each group of 
arguments, i.e., , = 1/ = 1/ . Thus, for each aggregated value  in ( , ), the weight can be given as 1/ = 1/ . On the contrary, for 
the SAM-OWA operator, the individual weights are distributed proportionally 
to each group of opinions, i.e., , = = / , such that, the 
weights are uniformly distributed to each argument .  

In general, the aggregated values in MA-OWA, SMA-OWA and SAM-OWA 
are independent of the degrees of importance or the reliability of information 
sources. In the context of group decision making, they can be considered as the 
homogenous GDM problems. However, under the heterogeneous GDM 
problems, each argument value is associated with the degree of importance as 
to reflect the knowledge, expertise or experience of each expert. Hence, in the 
next section, the weighted SAM-OWA operator is proposed as an extension of 
the SAM-OWA operator to deal with the mentioned problem. In addition, the 
quantified WSAM-OWA operator for the group fusion strategy and the 
QWSAM-Induced OWA for the individual fusion strategy are presented. 
 
 
B.4 Weighted SAM-OWA Aggregation Functions 

 
In this section, the WSAM-OWA operator is presented. In addition, the 
QWSAM-OWA and QWSAM-IOWA operators are proposed as its 
generalization and extension. 
 

B.4.1   Weighted SAM-OWA operator 
 
Definition B.9. A WSAM-OWA operator is a function : ×  
that has an associated weighting vector  of dimension  such that = 1 
and [0,1], defined as: ( , , … , ) = , ( ), (B.18) 

 
where = max  and  denotes a permutation with respect to the cardinality 

. The associated weights are defined by the recurrent relations: 
 

, = = ,                    = 1,,   > 1, 
 

(B.19) 

and the cardinal-dependent weights are given as, 
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, = , + , , 
 

(B.20) 

= 1, = 1,                          , = 0,
, , , ,  (B.21) 

 

= 1, = 1,                          , = 0,1 + , , ,  

 

(B.22) 

where ,  is defined in the similar way as Eq. (B.12), the parameter  is the 
cardinality relevance factor (CRF) and 1 , 2 . 
 

Similarly, it can be demonstrated that the WSAM-OWA operator meets the 
bounded, idempotent and monotonic properties. However, they are not 
commutative as involve the importance degrees or weighted arithmetic mean 
(WA). 
 
PProperty B.1: Boundedness  

Let  is the cardinality of the lowest argument value of vector , if  
and  1, then ( , ) = , [ ]. 
Let  is the cardinality of the highest argument value of vector , if  
and   1, then ( , ) = , [ ]. 
Hence, it is bounded by [ ] ( , ) [ ]. 
 
Property B.2: Idempotency 

An aggregation function  is idempotent if, ( , ) =  for any 
 and . 

 
Property B.3: Monotonicity  
The monotonicity is preserved if and only if the cardinality vector is exactly the 
same in both aggregate sets, i.e., ( , ) ( , ),  for 
all = 1,2, … , . 
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PProperty B.4: Commutativity 

An aggregation function  is commutative if and only if = 1/  for all = 1,2, … , . Otherwise, it is not commutative. 
 

Remark B.1. It can be demonstrated that for = 0.5, then WSAM-OWA is 
reduced to WA, = . In addition, for 1, a higher weight is 
given to the argument with greater cardinality (majority opinion) and if 0, 
then a higher weight is given to the argument with lower cardinality (minority 
opinion).  
 
Remark B.2. Conversely, when =  (or = 1 ), then WSAM-OWA is 
reduced to SAM-OWA, = . 
 
The issue that may arise in WSAM-OWA operator is how to aggregate the 
argument values based on cardinality with respect to the inclusion of the degrees 
of importance. In WA, the degrees of importance reflect the reliability of 
information sources, for example, given more priority to the most skilled or 
experience person. Nevertheless, the majority of information which represents 
the highest degree of importance is not directly emphasized in the WA. Here, 
the WSAM-OWA can be used to include both characteristics, i.e., the degrees 
of importance and the majority concept. Note that in the SAM-OWA operators, 
the emphasis is directly given on cardinality or majority opinion since the 
degrees of importance are uniform. In WSAM-OWA, the CRF is suggested as 
a tolerant factor in considering the majority of similar values and the degrees of 
importance simultaneously. This value can be derived as the following formula 
(Karanik, et al., 2016): 

  = 1 2 + ( )  
 

(B.23) 

where ( )  is the variance of cardinality values, such that [0,1]. 
Notice that in Karanik et al. (2016) the expected value is calculated as ( ) = , ( ), where , = 1 . 

 
For the case of WSAM-OWA, the degrees of importance, , =  are used 

such in Eq. (B.19), then the variance can be given as ( ) =
( ) ( ) . Hence, by formulating in this way, the influence 

of the degrees of importance is taken into account in deriving the CRF value 
for the overall aggregation process. Should be noted that, in the case of WSAM-
OWA, the CRF is applied to provide a compensation between the degrees of 



76

importance and the cardinalities of aggregated values instead of the obtaining 
the , > 0 for the minority opinion. 

 
Remark B.3. It can be shown that for = 1 and = 0 for all , then ( , ) =  for any = (0,1]. 
 

Example B.3: Given that = 0.6, 0.2, 0.1, 0.1, 0.1  and their associated 
weights are provided as = 0.1,0.1,0.3,0.3,0.2 . For simplicity it can be 
represented as = {(0.6, 1, 0.1), (0.2, 1, 0.1), (0.1, 3, 0.8)}, where =( , , ). Based on the cardinalities and degrees of importance, the CRF can 
be determined as follows: 
 ( ) = (0.1 1) + (0.1 1) + (0.8 3) = 2.6, 

( ) = 0.1(1 2.6) + 0.1(1 2.6) + 0.8(3 2.6) = 0.64. = 1 (2 + 0.64) = 0.621 
 
 

Table B.2. Values of , ,  and  
 

 ( ) ( ) ( )   
 0.6 0.2 0.1   

 ( ) ( ) ( ) = 0.621 
 ,  1 1 3   ,  1 1 1 3  ,  0.379 0.379 0.621 2.379 2.407 ,  0.379 0.379 0.621 2.379 2.368 

 
The cardinal-dependent weights are: 
 , = 0.064, , = 0.064, , = 0.872, 
 
and the WSAM-OWA operator yields: 

 ({(0.6, 1, 0.1), (0.2, 1, 0.1), (0.1, 3, 0.8)}) = 0.138. 
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In this example, the WA is given as, = 0.160. Similarly to the MA-OWA, 
in this case, the representative value is expected to be closer to 0.1 as the highest 
weight (the total sum of individual weights) is belong to the group of arguments = 0.1, which is the majority opinion. 
 

Example B.4: Assume that = {(0.6, 1, 0.6), (0.2, 1, 0.1), (0.1, 3, 0.3)} where = 0.6,0.1,0.1,0.1,0.1 . In this example, the highest weight is associated with 
the minority opinion. Based on the cardinalities and the degrees of importance, 
the CRF is obtained as 0.648. 
 
The cardinal-dependent weights are derived as: 
 , = 0.457, , = 0.076, , = 0.467, 
 
and the WSAM-OWA operator yields: 

 ({(0.6, 1, 0.6), (0.2, 1, 0.1), (0.1, 3, 0.3)}) = 0.336. 
 
In this example, the WA is given as, = 0.410. As can be seen, this value 
is lower than WA which reflects the majority opinion with the relevancy of the 
degrees of importance.  
 
 
B.4.2  Quantified weighted SAM-OWA operators 
 
In the previous section, all the majority operators take into account not only the 
majority opinion but also the minority opinion in deriving the aggregated value. 
As mentioned by Peláez et al. (2007), this definition in general uses the majority 
semantics which consider ‘all’ of the arguments, but it is not able to model the 
majority concepts like ‘most’ or ‘at least 80%’ of arguments. Hence, Peláez et al. 
(2007) proposed the inclusion of linguistic quantifiers as to generalize the MA-
OWA operator. Two quantified weights in MA-OWA operators were 
introduced, namely the individual fusion strategy and the group fusion strategy. 
The individual fusion strategy can be explained as applying the semantics of 
quantifier on each individual weight of the aggregation process. Whilst, for the 
group fusion strategy, the semantics on each group of arguments (i.e., with 
respect to their cardinalities) is applied. Analogously, in this study, both decision 
strategies can be extended to the case of WSAM-OWA operator. The method 
for the group fusion strategy can be applied directly to the case of WSAM-OWA 
since the ordering of the group of cardinalities is not affecting the overall result. 
The definition of the group fusion strategy of WSAM-OWA is given as the 
following. 
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Definition B.10. A QWSAM-OWA operator under the group fusion strategy 
is a function : ×  that has an associated weighting vector  
of dimension  such that = 1 and [0,1], defined as: 
 ( , , … , ) = ( ) (B.24) 

 
where = max  and the weights are defined by the recurrent relations such 
in . The weights for the group fusion strategy can be presented as in the 
following expression (Peláez et al., 2007): 
 

  =  

 

+ 1  , (B.25) 

 
where  is the quantifier,  is the number of majority groups and  is the 
cardinality of the group . This fusion strategy avoids the exclusion of any group 
in the aggregation process. Moreover, in this way it is possible to eliminate the 
distribution problems in the group decision making problems.  
 
Example B.5: By extending the previous example (Example B.4), the group fusion 
strategy using the QWSAM-OWA operator can be implemented. Firstly, the 
cardinal-dependent weight vector is obtained, = [0.064, 0.064, 0.872] as in 

. After that, the value of the quantifier with semantics ‘most’ such in Eq. 
(B.4) can be calculated for each group. The  vectors for each majority group 
are obtained as: 
 

Group with cardinality, = 1: [1], 
Group with cardinality, = 1: [1], 

Group with cardinality, = 3: [0, 0.633, 1]. 
 

Then, the quantified weight vector for the group fusion strategy is obtained as = [0.173, 0.173, 0.653], where: 
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= 0.0641 1 + 1 1 0.6033.633 = 0.173, 
 = 0.0641 1 + 1 1 0.6033.633 = 0.173, 
 = 0.8723 1.633 + 1.633 1 0.6033.633 = 0.653. 
 
Finally, the QWSAM-OWA operator for the group fusion strategy yields: 
 ({(0.6, 1, 0.3), (0.2, 1, 0.3), (0.1, 3, 0.4)}) = 0.211. 
 
 
B.4.3  Quantified weighted SAM-IOWA operators 
 
For the individual fusion strategy, an extension of QMA-OWA to the QWSAM-
IOWA is proposed as to deal with the issue of reordering process. As can be 
noticed, in this case each weight, ,  is multiplied by the linguistic quantifier, ( / ) of monotonically non-decreasing function. Peláez et al. (2007) suggests 
the reordering of arguments with respect to their cardinalities, i.e., in non-
decreasing order such that, the greater the cardinality of argument, then the 
higher weight is associated to that argument. However, the problem may arise 
in the case where there are two or more arguments with identical cardinality, i.e., 
different order of these arguments may produce different results of the 
aggregation processes. For example, let say ( , ) = ( 0.2,1 , 0.3,1 , 0,3 ). 
The ordering of (0.2,0.3,0,0,0) and (0.3,0.2,0,0,0) then producing distinct 
results if the quantified weight vector is given as = [0,0.1,0.2,0.3,0.4]. 
Hence, in this study, the extension of the individual fusion strategy to the case 
of IOWA operator is suggested, where the order-inducing variable reflects the 
similarity between arguments. Note that, in this case, both majority opinions 
and similarity between arguments are considered, but more emphasis is given to 
the most similar values. As can be seen, in this case, the order of (0.3,0.2,0,0,0) 
is better represent the similarity between arguments. In the following, the 
definition of QWSAM-IOWA operator is presented. 

 
Definition B.11. A QWSAM-IOWA operator of the individual fusion 
strategy is a function : ×  that has an associated 
weighting vector  of dimension  such that = 1 and [0,1], 
defined as: 
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( , , , , … , , ) 
 = ( ) (B.26) 

where ( ) is the argument value of pair ,  of order-inducing variable , 
with ( ) ( ), such that: 
 

= , = 1,2, … , , 
 

(B.27) 

and = , = 1  is a similarity measure between each 
argument  with respect to arguments , ( = 1,2, … , ),  and  is a 
parameter in a range {0}. The individual fusion weight  is 
obtained from the following equation: 
 = ,

+ 1 , , 
 

(B.28) 

where ,  is the weight determined by the recurrent relations such in  
for = max ,  is the linguistic quantifier and the expression in the bracket 
is the -normalization. It can be demonstrated that, the QWSAM-IOWA 
satisfies bounded, idempotent, monotonic properties. However, it is not 
commutative as it involves the WA.  
 
As can be noticed, in this expression, some modifications have been made to 
the original QMA-OWA of individual fusion strategy where the weight, ,  is 
multiplied by  to decompose its individual weights proportionally with 
respect to their degrees of importance. In the original form (Peláez et. al., 2007), 
the weight ,  is divided equally with respect to its cardinality. Moreover, the 
order-inducing variable is introduced to order the arguments with respect to 
their degrees of similarity and also resolve the issue of ordering problem. 
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Example B.6: Let = 0.6, 0.2, 0.1, 0.1, 0.1  and its weight vector is provided 
as = 0.1,0.1,0.3,0.3,0.2 . The individual fusion strategy using the QWSAM-
IOWA operator with semantics ‘most’ can be computed as the following. Firstly, 
the order-inducing variable is computed for each argument: 
 

 = = 0.1(1 |0.6 0.6|) + 0.1(1 |0.6 0.2|) +0.3(1 |0.6 0.1|) + 0.3(1 |0.6 0.1|) +0.2(1 |0.6 0.1|) = 0.56. 
 

Similarly, the rest of order-inducing variables can be determined, such that: 
 = (0.56,0.6), (0.88,0.2), (0.94,0.1), (0.94,0.1), (0.94,0.1) . 
 
Secondly, the  aggregation operator is applied to obtain the cardinal-
dependent weighting vector, = [0.064, 0.064, 0.872]. The individual 
weighting vector  is given as: 
 = [0.064, 0.064, 0.327, 0.327, 0.218], 
 
where  , = 0.872 can be decomposed to: , = , = (0.872 × 0.3)/0.8 = 0.327, , = (0.872 × 0.2)/0.8 = 0.218. Then, the individual 
weights  are calculated using the above expression: 
 = [0, 0.017, 0.162, 0.389, 0.432] 
 
Finally, the WSAM-OWA operator for individual fusion strategy yields: 
 ({( , 0.6, 1, 0.1), ( , 0.2, 1, 0.1), ( , 0.1,0.3), ( , 0.94,0.1), ( , 0.94,0.1)}) = 0.102. 
 
  
B.5 Multi-Criteria Group Decision Making Under Linguistic Domain 

 
In this section, a multi-criteria group decision making model under the linguistic 
domain is developed. Two-stage aggregation processes are involved, in 
particular, the proposed WSAM-OWA operator and its extensions are used as 
group aggregators. On the other hand, the classical OWA operator with the 
inclusion of degrees of importance is applied to aggregate the criteria as the final 
ranking. The proposed model is based on the extension of Bordogna-Fedrizzi-
Pasi model (Bordogna et al., 1997), specifically it is extended to the case of 
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alternative scheme. The inputs provided by the experts are based on the 
linguistic labels. These inputs are then directly converted to the numeric values 
in unit interval [0,1] to simplify the aggregation process. The algorithm of 
the proposed model is explained step by step as the following. 

 
Stage 1: Majority aggregation for experts’ judgments 

Step 1: Construct a decision matrix of dimension ×  for each expert, , ( = 1,2, … , ) as follows:                  …    = , (B.29) 

 
where  indicates the alternative  ( = 1,2, … , ),  denotes the 
criterion  ( = 1,2, … , ), and  denotes the preferences for 
alternative  with respect to criterion . The input value  is the 
linguistic label provided by each expert based on the predefined 
linguistic scale, .  

Step 2: Determine the degree of importance (or trust) of each expert with 
respect to each criterion, such that, = { , , … , }. The degree of 
importance,  is drawn from the same linguistic scale, . 

Step 3: Transform the performance labels and the importance labels of all 
experts into the numeric values by applying the function :[0,1]. Then, the numeric value  is normalized to form ={ , , … , }, where = / , such that = 1. With 
respect to each criterion, the transformed values (performance and 
importance labels of each expert) are used to determine the cardinality 
relevance factor (CRF),  such in Eq. (B.23). 

Step 4:  Aggregate the experts’ preferences using the WSAM-OWA operator to 
form a group decision matrix: Eqs. (B.18 – B.22). Note that, at this 
stage, the decision strategy (consensus on experts) can also be 
implemented by specifying the semantics ‘most’ and manipulated either 
using the group fusion strategy: Eqs. (B.24 – B.25) or the individual 
fusion strategy: Eqs. (B.26 – B.28). 

 
Stage 2: Aggregation of criteria and ranking process  

Step 5: Determine the importance degrees of criteria, = ( , , … , ), 
such that  are drawn from the linguistic scale, . Then, these weights 
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are transformed to the numerical values using the function : [0,1]. At this stage, the OWA weights can be computed 
using the Eq. (B.3). 

Step 6:  Aggregate the judgment matrix of the majority of experts using the 
OWA operator such in Eq. (B.1) with respect to the weighting vector 
obtained in Step 5. Finally, rank the alternatives based on their values. 
Note that here, the proportion of criteria is subject to the attitudinal 
character of the majority of experts. Specifically, by assigning any 
semantics to the linguistic quantifiers, specifically in Eq. (B.3), various 
decision strategies can be obtained. 

 
 
B.6 Numerical Example 

 
In this section, an investment selection problem is studied where a group of 
experts or analysts are assigned for the judgment and selection of an optimal 
strategy. Assume that a company plans to invest some money in one or several 
available options (allocated proportionally based on their rankings). Primarily, 
five possible investment options are considered as follows: = hedge funds, = investment funds, = bonds, = stocks and = equity derivatives. 
These investment options are described with respect to the following 
characteristics: = benefits in the short term, = benefits in the long term, = risk of the investment,  = social responsible investment and = 
difficulty of the investment.  

In order to evaluate these options, the investor has brought together a group 
of experts which consist of five persons; with different backgrounds or areas of 
expertise. To enable the experts to formulate their judgments in a natural way, 
a set  of linguistic labels is supplied. For example,  can be defined so as its 
elements are uniformly distributed on a scale on which a total order is defined 
as:  

= = ,  =  ,  = ,  = ,  = ,  =  ,  = , 
 

in which <  if and only if < . Based on this linguistic scale , a decision 
matrix for each expert can be constructed for options  with respect to the 
characteristics  as shown in Table B.3 and the reliability of each expert on 
specific criterion is given in Table B.4.  
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Table B.3. Available investment strategies of each expert,  
 

                 
     

 
           

                 
                 
                 
                 
     

 
           

 

              
              

              
              
              
              
              

 
 

Table B.4. Reliability of experts on each criterion 
  

 
     

      
      
      
      
      

 
 

At this stage, after transforming the preference labels and the importance 
labels into numbers in = [0,1], the group aggregation based on majority 
concept can be implemented. For example, the computation for the majority 
aggregation of option  with respect to characteristic  can be shown as 
follows: = { = , = , = , = , = }, 
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= ( ), ( ),  ( ), ( ), ( ) , 
 = {0.667, 0.5, 0.333,0.333, 0.333} = {(0.667,1), (0.5, 1), (0.333,3)}. 
 
Similarly, weights are transformed to the numerical values: 
 = { = , = , = , = , = } 

 = { (  ), ( ), (  ),( ), ( )}, 
 
then = {0.833, 0.667, 0.833,0.5, 0.5} and they are normalized so that the 
sum of all weights is one,  = {0.25, 0.2, 0.25,0.15, 0.15}. 
 

Based on the cardinalities and the normalized degrees of importance, the 
CRF can determined and is given as = 0.666. Then the resulted cardinal-
dependent weights are: 
 , = 0.155, , = 0.124, , = 0.720, 
 
and the WSAM-OWA operator on  yields: 

 ({(0.667, 1), (0.5, 1), (0.333, 3)}) = 0.406, 
 
The overall aggregated results of majority opinions based on WSAM-OWA 
are given in Table B.5. 
 

Table B.5. Majority opinion based on WSAM-OWA 
 

      

 
     

 0.406 0.466 0.722 0.545 0.779 
 0.828 0.681 0.177 0.938 0.403 
 0.349 0.514 0.354 0.528 0.290 
 0.761 0.239 0.552 0.919 0.772 
 0.391 0.430 0.623 0.664 0.779 
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Having the decision matrix which represent the majority opinion of experts 
on each criteria, then the aggregation process to aggregate the final judgment or 
ranking of alternatives are conducted, where the weight of each criterion is 
provided as , , , , , for each criterion  , , ,  and , 
respectively. For example, the computation for  can be given as the following: 

 
 

 

 
 

 
 
The weight vector  is then obtained by applying the Eq. (3): 

. The overall aggregation process can be determined using 
classical OWA operator, Eq. (B.1): 
 

 
 
Finally, the linguistic overall performance value is obtained as:  
 

. 
 

The aggregated results for the entire alternatives are presented in Table B.6. 
In addition, the aggregated results based on SMA-OWA and SAM-OWA are 
also given as to see the results of the majority aggregation processes without the 
inclusion of the degrees of importance. 
 
Table B.6.  Overall aggregated results based on SMA-OWA, SAM-

OWA and WSAM-OWA 
 

 SMA-OWA R SAM-OWA R WSAM-OWA R 

 , 0.5372 4 , 0.5544 4 ,  0.5411 3 

 , 0.5738 2 , 0.6034 2 , 0.5619 2 

 , 0.3557 5 , 0.3975 5 , 0.3842 5 

 , 0.6837 1 , 0.6646 1 , 0.6391 1 

 , 0.5708 3 , 0.5672 3 , 0.5069 4 

*Note: R = ranking 
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In the case where only ‘most’ of the experts are needed for the overall decision, 
then, the individual fusion strategy or the group fusion strategy can be 
implemented as given in the Table B.7 and Table B.8. Note that, the results of 
the individual fusion strategy are derived based on QWSAM-IOWA operator, 
whilst, the group fusion strategy is mainly based on QWSAM-OWA. 
 
 

Table B.7. Majority opinion and overall aggregated results based on 
QWSAM-IOWA 

 

       Overall 

Aggregation 

 

 
      Ranking 

 0.3384 0.4566 0.7523 0.5762 0.8273  , 0.5102 2 

 0.8384 0.5991 0.1667 0.9935 0.3990  , 0.4526 4 

 0.3435 0.4324 0.2756 0.6214 0.2952  , 0.3243 5 

 0.8283 0.1770 0.6261 0.9952 0.8289  , 0.5969 1 

 0.2955 0.4928 0.6261 0.7881 0.8273  , 0.4672 3 

 
 

Table B.8. Majority opinion and overall aggregated results based on  
QWSAM-OWA 

 

       Overall 

Aggregation 

 

 
      Ranking 

 0.4510 0.5056 0.7470 0.5774 0.7688  , 0.5458 1 

 0.8282 0.7160 0.2011 0.9287 0.4166  , 0.5232 3 

 0.3639 0.5494 0.3931 0.5115 0.3089  , 0.3971 5 

 0.7157 0.2843 0.5299 0.8553 0.7248  , 0.5365 2 

 0.4176 0.4238 0.6422 0.6339 0.7668  , 0.5072 4 
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4.4 Linguistic Group Decision Making Model with Dempster-Shafer 
Theory and Induced Linguistic Aggregation Operators  

 
Abstract. In this study, a new approach for linguistic group decision making 
with Dempster-Shafer belief structure by applying the 2-tuple linguistic 
representation model is presented. By using this model, we are able to represent 
the D-S approach with linguistic information and without loss of information 
in the computing process. For doing so, it is suggested the use of different types 
of linguistic aggregation operators such as the 2-tuple induced linguistic ordered 
weighted averaging (2-TILOWA) operator. It is an extension of the OWA 
operator that uses complex attitudinal characters based on order-inducing 
variables in the reordering of the arguments and uncertain situations that can be 
assessed with linguistic information. By using the 2-TILOWA in the D-S 
framework, we form the belief structure - 2-tuple induced linguistic ordered 
weighted averaging (BS-2-TILOWA) operator. Some of its main properties are 
studied. The study ends with an application of the new approach in a decision 
making problem regarding selection of financial strategies. 
 
 
C.1 Introduction 

 
The Dempster-Shafer (D-S) theory of evidence (Dempster, 1967; Shafer, 1976) 
provides a unifying framework for representing uncertainty because it includes 
the cases of risk and ignorance in the same formulation. Usually, when using the 
D-S theory in decision making, it is assumed that the available information is 
numerical (Engemann et al., 1996; Merigó & Casanovas, 2009; Merigó et al., 
2013; Yager, 1992). However, this may not be the real situation found in the 
decision making problem. Sometimes, the information is vague or imprecise and 
it is necessary to use another approach to assess it such as the use of linguistic 
variables. This problem has already been considered by Merigó et al. (2010) 
when the available information can be assessed with a linguistic model that 
computes with words directly following the ideas of (Herrera & Martínez, 
2000a; 2000b; Martinez & Herrera, 2012; Merigó & Gil-Lafuente, 2013). 

In order to do that, it is necessary to use an aggregation operator that 
aggregates the available information. The ordered weighted averaging (OWA) 
operator (Yager, 1988) is a very well-known aggregation operator for fusing the 
information that provides a parameterized family of aggregation operators 
between the minimum and the maximum. It has been used in a lot of 
applications (Beliakov et al., 2007; Belles-Sampera et al., 2013; Yager, 2004; 
Yager & Kacprzyk, 1997). Among these extensions and applications, some of 
them have focused on the use of linguistic information in the OWA operator 
(see, for example, Merigó et al., 2012; Xu, 2006; Zhang, 2013) 
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Another interesting extension is the induced OWA operator (Yager & Filev, 
1999). It uses a more complex reordering process of the arguments by using 
order-inducing variables in the analysis. Then, we are able to assess more 
complex attitudinal characters rather than the degree of optimism. The IOWA 
operator has been studied by different authors, such as, Merigó and Gil-
Lafuente (2009), Yager (2003b), Yager and Kacprzyk (1997), to name a few.  

In this study, we further extend the analysis done in (Merigó et al., 2010) 
considering a situation where the available information cannot be assessed with 
numerical values but it is possible to use the 2-tuple linguistic representation 
model. Thus, we assume that we have a decision making problem where we 
assess the available probabilistic information with the D-S theory and the 
linguistic information using the 2-tuple linguistic model. Note that the 2-tuple 
linguistic approach was introduced by (Herrera & Martínez, 2000) to facilitate 
computing with words (CWW) processes.  

The aggregation of the linguistic information, is carried out with different 
types of linguistic aggregation operators such as the ones described in (Jin et al., 
2013; Li et al., 2008; Xu, 2008). The reason for doing this, is that we want to 
show that the linguistic decision making problem with D-S theory can be 
assessed in different ways depending on the interests of the decision maker. We 
will use the 2-tuple induced linguistic ordered weighted averaging (2-TILOWA) 
operator and all its particular cases such as the 2-tuple linguistic average (2-TLA) 
and the 2-tuple linguistic weighted average (2-TLWA). Then, we will get a new 
aggregation operator, the belief structure – 2-tuple LOWA (BS-2-TLOWA) 
operator. 

We further generalize this approach by using generalized and quasi-
arithmetic means in the analysis. Then, we get a more complete formulation of 
the analysis because we are able to consider a lot of other possibilities in the 
aggregation process. We use the 2-TILGOWA and the Quasi-2-TILOWA 
operator, obtaining the BS-2-TILGOWA and the BS-Quasi-2TILOWA 
operator, respectively. We also develop an application of the new approach in a 
linguistic decision making problem about selection of financial strategies. The 
main advantage of this approach is the possibility of considering a wide range 
of linguistic aggregation operators. Therefore, the decision maker gets a more 
complete view of the problem and he is able to select the alternative that it is in 
accordance with his interests. 

The remainder of the study is organized as follows. In Section C.2, we briefly 
describe some basic concepts about the 2-tuple linguistic representation model 
and the D-S theory. In Section C.3, we introduce the new decision making 
approach. In Section C.4, we generalize the model by using generalized and 
quasi-arithmetic means. Then, in Section C.5, we present an application of the 
new model in financial selection problem. 
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C.2 Preliminaries 
 

In this section, we briefly review some basic concepts about the 2-tuple 
linguistic representation model, the 2-TILOWA operator and the Dempster-
Shafer theory of evidence. 
 
C.2.1  The 2-tuple linguistic representation model 

 
Normally, human activities and decisions are carried out in a quantitative setting, 
where the information is expressed by means of numerical values. However, 
many problems of the real world cannot be assessed in a quantitative form. 
Instead, it is possible to use a qualitative one, i.e., with vague or imprecise 
knowledge. In this case, a better approach may be the use of linguistic 
assessments instead of numerical values. The linguistic approach represents 
qualitative aspects as linguistic values by means of linguistic variables (Zadeh, 
1975). 

We have to select the appropriate linguistic descriptors for the term set and 
their semantics. One possibility for generating the linguistic term set consists in 
directly supplying the term set by considering all terms distributed on a scale on 
which a total order is defined. For example, a set of seven terms S could be 
given as follows: 

 
S = {s1 = N, s2 = VL, s3 = L, s4 = M, s5 = H, s6 = VH, s7 = P}. 

 
Note that N = None, VL = Very low, L = Low, M = Medium, H = High, VH = 
Very high, P = Perfect. Usually, in these cases, it is required that in the linguistic 
term set there exists: 

A negation operator: neg(si) = sj such that j = g+1 i.  
The set is ordered: si  sj if and only if i  j. 
Max operator: max(si, sj) = si if si  sj. 
Min operator: min(si, sj) = si if si  sj. 

 
Different models have been presented in the literature for dealing with 

linguistic information such as (Herrera et al., 1995; Herrera et al., 2008; Xu, 
2004a, 2004b). In (Herrera & Martínez, 2000a; 2000b), they presented a fuzzy 
linguistic representation model, which represents the linguistic information with 
a pair of values called 2-tuple, (s, ), where s is a linguistic label and  is a 
numerical value that represents the value of the symbolic translation. With this 
approach, it is possible to accomplish computing with words (CWW) processes 
without loss of information, solving one of the main problems of the previous 
linguistic computational models (Bonissone, 1982; Zadeh, 1975). 
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Definition C.1. Let  be the result of an aggregation of the indexes of a set of 
labels assessed in the linguistic label set S = {s0, s1, …, sg}, i.e., the result of a 
symbolic aggregation operation.   [0, g], being g + 1 the cardinality of S. Let i 
= round( ) and  =   i be two values, such that, i  [0, g] and   [ 0.5, 0.5), 
then  is called a symbolic translation. 
 

Note that the 2-tuple (si, ) that expresses the equivalent information to  
is obtained with the following function: 

 
  : [0, g]  S  [ 0.5, 0.5), 

( ) = 
).5.0,5.0[

),(

i

roundisi                     (C.1) 

 
where round is the usual round operation, si has the closest index label to  and 

 is the value of the symbolic translation. For more information on the 2-tuple 
linguistic representation models, they can be referred in Martinez and Herrera 
(2012), Wei (2011), and Xu and Wang (2011). 
 
C.2.2   2-tuple linguistic aggregation operators 
 
In the literature, we find a wide range of 2-tuple linguistic aggregation operators, 
for instance, Wang and Hao (2006), Wei (2009; 2011), Wei et al. (2013), Xu et 
al. (2013), Zeng et al. (2012), and Zhang (2013). In this study, we use the 2-tuple 
induced linguistic OWA (2-TILOWA) operator. It is a linguistic aggregation 
operator that uses the 2-tuple linguistic representation model and order-
inducing variables in the OWA operator. It can be defined as follows. 

 
Definition C.2. Let be the set of the 2-tuples. A 2-TILOWA operator of 
dimension n is a mapping n  n  which has an associated weighting 
vector W such that wj  [0, 1] and n

j jw1 1 according to the following formula: 
 

f ((u1, s1, 1), …, (un, sn, n)) = n

j
jjw

1
)( ,                       (C.2) 

 
where j = 1(sj, j) are the argument values 1(si, i) of the 2-TILOWA 
triplets (ui, si, i) ordered in decreasing order of their ui. 
 

Note that it is possible to distinguish between descending (2-TDILOWA) 
and ascending (2-TAILOWA) orders. The weights of these operators are related 
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by wj = w*n+1 j, where wj is the jth weight of the 2-TDILOWA (or 2-TILOWA) 
operator and w*n+1 j the jth weight of the 2-TAILOWA operator.  

 
Remark C.1: If B is a vector corresponding to the ordered arguments j, we shall 
call this the linguistic ordered argument vector and WT is the transpose of the 
weighting vector, then, the 2-TILOWA operator can be expressed as: 

 
f ((u1, s1, 1), …, (un, sn, n)) = BW T .                            (C.3) 

 
Remark C.2: Note that if the weighting vector is not normalized, i.e., W =
n
j jw1 1 , then, the 2-TILOWA operator can be expressed as: 

 
f ((u1, s1, 1), …, (un, sn, n)) = n

j
jjwW 1
)(1 .                      (C.4) 

 
By using a different weighting vector W, it is possible to study a wide range 

of families of 2-TILOWA operators such as the olympic-2-TILOWA, the S-2-
TILOWA and centered-2-TILOWA. For further information, refer, i.e., to 
(Merigó & Gil-Lafuente, 2013; Yager, 1993). 

 
The 2-TILOWA operator can be generalized by using generalized and quasi-

arithmetic means. By using generalized means, we get the following definition 
((Merigó & Gil-Lafuente, 2013). 

 
Definition C.3. Let be the set of the 2-tuples. A 2-TILGOWA operator of 
dimension n is a mapping n  n  which has an associated weighting 
vector W such that wj  [0, 1] and n

j jw1 1 according to the following 
formula: 

f ((u1, s1, 1), …, (un, sn, n)) = 
/1

1

n

j
jjw ,                     (C.5) 

 
where j = 1 (sj, j) are the argument values 1(si, i) of the 2-TILGOWA 
triplets (ui, si, i) ordered in decreasing order of their ui, and  is a parameter 
such that   (  
 

And if we use quasi-arithmetic means, then, we get the following definition 
(Merigó and Gil-Lafuente, 2013). Note that the Quasi-2-TILOWA operator 
includes the 2-TILGOWA operator as a particular case. 
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Definition C.4. Let be the set of the 2-tuples. A Quasi-2-TILOWA operator 
of dimension n is a mapping f: n  n   that has an associated weighting 
vector W of dimension n such that n

j jw1 1and wj  [0, 1], by a formula of 
the following form: 

 
f ((u1, s1, 1), …, (un, sn, n)) = n

j
jj gwg

1

1 ,                   (C.6) 

 
where j = 1 (si, j) are the argument values 1(si, i) of the Quasi-2-
TILOWA triplets (ui, si, i) ordered in decreasing order of their ui, and g is a 
strictly continuous monotonic function. 
 

C.2.3  Dempster-Shafer Theory of Evidence 
 

The D-S theory of evidence was introduced by (Dempster, 1967; Shafer, 1976). 
Since then, a lot of new developments have been developed (Le et al., 2007; 
Reformat & Yager, 2008; Srivastava & Mock, 2002; Yager & Liu, 2008). This 
type of formulation provides a unifying framework for representing uncertainty 
as it can include the cases of risk and ignorance as special situations of this 
framework. Obviously, the case of certainty is also included in this 
generalization as it can be seen as a particular situation of risk or ignorance. 
Apart from these traditional cases, the D-S framework allows to represent 
various other forms of information that a decision maker may have about the 
states of nature. 

 
Definition C.5. A D-S belief structure defined on a space X consists of a 
collection of n non-null subsets of X, Bj for j = 1 called focal elements and 
a mapping called the basic probability assignment, defined as, m: 2X  [0, 1] 
such that: 

m(Bj)  [0, 1]. 
m(A) = 0,   A  Bj. 

)(1
n
j jBm = 1. 

 
As mentioned before, the cases of risk and ignorance are included as special 

cases of belief structure in the D-S framework. For the case of risk, a belief 
structure is called Bayesian belief structure (Shafer, 1976), it consists of n focal 
elements such that Bj = {xj}, where each focal element is a singleton. Then, we 
can see that we are in a situation of decision making under risk environment as 
m(Bj) = Pj = Prob{xj}.  
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For the case of ignorance, the belief structure consists in only one focal 
element B, where m(B) essentially is the decision making under ignorance 
environment as this focal element comprises all the states of nature. Thus, m(B) 
= 1. Other cases of belief structures are studied in (Shafer, 1976). 
 
 
C.3 Linguistic Decision Making with D-S Theory and Induced 

Aggregation Operators 
 
In this section, the decision making approach, the belief structures with 2-Tuple 
induced linguistic OWA operators and the families of BS-2-TILOWA operators 
are presented. 
 

C.3.1  Decision making approach 
 

Decision making with D-S belief structures has been studied by a wide range of 
authors (see, for instance, Casanovas & Merigó, 2012; Merigó & Casanovas, 
2009; Yager, 1992). In these studies, the main assumption is that the available 
information is quantitative. However, many decision making problems cannot 
be assessed with numerical values because the decision maker’s knowledge is 
vague and/or imprecise. Then, a better approach may be the use of linguistic 
assessments instead of numerical ones. 

In this study, we develop an extension of this general approach for situations 
where the available information cannot be assessed with numerical values but it 
is possible to use the 2-tuple linguistic representation model. Thus, we are able 
to make computations with linguistic information without losing information in 
the problem. Moreover, we use induced aggregation operators in order to deal 
with complex reordering process that represent complex attitudinal characters 
of the decision-maker. We can summarize the approach as follows. 

Assume we have a linguistic decision problem in which we have a collection 
of alternatives {A1 q} with states of nature {N1 n}. (shi, hi) is the 
2-tuple linguistic payoff to the decision maker if he selects alternative Ah and 
the state of nature is Ni. The knowledge of the state of nature is captured in 
terms of a belief structure m with focal elements B1 r and associated with 
each of these focal elements is a weight m(Bk). The objective of the problem is 
to select the alternative which best satisfies the 2-tuple linguistic payoff to the 
decision maker. In order to do so, we should follow the following steps: 
 
Step 1: Calculate the 2-tuple linguistic payoff matrix. 
Step 2: Calculate the belief function m about the states of nature and the decision 

makers degree of optimism. 
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Step 3: Calculate the collection of weights, w, to be used in the 2-TILOWA 
aggregation for each different cardinality of focal elements.  

Step 4: Determine the 2-tuple linguistic payoff collection, Mhk, if we select 
alternative Ah and the focal element Bk occurs, for all the values of h and 
k. Hence Mhk = {(shi, hi) | Ni  Bk}. 

Step 5: Calculate the linguistic aggregated payoff, Vhk = 2-TILOWA(Mhk), using 
Eq. (C.2), for all the values of h and k. Note that it is possible to use for 
each focal element a different type of 2-TILOWA operator. 

Step 6: For each alternative, calculate the generalized 2-tuple linguistic expected 
value, (shk, hk), where:  

 (shk, hk) =  
r

k
khk BmV

1
)( .                                        (C.7) 

Step 7: Select the alternative with the largest (sh, h) as the optimal. 
 

Remark C.3: Sometimes it is better the use of the 2-TAILOWA operator in the 
D-S decision process instead of the 2-TILOWA operator. The main reason for 
this is that we have to distinguish between situations where the highest linguistic 
argument is the best result and situations where the smallest linguistic argument 
is the best result. 
 
C.3.2 Belief structures with 2-tuple induced linguistic OWA operators 
 
The aggregation in Step 6 and Step 7 can be integrated into a single equation that 
takes into account both processes. Thus, the result obtained is that the focal 
weights are aggregating the results obtained by using the 2-TILOWA operator. 
This process is called the belief structure-2-TILOWA (BS-2-TILOWA) 
aggregation and it can be defined as follows. 
 
Definition C.6. A BS-2-TILOWA operator is defined by:           

 
)),,(),...,,,(( 111 111 rrr qqq susuf

r

k

q

j kjjk
k

k
kwBm

1 1

*)( ,                   (C.8) 

 
where 

kjw  is the weight of the kth focal element such that n
j kjw1 1 and 

kjw

 [0, 1]  ),(1
kkk jjj s  are the argument values ),(1

kk iis  of the 2-
TILOWA triplets ),,( kkk iii su  ordered in decreasing order of their ui and m(Bk) 
is the basic probability assignment.  
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Note that qk refers to the cardinality of each focal element and r is the total 
number of focal elements. 

The BS-2-TILOWA operator accomplishes the typical properties of the 
mean operators such as commutativity, monotonicity, boundedness and 
idempotency. 

 
TTheorem C.1 (Commutativity). Assume f is the BS-2-TILOWA operator, then: 

)),,(),...,,,((
111 111 rrr qqq susuf )),,(),...,,,(( ****

1
*
1

*
1 111 rrr qqq susuf ,          (C.9) 

where )),,(),...,,,(( ****
1

*
1

*
1 111 rrr qqq susu  is any permutation, for each focal element k, of 

)),,(),...,,,(( 111 111 rrr qqq susu . 
 
Proof. It is trivial and thus omitted.                                
 
Theorem C.2 (Monotonicity). Assume f is the BS-2-TILOWA operator, if, 

*
kk jj    i, then: 

)),,(),...,,,((
111 111 rrr qqq susuf )),,(),...,,,(( ****

1
*
1

*
1 111 rrr qqq susuf .      (C.10) 

 
Proof. It is trivial and thus omitted.                                

 
Theorem C.3 (Boundedness). Assume f is the BS-2-TILOWA operator, then: 

)),,(),...,,,(()},,min{(
111 111 rrrkkk qqqiii susufsu )},,max{(

kkk iii su .       (C.11) 
 

Proof. It is trivial and thus omitted.                                
 

Theorem C.4 (Idempotency). Assume f is the BS-2-TILOWA operator, if 
,

kj
  j  N, then: 

)),,(),...,,,(( 111 111 rrr qqq susuf .                           (C.12) 
 
Proof. It is trivial and thus omitted.     
                            
C.3.3 Families of BS-2-TILOWA operators 
 
Different types of 2-TILGOWA operators are found in the aggregation by using 
a different weighting vector.  

 
Remark C.4: For example, we can obtain the 2-tuple linguistic maximum, the 2-
tuple linguistic minimum, the 2-tuple linguistic average (2-TLA), the 2-TLWA 
and the 2-TLOWA operator.  
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The 2-tuple linguistic maximum is found if w1 = 1 and wj = 0, for all j  1.  
The 2-tuple linguistic minimum is obtained if wn = 1 and wj = 0, for all j  n.  
More generally, if wk = 1 and wj = 0, for all j  k, we get the step-2-TILOWA 
operator.  
The 2-TLA is formed when wj = 1/n, for all i.  
The 2-TLWA is obtained when the ordered position of i is the same as j.  
The 2-TLOWA is found if the ordered position of ui is the same as the 
ordered position of the values of the ai. 
 

Remark C.5: Some other interesting families are the following. Note that they 
follow the same methodology as in the OWA version (Merigó & Gil-Lafuente, 
2009; Yager, 1993; Yager & Kacprzyk, 1997): 

The S-2-TILOWA operator based on the S-OWA operator (Yager, 1993) 
can be subdivided in three classes:  
o The generalized S-2-TILOWA operator is obtained when  w1 = (1/n)(1 

 (  + )) + , wn = (1/n)(1  (  + )) + , and wj = (1/n)(1  (  + )) 
for j = 2 to n  1 where ,   [0, 1] and  +   1.  

o If  = 0, the generalized S-2-TILOWA operator becomes the “and-like” 
S-2-TILOWA  

o If  = 0, it becomes the “or-like” S-2-TILOWA. 
o Also note that if  +  = 1, we get the 2-tuple induced linguistic Hurwicz 

criteria. 
The olympic-2-TILOWA is found when w1 = wn = 0, and for all others wj* 
= 1/(n  2). Note that if n = 3 or n = 4, the olympic-2-TILOWA becomes 
the median-2-TILOWA and if m = n  2 and k = 2, the window-2-TILOWA 
becomes the olympic-2-TILOWA.  
Note that it is possible to develop a general form of the olympic-2-TILOWA 
operator considering that wj = 0 for j = 1, 2, …, k, n, n  1, …, n  k + 1; 
and for all others wj* = 1/(n  2k), where k < n/2.  Note that if k = 1, then, 
this general form becomes the usual olympic-2-TILOWA. If k = (n  1)/2, 
then, it becomes the median-2-TILOWA operator. 
It is also possible to develop the contrary case of the general olympic-2-
TILOWA operator. In this case, wj = (1/2k) for j = 1, 2, …, k, n, n  1, …, 
n  k + 1; and wj = 0, for all others, where k < n/2. Note that if k = 1, then, 
we get the contrary case of the median-2-TILOWA. 
A 2-TILOWA operator is defined as a centered aggregation operator if it is 
symmetric, strongly decaying and inclusive.  
o It is symmetric if wj = wj+n 1.  
o It is strongly decaying when i < j  (n + 1)/2 then wi < wj and when i > 

j  (n + 1)/2 then wi < wj.  
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o It is inclusive if wj > 0.  
The nonmonotonic-2-TILOWA operator is found when at least one of the 
weights wj is lower than 0 and n

j jw1 1 . Note that a key aspect of this 
operator is that it does not always accomplish the monotonicity property.  

 
Remark C.6: Using a similar methodology, we could develop a lot of other 
families of 2-TILOWA weights in a similar way as it has been developed in a lot 
of studies for the OWA operator (Merigó & Gil-Lafuente, 2010, 2013; Yager, 
1993; Zeng & Su, 2012; Zeng et al., 2012). 
 
Remark C.7: Note that it is possible to use different families of 2-TILOWA 
operators for each focal element. If we strictly use only one case, then, we could 
refer to the aggregation as the BS-centered-2-TILOWA, BS-2-TLA, BS-2-
TLWA and BS-2-TLOWA. 
 
Remark C.8: Note that it is easy to apply these methods to the 2-TILOWA 
operator because the weights are not affected by the linguistic information. 
Obviously, it is also possible to develop more complex analysis where the 
weights are also linguistic variables but in this study we will not analyze this 
problem. 
 
 
C.4 Generalized 2-TILOWA Operators in D-S Framework 

 
Although we have already considered a wide range of 2-tuple linguistic 
aggregation operators that can be used in the D-S framework, it is interesting to 
present a general formulation that includes more types of 2-tuple linguistic 
aggregation operators. This formulation is carried out by using generalized and 
quasi-arithmetic means. The main advantage of using these operators is that 
they include a lot of linguistic aggregation operators. Therefore, the decision 
maker gets a more complete view of the decision problem because he is able to 
consider a lot of different situations and select the one that is in accordance with 
his interests. Thus, if we introduce this operator in decision making with D-S 
belief structure, we are able to develop a unifying framework that provides a 
general formulation with probabilities and different types of 2-TILOWAs.  

 
In order to use this type of aggregation operator in D-S framework, we 

should make the following changes to the decision process explained in the 
previous section for the 2-TILOWA operator. 

In Step 3, when calculating the collection of weights, w, we have to consider 
that we are using the 2-TILGOWA operator in the aggregation for each 
different cardinality of focal elements.  
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In Step 5, when calculating the linguistic aggregated payoff, we should use 
Vhk = 2-TILGOWA(Mhk), using Eq. (C.5) for all the values of h and k. 

 
In this case, we could also formulate in one equation the whole aggregation 

process as follows. We call it the BS-2-TILGOWA operator. 
 

Definition C.7. A BS-2-TILGOWA operator is defined by:           
 

)),,(),...,,,(( 111 111 rrr qqq susuf

/1

1 1
)(

r

k

q

j
jjk

k

k
kkwBm ,           (C.13) 

 
where 

kjw  is the weighting vector of the kth focal element such that n
j kjw1 1 

and 
kjw  [0, 1]  where ),(1

kkk jjj s  are the argument values ),(1
kk iis  of 

the 2-TILGOWA triplets ),,( kkk iii su  ordered in decreasing order of their ui  
and  is a parameter such that   ( m(Bk) is the basic probability 
assignment.  

 
Note that qk refers to the cardinality of each focal element and r is the total 

number of focal elements. As we can see, the focal weights are aggregating the 
results obtained by using the 2-TILGOWA operator.  

 
Remark C.9: The BS-2-TILGOWA operator is commutative, monotonic, 
bounded and idempotent. Note that it is straightforward to prove these 
properties by looking at Theorems (C.1 – C.4). 
 
Remark C.10: Note that it is also possible to distinguish between descending 
(BS-2-TDILGOWA) and ascending (BS-2-TAILGOWA) orders.  
 
Remark C.11: When aggregating the collection of linguistic payoffs of each focal 
element with the 2-TILGOWA operator, it is also possible to use a wide range 
of families of 2-TILGOWA operators. Basically, we can distinguish between 
those cases found in 
W.  
 
Remark C.12: 
cases: 

The 2-  
The 2-  
The 2-  
The 2- 1. 
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Remark C.13: If we analyze the weighting vector W, then, we find the following 
cases: 

The 2-tuple linguistic maximum (w1 = 1 and wj = 0, for all j  1). 
The 2-tuple linguistic minimum (wn = 1 and wj = 0, for all j  n). 
The 2-TLA (wj = 1/n, for all Ki). 
The 2-TLWA (the ordered position of i is the same as the ordering 
established in ui).  
The 2-TLGOWA (the ordered position of j is the same as the ordering 
established in ui). 
The 2-TILGOWA with the Hurwicz criteria (w1 = , wn = 1   and wj = 0, 
for all j  1, n). 
The step-2-TILGOWA (wk = 1 and wj = 0, for all j  k). 
The olympic-2-TILGOWA operator (w1 = wn = 0, and wj = 1/(n  2) for all 
others). 
The S-2-TILGOWA (w1 = (1/n)(1  (  + )) + , wn = (1/n)(1  (  + ) + 

, and wj = (1/n)(1  (  + )) for j = 2 to n  1 where ,   [0, 1] and  + 
  1). 

The centered-2-TILGOWA (if it is symmetric, strongly decaying from the 
center to the maximum and the minimum, and inclusive). 

 
Remark C.14: Note that it is also possible to use quasi-arithmetic means in the 
analysis in order to get a more general formulation of the problem. Then, instead 
of using the 2-TILGOWA operator in the decision process, we use the Quasi-
2-TILOWA operator (Merigó & Gil-Lafuente, 2013) explained in Eq. (6). The 
general aggregation process formed in this case is the BS-Quasi-2-TILOWA 
operator and it can be defined as follows. 
 
Definition C.8. A BS-Quasi-2-TILOWA operator is defined by:           

 

)),,(),...,,,((
111 111 rrr qqq susuf = r

k

q

j
jjk

k

k
kk gwBmg

1 1

1 )()(       (C.14) 

 
where 

kjw  is the weighting vector of the kth focal element such that n
j kjw1 1 

and 
kjw  [0, 1]  where j = 1(sjk, jk) are the argument values 1(sik, ik) of 

the Quasi-2-TILOWA triplets ),,( kkk iii su  ordered in decreasing order of their 
ui 1(sik, ik) is the argument variable, g is a strictly continuous monotonic 
function and m(Bk) is the basic probability assignment.  
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Note that qk refers to the cardinality of each focal element and r is the total 
number of focal elements. 
 
Remark C.15: Note that all the properties and particular cases commented both 
in the BS-2-TILOWA and in the BS-2-TILGOWA are also applicable to the 
BS-Quasi-2-TILOWA operator. Thus, we could distinguish between 
descending and ascending orders and consider different particular cases. 
 
 
C.5 Application in Linguistic Group Decision Making 
 
Next, let us develop an illustrative example in order to clarify the procedures 
commented above. We analyze a decision making problem with D-S belief 
structure. We use different types of linguistic aggregation operators such as the 
2-TLA, the 2-TLWA, the 2-TLOWA, the 2-TILOWA, the 2-TAILOWA and 
the 2-TILOWQA operator.  
 

Step 1: Assume an enterprise is planning his financial strategy for the next 
year and they consider 5 alternatives. 

1) A1: Invest in the Asian market. 
2) A2: Invest in the American market. 
3) A3: Invest in the European market. 
4) A4: Invest in the African market. 
5) A5: Do not develop any investment. 

 
Since the future states of nature are very imprecise, the experts cannot use 

numerical values in the payoff matrix. Instead, they use linguistic variables to 
calculate the future expected benefits of the enterprises depending on the state 
of nature that occurs in the future. They establish the following linguistic scale 
based on the 2-tuple approach. 
 

S = {s1 = Extremely low, s2 = Very low, s3 = Low, s4 = Medium, s5 = High,  
s6 = Very high, s7 = Extremely high}. 

 
After careful analysis, the experts have considered five possible situations 

that could happen in the future: N1 = Very bad, N2 = Bad, N3 = Regular, N4 
= Good, N5 = Very good. Depending on different uncertain situations that 
could occur, the experts of the investment company establish the 2-tuple 
linguistic payoff matrix that represents the returns for the next year. The results 
that could happen in the future are shown in Table C.1. 
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Table C.1.  Available investments 
 

 N1 N2 N3 N4 N5 

A1 (s5, 0.4) (s3, 0.2) (s3, 0.2) (s4, 0) (s5, 0.3) 
A2 (s2, 0.4) (s3, 0) (s4, 0) (s3, 0.5) (s5, 0.2) 
A3 (s4, 0) (s2, 0.4) (s3, 0.1) (s5, 0.4) (s5, 0.4) 
A4 (s3, 0.4) (s2, 0.3) (s5, 0.2) (s4, 0.1) (s3, 0.3) 
A5 (s2, 0.4) (s4, 0.2) (s4, 0.3) (s4, 0.1) (s3, 0.4) 

 
Step 2: The experts have obtained some empirical data that has permitted 

them to establish some probabilistic information about which state of nature 
will occur represented by the following belief structure. 

Focal element 
B1 = {N1, N3} = 0.3 
B2 = {N1, N2, N3} = 0.3 
B3 = {N3, N4, N5} = 0.4 

 
Step 3: Assume we have calculated the following weighting vectors for the 2-

TILGOWA operator depending on the number of arguments used in the 
aggregation: W2 = (0.4, 0.6) and W3 = (0.3, 0.3, 0.4). Note that the reordering 
of the linguistic arguments is carried out with order-inducing variables when 
using induced aggregation operators. In this example, we use the order-inducing 
variables shown in Table C.2. 

 
Table C.2. Order-inducing variables 

 

 N1 N2 N3 N4 N5 

A1 20 18 14 12 10 
A2 8 15 20 22 25 
A3 16 18 25 12 10 
A4 18 16 24 22 20 
A5 15 13 21 19 17 

 
Step 4: Calculate the payoff collection, Mik, if we select alternative Ai and the 

focal element Bk occurs, for all the values of i and k. 
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A1: M11 = (s4, 0.6), (s3, 0.2) ; M12 = (s4, 0.6), (s3, 0.2), (s3, 0.2) ;  
M13 = (s3, 0.2), (s4, 0), (s5, 0.3) . 

A2: M21 = (s2, 0.4), (s4, 0) ; M22 = (s2, 0.4), (s3, 0), (s4, 0) ;  

M23 = (s4, 0), (s3, 0.5), (s5, 0.2) . 

A3: M31 = (s4, 0), (s3, 0.1) ; M32 = (s4, 0), (s2, 0.4), (s3, 0.1) ;  
M33 = (s3, 0.1), (s5, 0.4), (s5, 0.4) . 

A4: M41 = (s3, 0.4), (s5, 0.2) ; M42 = (s3, 0.4), (s2, 0.3), (s5, 0.2) ;  
M43 = (s5, 0.2), (s4, 0.1), (s3, 0.3) . 

A5: M51 = (s2, 0.4), (s4, 0.3) ; M52 = (s2, 0.4), (s4, 0.2), (s4, 0.3) ;  
M53 = (s4, 0.3), (s4, 0.1), (s3, 0.4) . 

 
Step 5: Calculate the aggregated 2-tuple linguistic payoff, Vhk, using Eq. (C.5) 

(for the 2-TLA, 2-TLWA, 2-TLOWA and 2-TILOWA is also valid Eq. (C.2)). 
The results are shown in Table C.3. 

 
Table C.3.  Aggregated results 

 

 2-TLA 2-TLWA 2-TLOWA TILOWA TILOWQA 

V11 (s4, 0.3) (s4, 0.48) (s4, 0.48) (s4, 0.48) (s4, 0.38) 
V12 (s4, 0.47) (s3, 0.46) (s3, 0.46) (s3, 0.46) (s4, 0.46) 
V13 (s4, 0.17) (s4, 0.08) (s4, 0.27) (s4, 0.08) (s4, 0.01) 
V21 (s3, 0.20) (s3, 0.36) (s3, 0.04) (s3, 0.36) (s3, 0.45) 
V22 (s3, 0.13) (s3, 0.22) (s3, 0.06) (s3, 0.12) (s3, 0.18) 
V23 (s4, 0.23) (s4, 0.33) (s4, 0.16) (s4, 0.33) (s4, 0.39) 
V31 (s4, 0.45) (s3, 0.46) (s3, 0.46) (s4, 0.36) (s4, 0.34) 
V32 (s3, 0.16) (s3, 0.16) (s3, 0.09) (s3, 0.25) (s3, 0.31) 
V33 (s4, 0.10) (s4, 0.15) (s4, 0.00) (s4, 0.15) (s4, 0.20) 
V41 (s4, 0.30) (s4, 0.48) (s4, 0.12) (s4, 0.12) (s4, 0.21) 
V42 (s4, 0.37) (s4, 0.21) (s3, 0.50) (s3, 0.50) (s4, 0.30) 
V43 (s4, 0.20) (s4, 0.11) (s4, 0.11) (s4, 0.11) (s4, 0.18) 
V51 (s3, 0.35) (s4, 0.46) (s3, 0.16) (s3, 0.16) (s3, 0.29) 
V52 (s4, 0.37) (s4, 0.3) (s4, 0.49) (s4, 0.31) (s4, 0.22) 
V53 (s4, 0.07) (s4, 0.12) (s4, 0.12) (s4, 0.12) (s4, 0.10) 
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Step 6: For each alternative, calculate the linguistic generalized expected value, 
Ch, using Eq. (C.7). The results are shown in Table C.4. 

Step 7: Select the best alternative for each 2-tuple linguistic aggregation 
operator. That is, select the investment with the highest linguistic expected 
value. As we can see, in this example we get that the optimal choice is always 
the investment A4. Therefore, in this case, the decision is clear. 

 
However, often we find that the optimal choice is different depending on the 

aggregation operator used. Thus, it is interesting to establish an ordering of the 
investments, a typical situation if we want to select more than one alternative. 
Note that  means preferred to. The results are shown in Table C.5. As we can 
see, depending on the linguistic aggregation operator used, the results and 
decisions may be different. Therefore, the decision maker is able to consider a 
wide range of situations and select the one that is in accordance with his 
interests. 

 
Table C.4.  Linguistic generalized expected value 

 

 2-TLA 2-TLWA 2-TLOWA 2-TILOWA 2-TILOWQA 

A1 (s4, 0.3) (s4, 0.34) (s4, 0.42) (s4, 0.34) (s4, 0.25) 
A2 (s4, 0.41) (s4, 0.3) (s3, 0.49) (s4, 0.33) (s4, 0.26) 
A3 (s4, 0.35) (s4, 0.36) (s4, 0.44) (s4, 0.28) (s4, 0.23) 
A4 (s4, 0.05) (s4, 0.12) (s4, 0.07) (s4, 0.07) (s4, 0.04) 
A5 (s4, 0.34) (s4, 0.28) (s4, 0.45) (s4, 0.4) (s4, 0.32) 

  

 
Table C.5. Ordering of the investments 

 

 Ordering 

2-TLA A4 A1 A5 A3 A2 

2-TLWA A4 A5 A2 A1 A3 

2-TLOWA A4 A1 A3 A5 A2 

2-TILOWA A4 A3 A2 A1 A5 

2-TILOWQA A4 A3 A1 A2 A5 
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4.5 Summary 
 

To recap, in this chapter, the extensions of group decision making models with 
OWA-based aggregation operators have been discussed in great detail. 
Specifically, in Section 4.2, the analysis of OWA-based aggregation operators in 
ME-MCDM model has been studied. In the following section (Section 4.3), the 
WSAM-OWA operator and its application in the linguistic group decision 
making model has been proposed. Then, in Section 4.4, the method on the 
linguistic group decision making with Dempster-Shafer theory and induced 
linguistic aggregation operators has been presented. All these developed models 
then were applied in the case of financial selection problems.  
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CHAPTER 5 
 
 

ANALYTIC HIERARCHY PROCESS MODELS  
FOR FINANCIAL SELECTION PROBLEMS 

 
 
 

5.1 Introduction 
 
In this chapter, the decision making models based on the analytic hierarchy 
process (AHP) are developed for the application in financial selection problems. 
In Section 5.2, the generalized AHP for group decision making model using the 
induced OWA operators is presented. Then, in Section 5.3, the heavy weighted 
geometric aggregation operators in AHP group decision making is given. 
Finally, Section 5.4 provides a summary to conclude this chapter. 
 
 
5.2 Generalized Analytic Hierarchy Process for Group Decision Making 

Model using Induced OWA Operators  
 

Abstract. This study proposes an extension of the analytic hierarchy process 
for group decision making model using the induced ordered weighted averaging 
(IOWA) operators. Two-stage aggregation processes used in the AHP-GDM 
model, particularly in aggregating the criteria and synthesizing a group of 
experts, are extended to provide a more general framework in the decision 
analysis. For the aggregation of criteria, a generalization of weighted maximal 
entropy OWA (WMEOWA) under the IOWA operator is proposed. This 
consists of the induced generalized and the induced quasi generalized 
WMEOWA operators. Then, the majority concept based on the IOWA and 
Minkowski OWA similarity measure is suggested to determine a consensus 
among experts. Two ways in computing the majority agreements for the AHP-
GDM model are proposed in which measuring the similarity of experts with 
respect to the individual priorities of alternatives (classical scheme) and also on 
the individual preferences of criteria (alternative scheme). Based on the 
application of different decision schemes, distinct decision strategies of 
individual and majority of experts can be determined. The AHP-GDM model 
under the classical scheme is based on the individual decision strategies of 
experts. Whilst under the alternative scheme, the decision strategies are 
reflecting the majority of experts collectively. The final results obtained from 
both schemes shown slightly different rankings. With the inclusion of IOWA 
operator and its generalization, the AHP-GDM model provides a greater 
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flexibility in analyzing the alternatives with respect to different decision 
strategies. These include flexibility in evaluating each alternative based on 
different proportion of criteria (complex attitudinal character of experts), 
incorporating additional mechanisms for order-inducing process and allowing 
the majority of experts who have the most similar preferences as the 
representative results. The application in investment selection problem is 
presented to test the reliability of the proposed model. 
 
 
D.1 Introduction 

 
The analytic hierarchy process (Saaty, 1977; 1980) is one of the most widely used 
multiple criteria decision analysis techniques. The AHP model is popularly used 
in applications owing to several advantages. It has a hierarchy structure by 
reducing multiple criteria into pairwise comparison judgments and allows the 
use of quantitative and qualitative information in the evaluation process. Some 
reviews on application of the model can be referred, for example, in Golden et 
al. (1989), Forman and Gass (2001), Saaty (2013), and Vaidya and Kumar (2006). 
To deal with the complex decision making problems, particularly involving 
multiple experts’ judgements, the AHP has been extended to the AHP group 
decision making model (AHP-GDM) (see Escobar & Moreno-Jimerez, 2007; 
Gargallo et al., 2007; Saaty, 1989, among others). Two-stage aggregation 
processes are involved in the AHP-GDM, specifically, the aggregation of criteria 
with respect to each alternative and the aggregation of a group of experts as the 
final ranking or priority of alternatives. Weighted arithmetic mean (WA) and 
weighted geometric mean (WG) are among the traditionally used synthesizing 
procedures in the AHP-GDM. 

An ordered weighted averaging (OWA) operator (Yager, 1988) is a different 
type of aggregation operator. The OWA provides a general class of mean-type 
aggregation procedures, which comprises a family of functions that can be 
ranged between the ‘and’ (min) and the ‘or’ (max). A fundamental aspect of this 
operation is the reordering step. Specifically, an element or argument is not 
associated with a particular weight, but rather a weight is associated with a 
particular ordered position of argument (Yager, 1993). Implicitly, its meaning to 
some extent is based on the concept of fuzzy set theory (Bellman & Zadeh, 
1970; Zadeh, 1983), allowing a flexibility in aggregation process. It provides a 
unified framework for decision analysis under uncertainty with different 
decision strategies, such as maximax (optimistic), maximin (pessimistic), equally 
likely (Laplace), and the Hurwicz procedure, where each is characterized by a 
specific OWA weighting vector. Yager (2004) generalized the OWA to include 
other types of means in the same formulation, for instance, the ordered 
weighted geometric (OWG), the ordered weighted harmonic (OWH), and the 
ordered weighted quadratic (OWQ), to name a few. In the literature, it has been 
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known as the generalized OWA operators (GOWA). The induced OWA (Yager 
& Filev, 1999) is another extension of the OWA operator with a more general 
framework of synthesizing procedures. The main difference between OWA and 
IOWA is in the reordering process. Instead of directly ordering the arguments 
based on their magnitudes, such in OWA, the IOWA utilizes another 
mechanism called the order-inducing variable as a pair of argument. The main 
advantage of the IOWA operator is its ability in considering complex situations, 
in which the reordering process is done by other variables independently or by 
a function of arguments (Beliakov & James, 2011; Chiclana et al., 2004; Yager, 
1999). Afterward, Merigó and Gil-Lafuente (2009) generalized the IOWA to the 
induced GOWA (IGOWA) to provide a unified framework for the aggregation 
process. The IOWA operators have been studied by many authors in recent 
years (see Chiclana et al., 2004; Merigó & Casanovas 2009; Merigó & Casanovas 
2011; Xu, 2006; Yusoff & Merigó, 2014). 

Recently, much attention has been given to the extension of MCDA models 
using the OWA operators. Yager and Kelman (1999) proposed the extension of 
AHP using the OWA operator. This approach generalizes the WA usually 
implemented in AHP by allowing flexibility in aggregating the criteria using the 
integration of the WA and OWA operators. Instead of taking ‘averagely all’ 
criteria, the analysis can be made to include several cases in between two 
extreme conditions (i.e., ‘at least’ one criterion must be satisfied and ‘all’ criteria 
must be satisfied). This approach is mainly based on the inclusion of the fuzzy 
linguistic quantifiers (Yager, 1988, 1996). An alternative method to apply the 
OWA operator is using the maximum entropy OWA (MEOWA) approach. 
Initiated by O’Hagan (1988), MEOWA has been formulated as a constraint 
nonlinear optimization problem and has been applied in determining the 
weights of the OWA for the aggregation process. Filev and Yager (1995) and 
later Fuller and Majlender (2001) proposed the analytic approaches for 
MEOWA using the method of Lagrange multipliers and examined its analytic 
properties in great detail. Since then, MEOWA has been extensively studied and 
applied, specifically in MCDA models (Ahn, 2011; Chuu, 2009; Ma & Guo, 
2013; Wang & Parkan, 2007). The main advantage of the MEOWA is that it can 
be used to model the behavior of decision makers or experts in facing with 
uncertain/risky decision problems, specifically by specifying any degree of 
optimism. With the inclusion of the relative importances of criteria, Yager 
(2009) then extended the MEOWA to the weighted MEOWA (WMEOWA) as 
the integrated approach. Other families of OWA operators can be referred (e.g., 
Xu, 2005; Yager, 1993). 

Analogously, with respect to group decision making, the soft majority 
agreement among experts can be implemented using the OWA and IOWA 
operators to extend the classical WA or WG. For example, using the fuzzy 
linguistic quantifier with the semantics ‘at least 80%’ or ‘most’, the preferences of 
a group of experts can be determined. In this case, the majority opinion refers 
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to a consensual judgment of experts who have similar preferences. This type of 
aggregation process is useful whenever a majority support among experts is 
adequate for the satisfactory decision, also to avoid bias in the decision analysis.  
In the literature, there are a number of works that have been done on this topic. 
Pelaez et al. (2003; 2005; 2016) and Karanik et al. (2016) for example, proposed 
the majority additive and majority multiplicative OWA operators to aggregate 
the arguments that have cardinality greater than one. On the other hand, Pasi 
and Yager (2006) proposed two approaches to deal with the majority concept. 
The first is based on the IOWA operator, where the support function (i.e., 
distance measure) is applied to obtain a set of scalar values to induce the 
opinions of experts as the majority agreement. The other approach is based on 
a fuzzy subset to represent the majority opinion under a vague concept. 
Correspondingly, Bordogna and Sterlacchini (2014) extended the Pasi-Yager 
method, specifically the first approach, by employing the Minkowski OWA 
similarity measure as a generalization of the support function. This method is 
used to measure the consensus among a group of experts with the inclusion of 
degrees of importance. Moreover, they proposed a consensus measure with 
respect to each specific criterion of experts (i.e., an alternative scheme) as an 
alternative approach instead of synthesizing the individual priorities of 
alternatives (a classical scheme). 

The main focus of this study is to extend the two-stage of aggregation 
processes used in AHP-GDM by using the IOWA operators. This model is an 
extension of the AHP-based OWA model proposed by Yager and Kelman 
(1999) under the group decision making setting. Instead of using fuzzy linguistic 
quantifiers to aggregate the criteria of each alternative, the proposed method 
applies the MEOWA-based aggregation operators as an alternative approach to 
represent the decision strategies. Specifically, a generalization of WMEOWA 
under the IOWA aggregation functions is proposed, which consists of induced 
generalized and induced quasi generalized WMEOWA. Next, the classical 
means for aggregating the experts’ judgments is extended to a majority-based 
aggregation process using the modified Bordogna-Sterlacchini method. In this 
setting, the fuzzy linguistic quantifier with the semantics ‘most’ is applied in the 
IOWA operator. Two methods of computing the majority agreement of experts 
are studied. These include measuring the similarity of experts based on the 
individual priorities of alternatives (classical scheme) and on the individual 
preferences of criteria (alternative scheme). The proposed model with respect 
to these schemes is applied to the problem of selecting the optimal investment 
alternatives. The comparison of results obtained from the schemes under 
different decision strategies is conducted.  

The structure of the study is organized as follows. In Section D.2, some 
preliminaries related to aggregation operators and the general frameworks for 
AHP are presented. Section D.3 briefly discusses the WMEOWA-based 
aggregation operators. Section D.4 examines the majority concept based on the 
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IOWA operator. In Section D.5, the proposed method on the extension of the 
AHP-GDM is presented. Finally, in Section D.6, an application in an investment 
selection problem is provided. 
 
 
D.2 Preliminaries 

 
In the following, the basic aggregation operators that are used in this study are 
briefly discussed. In consequence, a general framework for the AHP-GDM is 
reviewed.  
 

D.2.1   Aggregation operators 
 
Definition D.1 (Yager, 1988). An OWA operator of dimension  is a function :  that has an associated weighting vector = ( , … , ) 
such that = 1 and [0,1], given as the following formula: 

 ( , , … , ) = ( ), (D.1) 

where ( ) is the th largest . 
 
Definition D.2 (Yager & Filev, 1999). An IOWA operator of dimension  is a 
function :  that has an associated weighting vector  of 
dimension  such that = 1 and [0,1], according to the following 
formula: 

( , , , , … , , ) = ( ), (D.2) 

where ( ) is the  value of the IOWA pair ,  having the th largest , 
and the convention that if  of the ( ) are tied, i.e., ( ) = ( ) = =( ), then, the value ( ) is given as follows (Beliakov & James, 2011; 
Yager & Filev, 1999): 

( ) = 1 ( )
( ) , (D.3) 

 
Definition D.3 (Merigó & Gil-Lafuente, 2009). An IGOWA operator of 
dimension  is a function :  that has an associated weighting 
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vector  of dimension  such that  = 1  and  [0,1], given as the 
following formula: 

( , , , , … , , ) = ( ) , (D.4) 

 
where ( ) is the  value of the IGOWA pair  ,  having the th largest 

 and  is a parameter such that {0}.  
 
With different values of  , various type of aggregation functions can be derived. 
For instance, when = 1, IOWHA (harmonic) operator can be derived, 
when 0, then the IOWG (geometric) can be generated, for = 2, the 
IOWQA (quadratic) operator can be obtained, etc.  

The OWA, the IOWA, and the IGOWA operators are all meet commutative, 
monotonic, bounded and idempotent properties (Beliakov & James, 2011; 
Grabisch et al., 2009; Merigó & Gil-Lafuente, 2009; Yager, 1988; Yager & Filev, 
1999). Note that, the notation  is the argument variable and  is the order-
inducing variable. In addition, Yager (1988) introduced two measures, namely 
the orness measure and the entropy (or dispersion) measure to characterize the 
type of aggregation associated with a given weighting vector, .  
 
Definition D.4 (Yager, 1988). Suppose that  is the associated weighting 
vector such that [0,1] and = 1, then the orness measure (or 
degree of optimism) of OWA can be given as the following: 

( ) = 1 1 ( ) . (D.5) 

It can be demonstrated that for any , the value of ( ) lies in unit interval [0,1]. For example: i) if =  then ( ) = 0 (pessimistic attitude), ii) if =  then ( ) = 1/2 (neutral attitude, i.e., Laplace criterion), and 
iii) if =  then ( ) = 1 (optimistic attitude), where = (0,0, … ,1), = (1/ , 1/ , … ,1/ ) and = (1,0, … ,0).  
 
Definition D.5 (Yager, 1988). Suppose that  is the associated weighting 
vector such that [0,1] and = 1, then the entropy of OWA can be 
given as follows: 
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( ) = . (D.6) 

The entropy is used to measure the degree of information that employed in the 
OWA aggregation. It can be shown that it is bounded by 0 ( ) ( ), 
in which ( ) = ( ) = 0 and ( ) = ( ).  
 
D.2.2 Analytic hierarchy process model 
 
The AHP is one of the existing preference relation methods, to be known as 
the multiplicative preference relation (Chiclana et al., 2004; Xu, 2007; Saaty, 
1980). The general framework for AHP comprises of three major steps: i) 
developing the hierarchy (structuring complexity), ii) pairwise comparison of 
elements of the hierarchical structure (measurement on a ratio scale) and iii) 
constructing an overall priority rating (synthesis) (Forman & Gass, 2001; Saaty, 
1980). The first step is the decomposition of the decision problem into a 
hierarchy, consists of the most related or important elements in the analysis, 
e.g., from the main goal (objective) to the level of criteria (sub-criteria) and the 
level of alternative. For the second step, the pairwise comparison matrix can be 
defined as the following:  
 
Definition D.6 (Saaty, 1980). A multiplicative preference relation  on the set 

 (a discrete set of alternatives) is defined as a pairwise comparison matrix =[ ] × ×  under the condition: > 0,   = 1,   = 1,    , = 1,2, … , , (D.7) 

where  is the ratio of the preference intensity of alternative  to that of . 
 
Specifically, it can be noticed that the matrix  is reciprocal, such that =

 for ( ) and all its diagonal elements are unity, = 1, ( = ). The 
intensity of preference  basically is measured based on ratio-scale {1/9,…,9} 
as given by Saaty (1980), where: i) = 9 means  absolutely preferred over 

; ii) = 1 implies indifference between  and ; iii) inversely = 1/9 
indicates that  absolutely preferred over . Moreover, = 1 exhibits 
multiplicative reciprocal condition and =  signifies multiplicative 
transitivity. The indifference, reciprocal and transitivity are the main properties 
for multiplicative preference relation (Chiclana et al., 2004; Saaty, 1980; Xu, 
2007).  
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Since human judgment is to some extent inconsistent in practice, Saaty (1980) 
then suggests a consistency index (CI) to measure the level of inconsistency 
associated with the pairwise comparison matrix as follows: = 1 , (D.8) 

  
where  is the biggest eigenvalue which obtained from its associated 
eigenvector and  is the number of columns of the matrix under consideration. 
Further, the consistency ratio (CR) can be calculated as follows: 
 = , (D.9) 

 
where RI is the random index of a randomly generated pairwise comparison 
matrix. The value of RI depends on the number of elements being compared. 
For instance, = 0 for 2, = 0.58 for = 3 and = 0.9 for =4, etc. The complete table of RI for > 4 can referred in (Saaty, 1980) or Table 
G.4 in Chapter 6. The threshold value for consistency ratio (CR) is set as <0.10 to indicate a reasonable level of consistency in the pairwise comparison.  

The transformation of pairwise comparison matrix to a priority vector is 
known as the prioritization procedure, which is the third step of the AHP 
method. The eigenvector (EV) method and the row geometric mean method 
(RGMM) are regularly used procedures for local priorities (i.e., with respect to 
a single criterion). Equivalently, for a set of criteria, the overall evaluation scores 
(global priorities) for each alternative can be synthesized using the weighted 
arithmetic mean (WA) or the weighted geometric mean (WG). In general, the 
method based on the geometric means is the most commonly used in the 
literature as it is the only separable synthesizing function that meets the 
unanimity condition (Pareto principle), the homogeneity condition and 
reciprocal property (Aczel & Saaty, 1983; Escobar & Moreno-Jimenez, 2007). 

In addition, under the group settings, there is an extra step involved, which 
is the aggregation of the experts’ judgments as a group decision. Two 
approaches normally utilized in AHP-GDM can be categorized into: i) 
aggregation of individual judgments (AIJ) and ii) aggregation individual 
priorities (AIP) approaches (Forman & Peniwati, 1998; Ramanadhan & Ganesh, 
1994; Saaty 1980). The AIJ can be explained as a group of experts which act 
together as a unit i.e., synergistic unit, whilst the AIP acts as separate individuals, 
i.e., a set of individual priorities/rankings of alternatives. For the AIJ, only 
geometric means-based methods are the most preferable, while for the AIP, 
both arithmetic and geometric means-based methods can be used (Forman & 
Peniwati, 1998). In this study, the AHP-GDM based on the AIP approach is 
employed and studied.  
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D.3 Maximum Entropy OWA-based Aggregation Functions 
 

A MEOWA is developed based on the mathematical programming approach. 
It is used to generate a weighting vector by maximizing the entropy with subjects 
to the weight constraint and the degree of orness. It can be noticed that 
MEOWA weights used to spread the weights as uniformly as possible and at 
the same time satisfying the degree of orness. Note that, if unconstrained by the 
degree of orness, the solution would be to make = 1/ . 

In the context of decision making, the degree of orness reflects the attitudinal 
character of experts, either optimism or pessimism. Filev and Yager (1995) 
obtained an analytic solution for the MEOWA weights. The associated operator 
is called MEOWA aggregation operator which can be defined as follows. 
 
Definition D.7 (Filev & Yager, 1995). Let  be a weighting vector of 
dimension , then a mapping :  is a MEOWA operator of 
dimension  if: ( , , … , ) = ( ), (D.10) 

 

where ( ) is the th largest  and = (( ) ( ))(( ) ( ))  is the MEOWA 

weights with [0,1], = 1. Specifically,  is a parameter 
dependent on the value  (degree of orness) and is given as = ( 1)ln ( ), 
where  is a positive solution of the polynomial equation [( ) ( 1) ] ( ) = 0.  
 

By specifying any value for parameter , the MEOWA weights can be 
determined and the aggregation operation can be performed. The MEOWA 
operators are all meet the commutative, monotonic, bounded and idempotent 
properties. 

 
Remark D.1. Some relationships between  and  can be given as follows: 1 induces large positive values for ; 1/2 induces values of  near zero; 0 induces large negative values for .  
 
Remark D.2. The main advantage of MEOWA is that the weights can be 
determined solely by specifying any orness value  in the unit interval [0,1] in 
which reflects the degree of optimism or pessimism of expert(s). For example, 1 provides the weighting vector as , assigning = 1/  produces  
and for 0, weighting vector  is generated.  
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D.3.1   Weighted MEOWA aggregation functions 
 
However, the weighting vector  generated from MEOWA is just a set of 
ordering weights (i.e., associated to arguments based on their magnitudes) 
without any inclusion of the relative importances of criteria. Yager (2009) 
extended the MEOWA to the weighted MEOWA (WMEOWA) to deal with 
this issue. To distinguish between the two types of weights, let specify =( , , … , ) as the vector of relative importances of criteria. The WMEOWA 
can be defined as the following: 
 
Definition D.8 (Yager, 2009). Let  and  be two weighting vectors of 
dimension , then a mapping :  is a WMEOWA operator 
of dimension  if: 

, ( , , … , ) = ( ), (D.11) 

  
where ( ) is the th largest of  and ( ) is the weight associated to the ( ). The WMEOWA weights, =  is given, such that, =  with = ( ) (by convention = 0), 
satisfying  = 1 and = 1, with , [0,1]. Specifically, 

 is a parameter dependent on the value  and is specified as   where [0,1]. 
 

By referring to Yager (2009), the formal relationship between  and  can 
be explained as the following.  For the sake of simplicity, let say = , the 

attitudinal character  can be directly related to ( ) =   as follows:  
 = ( ) = 11 1  

= 11 1 + 1 = 11 1 + 1
 

= 11 + 1( + 1) = 11 1. 
By assigning any value for  and using approximate value for , then the 
WMEOWA weights can be derived and the aggregation operation can be 
performed. It can be shown that the WMEOWA operators satisfy monotonic, 
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idempotent and bounded properties, but it is not commutative as WA is 
included. It is also important to note that when = (1/ , 1/ , … ,1/ ), the 
WMEOWA operator provides the identical result to MEOWA operator. 
 
Remark D.3. Some correlations between  and  can be demonstrated as the 
following. For > 0, hence > 1/2 is produced, for 0, then 1/2, 
and < 0 yields < 1/2.  
 
In specific, the approximate  values in relation to  values can be given as 
follows: If = 1 then = 100,  = 0.75 then = 3.75 and = 0.5 then 0. On contrary, = 100 provides = 0,  = 3.75 then = 0.25, 
refer to (Yager, 2009) for a complete table of the suggested values. 
 

Example D.1: Assume that = ( 0.4, 0.2 , 0.6, 0.1 , 0.7, 0.4 , 0.5, 0.3 ) as 
a set of pairs , . By reordering process ( ), ( )  where ( )( ) , then 0.7, 0.4 , 0.6, 0.1 , 0.5, 0.3 , 0.4, 0.2  can be obtained. 
Having that, the WMEOWA weights can be determined as follows: 
 = 0,   = 0.4,   = 0.5,   = 0.8,   = 1. 
 
For the specified value = 0.75 (moderately optimistic) and the approximate 
value = 3.75, then,  
 ( ) = 0,   ( ) = 0.7956,   ( ) = 0.8670,    ( ) = 0.9731,   ( ) = 1. 
 
Next, based on  values, the weights can be obtained as: 
 = 0.7956,   = 0.0715,   = 0.1061,   = 0.0269, 
 
and using the WMEOWA operator, the overall evaluation can be derived as: , ( ) = 0.6636. 
 
D.3.2 The proposed Induced WMEOWA based-aggregation operators 
 
Notice that relative importances  are reordered with respect to arguments  
and as for the case of WMEOWA, the argument values  are rearranged in 
non-increasing order based on their magnitudes. In the similar way, the 
WMEOWA can be extended to the case of IOWA operator, where different 
reordering process of arguments take place with respect to the order-inducing 
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variables. In what follows, an extension of the WMEOWA operator to induced 
WMEOWA operator is proposed. Moreover, the induced generalized and the 
induced quasi generalized WMEOWA can be defined.  
 
Definition D.9. Let  and  be two weighting vectors of dimension , then a 
mapping :  is an induced WMEOWA operator of 
dimension  if: 

, ( , , , , … , , )= ( ), (D.12) 

 
where ( ) is the  value of the pair ,  having the -th largest . The 
IWMEOWA weights =  is given, such that, =

 with = ( ) satisfying = 1 and = 1 with , [0,1], for  = + ,  . 
 

Example D.2: Assume that a set of triple , ,  as =( 60, 0.4, 0.2 , 20, 0.6, 0.1 , 50, 0.7, 0.4 , 70, 0.5, 0.3 ). By reordering 
process ( ), ( ), ( )  where ( ) ( ), then 70, 0.5, 0.3 , 60, 0.4, 0.2 , 50, 0.7, 0.4 , 20, 0.6, 0.1  can be obtained. By the similar way, 
the IWMEOWA weights can be determined as follows: 
 = 0,   = 0.3,   = 0.5,   = 0.9,   = 1. 
 
For the specified value = 0.75 and the approximate value = 3.75, then,  
 ( ) = 0,   ( ) = 0.7956,   ( ) = 0.8670,    ( ) = 0.9731,   ( ) = 1. 
 
Next, based on  values, the weights can be obtained as: 
 = 0.6916,   = 0.1754,   = 0.1220,   = 0.0110, 
 
and applying the IWMEOWA operator, the overall evaluation can be generated 
as: , ( ) = 0.6548. 
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Furthermore, it is interesting also to present a general formulation that 
includes more types of aggregation operators. This formulation is carried out by 
using the generalized and quasi-arithmetic means. The main advantage of using 
these operators is that they include a wide range of aggregation operators. 
Hence, the analyst/expert gets a complete view of the decision problem under 
consideration and select the one that is in accordance with his/her interests. 
Thus, a unifying framework that provides a general formulation of different 
types of IWMEOWAs can be developed. 

 
Definition D.10. An induced generalized WMEOWA operator of dimension  
is a mapping :  that has two associated weighting 
vectors  and  of dimension  such that  = 1, [0,1] and = 1, [0,1], then: 
 , ( , , , , … , , )

= ( ) , (D.13) 

 
where ( ) is the  value of the pair ,  having the -th largest  and  
is a parameter such that {0}. Analogously, the IGWMEOWA weights =  can be derived in the similar way as the IWMEOWA 
weights. 
 

Definition D.11. An induced quasi WMEOWA operator of dimension  is a 
mapping :  that has two associated weighting vectors 

 and  of dimension  such that  = 1, [0,1] and = 1, [0,1], then: 
 , ( , , , , … , , )= ( ) , (D.14) 

 
where ( )  is a strictly continuous monotonic function. The 
IQWMEOWA weights =  can be derived in the same way 
as the IWMEOWA weights. 
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Notice that, when = = = , the IWMEOWA operator is reduced 
to the case of WMEOWA operator. It can be demonstrated that the 
IWMEOWA, IGWMEOWA and IQWMEOWA operators meet monotonic, 
idempotent and bounded properties, but they are not commutative. The proofs 
are straightforward and thus, omitted in this study. 

 
 

D.4 Majority Concept based on IOWA Operators 
 
In this section, the majority concept based on Bordogna-Sterlacchini method is 
presented. Earlier, Pasi, and Yager (2006) proposed a method to determine the 
majority opinion of experts using the support function, mainly based on 
distance measure. The derived values are then used as order-inducing variables 
for the IOWA aggregation process. However, the suggested method is solely 
concerned with the homogeneous case where all experts are assumed to have 
equal degrees of importance (or trusts). Moreover, the measure of support 
between experts is concentrated only on the individual priorities of alternatives, 
i.e., based on the classical scheme.  

On the contrary, Bordogna and Sterlacchini (2014) proposed an alternative 
approach, where the support function is measured with respect to each specific 
criterion of experts (i.e., alternative scheme) and developed mainly for the 
heterogeneous case or with the inclusion of degrees of trust. In addition, the 
similarity measure based on the Minkowski OWA is applied to determine the 
order-inducing variables. The method can be explained as the following. 
 
D.4.1  Bordogna-Sterlacchini method for majority aggregation process 
 
For each alternative,  and a single criterion, , suppose that a set of 
preferences of experts ( = 1,2, … , ) is given as a vector [ ] =, , … ,  and the associated degree of trust is given as [0,1] such 
that = 1. For simplicity, let [ ] = = ( , , … , ) and with 
respect to this vector, the order-inducing variable  based on ( , ) can be defined as follows: 
 ( , … , ) = ( )

/ , (D.15) 

 
where = 1 | | as similarity measures between an expert  ( ) 
with respect to all other experts  (including himself/herself) and ( ) are 
reordering of , … ,  in non-increasing order, i.e., ( ) ( ) ( ). 
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Moreover, the expression = ( ) ( )  denotes the 
weights derived using a monotone non-decreasing linguistic quantifier, such that ( ) is associated with ( ) and [0,1], = 1. It can be noted that, 
when = 1, Eq. (D.15) is reduced to the weighted Minkowski based-similarity 
measure with = . 
 

The vector of order-inducing variables can be represented as: 
 = ( , … , )= ( , ), … , ( , ) . (D.16) 

 
Afterwards, with these order-inducing variables, the weights for IOWA 
aggregation operator can be determined using the following formula: 
 = ( , … , )( , … , ), (D.17) 

 
where  are ordered in non-decreasing order. Further, given the quantifier  
with semantics ‘most’ (to represent a majority of experts), such that: 
 ( ) = 1  0.9,2 0.8  0.4 < < 0.9,0  0.4,   (D.18) 

 
then, the weighting vector = ( , … , ) can be computed as follows: 
 = ( )( ). (D.19) 

 
Finally, the overall aggregation process can be calculated using the IOWA 
operator with non-decreasing inputs as the following: ( , , , , … , , ) = ( ). (D.20) 

 
Note that, the weights and order-inducing variables are reordered in non-
decreasing order instead of non-increasing order as in the original IOWA, see, 
Eq. (D.2). This type of ordering reflects the conformity of the quantifier ‘most’ 
in modeling the majority concept (Pasi & Yager, 2006; Bordogna & Sterlacchini, 
2014). The notation ( ) denotes the ordering process with respect to the non-
decreasing order. 
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D.4.2  Some modifications of the Bordogna-Sterlacchini method 
 
In the context of AHP-GDM, the preferences of experts on each criterion are 
very close to each other (or less distinctive) due to the 
normalization/prioritization process. In what follows, a slight modification is 
suggested to differentiate between the preferences. The modified similarity 
measure can then be formulated as: 

( , ) = 1 | |max| | , = 1,2, … , . (D.21) 

 
where max| | is the maximum distance between all experts . It can be 
demonstrated that for any  and  with ( , ) [0,1], the properties i) ( , ) = 1 (reflexive) and ii) ( , ) = ( , ) (symmetric) are fulfilled. 
Analogously, the weights for the IOWA aggregation process in Eq. (D.17) can 
also be modified to the following formula: 
 = ( , … , )( , … , ) . (D.22) 

 
In general, the aforementioned method can be directly applied to the case of 
classical scheme. Where, instead of comparing the preferences with respect to 
each criteria, the experts’ rankings or individual priorities of alternatives can be 
compared.  

In the next section, the proposed AHP-GDM with these methodologies is 
presented. Specifically, the synthesizing of experts’ preferences based on two 
approaches is developed: i) the consensus on each criterion (alternative scheme) 
and ii) the consensus on individual priorities of alternatives (classical scheme). 
 
Example D.3: Suppose that a set of experts’ preferences on a single criterion is 
given as = ( , , … , ) = (0.307, 0.343, 0.298, 0.283, 0.108). The 
preference of majority of experts (representative result) can be calculated as 
follows: 
 

             
 0.307 0.343 0.298 0.283 0.108        

 1 0.847 0.960 0.899 0.154  
 ×

 

0.3 0.3 0.2 0.1 0.1 0.851 ,  0.847 1 0.807 0.745 0 0.3 0.3 0.2 0.1 0.1 0.790 ,  0.960 0.807 1 0.938 0.193 0.3 0.3 0.2 0.1 0.1 0.843 ,  0.899 0.745 0.938 1 0.255 0.3 0.3 0.2 0.1 0.1 0.806 ,  0.154 0 0.193 0.255 1 0.3 0.3 0.2 0.1 0.1 0.210 
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where  = . In this case, for  =  (by setting = 1), the vector 
of order-inducing variable can be derived as = ( ), … , ( ) =(0.210, 0.790, 0.806, 0.843, 0.851). Next, by using quantifier  with 
semantics ‘most’ to represent the majority, the weighting vector  =( , … , ) = (0, 0, 0.207, 0.397, 0.397) is obtained. Then, the final majority 
preference of experts can be calculated using the IOWA operator as follows: ( 0.210, 0.108 , 0.790, 0.343 , 0.806, 0.283 , 0.843, 0.298 , 0.851, 0.307 ) = 0.299 
 
 
D.5 Generalized AHP-GDM Method 
 
In this section, the generalization of AHP-GDM model is proposed based on 
the methods discussed in Section D.3.2, D.4.1 and D.4.2. In what follows, the 
proposed method is demonstrated step by step as in the subsequent algorithms. 
Assume that , ( , = 1,2, … , ) denotes a finite set of alternatives and 
that , , = 1,2, … ,  are the criteria under consideration. Let , 
( , = 1,2, … , ), be a group of experts, where each expert  presents 
his/her preferences for rating the alternatives  and weighting the criteria . 
Two cases of aggregating method for the majority of experts are given as 
follows. 
 

 Case 1: Majority opinion with respect to criteria (Alternative scheme) 
 

Step 1. Let [ ] = [ ] ×[ ]  be the judgement matrix of -th expert in 
comparing  alternatives ( , = 1,2, … ,  ) with respect to each 
criterion . The judgement matrix [ ] is constructed based on Eq. 
(D.7) and then the consistency-check is conducted using Eq. (D.8) 
and Eq. (D.9). 

Step 2. The priority vector, [ ] = ×[ ] , = 1,2, … , , of -th expert 
then can be derived using any of the prioritization methods, such as 
the eigenvector method (EV) or the row geometric means method 
(RGMM). 

Step 3. With respect to each alternative, a set of experts’ preferences on each 
criterion = , , … ,  can be obtained. The individual 
preferences of experts then are aggregated, such that  is the weight 
assigned with the -th expert in forming the group preference ( > 0; = 1).  
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Step 4. The order-inducing variable for the majority opinion is determined 
based on Eq. (D.15) and Eq. (D.16), where the modified similarity 
measure is used as in Eq. (D.21). Based on the quantifier ‘most’ in Eq. 
(D.18) and the weights obtained from Eq. (D.19) and Eq. (D.22), the 
majority opinion of experts can be derived using Eq. (D.20). 

Step 5. Based on the previous steps, form a new decision matrix that 
represents the majority of experts by combining the priority vectors 
of all criteria, [ ] = × .  

Step 6. In the similar way, obtain the weighting vector = ( , , … , ) 
of the criteria as in Step 1, such that > 0; = 1 . At this 
stage, the IWMEOWA weights  can be determined. Finally, the 
overall ranking of alternatives can be generated using the 
IWMEOWA aggregation operator such in Eq. (D.13). Note that, the 
order-inducing variable for the aggregation of criteria is different 
than that of Eq. (D.16).  
 

 Case 2: Majority with respect to individual priorities of alternatives (classical scheme) 
 

Step 1. Construct the judgment matrix [ ] = [ ] ×[ ] , such in Eq. (D.7) 
and then a consistency-check is conducted using Eq. (D.8) and Eq. 
(D.9).  

Step 2. Further, the priority vector, [ ] = ×[ ] , = 1,2, … , , with 
respect to each criterion  can be derived using any of the 
prioritization methods, such as EV or RGMM. 

Step 3. For a set of  criteria ( = 1,2, … , ), the priority vectors [ ] can 
be represented as the matrix [ ] = ×[ ]

 for each individual of 
experts. 

Step 4. Given the weighting vector = ( , , … , ) for the criteria, such 
that > 0; = 1 , calculate the IWMEOWA weights  
for individual of experts based on the provided order-inducing 
variables  and the argument values as derived in Step 2. 

Step 5. Applying the IWMEOWA operator, Eq. (D.13), the individual 
priorities of alternatives for each expert [ ] = [ ]  can be 
determined.  

Step 6. Finally, let  be the weight assigned to the -th expert in forming 
the group decision ( > 0; = 1). The final ranking of 
alternatives as a collective group decision (majority opinion of 
experts) can be derived using the IOWA operator as in Eq. (D.20).  
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D.6 Application in an Investment Selection Problem 
 
In this section, an application of investment selection problem is provided to 
exemplify the proposed model. The main focus is on the analysis of results with 
respect to the classical and alternative schemes. The comparison then is 
conducted by specifying different degrees of optimism to reflect the decision 
strategies. 

For this purpose, consider that an agency or a company is looking for an 
optimal investment and must conduct an analysis to achieve this objective. The 
following five possible alternatives are considered:  is a computer company, 

 is a chemical company,  is a food company,  is a car company, and  is 
a television company. In order to evaluate these alternatives, a group of 
experts/analysts are selected to make a decision according to the following four 
criteria:  is the risk analysis,  is the growth analysis,  is the social-political 
impact analysis, and  is the environmental impact analysis. In this case, five 
experts are involved in the analysis and the associated degrees of importance (or 
trusts) of the experts are given as = (0.3, 0.3, 0.2, 0.1, 0.1) for =1, 2, … , 5. Since the decision problem is complex, as it involves the preferences 
of different members of board directors, the additional parameter as the order-
inducing variable then is taken into account to represent them, see Table D.1. 

 
 

Table D.1. Order-inducing variables 
 

 
    

 25 18 24 16 
 12 34 18 22 
 22 13 28 21 
 31 24 14 20 
 30 25 23 16 

 

First, let all the experts with the guide of a moderator provide judgments for 
determining the relative importances of criteria. The final agreement of experts 
on pairwise comparisons is shown in Table D.2. Based on the EV prioritization 
procedure, the weight for each criterion can be derived, and the consistency 
ratio is conducted. 
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Table D.2. Pairwise comparison matrix and weights for criteria 
 

 
      

 1 0.5 2 4 0.3111 CR=0.036 
 2 1 2 3 0.4064 
 0.5 0.5 1 2 0.1824  
 0.25 0.3333 0.5 1 0.1001  

 

Next, in the same way, each expert provides preferences (or pairwise 
comparisons) for all alternatives with respect to each criterion in order to obtain 
the relative performance of alternatives. Using the EV method, the 
prioritization vectors for all experts with respect to a single criterion can be 
derived as shown in Tables D.3 – D.6, respectively. Then, based on these 
prioritization vectors, the consensus or aggregation of experts on each criterion 
is conducted (case 1: alternative scheme). The majority of experts’ preferences is 
presented in Table D.7. 

 
 

Table D.3 . Prioritization vectors for all experts with respect to  
 

      X  0.1866 0.1199 0.0890 0.1882 0.2434 X  0.3069 0.3431 0.2976 0.2831 0.1078 X  0.0573 0.1122 0.1579 0.0543 0.1540 X  0.3069 0.2553 0.2976 0.3739 0.0494 X  0.1422 0.1696 0.1579 0.1005 0.4454 

 
 

Table D.4 . Prioritization vectors for all experts with respect to  
 

      X  0.2412 0.1618 0.1042 0.0805 0.0785 X  0.1353 0.2760 0.3902 0.1395 0.1351 X  0.0743 0.1054 0.0588 0.3552 0.2633 X  0.1353 0.0596 0.1505 0.2852 0.1271 X  0.4137 0.3971 0.2962 0.1395 0.3960 
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Table D.5 . Prioritization vectors for all experts with respect to  
 

      X  0.2618 0.0604 0.0743 0.2618 0.1062 X  0.0892 0.1382 0.1353 0.0892 0.1666 X  0.1528 0.3972 0.2412 0.1528 0.4377 X  0.0526 0.0954 0.1353 0.0526 0.0544 X  0.4436 0.3088 0.4137 0.4436 0.2352 

 
 

Table D.6 . Prioritization vectors for all experts with respect to  
 

      X  0.2571 0.0890 0.0986 0.0743 0.0987 X  0.0881 0.1579 0.1611 0.1353 0.1574 X  0.1539 0.2976 0.4162 0.2412 0.3015 X  0.4129 0.2976 0.0624 0.1353 0.2949 X  0.0881 0.1579 0.2618 0.4137 0.1474 

 
 

Table D.7. Aggregated performance values based on the majority concept  
 

 C  C  C  C  X  0.1354 0.1281 0.0803 0.0973 X  0.2983 0.2078 0.1260 0.1582 X  0.0840 0.0838 0.1859 0.2985 X  0.2922 0.1354 0.0749 0.2964 X  0.1592 0.3988 0.4320 0.1438 

 
 

Having the aggregated performance of the experts and the order-inducing 
variables in Table D.1, the weights  (WA) can be integrated with the ordered 
weights  (OWA weights) under the IWMEOWA weighting method. The new 
weights  are shown in Table D.
attitudinal character of the majority experts. In this case, it is set as 0.75 
(moderately optimistic), and the value of  is specified as 3.75. 
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Table D.8. The IWMEOWA weights  
 

 
    

 0.7052 0.1579 0.1259 0.0110 
 0.8010 0.0698 0.0759 0.0533 
 0.5073 0.3559 0.0504 0.0865 
 0.7052 0.2494 0.0217 0.0236 
 0.7052 0.2494 0.0344 0.0110 

 

Finally, the overall score of the alternatives can be derived using the 
IWMEOWA aggregation operator as depicted in the Table D.9. As in the case 
of = 0.75, the best alternative is , followed by , , , and , 
respectively. Correspondingly, with respect to the attitudinal character , 
variation of decision strategies can be attained, for example, = 0 as 
pessimistic, = 0.25 as slightly pessimistic, = 0.5 as neutral, and = 1 as 
an optimistic decision of the majority of experts. 

 
 

Table D.9 . The overall score with respect to majority opinion on criteria 
 

 Overall score 
Alternative = 0 = 0.25 = 0.5 = 0.75 = 1 

 0.0973 0.1104 0.1186 0.1254 0.1354 
 0.2983 0.2604 0.2161 0.2029 0.2078 
 0.0838 0.1542 0.1240 0.1465 0.1859 
 0.0749 0.1354 0.1893 0.2481 0.2922 
 0.1438 0.2993 0.3084 0.2281 0.1592 

 

In comparison, using the majority opinion based on individual priorities of 
alternatives (Case 2: classical scheme), different rankings of alternatives can be 
generated as given in Table D.10. There is a slight difference in the ranking for 
the case of = 0.75 as follows:  as the best, followed by , , , and , 
respectively, compared to the alternative scheme. 
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Table D.10. The overall score with respect to majority opinion  
on individual priorities 

 

 Overall score 
Alternative 

 
     

 0.0918 0.1096 0.1320 0.1613 0.1825 
 0.3118 0.2604 0.2120 0.2019 0.2089 
 0.1350 0.1542 0.1786 0.2122 0.2772 
 0.1174 0.1354 0.1753 0.2348 0.2829 
 0.1934 0.2993 0.2832 0.2173 0.1592 

 
As can be noticed, the results between the two schemes are different mainly 

due to the formation of decision strategies. Specifically in the case 1 of alternative 
scheme, the degree of optimism as the decision strategy is totally reflecting a group 
of expert, collectively. Whilst in the classical scheme, the decision strategy is 
provided by each expert individually. Hence, a comprehensive analysis on the 
decision problem can be conducted by applying the proposed model.  

 
 
 

5.3 Heavy Weighted Geometric Aggregation Operators in Analytic 
Hierarchy Process-Group Decision Making 

 

Abstract. In this study, some heavy weighted geometric aggregation operators 
in analytic hierarchy process under group decision making are proposed. First, 
in the sense of heavy ordered weighted average (HOWA) operator, the heavy 
weighted geometric (HWG) and heavy ordered weighted geometric (HOWG) 
are introduced as extensions of the normal weighted geometric mean and the 
ordered weighted geometric by relaxing the constraints on the associated 
weighting vector. These HWG and HOWG operators then are utilized in the 
aggregation process of AHP-GDM, specifically on the aggregation of individual 
judgments (AIJ) procedure. The main advantage of the model, besides the 
complete overlapping of information such in classical methods, is that it can 
also accommodate partial and non-overlapping information in the formulation. 
To show the applicability of the proposed method, a numerical example in an 
investment selection problem is provided. 
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E.1 Introduction 
 
Analytic hierarchy process (AHP) is one of the available discrete-type of multiple 
criteria decision making models and was introduced by Saaty (1977; 1980) in the 
late 1970s. The methodology for solution is based on pairwise comparison 
matrix, specifically the multiplicative reciprocal to generate the priority of 
alternatives or degrees of importance. Since its inception, the model has been 
used extensively in numerous applications. There are two approaches 
traditionally employed to deal with AHP under group environments, which are 
the aggregation of individual judgments (AIJ) and the aggregation of individual 
priorities (AIP). AIJ can be elucidated as a group of decision makers or experts 
which act together as a unit i.e., synergistic unit, whilst AIP acts as separate 
individuals i.e., a collection of individuals (Forman & Peniwati, 1998). In this 
study, the AHP under the AIJ will be presented.  

On the other hand, the ordered weighted averaging (OWA) operator is a 
family of multiple criteria aggregation procedures and was developed by Yager 
(1988). It provides a parameterized class of mean-type aggregation operators that 
lie between minimum and maximum, as well as average as the normal case. In 
general, this can also be explained as a fusion of decision making attitudes, e.g., 
pessimistic, neutral and optimistic. However, for this type of aggregation 
operators, the total sum of weights is always limited to one. In the context of 
group decision making problems, such condition in general means that the 
information is overlapping or redundant, so that there is a freedom on how to 
use or manipulate the information. For instance, consider a group decision 
making problem such in AIP procedure. All experts evaluate each alternative 
with respect to the same space of criteria and then derive the priorities 
individually. In that case, there is an option to present or take any decision of 
them (e.g., as average, minimum or maximum) since all experts are attached to 
the same problem. 

In consequence, Yager (2002) introduced the heavy OWA (HOWA) operator 
as an extension of the OWA operator. The reason for the proposal is because 
there are situations where the available information is partially overlapping 
and/or non-overlapping from each other and this aspect needs to be considered 
in the aggregation. The example in this case can be explained as in AIJ procedure 
where every expert plays their role to evaluate certain criterion/criteria that the 
others do not count, i.e., there exist partition of criterion/criteria in group 
decision making problems. Note that, as in the case of OWA, the constraint 
represents minimum and maximum as extreme values which are ranged in zero 
and one (unit interval). Meanwhile, with the HOWA, a wider class of aggregation 
operators can be included from minimum to totaling operators. In relation to 
the AHP method, the HOWA concept can be implemented in case of the AIJ 
where the criteria or sub-criteria under evaluation are partitioned for specific 
experts based on their knowledge, experience and expertise. Some of the experts 
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may consider a specific criterion, while some others may consider a combination 
of them. In the literature there are some works that have been done on the 
extension of HOWA, for instance Merigó and Casanovas (2011), Merigó et al. 
(2014a), Merigó et al. (2014b), among others. 

It should be pointed out as well that the HOWA is a special type of a more 
general class of aggregation operators, called monitored heavy fuzzy measures 
(Yager, 2003), where it is based on the additive measure in discrete space. In 
specific, the monitored heavy fuzzy measure is an extension of fuzzy measure 
theory by Sugeno (1977). The fuzzy measure is a generalization of a classical 
measure theory in which the additive property is replaced by the weaker property 
of monotonicity, also called as non-additive measure. In the sense of multi-
criteria decision making, Sugeno integral and Choquet integral are two general 
classes of aggregation operators based on the fuzzy measure. They take into 
consideration the interaction between criteria, ranging from redundancy, (e.g., 
negative interaction) to synergy (e.g., positive interaction). Concurrently, it is 
mentioned that the drawback of classical aggregation methods is that they count 
no interaction between criteria, i.e., independence and redundancy of criteria 
(Grabisch, 1996). The monitored heavy fuzzy measure, on the hand, generalizes 
the aggregation operators by considering the partition space of information 
under concern, providing independent yet non-redundant of information, 
instead of independent and redundant such in the classical methods. In addition, 
it is also consider the interaction between criteria such as the particular case of 
fuzzy measure. Hence, in general, this measure includes all possibility of 
information processes (additive and non-additive), specifically independence 
(redundancy and non-redundancy) of information and interaction or synergy of 
information. To limit the scope of the study, only HOWA in which the definition 
as given in (Yager, 2002) will be presented.     

In the literature, there are a number of studies related to the integration of 
AHP with OWA operators. Commencing from Yager and Kelman (1999), an 
extension of the AHP using OWA operator has been proposed. They 
generalized the aggregation process used in the AHP by permitting more 
flexibility to combine information in hierarchies, specifically the determination 
of weights by linguistic quantifier and the determination of priority of 
preferences based on ordered position. Since the AHP is a part of preference 
relation models, which is based on multiplicative reciprocal, this method is also 
called as multiplicative preference relation model. Geometric-mean based 
methods are normally used in the aggregation process to consistently fit with 
multiplicative reciprocal conditions. Chiclana et al. (2004) have presented 
induced ordered weighted geometric operators and their use in the aggregation 
of multiplicative preference relations. In addition, some studies related to 
multiplicative preference relation models under group decision making problems 
have been presented (see Chiclana et al., 2007; Yusoff & Merigo, 2014).     
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The aim of this study is to introduce several extensions of geometric mean 
method, specifically HWG and HOWG operators as aggregation procedures. 
Furthermore, these operators are used to be integrated with AHP-GDM model 
under the AIJ procedure. The remainder of this study is organized as follows. 
Section E.2, briefly reviews some basic concepts related to OWA, OWG, 
HOWA and their properties. Section E.3, the HWG and HOWG operators are 
introduced and Section E.4, the definition of analytic hierarchy process and its 
properties are provided. Section E.5, presents the proposed method of AHP-
GDM with HWG and HOWG. Then, Section E.6 provides a numerical 
example.  
 

E.2 Preliminaries 
 
This section provides some definitions and basic concepts related to OWA 
operator and its generalization that will be used throughout this study. 
 
Definition E.1 (Yager, 1988). An OWA operator of dimension  is mapping :  that has an associated weighting vector  of dimension , such 
that [0,1] and = 1, according to the following formula:  
 
 ( , … , ) = ( ) ,  

(E.1) 
 
where ( ) denotes the components of  being arranged in non-increasing order ( ) ( ) ( ).  
 
Definition E.2 (Xu & Da, 2002; Herrera, Herrera-Viedma, & Chiclana, 2003). 
An OWG operator of dimension  is mapping :  that has an 
associated weighting vector  of dimension , such that [0,1] and = 1, according to the following formula:  ( , … , ) = ( ) ,  

(E.2) 

      
where ( ) denotes the components of  being arranged in non-increasing order ( ) ( ) ( ). 
 
Definition E.3 (Yager, 2002). A HOWA operator of dimension  is mapping :  that has an associated weighting vector  such that [0,1] and 1 , such that: 
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 ( , … , ) = ( ) ,  
(E.3) 

 
where ( ) denotes the components of  being arranged in non-increasing order ( ) ( ) ( ).     

 
If  is a weighting vector such that = 1 for all , then with = , so 

that ( , … , ) = ( , … , ) i.e., the case of non-overlapping or 
independent information. If = 1, then ( , … , ) =( , … , ), the overlapping case such in the original OWA operator. The 
new class of aggregation types lying between these two extremes 1 << , i.e. partial redundancy. This variation can be seen by using the 
degree of totaling  of the vector  such that ( ) = | | 1 1, as | | [1, ] then [0,1]. For instance, | | = 1, hence = 0 (it turn out 
to be the ordinary OWA aggregation) and | | = , hence = 1 (pure totaling 
aggregation). On the other hand, given a value for  and a dimension  of vector 

 then the magnitude | | can be derived as | | = + (1 ). In addition, 
for = 1 , = | | 1, then magnitude | | can be represented 
as | | = ( 1), given that  as degree of redundancy.     

The HOWA operators are all commutative, monotonic and idempotent, but 
they are not bounded by min and max. Instead, they are bounded by the min and 
the total operator which represents the sum of all the arguments. In addition, the 
measures for characterizing a weighting vector and the type of aggregation been 
performed in HOWA also been extended based on OWA operator.     

 
Definition E.4 (Yager, 2002). Suppose that  is the weighting vector such that [0,1] and 1 , then the attitudinal character of HOWA can 
be given as follow:  
 ( ) = 1| | 1 ,   ( ) [0,1] .  

(E.4) 
 

Definition E.5 (Yager, 2002). Suppose that  is the weighting vector such that [0,1] and 1 , then the entropy or dispersion of HOWA can 
be given as follow:  
 ( ) = 1| | | |  ,  

(E.5) 
 
where | | is the magnitude of W and | | = , | | [1, ]. If =
| | , then this can be reformulated as ( ) = . 
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Based on the definitions above, when | | = 1, the orness and the entropy 
of HOWA operator reduce to the usual definitions such in OWA operator. 
Meanwhile when the totaling operator | | =  is used, then = 1 for all  
and hence ( ) = 0.5 and ( ) = ln . 

 
E.3 Heavy Weighted Average and Heavy Ordered Weighted Average 

Operators 
 
This section presents the definition of HWG and HOWG operators. These 
operators are based on the extension of HOWA as introduced in Yager (2002).     

 
Definition E.6. A HWG operator of dimension n is a mapping :

 that has an associated weighting vector  with [0,1], such that = 1, according to the following formula:  

 ( , … , ) =  ,  
(E.6) 

where = ( , , … , )  and 1 . 
 

Definition E.7. A HOWG operator of dimension n is a mapping :  that has an associated weighting vector  with [0,1] 
and 1 , such that:  

 ( , … , ) = ( )  ,  (E.7) 

   
where ( ) denotes the components of  being arranged in non-increasing order ( ) ( ) ( ).   
 

The HOWG operator is monotonic, commutative and bounded by the 
minimum and total operators. It should be noted that HOWG provides a wider 
class of aggregation operator by allowing the weighting vector between the 
OWG and total operator, include geometric mean, WG, HWG, etc. From a 
generalized perspective of the reordering step, HOWG can be distinguished 
between descending HOWG (DHOWG) and ascending HOWG (AHOWG). 
In the similar fashion, the properties of HWG can equivalently be defined. The 
proof is straightforward and thus, omitted in this study.  
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E.4 Analytic Hierarchy Process  
 

In this section, the definition of analytic hierarchy process and its properties are 
presented. 
 
Definition E.8 (Saaty, 1977; 1980). A multiplicative preference relation  on a 
set of alternatives  is defined as a reciprocal matrix = × ×  
with the condition as follow:  
 
 > 0,      = 1,     , , = 1,2, … , ,  (E.8) 

 
where  is interpreted as the ratio of the preference intensity of the alternative 

 over .    
  
 In general, the intensity of preference  is measured based on ratio-scale 
{1/9,…,9}, where = 9 means  absolutely preferred over ; = 1 
implies indifference between  and ; = 1/9 indicates that  absolutely 
preferred over . In addition to that, = 1 indicates multiplicative 
reciprocal condition and =  implies multiplicative transitivity. 
Indifference, reciprocal and transitivity are the main properties for multiplicative 
preference relation. However AHP is usually inconsistent in practice. Saaty 
(1980) suggested a consistency index (CI) as follow:  

 = 1 , 
 

(E.9) 

where  is the largest eigenvalue of  and a consistency ratio (CR) can be 
calculated as follow:  
 = , (E.10) 

 
where RI is the random index, the consistency index of a randomly generated 
pairwise comparison matrix. The RI depends on the number of elements being 
compared. The consistency ratio < 0.1 indicates an acceptable inconsistency 
in pairwise comparison. Then, the overall evaluation score of alternative can be 
calculated as follow:   
 = , (E.11) 

 
The evaluation process in the AHP uses a simple weighted average to calculate 
the scores or priorities of each alternative and  = 1. 
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 In addition to the weighted arithmetic mean as aggregation technique used in 
AHP, different aggregation procedures have been proposed in the literature, 
specifically on arithmetic and geometric mean based methods, e.g. geometric 
mean, weighted geometric mean (WG), ordered weighted average (OWA), 
ordered weighted geometric (OWG), etc. Most commonly used method is the 
geometric mean, which is the only separable synthesizing function that satisfies 
the unanimity condition (i.e. Pareto principle), the homogeneity condition (e.g. 
if all individuals judge a ratio t times as large as other ratio, then the synthesized 
judgments should be t times as large), and reciprocal property (Aczel & Saaty, 
1983; Forman & Peniwati, 1998; Escobar & Moreno-Jimenez, 2007). In the 
group decision settings, these types of aggregation procedures depend on the 
category of group decision making processes, i.e., the AIJ and the AIP as defined 
in the following.  
 
Definition E.9 (Forman & Peniwati, 1998). If a set of decision makers or 
experts, = { , , … , } with = 1,2, … ,  provides preference  { , , … , } about a set of alternatives = { , , … , }, = 1,2, … ,  
and each have importance degree ( ) [0,1], ( ) = 1, then, the 
AIJ can be defined as a collective pairwise comparison judgment matrix for the 

group, such that, [ ] = [ ] = [ ] , and the priority vector  is 
derived from [ ] using one of the prioritization methods. 
 
Definition E.10 (Forman & Peniwati, 1998). If a set of decision makers or 
experts, = { , , … , } with = 1,2, … ,  provides preference  { , , … , } about a set of alternatives = { , , … , }, = 1,2, … ,   
and each have importance degree ( ) [0,1], ( ) = 1, then, the 
AIP can be defined as a collective priorities of the alternatives for the group, 

such that, = [ ] , = 1,2, … , where the priority vector [ ] = [ ]  is derived from each individual DM or expert. 
 

As for the AIJ procedure, the geometric mean based methods are more 
preferable than the arithmetic mean based methods since they satisfy the 
unanimity condition, homogeneity condition and multiplicative reciprocal 
property as mentioned before. While for the AIP, both methods can be used to 
aggregate the individuals’ priorities. For the purpose of this study, the AIJ 
procedure is put forward to be integrated with heavy aggregation operators, 
specifically HWG and HOWG as defined in the previous section. 

 
 
 



137 
 

E.5 Analytic Hierarchy Process under Group Decision Making with 
Heavy OWG 

 
In this section, the AHP based on AIJ procedure with HOWG is presented. As 
mentioned earlier, the only difference of the proposed method with the classical 
approach is by relaxing the constraints of the associated weighting vector and 
providing the possibility of partial and non-overlapping information, instead of 
fully overlap or redundant information. In what follows, the proposed method 
is presented step by step as in the subsequent algorithms. 
 Assume , ( , = 1,2, … , ) comprise a finite set of alternatives. Let , ( , = 1,2, … , ) and , , = 1,2, … , ; = 1,2, … , ) are 
the criteria and sub-criteria under consideration, respectively. Then, let , 
( , = 1,2, … , ), be a group of experts with each expert  presenting 
his/her intensity preferences for rating the alternatives  and weighting the 
criteria  (or sub-criteria ) with respect to the AIJ procedure. Based on the 
above concepts, the algorithm for the AHP-GDM-HOWG consists of the 
following steps. 
 
 Step 1: Each decision maker or expert ( , = 1,2, … , ), compares the  
alternatives on each criterion (or a cluster of criteria) and provides a pairwise 
comparison matrix as follows:  
 
 [ ] = ×[ ]  , , = 1,2, … , , (E.12) 

 
with ( = , = 1) and ( , = ). Then, the pairwise 
comparison matrices [ ] of all experts  ( , = 1,2, … , ), are aggregated 
with respect to each criterion , = 1,2, … , , where ( ) is the importance 
degree of expert. By using the weighted geometric mean method (WGM), this 
process can be calculated as follows:  
 
 = = [ ] , , = 1,2, … , , (E.13) 

 
At this stage, each criterion represents the collective judgment of experts (or only 
single judgment of expert in case of total independence or non-overlapping). 
 Step 2: Analogous to the Step 1, next, calculate the pairwise comparison matrix 
for the criteria , ( , = 1,2, … , ) and sub-criteria ,  , =1,2, … , ; = 1,2, … , . Then, derive the criteria weights  and sub-criteria 
weights . 
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 Step 3: Afterwards, calculate the composite weights of the criteria  and sub-
criteria  as follows:  
 = × , (E.14) 

 
 Step 4: Finally, compute the overall collective judgment matrix for all criteria 

 of a group by using HOWG operator, with  as the weighting vector that 
agreed by all experts ( , = 1,2, … , ) as explained in Step 2:  
 
 [ ] = [ ] = ( ) ,  

(E.15) 
 

where ( ) denotes the components of  being arranged in non-increasing 
order ( ) ( ) ( ), with = ( , , … , ) , [0,1] 
and 1 . 
 

 Remark E.1. When no ordering process involve for the  values, the 
proposed method is reduced to the AHP-GDM based on HWG aggregation 
operator.  
 
 Remark E.2. In case of fully overlapping information, such that, = 1, 
then, the proposed AHP-GDM can be reduced to the cases of OWG, WG and 
GM.  

 
 

E.6 Numerical Example 
 
A numerical example is given to implement the methodology discussed in the 
previous sections. For this purpose, consider an investment selection problem 
where a company is looking for an optimal investment. There are five possible 
alternatives to be considered as follows:  is a computer company;  is a 
chemical company;  is a food company;  is a car company;  is a TV 
company. In order to evaluate these alternatives, a group of experts must make 
a decision according to the following four criteria:  = risk analysis;  = growth 
analysis;  = social-political impact analysis; and  = environmental impact 
analysis. 
 In this case, assume that five experts involved which are categorized based on 
their related areas of expertise. For instance, the criterion C1 is evaluated by both 
experts E1 and E2, the criterion C2 judged by experts E1, E3 and E4, the 
criterion C3 by experts E3 and E4, and finally for the criterion C4, experts E4 
and E5 are responsible for this criterion. In addition, let say that for all criteria 
C1, C2, C3, and C4, there are partial redundancy information provided by each 
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expert in each category. Based on experts’ agreements, 50% of each of the criteria 
C1, C2, C3 and C4 will be increased to reflect this issue. In this case, the original 
weighting vector for the criteria is given as wl = (0.311, 0.406, 0.1824, 0.100) 
which is derived from pairwise comparison matrix. Then, for criteria C1, C2, C3 
and C4, 50% of each value will be increased. Hence the final weight vector is 
given as wl = (0.467, 0.610, 0.243, 0.150). 
 To demonstrate this problem, first, let all the experts provide pairwise 
comparison matrices as comparison of  alternatives on each of the specific 
criterion. Assume that the degrees of importance ( ) are distributed equally 
for all experts in the evaluation process (homogeneous case). The consistency 
ratio is then computed to check the consistency of the pairwise comparison 
matrix for each expert.  
 Henceforth, using the formulation in Step 1, the collective judgment matrices 
for the criteria can be derived as shown in Tables E.1-E.4.  
 
 

Table E.1.  Collective Judgment Matrix for Criterion C1 
 

C1 A1 A2 A3 A4 A5 

A1 1 0.354 1.732 0.408 1 
A2 2.828 1 4.472 1.414 2.449 
A3 0.577 0.223 1 0.258 0.408 
A4 2.449 0.707 3.873 1 2 
A5 0.5 0.408 2.449 0.5 1 

 
 

Table E2.  Collective Judgment Matrix for Criterion C2 
 

C1 A1 A2 A3 A4 A5 

A1 1 1 2.449 2.449 0.408 
A2 1 1 2.449 2.236 0.408 
A3 0.408 0.408 1 1 0.258 
A4 0.408 0.447 1 1 0.258 
A5 0.249 2.449 3.872 3.872 1 
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Table E.3.  Collective Judgment Matrix for Criterion C3 

 

C1 A1 A2 A3 A4 A5 

A1 1 1.442 0.928 1.077 0.721 
A2 0.693 1 0.437 1 0.342 
A3 1.077 2.289 1 1.587 1.100 
A4 0.928 1 0.630 1 0.575 
A5 1.386 2.924 0.909 1.738 1 

 
 

Table E.4.  Collective Judgment Matrix for Criterion C4 
 

C1 A1 A2 A3 A4 A5 

A1 1 0.354 0.250 2.828 0.333 
A2 2.828 1 0.333 3 0.5 
A3 4 3 1 5 2 
A4 0.354 0.333 0.2 1 0.25 
A5 3 2 0.5 4 1 

  
 
The next step after this stage is the determination of weight for the final ranking 
of alternatives. As in this case no sub-criteria are considered, hence, the weight 
for each criterion can be directly derived as in the Step 2. Then, the final step is 
to compute the overall collective judgment matrix for all alternatives  with 
respect to criteria  for the group decision making. By using HOWG operator, 
with  as the weighting vector, then the final aggregated results and ranking can 
be derived using the formula in Step 4.  
 For the comparison purpose, different type of geometric mean based 
aggregation operators are used with respect to different weighting vector and 
ordering of argument values. The aggregated results are demonstrated in Table 
E.5 and for the ranking of investments, it is shown in Table E.6.  
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Table E.5.  Aggregated Results 
 

HOWG HWG OWG WG GM 

0.144 0.165 0.165 0.180 0.167 
0.223 0.253 0.217 0.240 0.221 
0.180 0.103 0.193 0.132 0.182 
0.105 0.128 0.135 0.152 0.139 
0.348 0.350 0.291 0.297 0.291 

 

Table E.6.  Ranking of Investments 
 

AHP-GDM Ranking 

HOWG A5 R A2 A3  A1 A4 

HWG A5  A2 A1  A4 A3 

OWG A5  A2 A3  A1 A4 

WG A5  A2 A1  A4 A3 

GM A5  A2 A3  A1 A4 

 

 
5.4 Summary 
 

In this chapter, the decision making models based on the analytic hierarchy 
process (AHP) have been discussed for the application in financial selection 
problems. In specific, Section 5.2 presented the proposed method on the 
generalization of AHP for group decision making model using the induced 
OWA operators. Then, in Section 5.3, the heavy weighted geometric aggregation 
operators in AHP group decision making has been proposed. 
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CHAPTER 6 
 
 

SOME EXTENSIONS OF TOPSIS MODEL FOR  
GROUP DECISION MAKING PROBLEMS 

 
 
 

6.1 Introduction 
 
In this chapter, the technique for order performance by similarity to ideal 
solution (TOPSIS) is studied, mainly for the group decision making problems. 
In Section 6.2, the TOPSIS model with induced generalized OWA operators is 
presented. The model then is applied to the case of human resource selection 
problem. Secondly, in Section 6.3, the integration of TOPSIS with AHP method 
under the conflicting bifuzzy condition is proposed for the selection of flood 
control project. To end up the chapter, a summary is given in Section 6.4. 
 
 
6.2 Induced Generalized OWA Operators in TOPSIS for Majority 

Group Decision Making Model 
 

Abstract. This study suggests an extension of TOPSIS for group decision 
making model by the inclusion of a concept of majority opinion. This concept 
is derived based on the induced generalized OWA operators. To achieve this 
objective, two fusion schemes in TOPSIS model are designed. First, an external 
fusion scheme to aggregate the experts’ judgments is suggested, specifically with 
respect to the concept of majority opinion on each criterion. Then, an internal 
fusion scheme of ideal and anti-ideal solutions that represents the majority of 
experts is proposed using the Minkowski OWA distance measures. The 
advantages of the proposed model include, a consideration of soft majority 
concept as a group aggregator and a flexibility in applying the decision strategies 
of criteria for analysing the decision making process. In addition, instead of 
calculate the majority opinion with respect to the individual ranking of 
alternatives, the proposed method takes into account the majority of experts on 
each criterion, in which reflects the consensus on specific criteria for the overall 
decision. A numerical example in human resource selection problem is provided 
to demonstrate the applicability of the proposed model and the comparison is 
conducted with some other TOPSIS models with respect to the distance 
measures.   
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F.1 Introduction 
 
Multiple criteria decision analysis (MCDA) is one of the active topics in the 
field of operations research. MCDA deals with the problem of selecting, 
prioritizing or ranking a finite number (or discrete set) of courses of action. 
There are a number of techniques in the literature which were developed to 
deal with different types of MCDA problems (see Hwang & Yoon, 1981; 
Figueira et al., 2005; Behzadian et al., 2012, for the state-of-art surveys of 
MCDA techniques). The technique for order performance by similarity to 
ideal solution (TOPSIS) is one of the known methods and was first proposed 
by Hwang and Yoon (1981) based on the concept of ideal distances of 
alternatives. The ranking of alternatives refers to the shortest distance from 
the positive ideal solution and the farthest from the negative ideal solution. 

The TOPSIS is a flexible method, in which it can be integrated with other 
techniques as an extension model, for example, in the case of group decision 
making problems (Olson, 2004; Shih et al., 2007; Afful-Dadzie et al., 2015; 
Taib et al., 2016). Recently, much attention has been given on the aggregation 
of preferences among the group of experts. The ordered weighted averaging 
(OWA) operator as proposed by Yager (1988) is one of the approaches 
normally used for the aggregation of preferences in MCDA models. The 
OWA provides a parameterized class of mean-type aggregation operators, 
such as the min, arithmetic average and max, with a flexibility for the 
inclusion of linguistic quantifiers (Yager & Kacprzyk, 1997; Torra & 
Narukawa, 2007). With such characteristics, it can be interpreted as a 
generalization of the original decision making model as suggested by Bellman 
and Zadeh (1970). In addition, Yager and Filev (1999) proposed the induced 
OWA (IOWA) operator as an extension of the OWA operator. In general, it 
has an additional feature, namely the vector of order-inducing variables for 
the complex decision making process. Subsequently, Merigó and Gil-
Lafuente (2009) generalized the IOWA operator to include some other types 
of mean operators such as the induced ordered weighted geometric average 
(IOWGA), the induced ordered weighted harmonic average (IOWHA), the 
ordered weighted quadratic average (IOWQA) operators, to name a few. In 
the literature, the OWA and IOWA operators have been successfully applied 
in some of the MCDA models (see Chen et al., 2011; Kacprzyk et al., 2011; 
Liu et al., 2015; Yager et al., 2011; Yusoff & Merigó 2014, 2015). 

Recently, there are a number of studies that have been done on the 
TOPSIS for group decision making model. Shih et al. (2007) for example, 
provides an analysis of TOPSIS model under group decision environment 
(TOPSIS-GDM). The aggregation of the individual experts’ judgments as the 
overall group decision is generated using either the arithmetic or geometric 
means with some distance normalization methods, e.g., the Manhattan 
distance and the Euclidean distance. Later, Chen et al. (2011) extended the 
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TOPSIS-GDM model with the inclusion of the OWA operator. Three fusion 
schemes were suggested where one deals with the local judgment (or internal 
aggregation) of each expert and the rest defined as the global judgments (or 
external aggregations) which deal with the fusion of individual experts’ 
judgments as the overall group decision. In internal aggregation, the OWA is 
used to provide flexibility in the selection of ideal and anti-ideal values as 
specified by different experts. Specifically, the ideal and anti-ideal values are 
given directly and independently by each expert. On the other hand, the 
external aggregations allow a tolerance in the selection of individual experts’ 
judgments, such as, either to consider the total or partial compensation of 
experts. In other related research, Islam et al. (2013) proposed an integrated 
approach of fuzzy TOPSIS-OWA and geographic information system (GIS) 
for evaluating the water quality problems. In their method, the aggregation 
of criteria is based on the OWA operators, in which providing a flexibility 
for considering the decision strategies on criteria (e.g., either total or partial 
compensation of criteria). But the aggregation of experts as the overall group 
decision is conducted based on the arithmetic means. 

As can be noticed, most of the group aggregators of the previous methods 
is mainly based on the arithmetic or geometric means, in which just the 
average of all the opinions of experts. In such cases, there is no flexibility for 
considering the majority concept as to represent the group decision. Even 
though Chen et al. (2011) proposed the OWA operator as to provide a 
flexibility in the group aggregation process, but, they did not take into 
consideration the support (or similarity) between experts as a consensus 
measure. Pasi and Yager (2006) then proposed the concept of majority 
opinion by utilizing the IOWA operator and linguistic quantifiers as a tool 
for the consensus measure where the opinions of the experts supporting each 
other on each alternative are taken into account. Consequently, based on 
Pasi-Yager method, Hajimirsadeghi and Lucas (2009) proposed the inclusion 
of majority concept in the TOPSIS-GDM model where the consensus 
measure is explicitly included. In addition, Boroushaki and Maczewski (2010) 
utilized the concept of fuzzy majority for GIS-based multi-criteria group 
decision making.  

Nevertheless, the method as proposed by Pasi and Yager (2006) is simply 
focused on the proximity measure (Yager, 2004) on individual ranking of 
experts on each alternative (classical scheme of group decision making 
process) with disregard the conflicts or incoherence between the 
performance judgments on each single criterion. In this case, two experts 
may produce the same performance judgment for an alternative even their 
single performance judgments on the criteria are completely different. In 
consequence, Bordogna and Sterlacchini (2014) proposed an extension of 
Pasi-Yager method by considering the consensus on each criterion (or called 
as an alternative scheme) instead of on each alternative and calculate the 
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consensus among experts using the Minkowski OWA distance measures. 
This alternative approach has some advantages which include considering the 
degrees of trust of experts, providing the uniformity in reflecting the 
behaviour of the majority of experts regarding the proportion of criteria to 
consider and obtaining a more robust decision by determine the performance 
judgments on each specific criterion. 

In this study, the integration of TOPSIS for group decision making model 
with the concept of majority opinion and the induced generalized OWA 
aggregation operators is proposed. This model is an extension of the 
methods proposed by Hajimirsadeghi and Lucas (2009) by considering the 
majority concept with respect to each criterion instead of consensus on each 
alternative. Some modifications to the concept of majority opinion 
introduced by Pasi and Yager (2006) with the idea proposed in Bordogna and 
Sterlacchini (2014) is put forward to be applied in the TOPSIS-GDM. 
However, the focus in this study is just limited to the case of homogeneous 
group decision making where each expert is associated with an equal degree 
of importance for each criterion. The rest of the study is structured as the 
following. In Section F.2, some preliminaries related to the definitions and 
concepts used in this study are presented. In Section F.3, the general 
framework of the classical TOPSIS method is given; Section F.4, discussed 
the concept of majority opinion based on Pasi-Yager method and its 
extension. In Section F.5, the proposed model on IGOWA-TOPSIS based 
on majority concept is explained. Then, in Section F.6, a numerical example 
in human resource selection problem is provided and some comparisons with 
other TOPSIS models with respect to the distance measures are conducted. 

 
 

F.2 Preliminaries 
 
In the following, the basic aggregation operators that are used in this study 
are briefly discussed, such as the OWA, IOWA and IGOWA operators as 
well as the Minkowski OWA distance measures. 
 
F.2.1  OWA, IOWA and IGOWA operators 
 
Definition F.1 (Yager, 1988). An OWA operator of dimension  is a 
mapping :  that has an associated weighting vector =( , , … , ) of dimension  such that = 1 and [0,1], 
then: 
 ( , , … , ) = ( ) , (F.1) 

where ( ) is the th largest of argument value . 
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Definition F.2 (Yager & Filev, 1999). An IOWA operator of dimension  
is a mapping :  that has an associated weighting vector  of 
dimension  such that = 1 and [0,1], then: 

 ( , , , , … , , ) = ( ) , (F.2) 

 
where ( ) is the argument value  of the IOWA pair ,  having the 
th largest of order-inducing variable .  

 
Note that, in case of ‘ties’ between the inducing variables, the procedure as 

suggested by Yager and Filev (1999) will be implemented in which each 
argument of tied IOWA pair is replaced by their average. For instance, if  
of the ( ) are tied, i.e., ( ) = ( ) = = ( ), then, the value ( ) is given as follow (Yager & Filev, 1999; Beliakov & James, 2011): 

 

( ) = 1 ( )
( )  . (F.3) 

 
Definition F.3 (Merigó & Gil-Lafuente, 2009). An IGOWA operator of 
dimension  is a mapping :  that has an associated weighting 
vector  of dimension  such that  = 1  and  [0,1], then: 

( , , , , … , , ) = ( ) , (F.4) 

 
where ( ) is the argument variable  of the IGOWA pair  ,  having 
the th largest of order-inducing variable  and  is a parameter such that {0}.  
 

With different values of  , various type of averaging operators can be 
derived. For example, when = 1, the IOWHA operator can be obtained, 
when 0, then the IOWG is generated, for = 2, the IOWQA operator 
is derived, etc. The OWA, IOWA and IGOWA operators are all meet the 
commutative, monotonic, bounded and idempotent properties (Yager, 1988; 
Yager & Filev, 1999; Merigó & Gil-Lafuente, 2009). Note that, the notation ( ) denotes the ordering process with respect to non-increasing order. 
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F.2.2 Minkowski OWA distance measures 
 
Definition F.4 (Merigó & Gil-Lafuente, 2008). A Minkowski OWAD 
operator of dimension  is a mapping : ×  that has an 
associated weighting vector W of dimension n such that = 1 with [0,1] and the distance between two sets  and  is given as follows: 

 ( , , … , ) = ( ) / ,   (F.5) 

where ( ) is the th largest of the  and  is the individual distance 
between  and , such that =  with  is a parameter in a range {0}.  
 
 By setting different values for the norm parameter , some special distance 
measures can be derived. For example, if = 1, then the Manhattan OWA 
distance can be obtained, = 2 then the Euclidean OWA distance can be 
acquired, =  then Tchebycheff OWA is derived, etc. 
 
F.2.3 OWA operators with the inclusion of linguistic quantifiers 
 
The linguistic quantifier was first introduced by Zadeh (1983) as a 
generalization of the existential 'at least one) and universal (all) quantifiers of 
classical logic. Linguistic quantifiers are expressed by terms, for example, 
most, many, half, some, few to indicate an approximate way a quantity of the 
elements belonging to a reference set (or the universe of discourse). In 
general, there are two types of quantifiers, in which termed as absolute and 
proportional quantifiers. For the absolute quantifier, its function is given as 
(Zadeh, 1983):  
 
 : , satisfies (0) = 0, ( ) = 1, (F.6) 

 
where the quantifier  is assumed to be a fuzzy in the unit interval, = [0,1] 
and  is a set of positive real numbers. While for a proportional quantifier, 
its function is denoted as (Zadeh, 1983):  
 
 : , satisfies (0) = 0, ( ) = 1, (F.7) 

 
such that if  is a fuzzy subset corresponding to a proportional linguistic 
quantifier, then for any value  in the unit interval  the membership grade ( ) corresponds to the compatibility of the value  with the concept in 
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which  is representing. In addition, there are two kinds of fuzzy quantified 
propositions as defined by Zadeh (1983). First, “    ”, i.e.,  elements 
of set  satisfy the fuzzy predicate . The other proposition is 
“     ”, i.e.,  elements of set  which satisfy the fuzzy predicate  
also satisfy the fuzzy predicate .  

There are some categories exist for quantifiers  such as regular increasing 
monotone (RIM), regular decreasing monotone (RDM) and regular 
normalized unimodal (RUM) quantifiers. But in the context of MCDA, the 
regular increasing monotone (RIM) quantifier is sufficient, as one wants to 
represent the fact that the larger the number of satisfied criteria the more 
satisfied the solution is (Yager, 1988). RIM quantifier is defined as the 
following:  

 (0) = 0, (1) = 1  and  ( ) ( ) if  > . (F.8) 

Specifically, the proportional linguistic quantifiers  of RIM can be 
represented as the parameterized fuzzy subset in the form: 
 
 ( ) = , > 0 , (F.9) 

 
where parameter  indicates the degree of inclusion for different elements 
and [0,1]. The main characteristics can be represented as: for 0, the 
existential quantifier is obtained, for = 1, the unitor quantifier is attained ( ) =  and for , the universal quantifier is acquired. In natural 
language many additional semantics can be demonstrated, for instance, given = 0.1 and = 10 then ‘few’ and ‘most’ can be obtained. Alternatively, the 
proportional linguistic quantifiers  can be represented as in the following 
definition: 

 

( ) = 0           < ,  ( )( )   ,1           > ,  (F.10) 

with , , [0,1]. For example, the semantic most, almost all and at least half 
can be represented as parameters ( , ) = (0.3, 0.8), (0, 0.5), (0.5, 1), 
respectively (Zadeh, 1983). 

In the context of OWA, Yager (1988) then defined the OWA aggregation 
from  by defining the weights in the following way: 
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 = 1 , = 1,2, … , , (F.11) 

where  represents the increase of satisfaction in getting  with respect to 1 criteria satisfied. By changing the  values, different decision strategies 
then can be derived. For example, 0, then = , where =(1,0, … ,0), = 1 then = / , where / = (1/ , 1/ , … ,1/ ) and 

 then = , where = (0,0, … ,1). 
In the case where the criteria  to be aggregated have relative importances 
 associated with them , , the inclusion of degrees of importance in 

OWA operators from  can be defined as follows (Yager, 1996): 
 = ( ) ( )  , (F.12) 

where ( ) is the degrees of importance associated with the criteria that has 
the jth largest satisfaction  such as ( ), ( )  and = ( ), the 
total sum of importances. For example, if = jth largest of the , then  ( ) =  and ( ) = , then , = ( ), ( ) . 
 
 
F.3 TOPSIS Model under Group Decision Making 
 
In this section, the classical TOPSIS under group decision making is 
presented prior to its extension to the proposed model.  

The classical TOPSIS under group decision making procedure (Shih et al., 
2007) can be summarized as the following steps. First, a decision matrix for 
each expert , = 1,2, … , , is constructed as follows: 

                  …    =  , (F.13) 

where  indicates the alternative  ( = 1,2, … , ) and  denotes the 
criterion  ( = 1,2, … , ), and  denotes the preferences on consequence 
data space (original and raw information)  for alternative  with respect to 
criterion . 
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Then, each decision matrix  which represents each expert is normalized 
to  using the vector normalization method: 

 =  , = 1,2, … , , (F.14) 

Alternatively, some other normalization methods can be used instead of the 
Eq. (F.14), see for example in Hwang and Yoon (1981). For the next step, 
instead of directly construct the weighted normalized decision matrix as in 
the original TOPSIS (Hwang & Yoon, 1981), motivated by Shipley et al. 
(1991), the integration of weights in the separation measure is suggested by 
Shih et al. (2007) as the following. 

Determine the ideal and anti-ideal solutions  and  for each expert. 
The ideal and anti-ideal are obtained as follows: 

 
 = { , … , } = | , |  , 

 
(F.15) 

 = { , … , } = | , |  , (F.16) 

 
where  is associated with the set of benefit criteria and  is associated with 
the set of cost criteria.  

Further, calculate the separation measures from the ideal and anti-ideal 
solutions for the group. The manipulation for Minkowski’s  metric as the 
distance measure is described as follows: 

 = / ,  = 1,2, … , , (F.17) 

 = / ,  = 1,2, … , , (F.18) 

where 1 and  is the weight for the criterion  and expert  and = 1. Note that with = 1, then  and  provide the 
Manhattan distance, whilst the metric with = 2 is the Euclidean distance. 
At this stage, the ranking of alternatives is obtained individually by each 
expert (i.e., internal aggregation). 

In the next stage, the consensus of experts (i.e., external aggregation) is 
computed using the group aggregator, such as the arithmetic mean (AM) or 
the geometric mean (GM): 
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= …  ,   = 1,2, … ,  , (F.19) = …  ,   = 1,2, … ,  , (F.20) 

where the operators  are either AM or GM.  
 
Finally, calculate the relative closeness  to the ideal solution. The 

relative closeness can be calculated according to the following formula: 
 = + , = 1,2, … . (F.21) 

Note that the larger the value of  denotes the better performance of the 
alternative. 
 
 
F.4 The Concept of Majority Opinion in Group Decision Making 
 
As previously mentioned, the group aggregator in the classical TOPSIS-
GDM, in general, is based on the arithmetic mean (AM) or geometric mean 
(GM). However, the AM or GM as a group aggregator does not take into 
account the support (or similarity) between experts as a consensus measure. 
Even though it can be extended to the OWA or OWG operators, but such 
operator is not sufficient to represent the majority concept. In this section, 
the overview of the method for aggregating the majority opinions of experts 
based on the IOWA operator (Pasi & Yager, 2006) is provided. Then, the 
extension of Pasi-Yager method from the classical scheme to the alternative 
scheme of group decision making process is suggested to be integrated in the 
TOPSIS-GDM model. 
 
F.4.1  Majority concept based on the classical scheme 
 
Normally, in group decision making the unanimous agreement is not easy to 
achieve due to some factors, such as conflict interest, different background 
and experiences among the decision makers or experts. Hence, the concept 
of majority is crucial as it is required to find a soft agreement that satisfies 
the opinions, for example, most of the experts. The OWA aggregation 
operator with the regular linguistic quantifier is not ideal for modelling the 
concept of majority, as it produces a value that reflects the satisfaction of the 
proposition “most of the criteria have to be satisfied” instead of “satisfaction 
value of most of the criteria” (Pasi & Yager, 2006). Therefore, a mechanism 
based on IOWA operators is proposed by Pasi and Yager (2006) to model 
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the majority opinion. The methodology used to obtain the majority opinion 
is described as the following. 

The order-inducing variables are obtained by means of a function of 
support or proximity measure (Yager, 2004) between pairs of the values to 
be aggregated. A support function is a binary function that used to compute 
a value ( , ), which expresses support from  to . In this case, the 
more similar or close the two values then the more they support to each 
other. The support function for the group of experts can be given as follows: ( , ) = 1      | | < ,0              .  (F.22) 

This function is defined to measure the support for each expert  with respect 
to all the other experts  in the group (not include himself/herself), where 

 for ( = 1,2, … , ). The overall support  for an expert  can be 
directly calculated by the sum of all supports as follows: 
 

 = ( , ). (F.23) 

 
By the same process, the overall support values for the other experts  
can be derived. These values , … ,  are used as the order-inducing 
variables and they are reordered such that = ( ), ( ), … , ( )  with ( ) ( ) ( ). The notation ( ) denotes the ordering process 
with respect to non-decreasing order. 

Next, to compute the weights, define the values  based on a modification 
of the  values, such that: = + 1 (the similarity of   with 
himself/herself, e.g., ( , ) = 1). The  values are in non-decreasing 
order . Then, on the basis of  values, the weights are computed 
as follows: 

 
 = ( )( ) , , = 1,2, … , , (F.24) 

where ( ) denotes the degree to which a given member of the 
considered set of values represent the ‘most’ such as in Eq. (F.10). Finally, the 
final evaluation is derived using the IOWA operator as in Eq. (F.2). However, 
the order-inducing variables  and weight  are reordered in non-
decreasing order.  
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F.4.2  Majority concept based on alternative scheme  
 
Should be noted that, the method as proposed by Pasi and Yager (2006) is 
mainly based on the classical scheme of group decision making process where 
the result of consensus measure is determined according to the support on 
each alternative of individual experts. In general, the classical scheme can be 
divided into two stages of aggregation processes, namely internal and external 
aggregations. The internal aggregation involves the fusion of criteria for each 
expert, either full or partial compensation. At this stage, the ranking of 
alternatives for each expert is obtained. Then, as regard to these rankings, in 
the external aggregation, the soft majority concept is implemented to find the 
final ranking which reflects the majority opinion of experts on alternative. 

In addition to the classical scheme, there is another type of group decision 
making process, in which called as the alternative scheme. For this approach, 
instead of dealing with internal aggregation at the first step, where the ranking 
of alternatives of each expert is derived, this method is initiated with the 
external aggregation to aggregate the majority opinions with respect to each 
criterion (Bordogna & Sterlacchini, 2014). At this stage, a new decision 
matrix which represents the soft majority of experts is obtained. Then, the 
internal aggregation to fuse the criteria is performed with flexibility for 
decision strategy to obtain the final decision. 

The proposal of this study is to deal with the Pasi-Yager method with a 
slight modification is made to be adapted in the alternative scheme. In 
addition, the IOWA operator used in Pasi and Yager (2006) is then 
generalized to the IGOWA operators to provide a greater flexibility in 
considering other type of aggregation operators. Here, the Eq. (F.22) can be 
directly implemented by focusing on each criterion of experts’ judgments 
instead of on each alternative.  
 

Example F.1. Suppose that a collection of individual opinion of experts,  is 
given as = , , … , = (0.40, 0.70, 0.60, 0.65, 0.30), where  is a 
criterion under consideration. Then, the final majority opinion of experts can 
be calculated as follows: 
 

       
 
 
 
 
 
 

      
  0.40 0.70 0.60 0.65 0.30 0.40 0.70 0.60 0.65 0.30 

,  - 0.30 0.20 0.25 0.10 - 0 0 0 1 1 

,  0.30 - 0.1 0.14 0.40 0 - 1 1 0 2 

,  0.20 0.1 - 0.04 0.30 0 1 - 1 0 2 

,  0.25 0.14 0.04 - 0.35 0 1 1 - 0 2 

,  0.10 0.40 0.30 0.35 - 1 0 0 0 - 1 
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where  means ( , ). By setting = 0.2, then the overall support for 
each expert , ( = 1,2, … ,5) can be obtained. In case of ‘ties’, stricter  
can be imposed ( = 0.1) in this example to order  values, then = 1, = 3, = 3, = 4, and = 1 is derived. The vector of order-inducing 
variable can be given as = ( ), ( ), … , ( ) = (1,1 3, 3, 4) and the 
weighting vector = ( , … , ) = (0, 0, 0,333, 0.333, 0.333) can be 
generated. The final majority opinion of experts can be calculated as follows:  
  ( 1,0.30 , 1,0.40 , 3,0.60 , 3,0.70 , 4,0.65 ) = (0 × 0.30) + (0 × 0.40) + (0.333 × 0.60) + (0.333 × 0.70) + (0.333 × 0.65) = 0.65. 
  
 
F.5 Induced Generalized OWA-TOPSIS based on Majority Concept 

 
In this section, the algorithm for the proposed model is explained. Two 
stages of external and internal fusion schemes are presented, where external 
fusion scheme deals with the aggregation of the majority opinions of experts 
and internal fusion scheme deals with the implementation of decision 
strategy, i.e., the proportion of criteria to consider. 
 
F.5.1 External fusion scheme: Inclusion of majority concept for 

group aggregator  
 
Step 1: Construct the decision matrix for each expert , = 1,2, … ,  as in 

Eq. (F.13). Here, instead of normalize the data using the vector 
normalization method, the following normalization procedure is used:  = , (F.25) 

 where  is the maximum value and  is minimum value with 
respect to each criterion. This normalization technique will maintain 
the measurement scale and thus measuring support between experts 
for majority opinion can be implemented. Note that, the vector 
normalization method does not maintain the measurement scale due 
to non-linear scale transformation.  

 
Step 2: At this stage, the group aggregation for the majority opinion of 

experts can be conducted with respect to each criterion . First, 
calculate the support of each expert , = 1,2, … , , with all the 
other experts  on each criterion  in evaluating an alternative  
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using the Eq. (F.22) and Eq. (F.23). The supported values as the 
order-inducing variables then can be given as: 

 ( , … , ) = ( , ) , … , ( , ) ,  (F.26) 

Step 3: To compute the non-decreasing weights of the weighting vector, then 
define the values , = 1,2, … ,  based on a modification of the  
support values, = + 1 such in Eq. (F.24).  

Step 4: Then, the aggregation of the experts’ judgments =  with 
respect to each criterion  using the concept of majority opinion can 
be given as follows: 

 ( , , … , , ) = ( ) / , (F.27) 

where ( ) is the  value of the IGOWA pair ,  reordered 
such that ( ) ( ) ( ) and  is parameter for the 
generalization of aggregation operator, ( , ) {0}. At this 
stage, a new decision matrix which represents the majority of experts 
on all criteria is derived as follows: 

                       …    =  , (F.28) 

where   represent the majority opinion of experts with respect to 
each criterion   for the alternative 
IGOWA becomes t

extend this approach into a more general framework by using quasi-
arithmetic means forming the Quasi-IOWA operator (Merigó & Gil-
Lafuente, 2009). 

Step 5: Then, to make the proposed method comparable with the classical 
TOPSIS-GDM method as in Section F.3, convert the  data to 
the  data using the vector normalization function, =

 for the decision matrix   as in the Eq. (F.14). 
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F.5.2 Internal fusion scheme: Inclusion of decision strategies on 
criteria 

 
Step 6: Further, determine the ideal and anti-ideal solutions  and  for 

the majority of experts using the Eq. (F.15) and Eq. (F.16). 
Step 7: Calculate the separation measures from the ideal and anti-ideal 

solutions using the Minkowski OWA distance such in Eq. (F.5). This 
step can be divided into the following steps. 

Compute the separation measures from ideal solution , where 
the argument variables as distance measures are reordered in non-
decreasing order; the shortest distance to the ideal solution is the best 
as follows: = ( , … , ) = ( ) / , (F.29) 

 
where ( ) is the th smallest of the  and  is the individual 
distance between  and , such that = .  

Similarly, compute the separation measure for anti-ideal solution, 
where the argument variables as distance measures are reordered in 
non-increasing order; as the farthest distance to the anti-ideal solution 
is the best as follows: 

 = ( , … , ) = ( ) / , (F.30) 

 
where ( ) is the th largest of the  and  is the individual distance 
between  and , such that =  . 

Observe that if  = 1 , the Minkowski OWAD operator becomes 
the Manhattan OWAD operator and if = 2, then the Euclidean 
OWAD operator can be derived (see Xu & Chen, 2008; Merigó & 
Gil-Lafuente, 2010).  

Step 8: Derive the weighting vectors for ideal and anti-ideal solutions using 
RIM (quantifier guided aggregation) for criteria , where the , =1,2, … ,  is relative importance associated with criterion  such in 
Eq. (F.12). The weights of ideal solution can be calculated as follows: 

 = ( ) ( )  , (F.31) 
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where ( ) is the importance associated with the criterion that has 
the jth smallest , such as ( ), ( ) . The weight  is the 
inclusion of relative importance associated with linguistic quantifier 
for the criterion , and = 1.  

Equivalently, the weights of anti-ideal solution can be calculated as 
follow: 

 = ( ) ( )  , (F.32) 

where ( ) is the importance associated with the criterion that has 
the jth greatest , such as ( ), ( ) . The weight  is the 
inclusion of relative importance associated with anti-ideal solutions, = 1.  

Step 9: Calculate the relative closeness  to the ideal solution for the 
group. The relative closeness can be calculated as follows:   

 = ( )( ) + ( )  , = 1,2, …  , (F.33) 

where the alternatives are ranked in descending order. Note that the 
larger the value of  denotes the better performance of the 
alternative. 
 
 

F.6 Illustrative Example 
 
In this section, the case study of human resource selection problem for a 
local chemical company as described by Shih et al. (2007) is implemented. 
There are 17 candidates (alternatives) and four decision makers considered 
for the evaluation, and each of candidates is evaluated through a number of 
objective and subjective tests. The basic data for this experiment is 
demonstrated in Table F.1 and Table F.2. However, in order to consort with 
the context of this study, a slight modification is made to the original data 
regarding the weights associated to the decision makers. In this case, a 
homogenous type of problem is considered by associating the equal weights 
of criteria for each expert as follows: language test ( ), professional test ( ), safety rule test ( ), professional skills ( ), computer skills ( ), 
panel interview ( ) and 1-on-1 interview ( ) as 0.066, 0.196, 0.066, 0.130, 
0.130, 0.216 and 0.196, respectively.  
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Table F.1.  Decision matrix of human resource selection problem 
 – Objective attribute 

 
Alternative Knowledge tests Skill tests 

 
Language Professional Safety Professional Computer 

1 80 70 87 77 76 
2 85 65 76 80 75 
3 78 90 72 80 85 
4 75 84 69 85 65 
5 84 67 60 75 85 
6 85 78 82 81 79 
7 77 83 74 70 71 
8 78 82 72 80 78 
9 85 90 80 88 90 
10 89 75 79 67 77 
11 65 55 68 62 70 
12 70 64 65 65 60 
13 95 80 70 75 70 
14 70 80 79 80 85 
15 60 78 87 70 66 
16 92 85 88 90 85 
17 86 87 80 70 72 

 

Table F.2.  Decision matrix of human resource selection problem 
– Subjective attribute 

 
Alternative DM 1 DM 2 DM 3 DM 4 

 Panel One Panel One Panel One Panel One 

1 80 75 85 80 75 70 90 85 
2 65 75 60 70 70 77 60 70 
3 90 85 80 85 80 90 90 95 
4 65 70 55 60 68 72 62 72 
5 75 80 75 80 50 55 70 75 
6 80 80 75 85 77 82 75 75 
7 65 70 70 60 65 72 67 75 
8 70 60 75 65 75 67 82 85 
9 80 85 95 85 90 85 90 92 
10 70 75 75 80 68 78 65 70 
11 50 60 62 65 60 65 65 70 
12 60 65 65 75 50 60 45 50 
13 75 75 80 80 65 75 70 75 
14 80 70 75 72 80 70 75 75 
15 70 65 75 70 65 70 60 65 
16 90 95 92 90 85 80 88 90 
17 80 85 70 75 75 80 70 75 

-on-one interview) 
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Here, the comparison is made between the proposed model and the 
classical TOPSIS-GDM model (Shih et al., 2007) and the TOPSIS-GDM 
with majority opinion based on classical scheme (Hajimirsadeghi & Lucas, 
2009). In particular, the comparison with respect to the distance measures 
(i.e., the Manhattan and the Euclidean) is conducted and the results of all the 
models are shown in Table F.3. In this case, the semantic half ( = 1) or 
averagely all of the criteria is used as the decision strategy.  

As can be seen, the rankings generated from all the models show slightly 
different results, especially on the first two candidates:  and . The 
classical TOPSIS method for both distance measures, rank  as the best 
and then  as the second best. On the contrary, the Hajimirsadeghi-Lucas 
model ranks  as the top ranking and then followed by  for both distance 
measures. While the proposed method provides different results for each of 
the distance measures, such as, the best and the second best is given as  
and  for the Manhattan distance, and for vice versa for the Euclidean 
distance. 
 

Table F.3.  Final distance performance and rankings of the aggregation 
 

Classical TOPSIS-GDM 

with Arithmetic Mean 

TOPSIS-GDM with 
Majority Opinion (Classical 

Scheme) 

The proposed model 

(alternative scheme) 

Manhattan 
Distance 

Euclidean 
Distance 

Manhattan 
OWAD 

Euclidean 
OWAD 

Manhattan 
OWAD 

Euclidean 
OWAD 

RC R RC R RC R RC R RC R RC R 
0.6169 
0.4393 
0.8212 
0.4603 
0.4559 
0.6677 
0.4655 
0.5779 
0.9103 
0.5187 
0.1715 
0.1561 
0.5654 
0.6195 
0.4079 
0.9104 
0.6190 

7 
14 
3 
12 
13 
4 
11 
8 
2 
10 
16 
17 
9 
5 
15 
1 
6 

0.6122 
0.4338 
0.7767 
0.4645 
0.4651 
0.6596 
0.4732 
0.5755 
0.8729 
0.5167 
0.2145 
0.1838 
0.5626 
0.6063 
0.4223 
0.8899 
0.6081 

5 
14 
3 
13 
12 
4 
11 
8 
2 
10 
16 
17 
9 
7 
15 
1 
6 

0.6065 
0.4703 
0.8830 
0.5036 
0.4695 
0.6884 
0.4958 
0.5715 
0.9531 
0.5259 
0.1436 
0.1396 
0.5687 
0.6521 
0.3784 
0.9277 
0.6498 

7 
13 
3 
11 
14 
4 
12 
8 
1 

10 
16 
17 
9 
5 
15 
2 
6 

0.5916 
0.4587 
0.8278 
0.4722 
0.4746 
0.6812 
0.4764 
0.5857 
0.9150 
0.5276 
0.2078 
0.1549 
0.5581 
0.6429 
0.3964 
0.9128 
0.6135 

7 
14 
3 
13 
12 
4 
11 
8 
1 

10 
16 
17 
9 
5 
15 
2 
6 

0.5569 
0.3414 
0.8263 
0.4238 
0.4860 
0.6528 
0.4295 
0.5037 
0.9329 
0.4844 
0.1048 
0.1104 
0.5181 
0.5786 
0.3510 
0.9183 
0.5606 

7 
15 
3 
13 
10 
4 
12 
9 
1 

11 
17 
16 
8 
5 
14 
2 
6 

0.5506 
0.3649 
0.7794 
0.4466 
0.4837 
0.6440 
0.4493 
0.5147 
0.8902 
0.4881 
0.1425 
0.1524 
0.5229 
0.5736 
0.3876 
0.8957 
0.5597 

7 
15 
3 
13 
11 
4 
12 
9 
2 
10 
17 
16 
8 
5 
14 
1 
6 
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Table F.4.  Confidence measures for different methods 

 

     Classical TOPSIS-GDM 

with Arithmetic Mean 

TOPSIS-GDM with  

Majority Opinion 
(Classical Scheme) 

The Proposed method 

(Alternative Scheme) 

Mea
sure 

Manhattan 
distance  

Euclidean 
distance 

Manhattan 
OWAD 

Euclidean 
OWAD 

Manhattan 
OWAD 

Euclidean 
OWAD 

1 0.7543 0.7061 0.8135 0.7601 0.8281 0.7532 
2 0.0001 0.0006 0.0008 0.0018 0.0016 0.0027 

3 [0.1561, 
0.9104] 

[0.1838, 
0.8899] 

[0.1396, 
0.9531] 

[0.1549, 
0.9150] 

[0.1048, 
0.9329] 

[0.1425, 
0.8957] 

 
In Table F.4, the confidence measures for all the models are provided. 

These measures include: 1) the sum of absolute difference between relative 
closeness of the consecutive alternatives, 2) the minimum of the absolute 
difference between relative closeness of the consecutive alternatives, and 3) 
the range (in unit interval) of calculated relative closeness for the alternatives. 
For all the measures: the higher the value (or the bigger the interval), the 
better the result. In general, as can be noticed, the TOPSIS-GDM model 
under the majority concept (either based on classical scheme or alternative 
scheme) exhibits the better results compared to the classical TOPSIS-GDM 
model. Specifically, with respect to the results of the second measure, the 
proposed method under the Euclidean distance indicates the highest 
difference (0.0027) between the relative closeness of the consecutive 
alternatives compared to the rest of the models. Hence, the results imply that 
the conclusive decision can be made by the decision makers when the 
distinction values between each alternative are greater.  

In addition, a series of rankings of alternatives can be determined with 
respect to the different decision strategies. For example, the aggregation on 
specific criteria can be easily adjusted which represent the attitudinal 
character of the majority of experts. Table F.5 shows the results of different 
decision strategies for the proposed TOPSIS-GDM model based on the 
Euclidean OWA distance measure. 

As can be seen, with respect to semantics half, many, most and all as the 
decision strategies, the alternative  is ranked as the best alternative, 
followed by the alternative  in the second position. On the contrary, for 
the decision strategy some to at least one, the alternative  is ranked as the best 
and  comes the second. For the rest alternatives there are slightly changes 
in ranking for the different strategies under consideration. This analysis can 
provide a complete picture for the stakeholders or decision makers in 
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analysing the possible alternative for the best decision. In particular, the 
attitudinal character of the majority or group of decision makers are 
considered in the evaluation process, such as the semantics at least one (max) 
reflects the degree of optimism, whilst the semantics all (min) represents the 
degree of pessimism.  

 
Table F.5.  Rankings of the proposed method with different strategies 

 

TOPSIS-GDM with Majority Opinion 

(Euclidean OWAD) 

At least one 
(Max) = 0.001 

Few 
 = 0.1 

Some = 0.5 

Half 
(Average) = 1 

Many = 2 
Most = 10 

All 
(Min) = 1000 

RC R RC R RC R RC R RC R RC R RC R 

0.9168 5 0.7890 6 0.6248 8 0.5506 7 0.4949 5 0.4316 5 0.4242 5 
0.7062 15 0.6449 15 0.4780 15 0.3649 15 0.2538 15 0.0730 15 0.0013 15 
0.9765 3 0.9278 3 0.8420 3 0.7794 3 0.7008 3 0.5131 4 0.4264 4 
0.8367 8 0.7512 9 0.5725 12 0.4466 13 0.2978 14 0.1109 13 0.1027 11 
0.8211 10 0.7439 11 0.5830 11 0.4837 11 0.3890 11 0.2503 9 0.0136 13 
0.7947 12 0.7666 8 0.6919 4 0.6440 4 0.5971 4 0.5316 3 0.5246 3 
0.7906 13 0.7249 14 0.5638 13 0.4493 12 0.3247 12 0.2156 11 0.2094 9 
0.7663 14 0.7257 13 0.6061 9 0.5147 9 0.4102 9 0.1629 12 0.0535 12 
0.9890 1 0.9656 1 0.9228 1 0.8902 2 0.8459 2 0.7338 2 0.6781 2 
0.8180 11 0.7472 10 0.5867 10 0.4881 10 0.3932 10 0.2238 10 0.1761 10 
0.3298 16 0.3008 16 0.2099 16 0.1425 17 0.0757 17 0.0091 16 0.0002 16 
0.2900 17 0.2710 17 0.2066 17 0.1524 16 0.0876 16 0.0067 17 0.0001 17 
0.9363 4 0.8175 5 0.6348 7 0.5229 8 0.4225 8 0.3382 6 0.3297 6 
0.8254 9 0.7717 7 0.6516 6 0.5736 5 0.4845 6 0.3069 8 0.2671 8 
0.8949 7 0.7369 12 0.5450 14 0.3876 14 0.3146 13 0.0985 14 0.0040 14 
0.9874 2 0.9614 2 0.9202 2 0.8957 1 0.8709 1 0.8378 1 0.8333 1 
0.8997 6 0.8213 4 0.6662 5 0.5597 6 0.4445 7 0.3181 7 0.2857 7 

 
 
 
 
 
 
 
 
 
 
 



163  

6.3 -attribute Group Decision Making Model 
with Application to Flood Control Project 

 
Abstract. In this paper, we propose a multi-attribute group decision making 

icting bifuzzy sets (CBFS). Specifically, the evaluations are 
bi-valued in accordance to the subjective judgment of experts with respect to 
the positive and negative views. This study discusses the weighting methods for 
particular attribute and sub-attribute with emphasis is 
of subjective and objective weights. The integration of CBFS in the model is 
naturally done by extending the fuzzy evaluation in parallel with the intuitionistic 
fuzzy. We introduce a new technique to compute the similarity measure, being 
the degree of agreement between experts. We end up the study by 
demonstrating the applicability of the proposed model to the empirical case of 

ood control project, one of the project selection problems. 
 
 
G.1 Introduction 
 
Multi-attribute group decision making (MAGDM) is a well-known model used 
for choosing the best candidate from a set of possible options under the 
evaluation of a group of experts. It is admissible that a complex decision 
problem requires an integration of various expertise in which the lack of 
knowledge or experience of an expert can be offset by the others. Due to its 
ability in solving the decision problem 
agreement among experts, the MAGDM has been successfully applied in 
various applications (see, for example, in Figueira et al., 2005; Gal et al., 1999). 

Most of the time, the evaluation of attributes or criteria is vague, ambiguous 
or imprecise. As a result, the numerical measurement (or crisp data) may not 
provide the best assessment to the problem. Thus, the rating of alternatives with 
respect to this kind of attributes can be better represented using the linguistic 
approach. Many authors have applied the theory of fuzzy set (FS) as introduced 
by Zadeh (1965) to interpret or present the attributes in linguistic variable (or 
by means of fuzzy number). For instance, a study by Chen (2000) has 
demonstrated the ability of FS theory to solve the fuzziness in the technique for 
order preference by similarity to ideal solution (TOPSIS). In Tiryaki and 
Ahlatcioglu (2005), a ranking system has been developed with the use of fuzzy 
analytic hierarchy process (AHP) in the stock selection problem. In other 
contribution, Langroudi et al. (2013) has employed an extended version of FS 
theory, referred as type-2 fuzzy set, in the TOPSIS method. The general review 
on the applications of FS theory in multi-criteria decision making can be referred 
in Kahraman (2008). 

Recently, the intuitionistic fuzzy sets (IFS) founded by Atanassov (1986) has 
played its role in multi-attribute decision making process (see, for example, Liu 
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& Wang 2007; Xu & Yager 2008). It is one of the extensions of FS theory that 
has been proposed in the literature. For example, Ye (2013) has described the 
weights in the MAGDM model under the intuitionistic fuzzy setting. The 
intuitionistic fuzzy provides both the membership and non-membership 
functions, implies that there are two-sided evaluation. In comparison, the FS 
only emphasizes on the membership function or single-sided judgment. We 
argue that, since the sum of membership and non-membership values must be 
less or equal to one as in the case of IFS, the data are rather restricted. For 
example, we may rate the candidate in an interview as ‘good’ with membership 
0.75 and ‘bad’ with membership 0.25, which is complementary as in the state of 
FS. The sum of good (membership) and bad (non-membership) may less than 
one (as in IFS) and may possibly exceed one in some circumstances. In this 
study, we focus on the problem of the sum of two contradict evaluations exceed 
one by resorting to the so-called  Our aim in this 
study is zzy MAGDM model.  

The was first proposed by Tap (2006) to deal with 
the conflicting conditions where the constraint of IFS has been slightly released. 
He then demonstrated the potential application in the decision making 
problems. Taib et al. (2008) and Zamali et al. (2010) have applied the conflicting 
bifuzzy concept in the analytic hierarchy process model to deal with the 
selection process in waste management. Xu and Yan (2011) then has employed 
the bifuzzy evaluation in the multi-objective decision making model for a 
vendor selection problem. In the similar way, in this study we construct the 
decision matrix for certain attributes and sub-
bifuzzy evaluation. There is no restriction imposed to the evaluation process to 
ensure that ant and considered in the decision analysis. This 
led us to a fair and better decision. 

However, the lack of knowledge and experience of experts may affect the 
decision making process. Brought them together may offset or compensate each 
other for the better decision (heterogeneous case). Hence, the weighting process 
is extremely importance to specify the expertise of experts on each specific 
criterion. For doing so, we weight the experts according to their depth of 
knowledge and experiences. In weighting the attributes and sub-attributes, we 
follow the works done by Liu and Kong (2005) and Wang and Lee (2009) using 
the integrated fuzzy subjective and objective weights. The fuzzy AHP approach 
(see Saaty, 1980) is used to measure the subjective weight, while the objective 
weight is obtained from the entropy method (see Shannon, 1949; Zeleny, 1982). 
The main advantage of fuzzy AHP is that it can deal with the quantitative and 
qualitative judgment provided directly by experts. On the contrary, the entropy 
method does not require a direct involvement of the experts, but the weights 
can be derived directly from the rating table or decision matrices. The entropy 
method has been used by many researchers for the stipulation of weights. 
Examples of this literature can be referred in Pomerol & Barba-Romero (2000), 
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Li et al. (2014), and Chen et al. (2014). In this study, we propose the entropy 
method to deal with the conflicting bifuzzy conditions as the objective weights. 
Then, we integrate the subjective and objective weights using the Hurwicz’s 

objective information obtained from the solution of a mathematical model. In 
addition, we propose a similarity measure to quantify the consensus between 
experts in deriving the overall group decision. For the ranking procedure, the 
TOPSIS method is put forward for the final evaluation. 

In exemplify the proposed model, we take the selection of ood control 
projects as our empirical case. According to Maragoudaki and Tsakiris (2005), 

focused mainly on the technical and economic factors. For instance, in the 
technical aspect, the merely based on the 
relationship between the ood magnitudes (e.g

ood together with the 
hand, the cost- CBA) approach is usually employed in the 
economic domain (see Morris-Oswald, 2001). The CBA focuses on the 
implementation and maintenance costs of the selected alternatives, besides the 

m the project. 

the fact that these types of projects interact with various sectors including social, 
politic, economic and environmental aspects. Hence, the application of multi-
attribute decision making technique in the ood management is clearly 

 Moreover, since the effect and side-effect of every decision is greatly 
important, then the consideration of conflicting bifuzzy concept is prominent 
in this selection process. 

For this purpose, we have collected a set of data of experts’ evaluations for 
the possible alternat case study 
has been conducted in the state of Kelantan, Malaysia in which the is 
regularly hit the state almost once in a year. Malaysia is the country with two 
seasons in general. The dry season is usually ranging from March to October 

management system, the rainy season will be worst to some residents especially 
farmers. This would be a highly-
as a result of crop , as well as the infrastructure. We have 
consulted three different groups of expert namely specialize engineers, local 
authority and a non-governmental organization (environmentalist). These group 
of experts will be explained in detail in the consequence section. The rest of the 
study is organized as follows. Section G.2 discusses the theoretical part of model 

n of CBFS. 
Later on, we design our MAGDM model with CBFS concept in Section G.3. 
Finally, we demonstrate the application of our proposed model in Section G.4. 
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G.2 Preliminaries 
 
In this section, we state the theoretical parts of fuzzy set and intuitionistic fuzzy 

 
 
Definition G.1 (Zadeh, 1965). Let  be a finite and non-empty set. A fuzzy set 

 on  is characterized by: 
 = { , ( ) | }, (G.1) 

 
where : [0,1] is the membership function of the fuzzy set . 
 
In a fuzzy set , an element   is given the 
membership value represents how much  belongs to . It is clear that fuzzy in 
all circumstances describing element with a single value. 

It is of special interest to have a look at fuzzy number. We will explain a 
triangular fuzzy number (this should be countered most in this study) rather 
than other fuzzy numbers which can be referred in Kaufmann and Gupta 
(1991). A triangular fuzzy number can be expressed as = ( , , ). For 
each fuzzy number, the membership value is computed using the formula: 

                                                                                                   
 

( ) = ,   < ,1,             = ,,   < ,0,        .
 

 
 
 
 

 
For = = , a triangular fuzzy number gives a crisp value and it is known 
as a special case of fuzzy number. 
 
Definition G.2. Given two fuzzy numbers = ( , , ) and =( , , ), and let  be any real number. Some operations on fuzzy numbers 
can be express as:  

 = ( + , + , + ), = ( × , × , × ), = ( / , / , / ), = ( × , × , × ), 
 
 

(G.2)= , , . 
 
We now proceed to the definition of intuitionistic fuzzy set. 
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Definition G.3 (Atanassov, 1986). Let  be a finite and non-empty set. An 
intuitionistic fuzzy set  in  is expressed as: 
 

 = { , ( ), ( ) | }, (G.3) 
 
where : [0,1] and : [0,1] are the representative membership and 
non-membership functions of the fuzzy set  with the condition 0 ( ) +( ) 1 for all  in . 
 
 As proposed by Atanassov (1986), there exist an intuitionistic index of  in 

 which can be formulated as ( ) = 1 ( ) ( ) where 0( ) 1. It turns out that every fuzzy set  can be represented as the 
following intuitionistic fuzzy set: 
 

 = { , ( ), 1 ( ) | },  
 
that proves the absence of hesitancy degree in fuzzy set since: 
 ( ) = 1 ( ) 1 ( ) = 0. 
 
The ( ) does not always be 1 ( ). Therefore, the sum of membership 
and non-membership degrees can be less than one in IFS. However, if we let 
those degrees varies within the range [0,1] for each, then the sum can take any 
values within the range [0,2]. 

Next, we state the definition of conflicting bifuzzy sets retrieved from Tap 
(2006) (see Zamali et al., 2008). 
 
Definition G.4. Let  be a finite and non-empty set. If { , } be two fuzzy 
sets with conflicting characteristic contained in , then  is called a conflicting 
bifuzzy set which can precisely defined as: 
 

 = { , ( ), ( ) | }, (G.4) 
 
where : [0,1] and : [0,1] represent the degree of positivity and 
negativity of fuzzy set  respectively for all  in . 
 
The IFS condition is reformulated to be: 
 0 < ( ) + ( ) 1 + , 
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where  is a small nonnegative value, [0, ). If we simultaneously consider 
the positivity and negativity, only one aspect will be dominant at one time, either 
positive or negative. There will be no possible situation where both appear to 
be dominant. Thus, this implies that the sum of the degrees cannot exceed 3/2.  

In order to integrate the positivity and negativity of attribute for a possible 
alternative, one should have a combination operator to deal with. Such 
combination operators are the geometric mean, arithmetic mean and 
multiplicative operator (see Zamali et al., 2008; Gau & Buehrer, 1993; 
Kaufmann & Gupta, 1991). For simplicity, we consider the arithmetic mean 
c  follows: 

 
 ( ), ( ) = ( ) + ( )2 , (G.5)

 
where ( ) = 1 ( ) is the nonnegativity degree. Here, the degree of 
nonnegativity would rather be a special interest in solving the decision making 
problem. We show some examples of calculations for different combination 
operators in Table G.1. 
 

Table G.1.  Examples of result for different combination operator 
 

Operator Formula ( ), ( )  

                                                             (0.7,0.1) (0.7,0.3) (0.7,0.5) 

Geometric 
mean 

( ), ( ) = ( ) × ( ) 0.79 0.70 0.59 

Arithmetic 
mean ( ), ( ) = ( ) + ( )2  

0.80 0.70 0.60 

Multiplicative ( ), ( ) = ( ) × ( ) 0.63 0.49 0.35 

 
 
G.3 -attribute Group Decision Making Model 
 
This section presents a group decision making model that demonstrates the 
applicability of CBFS. We deal with positive and negative aspects concurrently 
resulting to a fair decision. This model involves three stages which generally 

framework of the proposed model.  
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Figure G.1. General framework of the proposed model 

 
 

The type of 
attributes 

(Cost/Benefit) 

SELECTION STATE 

AGGREGATION STATE 

Experts Weight 

Calculate the degree of similarity of each 
pair of experts’ opinions* 

Construct the degree agreement matrix 

Calculate the average degree of 
agreement of each expert 

Calculate the relative degree of 
agreement of each expert 

Calculate the consensus degree 
coefficient of each expert 

Calculate the aggregate result for 
heterogeneous group of experts 

RATING STATE 

Collection of expert opinions and 
establishing decision matrices 

Convert all linguistic terms to 
standardized triangular fuzzy numbers 

Convert non-standardized TFNs to 
standardized TFNs. 

Questionnaires 

Conversion Scale 

Ranking Phase 

Coefficient 

Weighting Data 
Analysis 

Attributes Weight 

 

 

 

 Subjective weight 

 Objective weight 

 Subjective 
weight 

HETEROGENOUS GROUP OF 
EXPERTS 
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At the rating stage, the evaluations of alternatives are provided by experts 
with respect to the objective and subjective attributes. The objective attributes 

 (e.g., monetary terms, exact measurements, etc.) but the 
subjective attributes are not. Here, the subjective attribute is expressed in 
linguistic variable and is directly computed by converting it into the fuzzy 
number. For our decision making model, we use the linguistic variables 
described in Table G.2 as adopted from Chen and Hwang (1992) and Wang and 
Lee (2009). 
 

 
Table G.2. Linguistic variables for rating alternative 

 

Level of importance Abbreviation Fuzzy number 

Very Poor/Very Low VP/VL (0, 0, 0.2) 

Poor/Low P/L (0.05,0.2,0.35) 

Medium Poor/Medium Low MP/ML (0.2,0.35,0.5) 

Medium M (0.35,0.5,0.65) 

Medium Good/Medium High MG/MH (0.5,0.65,0.8) 

Good/High G/H (0.65,0.8,0.95) 

Very Good/Very High VG/VH (0.8, 1, 1) 

 
 

On the other hand, the aggregation phase involves the setting of weights to 
the experts based their expertise and specifying the degrees of importance for 
the criteria. Then, these weights together with the ratings of alternative under 
the multiple criteria are aggregated. The aggregated results obtained at this stage 
will be used for the ranking process in the selection phase. The procedure of 

The specific procedures at 
each stage are presented as the following. 

 
G.3.1  Determination of weights 
 
G.3.1.1 Weighting an expert 
 
We use the simple weighted evaluation technique (WET) see (Olcer & Odabasi, 
2005; Chiclana et al., 2004) to estimate the weight of each decision maker or 
expert. Let ( ) be a priority degree of expert ( = 1,2, … , ) where ( ) [0,1] and ( ) = 1. We first take an expert with the highest 
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priority as proxy and assign value one to him, ( ) = 1. The relative priority 
for the expert- , ( )( = 1,2, … , 1) is directly obtained by comparing 
him to the proxy regarding to his priority in the group of experts. Hence, we 
have { ( ), ( ), … , ( )} = 1 and { ( ), ( ), … , ( )} > 0. 
The weight of the decision maker ( ) is defined as: 

 ( ) = ( )( ) . (G.6) 

 
If we let the priority of  experts are equal, then ( ) = 1/  for =1,2, … , . In the following, an example is given to clearly demonstrate the 
weighting method. 
                      

Example G.1 Consider three experts ,  and  are involved. Assume the 
expert  has absolute knowledge in evaluating an attribute (let say ), thus he 
is assigned as proxy, given the priority ( ) = 1. Based on how depth is the 
expertise of the other two experts, the priority is given, for instance, ( ) =0.5 and ( ) = 0.25. Using Eq. (G.6), we then obtain the experts’ weights: 
 ( ) = 0.571, ( ) = 0.286, ( ) = 0.143, and  ( ) = 1. 
 

G.3.1.2 The weight of attribute and sub-attribute 
 
In this study, we integrate the subjective and objective weights for the final 
degree of importance of attribute. The subjective weight is respected to the 
subjective judgment of the expert where the weight of attribute is directly given, 
such as the fuzzy AHP method. The objective weight is based on the objective 
information obtained by solving a mathematical model automatically.  

In a normal procedure, the determination of weight relies heavily on the 
expert’s knowledge and experience which typically characterized as the 
subjective evaluation. But, this procedure does not consider the relationship 
between the evaluated objects. Hence, applying fuzzy AHP as a subjective 
weight is inadequate to capture the priority in the assessment of alternative (see 
Wang et al., 2008). The subjective approach will be more consistent with the 
integration of objective approach and the integration method is more desirable 
in the computation of weight. Therefore, the integrated weight based on the 
fuzzy AHP and entropy method is implemented here. We use the linguistic 
terms described in Table G.3 to form a pairwise comparison matrix for fuzzy 
AHP where the evaluation is based on its corresponding mean of fuzzy number. 
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Table G.3. Linguistic variable for the weight of attribute and its 
corresponding fuzzy number 

 

Linguistic terms 

The mean of 

fuzzy number

Triangular  

    Fuzzy Number 

Equally important 1 (1,1,1) 
Intermediate values between 1 and 3 2 (1,2,3) 

Moderately important 3 (2,3,4) 
Intermediate values between 3 and 5 4 (3,4,5) 

Essentially important 5 (4,5,6) 
Intermediate values between 5 and 7 6 (5,6,7) 

Very vital important 7 (6,7,8) 
Intermediate values between 7 and 9 8 (7,8,9) 

Extremely vital important 9 (9,9,9) 

 

The procedure starts with the determination of weight for attribute- , . 
Assume that a set of  attributes , = 1,2, … ,  is given. A fuzzy reciprocal 
judgment matrix for attributes is  

 
 = … ,  

 
where = 1 = (1,1,1) for all =  ( , = 1,2, … ) and = 1/  for 

 (reciprocal of ). By applying the fuzzy synthetic extent, we obtained the 
corresponding weight for each attribute as: 
 

 = , = 1,2, , … , .  (G.7) 

                           
The weights  are in normalized fuzzy numbers. Note that Eq. (G.7) may 
result from fuzzy arithmetic or it can be derived from the extension principle. 
 The attribute  normally has  sub-attributes. Thus, it is important to 
determine the relative importance of sub-attribute,  to that particular 
attribute. We define the fuzzy judgment matrix for  sub-attributes with respect 
to attribute  as: 
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 = … ,  

 
where  for , = 1,2, … ,  is evaluated using Table G.3. 
  
By multiplying sub-attribute’s weight to the respective attribute weight in Eq. 
(G.7), we derive the final weight for sub-attribute through the aggregation of 
weights at two consecutive levels as follows: 

 = , for , = 1,2, … , , (G.8) 
 
where  is the aggregated fuzzy weight of sub-attribute and, 

 = .  
 

 

Hence, the entries of the subjective weight vector, notated as  with length 
, is given as: = , , … , ; , … , ; , … , . 

 
As part of the procedure in AHP method, the determination of consistency 

index (CI) seems compulsory as it prescribes the acceptance level of the pairwise 
comparison matrix. To obtain CI, we first multiply the matrix with its priority 
vector (with respect to the mean of fuzzy number): 
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Then, we divide ( = 1,2, … , ) with its corresponding priority vector: 
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The consistency index can now be computed using: 
 

 = ( )1  , (G.9)

 
where = . Finally, we calculate the consistency ratio (CR) 
using: 

 =  , (G.10) 

 
where RI represents the random index (i.e., the consistency index of a randomly 
generated pairwise comparison matrix). The RI depends on the number of 
elements/criteria,  being compared as presented in Table G.4. The detailed of 
the consistency ratio can be referred to Saaty (1980).  
 
 

Table G.4. Consistency index of a randomly generated reciprocal matrix 
 

 
  
 
 
 
 
 
 We now turn to the procedure of obtaining the objective weight, . 
Suppose we have a decision matrix for -alternatives and -attributes, =× , = 1,2, … , ; = 1,2, … , . By normalizing this decision matrix we 
obtain a matrix = , where [0,1]. Among these attributes, to which 
the bigger the better is: 

 

ijjijj

ijjij

ij xx

xx
z

minmax

min
 , 

 
(G.11) 

while, the smaller the better is: 
 

ijjijj

ijijj
ij xx

xx
z

minmax

max
 . 

 
(G.12) 

Next, we calculate the values  using the entropy formula: 
 

 
 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10 

 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 
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,  
(G.13) 

where 
n

j
ijijij nkzzf

1
,ln/1,/  by convention .0ln,0 ijijij fff  The 

objective weight then is defined as: 
 

m

i

obj
ij

Em

Ew

1

1 .  
(G.14) 

 
The sum of  is equal to one and [0,1]. 
 Finally, the integration of subjective weight with the objective weight to 
obtain the fuzzy integrated weight  is done by using the following formula 
(see Liu & Kong, 2005; Wang et al., 2008): 
 

 = ,  
(G.15) 

 
where  represents the relative importance of the subjective and objective 
weights to expert(s). Note that, the value of subjective weight is in form of fuzzy 
number and the objective weight is in crisp value. Therefore, the fuzzy 
integrated weight is a multiplication of fuzzy number and a scalar. The weight 
is an indicator that does not only show how important an attribute is, but also 
indicate the level of difference of attribute for various alternatives (see Liu & 
Kong, 2005). 
 
G.3.2 Rating phase 
 
Assume that we have -alternatives and -attributes. The CBFS decision 
matrix is given by: 

= ( , ) ( , )( , ) ( , ) ( , )( , )( , ) ( , ) ( , )  , 
 

where = , ,  and = , ,  are ratings for the positive 
and negative parts with respect to th-alternative and th-attribute being 
described by the triangular fuzzy number. The rating is based on linguistic 
variable defined in Table G.2. 
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Some modification should be made to those fuzzy numbers which are not 
standardized as will be explained the following. Assume that we have a positive 
triangular fuzzy number = , ,  of rating for alternative with 
respect to subjective attribute where 0 . The fuzzy 
number is converted to a new normalized fuzzy number using: 
  

 = , , = , , ,  
(G.16) 

 
where 0 1 and  is the maximum value of non-standardize 
fuzzy number. 
 

G.3.3 Aggregation phase 
 
It is crucial to find a similarity degree for heterogeneous group of experts where 
different evaluations are given to each alternative. For a finite  of experts, we 
obtain the similarity degree of each pair of experts ( , ) for , = 1,2, … ,   
and  by computing the similarity measure ( , ). Let = =,  and = = , , then the similarity measure can be 
calculated using: 
 

 ( , ) = 1 ( ) + ( )2  ,  
(G.17) 

where, ( ) = ( ) + 1 ( )2 ( ) + 1 ( )2 , 
( ) = ( ) ( )2 + 1 ( )2 1 ( )2  . 

  

The similarity degree measures how similar is  to  for -pair of experts. 
The higher value of ( , ) indicates that  is more similar to . In other 
words, if ( , ) = 1, then  is equivalent to . It is worth noted that ( , ) = ( , ). Further, we construct the agreement matrix as: 
 

= , 
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where ( , ) =  for  and = 1 for = . We take average of 
the similarity degree for the expert  by computing: 
 

 ( ) = 1 1 ,  .  
(G.18) 

 
Next, we find the relative similarity degree ( ) as follows: 
 

 ( ) = ( )( ) . 
 

 
(G.19) 

By using a relaxation factor , (0 1) and the relative similarity degree ( ), the consensus coefficient ( ) is calculated as: 
 

 ( ) = ( ) + (1 ) ( ), 
 

(G.20) 

where ( ) is the weight of the expert  obtained from Eq. (G.6). The last 
step is to compute the aggregated fuzzy evaluation using, : 
 

 = ( ) ( ) … ( )  
 

(G.21) 

where, 
 = (1 )2  

(G.22) 

   
 

 = + 12 , + 12 , + 12  
 

(G.23) 
 

The aggregated fuzzy evaluation will be used to rank alternatives in the next 
stage. 
 
G.3.4 Selection phase 
 
We present a general idea of fuzzy TOPSIS and the detailed procedure can be 
referred in Chen (2000). According to benefit-cost related attributes, we initially 
obain the normalized fuzzy decision matrix = ×  by normalizing  
using: 
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 = , ,  , = max    , = 1,2, … ,  

 

 
(G.24) 

 = , ,  , = min    , = 1,2, … ,  

 

 
(G.25) 

where  and  are the set of benefit criteria and the set of cost criteria, 
respectively. 
 Next, we calculate the overall performance evaluation of alternative by 
multiplying the weight to each normalized attribute, =  for =1,2, … , ; = 1,2, … , , yielding: 
 

 =  ×  . 
 

(G.26) 

The positive ideal solution  and negative ideal solution  will then be 
computed as: 
 

 = max( , , … , ),   = min( , , … , ). (G.27) 
   

 We calculate the distance of the fuzzy decision  to the positive ideal 
solution = ( , , ) and the negative ideal solution = ( , , ) 
using: 
 , ( ) = 

 13 ( ) + ( ) + ( ) , 
 

(G.28) 

where, 
 = , ,    = ,  .   (G.29) 

 
Finally, the alternatives are ranked by computing its closeness coefficient: 
 

 = +   . (G.30) 

 
The alternative with the highest closeness coefficient will be selected as the best 
alternative. 
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G.3.5 Algorithm for CBFS-MAGDM model 
 
   Step 1:  Establish a CBFS decision matrix for each expert. 
   Step 2: Transform the bifuzzy data into a normalized positive triangular 

fuzzy number using Eq. (G.16). 
Step 3:  Assign the relative importance or weight for experts and attributes 

using Eqs. (G.6 – G.15). 
Step 4:  Measure the similarity degree using Eq. (G.17). Construct the 

agreement matrix, the average degree of agreement, the relative 
degree of agreement and the consensus coefficient by using Eqs. 
(G.18 – G.20). Then, aggregate all experts’ fuzzy evaluations for each 
alternative using Eqs. (G.21 – G.23). 

   Step 5:  Construct the normalized rating and weighted normalized rating 
using Eqs. (G.24 – G.26). 

Step 6: Calculate the positive-ideal solution, the negative-ideal solution and 
compute the distance of fuzzy decision to the positive and negative 
ideal solution using Eqs. (G.27 – G.29). 

Step 7:  Calculate the closeness coefficient (CC) using Eq. (G.30). Rank the 
alternative according to the value of its closeness coefficient. 

 
 
G.4 Selection of Flood Control Project 
 
In this section, w
project. There are four alternatives to be considered namely reservoir ( ), 
channel improvement ( ), diversion scheme ( ) and dikes ( ). Each 
alternative is evaluated based on four attributes, namely the economic factor ( ), social factor ( ), environmental factor ( ) and technical factor ( ). 
These attributes together with their corresponding sub-attributes are listed in 
Table G.5. The evaluations of alternatives with respect to attribute and sub-
attribute are bi-valued except for the monetary term factors,  and  and 
the timeframe-based factor, . We choose three experts in the evaluation 
process, notably the specialized engineers in the Department of Drainage and 
Irrigation, Kelantan ( ), Kelantan’s local authority ( ) and Malaysian non-
governmental organization ( ). First, we establish a CBFS decision matrix for 
the rating of alternatives with respect to the given attributes (sub-attributes). 
The rating provided by experts is presented in Table G.6. We see that the ratings 
are in linguistic variables being described in Table G.2, except for the project 
cost, the operation and maintenance and the lifetime criteria. As an example, for 
the reservoir , the experts  and  provided the same rating ‘medium high’ to 
the positive effect of soil impact , but different rating for the negative effect 
(or side effect). Expert  felt that reservoir will result ‘moderate low’ negative 
impact compared to ‘low’ negative soil impact for expert . 
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Table G.5. List of attributes and corresponding sub-attributes 
 

Attribute Sub-attribute 

Economic ( ) Project cost ( ) 
 Operation and maintenance cost ( ) 
 Project benefit ( ) 
 Reliability economic parameter ( ) 
Social ( ) Social acceptability ( ) 
 Effect on demographic ( ) 
 Effect on structure ( ) 
 Recreation activity ( ) 
Environmental ( ) Water quality impact ( ) 
 Nature conservation ( ) 
 Soil impact ( ) 
 Landscape ( ) 
 Sanitary condition ( ) 
Technical ( ) Lifetime ( ) 
 Adaptability ( ) 
 Level of protection ( ) 
 Technical complexity ( ) 
 Flexibility ( ) 

 
 

The experts agreed that the costs of running all the alternatives are very high, 
approximately ranging from 0.6 to 2.1 ts the 
overall cost for project and also the cost for operation and maintenance). 
Furthermore, different alternative has different lifetime frame. Reservoir can 

rst 
glimpse, we see that the reservoir is not economically efficient as it requires the 
very high running cost, even though the contribution to the social and 
environmental is positively high. The channel improvement is the most 
admissible if the budget is limited, but the positive impacts to all factors are 
considerably moderate. The other two alternatives have moderate impact to all 
factors. 

Some sub-attributes are in monetary term and timeframe-based which 
need be normalized. We refer to Step 2 in Section G.3.5 to normalize the rating 
for the sub-attributes ,  and  . While the other factor remains the 
same. We show the normalized decision matrix for those three sub-attributes in 
Table G.7. 
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Table G.7. The normalized decision matrix for the three sub-attributes 
  

     

 (0.818,0.909,1.000) (0.362,0.445,0.545) (0.136,0.227,0.318) (0.136,0.227,0.318) 

 (0.091,0.182,0.273) (0.818,0.909,1.000) (0.091,0.182,0.273) (0.818,0.909,1.000) 

 (0.091,0.182,0.273) (0.073,0.091,0.109) (0.073,0.091,0.109) (0.073,0.091,0.109) 

 

Due to the lack of 
the weight of each expert as in Step 3. We admit that the specialized engineer, 

 has the highest priority in this decision making processes. Therefore, we 
choose  to be the proxy and the weight of experts will be determined 
according to the degree of importance as calculated using Eq. (G.6). In parallel, 
we calculate the weight for attribute (and sub-attribute) using fuzzy AHP for 
subjective weight and entropy method for objective weight. The results for 
subjective and objective weights are shown in Tables G.8 and G.9 respectively.  

 

Table G.8. The subjective weight for attributes and sub-attributes and the 
aggregated weight 

 

Attribute  Sub                   

 (0.304,0.460,0.687)  (0.140,0.239,0.391) (0.042,0.110,0.269) 
   (0.147,0.220,0.343) (0.045,0.101,0.236) 
   (0.319,0.489,0.742) (0.097,0.225,0.509) 
   (0.040,0.052,0.072) (0.012,0.024,0.049) 

 (0.237,0.353,0.534)  (0.256,0.471,0.840) (0.061,0.166,0.449) 
   (0.083,0.164,0.330) (0.020,0.058,0.176) 
   (0.139,0.278,0.540) (0.033,0.098,0.288) 
   (0.056,0.087,0.165) (0.013,0.031,0.088) 

 (0.085,0.137,0.213)  (0.178,0.334,0.637) (0.015,0.047,0.136) 
   (0.076,0.137,0.262) (0.006,0.019,0.056) 
   (0..145,0.278,0.524) (0.012,0.038,0.112) 
   (0.037,0.056,0.097) (0.003,0.008,0.021) 
   (0.092,0.185,0.375) (0.008,0.025,0.080) 

 (0.038,0.050,0.071)  (0.185,0.293,0.458) (0.007,0.015,0.033) 
   (0.142,0.225,0.366) (0.005,0.011,0.026) 
   (0.230,0.367,0.576) (0.009,0.019,0.041) 
   (0.042,0.075,0.126) (0.002,0.004,0.009) 
   (0.029,0.041,0.068) (0.001,0.002,0.005) 
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Table G.9. The objective weight and integrated weight 
 

Attribute Sub              Entropy   

  0.781 0.040 (0.030,0.078,0.193) 
  0.500 0.091 (0.047,0.113,0.274) 
  0.753 0.045 (0.048,0.118,0.282) 
  0.763 0.043 (0.017,0.038,0.086) 

  0.646 0.064 (0.046,0.121,0.317) 
  0.588 0.075 (0.028,0.077,0.215) 
  0.728 0.049 (0.029,0.082,0.223) 
  0.791 0.038 (0.016,0.040,0.108) 

  0.762 0.043 (0.019,0.053,0.143) 
  0.766 0.042 (0.012,0.033,0.091) 
  0.785 0.039 (0.016,0.045,0.124) 
  0.792 0.038 (0.008,0.020,0.052) 
  0.792 0.038 (0.013,0.036,0.103) 

  0.000 0.181 (0.026,0.061,0.144) 
  0.773 0.041 (0.011,0.025,0.061) 
  0.790 0.038 (0.013,0.031,0.073) 
  0.726 0.050 (0.007,0.016,0.040) 
  0.721 0.047 (0.005,0.012,0.028) 

 
 

For the sake of simplicity, we use the mean of fuzzy number as in Table G.3 
to calculate the consistency ratio. We obtain the consistency ratio equal 0.059 
accepting the validity of our pairwise comparison matrix. Expert’s rating are 
then aggregated using Eqs. (G.17 – G.23). We refer to Step 4 in Section G.3.5. 
The value  is set to 0.4 which represent the expert dominance for this problem. 
We report the aggregated fuzzy rating in Table G.10. Next, the normalized 
ratings and weighted normalized ratings of the matrices are constructed using 
Eqs. (G.24 – G.26) as in Step 5. Tables G.11 and G.12 present the fuzzy 
normalized rating and the weighted fuzzy normalized rating, respectively. Note 
that, Table G.12 is obtained by multiplying the integrated weight reported in 
Table G.9 with the fuzzy normalized rating. 
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Table G.10. The aggregated fuzzy rating for heterogeneous group of experts 
 

 

Table G.11. Fuzzy normalized ratings for heterogeneous group of experts 
 

Attribute Sub     

  (0.136,0.150,0.166) (0.249,0.299,0.374) (0.427,0.598,1.000) (0.427,0.598,1.000) 
  (0.333,0.500,1.000) (0.091,0.100,0.111) (0.333,0.500,1.000) (0.091,0.100,0.111) 
  (0.744,0.923,1.000) (0.419,0.573,0.726) (0.562,0.716,0.870) (0.705,0.790,0.944) 
  (0.650,0.816,0.982) (0.471,0.637,0.803) (0.539,0.705,0.871) (0.668,0.834,1.000) 

  (0.623,0.787,0.950) (0.711,0.893,1.000) (0.577,0.740,0.904) (0.626,0.790,0.953) 
  (0.451,0.607,0.762) (0.720,0.892,1.000) (0.414,0.570,0.725) (0.570,0.725,0.881) 
  (0.603,0.765,0.927) (0.565,0.736,0.872) (0.507,0.669,0.831) (0.676,0.838,1.000) 
  (0.703,0.868,1.000) (0.201,0.332,0.497) (0.625,0.790,0.922) (0.649,0.813,0.946) 

  (0.665,0.831,0.997) (0.493,0.659,0.825) (0.572,0.738,0.904) (0.668,0.834,1.000) 
  (0.635,0.818,1.000) (0.149,0.294,0.489) (0.387,0.569,0.751) (0.581,0.763,0.945) 
  (0.650,0.825,1.000) (0.476,0.651,0.826) (0.594,0.769,0.944) (0.583,0.758,0.933) 
  (0.719,0.891,0.992) (0.543,0.704,0.837) (0.658,0.818,0.951) (0.744,0.923,1.000) 
  (0.648,0.824,1.000) (0.038,0.152,0.349) (0.587,0.763,0.939) (0.622,0.799,0.975) 

  (0.818,0.909,1.000) (0.073,0.091,0.109) (0.073,0.091,0.109) (0.073,0.091,0.109) 
  (0.708,0.875,1.000) (0.412,0.568,0.724) (0.568,0.724,0.881) (0.631,0.787,0.943) 
  (0.701,0.872,1.000) (0.276,0.436,0.597) (0.632,0.792,0.952) (0.666,0.829,0.990) 
  (0.678,0.839,1.000) (0.512,0.673,0.834) (0.412,0.573,0.734) (0.599,0.760,0.921) 
  (0.723,0.895,1.000) (0.409,0.565,0.720) (0.595,0.750,0.906) (0.326,0.703,0.859) 

Attribute Sub     

  (0.818,0.909,1.000) (0.364,0.455,0.545) (0.136,0.227,0.318) (0.136,0.227,0.318) 
  (0.091,0.182,0.273) (0.818,0.909,1.000) (0.091,0.182,0.273) (0.818,0.909,1.000) 
  (0.725,0.900,0.975) (0.408,0.558,0.708) (0.548,0.698,0.848) (0.687,0.770,0.920) 
  (0.587,0.737,0.887) (0.425,0.575,0.725) (0.487,0.637,0.787) (0.603,0.753,0.903) 

  (0.572,0.722,0.872) (0.652,0.820,0.918) (0.530,0.680,0.830) (0.575,0.725,0.875) 
  (0.436,0.586,0.736) (0.695,0.860,0.965) (0.400,0.550,0.700) (0.550,0.700,0.850) 
  (0.558,0.708,0.858) (0.524,0.682,0.808) (0.470,0.620,0.770) (0.626,0.776,0.926) 
  (0.674,0.832,0.958) (0.192,0.318,0.476) (0.559,0.757,0.883) (0.621,0.779,0.906) 

  (0.602,0.752,0.902) (0.446,0.596,0.746) (0.518,0.668,0.818) (0.605,0.755,0.905) 
  (0.523,0.673,0.823) (0.123,0.242,0.402) (0.318,0.468,0.618) (0.478,0.628,0.778) 
  (0.557,0.707,0.857) (0.408,0.558,0.708) (0.509,0.659,0.809) (0.500,0.065,0.800) 
  (0.701,0.868,0.967) (0.529,0.686,0.816) (0.641,0.798,0.927) (0.725,0.900,0.975) 
  (0.552,0.702,0.852) (0.032,0.130,0.297) (0.500,0.650,0.800) (0.530,0.680,0.830) 

  (0.818,0.909,1.000) (0.073,0.091,0.109) (0.073,0.091,0.109) (0.073,0.091,0.109) 
  (0.680,0.840,0.960) (0.395,0.545,0.695) (0.545,0.695,0.845) (0.605,0.755,0.905) 
  (0.656,0.816,0.936) (0.259,0.409,0.559) (0.592,0.742,0.892) (0.623,0.776,0.926) 
  (0.632,0.782,0.932) (0.477,0.627,0.777) (0.384,0.534,0.684) (0.558,0.708,0.858) 
  (0.698,0.864,0.966) (0.395,0.545,0.695) (0.575,0.725,0.875) (0.315,0.680,0.830) 
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Table G.12. Weighted fuzzy normalized ratings for group of experts 
 

Attribute Sub                  

  (0.004,0.012,0.032) (0.007,0.023,0.072) (0.013,0.047,0.193) (0.013,0.047,0.193) 
  (0.016,0.056,0.274) (0.004,0.011,0.030) (0.016,0.056,0.274) (0.004,0.011,0.030) 
  (0.036,0.109,0.282) (0.021,0.070,0.210) (0.027,0.084,0.245) (0.039,0.092,0.264) 
  (0.011,0.031,0.086) (0.008,0.024,0.069) (0.009,0.026,0.073) (0.011,0.031,0.086) 

  (0.028,0.094,0.298) (0.033,0.110,0.317) (0.026,0.090,0.287) (0.028,0.095,0.300) 
  (0.013,0.047,0.163) (0.020,0.068,0.215) (0.012,0.044,0.156) (0.016,0.056,0.189) 
  (0.018,0.063,0.209) (0.017,0.060,0.194) (0.015,0.054,0.184) (0.020,0.069,0.223) 
  (0.012,0.035,0.108) (0.003,0.013,0.054) (0.010,0.032,0.100) (0.011,0.033,0.102) 

  (0.012,0.044,0.142) (0.009,0.034,0.116) (0.010,0.038,0.127) (0.012,0.044,0.143) 
  (0.008,0.027,0.091) (0.002,0.009,0.043) (0.005,0.019,0.068) (0.007,0.026,0.087) 
  (0.011,0.037,0.124) (0.008,0.030,0.103) (0.010,0.035,0.117) (0.009,0.034,0.114) 
  (0.006,0.018,0.052) (0.004,0.014,0.043) (0.005,0.016,0.049) (0.006,0.018,0.052) 
  (0.008,0.030,0.103) (0.000,0.005,0.035) (0.007,0.028,0.096) (0.008,0.029,0.100) 

  (0.021,0.055,0.144) (0.002,0.006,0.016) (0.002,0.006,0.016) (0.002,0.006,0.016) 
  (0.008,0.022,0.061) (0.004,0.014,0.044) (0.006,0.018,0.054) (0.007,0.020,0.058) 
  (0.009,0.026,0.074) (0.004,0.013,0.043) (0.008,0.024,0.069) (0.009,0.026,0.073) 
  (0.004,0.014,0.040) (0.003,0.011,0.033) (0.002,0.009,0.028) (0.004,0.012,0.037) 
  (0.004,0.010,0.028) (0.002,0.006,0.020) (0.003,0.009,0.026) (0.002,0.008,0.025) 

 
 
The positive ideal solution and negative ideal solution are then calculated 

using Eq. (G.27) and the distance measure is computed using Eq. (G.29) as in 
Step 6. We simply determine the positive ideal solution by taking the element 

value for the cost attribute. In contrast, the negative ideal solution is determined 

result are reported in Table G.13. Next, Table G.14 shows the distance measure 
to the positive and negative ideal solutions and its corresponding closeness 
coefficient as in Step 7. 

As a result, we found that , which simply mean the best 
alternative for the 
improvement. Reservoir is the highest cost project which was initially seems 
inefficient as it budget sensitive. However, it has a longer lifetime and a very 
high positive rating for its technicality (on average). Furthermore, it conserves 
nature and has a high impact to the society. Even though the channel 
improvement uses less money but it should be maintained for estimated every 
10 years. In addition, we see that it has (on average) the moderate impact to 
social and environment. Thus, the experts have selected reservoir to be the best 
alte problem area. 
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Table G.13. The positive ideal solution and negative ideal solution 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table G.14. Distance measure to the positive ideal solution and negative 
ideal solution using CBFS-MAGDM 

 

 1X  2X  3X  4X  

jd  0.152 0.552 0.249 0.286 

jd  0.492 0.092 0.395 0.359 
CC  0.764 0.142 0.613 0.556 

Ranking 1 4 2 3 

 
 
 
 
 
 

Attribute Sub-attribute    

  (0.013,0.047,0.193)  (0.004,0.012,0.032) 
  (0.016,0.056,0.274)  (0.004,0.011,0.030) 
  (0.039,0.109,0.282)  (0.021,0.070,0.210) 
  (0.011,0.031,0.086)  (0.008,0.024,0.069) 

  (0.033,0.110,0.317)  (0.026,0.090,0.287) 
  (0.020,0.068,0.215)  (0.012,0.044,0.156) 
  (0.020,0.069,0.223)  (0.015,0.054,0.184) 
  (0.012,0.035,0.108)  (0.003,0.013,0.054) 

  (0.012,0.044,0.143)  (0.009,0.034,0.116) 
  (0.008,0.027,0.091)  (0.002,0.009,0.043) 
  (0.011,0.037,0.124)  (0.008,0.030,0.103) 
  (0.006,0.018,0.052)  (0.004,0.014,0.043) 
  (0.008,0.030,0.103)  (0.000,0.005,0.035) 

  (0.021,0.055,0.144)  (0.002,0.006,0.016) 
  (0.008,0.022,0.061)  (0.004,0.014,0.044) 
  (0.009,0.027,0.074)  (0.004,0.013,0.043) 
  (0.004,0.014,0.040)  (0.002,0.009,0.028) 
  (0.004,0.010,0.028) 

 
(0.002,0.006,0.020) 
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In comparison, we provide the ranking based on the fuzzy MAGDM in Table 
G.15. In general, the CC values for all alternatives are greater for CBFS-
MAGDM except for the channel improvement where the earlier method gives 
CC’s value 0.300. Hence, t -sided 
judgment. In the case of complementary (FS), the sum of positive and negative 
membership values is equal to one. Thus, the decision process may not 

 side of evaluation (side-effect). Therefore, fuzzy 
approach is adequate in this case. For the no complementary case, the result 
may different. If the sum of positive and negative evaluation is less than one, 
we will see a greater result for each alternative. While, if the sum of positive and 
negative aspects is greater than one, then one will have a lower result. 

 

Table G.15. Distance measure to the positive ideal solution and negative 
ideal solution using fuzzy MAGDM 

 

 1X  2X  3X  4X  

jd  0.313 0.666 0.441 0.470 

jd  0.638 0.285 0.511 0.482 
CC  0.671 0.300 0.537 0.506 

Ranking 1 4 2 3 

 

Another important point that should be noted is the result of attribute (sub-
attribute) weight for both models. The objective weight for the fuzzy MAGDM 
which derived from the entropy method is slightly different from the case of 
CBFS-MAGDM since the analysis of data is based on the single-side and 
double-sided 
the subjective and objective weights) of CBFS-MAGDM method also produces 

 
 
G.4.1   
 

 
ranking. The  takes value in the interval [0, 1]. Table G.16 shows the closeness 

 computed for several . Since the CC values do not much deviate 
and not change the order ranking of alternatives, we may conclude that this case 
is not  sensitive. In this case, we found that the ranking stays at relatively the 
same level. Thus, the model is not sensitive. 
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Table G.16. Estimated CC for different  

 

 1X  2X  3X  4X  

0 0.765 0.141 0.621 0.558 
0.1 0.765 0.141 0.619 0.557 
0.2 0.764 0.142 0.617 0.557 
0.3 0.764 0.142 0.615 0.557 
0.4 0.764 0.142 0.613 0.556 
0.5 0.764 0.143 0.612 0.556 
0.6 0.764 0.143 0.610 0.556 
0.7 0.763 0.143 0.608 0.555 
0.8 0.763 0.143 0.607 0.555 
0.9 0.762 0.144 0.605 0.555 
1 0.761 0.144 0.603 0.554 

 
 

6.4 Summary 
 
In this chapter, the technique for order performance by similarity to ideal 
solution (TOPSIS) for the group decision making problems has been discussed. 
To recap, in Section 6.2, the TOPSIS model with induced generalized OWA 
operators has been presented. The model then was applied to the case study of 
human resource selection problem. Lastly, in Section 6.3, the integration of 
TOPSIS with the AHP method has been developed based on the conflicting 
bifuzzy condition. The model then was applied in the case study of flood control 
project selection problem. 
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CHAPTER 7 
 
 

CONCLUSIONS AND FUTURE RESEARCH 
 
 
 
7.1 Introduction 
 

In this chapter, the general and specific conclusions of this research are 
presented. In addition, rooms for the future research are also highlighted. Lastly, 
the summary ends this chapter. 
 
 
7.2 General Conclusions 
 

The main focus of this study has been given to the decision analysis (i.e., multi-
dimensional aspects), uncertainty theories and aggregation operators. The scope 
of the study is limited to the general problems in financial decision making and 
some other applications like human resource and flood control project selection 
problems.  

In specific, a paradigm shift of financial modeling tools from bi-criteria to 
multi-dimensional analysis has been discussed as the start-of-art of the study. 
Moreover, the issue of human behavior has been considered as the additional 
features in the current decision analysis models. This encompasses the 
subjectivity in human preferences and also the inclusion of the attitudinal 
character of the decision maker(s) for a comprehensive analysis (i.e., from 
optimistic to pessimistic views). 

The emphasis has been given on the two-stage aggregation processes in 
MCDA models, namely the aggregation of criteria and the aggregation of 
experts’ judgments. In this work, the group decision making models, notably, 
the Dempster-Shafer theory (DST) of belief structure, the analytic hierarchy 
process (AHP) and the technique for order performance by similarity to ideal 
solution (TOPSIS) are put forward for the specific analysis. The ordered 
weighted average (OWA) aggregation operators are employed as to extend the 
existing models, such as using the monotone quantifiers, maximum entropy 
OWA, neat-OWA, induced OWA, heavy OWA, and their generalizations. In 
addition to that, some of the models are developed based on the linguistic-type 
of data assessments (i.e., 2-tuple linguistic approach and general linguistic 
labels). Thus, the inclusion of fuzzy set ideas to model human behavior in 
MCDA problems is the main motivation of this study. 

 



190 
 

Quantitative and qualitative preferences, decision strategies based on the 
attitudinal character of the decision maker(s), and majority concepts for group 
consensus are highlighted. These contributions allow the modeling of financial 
decision problems with more complete and relevant information. Besides, a 
wide spectrum of risk and uncertainty analyses can be conducted for the detail 
assessments. As a conclusion, the proposed models provide some added values 
in the analysis of financial selection problems by considering the various issues, 
namely, multidimensional aspects, uncertainty theories, and soft aggregation 
processes. Thus, this justifies the problem statements, objectives and 
methodologies developed in this study. The specific conclusions based on the 
contributions of this work are summarized in the next section. 
 
 
7.3 Specific Conclusions based on the Main Contributions 
 

As already mentioned, this research is developed based on MCDA models, 
uncertainty theories, and OWA-based aggregation operators. The proposed 
models have some advantages over the existing models as will be explained in 
the following sub-sections. Beforehand, the methods and techniques used in the 
proposed models are recapitulated 
 

7.3.1 On OWA-based aggregation operations in ME-MCDM model 
 
This work is focused on the extension and analysis of group decision making 
model with respect to the OWA-based aggregation operators. The synthesis of 
experts' judgments and the fusion of criteria are studied. Firstly, the analysis of 
majority concepts based on the induced OWA and linguistic quantifier is 
presented as the group aggregators. This consists of the classical and alternative 
schemes of group decision making model. In specific, the methods by Pasi and 
Yager (2006) and Bordogna and Sterlacchini (2014) are examined. Some 
modifications to the support functions are suggested as to derive the vector of 
order-inducing variables. Secondly, the aggregation operators based on the 
integration of WA and OWA are studied for the fusion of criteria. 
Correspondingly, the alternative OWAWA operator is proposed as the new 
approach. In particular, it is a modification or an alternative representation of 
the immediate weighted average (WA) and OWAWA operators.  

Based on these two-stage aggregation processes, then the multi-expert 
MCDM model is developed for the heterogeneous case. A comparison is 
conducted to see the effect of different weighting techniques in aggregating the 
criteria and the results of using different decision schemes for the fusion of 
majority opinion of experts. A numerical example based on the investments 
selection problem is used in the analysis. As for the results, it can be 
demonstrated that the selection of decision schemes (either classical scheme or 
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alternative scheme) as well as weighting methods employed in the aggregation 
process shown slightly different rankings of the alternatives. Specifically, each 
of the decision schemes reflects different decision strategy in deriving the final 
ranking. The classical scheme is based on the aggregation of the individual 
decision strategy of experts. In contrast, the alternative scheme is the result of 
the group decision strategy collectively. Thus, this orientation in manipulating 
the consensus of experts has produced distinct results.  

The alternative scheme demonstrates more specificity in term of comparison 
(i.e., with respect to each criterion of experts) than the classical scheme (i.e., the 
final ranking of individual experts). The procedure based on the alternative 
scheme is more consistent in the spirit of cooperative-group decision making as 
the attitudinal character is respected to the group, not the individual. Hence, in 
certain cases of financial decision making problems, the analysis can be 
conducted in this way in achieving the final decision. However, the classical 
scheme can be applied in the cases where the decision based on the independent 
attitudinal characters of experts is needed in the analysis. 
 
7.3.2 Weighted selective aggregated majority-OWA operator and its 

application in linguistic group decision making model 
 
The different approach of majority concept as the group aggregation is 
discussed here. Particularly, the majority additive-OWA (Peláez & Doña, 2003), 
the selective MA-OWA (Karanik et al., 2016) and the selective aggregated 
majority-OWA (Peláez et al., 2016) operators are studied and analyzed. These 
aggregation operators are only applicable in the case of homogeneous GDM 
problems. The weighted SAM-OWA (WSAM-OWA) operator then is proposed 
as the extension of the SAM-OWA to deal with the heterogeneous case. In 
particular, it is formulated with the inclusion of the reliability of information 
sources (or the degrees of importance). Integrated with the linguistic quantifiers, 
the WSAM-OWA is extended to the quantified WSAM-OWA operator, mainly 
for the group fusion strategy. Moreover, the QWSAM-IOWA operator is 
introduced for the individual fusion strategy. The similarity between experts’ 
opinions as the order-inducing variables is included to present the majority. This 
is done by specifying specific semantics for the linguistic quantifier. The multi-
criteria GDM model under the linguistic domain then is developed where the 
proposed aggregation operators can be implemented as the group aggregator 
and the weighted OWA operator is applied to derive the final ranking of 
alternatives. The investment selection problem is provided to demonstrate the 
applicability of the developed model.  
 The proposed aggregation operators for majority concept not only take into 
account the most similar values of experts but also consider the degrees of 
importance for the heterogeneous case. Moreover, these operators are 
consistent in aggregating the arguments with cardinalities to avoid the 
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distribution problems. In general, the proposed model offers a greater flexibility 
in analyzing the financial selection problems with the degrees of tolerance in the 
aggregation processes. Therefore, a wide spectrum of analysis can be performed 
for the final decision that suits the decision maker’s tendency.  
 
7.3.3 Linguistic Group Decision Making Model with Dempster-Shafer 

Theory and Induced Linguistic Aggregation Operators 
 
This work has presented a new model for linguistic group decision making 
under Dempster-Shafer framework based on the 2-tuple linguistic approach and 
the use of induced linguistic aggregation operators. By using this model, the 
decision maker gets a complete view of the decision problem because he can 
consider a wide range of aggregation operators between the minimum and 
maximum and select the one that is in accordance with his interests. The main 
advantage of using the 2-tuple linguistic approach is that the uncertain 
environments can be assessed without losing of information in the computation 
process.  

The model has been presented by using the 2-TILOWA operator. Thus, this 
formulation has produced the BS-2-TILOWA as the general aggregation 
process of this approach. Some of its main properties and particular cases are 
studied. This model has been extended by using generalized (2-TILGOWA) and 
quasi-arithmetic (Quasi-2-TILOWA) means in the aggregation of the linguistic 
information. As a result, the BS-2-TILGOWA and the BS-Quasi-2-TILOWA 
operator are obtained. Then, an application of the new approach in a linguistic 
group decision making problem about the selection of financial strategies has 
been developed with respect to the aforementioned aggregation operators.  

The main advantage of using these generalizations is that they provide more 
complete representation of the financial decision problems since a broad range 
of linguistic aggregation operators can be conducted. Moreover, it is more 
realistic and closer to the real life problems as the experts normally provide the 
preferences using the subjective judgments instead of the exact figures or values. 

 
7.3.4 Generalized AHP for group decision making model using induced 

OWA operators 
 
The extension of the aggregation operations in the AHP-GDM using the IOWA 
operators is the main focus here. The induced WMEOWA has been proposed 
to determine the weighting vector for aggregating the criteria in the AHP-GDM. 
Furthermore, the aggregation of experts’ judgments by the inclusion of the 
majority concept is implemented with respect to the priorities of alternatives 
and the individual preferences of criteria.  
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The main advantages of the proposed model are the ability to deal with the 
complex attitudinal character of the decision makers and the aggregation of the 
information with a particular reordering process. Therefore, the decision makers 
attain a complete view of the problem and are able to select the alternative in 
accordance with their interests. In addition, the integration of the majority 
concept based on the modified of Bordogna-Sterlacchini method has some 
advantages, including providing a uniformity in reflecting the behavior of the 
majority of experts and a robust decision by determining the performance 
judgments on each specific criterion or alternative. Moreover, the result of the 
majority of experts based on individual priorities of the alternatives is also 
provided. The application in the investment selection problem has been given 
to exemplify the feasibility of the proposed method. The comparison of 
different schemes of group aggregation with respect to different degrees of 
optimism has also been conducted. 
 
7.3.5 Heavy weighted geometric aggregation operators in AHP group 

decision making 
 
In this study, the heavy weighted geometric (HWG) and heavy ordered weighted 
geometric (HOWG) operators have been introduced. These operators are used 
as aggregation methods in the analytic hierarchy process (AHP) under group 
decision making. The aggregation of individual judgments (AIJ) procedure of 
AHP is implemented as the extension model. For the AIJ procedure, the 
geometric mean-based methods are preferable as they satisfy the unanimity 
condition, homogeneity condition, and multiplicative reciprocal property. 
Hence, the inclusion of HWG and HOWG aggregation operators justify the 
extension model.  
 The main advantage of the proposed model is, it not only consider the 
overlapping of information but also takes into account the partial and non-
overlapping information in the aggregation process. Moreover, the integration 
of AHP-GDM with the HOWG provides a wider class of aggregation operators 
from the minimum to the total operators. 
 
7.3.6 TOPSIS model with the OWA-based aggregation operators 
 
The central focus is given on the TOPSIS for homogeneous group decision-
making model. The two stages of aggregation processes in the TOPSIS-
GDM model are designed, which are the external aggregation (i.e., the 
inclusion of majority concept as the consensus measure of experts) and the 
internal aggregation (i.e., the aggregation of criteria for the ranking process). 
In internal aggregation, the inclusion of the attitudinal character (or behavior) 
of experts is also included, such as considering the pessimistic or optimistic 
case. For this purpose, some modifications on separation measures are made 
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using the Minkowski-OWA distance measures. In general, the advantages of 
the proposed model include: provide the uniformity in modeling the 
behavior of the majority of experts regarding the proportion of criteria to 
consider and establish a more robust decision by taking into account the 
consensus of experts on each criterion instead of on each alternative.  

The analysis of the human resources selection problem is implemented to 
test the reliability of the proposed model and the comparisons are made 
between some other models, for example, the classical TOPSIS-GDM by 
Shih et al., (2007) and the TOPSIS-GDM with majority opinion based on the 
classical scheme by Hajimirsadeghi & Lucas (2009). Specifically, a 
comparison of the models is conducted with respect to the Manhattan 
distance and the Euclidean distance. The confidence measures are established 
to test the results of different TOPSIS-GDM models. In general, the 
inclusion of majority concept in the TOPSIS-GDM model (either classical 
scheme or alternative scheme) showed a more convincing result than the 
classical TOPSIS-GDM in term of discrimination between the alternatives. 
This is because the classical TOPSIS-GDM does not consider the similarity 
between experts as to derive the final ranking.  

The aggregation operator based arithmetic mean or geometric mean is 
affected by the extreme values. Hence, the aggregated result is correlated to 
the symmetric tendency between the values rather than the consensus 
between the similar values. On the other hand, the group aggregator with the 
majority concept provides flexibility to consider the most similar opinions 
and exclude the less similar opinion to avoid the aggregation on the extreme 
values. However, based on the analysis of case study, there are slight 
differences in the results obtained from each model. This is due to the fact 
that there are only two subjective criteria considered in this case for 
evaluating the majority opinion of experts and the rest are based on the 
objective criteria. However, this analysis provides a promising tool for 
analyzing the data which focuses on majority opinions.    

 
7.3.7  Multi-attribute Group Decision Making 

Model with Application to Flood Control Project 
 
In this work, a group decision making model based on set 
approach has been constructed, namely CBFS-MAGDM model. The developed 
model considers two co  (i.e. positive and negative views of 
experts) in the evaluation process. These two-sided judgments are not limited 
to the complementary condition as in fuzzy set approach or restricted by the 
intuitionistcic fuzzy condition. Hence, this approach can be considered as the 
generalization of the FS and IFS approaches. With respect to this concept, the 
conflicting bifuzzy similarity measure then is proposed to compute the degree 
of agreement between experts. The result of the group aggregation process is 
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further evaluated using the integration of fuzzy TOPSIS and fuzzy AHP models. 
The fuzzy TOPSIS is applied for the ranking process. While, fuzzy AHP is 
employed for the weighting process, together with entropy method. In specific, 
the subjective and objective weights are integrated for the attribute and sub-

cts the subjective rating of experts and objective 
information obtained from a mathematical model respectively. The fuzzy AHP 
method computes the subjective weight, and the entropy method is employed 
to calculate the objective weight. 

To demonstrate the feasibility of the proposed model, a case study of 
selection flood control project is conducted. In comparison, the fuzzy 
MAGDM model is put forward as the reference for the CBFS-MAGDM model. 
Even though, the FMAGDM and CBFS-MAGDM models produce similar 
ranking of alternatives, but  for 
both models. In specific, the CBFS-MAGDM gives a slightly lower or greater 
clos -complement double-sided 
judgments. Thus, in this case, the CBFS-MAGDM has some advantages as it is 
more realistic and closer to the real life problems. 

The application of the proposed model is not limited to the selection 
control projects. The model can be applied to other research domains having 
the similar features, notably, the 
and non-standard data structure. One of the potential areas is in the domain of 
finance. The 
experts, thus provides a better policy for the decision analysis. With the aim to 

incomplete information for each option can be carefully analyzed and revised.  
 
 

7.4 Future Research 
 

For the future research, a lot of studies can be conducted related to the 
extensions of decision analysis models (MCDA and GDM) by the integration 
of uncertainty theories and aggregation operators. In the domain of finance, the 
MCDA and GDM models can be applied to many other financial problems (see, 
for examples, Ceballos, 2001; Ceballos & Sorrosal, 2002; Ramírez et al., 2008). 
Generally, the applications of these models are not limited to the realm of 
finance. Other decision problems having the similar features, namely the multi-
dimensional aspects, uncertainty and/or aggregation issues can be applied. 

There are many other MCDA models in the literature which can be extended 
using the aforementioned concepts and theories. Among them, include, the 
analytic network process (Saaty, 2013), MACBETH (preference relation-based 
method), outranking methods: ELECTRE (Roy, 1991) and PROMETHEE 
(Brans & Vincke, 1985), multi-objective decision making models (Hwang & 
Masud, 1979), etc. The hybrid model can be developed as well by integrating 
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the different part of MCDA models, specifically for deriving the weighting 
vector and the ranking process. In addition, further development can be made 
by the inclusion of the evolutionary algorithm techniques like genetic algorithm 
(Melanie, 1996), particle swarm optimization (Kennedy & Eberhart, 1995), ant 
colony techniques (Dorigo, 1992), etc. These methodologies can be used to 
simulate the human behavior via intelligent machines to perform well and better 
than humans. 

Other direction of research can be focused on the representation of 
imprecise data using the higher order fuzzy sets. These include the type-2 fuzzy 
set (Zadeh, 1975), intuitionistic fuzzy set (Attanassov, 1986), conflicting bifuzzy 
set (Abu Osman, 2004), Z-number (Zadeh, 2011), neutrosophic set 
(Smarandache, 1999), etc. Recently, much attention has been given on the bi-
value evaluations (bipolar or bicapacities), notably, the positive and negative 
sides of data. This provides the analysis become more general and powerful as 
two-sided judgments of effect and side-effect are considered simultaneously. 
This concept has been applied in some of the MCDA models, but there are still 
rooms that can be improved in the model developments, especially with the 
application in the domain of finance. 

Analogously, the extension of aggregation operators can be conducted as well 
to deal with the higher order fuzzy sets. The main focus can be given on the 
extension of OWA operators to the higher order of OWA operators. Recently, 
the OWA has been extended to the type-1 OWA (Zhou et al., 2008) and type-
2 OWA (Zhou et al., 2010) to cope with the uncertainty data. The extension can 
be further generalized to the other variant of OWA operators, such as induced-
OWA, heavy OWA, etc.  

Prior to that, the Choquet and Sugeno integrals have been applied in some 
of MCDA models. The extension using the concept of higher order fuzzy sets 
also can be made to these more general aggregation operators such as fuzzy 
measures (Sugeno, 1977) and monitored heavy fuzzy measures (Yager, 2003a). 
Thus, the interaction between data (criteria or experts’ judgments) can be 
included, then providing the dependency (synergy positive or synergy negative) 
for the detailed and extensive analysis. 
 

 
7.5 Summary 
 
To sum up, the presented thesis dealt with the extension of multi-criteria 
decision analysis models for the financial selection problems (as a specific scope) 
and also the general selection problems (human resource and flood control 
project selection problems) with the inclusion of the attitudinal character, 
majority concept, and fuzzy set theory. In particular, the group decision making 
model, Dempster-Shafer belief structure, AHP, and TOPSIS are proposed to 
overcome the shortcoming of the existing models related to the financial 
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decision analysis. The applicability and robustness of the developed models 
have been demonstrated and some sensitivity analyses are also provided. The 
main advantages of the proposed models are to provide a generality and 
flexibility of models for a wider analysis of the decision making problems.  
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