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The emergent cooperative behavior of mobile physical entities exchanging information with their
neighborhood has become an important problem across disciplines, thus requiring a general framework to
describe such a variety of situations. We introduce a generic model to tackle this problem by considering
the synchronization in time-evolving networks generated by the stochastic motion of self-propelled
physical interacting units. This framework generalizes previous approaches and brings a unified picture to
understand the role played by the network topology, the motion of the agents, and their mutual interaction.
This allows us to identify different dynamic regimes where synchronization can be understood from
theoretical considerations. While for noninteracting particles, self-propulsion accelerates synchronization,
the presence of excluded volume interactions gives rise to a richer scenario, where self-propulsion has a
nonmonotonic impact on synchronization. We show that the synchronization of locally coupled mobile
oscillators generically proceeds through coarsening, verifying the dynamic scaling hypothesis, with the
same scaling laws as the 2D XY model following a quench. Our results shed light into the generic nature of
synchronization in time-dependent networks, providing an efficient way to understand more specific

situations involving interacting mobile agents.
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I. INTRODUCTION

Synchronization processes by which a large population
of units spontaneously organize into a cooperative state
play an important role in very diverse contexts, from
physics to biology going through such disparate fields as
ecology, sociology, or neurosciences, among others [1,2].
Fireflies flashing in unison or peacemaker cells firing at a
given rate are examples of synchronized states where order
in time emerges without any centralized control. A major
breakthrough in the description of such collective phenom-
ena was the Kuramoto model of phase coupled oscillators,
which, since its introduction in the mid-1970s, has become
a paradigmatic model in the study of synchronization [3,4].
In its original version, each oscillator was considered to be
equally coupled to all the others. However, very few
systems justify such simplification and several extensions
of the Kuramoto model to adapt it to more realistic
situations have been introduced since then. The synchro-
nization of phase oscillators arranged in lattices or more
complex network topologies has been widely studied over
the past decades, taking advantage of recent developments
on the theory of complex networks [5]. To date, most
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studies of synchronization involve static networks with a
fixed topology, despite that many interesting synchroniza-
tion phenomena involve mobile agents. In this work, we
turn our attention to such problems, where the interplay
between the motion of the agents and the dynamics of their
phases plays a key role in the synchronization process,
providing a general framework for its study.

Large groups of living organisms can cooperate to form
complex dynamical patterns across a broad range of length
scales, from the macroscale—like flocks of birds [6]—
down to the microscale—like a suspension of cells syn-
chronizing their genetic clocks [7-11]. The question of
whether it is possible to recreate (and control) emergent
group behavior in artificial systems made of autonomous
robots has been raised recently [12,13]. At the microscale,
interesting examples of synchronization in dynamical net-
works can be found in the realm of microbiology. Genetic
oscillators that drive the expression of a fluorescent protein
can be inserted into E. coli bacteria, making them flash at a
regular rate [7,14]. Once coupled, a large population of
bacteria can synchronize, flashing all together at the same
rhythm [8,10]. The coordinated expression of genetic
oscillators, like the segmentation clock, has been shown
to play a key role in, for instance, somitogenesis [15]. This
nonexhaustive list of examples shows that the ability to
manipulate and control the synchronization of systems
made of mobile entities could be exploited as design
principles to build biological sensors, bioinspired materials,
or to improve mobile communication systems.
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In recent years, it has become usual in the physics
community to consider as active matter any system made of
objects that are able to self-propel, locally converting
energy from their environment into motion [16,17].
Animal groups, bacterial suspensions, or collections of
robots fall into this class. Their key feature is that the local
driving needed to sustain self-propulsion breaks detailed
balance, which automatically drives the system far from
equilibrium. As a consequence, the competition between
interparticle interactions and activity gives rise to a plethora
of genuine nonequilibrium phenomena. In order to study
the impact of mobility in the synchronization of phase
oscillators, we introduce a model in which agents perform a
persistent random walk in two dimensions. Here, we adopt
a minimalist approach, neglecting all the biochemical and
physical details except the ones that we think are truly
essential: self-propulsion, steric repulsion, and phase cou-
pling. Each agent is modeled as a physical hard disk
carrying an internal phase oscillator. We use the model
introduced in Ref. [18] to describe the dynamics of the
particles, while the dynamics of the oscillators are based on
the Kuramoto model in the time-evolving network defined
by their positions.

Several models have been introduced recently to study
the synchronization of mobile agents. In Ref. [19], agents’
positions are described by a deterministic map and their
internal state by a chaotic oscillator. Systems of pointlike
agents moving stochastically have been considered
recently. In Ref. [20], one of the authors has considered
pointlike Brownian agents, while Lévy walkers carrying
noisy phase oscillators have been investigated in Ref. [21].
In a series of works, Uriu and collaborators introduced
lattice models where agents exchange their location at a
given rate [22-24], as well as a model of phase oscillators
attached to repulsive self-propelled particles in closed
packed conditions, where the presence of alignment gives
rise to an optimal synchronization [25]. It is worth
emphasizing here that in all these situations [22-25] the
topology of the interaction network is such that it forms a
single connected component.

Our model generalizes these previous approaches,
allowing the exploration of simply connected as well as
disconnected topologies within a unified framework. In the
limit of Brownian pointlike agents, we recover the model
studied in Ref. [20], while in the high-density limit, we
approach the models considered in Refs. [22,23,25]. We
explore synchronization in mobile systems at finite den-
sities, in different regimes that previous approaches could
not access. It is known that the competition between
interactions and activity gives rise to strong spatiotemporal
heterogeneities [18,26,27]. Therefore, our approach allows
us to explore the impact of these dynamical structures,
generic in active systems, on the synchronization of phase
oscillators, and disentangle the role played by the network
structure, self-propulsion, and particle interactions.

This article is organized as follow. In Sec. II, we present
our model of self-propelled oscillators. In Sec. III, we
describe two limit regimes that we use as a reference. The
deviations from these idealized cases is discussed in
Secs. IV and V, where our main results are presented.
The dynamics of noninteracting pointlike agents is ana-
lyzed in Sec. IV. In Sec. V, we explore the impact of steric
effects in the synchronization of locally coupled oscillators
carried by self-propelled hard disks. Finally, we conclude
in Sec. VL

II. SELF-PROPELLED OSCILLATOR MODEL
A. Self-propelled particles

We consider a population of N moving individuals in
two dimensions. In our model, the individuals (or agents)
are self-propelled hard disks of diameter & moving in a
L x L surface with periodic boundary conditions. Each
particle i, located at r;(¢) = [x;(7), y;(¢)] at time 7, moves
accordingly to the kinetic Monte Carlo model described in
detail in Ref. [18]. It is an extension of the standard
Monte Carlo dynamics used to simulate hard disks in which
we simply introduce correlations between successive dis-
placements. The evolution of the ith particle position is
given by

ri(t + A1) = ri(1) + 6;(1) Pocc At (1)

where P, is the acceptance probability of the update,
which encodes the interaction between particles. Here, we
use the Metropolis scheme: for a hard-core repulsion,
P,.. =1 if the move does not generate any overlap with
a neighboring disk and P,.. = 0 otherwise. Self-propulsion
is introduced through the statistical properties of the
displacement field §;, which, at a given time step ¢, is
constructed as

0;(1) =6;(t=At)+vimi(1),  8;(t=0)=vom;(0), (2)

where #; is a random vector with components independ-
ently drawn at each step from a uniform distribution in the
interval [—1, 1] and §,(7) is constrained, at each time step, to
lie in a square box of linear size v, (by applying reflective
boundary conditions). In other words, the displacement of a
particle at some time ¢ is given by the displacement at the
previous time step plus a uniform random shift »;n of
typical amplitude ~v; [where we enforce [6%()| < vy,
a=x, y]. For v; < vy, the random shift is negligible
and particles move ballistically with velocity v,. When the
contribution from the random shift becomes larger than the
one from the previous step, meaning v; > v, the displace-
ments are not time correlated anymore and we recover the
Monte Carlo dynamics of equilibrium Brownian disks. In
between, an isolated particle describes an overdamped
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persistent random walk with persistence time 7=
(vo/v,)*At (see Ref. [18] for further details).

This model introduces two control parameters: the
packing fraction ¢ = z6’p/4 (where p = N/V is the
number density) and the persistence time z, which quan-
tifies the amount of activity in the system and therefore the
departure from equilibrium. The competition between
steric interactions and self-propulsion in this model leads
to a rich phase behavior in the (¢ — 7) plane, with a fluid,
cluster, and gel-like phase [18]. Despite its simplicity,
this model of active disks has been successful in describing
the experimental equations of state of suspensions of
self-propelled colloids [28].

In the absence of excluded volume interactions,
P,.. =1, the only control parameter in the model is 7.
In this limit, which we study in Sec. IV, particles move
ballistically at times ¢ < 7 and diffusively at longer times,
t > t. The persistence time sets the crossover between
these two regimes. In the ballistic regime, the mean-square
displacement,

Z (0) =1y (1)), (3)

behaves as Ar?(t) = (vot)?, while in the diffusive one,
Ar?(t) = 4Dt, with D « v}t (see Ref. [18] for more
details).

B. Phase oscillators

Each self-propelled particle possesses an internal phase
oscillator denoted 6,. Its dynamics is described by the
Kuramoto model on the dynamical network defined by the
particles’ positions (nodes), connected to each other within
a prescribed finite range [5]. We consider the situation in
which all the oscillators have the same intrinsic frequency,
which can be taken as zero without loss of generality. This
can be formally written as

Bir) = R%ZA” snfo,() - 0.0, (4)

The connectivity matrix A;; determines whether two
oscillators i and j interact. Here, we use a local connectivity
scheme based on the two-dimensional Euclidean distance
between oscillators: A;; = 1 if |r; —r;| <Ry and A;; =0
otherwise. This means that two oscillators interact if their
centers are separated by a distance shorter than the
interaction radius Ry. Thus, the adjacency matrix defining
the network structure where the Kuramoto model is defined
is time dependent. The coupling strength between any pair
of oscillators in the interaction range is controlled by K,
which we normalize by the average number of neighbors
~R32, in order to construct an intensive quantity. For K > 0,
oscillators at a distance smaller than R, approach their

phases. Note that excluded volume interactions impose that
Ry > o in order to have any phase coupling at all. This
model of coupled phase oscillators introduces two control
parameters into the problem: R,, which controls the static
local topology of the interaction network, and K, which
quantifies the tendency of the oscillators to synchronize
their phases.

In the absence of motion, our model is equivalent to the
Kuramoto model in a (static) random geometric network
[5]. For 1/,/p 2 Ry, the interaction network is not simply
connected [a geometrical percolation transition occurs at

RY(p) ~ \/4.51/px [29]]. Disconnected components can
locally synchronize but global synchronization across the
whole system cannot be reached. However the presence
of motion makes the topology of the network dynamic:
the connectivity matrix A;;(¢) becomes time dependent,
allowing originally disconnected oscillators at r =0 to
interact for some period of time. Then, thanks to mobility,
the system can globally synchronize even at low densities
[19,20,30].

To summarize the main features of our model, the motion
of the units defined by the set of Eqgs. (1) and (2) takes into
account the competition between self-propulsion and
excluded volume effects in a simple manner. Coupling it
with the Kuramoto dynamics, Eq. (4), allows us to study
how these two ingredients, quantified by = and ¢, respec-
tively, affect the collective dynamical behavior of a col-
lection of coupled nonlinear oscillators.

In this work, we simulate the evolution of the model
over a broad range of parameters. We integrate Eq. (4)
using a Euler scheme with step size At, which is chosen
such that Ar <0.1/K. We fix vy =0.1 and vary the
persistence time in the range 7 € [0:10°] by changing
v1. We use systems of size N = 1000 up to N = 16 000 at
packing fractions from the ideal gas limit (¢ =0) to
¢ = 0.45. For systems of hard disks, we fix the diameter
of the particles 6 = 1 and change ¢ by changing the linear
size of the system L. We fix the probability that N
oscillators are within the interaction range to the value ¢ =
(mR%p/4) = 0.49 in order to compare systems at different
densities but with the same local connectivity. For the
systems of point particles we study in Sec. IV, we fix the
number density to p = 0.15625.

In order to study the synchronization dynamics, we let
the system evolve from a completely disordered configu-
ration of phases and follow how their tendency to align,
together with their motion in real space, gives rise to a
collective coherent state. We assign independently to each
particle a random initial phase between 0 and 2z from a
uniform distribution. The initial positions we start with
correspond to the stationary states generated by the
dynamics Eq. (1). Then, we let the system evolve accord-
ingly to Egs. (1) and (4).

A useful quantity to study the dynamics towards syn-
chronization is the average phase difference, defined as
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Colt) = <\/N<N#—1>%(MU)2>’ )
where the sum runs over all particle pairs, (---) denotes
an average over several independent realizations of the
dynamics, and A®;; denotes the principal value of
(6; — 6;) in the interval [0:7]. This function is expected
to decay, after an initial transient, as an exponential with a
characteristic time 7 :

Cg(t) ~ €_I/T“ . (6)

This synchronization time 7'y gives the time scale of decay
of the average phase difference. We compute this quantity
in our model over a broad range of parameters and analyze
under which conditions mobility induces a faster synchro-
nization. As we describe in the following section, the
behavior of the synchronization time can be estimated from
theoretical considerations in two limit regimes. Then, we
use these predictions as a reference when discussing our
results.

III. LIMIT DYNAMICAL REGIMES

For the sake of clarity, we identify at this stage two
extreme and opposite dynamical regimes that can be clearly
identified. The first one corresponds to a regime where the
topology of the network changes much faster than the
phases of the oscillators. In this fast switching (FS) regime,
one can describe analytically the dynamics towards syn-
chronization [20,31]. The opposite extreme case corre-
sponds to a regime where phases change in a much shorter
time scale than the links of the network. We will call it the
slow switching (SS) regime. We briefly summarize below
some previous results that we use as a reference in our
discussion.

A. Fast switching regime

In network language, the FS regime corresponds to the
ideal situation where the time evolution of the links is much
faster than the internal dynamics of the particles. In our
case, this means that the motion of the agents, which
induces the creation and deletion of links, is much faster
than the phase changes. Then, in this limit, the adjacency
matrix can be replaced by its time average, where the
entries correspond to the global probability that two
oscillators are within the range R, [20,31]. One can easily
extend the results of Ref. [20] and show that, within this
regime, the synchronization time in our model is given by

1

e =- In[1 — zK(N - 1)/L*]

(7)

which, to first order in the coupling strength, can be
expressed as

LZ

TFS —
' zK(N-1)

+O(K?) ~ (pK)~. (8)

Note that, in these expressions, the characteristics of the
oscillators’ motion (via v, and 7) are absent. The mobility
plays an indirect, yet crucial, role in this result. The velocity
and persistence of the oscillators is related to the time scale
characterizing the dynamics of the network, and then the
approach to the FS regime. The average time needed for a
self-propelled particle to diffuse over a distance of the order
of the interaction radius is t, = Jer)/ D, where D is the
diffusivity of the self-propelled agents. Another important
time scale in the system is the persistence time 7, which
determines for how long particles moves ballistically.
These microscopic times should be compared with the
time scale associated to the phase dynamics, f, = K~
Then, one expects that the system approaches the FS
regime when t, is larger than any other microscopic time
scale, namely, 7, > max|t,, 7.

In order to understand quantitatively the origin of the
deviations from the ideal FS behavior in our model, we
introduce a toy model that explicitly decouples the evolu-
tion of the network and the dynamics of the phases. In this
FS toy model, the position of each particle is randomly
reset at each time step, while keeping the Kuramoto
dynamics untouched. In this way, we implement numeri-
cally the FS limit conditions in our model.

B. Slow switching regime

We now consider the opposite extreme case where the
evolution of the network is so slow that it can be considered
as static. In this limit, 7y < min[¢,, 7], the oscillators are
effectively immobile and the model defined by Eq. (4) is
equivalent to the XY model with nonconserved order
parameter dynamics (or model A in the Halperin-
Hohenberg classification [32]) at zero temperature.
Indeed, Eq. (4) can be rewritten as

. K
‘95:—8—9[1‘1, H:_FZAUSVSJ’ )

0 ij

where we identify a spin with the phase of each oscillator
S; = (cos0;,sin0;). We recognize in this equation the
Hamiltonian H of the XY model in the network defined
by A;;. Therefore, studying the evolution towards synchro-
nization of the Kuramoto model from an initially incoher-
ent state is equivalent to studying the relaxation dynamics
of the XY model after a quench from 7 — oo to T = 0. For
local connectivity, Ry < L, the interaction network is
effectively two dimensional, and it is well known that
the 2D XY model cannot display long-range order at any
finite temperature. At the critical temperature Tk, the
system experiences a phase transition due to the unbinding
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of topological defects, the so-called Kosterlitz-Thouless
phase transition [33].

The out-of-equilibrium dynamics of systems quenched
through a symmetry phase transition is a long-standing
problem in statistical mechanics (for a review, see
Ref. [34]). When a system in a homogeneous disordered
initial state—such as our incoherent initial state—is let to
evolve towards an ordered state—such as the globally
synchronized state—it relaxes by locally growing ordered
regions. The growth of these spatiotemporal hetero-
geneities in time is a coarsening process. The central
quantity that characterizes the evolution of spatial phase
structures is the two-point correlation function:

G(r.t) = (Si(1) - S;(1))r,—r,=r- (10)

The dynamic scaling hypothesis [32,34] asserts that, in the
long-time coarsening regime,

G(r,1) = F(r/¢(1)). (11)

This scaling means that, at late times, the dynamics
following a quench is characterized by a single growing
length scale £(7). Some approximation schemes, like the
Bray-Puri-Toyoki (BPT) approach, have been established
to obtain analytical expressions of the scaling function F
[35,36]. For the 2D XY model quenched to T < Tkr, the
following scaling has been predicted and tested by numeri-
cal simulations [34,37,38]:

cen~|am(in)] " (12)

Int

The logarithmic correction to the diffusive behavior
&(t) ~ 1172, expected for systems with nonconserved order
parameter dynamics, is due to the presence of vortices. The
parameter A has been found to be an increasing function of
temperature [39]. In order to equilibrate, the system has to
grow an equilibrium region of the order of the linear system
size {~L. As a consequence, the relaxation time f,
needed to reach equilibrium grows with the system size.
If we neglect the impact of logarithmic corrections in the
equilibration time, the following scaling holds:

feg ~ L2 (13)

0~
As a consequence, we expect that, in the limit of a static 2D

network, the synchronization time of locally coupled
oscillators diverges as

T,~N (14)

up to logarithmic corrections.

IV. SELF-PROPELLED POINTLIKE
OSCILLATORS

We focus first on a population of self-propelled pointlike
oscillators without excluded volume interactions (¢ = 0).

In Fig. 1, we show the evolution of Cy for several values
of 7. As anticipated above, Cy decays exponentially after an
initial transient. The mean-square displacement quantifies
how efficiently particles explore the available space and,
therefore, provides a measure of the degree of mixing in the
system. Since self-propulsion reduces the mixing time, a
given particle visits the neighborhood of other particles
more often on average as 7 is increased, accelerating the
synchronization process. Similarly, the enhancement of
synchronization by the particle’s motion has been previ-
ously reported using different models [23,25,40]. As shown
in Fig. 1, the relaxation time 7 decreases with 7 up to a
saturating value 7, above which T is independent of 7.
Despite the fact that the diffusivity grows proportionally
with the persistence time, 7', is bounded for large values of
7. As already pointed out, the motion of self-propelled
particles exhibits two different regimes, ballistic and
diffusive. In the diffusive regime, two neighboring agents
interact, on average, for a period of time 7, ~ 7R}/ v}, the
characteristic time associated with the diffusion over the
interaction area 7R3 associated to an oscillator. This time
should be compared to the persistence time z. For ¢, < ,
the interaction between two oscillators occurs during the
ballistic regime, meaning that the phase coupling proceeds
between ballistic particles with identical velocity and, thus,
the value of 7 does not play any role. The effect of different
values of 7 becomes relevant in the diffusive regime only.
However, the coupling between oscillators is not able to
explore the dynamics of the particles in the diffusive time
sector since particles are no longer within the interaction
range when it sets in. Using this argument, we find an
estimation of the saturation threshold 7. = \/7Ry/v.

—>— T =
= =1
- =3
A =10
% =30
-©- =10
= 30

FIG. 1. Evolution of the phase difference Cy(t)/Cy(0) (after
averaging over 500 independent runs) in lin-log scale for a system
of L =80, N = 1000 self-propelled point particles for K = 0.1,
Ry = 2, and several values of 7.
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FIG. 2. Synchronization time as a function of 7 for several
values of Ry and K = 0.1 for N = 1000 and L = 80. We also
show T, in the mean-field limit by a horizontal line and the
predicted value of saturation 7z, & 35.5 by a vertical dotted line.

For Ry =2, we get 7, ~35.5, in agreement with our
data (see Figs. 1 and 2).

From the exponential decay of Cy, we extract the
synchronization time 7', for several values of 7 and R,.
The data are shown in Fig. 2. For 7 < 7y, T is reduced by
increasing self-propulsion. In the saturated regime 7 > 7,
T, has a value that depends on only Ry. As Ry grows, the
probability that two particles interact increases, thus reduc-
ing T,. Note that the interacting network’s connectivity
increases with R, such that the impact of mobility, whose
role is to connect originally distant oscillators for some
period of time, is less pronounced. In the all-to-all limit
Ry — L, all oscillator pairs are equivalent, so the synchro-
nization process should be independent of their mobility.
This is confirmed by our data, which show that the 7
dependence of T'; vanishes as Ry is increased, approaching
continuously the expected mean-field behavior.

As previously discussed, the FS limit and the all-to-all
model share a crucial simplification: they both consider a
fully connected interaction network, and in this sense, they
are both mean-field limits. In the FS regime this simpli-
fication comes from a kinetic limit, while the mean-field
Kuramoto model assumes that the coupling between all the
oscillators is identical, independent of their location. In
order to explore the connection between these two limiting
cases, Fig. 3(a) shows T, over a broad range of values of
R,. We compare the results obtained with simulations of the
FS toy model, for which the topology of the network and
the dynamics of the phases are decoupled.

As we vary the interaction radius from R, =2 to
Ry =L/2, T, decreases by 3 orders of magnitude. The
data show that 7, decays as the all-to-all regime is
approached, its asymptotic value being the one obtained
from the FS toy model. We perform simulations of the latter
toy model introduced in Sec. III for different values of K at
fixed Ry = 2 [see Fig. 3(b)]. We check that, indeed, this
simplified dynamics recovers the FS limit. The data for
Ry < 20 clearly differ from the value of 7', obtained with

[ T T T ;| T T
r —— 7 =300 — w KL
= =30
10* - =3 1 10° £ E
A =1
~— FSM
10% E
- (b)
& [ ]
4 1L 4
N N N 10 E | L -
1 10 20 30 40 0% 102 10 10°
Ry K
FIG. 3. (a) Synchronization time as a function of R, for

K =0.1 in a system of size L = 80 with N = 1000 particles.
The horizontal points show the data obtained from our FS toy
model (FSM). (b) T, as a function of K for our toy model with
R,y = 2. The solid red line indicates the FS prediction, Eq. (8).

the FS toy model. As R, grows, the connectivity of the
network increases until it is fully connected. Both extreme
cases, FS and all to all, give the same 7'y, meaning that the
topology of the network rules the synchronization process
and that the FS limit holds in the limit of Ry — L.
Moreover, the fully connected network and the FS dynam-
ics provide a lower bound for 7, at a given value of K:
synchronization cannot be achieved arbitrarily fast by
increasing Ry or 7.

The approach to the FS regime can also be studied by
increasing the natural time scale #, = K~! of the oscillators.
In the limit K — 07, the dynamics of the phases and the
network decouple. On the contrary, for large values of K
and Ry < L, we approach the SS regime. In Fig. 4, we
explore the approach to these two extreme regimes by
looking at the dependence of T with the system size. For
K > 0.006, we observe the T, ~ N behavior expected in the
SS regime. For K <0.006, T, takes the constant value
obtained with the FS toy model for small systems, while the
linear behavior sets in at larger N. We observe a distinctive
crossover from the FS (7, ~ const) to the SS behavior
(T; ~N) as the system size is increased. These results

104 ; . T T
L S X K=0.1
o X [ o =0.03
[ /@"”Q//jg’ o =0.01
g e o A =0.006
AR /46/,_/9—/' R O =0.004
4/,@/”“@‘ N _/,A—/}%:i O =0.003
[ I S =0.001
4 e S - S - 4
A -7 FSM
i ] —— N
1 ‘ ‘ )
1000 3000 10 000
N

FIG. 4. Finite-size behavior of T K for several values of the
coupling strength K shown in the key with fixed 7z = 300,
Ry =2, and p=0.15625. The broken lines indicate the 7 ,~N
scaling expected in the SS regime. The FS toy model results are
shown for comparison.
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strongly suggest that, for any finite value of K and large
enough systems, the dynamical mechanism characterizing
the evolution towards global synchronization is coarsening.
We justify further this important claim in the following.
Coarsening is blurred by the system finite size, and this
effect becomes more pronounced as K decreases. The
snapshots shown in Fig. 5 are in agreement with this
picture. In the top row, three configurations at ¢ = 1578,
2466, and 4815 of a system with 7 = 300 and K = 0.001
are represented. Configurations at the same time and for the
same value of 7 are shown in the bottom row for a system
with K = 0.1. The emergence of time-dependent phase
heterogeneities is highlighted by the Schlieren patterns.
This representation of the configurations is particularly
adapted to visualize vortices: each vortex appears as a point
from which four light and four dark brushes emanate, with
each color in between representing a different phase of the
oscillators. Locally synchronized regions where particles
share the same phase are identified as sections with the
same color. Schlieren patterns have been largely used to
visualize systems with broken rotational symmetry, like
vortices in the XY model [37] or in nematic liquid crystals
[41]. For K =0.001, the system develops large phase
patterns that soon become of the order of the system size.
In this case, the growth of local order is arrested by the full
homogenization of the system and the scaling regime is not
reached. For K = 0.1, we observe a coarsening sequence
reminiscent of what it is observed in the 2D XY model after
a quench from 7' — oo to T < Tkr. During the evolution,

FIG. 5. Configurations at various times during the evolution
from an incoherent initial state of two systems with K = 0.001
(top) and K = 0.1 (bottom). The phase of the oscillators is
represented as Schlieren patterns in which a color scale is
associated to sin?(20). Each vortex emanates eight brushes of
alternate black and white. In all cases, L = 320, N = 16000,
7 = 300, and Ry = 2. For visibility, the gray background refers to
empty space.

locally synchronized regions grow. The competition
between degenerate coherent states with different average
phase leaves behind topologically stable vortices. Then,
the annihilation of oppositely charged vortices drives the
dynamics at later times.

A quantitative study of the growth of phase patterns can
be achieved by computing the two-point correlation func-
tion G(r,1). We simulate systems of N = 2000 particles,
averaging over 300 independent runs for several values of
7. The data for 7 = 300 and K = 0.1 are shown in the top
panel of Fig. 6. We check that there are no significant finite-
size effects. From the decay of the correlations, one can
extract a characteristic length £(¢, 7), for instance, using the
condition G(&(1,7),1) = e~!. As shown in the inset of
Fig. 6, the correlation function depends on space and time
through the ratio r/¢&, thus verifying dynamic scaling [see
Eq. (11)]. The scaling is excellent, and the BPT functional
form is in surprisingly good agreement with the data.

In order to compare the growth of £ in our model with the
domain growth in the XY model, we plot &2(¢) In ¢ against
time [see Eq. (12)]. Spatial correlations develop faster as
self-propulsion is increased for values of 7 < 7, & 35.5.
Just as the phase difference Cy, the rate of growth of &
saturates for larger values of 7. After some initial transient,
& (t)Int grows linearly with time for all the values of 7.
We can extract the growing rate A from the slope of
these curves. The values obtained from the best fits of
the data are shown in the inset of Fig. 6. Our simulations
strongly suggest that the length scale characterizing the size
of phase-synchronized regions grows asymptotically in

time as
e~ 10 ()| (15)

Int

Note the similarity between this equation and Eq. (12)
describing the relaxation of the 2D XY model. The
nonuniversal prefactor A(7) has been replaced by A(z)
here, which depends on the persistence time instead of
temperature. The small logarithmic deviations to the
&~ /2 diffusive law can hardly be measured using the
data shown in Fig. 6 (more decades in time would be
needed to produce reliable data in this respect).

In the XY model, the temperature dependence of the
growing length is captured by A(7'). Numerical simulations
have found that this prefactor increases linearly with
temperature [39], but a complete theoretical understanding
of this behavior is still lacking. In the absence of a thermal
bath, the only source of noise in our model is the non-
Markovian stochastic motion of the agents, quantified by
the persistence time 7. In this pointlike limit, the diffusivity
of the particles D « v37, which, from a generalized Stokes-
Einstein relation, can be interpreted as an effective temper-
ature Top o 7 [28,42]. As shown in Fig. 6, 1 is an increasing
function of 7z, hence T, up to the saturation value 7.
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FIG. 6. Dynamic scaling for self-propelled point oscillators at p =
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0.156 25 (top) and hard disks at ¢p = 0.12 (bottom). (a) Space time

correlation function G(r, t) at different times ¢t = 10, 29, 100, 331, 1000, 3082 (from bottom to top) as a function of r for z = 300. The
inset shows the scaling plot G(r, t) against r/&£(7) together with the BPT scaling function. (b) Time evolution of £(¢) in log-log scale for
several values of 7. A linear growth is represented in dashed lines for comparison. The inset shows the rate of growth 4 as a function of 7.
(c) G(r, 1) at the same different times as (a) for a system of hard disks with = = 300. Again, the inset shows the scaling plot G(r, t) versus
r/&(t) confronted to the BPT scaling function. (d) Time dependence of the growing correlation length for several values of 7. In all cases,

Ry=2,K=0.1, N=2000, and L = 113.14.

Despite the fact that our model displays the same dynami-
cal universal features as the 2D XY model, it is reasonable
to expect that the nonuniversal prefactor A depends on the
specific dynamics of the system. A similar dependence on
the persistence time has also been observed for the
synchronization time (see Fig. 2). This provides further
justification to our claim that the dynamical mechanism
ruling the relaxation towards a globally synchronized state
is the one of growing synchronized domains separated by
topological defects. The increase and saturation of A with 7
has the same origin as the 7 dependence of the synchro-
nization time 7. These two quantities display a similar
dependence on the parameters of the system and are
therefore said to be coupled.

In this section, we identify and characterize quantita-
tively the different dynamical mechanisms taking place
during the synchronization of a collection of phase oscil-
lators carried by noninteracting self-propelled agents. We
show that self-propulsion accelerates the synchronization
process up to a threshold value determined by the local
connectivity of the interaction network. We study the
impact of the connectivity scheme by varying the inter-
action radius. In the limit of a fully connected network, the
FS limit becomes exact and the mobility mechanism of
the particles irrelevant. In this regime, all the particles in the
system synchronize at the same rate, which means that the

mechanism leading the dynamics is global. This FS regime
can also be approached in locally connected networks
for small enough values of K. Above this limit of small
coupling, the synchronization mechanism of locally
coupled mobile oscillators is local. In this latter regime,
the system exhibits a coarsening process analogous to the
phase-ordering dynamics of the 2D XY model following a
quench. While superdiffusion has been found to lead to a
second-order phase transition in the 2D XY model [21],
self-propulsion, which always leads to diffusion at long
times, does not affect the Kosterlitz-Thouless scenario.

V. SELF-PROPELLED HARD DISKS

We turn now to finite packing fractions, where many-
body effects may impact the synchronization of locally
coupled mobile agents. We explore systems at several
values of ¢ with fixed particle diameter ¢ = 1 and coupling
K = 0.1. Since we want to identify the ¢ and 7 dependence
of the synchronization process, we fix the probability that
N oscillators are within the interaction range to the value
@ = 0.49 (see Sec. II). This choice corresponds to the
short-range coupling regime (Ry < L).

Before studying the synchronization process, it is useful
to briefly describe the structural properties of the under-
lying active fluid of self-propelled hard disks, since the
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liquid structure dictates the nature of the dynamic network
where the oscillators evolve. Adding excluded volume
interactions between self-propelled particles leads to the
emergence of complex nonequilibrium spatial structures in
the system [18]. Particles have the tendency to aggregate,
even in the absence of any attractive interaction, forming
clusters that grow as 7 is increased. This is a genuine out-
of-equilibrium effect due to the competition between self-
propulsion and excluded volume interactions. Two typical
stationary state configurations of the system at two different
packing fractions are shown in Fig. 7. By stationary state
we mean here an asymptotic state obtained from the motion
of the particles in real space, independently of the dynamics
of their internal oscillators. Once a stationary state has been
reached, the Kuramoto dynamics is turned on, and the
evolution towards a synchronized state governed by
Egs. (1), (2), and (4) is studied. In Fig. 7, we illustrate
this evolution by showing two configurations at different
times starting from a random distribution of phases.

A cluster is defined by a set of connected particles,
meaning that the distance between them is smaller than Ry,
so the oscillators they carry are coupled. We characterize
the cluster structure in the stationary state by means of the
cluster size distribution function P(m), defined as the
probability to find a particle in a cluster of size m. In
Fig. 8, we show the evolution of P at ¢ =0.45 and

FIG. 7. Snapshots of a system made of N = 16000 self-
propelled hard disks at two different times, ¢ = 6019 and 70
065, for 7 =300, ¢ = 0.12, L =320 (top) and ¢ = 045, L =
167 (bottom). Each particle is represented by a disk whose color,
as in Fig. 5, represents its phase by the amplitude of sin?(26).

increasing persistence. As discussed in detail in
Ref. [18], the distribution broadens as 7 is increased,
meaning that larger clusters are formed. Since the cluster
size increases with z, for high enough self-propulsion, a
macroscopic cluster spanning the whole system can even-
tually emerge. The formation of a percolating cluster for 7
above a critical value 7, is analog to the formation of a gel-
like structure in suspensions of attractive colloids. Indeed,
the persistence time in this model plays the role of an
effective attraction [28].

Below the percolation threshold, the numerical data are
well reproduced by the following functional form of the
distribution:

e—(m/m*)
P(m) = ———, (16)

ml/

with v~ 1.7. This exponent characterizes the activity-
driven percolation and, as such, does not depend on the
specific values of 7 and ¢, while m* gives a characteristic
cluster size that grows with 7 and ¢ [18]. The same
functional form has been found in previous instances of
particle aggregation induced by activity [18,43,44]. At
percolation, the distribution becomes algebraic P(m)~m™,
meaning that clusters of any size populate the system. For
7 = 7., the system is critical. Above the percolation point,
T > 7., macroscopic clusters have a non-negligible weight,
represented in the distribution by a peak at large cluster
sizes m =~ N (see Fig. 8).

‘We move now to the analysis of the synchronization time
and study the impact of the heterogeneous structures
described above. In Fig. 9, we show the results of extensive
numerical simulations for 7¢ and D over a broad range of
values of 7 and ¢. As already mentioned in Sec. IV and
confirmed by our data, the diffusion coefficient D in the
limit ¢» — 0 is proportional to the persistence time.

107"
g
. 1072 E
£ i
q, L
1078
107*
b N Ry X I
1 10 100 1000
m
FIG. 8. Cluster size distribution for a system composed of

N = 1000 disks at ¢ = 0.45 and several values of 7. The
percolation threshold in this system is at z. & 10. The continuous
line represents the distribution Eq. (16) with m* =~ 65 and
v = 1.7. The broken line corresponds to the power-law behavior
P(m) ~m™ at percolation with v = 1.7.
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FIG.9. (a) Synchronization time 7'; times the number density p
as a function of 7 for several values of ¢ shown in the key. We
present the results of 7y normalized by 1/p since 1/pK
introduces a time scale that can be absorbed in the time units.
(b) Diffusion time for the same set of parameters as the ones in
(a). The broken line represents the dilute limit behavior
6%/D « v~!. The data for ¢ =0 with Ry = 2 and p = 0.15625
are also shown as a reference.

However, many-body effects strongly alter this simple
behavior. The diffusion coefficient at finite density is a
nonmonotonic function of the persistence time [18]. As we
show in Fig. 9(b), there is a density-dependent optimum
value of the persistence time 7(¢) for which the diffusion
time ¢°/D is minimal. The emergence of this optimum
value is a direct consequence of particle clustering. At small
values of ¢ and 7, small clusters coexist with very dilute
regions where particle collisions are rare. Particles in these
large voids move basically free, such that, as for non-
interacting particles, the diffusivity increases proportionally
with 7. For larger values of ¢ and z, bigger clusters are
formed, leaving smaller voids where particles can move
faster. The competition between these two opposite effects
leads to the observed nonmonotonic behavior of D.
Increasing self-propulsion accelerates the particles but also
leads to the formation of increasingly large clusters where
particles inside are kinetically trapped. Since clusters are
more likely to appear at larger packing fractions, 7(¢)
decreases with ¢.

As we show in Fig. 9(a), the synchronization time
displays an analogous nonmonotonic behavior, meaning
that self-propulsion does not always favor synchronization
in the presence of volume exclusion. There is an optimal
value of 7 that minimizes the time needed to reach global
synchronization for a given packing fraction. Moreover,
this value is identical to the one that minimizes the diffusion
time, namely, 7(¢). This observation is in agreement with
our previous discussion about the synchronization of
pointlike agents. Since the diffusion gives a characteristic
time for particle mixing, one expects 7, and D to be highly
correlated. The structure of the active liquid affects the
synchronization time through the presence of clusters. The
existence of a percolation threshold does not have a direct
impact on T,. The important structural feature having a
direct impact on the synchronization is the growth of
clusters with 7 and ¢. At a given number density p,

synchronization is slower at higher packing fractions.
The saturated regime at high persistence time, found in
the ideal gas system, is never reached in the range of
packing fractions we explore here.

We now investigate to what extent the presence of
excluded volume interaction alters the dynamical mecha-
nisms we discussed in the previous section, in particular,
the asymptotic behavior of the dynamical correlation length
and the similarities between the synchronization process
and the dynamic scaling of the 2D XY model. We follow
the same line of reasoning as above, but now for a system
where self-propulsion and excluded volume interactions
compete.

From the four configurations that illustrate the evolution
of the phase of the self-propelled disks (see Fig. 7), one
clearly observes the growth of synchronized (or ordered)
domains. The dynamics proceeds first through the local
synchronization within a cluster. The presence of steric
effects results in the formation of clusters, so particles inside
have a natural preference to synchronize their phases. As the
evolution proceeds, synchronized regions of typical size
&(t, ) grow. The competition between synchronized regions
with different phase leads to the formation of vortices. We
observe the same behavior for pointlike agents. The pres-
ence of particle interactions does not seem to modify the
stability of topological defects. At later times, once the
characteristic length has become larger that the mean cluster
size, the system settles into a much slower dynamical
regime. This regime is characterized by the annihilation
of oppositely charged vortices in a similar way to what
happens in the 2D XY model and the simplified version of
our model discussed in the previous section.

The behavior of the space time correlation function
G(r, t) confirms this growth. As we show in Fig. 6, space
correlations grow in time. Consistently with the data we
show in Fig. 9, synchronization takes longer to establish in
a system at finite packing fraction, as is visible in Fig. 6. In
the regime where domains grow and ¢ < L, the correlation
function G depends on space and time through &£(7, 7) only.
Our data confirm this claim, and, notably, the scaling
function is nicely reproduced by the BPT form.

In order to characterize further the growth of order in the
system, we compute & over a broad range of values of 7
using G(&(t,7),t) = e7! (see Fig. 6). In the long-time
regime, we find that £ In(¢) grows linearly in time, such
that our data verify the scaling form Eq. (12). At short times
t <, synchronized domains grow faster when 7 is
increased. This corresponds to the short-time dynamical
regime described above, where particles adjust their phases
inside the clusters. Since clusters grow monotonically with
7, the characteristic length £ does as well in this regime. At
later times, the 7 dependence of £ is no longer monotonic.
In this second, later time regime, particles have to adjust
their phases at larger scales in order to reach global
synchronization. This leads to a slower dynamics where
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FIG. 10. Dependence of 4 with 7. In the inset we show that
AT =~ 35451 with a reasonable degree of accuracy of 1%.

the structure of the underlying active liquid plays a non-
trivial role.

A direct measure of the 7z dependence of the growth
process is provided by A, the slope of the plots & In(z)
against ¢. The results are shown in Fig. 10. As already
discussed, for values of 7 < 7 particle mixing is more
efficient when 7 is increased, explaining the rise of 1 al
low persistence times. At higher values of z, the formation of
large clusters reduces the ability of the particles to mix
across the whole system and then to globally synchronize,
leading to the drop of 1. This behavior is consistent with the
nonmonotonic dependence of T'; with 7 already discussed.
The crossover time between these two regimes is given by 7,
the same optimal value for which T, and D~! are minimal.
This suggests that 4 and 7', are strongly coupled; that is, both
measures provide the same information about the long-time
synchronization dynamics. Indeed, as shown in Fig. 10,
A X Ty = const up to numerical accuracy, meaning that the
dynamical process leading the approach to a synchronized
state is coarsening, and that the rate of growth of locally
ordered regions determines the synchronization time.

In this section, we investigate how the presence of
interactions between agents in real physical space affects
the synchronization of mobile oscillators. The main impact
of excluded volume interactions is the emergence of
nonequilibrium clusters at finite packing fraction, which
gives rise to a nonmonotonic dependence of the synchro-
nization time with the persistence time. The mechanism by
which locally coupled phase oscillators synchronize in this
heterogeneous, time-evolving network is coarsening, and
the domain growth characterizing the dynamics is consis-
tent with the dynamic scaling behavior of the 2D XY model
with nonconserved order parameter dynamics.

VI. CONCLUSIONS

We provide a general and comprehensive discussion
about the interplay between active motion, particle inter-
actions, and phase synchronization. We present a general
framework where the time evolution of the network is
self-generated by the stochastic dynamics of physical

interacting objects, allowing us to tune the connectivity
of the network by changing the coupling range and/or the
mobility of the agents, and thus explore both connected and
disconnected structures. The generality of this approach
brings a wide range of situations into a unified description,
providing access to the universal scenarios generically
involved in the synchronization on time-evolving networks.

We find that, in the absence of particle-particle
interactions, self-propulsion promotes synchronization of
locally coupled oscillators. Interestingly, in the presence of
repulsive interactions, synchronization can be optimized by
choosing a precise value of the persistence time for a given
density. Such an optimum comes from a delicate balance
between the enhancement of particle motion and the
tendency to form clusters as we increase the persistence
of the particles, a purely out-of-equilibrium many-body
effect. This new effect shows that the interplay between the
oscillator coupling and the topology of the underlying
network, arising from particle interactions, plays a crucial
role for the performance of mobile systems which might be
seen as an evolutionary factor in living systems. We explore
the range of validity of two opposite limit regimes where
the synchronization process can be well understood from
theoretical arguments. The first regime corresponds to the
limit where the motion of the particles and the dynamics of
the phases can be considered as being decoupled and the
synchronization time can be computed analytically using
the so-called fast switching limit. The second regime
corresponds to the limit case where the motion of the
particles is much slower than the dynamics of the phases
and the synchronization dynamics is equivalent to the
phase-ordering dynamics of the 2D XY model after a
quench. We show that fast switching holds in two limits:
(1) in the limit where the range of phase coupling is large,
and hence the motion is irrelevant, and (ii) in the limit of
very weak coupling for small enough systems, since in this
case the exchange of neighbors is a fast process compared
with the phase interaction time scale. Besides these
limit situations, synchronization of locally coupled moving
oscillators generically proceeds through coarsening.
Despite its nonthermal nature, the model fulfills the
dynamic scaling hypothesis, and the same scaling laws
as the 2D XY model seem to hold for any coupling strength
in the limit of large system size. Our results support the idea
that our model belongs to the dynamical universality class
of the 2D XY model with model A dynamics and that the
evolution of the network where the model is defined does
not alter its scaling behavior. In this way, we make a
fundamental connection between the dynamics of a non-
equilibrium active system and a thermal one that fulfills the
fluctuation-dissipation theorem.

The new model we propose in this work sheds light into
the generic mechanisms leading the synchronization of
mobile physical entities. Although concrete experimental
systems, like bacteria colonies or robot swarms, might have
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their own specificities (not precisely captured by our
model), the general features of synchronization we identify
will be at play for any system where motility, synchroni-
zation, and excluded volume coexist. The insight we obtain
constitutes a useful guideline to address the nature of
synchronization in systems where the internal degree of
freedom and the particle motility are coupled, and help
designing optimizing synchronization strategies for artifi-
cial autonomous agents.

Here, we consider the internal phases of the particles as
being completely decoupled from their motion. A natural
extension of the model that would allow us to study the
emergence of collective motion in active systems would be
to couple the internal phase with the direction of motion. As
such, our results should be useful as a guideline for the
design of artificial autonomous agents, and, in particular,
for the optimization of their synchronization strategies.
Understanding the impact that motility and excluded
volume have in the onset of synchronization for popula-
tions of agents with a distribution of natural frequencies
persists as a relevant challenge. It remains unclear whether
the competition between the tendency of mobile oscillators
to order in the dynamical network topology and the
intrinsic frequency randomness can hinder synchroniza-
tion. In future work we aim at investigating these different
scenarios where the nature of the stationary state itself has
not yet been elucidated.
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