

The Structural Dimension of Cooperation

Cooperation Networks as Cohesive Small Worlds

Jordi Torrents Vivó

Aquesta tesi doctoral està subjecta a la llicència Reconeixement 3.0. Espanya de Creative
Commons.

Esta tesis doctoral está sujeta a la licencia Reconocimiento 3.0. España de Creative
Commons.

This doctoral thesis is licensed under the Creative Commons Attribution 3.0. Spain License.

THE STRUCTURAL DIMENSION OF
COOPERATION

Cooperation Networks as Cohesive Small Worlds

Jordi Torrents Vivó
jordi.t21@gmail.com

March 2017

Directors:

Joaquim Sempere Carreras (UB)

Fabrizio Ferraro (IESE)

Tutor:

Ma Teresa Montagut Antolí (UB)

PhD Thesis

Doctorat de Sociologia

Departament de Sociologia

Universitat de Barcelona

Dedicat als meus pares: Montserrat i Josep Ma.

Abstract

The last half of twentieth century has witnessed a key shift in the production process

of knowledge: the most important discoveries and innovations in science and technology

are not anymore the result of the work of very talented individuals working alone, but

the result of cooperation and teamwork. The remarkable increase in scale of cooperation

in knowledge intensive production processes has renewed the interest in analyzing the

mechanisms by which large scale cooperation emerges and thrives.

The two main theoretical approaches to cooperation are, on the one hand, a micro ap-

proach that considers cooperation as an atomic process in which cooperation is produced

between two individuals and, on the other hand, as a macro level phenomenon in which

the center of analysis is the collectively or group. The aim of this research is to bridge

the gap between macro level and micro level approaches to cooperation by focusing on

meso level mechanisms, which until recently have received little attention in the theoret-

ical debate. I argue that a meso level approach has to focus on the structural dimension

of cooperation, that is, the patterns of relations between the individuals that participate

in production processes, what I call cooperation networks. This perspective shows that

between the dyadic interactions among individuals, and the shared goals and values that

guide large organizations and groups, there are subgroups of individuals that play a key

role in enabling the kind of large scale cooperation that we have witnessed during the last

decades.

This research focuses on the case study of two large, mature, and successful Free and

Open Source Software (FOSS) projects —the Debian operating system and the Python

programming language— in order to build a structural theoretical framework that helps

explain and understand how large scale cooperation works. I present a network model,

that I name Cohesive Small World, which is based on two well established network mod-

els: the Small World model and the Structural Cohesion model. I propose that these two

models are not mutually exclusive. The family of networks that fit in the intersection of

both models exhibit consistent structural patterns. These patterns, I argue, provide the

scaffolding for the emergence of collaborative communities, such as FOSS projects, and

enable and foster effective large scale cooperation.

On the one hand, the generation of trust and congruent values among heterogeneous

individuals are fostered by structurally cohesive groups in the connectivity hierarchy of

cooperation networks because individuals embedded in these structures are able to com-

pare independent perspectives on each other through a variety of paths that flow through

distinct sets of intermediaries, which provides multiple independent sources of informa-

tion about each other. Thus, the perception of an individual embedded in such structures

of the other members of the group to whom she is not directly linked is filtered by the

perception of a variety of others whom she trusts because is directly linked to them. This

mediated perception of the group generates trust at a global scale. On the other hand, the

existence of dense local clusters connected between them by relative short paths allows

successful cooperation among heterogeneous individuals with common interests and, at

the same time, fosters the flow of information between these clusters preventing the local

clusters to be trapped in echo chambers of like minded collaborators.

I developed heuristics to compute the k-components structure, along with the av-

erage node connectivity for each k-component. These heuristics allow to compute the

ii

approximate value of group cohesion for moderately large networks, along with all the

hierarchical structure of connectivity levels, in a reasonable time frame. I show that these

heuristics can be applied to networks at least one order of magnitude bigger than the ones

manageable by the only algorithm available until now. I test empirically the new network

model that I proposed to further our understanding how cooperation in collaborative com-

munities works. I find that the model that I named “Cohesive Small World” is a good fit to

describe the cooperation patterns of the two big and mature FOSS projects that I analyze

in the empirical part of this thesis.

To further the empirical analysis, I explore the dynamic dimension of the connectivity

hierarchies that emerge on the cooperation networks of the Python and Debian projects.

I defined cooperation networks as the patterns of relations among developers established

while contributing to the project. The dynamic analysis that I present is not only a longi-

tudinal account of the changes in the hierarchy through time, but also the analysis of the

pace of renewal of individuals in the positions defined by the hierarchy. I show that the

Cohesive Small World model is a solid theoretical framework to define cohesive groups

in cooperation networks. The nested structure of k-components nicely captures the hi-

erarchy in the patterns of relations that individual contributors establish when working

together. This hierarchy, on the one hand, reflects the empirically well established fact

that in FOSS projects only a small fraction of the developers account for most of the con-

tributions. And, on the other hand, refutes the naive views of early academic accounts that

characterized FOSS projects as a flat hierarchy of peers in which every individual does

more or less the same.

I also show that the position of individual developers in the connectivity hierarchy

of the cooperation networks impacts significantly, on the one hand, on the volume of

contributions that an individual does to the project. And, on the other hand, the median

active life of developers in the project. I argue that the latter is a better way to analyze

robustness of FOSS projects than the classical random and targeted attacks that has been

used to assess robustness in other kinds of networks.

I argue that the connectivity structure of collaborative communities’ cooperation net-

works can be characterized as an open elite, where the top levels of this hierarchy are filled

with new individuals at a high pace. This feature is key for understanding the mechanisms

and dynamics that make FOSS communities able to develop long term projects, with high

individual turnover, and yet achieve high impact and coherent results as a result of large

scale cooperation. I conclude that cooperation in FOSS communities has a structural di-

mension because membership in cohesive groups that emerge from cooperation networks

has an important and statistically significative impact on both the volume of individual

contributions, and on the median active life of developers in the projects under analysis.

iii

Resum

L’última meitat del segle XX ha estat testimoni d’un canvi fonamental en el procés

de producció de coneixement: els descobriments més importants i les innovacions en ci-

ència i tecnologia no són el resultat de la tasca de persones amb molt talent que treballen

soles, sinó que són el resultat de processos de cooperació i de treball en equip. El notable

augment de l’escala de la cooperació en els processos de producció intensius en coneixe-

ment ha renovat l’interès en l’anàlisi dels mecanismes pels quals emergeix i prospera la

cooperació a gran escala.

Els dos principals enfocaments teòrics sobre la cooperació són, d’una banda, un enfo-

cament micro que considera que la cooperació com un procés atòmic en el qual l’interès

es centra en com es produeix cooperació entre dues persones i, d’altra banda, com un

fenomen a nivell macro en el qual el centre de l’anàlisi és el grup com a col·lectivitat.

L’objectiu d’aquesta recerca és acostar posicions entre l’enfoc macro i el micro sobre la

cooperació tot centrant-se en els mecanismes a nivell meso, que fins fa poc han rebut poca

atenció en el debat teòric. El meu argument és que un enfocament de nivell meso ha de

centrar-se en la dimensió estructural de la cooperació, és a dir, en els patrons de relaci-

ons entre les persones que participen directament en els processos de producció, el que

jo anomeno xarxes de cooperació. Aquesta perspectiva mostra que entre les interaccions

diàdiques entre els individus, i els grans objectius i valors compartits que guien les grans

organitzacions i grups, hi ha subgrups d’individus que tenen un paper fonamental en ge-

nerar i fomentar la cooperació a gran escala de la que hem estat testimonis en les últimes

dècades.

Aquesta recerca es centra en l’estudi de cas de dos projectes de programari lliure

(FOSS en anglès) —el sistema operatiu Debian i el llenguatge de programació Python—

per tal de construir un marc teòric estructural que ens ajudi a explicar i entendre com

funciona la cooperació gran escala. En aquesta tesi presento un model de xarxa, que

anomeno “Cohesive Small World”, que es basa en dos models teòrics ben establertes: el

model “Small World” i el model de cohesió estructural. Proposo que aquests dos models

no són mútuament excloents. La família de xarxes que s’ajusten a la intersecció de tots

dos models mostren patrons estructurals consistents. Aquests patrons proporcionen els

fonaments per al sorgiment de comunitats de col·laboració, com ara projectes de progra-

mari lliure, i tenen un paper clau en fomentar la cooperació a gran escala.

D’una banda, els grups estructuralment cohesius en la jerarquia de connectivitat de

les xarxes de cooperació generen confiança i valors compartits entre individus hetero-

genis perquè els individus inclosos en aquestes estructures poden comparar perspectives

independents sobre cadascun dels altres membres de la col·lectivitat a través de múltiples

intermediaris, la qual cosa els proporciona múltiples fonts d’informació independents.

Per tant, les persones incloses en aquests grups cohesius, tenen una percepció dels altres

membres de la xarxa de cooperació amb qui no estan directament connectats que està

filtrada per altres membres d’aquests grups cohesius amb qui confien perquè hi estan di-

rectament connectades. Aquesta percepció mediada pels grup cohesius genera confiança

i valors compartits a escala global. D’altra banda, l’existència de clusters locals —grups

de persones que treballen estretament entre elles— connectats per distàncies relativament

curtes amb altres clusters de la xarxa de cooperació, permet la cooperació entre individus

heterogenis amb interessos comuns i, al mateix temps, fomenta el flux d’informació entre

iv

aquests clusters que impedeixen que aquests grups de persones que treballen estretament

entre elles siguin atrapades en caixes de ressonància formades per col·laboradors afins

amb les mateixes idees.

En la part metodològica de la tesi, he desenvolupat heurístiques per a calcular l’es-

tructura de k-components de les xarxes de cooperació. Aquestes heurístiques permeten

calcular en un temps raonable el valor aproximat de la cohesió dels grups en xarxes de

cooperació moderadament grans, juntament amb tota l’estructura jeràrquica dels dife-

rents nivells de connectivitat. En la tesi demostro com aquestes heurístiques poden ser

aplicades a xarxes almenys un ordre de magnitud més grans que les que podia assumir

l’únic algoritme disponible fins ara. Amb l’ajuda d’aquestes heurístiques poso a prova

empíricament el nou model que proposo per tal de millorar la nostra comprensió de com

funciona la cooperació en les comunitats de col·laboració. L’anàlisi empírica demostra

que el model estructural que proposo en la part teòrica s’ajusta als patrons de cooperació

que observem en els projectes de programari lliure analitzats en la part empírica de la tesi.

L’anàlisi empírica d’aquesta tesi explora la dimensió dinàmica de les jerarquies de

connectivitat que sorgeixen en les xarxes de cooperació dels projectes de Python i De-

bian. Defineixo xarxes de cooperació com els patrons de relació entre les persones que

participen en els processos productius dels projectes analitzats. L’anàlisi dinàmic que pre-

sento no és només una anàlisi longitudinal dels canvis en la jerarquia a través del temps,

sinó també una anàlisi del ritme de renovació dels individus en les posicions definides per

aquesta jerarquia. Demostro que el model estructural que proposo és un marc teòric sòlid

per tal de definir grups cohesius en les xarxes de cooperació. L’estructura d’aquests grups

cohesius defineix la jerarquia de connectivitat dels patrons de relacions que estableixen

els individuals al treballar conjuntament. Aquesta jerarquia, d’una banda, reflecteix el

fet empíricament ben establert que en projectes de programari lliure només una petita

part dels participants contribueix la major part de la feina feta en cada projecte. I, d’al-

tra banda, refuta les opinions ingènues dels primers relats acadèmics que caracteritzen

els projectes de programari lliure com una jerarquia plana de persones en la qual cada

individu fa més o menys el mateix.

L’anàlisi empírica d’aquesta tesi també mostra que la posició dels desenvolupadors

individuals en la jerarquia de connectivitat de les xarxes de cooperació impacta significa-

tivament, d’una banda, en el volum de les contribucions que cada persona fa al projecte.

I, d’altra banda, en el temps de vida mitjana de les persones en el projecte, entesa com el

temps que de mitjana una persona és participant activa en el projecte.

Finalment, argumento que l’estructura de connectivitat de xarxes de cooperació de

les comunitats de col·laboració pot caracteritzar-se com una elit oberta, on els nivells

més alts d’aquesta jerarquia es renoven constantment amb la incorporació de noves per-

sones. Aquesta característica és clau per entendre els mecanismes i dinàmiques que fan

que les comunitats de programari lliure siguin capaces de desenvolupar projectes a llarg

termini, amb un alt volum de renovació individual, i no obstant això, aconsegueixin uns

resultats coherents com a resultat de la cooperació a gran escala. Finalment concloc que

la cooperació en les comunitats de programari lliure té una dimensió estructural ja que

la pertinença a grups cohesius que sorgeixen en les xarxes de cooperació té un impacte

important i estadísticament significatiu tant en el volum de les contribucions individuals

com en la vida activa mitjana de les persones que participen en els projectes analitzats en

aquesta tesi.

v

Acknowledgments

This thesis is the result of many years of work, many more than the current standards pre-

scribed by the Spanish law that regulates PhD studies. This has been both a blessing and

a curse; a blessing because working on this thesis allowed me to explore many theoretical

approaches and empirical analysis relevant to the main research question. This exploration

expanded my abilities in fields, such as programming and statistical analysis, that were not

prominent in my undergraduate and graduate studies. But it has been also a curse because I

had to discard a lot of work and interesting approaches explored during these years in order to

finish the thesis and obtain a coherent final product.

First of all I’d like to thank all the people that devote their work to produce Free Soft-

ware, and especially to the people that contributes to the Debian Operating System and to the

Python programming language. Those are the focus of the empirical part of this thesis, but

more importantly, are the main tools —along with LATEX, the Vim text editor, and the R pro-

gramming language— with which I made this thesis. I installed Debian back in 2004 when I

first had my own computer, and it opened the door to a wealth of free software that has helped

me immensely in my research career. It was searching the Debian archive that I discovered

NetworkX, a Python package for the analysis of the structure and dynamics of networks. I

started contributing to NetworkX in 2008 and by doing so I learned to program and to perform

sophisticated network analysis. The empirical part of this thesis uses Python extensively, and

it helped me immensely in sharping my analytical and programming skills.

Many people has helped me, in many ways, in doing this thesis. First of all I’d like to thank

my two co-directors and mentors: Joaquim Sempere and Fabrizio Ferraro. Joaquim Sempere,

with his work as Sociological Theory professor during my undergraduate and graduate studies,

provided me with the theoretical background, focused specially in the classics of Sociology,

in general, and Marx, in particular, needed to tackle big and relevant research questions. This

background and his approach of always reading directly the classics with an open mind and an

eye on the current problem —instead of reading works that discuss the work of the classics—

has helped me enormously to deal with the research problems that I had to deal in doing this

thesis. During all this time, he has always been available for long theoretical —and political—

discussions, sometimes only tangentially related to the thesis but always relevant to me. He

has also had a lot of patience dealing with my highly irregular work schedules on the thesis,

vii

consisting in weeks or months of inactivity followed by frenetic periods of work.

Fabrizio Ferraro, for whom I worked as a research assistant during five years, has been the

other big influence and mentor that guided me in the long process of working on this thesis

and eventually finishing it. His knowledge of contemporary Sociological theory, and espe-

cially, Organization theory, has been key for me as these theoretical approaches were almost

unknown to me before working with him. His focus on solid empirical research on his own

work has been an example and a guide for my own empirical work presented on this thesis. He

has always been open minded regarding the tools used to perform empirical analysis, and gave

me the opportunity to spend time learning how to program and how to perform sophisticated

statistical and network analysis using Free Software tools. The skills that I developed work-

ing with him have been key for many —if not most— of the methodological and empirical

elements that conform this thesis.

I’d like thank professor Juan Díez Medrano for his encouragement and detailed reading

and comments of my work in the early stages of my PhD. I’d like to also thank professor

Maite Montagut, my tutor for this thesis, for her support during the last stages of my PhD. I’d

like to also thank the members of my thesis committee —professors María Trinidad Bretones,

Josep Lluís C. Bosch, and Lluís Coromina— for their guidance and supervision of my work.

I’d like to also thank professor Pep Rodriguez, the director of the PhD program at University

of Barcelona, for his encouragement and interesting discussions about my work in this thesis,

and about how statistics and network analysis should be taught in Sociology undergraduate and

graduate courses. Finally I’d like to thank Matteo Prato, professor at University of Lugano,

and David Stark, professor at Columbia University, for the opportunity to work with them in

cutting edge sociological research.

Finishing a big project such as a PhD thesis requires not only academic guidance and en-

couragement, but also personal and administrative support. In that regard, I’d like to thank

professor Montserrat Ferràs for her work coordinating the Sociology PhD program at Univer-

sity of Barcelona, for her continuous encouragement during the last years of my PhD, and

for her help in dealing with the paperwork associated with the many changes that the Sociol-

ogy PhD program at University of Barcelona had to endure because of the many legislative

changes in tertiary education. I’d like to also thank Eloísa Pérez, the director of the “Oficina

de Màsters i Doctorat” at Faculty of Economics of University of Barcelona, and all the staff —

Elisa Gutiérrez, Àngels Pascual, Eva Sáez, Maria Dolors Vázquez— for their support dealing

with the tons of paperwork needed for keeping up with the many administrative reforms.

Finally I’d like to thank my parents, Montserrat Vivó and Josep Ma Torrents, for their love

and continuous encouragement and support during the ups, downs, and many turns of my

university student life, which started as a Biology undergraduate back in 1996. And last, but

not least, thanks to Laura Rafecas for being always there, and for her jokes, sparkled with a

bit of skepticism, about the time that would take me to finish this thesis.

viii

Contents

Contents ix

List of Figures xii

List of Tables xiii

I Introduction 1

1 Theoretical approaches to Cooperation 3

1.1 A Meso Level Approach to Cooperation . 4

1.2 Free and Open Source Software as a case study 7

1.3 Objectives of this thesis . 9

II Theory and Methods 13

2 Cohesive Groups: The Structural Cohesion Model 15

2.1 Terminology and notation . 17

2.2 Cohesion in social networks . 18

Formalizations of cohesive subgroups . 19

The structural cohesion model . 23

2.3 Existing algorithms for computing k-component structure 25

2.4 Heuristics for computing k-components and their average connectivity 27

2.5 Structural cohesion in cooperation networks 31

2.6 Summary of Contributions . 41

3 The Network Structure of Collaborative Communities 43

3.1 Collaborative communities . 44

3.2 A network approach to collaborative communities 48

Networks of knowledge production: small world model 49

ix

CONTENTS

Trust and social solidarity in networks: the structural cohesion model 50

Collaborative Communities Networks: Cohesive Small Worlds 51

IIIEmpirical analysis 57

4 Historical Background on Free and Open Source Software 59

4.1 UNIX and the C language . 60

4.2 GNU and Linux . 61

4.3 The Debian Project . 63

4.4 The Python Language . 64

5 FOSS projects as Cohesive Small Worlds 67

5.1 Modeling patterns of cooperation as networks 68

Null models . 69

5.2 Small World Metrics . 70

5.3 Structural Cohesion Analysis . 73

6 Connectivity Hierarchy and Individual Contributions 81

6.1 Cooperation networks’ connectivity hierarchies as open elites 81

The dynamism of hierarchies in FOSS cooperation networks 82

6.2 Methods . 85

6.3 Regression modeling and mobility analysis 87

Modeling individual contributions . 87

Developer mobility in the connectivity hierarchy through time 94

Modeling robustness as median active life of individuals in the project 98

6.4 Summary . 101

IVConclusion and Future Work 103

7 Conclusion and Future Work 105

V Appendices 111

A Small worlds and affiliation networks 113

B Cohesive Subgroups: Illustration, Implementation and Accuracy 115

B.1 Illustration of the heuristics . 115

B.2 Performance analysis . 120

B.3 Implementation details . 122

B.4 Python code . 123

B.5 Accuracy and limitations of the heuristics 126

x

Contents

C Support Tables for Regression Models 129

C.1 Negative Binomial Regression support tables 129

C.2 Contributions Panel Regression support tables 130

C.3 Accepted PEPs zero inflated negative binomial support tables 131

C.4 Survival Regression support tables . 132

D Publications derived from my work on this thesis 135

D.1 Algorithms and heuristics for graph connectivity as Free Software 135

D.2 Conference presentation and paper at the 14th Python in Science Conference

(SciPy2015) . 136

D.3 Paper at Journal for Social Structure (JoSS) 137

Bibliography 139

xi

List of Figures

2.1 Cohesive blocks for two-mode and one-mode Science networks. 34

2.2 Cohesive blocks for two-mode and one-mode Debian networks. 35

2.3 Barplots of k-number frequencies. 38

2.4 Average connectivity three-dimensional scatter plots. 40

3.1 Models of network structure and their robustness. 55

5.1 Python average connectivity three-dimensional scatter plots. 76

5.2 Debian average connectivity three-dimensional scatter plots. 79

6.1 Debian: Evolution of connectivity levels and contributions. 88

6.2 Python: Evolution of connectivity levels and contributions. 91

6.3 Sankey diagram of Python developer mobility in the top connectivity level. . . . 97

6.4 Survival function using the Kaplan-Meier estimate. 99

A.1 Network motifs for bipartite networks. 114

B.1 Example synthetic graph for illustration. 116

B.2 Auxiliary graph H3 for k = 3. 117

B.3 Auxiliary graph H4 for k = 4. 118

B.4 Loglog plots for comparing between heuristics and exact algorithms 120

B.5 Accuracy barplots for the heuristics. 127

xii

List of Tables

2.1 Summary of cohesive subgroups formalizations. 21

2.2 Example cooperation networks description. 32

3.1 Weber’s typology of social action, legitimacy and authority. 46

3.2 Comparison of network models for collaborative communities. 52

5.1 Small world metrics for debian networks. 71

5.2 Small world metrics for python networks. 72

5.3 Structural Cohesion metrics for python networks. 74

5.4 Structural Cohesion metrics for debian networks. 77

6.1 Negative binomial model for Debian uploads 89

6.2 Contributions Fixed Effects Panel Regression Results 92

6.3 Zero Inflated negative binomial model for PEPs 93

6.4 Developer mobility in the top connectivity level for the Python project. 95

6.5 Survival Analysis: Cox proportional hazards regression model 100

C.1 Descriptive statistics for negative binomial regression for Debian 129

C.2 Correlation matrix for negative binomial regression for Debian 130

C.3 Descriptive statistics for contributions panel regression for Python. 130

C.4 Correlation matrix for contributions panel regression for Python. 131

C.5 Descriptive statistics for accepted PEPs from Python developers. 131

C.6 Correlation matrix for accepted PEPs from Python developers. 132

C.7 Descriptive statistics for survival regression for the Python project. 132

C.8 Correlation matrix for survival regression for the Python project. 133

xiii

Part I

Introduction

1

Theoretical approaches to Cooperation

Robert Merton popularized Isaac Newton’s quote “if I have seen further it is by standing on the

shoulders of giants”. This quote highlight, on the one hand, the cumulative nature of the scien-

tific knowledge and, on the other hand, implies that the contribution to knowledge production

by highly talented individuals —the giants— is far more important than the contribution of

ordinary individuals. If we look at the history of science, the names of Archimedes, Galilei,

Newton, Euler, Darwin, Einstein and a few others shine strongly. It is certainly true that with-

out their contribution to knowledge, our understanding of the universe would be far less deep

and sharp. But, nowadays, have giants such a key role in the production of knowledge?

The last half of twentieth century has witnessed a key shift in the production process of

knowledge. Based on works on science and engineering, social sciences, arts and humanities

and Patents, Wuchty, Jones, and Uzzi (2007) show that until 1950s the likelihood that an

important —ie wildly cited— paper or invention was developed by a single author was bigger

than it was developed by a team. But this trend has experimented a shift in the last four

decades. The rising importance of collective research and cooperation is illustrated by the fact

that top cited papers in all those disciplines are mostly created by teams in 2000s.

The fact that, in the twenty first century, the most important discoveries and innovations

in science and technology are not anymore the result of the work of very talented individuals

working alone but the result of cooperation is well established but untheorized. I argue that a

key element of the social processes that helps explain this empirical evidence is the increase

in scale of cooperation as a key social mechanism of socialization. The aim of this research

is to propose a theoretical explanation of how large scale cooperation works in the context of

knowledge intensive production processes.

I approach the concept socialization in this research drawing on the Marxian tradition. The

common use of this concept in mainstream social science is somewhat different but related.

As Paul Adler put it, “in recent Marxist writings as in political science more generally, social-

ization refers to the transfer of ownership from the private to the public sphere. In psychology,

socialization is commonly construed as the process whereby people new to a culture internal-

ize its knowledge, norms and values. Marx’s use was broader than either and encompasses

both.” (Adler, 2007, 1320). Then Adler cite a relevant passage of Capital:

The social productive forces of labour, or the productive forces of directly social,

3

1. THEORETICAL APPROACHES TO COOPERATION

socialized (i.e. collective) labour come into being through cooperation, division

of labour within the workshop, the use of machinery, and in general, the transfor-

mation of production by the conscious use of the sciences, of mechanics, chem-

istry, etc. for specific ends, technology, etc. and similarly, through the enormous

increase of scale corresponding to such developments (for it is only socialized

labour that is capable of applying the general products of human development,

such as mathematics, to the immediate process of production; and conversely,

progress in these sciences presupposes a certain level of material production).

(Marx, 1990, 1024)

Following Marx’s argument, we could say that what was once only achievable by a gifted

mind working alone is now within reach of ordinary minds through cooperation, division of

labour, the use of machinery, and by the conscious use of the science and technology. The

aim of this research is to focus on cooperation as a key social mechanism that allow organiza-

tions achieve high impact in the development of complex technology and in the production of

knowledge.

1.1 A Meso Level Approach to Cooperation

The central topic of this thesis is to understand and explain under which conditions and through

which social mechanisms large scale cooperation operates in an open organizational environ-

ment. Therefore, one of the main theoretical challenges is conceptualize the social process of

cooperation. There are two main approaches to conceptualize cooperation in the literature: as

an atomic process in which cooperation is produced between two individuals and, on the other

hand, as a macro level phenomenon in which the center of analysis is the collective or group.

Karl Marx is a classical exponent of the latter approach. According to him, two key di-

mensions of cooperation are the shared goal that guide the social process and its collective

nature: “[w]hen numerous workers work together side by side in accordance with a plan,

whether in the same process, or in different but connected processes, this form of labour is

called co-operation” (Marx, 1990, 443). Marx highlights that the principal characteristic of

cooperation is that the final result of coordinated action is much more than the sum of the

individual actions. In Marx words, “[...] the sum total of the mechanical forces exerted by

isolated workers differs from the social force that is developed when many hands co-operate

in the same undivided operation [...] [n]ot only do we have here an increase in the productive

power of the individual, by means of co-operation, but the creation of a new productive power,

which is intrinsically a collective one.” (Marx, 1990, 443). According to Marx, cooperation

constitutes the starting point of capitalist production (Marx, 1990, 439), not only in historical

terms, but also conceptually.

More recently, new macro approaches to cooperation have been developed in order to deal

with the challenging problem of understanding and explaining how knowledge is produced

and disseminated in the context of production processes that depend on effective innovation

Adler (2015). Based on the Marxian tradition, (Adler and Heckscher, 2006) introduce the

concept of collaborative communities to make sense of novel organizational forms —both in-

4

1.1. A Meso Level Approach to Cooperation

side and outside large capitalist corporations— strongly grounded on large scale cooperation

which were defying the traditional dichotomy between hierarchy and market (Coase, 1937;

Williamson, 1975) as coordinating mechanisms for production processes. Collaborative com-

munities are characterized by conscious cooperation, high individual interdependence, trust,

shared values and a value-rational basis for legitimate authority (Adler and Heckscher, 2006;

Adler et al., 2008). Thus, this macro level approach to explain large scale cooperation focuses

on values, norms, generalized trust, and authority forms as the key elements that enable large

scale cooperation inside capitalist corporations, and on new emerging open organizational

environments.

According to Adler (2015), recent literature in organization studies (O’Mahony and Lakhani,

2011) has highlighted the role of community (Tönnies, 1974) as a critical precondition for in-

novation in large scale production processes. Adler proposes an alternative reading of Marx’s

theory of the capitalist production process where community —in the form of what Marx calls

the “collective worker”— is an essential feature the labour process, even under antagonistic

capitalist employment conditions (Adler, 2015, 446). The need to create use-values in the

labour process makes large scale cooperation essential in complex production processes, but

the need to obtain exchange-value in the valorization process of the Capital, that is, the cap-

italist firm’s profitability imperative, undermines and thwarts the full potential of large scale

cooperation. Adler argues that the emergence of a new collaborative form of community in re-

cent decades can be understood as communism developing in the heart of capitalist production

processes.

On the other hand, there are the dyadic approaches to cooperation (Axelrod and Hamil-

ton, 1981; Axelrod, 1997). Those approaches are based on the assumption that interactions

between pairs of individuals occur on a probabilistic basis. From this standpoint, models

are developed based on the concept of an evolutionary strategy on the context of an iterated

Prisoner’s Dilemma game. Based on deductions from such a model and agent-based simu-

lations, those approaches show how cooperation based on reciprocity can get started in an

asocial world, can thrive while interacting with a wide range of other strategies, and can resist

invasion once fully established (Axelrod and Hamilton, 1981).

Those approaches to cooperation are very useful to conceptualize cooperation in an evo-

lutionary and interspecies scenario. On one hand, the payoffs of iterated Prisoner’s Dilemma

are not assumed to be commensurable, and on the other hand, the players (i.e. organisms) do

not need brain to employ a strategy. So this model can explain not only interactions between

two bacteria and two primates (for example homo sapiens), but it can also explain interac-

tions between a colony of bacteria and a primate serving as a host (Axelrod and Hamilton,

1981, 211). Thus, these models of cooperation explain the emergence of relevant mutualist

biological relations as symbiosis.

The classical dyadic approach developed by Axelrod was the basis on which further refine-

ments have been build. Watts, in his seminal book on small world networks (Watts, 1999b),

tested the effects of the small world topology on dyadic interactions finding that the initial

configuration of strategies of the nodes of networks are critical in the evolution of strategies

—cooperation or defection— without been able to establish a strong relation between topol-

ogy and cooperative strategy. In the same stream of research, the analysis of emergence of

role differentiation in an hierarchical network environment, based upon Spatial Prisioner’s

5

1. THEORETICAL APPROACHES TO COOPERATION

Dilemma, showed that leaders —nodes with a large payoff who are imitated by an important

fraction of the population— play an essential role in sustaining a cooperative regime (Eguíluz,

Zimmermann, Cela-Conde, and Miguel, 2005).

All those approaches have in common their dyadic nature, their grounding in agent-based

simulations, and their reductionist approach. We can conceptualize reductionism in this con-

text as the assumption that macro processes —such as mutualist biological relations or co-

operation in knowledge intensive production process— must be understood only in terms of

the actions and relations of the individuals involved in the process. I argue however that

we must differentiate between cooperation strategies developed in a conscient level —such as

production processes— and mutualist biological relations, where payoffs of iterated Prisoner’s

Dilemma are not assumed to be commensurable and the players do not even need a brain to

employ a cooperation strategy. The reductionist approach to cooperation is extremely general

and thus can highlight commonalities between social and biological cooperation processes,

but this generality also hinders its power to successfully modeling all the nuances of complex

social process, such as the knowledge intensive production processes that are the focus of this

thesis.

The aim of this research is to bridge the gap between macro level and micro level ap-

proaches to cooperation by focusing on meso level mechanisms, which until recently have re-

ceived little attention in the theoretical debate focused on the two extremes highlighted above.

I argue that a meso level approach has to focus on the structural dimension of cooperation, that

is, the patterns of relations between the individuals that participate in production processes.

This perspective shows that between the atomic dyadic interactions among individuals, and

the shared goals, values, and visions that guide large organizations and groups, there are sub-

groups of individuals that play a key role in effectively enabling large scale cooperation to

work, as we have witnessed during the last decades.

In order to conceptualize and clearly define how to analyze the patterns of relations that in-

dividual participants establish in knowledge intensive production processes, I use the concept

of cooperation networks as a kind of social network. A social network is composed of social

actors and their interactions. Social network literature (Wasserman and Faust, 1994; Scott

and Carrington, 2011), and more generally what has been recently named network science

(Newman, 2003; Newman, Barabási, and Watts, 2006; Newman, 2010; Easley and Kleinberg,

2010), provide methods for analyzing the structure of these networks along with the processes

that are developed in, and by, these networks. In the concrete case of knowledge intensive pro-

duction processes, the objects that are the result of the production process can also be included

as part of the cooperation networks, as I will show in the empirical analysis part of this thesis.

This approach allows for an in deep analysis of the different levels of individual contributions

to the whole cooperation process, which has been one of the empirical puzzles that has driven

the literature on cooperation in new open organizational forms.

This network approach to cooperation links with the micro approaches to cooperation in

that it focuses on the dyadic interaction of actors, but instead of stopping at the dyadic level,

I will analyze the groups that emerge from the global patterns of relations. That is, groups

of actors that are more intensely interconnected among them than with the rest of the actors

of the network. I argue that the formation and dissolution of these groups through time, and

their individual composition and turn over are key elements to explain how large scale cooper-

6

1.2. Free and Open Source Software as a case study

ation works in practice. These meso level mechanisms link with the macro level approach to

cooperation because they help explain how generalized trust, shared values, and non-despotic

forms of authority can emerge and be maintained through time in large organizations and on

informal groups and communities.

Obtaining detailed data about knowledge intensive production processes is a challenging

endeavor, specially from big capitalist corporations, because there are no public records and

their internal processes are implicitly considered a secret. However, in order to build a theoret-

ical framework it is imperative to have detailed information on how the production processes

actually work. This is the main reason I focus on open organizational environments, namely

Free and Open Source Software communities, as a source of empirical data. The produc-

tion processes in this context are developed mainly through the Internet, and the details and

electronic records of these production processes are public and freely available.

1.2 Free and Open Source Software as a case study

Free Software, broadly defined, is computer software that allows users to run, copy, distribute,

study, change and improve it. Thus, what defines Free Software is not its price but the free-

doms that their users enjoy. Richard Stallman aptly summarizes it by saying that “to un-

derstand the concept, you should think of “free” as in “free speech”, not as in “free beer”.”

(Stallman, 2002a, 3). In the late 1990s the term Open Source Software was used to refer to

this same concept in a less ideological and more business friendly way. Though there are im-

portant philosophical differences between the two names used to refer to this kind of software

(Stallman, 2002b, 75) for the objectives of this research can be used interchangeably. This is

also the case for most research on the phenomenon, and a common practice in the literature is

to refer to it as Free and Open Source Software (FOSS). I follow the same convention in this

thesis.

The case studies that are the focus of the empirical analysis for this thesis are the Debian

project, which releases a complete operating system, and the Python project, a general pro-

pose programming language. The development of an open source project —such as Debian or

Python— can be conceptualized as a social system build on the top of the complex technologi-

cal system of Free and Open Source Software (FOSS). This technological system is composed

of all the free software that is written and released.

FOSS has experimented an impressive increment of scale in the past two decades (Ghosh

et al., 2006). Approximately two thirds of the existing free software is developed by individual

programmers working collaboratively, 15% by for-profit companies and 20% other organiza-

tions (academic, social ,...). According to the calculations presented in Ghosh et al. (2006), if

capitalist companies wanted to reproduce internally the production of free software in use, it

would cost approximately 12 billion euros1 that would be used primarily to pay the workforce.

The code base of free software has doubled every 18-24 months over the last years. According

to estimates of the authors of this report, this trend will continue over the next few years. This

code base can be quantified, at least, in 131,000 person-years of work. This work has been

developed mainly by unpaid programmers.

1We refer here to english billions, that is 12,000,000,000 euros.

7

1. THEORETICAL APPROACHES TO COOPERATION

The impressive momentum gained by FOSS, exemplified by an outstanding increment of

scale, is only possible by the emergence of complex social systems on top of it that, in turn,

feed this increment of scale. The FOSS phenomenon have attracted some research efforts

from different scientific fields during last years. The main focus have been in four related

areas: a) its microfundaments or individual incentives, ie why individuals decide to involve

in FOSS development despite the fact that only by narrow self-interest and instrumental ra-

tionality it should be better for them to free-ride other’s efforts (Hars and Ou, 2002; Lerner

and Tirole, 2002; Lakhani and Von Hippel, 2003; Hertel et al., 2003; Weber, 2004; Roberts

et al., 2006; Bagozzi and Dholakia, 2006); b) innovation and intellectual property policy, ie

how community managed or corporate sponsored FOSS projects are able to innovate in order

to solve complex technical problems and freely reveal those innovations without appropriat-

ing private returns from selling the software (Moglen, 1999; Kogut and Metiu, 2001; Hippel,

2001; Von Hippel and Von Krogh, 2003; Von Krogh et al., 2003; O’Mahony, 2003; West,

2003; Lerner and Tirole, 2005; Hargrave and Van de Ven, 2006; West and O’Mahony, 2008);

c) development methods, ie how FOSS communities manage coordination and complexity de-

veloping large software systems, this stream of research have been mainly addressed from a

software engineering perspective (Godfrey and Tu, 2000; Feller and Fitzgerald, 2000; Mockus

et al., 2002; Koch and Schneider, 2002; Weber, 2004; MacCormack et al., 2006); d) organi-

zation and governance, ie how communities producing public goods govern themselves, this

stream of research addresses the classic problem of how individuals coordinate their actions in

order to achieve collective outcomes (Ljungberg, 2000; O’Mahony and Ferraro, 2007b; West

and O’Mahony, 2008).

Regarding area a) described above, that is, why talented individuals decide to work on

FOSS projects even without direct economic compensation, the literature has proposed three

main compatible responses to address the individual motivations of direct producers. First,

work on solving problems whose solution is considered useful for the individual that is di-

rectly doing the work is a powerful motivation, Raymond (1999) aptly named this individual

incentive “scratching an itch”. Second, given the public nature of the source code of FOSS

projects, individual participants can build a reputation based on their work in FOSS projects

which can help them advance in their professional career (Lerner and Tirole, 2002; Roberts

et al., 2006; Bagozzi and Dholakia, 2006). And, finally, it has also been proposed that FOSS

projects can be understood as a gift economy, where individual participation is boosted by

shared ethical and moral standards (Coleman, 2004).

Regarding area b), that is, how FOSS projects can innovate and freely reveal those in-

novations without appropriating private returns from selling the software, Von Hippel and

Von Krogh (2003) argue that the classical distinction between two models of innovation are

not discrete states but two ends of a continuum, and that FOSS is an instance of a mixed

model which they name “private-collective” innovation model, because the software is not

released to the public domain but protected by copyright laws. The two classical models of

innovation are the “private investment” model that assumes returns to the innovator from pri-

vate goods that are protected by efficient regimes of intellectual property, and the “collective

action” model that assumes that when the market fails to foster innovation the only option for

innovators is to cooperate and to produce public goods. O’Mahony (2003) stresses that FOSS

projects have indeed a sophisticated set of legal and normative tactics to protect their source

8

1.3. Objectives of this thesis

code from proprietary appropriation and to protect their collective identity and reputation.

The software licenses used by FOSS projects ensure that free software remains a common

good “to which anyone may add but from which no one may subtract.” (Moglen, 1999). Also,

O’Mahony (2003, 17) argues that direct producers of FOSS pool their efforts in order to create

collectively owned and managed resources, and thus they also apply well studied mechanisms

to manage common pool resources, such as drawing on trust, reciprocity, and reputation to

develop norms that ensure the fair use of those common pool resources (Ostrom, 1999).

This research will be centered in the intersection of areas c) and d) described above. The

aim is to analyze the development methods of FOSS from the perspective of a knowledge

based production process in order to address the classical sociological problem of social or-

ganization of production and its dependencies and relations with political organization and

governance, in the sense of how individuals coordinate their actions in order to achieve col-

lective outcomes. The major difference of this perspective from the works based on software

engineering that previously addressed the development methods issue is that the empirical

source —software development— is not an objective in itself; it is a proxy to analyze large

scale cooperation in the context of new organizational forms, FOSS projects, that develop a

complex knowledge based production process that do not rely mainly on market or hierarchy

mechanisms in order to guide individual decisions and actions. I argue that focusing on the

patterns of relations of direct producers —that is, focusing on cooperation networks— we can

analyze the meso level mechanisms that enable and foster large scale cooperation.

The empirical part of this thesis is thus a case study, and its principal aim is to develop

theoretical insights in order to build a framework that allows us to understand and explain

both the new characteristics of this production process as well as the elements of continuity

with capitalist production processes. Thus, this thesis will analyze cooperation in the Debian

and Python projects in order to show that the social structure resulting from the cooperation

among their individual participants is characterized by the formation and transformation of

subgroups of actors more densely connected between them than with the rest of the actors.

These subgroups form the structural scaffolding that enables and fosters large scale of coop-

eration. These meso level mechanisms are key to explain the impressive increase of scale of

cooperation in knowledge intensive production processes that empirical research has reported

in the last decades in the production of knowledge, in general, and the development of FOSS,

in particular.

1.3 Objectives of this thesis

The main research question of this thesis can be succinctly stated as: Which meso level mech-

anisms are key to explain how large scale cooperation work in knowledge intensive and tech-

nically complex production processes developed in new organizational environments, such as

FOSS projects, where loosely coupled individuals that rarely meet face to face have to coor-

dinate through internet in order to produce world class software products.

In more detail, the objectives of this thesis can be classified as:

Methodological Contributions to the state of the art techniques of social network analysis.

9

1. THEORETICAL APPROACHES TO COOPERATION

1. Design and implement a fast approximation algorithm for computing structural

cohesion in order to be able to analyze large cooperation networks.

2. Design and implement a new visualization technique for structural cohesion anal-

ysis.

Theoretical Contributions to the sociological literature on structural cohesion, cooperation,

and collaborative communities.

1. Extend theoretically the structural cohesion model by introducing the considera-

tion of average node connectivity on top of the plain node connectivity.

2. Propose a new network model for modeling the patterns of relations between di-

rect producers in collaborative communities, named “Cohesive Small World”, that

is based on two well known network models: the Small World model and the

Structural Cohesion model.

3. Explore the meso level mechanisms that are developed in the nested cohesive sub-

groups structure of cooperation networks and their impact in the diffusion of in-

formation, the convergence on common values and shared goals, and especially

in how generalized trust is maintained between individuals that rarely meet face

to face, and how this enables the resilience of the whole cooperation network to

individual turnover.

4. Contribute to the collaborative communities literature from a structural perspective

by showing the key role of meso level structures, such as subgroups of individuals

in the connectivity hierarchy of cooperation networks, in their effectiveness in the

production and diffusion of knowledge through large scale cooperation.

Empirical Contributions to the empirical analysis of FOSS projects.

1. The literature on FOSS, especially from software engineering and computer sci-

ence, have stressed that only a small fraction of the developers is doing most of

the work. I focus on who actually are these developers by analyzing the network

structure that emerges form cooperation among participants in the community.

2. The empirical analysis presented in this thesis shows that the developers that con-

tribute the most are in the higher levels of the connectivity hierarchy of cooperation

networks.

3. The developers that are in the higher levels of the connectivity hierarchy of coop-

eration networks change significantly through the history of the project. This is an

indication of an open elite dynamic, where new developers are able to access the

top levels of the hierarchy.

4. This is an essential meso level mechanism that help explain, on the one hand, the

long term survival of community based projects, and on the other hand, how large

scale cooperation works in the face of high individual turn over in the context of

new organizational forms.

10

1.3. Objectives of this thesis

Practical Contributions of general interest beyond academia.

1. Make widely available the implementation of the new approximation algorithm for

structural cohesion presented on this thesis by contributing a suitable implementa-

tion to NetworkX (Hagberg et al., 2008), a popular Python Free Software project

for the analysis of the structure and dynamics of complex networks.

11

Part II

Theory and Methods

2

Cohesive Groups: The Structural
Cohesion Model

Group cohesion is a central concept that has a long and illustrious history in sociology and

organization theory, although its precise characterization has remained elusive. Its use in

most sociological research has been ambiguous at best. This is largely because, as Moody

and White (2003) argued, it is often based on sloppy operationalization grounded mostly in

intuition and common sense. Network analysis has provided a large number of solutions to this

problem. From classical work in the graph-theoretic sociological tradition on cliques, clans,

clubs, k-plexes, k-cores and lambda sets (Wasserman and Faust, 1994, chapter 8), to the more

recent contribution of physicists and computer scientists on community analysis (Fortunato,

2010), network theorists have provided researchers with a wide range of measures of cohesion

in social networks.

However, neither the classical approaches nor new developments in community analysis

are well-enough suited to address many of the common uses of group cohesion in the sociolog-

ical and organizational literature, for three key reasons. First, while most of these measures

can help us identify cohesive subgroups, they do not provide insight into their robustness,

which is a critical element to the theoretical conceptualization of cohesion. In most cases, the

removal of only a few actors from the subgroups can lead to its fragmentation into smaller dis-

connected groups (White and Harary, 2001). Secondly, many cohesive subgroup measures do

not allow for overlap among subgroups. Finally, even when they do allow for overlap, most

measures cannot capture the hierarchical nature of nested social groups, where subgroups,

like Russian dolls, are recursively nested in one another. As a result, hardly any of the existing

measures capture the theoretical complexity of cohesion, and thus fall short of offering useful

operationalizations for many empirical phenomena of sociological interest.

One model which provides a more fertile ground for sociological analysis is the structural

cohesion model (White and Harary, 2001; Moody and White, 2003). This model is grounded

on two common conceptualizations of group cohesion in the literature. A social group is con-

sidered cohesive to the extent that: a) it is resistant to being pulled apart by the removal of

some of its members; and b) pairs of its members have multiple direct or indirect connections

that pull it together (White and Harary, 2001, 309-310). Building on the concept of node con-

nectivity from graph theory, the structural cohesion of a group is defined in this model as the

15

2. COHESIVE GROUPS: THE STRUCTURAL COHESION MODEL

minimal number of actors who need to be removed from the group to disconnect it. Despite its

solid and elegant mathematical foundation, the structural cohesion model has not been widely

used in empirical analysis because it is not possible to perform the required computations for

networks with more than a few thousands nodes and edges in a reasonable time frame.

These computational challenges also hindered the development of an interesting feature

of the structural cohesion model: its applicability to both bipartite and unipartite networks.

While many social networks are essentially bipartite in nature (as people meet, interact, and

cooperate around specific events and/or objects), most of our analytical tool-kit was devel-

oped to analyze one-mode networks (Latapy, Magnien, and Vecchio, 2008). Therefore it was

common practice to conduct network analysis on one-mode projections only, but it is now

clear that this practice leads to biased estimates of key measures, as recent work on the clus-

tering coefficient has amply shown (Robins and Alexander, 2004; Lind et al., 2005; Latapy

et al., 2008). The structural cohesion model, instead, can be applied without modification to

both bipartite and unipartite networks (White, Owen-Smith, Moody, and Powell, 2004). That

said, the original algorithm is prohibitively time-consuming to compute, especially with the

exponential growth in the size of available network data.

In this chapter I extend the structural cohesion model by using the concept of average node

connectivity, that is the average number of actors who need to be removed from the group to

disconnect an arbitrary pair of actors in the group. I present a set of heuristics to compute

structural cohesion based on the fast approximation to compute pairwise node independent

paths (White and Newman, 2001). I implemented it in NetworkX (Hagberg et al., 2008),

a Python Library for Complex Network Analysis1. The heuristics presented here allow to

compute the approximate value of group cohesion for moderately large networks, along with

all the hierarchical structures of connectivity levels, one order of magnitude faster than imple-

mentations which are currently available. I also suggest a novel graphical representation of the

results of the analysis that might help synthetically communicate results and spot differences

across different networks (Moody, McFarland, and Bender-deMoll, 2005).

I used the implementation of the heuristics proposed in this chapter to analyze three large

cooperation networks: the co-maintenance network of Debian packages, and the co-authorship

networks in Nuclear Theory and High-Energy Theory. I ran the analysis in both one-mode

and two-mode networks, and compare the networks in terms of their connectivity structure.

Consistent with the literature on two-mode networks, I show that the complex hierarchy of

cooperation captured in the two-mode analysis is a better representation of the connectivity

structure of empirical networks than their one-mode counterparts.

The rest of the chapter is organized as follows: I start by laying out the notation used in

the rest of the paper. Then I discuss the main features which a cohesive subgroup formaliza-

tion should have from a sociological perspective, reviewing the most important formalizations

of cohesive subgroups in the social network literature and discussing in depth the structural

cohesion model. I then describe the exact algorithm proposed by Moody and White (2003)

to compute the connectivity hierarchy of a given network. After that, I introduce the pro-

posed heuristics, and describe their implementation and performance. I go on to report the

1See appendix D for references and links to the actual implementation published as part of NetworkX version

1.10.

16

2.1. Terminology and notation

findings from applying the structural cohesion analysis to three large cooperation networks, as

well as proposing a novel graphical representation of the connectivity structure using a three-

dimensional scatter plot, which I use in the empirical part of this thesis. Finally I conclude

this chapter with implications for future research.

2.1 Terminology and notation

An undirected graph G = (V,E) consists of a set V (G) of n nodes and a set E(G) of m

edges, each one linking a pair of nodes. The order of G is its number of nodes n and the size

of G is its number of edges m. Two nodes are adjacent if there is an edge that links them, and

this edge is said to be incident with the two nodes it links. A subgraph of G is a graph whose

nodes and edges are all in G. An induced subgraph G[U] is a subgraph defined by a subset

of nodes U ⊆ V (G) with all the edges in G that link nodes in U . A subgraph is maximal in

respect to some property if the addition of more nodes to the subgraph will cause the loss of

that property.

A path is an alternating sequence of distinct nodes and edges in which each edge is incident

with its preceding and following nodes. The length of a path is the number of edges it contains.

The shortest path between two nodes is a path with the minimum number of edges. The

distance between any two nodes u and v of G, denoted dG(u, v), is the length of the shortest

path between them. The diameter of a graph G, denoted diam(G), is the length of the longest

shortest path between any pair of nodes of G. Node independent paths are paths between two

nodes that share no nodes in common other than their starting and ending nodes. A graph is

connected if every pair of nodes is joined at least by one path. A component of a graph G is

a maximal connected subgraph, which means that there is at least one path between any two

nodes in that subgraph.

The density of a graph G, denoted �(G), measures how many edges are in set E(G) com-

pared to the maximum possible number of edges among nodes in V (G). Thus, density is

calculated as �(G) = 2m
n(n−1)

. A complete graph is a graph in which all possible edges are

present, so its density is 1. A clique is an induced subgraph G[U] formed by a subset of nodes

U ⊆ V (G) if, and only if, the induced subgraph G[U] is a complete graph. Thus, there is

an edge that links each pair of nodes in a clique. The degree of a node v, denoted deg(v), is

the number of edges that are incident with v. The minimum degree of a graph G is denoted

δ(G) and it is the smallest degree of a node in G. A k-core of G is a maximal subgraph in

which all nodes have degree greater or equal than k; which means that a k-core is a maximal

subgraph with the property δ ≥ k. The core number of a node is the largest value k of a k-core

containing that node.

The removal of a node v from G results in a subgraph G − v that does not contain v nor

any of its incident edges. The node connectivity of a graph G is denoted κ(G) and is defined

as the minimum number of nodes that must be removed in order to disconnect the graph G.

Those nodes that must be removed to disconnect G form a node cut-set. If it is only necessary

to remove one node to disconnect G, this node is called an articulation point. We can also

define the local node connectivity for two nodes u and v, denoted κG(u, v), as the minimum

number of nodes that must be removed in order to destroy all paths that join u and v in G.

17

2. COHESIVE GROUPS: THE STRUCTURAL COHESION MODEL

Then the node connectivity of G is equal to min{κG(u, v) : u, v ∈ V (G)}. Similarly, the edge

connectivity of a graph G is denoted λ(G) and is defined as the minimum number of edges

that must be removed in order to disconnect the graph G. The edges that must be removed to

disconnect G form an edge cut-set.

The measures discussed above are defined as properties of whole graphs but they can also

be applied to subgraphs. A k-component is a maximal subgraph of a graph G that has, at least,

node connectivity k: we need to remove at least k nodes to break it into more components.

The component number of a node is the largest value k of a k-component containing that node.

Notice that k-components have an inherent hierarchical structure because they are nested in

terms of connectivity: a connected graph can contain several 2-components, each of which

can contain one or more tricomponents, and so forth.

2.2 Cohesion in social networks

Doreian and Fararo (1998) argue that group cohesion can be divided analytically into an

ideational component, which is based on the members’ identification with a collectivity, and

a relational component, which is based on connections among members. These connections

are, at least in part, observable, and thus the relational approach seems more appropriate for

theory building and empirical research. But, despite its attractiveness, the relational compo-

nent has received much less attention than the ideational component in sociological literature.

Social network analysis has been the exception, and since the beginning, its proponents for-

malized group cohesion in relational terms, that is, they defined the boundaries of subgroups

in a community starting from the patterns of relations among actors.

Unfortunately most of the existing formalizations of cohesive subgroups do not capture

some key properties of the theoretical concept of cohesive groups. First, a cohesive subgroup

should be robust, in the sense that its qualification as a group should not be dependent on the

actions of a single individual, or any small set of individuals that belong to the group. This

implies, on the one hand, that no actor, or small set of actors, should be able to dissolve the

cohesive subgroup by abandoning it; while, on the other hand, all actors in a group should be

related to all other actors by multiple direct or indirect connections in order to pull it together

(White and Harary, 2001; Moody and White, 2003). Therefore, cohesive subgroups should

also be relatively invariant to changes outside the group (Brandes and Erlebach, 2005, chapter

6).

Second, actual social groups tend to overlap in the sense that some actors are likely to

be part of more than one cohesive subgroup. As Freeman (1992) notes, formalizations of

subgroups that overlap a lot are not well suited to capturing the theoretical concept of groups

because their sociological use is not focused on individuals but on contexts, such as productive

relations, friendship relations, or family ties, to name a few. Thus if groups are defined around

a highly specific context the overlap is likely to be small. Therefore the formalization of

subgroups often assumed non-overlapping subgroups. Moreover, non-overlapping subgroups

can be used to develop categorical variables for membership that could be used in regression

analysis (Borgatti et al., 1990). However, there is always overlap among cohesive subgroups

in actual social groups; and this overlap might be both empirically and theoretically relevant.

18

2.2. Cohesion in social networks

Third, following a typical distinction in the social network literature, cohesive groups have

both a structural and a positional dimension. In the former, cohesive subgroups are defined

in terms of the global patterns of relations, and the focus is on the groups and the network

as a whole. In the latter, the focus is on the identification of actors who, because of their

network position, obtain preferential access to information or resources that flow through the

network. Cohesive subgroup formalizations should help address both structural and positional

questions.

Last but by no means least, cohesive subgroups are likely to display a hierarchical struc-

ture in the sense that highly cohesive subgroups are nested inside less cohesive ones. This

notion of hierarchy is grounded on Simon’s definition: “a system that is composed of inter-

related subsystems, each of the latter being, in turn, hierarchic in structure until we reach

some lowest level of elementary subsystem” (Simon, 1962, 468). A hierarchical conception

of cohesive subgroups implies that there is a relevant organization at all scales of the network,

and that cohesive groups are a meso level structure that is not reducible to neither macro nor

micro level phenomena and dynamics. This nested conception of cohesive subgroups pro-

vides a direct link with the structural dimension of the sociological concept of embeddedness

(Granovetter, 1985). The nested nature of cohesive groups allows one to operationalize social

relations that are, in direct contrast to arms length relations, structurally embedded in a social

network.

In the following section I briefly review existing social network formalizations of subgroup

cohesion. For each method, in table 2.1 I provide the definition, the underlying logic, the mea-

sure proposed, and evaluate them in terms of the four criteria just described. I will therefore

consider whether they are robust, can allow for overlapping groups, provide information on

both the structure and the position of nodes, and whether they capture the hierarchical structure

of the groups.

Formalizations of cohesive subgroups

Historically, the first social networks approaches to subgroup cohesion formalization iden-

tified cohesive subgroups by considering only internal ties among the actors in the group.

However, most recent formalizations define cohesive subgroups by considering both internal

ties among its members and also external ties between each subgroup and the rest of the net-

work (Wasserman and Faust, 1994). All the formalizations based on internal ties are based on

the concept of clique, which were later generalized by relaxing some of the strict conditions of

distance, degree or density that the clique concept imposes. The formalizations that consider

both internal and external ties can be organized in two main categories depending on whether

they use density or connectivity to measure internal and external ties.

The first formalization of cohesive subgroups was the concept of clique (Luce and Perry,

1949), which is a maximal subset of actors in which each actor is directly connected to every

other actor in the subgroup. For small groups in some contexts, such as friendship networks, it

makes sense to use the clique concept. However, in many contexts, especially in large and/or

very sparse networks, it is unlikely that the existing cohesive subgroups will be formed by

actors that have direct relations with all other actors in the subgroup. Cliques, however, in-

tuitively capture the idea that a cohesive subgroup exists independently of the action of any

19

2. COHESIVE GROUPS: THE STRUCTURAL COHESION MODEL

individual in the group. Thus the group is robust because it cannot be disconnected by re-

moving any individual actor. Cliques can overlap —and they usually do so a lot— but they

do not display a hierarchical organization. Because of the limitations of the clique concept,

some generalizations were developed; on the one hand, there emerged a family of generaliza-

tions based on relaxing distances among members of the subgroup —n-cliques , n-clans, and

n-clubs (Mokken, 1979); and, on the other, generalizations based on relaxing the number of

links between members of the subgroup —k-plex (Seidman and Foster, 1978), and k-cores

(Seidman, 1983b).

All these generalizations except for k-core are quite arbitrary because the analyst has to set

the parameters n or k depending on the concrete aim of the analysis at hand and its empirical

setting. Thus, k-core is the only generalization of the clique concept with an inherent hier-

archical structure: 3-cores are always nested inside 2-cores; and 4-cores inside 3-cores, and

so forth. Thus, this formalization captures an important aspect of the sociological concept of

cohesive groups. However, k-cores are not robust because the removal of a few actors could

potentially disconnect them; in fact they don’t even need to be connected at all to be a k-

core (White and Harary, 2001). Furthermore, the definition of k-core only considers internal

relations among actors within it, without considering relations with the rest of the network.

Another important subset of subgroup formalizations identifies cohesive subgroups by

comparing the internal and external ties of subgroups members. The two key criteria to define

groups in these categories are density and connectivity. The first formalization of this kind

was the LS set (Luccio and Sami, 1969; Lawler, 1973): a set of nodes in which each of its

proper subsets has more ties with the nodes outside that subset than the LS set itself. The main

idea is that an LS set is a union of subsets of nodes. This union is better than any subset in

terms of cohesion because it has fewer connections to the outside. Thus, actors in the LS set

have more connections to other members than to outsiders. LS sets are robust to the removal

of edges and they have an inherent hierarchical structure; however, due to their strict require-

ments, only very few LS sets are actually found in empirical social networks. Lambda sets

(Borgatti et al., 1990) were introduced as a generalization of LS sets designed to capture only

the edge-connectivity properties of the LS sets. Lambda sets are maximal subsets of nodes

that have more edge independent paths between them than with nodes outside the subset. This

generalization, however, does not capture important features of the sociological concept of

group cohesiveness. On the one hand, they are not robust to the removal of nodes, and, on the

other hand, the edge independent paths that link the members of a Lambda set can go through

nodes that are not in the lambda set, thus there is no strict separation between the role of actors

inside and outside a lambda set in respect to its internal cohesion.

20

2.2. Cohesion in social networks
B

as
ed

o
n

C
ri

te
ri

a
M

ea
su

re
D

efi
n
it

io
n

R
o
b
u
st

O
v
er

la
p

P
o
si

ti
o
n
al

H
ie

ra
rc

h
ic

al
C

o
m

p
u
ta

ti
o
n
al

Absolute:onlyinternal

co
m

p
le

te
co

n
n
ec

ti
v
it

y
d
ia
m

=
�
=

1
δ
=

λ
=

κ
=

n
−
1

cl
iq

u
e

m
ax

im
al

su
b
g
ra

p
h

o
f

n
o
d
es

al
l

o
f

w
h
ic

h
ar

e
ad

ja
ce

n
t

to
ea

ch
o
th

er
Y

es
Y

es
:

cl
iq

u
e

p
er

-
co

la
ti

o
n

Y
es

:
st

ru
c-

tu
ra

l
fo

ld
s

Y
es

:
k

-c
li

q
u
es

S
lo

w

re
la

x
d
is

ta
n
ce

m
a
x
{
d
G
(u
,v
)}

≤
n

n
-c

li
q
u
e

m
ax

im
al

su
b
g
ra

p
h

in
w

h
ic

h
th

e
la

rg
es

t
g
eo

d
es

ic
d
is

ta
n
ce

is
n
o

g
re

at
er

th
an

n

N
o

N
o

N
o

N
o

S
lo

w

n
-c

li
q
u
e

w
it

h
d
ia
m

≤
n

n
-c

la
n

n
-c

li
q
u
e

th
at

al
so

h
av

e
a

d
ia

m
et

er
n
o

g
re

at
er

th
an

n
N

o
Y

es
N

o
N

o
S

lo
w

d
ia
m

=
n

n
-c

lu
b

a
m

ax
im

al
su

b
g
ra

p
h

o
f

d
ia

m
et

er
n

N
o

Y
es

N
o

N
o

S
lo

w

re
la

x
d
eg

re
e

δ
≥

n
−

k
k

-p
le

x
m

ax
im

al
su

b
g
ra

p
h

in
w

h
ic

h
ea

ch
n
o
d
e

m
ay

b
e

la
ck

in
g

ti
es

to
n
o

m
o
re

th
an

k
o
th

er
n
o
d
es

N
o

Y
es

N
o

N
o

S
lo

w

δ
≥

k
k

-c
o
re

m
ax

im
al

su
b
g
ra

p
h

in
w

h
ic

h
al

l
n
o
d
es

h
av

e
d
eg

re
e
k

o
r

m
o
re

N
o

N
o

N
o

Y
es

V
er

y
fa

st
O
(m

)

re
la

x
d
en

si
ty

�
≥

η
η

-d
en

se
su

b
-

g
ra

p
h

su
b
g
ra

p
h

w
it

h
d
en

si
ty

g
re

at
er

th
an

o
r

eq
u
al

to
η

,
w

h
er

e
0
≤

η
≤

1
N

o
N

o
N

o
N

o
S

lo
w

Relative:Internal(+)External(-)

d
en

si
ty

m
in

im
iz

e
ed

g
es

to
o
u
ts

id
e

L
S

se
ts

se
t

o
f

n
o
d
es

in
w

h
ic

h
ea

ch
o
f

it
s

p
ro

p
er

su
b
se

ts
h
as

m
o
re

ti
es

w
it

h
th

e
n
o
d
es

o
u
ts

id
e

th
at

su
b
se

t
th

an
th

e
L

S
se

t
it

se
lf

Y
es

N
o

Y
es

Y
es

S
lo

w
O
(n

4
)

q
u
al

it
y

fu
n
ct

io
n

o
f

p
ar

ti
ti

o
n
s

m
o
d
u
la

ri
ty

th
e

fr
ac

ti
o
n

o
f

th
e

ed
g
es

th
at

fa
ll

w
it

h
in

th
e

g
iv

en
g
ro

u
p
s

m
in

u
s

th
e

ex
p
ec

te
d

su
ch

fr
ac

ti
o
n

if
ed

g
es

w
er

e
d
is

tr
ib

u
te

d
at

ra
n
d
o
m

N
o

N
o

N
o

N
o

O
p
ti

m
u
m

:
S

lo
w

A
p
p
ro

x
:

F
as

t

co
n
n
ec

ti
v
it

y
co

n
d
u
ct

an
ce

w
ei

g
h
t

o
f

ed
g
e

cu
t-

se
ts

am
o
n
g

d
if

-
fe

re
n
t

su
b
g
ro

u
p
s

ed
g
e-

co
n
n
ec

ti
v
it

y
la

m
b
d
a

se
ts

m
ax

im
al

su
b
se

t
o
f

n
o
d
es

th
at

h
av

e
m

o
re

ed
g
e

in
d
ep

en
d
en

t
p
at

h
s

b
e-

tw
ee

n
th

em
th

an
w

it
h

n
o
d
es

o
u
ts

id
e

th
e

su
b
se

t

N
o
t

as
ro

-
b
u
st

as
L

S
se

ts

N
o

N
o

Y
es

S
lo

w
O
(n

4
)

n
o
d
e-

co
n
n
ec

ti
v
it

y
k

-c
o
m

p
o
n
en

ts
m

ax
im

al
su

b
g
ra

p
h

th
at

h
as

,
at

le
as

t,
n
o
d
e

co
n
n
ec

ti
v
it

y
k

:
w

e
n
ee

d
to

re
-

m
o
v
e

at
le

as
t
k

n
o
d
es

to
b
re

ak
it

in
to

m
o
re

co
m

p
o
n
en

ts

Y
es

Y
es

:
k
−

1
n
o
d
es

Y
es

Y
es

E
x
ac

t:
S

lo
w
O
(n

4
)

A
p
p
ro

x
:
�

O
(n

4
)

ra
n
d
o
m

w
al

k
b
as

ed
p
ar

ti
ti

o
n

al
g
o
ri

th
m

s
N

o
N

o
N

o
N

o
F

as
t

T
ab

le
2

.1
:

S
u

m
m

ar
y

o
f

co
h

es
iv

e
su

b
g

ro
u

p
s

fo
rm

al
iz

at
io

n
s

fr
o

m
so

ci
al

n
et

w
o

rk
an

al
y

si
s

li
te

ra
tu

re
(L

u
ce

an
d

P
er

ry
,
1

9
4

9
;

L
u
cc

io
an

d

S
am

i,
1

9
6

9
;

L
aw

le
r,

1
9

7
3

;
S

ei
d

m
an

an
d

F
o

st
er

,
1

9
7

8
;

M
o

k
k
en

,
1

9
7

9
;
S

ei
d

m
an

,
1

9
8

3
b

,a
;
B

o
rg

at
ti

et
al

.,
1

9
9

0
;

W
as

se
rm

an
an

d
F

au
st

,

1
9

9
4

;
W

h
it

e
an

d
H

ar
ar

y
,
2

0
0

1
;

M
o

o
d

y
an

d
W

h
it

e,
2

0
0

3
;

B
ra

n
d
es

an
d

E
rl

eb
ac

h
,
2

0
0

5
;

F
o

rt
u

n
at

o
,
2

0
1

0
).

N
o

ta
ti

o
n

:
d
ia
m

is
d
ia

m
et

er
,

�
is

d
en

si
ty

,
δ

is
m

in
im

u
m

d
eg

re
e,
λ

is
ed

g
e-

co
n

n
ec

ti
v

it
y,
κ

is
n

o
d

e
co

n
n

ec
ti

v
it

y,
n

is
th

e
n

u
m

b
er

o
f

n
o

d
es

,
m

is
th

e
n

u
m

b
er

o
f

ed
g

es
,

an
d
d
G
(u
,v
)

is
th

e
d

is
ta

n
ce

b
et

w
ee

n
n

o
d

es
u

an
d
v

in
G

.

21

2. COHESIVE GROUPS: THE STRUCTURAL COHESION MODEL

More recently, under the label community analysis, an interdisciplinary community of re-

searchers interested in complex networks has proposed a novel family of subgroup measures

and algorithms (Fortunato, 2010). Essentially their approach is to divide a network into sub-

groups by grouping nodes that are more densely connected among them than with the rest of

the network. To objectively define how good a concrete partition of a network is, they define

a quality function (Brandes and Erlebach, 2005; Fortunato, 2010). There are many different

quality functions used in network literature, with most of them based on density, but also a few

based on connectivity. The most popular quality function is modularity, which is computed as

the fraction of the edges that fall within the given groups minus the expected value of the frac-

tion if edges were distributed at random. However, the subgroups resulting from community

analysis techniques are not hierarchically organized in the sociological sense discussed above

because there is no natural nestedness among groups2.

The first wave of community analysis focused on the analysis of non overlapping groups,

but recent developments have explored overlapping community structures. The most interest-

ing approach of this kind is the clique percolation method (Palla, Derényi, Farkas, and Vicsek,

2005) and their generalizations based on short cycles connectivity (Batagelj and Zaveršnik,

2007). A k-clique is a complete subgraph formed by k members. Two k-cliques are con-

sidered adjacent if they share k − 1 actors. A k-clique community is the largest connected

subgraph obtained by the union of all adjacent k-cliques. k-clique communities can share

nodes, so overlapping is possible. The clique percolation approach has proven to be a fertile

ground over which to build theoretical developments on the positional dimension of cohe-

sion. The concept of inter-cohesion based on the structural fold network topology (Vedres and

Stark, 2010) is the most prominent example. Actors at structural folds are insiders in multi-

ple cohesive subgroups (k-clique communities). Thus they have access to diverse resources

and information from each subgroup without being isolated and limited to only one group

of neighbors. Vedres and Stark show that this distinctive structural position helps to explain

innovation and entrepreneurial dynamics in the context of firm networks.

However these new developments on community analysis are not well suited to address

many of the common uses of group cohesion in the sociological literature. The clique per-

colation method assumes that the network under analysis has a large number of cliques, so

it may fail to deliver meaningful results for networks with few cliques; also, if there are too

many cliques, it may yield trivial results, such as considering the whole network a cohesive

group without internal divisions. Moreover, this method is focused on finding subgraphs that

contain many k-cliques inside, which is not exactly the same as subgraphs more densely con-

nected internally than externally, because a k-clique community could be formed by chains

of k-cliques with low edge density among non adjacent k-cliques. This implies that k-clique

communities are not necessary robust to node removal.

2However, some of those methods are called hierarchical because they use hierarchical clustering to orga-

nize partitions in each step of the partition algorithm, which is commonly represented by a dendogram. Thus,

researchers need to to introduce an arbitrary criteria to identify relevant partitions –that is, the level at which we

cut the dendogram.

22

2.2. Cohesion in social networks

The structural cohesion model

The structural cohesion approach to subgroup cohesion (White and Harary, 2001; Moody and

White, 2003) is grounded on two mathematically equivalent definitions of cohesion that are

based on commonly used concepts of cohesion in the sociological literature. On the one hand,

the ability of a collectivity to hold together independently of the will of any individual. As set

out by the formal definition, “a group’s structural cohesion is equal to the minimum number

of actors who, if removed from the group, would disconnect the group” (Moody and White,

2003, 109). Yet, on the other hand, a cohesive group has multiple independent relational paths

among all pairs of members. According to the formal definition “a group’s structural cohesion

is equal to the minimum number of independent paths linking each pair of actors in the group”

(Moody and White, 2003, 109). These two definitions are mathematically equivalent in terms

of the graph theoretic concept of connectivity as defined by Menger’s Theorem (White and

Harary, 2001, 330), which can be formulated locally: “The minimum node cut set κ(u, v)
separating a nonadjacent u, v pair of nodes equals the maximum number of node-independent

u − v paths”; and globally: “A graph is k-connected if and only if any pair of nodes u, v is

joined by at least k node-independent u − v paths”. Thus Menger’s theorem links with an

equivalence relation a structural property of graphs —connectivity based on cut sets— with

how graphs are traversed —the number of node independent paths among pairs of different

nodes. This equivalence relation has a deep sociological meaning because it allows for the

definition of structural cohesion in terms of the difficulty to pull a group apart by removing

actors and, at the same time, in terms of multiple relations between actors that keep a group

together.

The starting point of cohesion in a social group is a state where every actor can reach every

other actor through at least one relational path. The emergence of a giant component —a large

set of nodes in a network that have at least one path that links any two nodes— is a mini-

mal condition for the development of group cohesion and social solidarity. Moody and White

(2003) argue that, in this situation, the removal of only one node can affect the flow of knowl-

edge, information and resources in a network because there is only one single path that links

some parts of the network. Thus, if a network has actors who are articulation points, their role

in keeping the network together is critical; and by extension the network can be disconnected

by removing them. Moody and White (2003) convincingly argue that biconnectivity provides

a baseline threshold for strong structural cohesion in a network because its cohesion does not

depend on the presence of any individual actor and the flow of information or resources does

not need to pass through a single point to reach any part of the network. Therefore, the concept

of robustness is at the core of the structural cohesion approach to subgroup cohesion.

Note that the bicomponent structure of a graph is an exact partition of its edges, which

means that each edge belongs to one, and only one, bicomponent; but this is not the case

for nodes because k-components can overlap in k − 1 nodes. In the case of bicomponents,

articulation points belong to all bicomponents that they separate. Thus, this formalization of

subgroup cohesion allows limited horizontal overlapping over k-components of the same k.

On the other hand, the k-component structure of a network is inherently hierarchical because

k-components are nested in terms of connectivity: a connected graph can contain several 2-

components, each of which can contain one or more tricomponents, and so forth. This is one

23

2. COHESIVE GROUPS: THE STRUCTURAL COHESION MODEL

of the bases over which the structural cohesion model is built and it is specially useful for

operationalizing the hierarchical conception of nested social groups.

However, one shortcoming of classifying cohesive subgroups only in terms of node con-

nectivity is that k-components of the same k are always considered equally cohesive despite

the fact that one of them might be very close to the next connectivity level, while the other

might barely qualify as a component of level k (i.e. removing a few edges could reduce the

connectivity level to k − 1). White and Harary (2001) propose to complement node connec-

tivity with the measure of conditional density. If a subgroup has node connectivity k, then its

internal density can only vary within a limited range if the subgroup maintains that same level

of connectivity. Thus, they propose to combine node connectivity and conditional density to

have a continuous measure of cohesion. But connectivity is a better measure than density for

measuring cohesion because there is no guarantee that a denser subgroup is more robust to

node removal than a sparser one, given that both have the same node connectivity k.

Building on this insight, I propose using another connectivity-based metric to obtain a

continuous and more granular measure of cohesion: the average node connectivity. Node

connectivity is a measure based on a worst-case scenario in the sense that to actually break

apart a k connected graph by only removing k nodes we have to carefully choose which nodes

to remove. Recent work on network robustness and reliability (Albert, Jeong, and Barabási,

2000; Dodds, Watts, and Sabel, 2003) use as the main benchmark for robustness the tolerance

to the random or targeted removal of nodes by degree; it is unlikely that by using either of these

attack tactics we could disconnect a k connected graph by only removing k nodes. Thus node

connectivity does not reflect the typical impact of removing nodes in the global connectivity

of a graph G. Beineke, Oellermann, and Pippert (2002) propose the measure of average node

connectivity of G, denoted κ̄(G), defined as the sum of local node connectivity between all

pairs of different nodes of G divided by the number of distinct pairs of nodes. Or put more

formally:

κ̄(G) =

∑
u,v κG(u, v)(

n

2

) (2.1)

Where n is the number of nodes of G. In contrast to node connectivity κ, which is the

minimum number of nodes whose removal disconnects some pairs of nodes, the average con-

nectivity κ̄(G) is the expected minimal number of nodes that must be removed in order to

disconnect an arbitrary pair of nodes of G. For any graph G it holds that κ̄(G) ≥ κ(G).
As Beineke et al. show, average connectivity does not increase only with the increase in the

number of edges: graphs with the same number of nodes and edges, and the same degree for

each node can have different average connectivity (Beineke et al., 2002, figure 2, 33). Thus,

this continuous measure of cohesion doesn’t have the shortcomings of conditional density to

measure the robustness of the cohesive subgroups.

The relation between node connectivity and average node connectivity is analog to the

relation between diameter and average distance. The diameter of a graph G is the maximum

distance between any two nodes of G, and like node connectivity, it is a worst-case scenario.

It does not reflect the typical distance that separates most pairs of nodes in G. When modeling

distances between actors in networks, it is better to use the average path length (L) because it

24

2.3. Existing algorithms for computing k-component structure

is close to the typical case: if we choose at random two nodes from a network, it is more likely

that their distance is closer to the average than to the maximum distance. Taking into account

the average connectivity of each one of the k-components of a network allows a more fine

grained conception of structural cohesion because, in addition to considering the minimum

number of nodes that must be removed in order to disconnect a subgroup, I also consider

the number of nodes that, on average, have to be removed to actually disconnect an arbitrary

pair of nodes of the subgroup. The latter is a better measure of subgroup robustness than the

departure of key individuals from the network.

Structural cohesion is a powerful explanatory factor for a wide variety of interesting em-

pirical social phenomena. It can be used to explain, for instance: the likelihood of building

alliances and partnerships among biotech firms (Powell et al., 2005); how positions in the con-

nectivity structure of the Indian inter-organizational ownership network are associated with

demographic features (age and industry); and differences in the extent to which firms engage

in multiplex and high-value exchanges (Mani and Moody, 2014). Social cohesion can also

help us understand degrees of school attachment and academic performance in young peo-

ple, as well as the tendency of firms to enroll in similar political activity behaviors (Moody

and White, 2003). It offers insight, also, into emerging trust relations among neighborhood

residents or the hiring relations among top level US graduate programs (Grannis, 2009). In

addition to social solidarity and group cohesion, the model can equally fit many relevant the-

oretical issues, such as conceptualizing structural differences among fields and organizations

(White et al., 2004), operationalizing the structural component of social embeddedness (Gra-

novetter, 1985; Moody, 2004), explaining the role of highly connected subgroups in boosting

diffusion in social networks without a high rate of decay (Moody, 2004; White and Harary,

2001), or highlighting the complexity and diversity of the structure of real world markets

beyond stylized one-dimensional characterizations of the market (Mani and Moody, 2014).

Despite all its merits, the structural cohesion model has not been widely applied to em-

pirical analysis because it is not practical to compute it for networks with more than a few

thousands nodes and edges due to its computational complexity. What’s more, it is not imple-

mented in most popular network analysis software packages. In the next section, I will review

the existing algorithm to compute the k-component structure for a given network, before in-

troducing the heuristics to speed up the computation.

2.3 Existing algorithms for computing k-component

structure

Moody and White (2003, appendix A) provide an algorithm for identifying k-components in a

network, which is based on the Kanevsky (1993) algorithm for finding all minimum-size node

cut-sets of a graph; i.e. the set (or sets) of nodes of cardinality k that, if removed, would break

the network into more connected components. The algorithm consists of 4 steps:

1. Identify the node connectivity, k, of the input graph using flow-based connectivity algo-

rithms (Brandes and Erlebach, 2005, chapter 7).

25

2. COHESIVE GROUPS: THE STRUCTURAL COHESION MODEL

2. Identify all k-cutsets at the current level of connectivity using the Kanevsky (1993)

algorithm.

3. Generate new graph components based on the removal of these cutsets (nodes in the

cutset belong to both sides of the induced cut).

4. If the graph is neither complete nor trivial, return to 1; otherwise end.

As the authors note, one of the main strengths of the structural cohesion approach is that it

is theoretically applicable to both small and large groups, which contrasts with the historical

focus of the literature on small groups when dealing with cohesion. But the fact that this

concept and the algorithm proposed by the authors, are theoretically applicable to large groups

does not mean that this would be a practical approach for analyzing the structural cohesion on

large social networks 3.

The equivalence relation established by Menger’s theorem between node cut sets and node

independent paths can be useful to compute connectivity in practical cases but both measures

are almost equally hard to compute if we want an exact solution. However, White and Newman

(2001) proposed a fast approximation algorithm for finding good lower bounds of the number

of node independent paths between two nodes. This smart algorithm is based on the idea of

searching paths between two nodes, marking the nodes of the path as “used” and searching for

more paths that do not include nodes already marked. But instead of trying all possible paths

without order, this algorithm considers only the shortest paths: it finds node independent paths

between two nodes by computing their shortest path, marking the nodes of the path found as

“used” and then searching other shortest paths excluding the nodes marked as “used” until

no more paths exist. Because finding the shortest paths is faster than finding other kinds of

paths, this algorithm runs quite fast, but is not exact because a shortest path could use nodes

that, if the path were longer, may belong to two different node independent paths (White and

Newman, 2001, section III). Therefore a condition for the use of this approximation algorithm

would be that the networks analyzed should be sparse; this will reduce its inaccuracy because

it will be less likely that a shorter path uses nodes that could belong to two or more longer

node independent paths.

White and Newman suggest that this algorithm could be used to find k-components. First

one should compute the node independent paths between all pairs of different nodes of the

graph. Then build an auxiliary graph in which two nodes are linked if they have at least k node

independent paths connecting them. The induced subgraph of all nodes of each connected

component of the auxiliary graph form an extra-cohesive block of level k (like a k-component

but with the difference that not all node independent paths run entirely inside the subgraph).

Finally, we could approximate the k-component structure of a graph by successive iterations

of this procedure.

However, there are a few problems with this approach. First, a k-component is defined

as a maximal subgraph in which all pairs of different nodes have, at least, k node indepen-

dent paths between them. If we rely on the connected components of the auxiliary graph as

3The fastest implementation of this algorithm runs in O(N4) time (Csárdi and Nepusz, 2006) which is

impractical for moderately large networks.

26

2.4. Heuristics for computing k-components and their average connectivity

proposed by White and Newman (2001) we will include in a given k-component all nodes

that have at least k node independent paths with only one other node of the subgraph. Thus,

the cohesive subgraphs detected won’t have to be k-components as defined in graph theory.

Second, k-components can overlap in k−1 nodes. If we only consider connected components

(i.e. 1-components) in the auxiliary graph, we will not be able to distinguish overlapping

k-components. Finally, the approach proposed by White and Newman is not practical in com-

putational terms for large networks because of its recursive nature and because it needs to

compute node independent paths for all pairs of different nodes in the network as starting

point.

2.4 Heuristics for computing k-components and their

average connectivity

The logic of the algorithm presented here is based on repeatedly applying fast algorithms for

k-cores (Batagelj and Zaveršnik, 2011) and biconnected components (Tarjan, 1972) in order

to narrow down the number of pairs of different nodes over which we have to compute their

local node connectivity for building the auxiliary graph in which two nodes are linked if they

have at least k node independent paths connecting them. I follow the classical insight that,

“k-cores can be regarded as seedbeds, within which we can expect highly cohesive subsets to

be found” Seidman (1983b, 281). More formally, my approach is based on Whitney’s theorem

(White and Harary, 2001, 328), which states an inclusion relation among node connectivity

κ(G), edge connectivity λ(G) and minimum degree δ(G) for any graph G:

κ(G) ≤ λ(G) ≤ δ(G) (2.2)

This theorem implies that every k-component is nested inside a k-edge-component, which

in turn, is contained in a k-core. This approach, unlike the proposal of White and Newman

(2001), does not require computing node independent paths for all pairs of different nodes as a

starting point, thus saving an important amount of computation. Moreover it does not require

recursively applying the same procedure over each subgraph. With this approach I only have

to compute node independent paths among pairs of different nodes in each biconnected part

of each k-core, and repeat this procedure for each k from 3 to the maximal core number of a

node in the input network.

The aim of the heuristics presented here is to provide a fast and reasonably accurate way

of analyzing the cohesive structure of empirical networks of thousands of nodes and edges.

As we have seen, k-components are the cornerstone of structural cohesion analysis. But they

are very expensive to compute. My approach consists of computing extra-cohesive blocks of

level k for each biconnected component of a k-core. Extra-cohesive blocks are a relaxation

of the k-component concept in which not all node independent paths among pairs of different

nodes have to run entirely inside the subgraph. Thus, there is no guarantee that an extra-

cohesive block of level k actually has node connectivity k. I introduce an additional constraint

to the extra-cohesive block concept in order to approximate k-components: the algorithm

computes extra-cohesive blocks of level k that are also k-cores by themselves in G. Based on

27

2. COHESIVE GROUPS: THE STRUCTURAL COHESION MODEL

several tests with synthetic and empirical networks presented below, I show that usually extra-

cohesive blocks detected by this algorithm have indeed node connectivity k. Furthermore,

extra-cohesive blocks maintain high requirements in terms of multiconnectivity and robust-

ness, thus conserving the most interesting properties from a sociological perspective on the

structure of social groups.

Combining this logic with three observations about the auxiliary graph H allows me to

design a new algorithm for finding extra-cohesive blocks in each biconnected component of

a k-core, that can either be exact but slow —using flow-based algorithms for local node con-

nectivity (Brandes and Erlebach, 2005, Chapter 7)— or fast and approximate, giving a lower

bound with certificate of the composition and the connectivity of extra-cohesive blocks —

using White and Newman (2001) approximation for local node connectivity. Once we have a

fast way to compute extra-cohesive blocks, we can approximate k-components by imposing

that the induced subgraph of the nodes that form an extra-cohesive block of G have to also be

a k-core in G.

Let H be the auxiliary graph in which two nodes are linked if they have at least k node

independent paths connecting them in each of the biconnected components of the core of

level k of original graph G (for k > 2). The first observation is that complete subgraphs in

H (Hclique) have a one to one correspondence with subgraphs of G in which each node is

connected to every other node in the subgraph for at least k node independent paths. Thus, we

have to search for cliques in H in order to discover extra-cohesive blocks in G.

The second observation is that an Hclique of order n is also a core of level n− 1 (all nodes

have core number n − 1), and the degree of all nodes is also n − 1. The auxiliary graph H

is usually very dense, because we build a different H for each biconnected part of the core

subgraph of level k of the input graph G. In this kind of network big clusters of almost fully

connected nodes are very common. Thus, in order to search for cliques in H we can do the

following:

1. For each core number value cvalue in each biconnected component of H:

2. Build a subgraph Hcandidate of H induced by the nodes that have exactly core number

cvalue. Note that this is different than building a k-core, which is a subgraph induced by

all nodes with core number greater or equal than cvalue.

3. If Hcandidate has order cvalue + 1 then it is a clique and all nodes will have degree n− 1.

Return the clique and continue with the following candidate.

4. If this is not the case, then some nodes will have degree < n − 1. Remove all nodes

with minimum degree from Hcandidate.

5. If the graph is trivial or empty, continue with the following candidate. Or otherwise

recompute the core number for each node and go to 3.

Finally, the third observation is that if two k-components of different order overlap, the

nodes that overlap belong to both cliques in H and will have core numbers equal to all other

nodes in the bigger clique. Thus, I can account for possible overlap when building subgraphs

28

2.4. Heuristics for computing k-components and their average connectivity

Hcandidate (induced by the nodes that have exactly core number cvalue) by also adding to the

candidate subgraph the nodes in H that are connected to all nodes that have exactly core

number cvalue. Also, if we sort the subgraphs Hcandidate in reverse order (starting from the

biggest), we can skip checking for possible overlap for the biggest.

Based on these three observations, the heuristics for approximating the cohesive structure

of a network and the average connectivity of each individual block, consists of:

Let G be the input graph. Compute the core number of each node in G. For each k from 3

to the maximum core number build a k-core subgraph Gk−core with all nodes in G with core

level ≥ k.

For each biconnected component of Gk−core:

1. Compute local node connectivity κ(u, v) between all pairs of different nodes. Optionally

store the result for each pair. Either use a flow-based algorithm (exact but slow) or White

and Newman’s approximation for local node connectivity (approximate but a lot faster).

2. Build an auxiliary graph H with all nodes in this bicomponent of Gk−core with edges

between two nodes if κ(u, v) ≥ k. For each biconnected component of H:

3. Compute the core number of each node in Hbicomponent, sort the values in reverse order

(biggest first), and for each value cvalue:

a) Build a subgraph Hcandidate induced by nodes with core number exactly equal to

cvalue plus nodes in H that are connected with all nodes with core number equal to

cvalue.

i. If Hcandidate has order cvalue + 1 then it is a clique and all nodes will have

degree n− 1. Build a core subgraph Gcandidate of level k of G induced by all

nodes in Hcandidate that have core number ≥ k in G.

ii. If this is not the case, then some nodes will have degree < n− 1. Remove all

nodes with minimum degree from Hcandidate. Build a core subgraph Gcandidate

of level k of G induced by the remaining nodes of Hcandidate that have core

number ≥ k in G.

A. If the resultant graph is trivial or empty, continue with the following can-

didate.

B. Else recompute the core number for each node in the new Hcandidate and

go to (i).

b) The nodes of each biconnected component of Gcandidate are assumed to be a k-

component of the input graph if the number of nodes is greater than k.

c) Compute the average connectivity of each detected k-component. Either use the

value of κ(u, v) computed in step 1 or recalculate κ(u, v) in the induced subgraph

of candidate nodes.

Notice that because this approach is based on computing node independent paths between

pairs of different nodes, I’m able to use these computations to calculate both the cohesive

29

2. COHESIVE GROUPS: THE STRUCTURAL COHESION MODEL

structure and the average node connectivity of each detected k-component. Of course, com-

puting average connectivity comes with a cost: either more space to store κ(u, v) in step 1, or

more computation time in step 3.c if we did not store κ(u, v). This is not possible when ap-

plying the exact algorithm for k-components proposed by Moody and White (2003) because

it is based on repeatedly finding k-cutsets and removing them, thus it does not consider node

independent paths at all.

The output of these heuristics is an approximation to k-components based on extra-cohesive

blocks. It finds extra-cohesive blocks and not k-components because it only builds the auxil-

iary graph H one time on each biconnected component of a core subgraph of level k from the

input graph G. Local node connectivity is computed in a subgraph that might be larger than

the final Gcandidate and thus some node independent paths that shouldn’t could end up being

counted.

Accuracy can be improved by rebuildingH from the pairwise node connectivity inGcandidate

and following the remaining steps of the heuristics at the cost of slowing down the computa-

tion. There is a trade-off between speed and accuracy. After some tests I decided to compute

H only once and lean towards the speed pole of the trade-off. The goal is to have an usable

procedure for analyzing networks of thousands of nodes and edges. Following this goal, the

use of White and Newman (2001) approximation algorithm for local node connectivity in step

3.b is key. It is almost on order of magnitude faster than the exact flow-based algorithms. As

usual, speed comes with a cost in accuracy: White and Newman (2001) algorithm provides

a strict lower bound for the local node connectivity. Thus, by using it I can miss an edge in

H that should be there. Therefore, a node belonging to a k-component could be excluded

by the algorithm if White and Newman (2001) approximation was used in step 3.b . This is

a source of false negatives in the process of approximating the k-component structure of a

network. However, as I discussed above, the inaccuracy of this algorithm for sparse networks

in reduced because in those networks the probability that a short node independent path uses

nodes that could belong to two or more longer node independent paths is low.

The tests reveal that the use of White and Newman (2001) approximation does indeed

underestimate the order of some k-components, particularly in not very sparse networks. One

approach to mitigate this problem is to relax the strict cohesion requirement of Hcandidate being

a clique. Following the network literature on cliques, we can relax its cohesion requirements

in terms of degree, coreness and density. I did some experiments and found that a good

relaxation criteria is to set a density threshold of 0.95 for Hcandidate; it doesn’t increase false

positives and does decrease the false negatives derived from the underestimation of local node

connectivity of White and Newman (2001) algorithm. Other possible criteria that has given

good results in my tests is permitting a variation in degree of 2 in Hcandidate —that is, that the

absolute difference of the maximum and the minimum degree in Hcandidate is at most 2. The

former relaxation criteria is used for all analysis presented below and in the appendix.

This algorithm can be easily generalized so as to be applicable to directed networks pro-

vided that the implementation of White and Newman’s approximation for pairwise node in-

dependent paths supports directed paths (which is the case in my implementation of this algo-

rithm on top of NetworkX library). The only change needed then is to use strongly connected

components instead of bicomponents. And, in step 3, to start with core number 2 instead of 3.

In appendix B.1 I present an illustration of the heuristics using a convenient small syn-

30

2.5. Structural cohesion in cooperation networks

thetic network. In appendix B.2 I present an analysis of the performance of the heuristics

compared to the performance of the exact algorithm for finding k-components (Moody and

White, 2003). In appendix B.3 I discuss the implementation details of the heuristics; and

in appendix B.4 I present the python code of my implementation of the heuristics. I also

contributed an implementation of the heuristics to a popular Python software package for the

analysis of complex networks: NetworkX (Hagberg et al., 2008). See appendix D for the

documentation and source code published as part of NetworkX version 1.10.

2.5 Structural cohesion in cooperation networks

The structural cohesion model can be used to analyze cooperation in different kinds of co-

operation networks; for instance, coauthorship networks (Moody, 2004; White et al., 2004)

and cooperation among biotech firms (Powell et al., 2005). Most cooperation networks are

bipartite because the cooperation of individuals has as a result —or, at least, as a relevant

byproduct— some kind of object or event to which its authors are related. All these papers

follow the usual practice to deal with two-mode networks: focus the analysis only on one-

mode projections. As such, we don’t know how much information about their cohesive struc-

ture we lose by ignoring the underlying bipartite networks. Recent literature on two-mode

networks strongly suggests that it is necessary to analyze two-mode networks directly to get

an accurate picture of their structure. For instance, in small world networks, we do know that

focusing only on projections overestimates the smallworldiness of the network (Uzzi et al.,

2007). We also know that generalizing clustering coefficients to bipartite networks can offer

key information that is lost in the projection (Robins and Alexander, 2004; Lind et al., 2005;

Opsahl, 2011). Finally, the loss of information is also critical in many other common network

measures: degree distributions, density, and assortativity (Latapy et al., 2008). I show that this

is also the case for the k-component structure of cooperation networks.

Structural cohesion analysis based on the k-component structure of bipartite networks has

been conducted very rarely and only on very small networks (White et al., 2004). The limited

diffusion of these studies can be readily explained by the fact that bipartite networks are usu-

ally quite a lot bigger than their one-mode counterparts, and the computational requirements,

once again, stifled empirical research in this direction. Other measures have been developed to

deal with cohesion in large bipartite networks, such as (p, q)-cores or 4-ring islands (Ahmed

et al., 2007). However, the former is a bipartite version of k-cores and thus it has the same

limitations for subgroup identification; while the latter is very useful to determine subgraphs

in large networks that are more strongly connected internally than with the rest of the net-

work, but also lacks some of the key elements of the definition for groups in the sociological

literature, such as being hierarchical and allowing for overlaps.

The heuristics for structural cohesion presented here allows us to compute connectivity-

based measures on large networks (up to tens of thousands of nodes and edges) quickly enough

to be able to build suitable null models. Furthermore I will be able to compare the results for

bipartite networks with their one-mode projections. To illustrate those points I use data on

cooperation among software developers in one organization (the Debian project) and scien-

tists publishing papers in the arXiv.org electronic repository in two different scientific fields:

31

2. COHESIVE GROUPS: THE STRUCTURAL COHESION MODEL

Bipartite Unipartite

Network # nodes # edges Av. degree Time(s) # nodes # edges Av. degree Time(s)

Debian Lenny 13121 20220 3.08 1105.2 1383 5216 7.54 204.7

High Energy (theory) 26590 37566 2.81 3105.7 9767 19331 3.97 7136.0

Nuclear Theory 10371 15969 3.08 1205.2 4827 14488 6.00 3934.1

Table 2.2: cooperation networks analyzed from science and from software development. See

text for details on their content. Time refers to the execution of the heuristics on each network

expressed in seconds.

High Energy Theory and Nuclear Theory. I built the Debian cooperation network by linking

each software developer with the packages (i.e. programs) that she uploaded to the package

repository of the Debian Operating System during a complete release cycle. I analyze the

Debian Operating System version 5.0, codenamed “Lenny”, which was developed from April

8, 2007, to February 1, 2009. Scientific networks are built using all the papers uploaded to

the arXiv.org pre-print repository from January 1, 2006, to December 31, 2010, for two well

established scientific fields: High Energy Physics Theory and Nuclear Theory. In these net-

works each author is linked to the papers that she has authored during the time period analyzed.

One-mode projections are always on the human side: scientists linked together if they have

coauthored a paper, and developers linked together if they have worked on the same program.

Table 2.2 presents some details on those networks.

In the remaining part of this section I perform three kinds of analysis to demonstrate the

loss of information we incur when focusing only on one-mode projections when dealing with

bipartite networks. First, I present a tree representation of the k-component structure —the

cohesive blocks structure (White and Harary, 2001; Moody and White, 2003; White et al.,

2004; Mani and Moody, 2014)— for the bipartite networks and their one-mode projections,

both for actual networks and for their random counterparts. Second, I present a comparison

among actual and random networks (both for one and two-mode) on the k-number frequencies

of nodes. Finally, I present a novel graphic representation of the structural cohesion of a net-

work, based on three-dimensional scatter plot, using average node connectivity as a synthetic

and more informative measure of cohesion of each k-component.

For the first two analyses it is necessary to generate null models in order to discount the

possibility that the observed structure of actual networks is just the result of randomly mix-

ing papers and scientists or packages and developers. The null models used in this chapter

are based on a bipartite configuration model (Newman, 2003), which consists of generat-

ing networks by randomly assigning papers/programs to scientists/developers but maintaining

constant the distribution of papers per scientists and scientists by paper observed in the actual

networks, that is the bipartite degree distribution. For one-mode projections, I generated bipar-

tite random networks based on their original bipartite degree distribution, and then performed

the one-mode projection. This is a common technique for avoiding overestimating the local

clustering of one-mode projections (Uzzi et al., 2007). As the configuration model can gener-

ate some multiple edges and self-loops, I followed the usual practice of deleting them before

the analysis in order to guarantee that random networks are simple, like actual networks.

32

2.5. Structural cohesion in cooperation networks

So let’s start with the tree representation of the cohesive blocks structure. As proposed by

White et al. (2004), we can represent the k-component structure of a network by drawing a

tree whose nodes are k-components; two nodes are linked if the k-component of higher level is

nested inside the k-component of lower level (see Mani and Moody (2014, 1643,1651) for this

kind of analysis on the Indian interorganizational ownership network). This representation of

the connectivity structure can be built during the run time of the exact algorithm. However,

because the heuristics are based on finding node independent paths, I have to compute first the

k-components hierarchy, and then construct the tree that represents the connectivity structure

of the network.

33

2. COHESIVE GROUPS: THE STRUCTURAL COHESION MODEL

C
o

n
n

ec
ti

v
it

y
 s

tr
u

ct
u

re

k
=

1
 (

2
1

)
k

=
1

 (
2

2
)

k
=

1
 (

2
8

)

k
=

2
 (

2
4

)

k
=

3
 (

1
8

)

k
=

4
 (

1
2

)

k
=

1
 (

3
0

)
k

=
1

 (
3

7
)

k
=

1
 (

5
6

)

k
=

2
 (

1
8

)

k
=

1
 (

7
9

6
5

)

k
=

2
 (

1
8

)
k

=
2

 (
1

5
)

k
=

2
 (

2
8

)
k

=
2

 (
4

2
3

1
)

k
=

2
 (

1
6

)
k

=
2

 (
1

6
)

k
=

2
 (

1
6

)

k
=

3
 (

1
0

)
k

=
3

 (
1

0
)

k
=

3
 (

1
2

)
k

=
3

 (
1

4
)

k
=

3
 (

1
1

)
k

=
3

 (
3

2
)

k
=

3
 (

1
1

)
k

=
3

 (
1

7
)

k
=

3
 (

2
6

)
k

=
3

 (
1

3
)

k
=

3
 (

8
6

4
)

k
=

3
 (

1
2

)
k

=
3

 (
1

0
)

k
=

3
 (

1
1

)
k

=
3

 (
5

9
)

k
=

3
 (

1
0

)
k

=
3

 (
1

3
)

k
=

3
 (

1
0

)
k

=
3

 (
1

7
)

k
=

3
 (

2
2

)
k

=
3

 (
1

7
)

k
=

3
 (

1
0

)
k

=
3

 (
1

6
)

k
=

3
 (

1
1

)
k

=
3

 (
1

4
)

k
=

3
 (

1
3

)
k

=
3

 (
1

5
)

k
=

3
 (

2
9

)
k

=
3

 (
1

5
)

k
=

3
 (

1
6

)

k
=

4
 (

1
6

)
k

=
4

 (
9

)
k

=
4

 (
8

)
k

=
4

 (
8

)
k

=
4

 (
9

)
k

=
4

 (
1

0
)

k
=

4
 (

2
6

)
k

=
4

 (
1

0
)

k
=

4
 (

3
2

)
k

=
4

 (
1

7
)

k
=

4
 (

8
)

k
=

4
 (

7
6

)
k

=
4

 (
1

2
)

k
=

4
 (

3
5

)
k

=
4

 (
2

1
)

k
=

4
 (

9
)

k
=

4
 (

1
0

)
k

=
4

 (
9

)
k

=
4

 (
1

0
)

k
=

4
 (

1
2

)
k

=
4

 (
1

0
)

k
=

4
 (

1
3

)
k

=
4

 (
8

)
k

=
4

 (
1

4
)

k
=

4
 (

1
4

)
k

=
4

 (
1

0
)

k
=

4
 (

1
1

)
k

=
4

 (
5

4
)

k
=

4
 (

8
)

k
=

4
 (

2
2

)
k

=
4

 (
1

7
)

k
=

4
 (

1
3

)
k

=
4

 (
1

0
)

k
=

4
 (

9
)

k
=

4
 (

1
2

)
k

=
4

 (
1

0
)

k
=

5
 (

1
0

)
k

=
5

 (
1

0
)

k
=

0
 (

1
0

3
7

1
)

k
=

5
 (

2
0

)
k

=
5

 (
1

4
)

k
=

5
 (

1
1

)
k

=
5

 (
1

5
)

k
=

6
 (

1
3

)

k
=

5
 (

1
5

)
k

=
5

 (
1

1
)

k
=

5
 (

4
9

)

k
=

6
 (

2
8

)
k

=
6

 (
2

0
)

k
=

7
 (

2
4

)

k
=

5
 (

1
9

)

k
=

8
 (

1
7

)

k
=

5
 (

1
3

)
k

=
5

 (
1

1
)

k
=

5
 (

1
0

)
k

=
5

 (
1

3
)

(a
)

A
ct

u
al

2
m

o
d

e

C
o

n
n

ec
ti

v
it

y
 s

tr
u

ct
u

re

k
=

2
 (

6
0

8
3

)

k
=

3
 (

2
1

9
5

)

k
=

0
 (

1
0

3
7

1
)

k
=

1
 (

9
8

6
2

)

(b
)

R
an

d
o

m

2
m

o
d

e

C
o

n
n

ec
ti

v
it

y
 s

tr
u

ct
u

re

k
=

4
3

 (
4

7
)

k
=

4
4

 (
4

7
)

k
=

4
5

 (
4

7
)

k
=

4
6

 (
4

7
)

k
=

9
 (

1
0

)
k

=
9

 (
2

2
)

k
=

1
0

 (
2

0
)

k
=

2
8

 (
3

1
)

k
=

2
9

 (
3

1
)

k
=

3
0

 (
3

1
)

k
=

2
8

 (
4

7
)

k
=

2
9

 (
4

7
)

k
=

3
0

 (
4

7
)

k
=

3
1

 (
4

7
)

k
=

5
 (

6
)

k
=

5
 (

7
)

k
=

6
 (

7
)

k
=

6
 (

1
0

)

k
=

7
 (

1
0

)

k
=

8
 (

1
0

)

k
=

9
 (

1
0

)

k
=

6
 (

1
1

)

k
=

7
 (

1
1

)

k
=

8
 (

1
1

)

k
=

9
 (

1
1

)

k
=

6
 (

1
1

)

k
=

7
 (

1
1

)

k
=

8
 (

1
1

)

k
=

9
 (

1
1

)

k
=

6
 (

2
7

)

k
=

7
 (

2
7

)

k
=

8
 (

2
7

)

k
=

9
 (

2
7

)

k
=

6
 (

1
4

)

k
=

7
 (

1
3

)

k
=

8
 (

1
3

)

k
=

9
 (

1
3

)

k
=

5
 (

2
1

)

k
=

6
 (

2
5

)

k
=

7
 (

2
5

)

k
=

8
 (

2
5

)

k
=

5
 (

4
3

)

k
=

6
 (

4
2

)

k
=

7
 (

3
8

)

k
=

8
 (

1
0

)
k

=
8

 (
9

)
k

=
8

 (
2

3
)

k
=

8
 (

1
4

)

k
=

5
 (

4
7

)

k
=

6
 (

4
7

)

k
=

7
 (

4
7

)

k
=

8
 (

4
7

)

k
=

5
 (

4
3

7
)

k
=

6
 (

3
7

)
k

=
6

 (
2

1
6

)
k

=
6

 (
1

5
)

k
=

7
 (

3
7

)
k

=
7

 (
1

3
)

k
=

7
 (

1
6

)
k

=
7

 (
7

5
)

k
=

7
 (

1
2

)

k
=

8
 (

1
5

)
k

=
8

 (
2

5
)

k
=

8
 (

1
6

)
k

=
8

 (
3

7
)

k
=

8
 (

1
4

)

k
=

5
 (

8
)

k
=

6
 (

8
)

k
=

7
 (

1
0

)

k
=

8
 (

1
0

)

k
=

5
 (

1
6

)

k
=

6
 (

1
6

)

k
=

7
 (

9
)

k
=

7
 (

1
1

)

k
=

4
 (

4
7

)
k

=
4

 (
1

1
)

k
=

5
 (

1
2

)

k
=

6
 (

1
2

)

k
=

7
 (

1
2

)

k
=

4
 (

8
5

2
)

k
=

5
 (

1
1

)
k

=
5

 (
1

2
)

k
=

5
 (

6
)

k
=

5
 (

7
)

k
=

6
 (

7
)

k
=

4
 (

1
0

)

k
=

5
 (

1
0

)

k
=

6
 (

1
0

)

k
=

7
 (

9
)

k
=

4
 (

6
)

k
=

4
 (

1
0

)

k
=

3
2

 (
4

7
)

k
=

3
3

 (
4

7
)

k
=

3
4

 (
4

7
)

k
=

2
6

 (
3

1
)

k
=

2
7

 (
3

1
)

k
=

2
6

 (
4

7
)

k
=

2
7

 (
4

7
)

k
=

2
6

 (
2

7
)

k
=

3
5

 (
4

7
)

k
=

3
6

 (
4

7
)

k
=

2
4

 (
2

5
)

k
=

2
4

 (
2

7
)

k
=

2
5

 (
2

7
)

k
=

2
4

 (
3

1
)

k
=

2
5

 (
3

1
)

k
=

2
4

 (
4

7
)

k
=

2
5

 (
4

7
)

k
=

2
2

 (
3

1
)

k
=

2
3

 (
3

1
)

k
=

2
2

 (
4

7
)

k
=

2
3

 (
4

7
)

k
=

2
2

 (
2

5
)

k
=

2
3

 (
2

5
)

k
=

2
2

 (
2

7
)

k
=

2
3

 (
2

7
)

k
=

2
0

 (
2

5
)

k
=

2
1

 (
2

5
)

k
=

2
0

 (
2

7
)

k
=

2
1

 (
2

7
)

k
=

2
0

 (
3

1
)

k
=

2
1

 (
3

1
)

k
=

2
0

 (
4

7
)

k
=

2
1

 (
4

7
)

k
=

4
1

 (
4

7
)

k
=

4
2

 (
4

7
)

k
=

9
 (

1
0

)
k

=
9

 (
2

5
)

k
=

1
0

 (
2

5
)

k
=

1
1

 (
2

5
)

k
=

1
 (

3
5

3
7

)

k
=

2
 (

2
4

9
1

)

k
=

3
 (

1
0

)
k

=
3

 (
1

3
)

k
=

3
 (

1
0

)

k
=

3
 (

1
5

5
5

)
k

=
3

 (
1

1
)

k
=

4
 (

1
1

)
k

=
4

 (
5

)
k

=
4

 (
7

)
k

=
4

 (
8

)
k

=
4

 (
5

)
k

=
4

 (
5

)
k

=
4

 (
2

7
)

k
=

4
 (

5
)

k
=

4
 (

5
)

k
=

4
 (

6
)

k
=

4
 (

1
0

)

k
=

1
0

 (
1

3
)

k
=

1
1

 (
1

3
)

k
=

1
0

 (
1

1
)

k
=

9
 (

1
0

)
k

=
9

 (
4

7
)

k
=

1
0

 (
4

7
)

k
=

1
1

 (
4

7
)

k
=

9
 (

3
7

)

k
=

1
0

 (
1

5
)

k
=

1
0

 (
3

1
)

k
=

1
1

 (
1

5
)

k
=

1
1

 (
3

1
)

k
=

9
 (

1
5

)

k
=

1
0

 (
1

5
)

k
=

1
1

 (
1

5
)

k
=

9
 (

1
6

)

k
=

1
0

 (
1

6
)

k
=

1
1

 (
1

6
)

k
=

5
 (

1
1

)

k
=

1
2

 (
4

7
)

k
=

1
3

 (
4

7
)

k
=

1
4

 (
4

7
)

k
=

9
 (

2
1

)

k
=

1
0

 (
2

1
)

k
=

1
1

 (
2

1
)

k
=

9
 (

1
4

)

k
=

1
0

 (
1

4
)

k
=

1
1

 (
1

4
)

k
=

1
0

 (
1

2
)

k
=

1
1

 (
1

2
)

k
=

1
2

 (
2

5
)

k
=

1
2

 (
1

5
)

k
=

1
2

 (
3

1
)

k
=

1
0

 (
1

1
)

k
=

1
2

 (
1

6
)

k
=

3
7

 (
4

7
)

k
=

3
8

 (
4

7
)

k
=

3
9

 (
4

7
)

k
=

1
9

 (
2

5
)

k
=

1
9

 (
2

7
)

k
=

1
9

 (
3

1
)

k
=

1
9

 (
4

7
)

k
=

8
 (

1
2

)

k
=

4
0

 (
4

7
)

k
=

1
3

 (
1

6
)

k
=

1
4

 (
1

6
)

k
=

1
5

 (
1

6
)

k
=

1
3

 (
3

1
)

k
=

1
4

 (
3

1
)

k
=

1
5

 (
3

1
)

k
=

1
6

 (
3

1
)

k
=

1
5

 (
4

7
)

k
=

1
6

 (
4

7
)

k
=

1
3

 (
1

5
)

k
=

1
4

 (
1

5
)

k
=

1
3

 (
2

7
)

k
=

1
4

 (
2

7
)

k
=

1
5

 (
2

7
)

k
=

1
6

 (
2

7
)

k
=

1
2

 (
1

5
)

k
=

1
3

 (
1

5
)

k
=

1
4

 (
1

5
)

k
=

1
3

 (
2

5
)

k
=

1
4

 (
2

5
)

k
=

1
5

 (
2

5
)

k
=

1
6

 (
2

5
)

k
=

1
2

 (
2

1
)

k
=

1
2

 (
1

3
)

k
=

5
 (

2
7

)

k
=

0
 (

4
6

3
1

)

k
=

1
7

 (
3

1
)

k
=

1
8

 (
3

1
)

k
=

1
7

 (
4

7
)

k
=

1
8

 (
4

7
)

k
=

1
7

 (
2

5
)

k
=

1
8

 (
2

5
)

k
=

1
7

 (
2

7
)

k
=

1
8

 (
2

7
)

k
=

1
0

 (
1

4
)

k
=

1
1

 (
1

4
)

k
=

1
2

 (
1

4
)

k
=

1
0

 (
2

7
)

k
=

1
1

 (
2

7
)

k
=

1
2

 (
2

7
)

k
=

9
 (

1
5

)

k
=

8
 (

9
)

k
=

9
 (

1
2

)

(c
)

A
ct

u
al

1
m

o
d

e

C
o

n
n

ec
ti

v
it

y
 s

tr
u

ct
u

re

k
=

3
8

 (
4

7
)

k
=

3
9

 (
4

7
)

k
=

4
0

 (
4

7
)

k
=

4
1

 (
4

7
)

k
=

4
4

 (
4

7
)

k
=

4
5

 (
4

7
)

k
=

4
6

 (
4

7
)

k
=

4
3

 (
4

7
)

k
=

1
2

 (
1

4
)

k
=

6
 (

1
8

1
6

)

k
=

7
 (

1
5

1
2

)

k
=

8
 (

1
2

6
5

)

k
=

9
 (

1
0

6
9

)
k

=
9

 (
1

6
)

k
=

1
0

 (
1

2
)

k
=

1
0

 (
8

6
8

)
k

=
1

0
 (

1
6

)

k
=

1
1

 (
1

6
)

k
=

1
1

 (
7

1
9

)

k
=

1
2

 (
1

6
)

k
=

1
3

 (
1

6
)

k
=

1
4

 (
1

6
)

k
=

1
5

 (
1

6
)

k
=

2
1

 (
2

7
)

k
=

2
2

 (
2

7
)

k
=

2
3

 (
2

7
)

k
=

2
4

 (
2

7
)

k
=

4
2

 (
4

7
)

k
=

2
1

 (
4

7
)

k
=

2
2

 (
4

7
)

k
=

2
3

 (
4

7
)

k
=

2
4

 (
4

7
)

k
=

1
7

 (
2

7
)

k
=

1
8

 (
2

7
)

k
=

1
9

 (
2

7
)

k
=

2
0

 (
2

7
)

k
=

2
9

 (
4

7
)

k
=

3
0

 (
4

7
)

k
=

3
1

 (
4

7
)

k
=

3
2

 (
4

7
)

k
=

2
6

 (
2

7
)

k
=

1
8

 (
4

7
)

k
=

1
9

 (
4

7
)

k
=

2
0

 (
4

7
)

k
=

1
2

 (
4

6
1

)
k

=
1

2
 (

1
5

)

k
=

1
3

 (
1

5
3

)

k
=

1
4

 (
1

0
0

)
k

=
1

4
 (

2
7

)

k
=

1
5

 (
7

6
)

k
=

1
5

 (
2

5
)

k
=

1
5

 (
2

7
)

k
=

1
6

 (
7

6
)

k
=

1
6

 (
2

5
)

k
=

1
6

 (
2

7
)

k
=

3
 (

3
1

8
0

)

k
=

4
 (

6
)

k
=

4
 (

2
5

6
6

)
k

=
4

 (
7

)

k
=

5
 (

6
)

k
=

5
 (

8
)

k
=

5
 (

9
)

k
=

5
 (

2
1

1
3

)

k
=

1
7

 (
4

6
)

k
=

3
5

 (
4

7
)

k
=

3
6

 (
4

7
)

k
=

3
7

 (
4

7
)

k
=

2
 (

3
8

6
4

)

k
=

1
8

 (
2

5
)

k
=

1
9

 (
2

5
)

k
=

2
0

 (
2

5
)

k
=

2
1

 (
2

5
)

k
=

3
3

 (
4

7
)

k
=

3
4

 (
4

7
)

k
=

1
7

 (
2

5
)

k
=

2
7

 (
4

7
)

k
=

2
8

 (
4

7
)

k
=

2
6

 (
4

7
)

k
=

0
 (

4
6

3
6

)

k
=

1
 (

4
5

1
3

)

k
=

2
5

 (
2

7
)

k
=

2
2

 (
2

5
)

k
=

2
5

 (
4

7
)

k
=

2
4

 (
2

5
)

k
=

2
3

 (
2

5
)

(d
)

R
an

-

d
o

m
1

m
o

d
e

F
ig

u
re

2
.1

:
C

o
h

es
iv

e
b

lo
ck

s
fo

r
tw

o
-m

o
d

e
an

d
o

n
e-

m
o

d
e

N
u

cl
ea

r
T

h
eo

ry
co

o
p

er
at

io
n

n
et

w
o

rk
s,

an
d

fo
r

th
ei

r
ra

n
d

o
m

co
u

n
te

rp
ar

ts
.

R
an

d
o

m
n

et
w

o
rk

s
w

er
e

g
en

er
at

ed
u

si
n

g
a

b
ip

ar
ti

te
co

n
fi

g
u

ra
ti

o
n

m
o

d
el

.
I

b
u

il
t

1
0

0
0

ra
n

d
o

m
n

et
w

o
rk

s
an

d
ch

o
se

o
n

e
ra

n
d

o
m

ly
,
se

e

te
x

t
fo

r
d

et
ai

ls
.

F
o

r
lo

w
er

co
n

n
ec

ti
v

it
y

le
v
el

s
I

h
av

e
re

m
o
v
ed

so
m

e
sm

al
l
k

-c
o

m
p

o
n

en
ts

to
im

p
ro

v
e

th
e

re
ad

ab
il

it
y

:
I

d
o

n
o

t
sh

o
w

1
-c

o
m

p
o

n
en

ts
w

it
h

le
ss

th
an

2
0

n
o

d
es

,
2

-c
o

m
p

o
n

en
ts

w
it

h
le

ss
th

an
1

5
n

o
d

es
,

o
r

tr
ic

o
m

p
o

n
en

ts
w

it
h

le
ss

th
an

1
0

n
o

d
es

.

34

2.5. Structural cohesion in cooperation networks

C
o

n
n

ec
ti

v
it

y
 s

tr
u

ct
u

re

k
=

1
 (

2
3

)
k

=
1

 (
2

3
)

k
=

1
 (

3
2

)
k

=
1

 (
3

5
)

k
=

2
 (

1
7

)

k
=

1
 (

1
1

9
5

7
)

k
=

2
 (

2
1

)

k
=

2
 (

5
3

5
8

)
k

=
2

 (
1

7
)

k
=

2
 (

2
4

)
k

=
2

 (
3

1
)

k
=

2
 (

1
7

)

k
=

3
 (

1
0

)
k

=
3

 (
4

7
)

k
=

3
 (

1
8

5
6

)
k

=
3

 (
1

1
)

k
=

4
 (

1
0

)

k
=

4
 (

4
8

7
)

k
=

4
 (

1
1

)
k

=
4

 (
8

)
k

=
4

 (
9

)
k

=
4

 (
1

1
)

k
=

5
 (

7
0

)
k

=
5

 (
1

1
)k

=
0

 (
1

3
1

2
1

)

(a
)

2
m

o
d

e

C
o

n
n

ec
ti

v
it

y
 s

tr
u

ct
u

re

k
=

2
 (

5
9

2
6

)

k
=

3
 (

2
1

1
6

)

k
=

0
 (

1
3

1
2

1
)

k
=

1
 (

1
2

8
5

2
)

(b
)

R
an

d
o

m
2

m
o

d
e

C
o

n
n

ec
ti

v
it

y
 s

tr
u

ct
u

re

k
=

1
2

 (
1

5
6

)

k
=

1
3

 (
1

1
1

)

k
=

1
4

 (
9

1
)

k
=

1
5

 (
7

8
)

k
=

3
 (

6
3

6
)

k
=

4
 (

5
1

1
)

k
=

5
 (

4
1

6
)

k
=

6
 (

3
5

4
)

k
=

7
 (

2
9

4
)

k
=

8
 (

2
6

3
)

k
=

9
 (

2
2

4
)

k
=

1
0

 (
1

9
9

)

k
=

1
1

 (
1

7
7

)

k
=

2
 (

8
0

8
)

k
=

0
 (

1
1

7
2

)

k
=

1
 (

1
1

3
6

)

(c
)

1

m
o

d
e

C
o

n
n

ec
ti

v
it

y
 s

tr
u

ct
u

re

k
=

1
2

 (
4

1
1

)

k
=

1
3

 (
3

8
7

)

k
=

1
4

 (
3

5
0

)

k
=

1
5

 (
3

3
3

)

k
=

6
 (

6
7

6
)

k
=

7
 (

6
1

1
)

k
=

8
 (

5
4

9
)

k
=

9
 (

5
0

1
)

k
=

1
0

 (
4

6
9

)

k
=

1
1

 (
4

3
2

)

k
=

1
6

 (
3

0
7

)

k
=

2
1

 (
2

1
7

)

k
=

2
2

 (
1

9
1

)

k
=

2
3

 (
1

7
9

)

k
=

2
4

 (
1

6
0

)

k
=

1
 (

1
2

3
3

)

k
=

2
 (

1
0

8
4

)

k
=

3
 (

9
3

8
)

k
=

4
 (

8
3

6
)

k
=

5
 (

7
5

8
)

k
=

5
 (

6
)

k
=

1
7

 (
2

8
4

)

k
=

1
8

 (
2

6
7

)

k
=

1
9

 (
2

3
9

)

k
=

2
0

 (
2

3
1

)

k
=

0
 (

1
2

3
9

)

k
=

2
7

 (
7

4
)

k
=

2
6

 (
1

2
0

)

k
=

2
5

 (
1

5
2

)

(d
)

R
an

-

d
o

m

1 m
o

d
e

F
ig

u
re

2
.2

:
C

o
h

es
iv

e
b

lo
ck

s
fo

r
tw

o
-m

o
d

e
an

d
o

n
e-

m
o

d
e

D
eb

ia
n

co
o

p
er

at
io

n
n

et
w

o
rk

s,
an

d
fo

r
th

ei
r

ra
n

d
o

m
co

u
n

te
rp

ar
ts

.
R

an
d

o
m

n
et

w
o

rk
s

w
er

e
g

en
er

at
ed

u
si

n
g

a
b

ip
ar

ti
te

co
n

fi
g

u
ra

ti
o

n
m

o
d

el
.

I
b
u

il
t

1
0

0
0

ra
n

d
o

m
n

et
w

o
rk

s
an

d
ch

o
se

o
n

e
ra

n
d

o
m

ly
,

se
e

te
x

t

fo
r

d
et

ai
ls

.
F

o
r

lo
w

er
co

n
n

ec
ti

v
it

y
le

v
el

s
I

h
av

e
re

m
o
v
ed

so
m

e
sm

al
l
k

-c
o

m
p

o
n

en
ts

to
im

p
ro

v
e

th
e

re
ad

ab
il

it
y

:
I

d
o

n
o

t
sh

o
w

1
-c

o
m

p
o

n
en

ts
w

it
h

le
ss

th
an

2
0

n
o

d
es

,
2

-c
o

m
p

o
n

en
ts

w
it

h
le

ss
th

an
1

5
n

o
d

es
,
o

r
tr

ic
o

m
p

o
n

en
ts

w
it

h
fe

w
er

th
an

1
0

n
o

d
es

.

35

2. COHESIVE GROUPS: THE STRUCTURAL COHESION MODEL

Figures 2.1a and 2.1c show the connectivity structure of Nuclear Theory cooperation net-

works represented as a tree, the former for the two-mode network and the latter for one-mode

ones. As we can see, both networks display non-trivial structure. The two-mode network has

up to an 8-component, but most nodes are in k-components with k < 6. Up to k = 3 most

nodes are in giant k-components, but for k = {4, 5} there are many k-components of similar

order. Figure 2.1c, which corresponds to the one-mode projection, has a lot more connectivity

levels —a byproduct of the mathematical transformation from two-mode to one-mode. In this

network, the maximum connectivity level is 46; the four long legs of the plot correspond to

4 cliques with 47, 31, 27 and 25 nodes. Notice that each one of these 4 cliques are already a

separated k-component at k = 7. It is at this level of connectivity (k = {7, 8}) where the giant

k-components start to dissolve and many smaller k-components emerge.

In order to be able to assess the significance of the results obtained, I have to compare the

connectivity structure of actual networks with the connectivity structure of a random network

that maintains the observed bipartite degree distribution. In this case, I compare actual net-

works with only one random network. I obtained it by generating 1000 random networks and

choosing one randomly. Figures 2.1b and 2.1d show the connectivity structure of the random

counterparts for Nuclear Theory cooperation networks. For the two-mode network, instead

of the differentiated connectivity structure displayed by the actual bipartite network, there is

a flatter connectivity structure, where the higher level k-component is a tricomponent. More-

over, instead of many small k-components at high connectivity levels, the random bipartite

network has only giant k-components where all nodes with component number k are. In this

case, the one-mode network is also quite different from its random counterpart. There are only

giant k-components up until k = 15, where the four cliques observed in the actual network

separate from each other to form distinct k-components.

The hierarchy of the connectivity structure displayed in these plots allows us to do mean-

ingful comparisons between networks in terms of their connectivity structure. For instance,

figures 2.2a and 2.2c show the connectivity structure of Debian cooperation networks. The

former displays the bipartite connectivity structure, which is quite different from two-mode

Nuclear Theory structure discussed above. Although there are some small k-components for

each connectivity level, most of the nodes with k-number k are in a giant k-component that

encompasses most of the nodes of that level. Even at the top level of connectivity (k = 5), 80

percent of the 88 nodes with k-number 5 are in the same 5-component. Figure 2.2c displays

the cohesive block structure for its one-mode projection. It consists of a monotonous linear

succession of increasingly smaller k-components nested inside each other.

Figures 2.2b and 2.2d show the connectivity structure of the random counterparts of De-

bian cooperation networks. The random one-mode projection has the same structure than its

actual counterpart, a single long chain of k-components nested inside each other. However,

the random two-mode structure is quite different from its actual counterpart: it consists of a

chain of single cohesive blocks. At lower connectivity levels, up to k = 3, the random net-

work have more nodes in those giant k-components than its actual counterpart; but the actual

Debian two-mode network has a bigger 4-component and also 2 5-components that are not

present in its random counterpart. Thus, in terms of their connectivity structure, two-mode

networks are farther apart from their random counterparts than their one-mode projections.

Note that, so far, the comparison of actual networks with their random counterparts has

36

2.5. Structural cohesion in cooperation networks

focused on a single random network. But, a single random network is not a sound null model.

I do need to generate a large enough set of them and perform the connectivity analysis to have

an accurate picture of possible connectivity structures generated solely by chance given the

observed bipartite degree distribution. A good way to evaluate the differences between the

actual network and the set of random networks is comparing the frequencies of k-numbers of

their nodes. A node’s k-number, or component number, is the value k of the highest order k-

component in which it is embedded. In the barplots displayed in figure 2.3, each bar represents

the number of nodes that have k-number k. Green bars represent k-number frequencies for the

actual networks and blue bars represent the average value of 64 random networks that maintain

the degree distribution of the original two-mode network. I analyzed 64 random networks to

keep computation time reasonable, but I generated ten times more random networks and I have

randomly selected one of each ten to perform the actual analysis.

Figure 2.3 shows that two-mode and one-mode projections of the same network yield

quite different results in terms of k-number distribution among nodes when compared with

their random counterparts. Bipartite cooperation networks have slightly fewer nodes with low

component number (2 and sometimes 3) than their random counterparts. However, they have a

lot more nodes in higher levels of connectivity. This means that, in bipartite random networks,

the edges are more evenly distributed among all nodes. Thus more nodes are embedded in

bicomponents, and in some cases, tricomponents; but also for this same reason, random net-

works have a lot fewer nodes in k-components of higher order (4, 5 or 6) than actual networks.

Therefore, I can conclude that bipartite cooperation networks are significantly more hierarchi-

cal in connectivity terms than their random counterparts. As this hierarchy cannot be explained

in terms of random mixing papers/programs with scientists/developers, it must be the result of

an underlying organization principle that shapes the structure of these cooperation networks.

Going one step beyond classical structural cohesion analysis, as proposed above, I can

deepen this analysis by also considering the average connectivity of the k-components of these

networks. By analogy with the k-component number of each node, which is the maximum

value k of the deepest k-component in which that node is embedded, the average k-component

number of each node is the value of average connectivity of the deepest k-component in which

that node is embedded. Notice that, unlike plain node connectivity, average node connectivity

is a continuous measure of cohesion. Thus it provides a more granular measure of cohesion

because it allows to rank k-components with the same k according to their average node

connectivity.

Figure 2.4 graphically represents the three networks with three-dimensional scatter plots4.

In these graphs, each dot corresponds to a node of the network, for two-mode networks nodes

represent both scientists/developers and papers/programs. The Z axis (the vertical one) is

the average k-component number of each node, and the X and Y axis are the result of a 2

dimensional force-based layout algorithm implemented by the neato program of Graphviz

(Ellson et al., 2002). The two dimensional layout is computed by constructing a virtual phys-

ical model and then using an iterative solver procedure to obtain a low-energy configuration.

Following Kamada and Kawai (1989), an ideal spring is placed between each pair of nodes

(even if they are not connected in the network). The length of each spring corresponds to the

4These plots are produced with the powerful Matplotlib python library (Hunter, 2007).

37

2. COHESIVE GROUPS: THE STRUCTURAL COHESION MODEL

2 3 4 5
0

1000

2000

3000

4000

5000

6000

N
u
m

b
e
r

o
f

n
o
d
e
s

k-component structure

Actual: nodes on level k

Random: nodes on level k

(a) Bipartite network formed by developers and

packages during 2 years of cooperation (from 2007

to 2009) on the release codenamed Lenny of the De-

bian operating system

2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
50

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

n
o
d
e
s

k-component structure

Actual: nodes on level k

Random: nodes on level k

(b) Unipartite network formed by developers dur-

ing 2 years of cooperation (from 2007 to 2009) on

the release codenamed Lenny of the Debian oper-

ating system

2 3 4 5 6 7
0

2000

4000

6000

8000

10000

12000

14000

16000

N
u
m

b
e
r

o
f

n
o
d
e
s

k-component structure

Actual: nodes on level k

Random: nodes on level k

(c) Bipartite network formed by scientists and

preprints during 5 years (2006-2010) in the high en-

ergy physics (theory) section of arXiv.org

2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
50

1000

2000

3000

4000

5000

6000

7000

8000

N
u
m

b
e
r

o
f

n
o
d
e
s

k-component structure

Actual: nodes on level k

Random: nodes on level k

(d) Unipartite network formed by scientists during 5

years (2006-2010) in the high energy physics (theory)

section of arXiv.org

2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

N
u
m

b
e
r

o
f

n
o
d
e
s

k-component structure

Actual: nodes on level k

Random: nodes on level k

(e) Bipartite network formed by scientists and

preprints during 5 years (2006-2010) in the nuclear

physics (theory) section of arXiv.org

2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
u
m

b
e
r

o
f

n
o
d
e
s

k-component structure

Actual: nodes on level k

Random: nodes on level k

(f) Unipartite network formed by scientists during 5 years

(2006-2010) in the nuclear theory section of arXiv.org

Figure 2.3: Barplots of k-number frequencies for two-mode and one-mode cooperation net-

works and their random counterparts. Green bars represent the actual k-number frequencies

and blue bars represent the average k-number frequencies for 64 random networks that main-

tain the degree distribution of the original two-mode network.
38

2.5. Structural cohesion in cooperation networks

geodesic distance between the pair of nodes that it links. The final node positioning in the

layout approximates the path distance among pairs of nodes in the network.

This novel graphic representation of cohesion structure is inspired by the approxima-

tion technique developed by Moody (2004) for plotting the approximate cohesion contour

of large networks to which is not practical to apply Moody and White’s exact algorithm for k-

components 2003. Moody’s technique is based on the fact that force-based layouts algorithms

tend to draw nodes within highly cohesive subgroups near each other. Then it is necessary to

divide the surface of the two-dimensional plane in squares of equal areas and compute node

independent paths on a sample of pairs of nodes inside each square so as to obtain an approx-

imation for the node connectivity in that square. Then it is possible to draw a surface plot

using a smoothing probability density function. However, in order to obtain a nice smooth

surface plot, it is necessary to use heavy smoothing in the probability density function, and

carefully choose the area of the squares (mostly by trial and error). Moreover, this technique

strongly relies on the force-based layout algorithm to put nodes in highly cohesive subgroups

near each other —something which is not guaranteed because they are usually based in path

distance and not directly on node connectivity. Because I’m able to compute the k-component

structure with the heuristics for large networks, the three-dimensional scatter plot only relies

on the layout algorithm for setting the X and Y positions of the nodes, while the Z position

(average node connectivity) is computed directly from the network. Moreover, I don’t have to

use a smoothed surface plot because there is actually a value of average connectivity for each

node, and thus I can plot each node as a dot on the plot. This gives a more accurate picture of

the actual cohesive structure of a network.

This synthetic representation of their cohesive structures can help researchers visualize the

presence of different organizational mechanisms in different kinds of cooperation networks.

The difference between the Debian and the scientific cooperation networks is striking. Figure

2.4a shows the scatter plot for a Debian bipartite network. There is a clear vertical separation

among nodes in different connectivity levels. This is because almost all nodes in each con-

nectivity level are in a giant k-component and thus they have the same average connectivity.

In other words, developers in Debian show different levels of engagement and contribution,

with a core group of developers deeply nested at the core of the community. This pattern is

the result of formal and informal rules of cooperation that evolved over the years (O’Mahony

and Ferraro, 2007a) into a homogeneous hierarchical structure, where there is only one core

of highly productive individuals at the center. Not surprisingly, perhaps, the Debian project

has been particularly resilient to developers’ turnover and splintering factions.

Scientific cooperation networks show a rather different structure of cooperation. The two-

mode science cooperation networks (figures 2.4c and 2.4e) display a continuous hierarchical

structure in which there are nodes at different levels of average connectivity for each dis-

crete plain connectivity level. This is because science cooperation networks have a complex

cohesive block structure where there are a lot of independent k-components in each plain

connectivity level, for k ≥ 3. Each small cohesive block has a different order, size and av-

erage connectivity; thus, when I display them in this three-dimensional scatter plot there is

a continuous hierarchical structure that contrasts with the almost discrete structure of Debian

cooperation networks.

One explanation why we observe this heterogeneous connectivity structure is that scien-

39

2. COHESIVE GROUPS: THE STRUCTURAL COHESION MODEL

(a) Debian Lenny 2 mode (b) Debian Lenny 1mode

(c) Nuclear Theory 2 mode (d) Nuclear Theory 1 mode

(e) High Energy Theory 2 mode (f) High Energy Theory 1 mode

Figure 2.4: Average connectivity three-dimensional scatter plots. X and Y are the positions

determined by the Kamada-Kawai layout algorithm. The vertical dimension is average con-

nectivity. Each dot is a node of the network and two-mode networks contain both papers/pro-

grams and scientists/developers.

40

2.6. Summary of Contributions

tific cooperation clusters around a variety of different aims, methods, projects, and institutional

environments. Therefore as the most productive scientists collaborate with each other, hierar-

chies naturally emerge. However, we are less likely to observe one single hierarchical order as

we did in the Debian network, as more than one core of highly productive scientists is likely

to emerge. In a way this visualization captures the structure of the “invisible college” of the

scientific discipline.

If we compare the bipartite networks with their one-mode projections using this graphical

representation (see figures 2.4b, 2.4d, and 2.4f) we can see that, again, they look quite dif-

ferent. While bipartite average connectivity structure for the Debian network is characterized

by clearly defined and almost discrete hierarchical levels, its one-mode counterpart shows

a continuous hierarchical structure. However, this is not caused by the presence of many

small k-components at the same level k, as in the case of bipartite science networks discussed

above, but by the close succession of hierarchy levels with almost the same number of nodes

in a chain-like structure (as depicted in figure 2.2c).

For cooperation science networks, the three-dimensional scatter plots of one-mode pro-

jections are also quite different than their original bipartite networks. They have a lot more

hierarchy levels than bipartite networks but most nodes are at lower connectivity levels. Only

a few nodes are at top levels of connectivity, and they all form part of some clique, which are

the groups in the long “legs” of the cohesive block structure depicted in figure 2.1c. Thus,

the complex hierarchical connectivity structure of bipartite cooperation networks gets blurred

when the one-mode projection is performed. An important consequence of the projection is

that only a few nodes embedded in big cliques appear at top connectivity levels and all other

nodes are way down in the connectivity structure. This could lead the risk of overestimating

the importance of those nodes in big cliques and to underestimate the importance of nodes

that, despite being at high levels of the bipartite connectivity structure, appear only at lower

levels of the unipartite connectivity structure.

2.6 Summary of Contributions

This chapter contributes to our understanding of structural cohesion in a number of ways.

First, I extended theoretically the structural cohesion model by considering not only plain

node connectivity, which is the minimum number of nodes that must be removed in order

to disconnect a network, but also the average node connectivity of networks and its cohesive

groups, which is the number of nodes that, on average, must be removed to disconnect an

arbitrary pair of nodes in the network. Taking into account average connectivity allows a more

granular conception of structural cohesion, and I show in the empirical analysis of cooperation

networks how this approach leads to useful implications in empirical research.

Second, I developed new heuristics to compute the k-component structure of networks,

along with the average node connectivity for each k-component. Instead of directly identify-

ing k-cutsets using standard flow algorithms, this approach is based on computing pair-wise

connectivity within biconnected parts of k-cores. These heuristics allow for computing the

approximate value of group cohesion for moderately large networks, along with all the hi-

erarchical structure of connectivity levels, in a reasonable time frame. I showed that these

41

2. COHESIVE GROUPS: THE STRUCTURAL COHESION MODEL

heuristics can be applied to networks at least one order of magnitude bigger than the ones

manageable by the exact algorithm proposed by Moody and White (2003). To ensure repro-

ducibility and to facilitate diffusion of these heuristics, I provided a very detailed description

of the implementation, along with a fully functional implementation contributed to the Net-

workX 5 free software python package for the analysis of complex networks.

One limitation of this approach is that it can potentially identify groups that are not inter-

nally k-connected when using White and Newman (2001)’s approximation for pair-wise node

connectivity, because some node independent paths can go through nodes that are not part of

the group. I discuss this limitation and analyze its impact on practical empirical analysis in

appendix B.5.

Finally, I used the heuristics proposed in this chapter to analyze three large cooperation

networks. With this analysis, I showed that the heuristics and the novel visualization tech-

nique for cohesive network structure help us capture important differences in the way co-

operation is structured. Obviously a detailed comparative analysis of the institutional and

organizational structures and the differences between science and FOSS cooperation structure

and dynamics is beyond the scope and aims of this chapter. But future research could leverage

the tools I provide to systematically analyze cooperation networks from different fields. For

instance, sociologists of science often compare scientific disciplines in terms of their collabo-

rative structures (Moody, 2004) and their level of controversies (Shwed and Bearman, 2010).

The measures and the visualization technique I proposed could nicely capture these features

and compare them across scientific disciplines. This would make it possible to further our

understanding of the social structure of science, and its impact in terms of productivity, nov-

elty and impact. Social network researchers interested in organizational robustness would

also benefit from leveraging the structural cohesion measures to detect sub-groups that are

more critical to the organization’s resilience, and thus prevent factionalization. Exploring the

consequences of different forms of cohesive structures will eventually help us further our the-

oretical understanding of cooperation and the role that cohesive groups play in linking micro

level dynamics with macro level social structures.

5Available in NetworkX version 1.10 released on August 2015 https://pypi.python.org/pypi/networkx/. See

also appendix B.4 for illustrative code and appendix D for references to NetworkX code and documentation that

I contributed.

42

3

The Network Structure of Collaborative
Communities

The organization of knowledge production and diffusion has been a challenging problem for

economists, sociologists and organization theorists. The increasing importance of knowledge-

intensive sectors of the economy, and the inadequacies of markets and hierarchy as coor-

dinating principles for knowledge production and diffusion, has prompted some scholars to

suggest that these activities might be better organized through an alternative organizing prin-

ciple: community (Adler, 2001). It is suggested that a new form of community, qualitatively

different from the traditional Gemeinschaft and the modern Gesellschaft (Tönnies, 1974), has

emerged. Examples of collaborative communities are large scientific projects, novel forms

of professional work organization (Adler, Kwon, and Heckscher, 2008), open source soft-

ware communities, and knowledge-intensive production processes in corporations (Adler and

Heckscher, 2006).

These collaborative communities are characterized by conscious cooperation, high inter-

dependence, trust, shared values and a value-rational basis for legitimate authority (Adler and

Heckscher, 2006; Adler et al., 2008). While all these dimensions matter for a proper charac-

terization of collaborative communities, it is clear that trust plays a more critical role as the

key social mechanism of this form. But how does trust develop in these loosely coupled social

forms? Adler and Heckscher (2006) suggest that dense local interactions facilitate the emer-

gence of trust, and common values facilitate the development of collective identity. Scarce

attention is given to the structural features of cooperation in these communities. Given the

sizable literature on the social structure that facilitate (or inhibit) the emergence of trust in

society (Granovetter, 1985; Coleman, 1988; Moody and White, 2003), I believe that an im-

portant question to further our understanding of collaborative communities is to explore the

network structure that lead to their emergence and effectiveness in the production and diffu-

sion of knowledge.

In this chapter therefore I suggest that a unique social network structure undergirds col-

laborative communities, and facilitate the development of trust and increase their robustness

to turnover. Building on the literature on small world and cohesive groups, I identify the key

structural feature of these networks which I call cohesive small worlds.

43

3. THE NETWORK STRUCTURE OF COLLABORATIVE COMMUNITIES

3.1 Collaborative communities

The concept of collaborative communities was introduced to make sense of novel organi-

zational forms which were defying the traditional dichotomy between hierarchy and market

(Coase, 1937; Williamson, 1975). Ouchi (1980) was one of the first social theorist to include

community/trust in the principles of social organization; he refereed to these principles as clan,

but he conceptualized the relation between market, hierarchy and community as a three-way

trade-off. Likewise Powell (1990) introduced networks as an alternative principle to hierarchy

and markets. Instead, Adler (2001) considers these three principles —Hierarchy, Market and

Community— as ideal-types which concrete organizations mix in hybrid forms. Each one of

these principles is based on a coordination mechanism. Authority is the main mechanism used

in hierarchy to coordinate horizontal and vertical division of labour. Price is the mechanism

through which market coordinates competing and anonymous suppliers and buyers. And trust,

generated by shared values and norms, is the main mechanism of community principle (Adler,

2001).

This three-dimensional space allows a fine gained classification of organizations and insti-

tutions, considering the effects of the mixture of different organization principles. Adler and

Heckscher (2006) argue that, on the one hand, neither marker nor hierarchy can actually func-

tion without at least some underpinning of community and, on the other hand, that the form

of community differs depending on its relation to the other two principles of social organiza-

tion: “When the dominant principle is hierarchy, community takes the form of Gemeinschaft.

When the dominant principle shifts to market, community mutates from Gemeinschaft into

Gesellschaft. We postulate that when community itself becomes the dominant organizing

principle, it will take a form quite different from either Gemeinschaft or Gesellschaft” (Adler

and Heckscher, 2006, 16).

This new form of community can be called collaborative community and it is based on

contribution-based trust as its primary social mechanism: “The basis of trust is the degree to

which members of the community believe that others have contributions to make towards this

shared [end]” (Adler and Heckscher, 2006, 21). This form of community seems especially

well suited to deal with the challenges of knowledge-based production processes because, hi-

erarchy and market have proved ineffective, at best, at managing knowledge. On the hierarchy

side, knowledge is treated as scarce resource and therefore centralized at the higher levels

of the organization where key decisions are taken; this rigid scheme prevents the necessary

flexibility to deal with unanticipated problems —very common in non-routine tasks— and to

foster innovation and generation of new knowledge (Adler, 2001, 216).

On the market side, the price mechanism fails to optimize the production and allocation of

knowledge (Arrow, 1962; Stiglitz, 1996). The fact that knowledge is a public good that grow

rather than diminish with use poses serious problems to the effectiveness of price mechanism.

There is a trade-off between production and allocation: “On one hand, production of knowl-

edge would be optimized by establishing strong intellectual property rights that create incen-

tives to create knowledge. On the other hand, not only are such rights difficult to enforce, but

more fundamentally, they block socially optimal allocation. Allocation of knowledge would

be optimized by allowing free access because the marginal cost of supplying another costumer

with the same knowledge is close to zero” (Adler, 2001, 217).

44

3.1. Collaborative communities

In conclusion: “neither markets nor hierarchies [...] nor any intermediate forms [...] can

simultaneously optimize incentives to produce knowledge and to disseminate it” (Adler and

Heckscher, 2006, 29). But community can effectively deal with knowledge production and

distribution by “reduc[ing] both transaction costs –replacing contracts with handshakes— and

agency risks —replacing the fear of shirking and misrepresentation with mutual confidence.

Community can thus greatly mitigate coordination difficulties created by knowledge’s public

good character” (Adler and Heckscher, 2006, 30). The community principle of coordination

allows to combine different people with different sets of knowledge and expertise in order to

solve complex problems while in the process they benefit each other and their common goal.

The strengths of community and trust at managing complex knowledge-based production

processes should not blind us about its potential downsides: exclusivism and elitism is a po-

tential problem of communities based in shared norms or familiarity (Adler, 2001, 226). The

ideas and practices that come from a trusted peer can be evaluated less critically than best ones

coming from an outsider, therefore inertia and complacency are a threat to a dynamical an in-

novative environment based mainly on community/trust. Thus it can degenerate in a closed

community where traditionalism, autocratism and nepotism become its main characteristics,

not very different than the Gemeinschaft form discussed above.

According to Adler and Heckscher (2006, 59-61), effective authority is essential to counter

balance those downsides of the community principle of social organization. The keys of suc-

cess are specifically the need of authority in three central processes: to define direction, to

allocate resources and to resolve internal disputes. Authority under the shadow of commu-

nity should be consistent with the values and norms of the collective, thus authority has to

be seen as essential in order to achieve the collective goals of the community. Consistently

with the theoretical model presented above, the three organizing principles of social action

coexist in actual organizations and the predominant principle —community in this case—

shapes the subordinate —authority—. The authors offer a couple of illustrative examples:

complex science projects and open source software development (they cite specifically Linux

and Apache).

Authority and power are two central concepts in sociological and organizational theory.

Max Weber is one of the key theorist in this area; his formulations have shaped a powerful

theoretical stream and have centered an important part of discussions and disputes around the

conceptualization of power in society and in organizations. The classical theoretical approach

to collectivist organizations —which is a key antecedent of the Collaborative Communities

theoretical approach— draws on the weberian formulation of authority, or more concretely, on

what is missing in his formulation. Weber built a typology of social action consisting in four

ideal types: affectual, traditional, legal-rational and value-rational. According to Weber, three

of this four ideal types of social action —affectual, traditional and legal-rational— have its

own form of authority associated which implies a particular type of organization to implement

its aims. Therefore there is a missing type of authority based on value-rational social action.

This “missing type” has been the starting point of an interesting theoretical conceptu-

alization on governance systems in professions and collectivist organizations (Wilier, 1967;

Satow, 1975; Rothschild-Whitt, 1979). Table 3.1 summarizes the situation. The fact that We-

ber did not formulate the counterpart authority type of value-rationality social action was

not a neglect; he intended to do a comprehensive typology of authority forms. However

45

3. THE NETWORK STRUCTURE OF COLLABORATIVE COMMUNITIES

he acknowledged that there is a tension between substantive or value-rational and formal

or instrumentally-rational social action. According to Rothschild-Whitt (1979, 510), Weber

thought that the conflict between formal and substantive rationality has no ultimate solution;

he established his conceptualization of bureaucracy —the main locus of formal-rationality—

as if it could eliminate all substantive considerations in the exercise of power. The progressive

dominance of bureaucracies in modern society, that he saw as an inevitable trend, is what he

referred as the “iron cage”.

Social Action Legitimacy Authority

Traditional Traditional Traditional

Affectual Affectual Affectual-Charismatic

Purposive-Rational Legal Rational-legal

Value-Rational Value-Rational missing type

Table 3.1: Weber’s typology of social action, legitimacy and authority (Satow, 1975, 526).

The dark fears of Weber’s “iron cage” produced an important influence in twentieth cen-

tury’s social science: in the sixties and seventies, there was an important consensus between

main stream economist and organizational theorist in the prognosis that large bureaucratic or-

ganizations will expand until encompass a large portion of economic landscape (Adler, 2001,

215). Following Weber, it was thought that a large firm bureaucratically organized will outper-

form in the market all competing organizational forms. This prognosis has revealed wrong;

the last decades have witnessed an important shift in the size of corporative organizations

(Brynjolfsson et al., 1994). As we discussed above, the role of community and trust in the

production and dissemination of knowledge and, on the other hand, the socialization ten-

dency of complex knowledge-based labour processes are key factors to understand this shift.

Those changes partially explain why collectivist organizations —and particularly free soft-

ware communities— have received growing attention from sociologists and organizational

theorists in the last decade (Kogut and Metiu, 2001; Von Hippel and Von Krogh, 2003; We-

ber, 2004; O’Mahony and Ferraro, 2007b), contrasting with theoretical work in the twentieth

century, that have been centered mostly in bureaucratic organizations driven by formal ra-

tionality (Thompson, 2003), although with important exceptions (Johnson and Whyte, 1977;

Rothschild-Whitt, 1979; Rothschild and Whitt, 1989).

The classic theoretical approach to collectivist organizations (Rothschild-Whitt, 1979;

Rothschild and Whitt, 1989) stresses the differences between the bureaucratic and the col-

lectivist models of organization assessing that the latter is a sui-generis form of organization

premised on the logic of substantive rationality, not a failure to achieve bureaucratic standards

(Rothschild-Whitt, 1979, 509). This approach has postulated that main characteristics of the

collectivist organization are: authority based on consensus and open to negotiation, minimal

stipulated rules with primacy of ad hoc decisions, social controls based on moral appeals and

selection of homogeneous personnel (without relaying in direct supervision and standardized

46

3.1. Collaborative communities

rules), minimal division of labour and holistic roles stressing the autonomy of the worker/par-

ticipant (Rothschild-Whitt, 1979, 519).

It is assumed that the collectivistic approach to production is less efficient and effective

than the bureaucratic one, although this has not to be seen as a failure but as an outcome

of implementation of a different set of goals. This theoretical stream was developed in the

seventies and eighties of the twentieth century. Its approach was to generate an ideal type

based on empirical evidence gathered from collectivist organizations that thrive in that age as

schools, newspapers, clinics, foods co-ops, etc. All this empirical sources involved productive

processes characterized by low socialization and developed in small organizations.

The turn of the century has witnessed the birth and development of a wide range of col-

lectivist organizations with complex and sophisticated governance systems, highly developed

sets of rules concerning activities of the organization and high degree of interdependence be-

tween the members. Those communities have shown that they can be, at least, as productive

as hierarchical bureaucracies, for instance FOSS communities compete effectively with some

of the larger capitalist corporations in the world. The main focus of the new analysis on col-

lectivist organizations or communities is their governance system. Based on the tradition of

organizational science, this new approach tries to explain how communities producing col-

lective goods govern themselves. In the case of Debian project, we do know that members

tend to develop a shared basis of formal authority limited with democratic mechanisms that

enabled experimentation with shifting conceptions of authority over time (O’Mahony and Fer-

raro, 2007b).

But little is known about how those communities are able to develop large scale cooper-

ation in complex knowledge intensive production processes to the point that allows them to

produce and innovate at a similar level than capitalist corporations. The aim of this research

is to overcome this research gap, explaining and theorizing the mechanisms that enable large

scale cooperation by focusing on the patterns of relations that direct producers establish in the

production process, that is, their cooperation networks. I would like to stress that the tech-

nological revolution of information and communication technologies is an important change

that had a huge impact in all kinds of productive processes. Internet and the World Wide Web

have changed some of the constraints faced by collectivist organizations, enabling them to

scale up and to disperse geographically at an extend unthinkable before the digital era. But

these technological changes are not an explanation by themselves, they are a necessary but not

sufficient condition to enable large scale cooperation in Collaborative Communities.

In summary, the Collaborative Communities theoretical approach to the organization of

knowledge intensive production processes has helped us understand puzzling empirical cases,

but few theoretical puzzles need to be addressed. Given the central role that trust play in

enabling large scale cooperation in Collaborative Communities, it seems essential to explore

the conditions in which trust can thrive. Adler and Heckscher (2006) suggest that individuals

in Collaborative Communities will develop higher trust because given the high interdepen-

dence of their work, they need to collaborate to achieve their common goal. Furthermore they

suggest a common value orientation facilitate the development of common identities. This

approach, while based on decades of literature on trust and traditional communities, is prob-

lematic for two reasons. First of all, it is not clear how trust and value congruence emerge.

Both these characteristics are neither easy to find, nor to maintain, and it is theoretically crit-

47

3. THE NETWORK STRUCTURE OF COLLABORATIVE COMMUNITIES

ical to ask ourselves if there are factors that can explain both. Moreover, it is not clear how

trust and shared values can be maintained in large heterogeneous geographically distributed

communities where membership exhibits high turnover.

I argue that the current characterization of collaborative community can be fruitfully en-

riched with the growing literature on social networks, in order to identify the structural condi-

tions that enable trust, value congruence, and large scale cooperation. A structural approach

to collaborative communities is not inconsistent with what has been done so far, but will help

(1) refine the current characterization of communities in social network terms, (2) provide a

methodology to unobtrusively identify Collaborative Communities in the wild, and (3) a con-

tribution to the existing tool-kit to design Collaborative Communities. I explore existing mod-

els of network of knowledge production, compare them, and suggest that there is a consistent

set of structural features of the patterns of relations between direct producers —topological

properties in network terms— that characterize Collaborative Communities.

3.2 A network approach to collaborative communities

A network approach to collaborative communities should start from the basic building block

of collaborative activity: team work. There is evidence of a trend towards more cooperative

activity, often associated with the increasing complexity and interdependence of knowledge

production and creative activity more generally (Guimerà, Uzzi, Spiro, and Amaral, 2005;

Uzzi and Spiro, 2005; Wuchty, Jones, and Uzzi, 2007; Jones, Wuchty, and Uzzi, 2008). Based

on works in science, engineering, social sciences, arts, humanities and patents, Wuchty et al.

(2007) show that until the 1950s solo-authored academic articles and inventions were more

likely to receive a large number of citations than articles and inventions developed by teams.

This is not true anymore, and the trend towards collective research and teamwork is illustrated

by the fact that in the last decade the top cited papers in all the disciplines studied were mostly

created by teams.

The study of science as collaborative creative work, and scientific communities as collab-

orative communities has contributed to our understanding of the properties of the networks

created by these collaborations. For instance, Guimerà et al. (2005) suggest that three simple

mechanisms of team assembly (number of team members, probability of team members being

and incumbent, and propensity to repeat collaborations) determine the topological properties

of the network structure that emerge and are correlated with the performance of the teams.

They study the evolution of cooperation networks in Social Psychology, Economics, Ecology

and Astronomy, and show how the network evolve from a structure characterized by isolated

clusters of scientists towards one in which a large portion of them are connected (in networks

terms, they all belonged to the same component: all nodes that can be connected to each

other by at least one path). In all cases more than half the scientists belonged to the largest

connected component of the network. The relative size of the giant component was also asso-

ciated with performance (publishing in journals with high impact factor) in social psychology

and ecology (but not in economics and astronomy). Guimerà et al. (2005) argue that a large

connected component in a field would be an evidence of the existence of an invisible college

(de Solla Price, 1986; Merton, 1979): a network of social and professional relations linking

48

3.2. A network approach to collaborative communities

scientists across universities, which forms a repository of resources and knowledge developed

in the past collaborations of the members of the filed. The emergence of a giant component,

therefore, seems like a necessary, but clearly not sufficient feature of the network of a collab-

orative community.

Networks of knowledge production: small world model

One of the key properties of the network structure of a collaborative community should be fa-

cilitating an efficient flow of information and ideas among collaborators. The class of network

models that most likely fit these requirements is the small-world model (Watts and Strogatz,

1998). Small World networks are characterized by a high level of local density of social ties

and short average distances among nodes in the network. More formally,Watts and Strogatz

(1998) postulated than 2 measures can be used in order to quantify small world model: av-

erage path length (L) and clustering coefficient (CC). L measures the average number of

intermediaries between any two nodes of the network, which theoretically means that it is a

measurement of how close resources, people and knowledge are in a concrete network. CC is

the mean probability that two nodes that are neighbors of the same other node will themselves

be neighbors. This measure has been used as proxy for cohesion or closure of networks. The

smallworldiness of a network is usually measured with the small world index Q (see appendix

A for a formal definition).

Since the publication of Watts and Strogatz’s seminal paper, an important stream of em-

pirical studies have analyzed a wide variety of networks, spanning multiple levels of analysis,

with the theoretical apparatus of the small world model. For instance, Uzzi and Spiro (2005)

analyzed the network of artists who made Broadway musicals from 1945 to 1989. They found

a non-linear association between smallworldiness and the financial and artistic performance

of the musicals they produced: at low levels of Q the network consists of many unconnected

teams, which inhibits the circulation of new ideas and hinders creativity; as Q increase there

are more links among teams and those links are more local cohesive which foster creativity

and exchange of ideas. But if Q continues to rise beyond a threshold: “the network increases

in connectivity and cohesion to a point at which connectivity homogenizes the pool of creative

material while cohesive ties promote common information exchanges, limiting the diversity

of the pool of creative material and trapping artists in echo chambers of like minded collabo-

rators” (Uzzi et al., 2007, 87).

Studies conducted on other types of networks have not consistently replicated these find-

ings (for a recent review see Uzzi, Amaral, and Reed-Tsochas, 2007). The inconsistency of

the relation between small world structure and performance could be explained by the wide

differences in the activities actors were engaged in, by the different measures of performance

used, or by the different time frames of the analysis and to differences in the measurement of

performance. In addition to these explanations, I would like to stress the fact that the small

world model is based on a purely local measure of cohesion (CC). Therefore a high clustering

coefficient only means that local teams are highly cohesive, but these teams might not be con-

nected by anything more than a few random connections, and therefore we cannot say anything

about the global connectivity of the network. As I will show in the next section, the global

connectivity, and the presence of multiple redundant paths among actors, might play a role in

49

3. THE NETWORK STRUCTURE OF COLLABORATIVE COMMUNITIES

explaining the differences in performance between small world structures in different settings.

A network can have high global cohesion and connectivity without too much local cohesion,

which is what Uzzi argues “traps artists in echo chambers of like minded collaborators”.

Another interesting empirical result of studies of scientific cooperation networks, points to

the role of specific actors in keeping the network together. Goyal, Van Der Leij, and Moraga-

González (2006) show that the global patterns of cooperation among economists from 1970

to 1999 can be modeled as a small world. They also found that a core of interlinked star

authors spanned the network shortening otherwise long path lengths. If those brokers were

removed from the network, the average path length would rise sharply and the size of the giant

connected component will shrink significantly. In the field of sociology Moody (2004) shows

that the global patterns of cooperation among authors does not follow a small world model.

Furthermore he showed that the cohesion between sub-fields in sociology does not depend on

a core of brokers, and the network did not fragment until all scholars with 10 collaborators

were removed from the network.

In addition to facilitating the diffusion of ideas and the combination of diverse skills and

pieces of knowledge, teams can also generate common social norms and trust —another es-

sential feature of Collaborative Communities. To explain how trust can operate beyond the

confine of each team it is necessary to explore its structural antecedents.

Trust and social solidarity in networks: the structural cohesion model

Cohesion and social solidarity are central features for collaborative communities, and distin-

guish them from both ideal-typical hierarchies and markets. These concepts have a long and

illustrious history in sociology (Durkheim, 2008) but their precise characterization has been

elusive. Much more attention has been focused on its ideational component, which is based

on the members’ identification with a collectivity, than on its relational component (Doreian

and Fararo, 1998), that is the structure of social relations among members of the group that fa-

cilitate the emergence of cohesion. Indeed, even the collaborative community literature focus

almost solely on the ideational community, stressing the importance of collective identifica-

tion.

As discussed in chapter 2, White and Harary (2001) and Moody and White (2003) devel-

oped a robust operationalization of the relational dimension of social solidarity based on the

graph-theoretic property of connectivity (Harary, 1969). They propose two equivalent defini-

tions of structural cohesion: “a group’s structural cohesion is equal to the minimum number of

actors who, if removed from the group, would disconnect the group” and “a group’s structural

cohesion is equal to the minimum number of independent paths linking each pair of actors in

the group” (Moody and White, 2003, 109). These two definitions are equivalent because of

Menger’s theorem1.

The starting point of the social cohesion in a group is a state where every actor can reach

every other actor through at least one relational path. The formalization of this state in a con-

1A cutset is a set of nodes that, if removed, would break the component into two or more pieces. A graph is

k-connected —has node connectivity k— and it is called a k-component if it has no cutset of fewer than k nodes.

Menger’s theorem states that a k-connected graph also has at least k node-independent paths connecting every

pair of nodes.

50

3.2. A network approach to collaborative communities

crete group is the size of the largest connected component. The emergence of a giant compo-

nent, therefore, does not just provide the opportunity to access the invisible college (Guimerà

et al., 2005), but is also a minimal condition for the development of cohesion. Moody and

White (2003) argue that the removal of a few key nodes can affect the flow of knowledge,

information and resources in the network. In network terms, a graph is k-connected and is

called a k-component if you need to remove at least k nodes to break it into more components.

A 2-component, or bicomponent is a component that requires at least 2 nodes to be removed

to break down connectivity. Therefore Moody and White (2003) convincingly argue that a

biconnected component provides a baseline threshold for strong structural cohesion.

The cohesive structure of a network can be conceptualized as increasingly cohesive groups

—called cohesive blocks— nested inside each other. As an example we can think of a group

with an highly cohesive core surrounded by a less cohesive periphery (Borgatti and Everett,

2000). A common structural pattern in large networks is an hierarchical nesting of increasingly

cohesive groups at low connectivity levels and non-overlapping highly cohesive groups at

higher connectivity levels (Moody and White, 2003, 112). Those highly cohesive groups play

a key role in the diffusion of the consequences of social interactions among actors in networks

(White and Harary, 2001, 355-356). It is usually assumed that the transmission through the

network of knowledge, influence and resources generated by social interactions is limited to

people 2 or 3 steps away from the initiator of such interactions. In graph theoretic terms, this

means that social interactions have a high rate of decay. However, strongly cohesive blocks

allow repetition of information and reinforcement of influence because they are characterized

by multiple independent pathways that compensate the decay effects of the transmission of

knowledge, influence and resources.

This key feature of cohesive groups provides a plausible social mechanism for the emer-

gence and development of trust in Collaborative Communities. Actors in strongly cohesive

groups are able to compare independent perspectives on each other through a variety of paths

that flow through distinct sets of intermediaries, which provides multiple independent sources

of information about other’s characteristics or identity (White and Harary, 2001, 320). Thus,

the perception of an individual embedded in such structures of the other members of the group

to whom he is not directly linked is filtered by the perception of a variety of others whom he

trusts because is directly linked to them. This mediated perception of the group generates trust

at a global scale.

Collaborative Communities Networks: Cohesive Small Worlds

The two models of network topology discussed above provide a solid theoretical starting point

in order to analyze the characteristic network structure of collaborative communities, which,

I argue, is a key element to understand trust generation and value congruence between highly

heterogeneous and interdependent producers in knowledge-based production processes. Table

3.2 summarizes the key dimensions along which I are comparing small world and structural

cohesion, and the features I argue are critical for enabling large scale cooperation in Collabo-

rative Communities.

I want to highlight that the structural cohesion model and the small world model are not

mutually exclusive. A strongly cohesive network could have an average path length com-

51

3. THE NETWORK STRUCTURE OF COLLABORATIVE COMMUNITIES

Structural cohesion model Small world model Cohesive small world

Cohesion Global cohesion: focus on

cohesive groups formed

by nodes linked by node-

independent paths

Local Cohesion: Fo-

cus on cohesive clusters

linked by few edges

Both global and local

cohesion

Role of stars Connectedness and cohe-

sion are not dependent on

stars

Connectedness might

be highly dependent on

stars

Not dependent on stars

Robustness Resiliency in front of ran-

dom and targeted removal

of nodes

Resiliency on random

removal but not nec-

essary on targeted re-

moval of nodes with

high degree

Resiliency in front of

random and targeted

removal of nodes

Trust Global trust among all

nodes of strong cohesive

groups

Local trust only among

cohesive local neigh-

borhoods

Both local and global

trust

Source of

trust

Node-independent paths

between nodes

Direct links within

dense local clusters

Both

Average path

length (L)

Implicit: strong cohesive

groups must have relative

low L

Explicit inclusion of L

in the model

Explicit inclusion of L

in the model

Diffusion of

social inter-

action

Cohesive groups as am-

plifiers of signals in net-

works

No clear mechanism; it

is assumed that low L is

enough

Cohesive groups as

amplifiers

Table 3.2: Comparison of network models for collaborative communities.

parable with its random counterpart while its clustering coefficient is significantly higher.

Therefore, there are networks that fit in the intersection between the two models. In order to

illustrate this fact, figure 3.1 depicts examples —with toy graphs of 25 nodes— of a network

that is structural cohesive but not small world (figure 3.1a), a network that is small world but

not structurally cohesive (figure 3.1c) and a network that is both structurally cohesive and

small world (figure 3.1b). On the lower row of figure 3.1 there are plots of the robustness of

each model in front of the deletion of nodes. Those plots depict the size of the giant compo-

nent divided by the total number of nodes minus the nodes removed in the preceding steps in

log scale. Red dots represent targeted removal of nodes, that is, removing nodes starting with

nodes of high degree. Blue marks represent random removal of nodes, in each step I chose

a node at random and remove it, error bars represent the standard deviation over 100 runs of

random removal of nodes.

The example of a pure structurally cohesive network (figure 3.1a) consists in a 2 dimension

grid where all nodes of the network form a giant bicomponent but its average path length is

significantly higher than a random network with the same number of nodes and edges, and its

clustering coefficient is 0 because there are no triangles. Therefore, this network is not a small

52

3.2. A network approach to collaborative communities

world. This kind of network is very robust in front of targeted removal of nodes because high

degree nodes are in the middle of the grid; after removing all nodes with degree 4 we still have

a cycle formed by the outer edges of the original grid.

The example of a pure small world network (figure 3.1c) is inspired in the caveman net-

work proposed by Watts (1999b). It consists in a fully connected core with 20% of the nodes;

where each node in this core is connected to a node of a fully connected subgraph of 4 nodes.

Thus, the clustering coefficient of this example is significantly higher than its random coun-

terpart but its average path length is almost the same. But, in terms of structural cohesion, the

giant bicomponent is formed only by the 20% of the nodes in the core. It should be noticed

that despite the fact that this kind of network has more edges than the pure structural cohesive

example, its robustness in front of targeted removal of nodes is much lower. As we can see

in the robustness plot depicted in figure 3.1f, if we start removing nodes with high degree, the

relative size of the giant component shrinks quickly because high degree nodes are in the core

of the network, and every node deleted in the core means that the fully connected subgraph

of four nodes linked to it will be outside of the giant connected component. Thus, in this

example, connectedness is highly dependent on stars (ie high degree nodes).

The example of a cohesive small world network (figure 3.1b) is generated algorithmically.

I start with a seed formed by a cycle network containing all the nodes in order to make sure

that, in the final network, all the nodes will be in a giant bicomponent. Then I randomly link

pairs of nodes until we reach the number of edges contained in a 2 dimension grid with the

same number of nodes2. Then I compute the small world index (Q) of the resultant network

—see appendix A for a formal definition— and if it is lower than an arbitrary threshold I start

again from the beginning until the resultant network has a small world index greater than this

arbitrary threshold. For the example in figure 3.1b, I have chosen a threshold of 1.5, but any

network can be characterized as a small world if Q > 1.

Thus, the cohesive small world example has all its nodes in a giant bicomponent —like the

pure structural cohesive example— but it also has almost the same average path length than

its random counterpart and a clustering coefficient significantly higher —like the pure small

world example—. Figure 3.1e depicts its robustness in front of targeted removal of nodes.

As we can see, it is in between of the other two examples. We need to remove an important

percentage of the nodes with high degree in order to shrink the size of the giant component

significantly. Despite the fact that the cohesive small world example has less edges than the

pure small world example, its connectedness is much less dependent on stars. Moreover, we

need to remove more than 10% of all nodes in order to be able to distinguish the effects of

random and targeted removal of nodes in the relative size of the giant component. While in

the pure small world example, the effects of targeted and random removal are quite different

from the beginning of the removal process.

Therefore, I can conclude that the two models are not mutually exclusive. The family of

networks that fit in the intersection of both models —what I call Cohesive Small Worlds—

2I have chosen to limit the number of edges of the cohesive small world model to the number of edges

contained in a 2 dimension grid with the same number of nodes in order to highlight that the density is not the

main determinant of the robustness of a network: it is its structure. Thus, a 2 dimension grid is more robust than

the cohesive small world model with the same number of edges, and the cohesive small world model is more

robust than the pure small world example despite the fact that the latter has more edges

53

3. THE NETWORK STRUCTURE OF COLLABORATIVE COMMUNITIES

exhibit consistent topological patterns, that is, they have the same structure. These patterns,

I argue, provide the scaffolding for the emergence of Collaborative Communities and enable

large scale cooperation. On the one hand, the generation of trust and congruent values among

heterogeneous individuals are fostered by structurally cohesive groups in the connectivity hi-

erarchy of cooperation networks because individuals embedded in these structures are able to

compare independent perspectives on each other through a variety of paths that flow through

distinct sets of intermediaries, which provides multiple independent sources of information

about each other. Thus, the perception of an individual embedded in such structures of the

other members of the group to whom she is not directly linked is filtered by the perception of

a variety of others whom she trusts because is directly linked to them. This mediated percep-

tion of the group generates trust at a global scale. On the other hand, the existence of dense

local clusters connected between them by relative short paths allows successful cooperation

among heterogeneous individuals with common interests and, at the same time, fosters the

flow of information between these clusters.

As I will show in the next chapters, the cooperation networks of the FOSS projects un-

der analysis in this thesis —Debian and Python— conform to the structural patterns of the

Cohesive Small World model described here.

54

3.2. A network approach to collaborative communities

n
=

2
5
,
m

=
4
0
,

C
C

=
0
.0

0
,
A

P
L

=
3
.3

3
,
S

W
I=

0
.0

0
,
n

o
d

es
in

G
B

C
=

1
0
0
%

P
u

re
S

tr
u

ct
u

ra
l

C
o

h
es

io
n

(a
)

P
u

re
st

ru
ct

u
ra

l
co

h
es

io
n

n
=

2
5
,
m

=
4
0
,

C
C

=
0
.1

9
,
A

P
L

=
2
.6

7
,
S

W
I=

1
.5

7
,
n
o
d
es

in
G

B
C

=
1
0
0
%

C
o

h
es

iv
e

S
m

al
l

W
o

rl
d

(b
)

C
o

h
es

iv
e

sm
al

l
w

o
rl

d

n
=

2
5
,
m

=
4
5
,
C

C
=

0
.8

2
,
A

P
L

=
3
.3

8
,
S

W
I=

4
.2

3
,
n

o
d

es
in

G
B

C
=

2
0

%

P
u

re
S

m
al

l
W

o
rl

d

(c
)

P
u

re
sm

al
l

w
o

rl
d

0
.0

1
0

.1
0

1
.0

0

P
er

ce
n

ta
g

e
n

o
d

es
re

m
o
v
ed

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

RelativesizeofGiantComponent

R
o

b
u

st
n

es
s

P
u

re
S

tr
u

ct
u

ra
l

C
o

h
es

io
n

1
0

0

T
ar

g
et

ed
re

m
o
v
al

R
an

d
o

m
re

m
o
v
al

(d
)

R
o

b
u

st
n

es
s

p
u

re
st

ru
ct

u
ra

l
co

h
es

io
n

0
.0

1
0

.1
0

1
.0

0

P
er

ce
n

ta
g

e
n

o
d

es
re

m
o
v
ed

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

RelativesizeofGiantComponent

R
o

b
u

st
n

es
s

C
o

h
es

iv
e

S
m

al
l

W
o

rl
d

1
0

0

T
ar

g
et

ed
re

m
o
v
al

R
an

d
o

m
re

m
o
v
al

(e
)

R
o

b
u

st
n

es
s

co
h

es
iv

e
sm

al
l

w
o

rl
d

0
.0

1
0

.1
0

1
.0

0

P
er

ce
n

ta
g

e
n

o
d

es
re

m
o
v
ed

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

RelativesizeofGiantComponent

R
o

b
u

st
n

es
s

P
u

re
S

m
al

l
W

o
rl

d
1

0
0

T
ar

g
et

ed
re

m
o
v
al

R
an

d
o

m
re

m
o
v
al

(f
)

R
o

b
u

st
n

es
s

p
u

re
sm

al
l

w
o

rl
d

F
ig

u
re

3
.1

:
M

o
d

el
s

o
f

n
et

w
o

rk
st

ru
ct

u
re

an
d

th
ei

r
ro

b
u

st
n

es
s.

T
h

e
p

lo
ts

o
f

th
e

ex
am

p
le

n
et

w
o

rk
s

(fi
g

u
re

s
3

.1
a,

3
.1

b
an

d
3

.1
c)

co
n

ta
in

2
5

n
o

d
es

in
o

rd
er

to
fa

ci
li

ta
te

th
e

p
er

ce
p

ti
o

n
o

f
th

ei
r

st
ru

ct
u

re
.

T
h

e
ro

b
u

st
n

es
s

p
lo

ts
(fi

g
u

re
s

3
.1

d
,
3

.1
e

an
d

3
.1

f)
ar

e
g
en

er
at

ed
b

y
to

y

n
et

w
o

rk
s

o
f

1
0

0
n

o
d

es
b

ec
au

se
th

e
ro

b
u

st
n

es
s

p
at

te
rn

is
cl

ea
re

r
th

an
in

th
e

2
5

n
o

d
es

ex
am

p
le

s.
I

al
so

te
st

ed
th

e
ro

b
u

st
n

es
s

o
f

al
l

th
e

m
o

d
el

s
w

it
h

4
0

0
an

d
2

5
0

0
n

o
d

es
an

d
th

e
p

at
te

rn
s

ar
e

th
e

sa
m

e.

55

Part III

Empirical analysis

4

Historical Background on Free and Open
Source Software

The software is the logic part of a computer system, while the hardware is the physical part.

Loosely speaking we could say that computer programs are written in different programming

languages, the set of instructions forming a program is called source code. This source code is

compiled in order to translate it to a language that can be executed by the hardware; the result

is the binary code —a sequence of 0 and 1—. Based only in the binary code of a program no

human can understand how the program develops the task for which it was designed. It is like

a black box that receives some inputs and returns some outputs.

There are two types of software programs according to their function within a computer

system: application software are programs that develop specific tasks useful to the user, such

as a word processor or a web browser. System software are programs that conform the oper-

ating system, according to Tanenbaum and Woodhull the two main functions of an operating

system are, on the one hand, being an abstraction layer that provides to applications — and

to developers who write applications— a set of simple operations that hide the complexity of

hardware. On the other hand, the operating system is responsible for managing system re-

sources —RAM, processor, disk space ,...— between different programs competing for them

when they run in the system (Tanenbaum and Woodhull, 1996, 3-5). From a more practical

but less rigorous point of view, we can conceive an operating system as the minimal set of

programs that allow a computer to do useful things. Because what is considered useful has

evolved along time, operating systems have also evolved.

At the beginnings of computer science, there was no clear distinction between software

and hardware and between developer and user. There were only people who gave precise

instructions to computers about what they should do. In 1952 IBM commercialized the first

computer and during this decade began to spread their use (Weber, 2004, 21). One of the

key events that marked the evolution of software at this time was the decision of the US

Department of Justice that Western Electric and American Telephone and Telegraph (AT&T)

could not join to work together beyond the field telecommunications. This decision, taken in

1956 under anti-trust legislation, lead AT&T to promote software licenses to a nominal cost

and to release in the public domain the output of research developed at Bell Labs, in order to

not violate anti-trust laws (Roca, 2007, 20).

59

4. HISTORICAL BACKGROUND ON FREE AND OPEN SOURCE SOFTWARE

4.1 UNIX and the C language

In the 1960s, computers were very expensive facilities that were only available to government

centers, some large companies, and universities. The study, design, and implementation of op-

erating systems largely focused research efforts in those years. A major project was the result

of collaboration between MIT researchers and staff of Bell Labs, the goal was to build an oper-

ating system called MULTICS (Multiplexed Information and Computing Service. The results

of those efforts did not success; in 1969 AT&T withdrew from the project. But two researchers

who had participated in the work on MULTICS, Ken Thompson and Dennis Ritchie, devel-

oped on their own a new operating system, based in part on their work in MULTICS, which

was called UNIX. The first implementation was made entirely by Thompson in a month during

the summer of 1969 and consisted in a kernel, a shell, a text editor and an assembly language

(Weber, 2004, 26).

Assembly languages are tightly linked to each hardware platform, that is, each kind of

computer has its own assembly language, which is incompatible with other assembly lan-

guages. Thus it was not possible to run software written for a computer in any other computer.

In the early 1970s, Dennis Ritchie invented C, a general-purpose programming language,

which allowed to write the source code of software once, and was able to run in a wide range

of hardware thanks to a compiler, that translated the common C source code to the particular

hardware instructions for each kind of computer. Until the early 1980s, although compilers ex-

isted for a variety of hardware, the C language was almost exclusively associated with UNIX;

more recently, its use has spread much more widely, and today it is among the programming

languages most commonly used (Ritchie, 1993).

The first impulse to the spread of UNIX operating system was a computer science sym-

posium in which Thompson and Ritchie presented a paper about UNIX. The authors offered

to send a copy of UNIX to whom were interested, petitions exceeded by far initial expecta-

tions of the authors. The interest grew when they rewrote UNIX with the C programming

language, so it could work on any hardware that had a C compiler. Given this growing inter-

est, AT&T —constrained by anti-trust legislation— decided to license UNIX, at first, under

minimal conditions: the software was provided without warranty (‘as-is’) and without support

or correction of errors by the company; paying a fee of several hundred of dollars AT&T sent

a copy of the source code of UNIX (Weber, 2004, 28-29).

The UNIX operating System became popular as a teaching and research tool in computer

science departments in universities around the world, especially at US. The availability of

source code enabled experimentation, modification and improvement of the UNIX system.

AT&T did not offer support or maintenance, so system users had a strong incentive to share

solutions to bugs and improvements with the user community. Users of computers at that

time were not like today, they were in large part, college students, scientists or engineers

with extensive technical training. UNIX was one of the first experiences of collaboration and

knowledge exchange on a large scale in the field of software.

One of the main actors in the development of UNIX was the University of Berkeley, which

began its own distribution of UNIX called BSD (Berkeley Software Distribution) in the 1970s.

This distribution was started based on the UNIX source code of the company AT&T, but

they added significant improvements. In 1976 Thompson joined the Berkeley team. The

60

4.2. GNU and Linux

authorship of the contributions to the source code were collected in the same source, following

the practice established by Thompson and Ritchie (Weber, 2004, 27). In 1983 Berkeley’s team

published the 4.2 version of BSD UNIX which had major improvements, the most notable of

which was an implementation of the TCP/IP stack —the communication protocol of Internet—

, this version of BSD UNIX is one of the foundations of the Internet as we know it today

(Weber, 2004, 35). The 4.2 version of BSD UNIX directly competed with a version of the

company AT&T but it was far superior technically. The liberal license terms of BSD UNIX

allow to build proprietary implementations on top of BSD UNIX, this allowed the emergence

of new companies that commercialized modified versions of UNIX.

Requests for licenses from UNIX in the late seventies and early eighties increased consid-

erably, mainly from large companies, military institutions, universities, and research centers.

AT&T and Bell Labs had to be separated by court order in 1984. As a result, Bell Labs began

trading for the price of hundreds of thousands of dollars for new licenses of UNIX, which re-

stricted drastically the number of institutions that could afford it. They also began a series of

lawsuits in order to prevent the free dissemination of the various implementations of UNIX,

particularly the implementation of Berkeley (Roca, 2007, 22). The dynamics of litigation

lasted until the 1990s. This fact jeopardized the development of UNIX BSD; the future legal

viability of the system was not clear. This uncertainty prompted the emergence of alternatives

that, in its infancy, were technically inferior.

4.2 GNU and Linux

Richard Stallman started working in the Laboratory of Artificial Intelligence (AI) of MIT in

1971. In his own words, he joined a community that have shared the software for many years.

Stallman says poetically that the act of sharing software is as old as computers, just as sharing

recipes is as old as cooking (Stallman, 1998). At that time, the source code was accessible

to all users and the act of sharing modifications involving improvements with the rest of the

community was the norm. According to Stallman, this situation changed in the early eighties

of the twentieth century when the community of MIT hackers collapsed. One spin-off of the

MIT AI lab hired almost all the people working there. The contract contained a non-disclosure

agreement forcing people to not disclose their work and therefore prevented them to publish or

share their work. In addition, in 1982, the MIT AI lab changed its hardware and a proprietary

operating system were installed on them.

According to Stallman, those events led him to abandon his work at the MIT AI lab be-

cause, on the one hand, ethically he could not continue working with proprietary software

and, on the other hand, the community in which he worked was dismantled. But rather than

stop using software and engage in other activities, he decided to promote the construction of

a new community within which they could restore the practice of sharing software. Stallman

explained that he thought that the first step to restore the community was building a free op-

erating system, because it is the essential tool in order to make a computer work. Thus was

born the GNU project (GNU is Not UNIX) which aimed to create a general-purpose operating

system that was a completely free reimplementation of UNIX (Stallman, 1985).

Stallman devise a set of formal rules, which revolve around the concept of copyleft. This

61

4. HISTORICAL BACKGROUND ON FREE AND OPEN SOURCE SOFTWARE

new concept is supported in the legislation about copyright. In Stallman’s words, the idea

of copyleft is that the author of a program gives everyone, without exception, permission to

execute, copy, modify and distribute modified versions of the program. Stallman argues that

in order to be effective, copyleft requires that derivative works of a program must also be

free (Stallman, 1998). In this way privatization by software companies can be avoided, unlike

free licenses that are permissive with private ownership, as the BSD license which allows a

company to make changes to a free program and commercialize it in a binary format without

providing any changes in source code form. The concrete implementation of these formal

rules is the GNU/GPL License.

To articulate the process of building this new free operating system, Stallman founded

in 1985 the Free Software Foundation (FSF), a nonprofit foundation with the objective of

supporting the free software movement and give them legal cover. A relatively small group

of people joined the efforts of Stallman, which was, in part, responsible for strategic planning

in the early years of GNU. Hackers of the FSF created many free programs, some of them

proved to be the best in their field. In the early nineties, the GNU project had a wide range of

software but lacked a kernel —the program that interacts directly with the hardware— to have

a complete operating system.

In this context, Andrew Tanenbaum created the first version of Minix in 1987. Minix

is an operating system written from scratch by Tanenbaum and their students. The main

objective was to allow his students to learn by analyzing how it is made and how it works

an actual operating system. The Minix’s source code is supplied as part of Tanenbaum and

Woodhull (1996) book on operating systems. Linus Torvalds was a student at the University

of Helsinki when he developed the first version of the Linux kernel. His aim was to write a

new implementation of Minix for the popular and cheap i386 computer architecture. One of

the key factors for the success of Linux was that Linux Torvalds decided to license it under the

GNU/GPL license because the tools he used to develop Linux came from the GNU project.

He released the source code on-line and asked everyone who wanted to collaborate with the

project to submit improvement proposals.

Eric Raymond, a hacker from the old school, exposed the Linux development model in a

work that has had a significant influence in the field of software development: The Cathedral

& the Bazaar (Raymond, 1999). He starts by explaining the perplexity he felt when he became

interested in Linux. Since the mid 80’s had worked with the FSF by writing free software and

always followed a development model that, metaphorically, can be compared with building a

cathedral. A small group of architects design the program, implement it and test it for a long

time. When it successfully pass all the tests it is released. He was surprised both with Linux

and its development model, which consisted in releasing the program very often, even if it had

known error that had not been solved. The main idea is to rely on all the people who devote

their free time to test and improve Linux, collect all the proposals, and implement the best.

Raymond qualifies metaphorically this production model as a bazaar, where anyone can

contribute code to the project and each project is responsible for integrating the proposals that

seem useful to the source code of the program. It is fair to say that further studies on the

actual dynamics of larger projects and relevant software —like Apache and Mozilla— have

shown that the cathedral model is not entirely abandoned, rather the actual model is an hybrid;

a combination of the two models where a significant portion of the program development is

62

4.3. The Debian Project

provided by a relatively small group of people, but there are an extensive variety of people,

who more or less sporadically, contribute to the project (Mockus et al., 2002).

We must consider that in the 1990s starts a massive deployment of Internet in some coun-

tries. Internet is the infrastructure that makes possible to weave a network of peer collaboration

that characterize this production model. This development model was not invented by Linus

Torvalds, is not difficult to recognize the principle of peer review of scientific practice in it. In

fact other software projects, such as BSD UNIX, had adopted a model that closely resembles

the practices of scientific communities. It must be said that it was quite difficult that a contri-

bution that came from an outsider of the Berkeley team was accepted in BSD UNIX; in this

sense, the classical model of development of UNIX established at Berkeley was more elitist

than the Linux model, which was more open and transparent but less rigorous. The key to

understand the success of the Linux model is that it was contemporary to the spread of access

to global digital networks in some countries.

In the early nineties, the GNU system was almost complete, just lacked the kernel; the

gap was important because the kernel is the software that allows the system to operate au-

tonomously on the hardware. Linux filled the void that was missing, the sum of the Linux

kernel and GNU applications resulted in a general purpose operating system completely free:

the GNU/Linux system. But the fact that all the pieces of the operating system were avail-

able did not meant that putting them to work together was an easy thing. In the first half of

the nineties, installing a GNU/Linux system required a great deal of expertise and consid-

erable time to devote to it. In this context appear and develop different distributions of the

GNU/Linux operating system, among which is the Debian project, which is the subject of

empirical analysis of this research.

4.3 The Debian Project

In the early nineties of the twentieth century the most powerful free operating system was

BSD UNIX. But as I said, the litigation that was submitted by the companies who hold the

copyrights of UNIX threatened its future viability. This led to the emergence of alternatives,

although initially were technically inferior, were substantially improved in the late nineties and

early twenty-first century. These alternatives were the GNU project and the Linux kernel, the

combination of which allowed to build a completely free general purpose operating system.

But combine these pieces of software was not, nor is, a trivial task. Linux was in its early

stages of development, many people made contributions to the source code and new versions

of Linux were released on a daily basis. Therefore, it was required a great effort to have

GNU/Linux system running, and even more, keep them updated. Especially for people who

wanted to work with the GNU/Linux system to develop different tasks and not in the system

(Krafft, 2005, 30).

In 1993 Ian Murdock, a student at Purdue University at Indiana took the initiative of cre-

ating the Debian Project1 with the goal of building a distribution of GNU/Linux system. The

Debian Project’s initial proposals were included in the Debian manifesto (Murdock, 1994).

Two of the main features of the Debian project are listed in this manifesto. First, define a

1The name Debian is the contraction of the names Debra —Murdock’s wife— and Ian.

63

4. HISTORICAL BACKGROUND ON FREE AND OPEN SOURCE SOFTWARE

new type of distribution of GNU/Linux, instead of being developed by a person or a closed

group, the aim was to develop the system following an open and decentralized model inspired

by Linux. Secondly, Debian was defined as a non-commercial project and focused on tech-

nical excellence instead of economic profits, but without sacrificing the aim to compete in

excellence with commercial options, whether free or proprietary.

In the Debian manifesto Murdock notes that distributions are essential for the future of

GNU/Linux systems, because they eliminate the need for the user to search, download, com-

pile, install and integrate a large number of programs that are the basic components of a func-

tional system. Murdock notes that despite the importance of the distributions, they have not

received much attention by free software developers. To maintain a well integrated, error-free,

and reasonably updated distribution of GNU/Linux system is not an easy nor glamorous task,

it requires a great amount of work and coordination to manage complexity. Many distribu-

tions of GNU/Linux system at the time —the most popular of which was Softlanding Linux

System (SLS)— started with a technically acceptable level, but as time passed were degen-

erating because they did not solve the problems that arise nor updated versions of programs

distributed. Thus, it was relatively easy to start a distribution of GNU/Linux system but it was

very difficult to keep it operational and functional for significant periods of time.

The Debian project, thus, does not produce all the software that distributes; their main task

is software integration. The source code of the programs that composes the Debian operating

system is published originally under some kind of free license by authors that typically aren’t

involved in the project. The aim of Debian is to integrate useful programs and package them

so that an average user —without deep knowledge of software engineering— can install or

upgrade many programs in an easy and automated way. One of the main features of the pro-

duction process of Debian is modularity, that is, dividing the project into semi-independent

modules, designed to work together but that can be developed relatively independently. This

feature allows people with different expertise, skills, and motivation to participate in the de-

velopment of the system at different levels and with different intensity.

The availability of data derived of the open nature of the project and the recent interest

by community forms of organizing have triggered an interesting stream of research about the

Debian project in the last years (O’Mahony, 2003; Coleman, 2005; O’Mahony and Ferraro,

2007b; Ferraro and O’Mahony, 2010). Those research efforts have focused mainly in the

governance system, the membership process, and the ethical motivations of developers. Thus

we have a good understanding of the political and individual dynamics of the project but we

lack a detailed analysis of its production related dynamics. My aim is to fill this gap providing

a longitudinal analysis of the global patterns of relations among developers in the production

process. This allows to illustrate the relevance of a structural approach in order to understand

the actual production process of the Debian operating system.

4.4 The Python Language

In the late 1980s, Guido van Rossum —a dutch computer scientist working at the Centrum

Wiskunde & Informatica2— invented the Python programming language. A commonly cited

2Which translates in English to National Research Institute for Mathematics and Computer Science

64

4.4. The Python Language

account of the invention of Python by his author is the foreword to one of the first books on

the Python programming language (Lutz, 1996):

Over six years ago, in December 1989, I was looking for a “hobby” programming

project that would keep me occupied during the week around Christmas. My

office ... would be closed, but I had a home computer, and not much else on

my hands. I decided to write an interpreter for the new scripting language I had

been thinking about lately: a descendant of ABC3 that would appeal to Unix/C

hackers. I chose Python as a working title for the project, being in a slightly

irreverent mood (and a big fan of Monty Python’s Flying Circus).

The Python programming language, according to the nice definition that Wikipedia pro-

vides4, is a high-level, general-purpose, interpreted, dynamic programming language. Its de-

sign philosophy emphasizes code readability, and its syntax allows programmers to express

concepts in fewer lines of code than possible in other widely used programming languages.

Python provides constructs intended to enable writing clear programs on both a small and

large scale.

It is necessary to distinguish between the specification of a programming language and its

concrete implementation. A specification or technical standard is a set of grammatical, syn-

tactic, and semantic rules and conventions that define how to write programs, and what those

programs should do. A concrete implementation is what actual computers execute. There are

several different implementations of the Python language, but the reference implementation

—that is the standard concrete form that implements the language specification— is written in

the C programming language and is named CPython to reflect this fact. The development of

Python’s reference implementation is lead by Guido van Rossum and has a community-based

development model: a non-profit organization, the Python Software Foundation, acts as a legal

umbrella to sponsor and direct the development of the Python language.

The analysis of the production process of Python presented in the following chapters fo-

cuses on the development of the CPython reference implementation of the Python program-

ming language, but I’ll refer to it as just the Python project henceforth for the sake of brevity.

The governance model of the Python project is based on public debates and discussions

taking place in mailing lists and public meetings such as the language summits held each

year in the annual Python conferences, where some Python developers meet face to face and

discuss key issues in order to make decisions. The inventor of Python has however a lead role

in settling disputes or arguments when the community of developers don’t reach consensus.

He has the power of making final decisions when there is no consensus. This is why he has the

somewhat irreverent title of “Benevolent Dictator For Life (BDFL)” in the python community.

In the beginning, the Python project started as an individual effort of Guido van Rossum,

and has become one of the mainstream computer languages in the XXI century. Until 2000 it

was almost an individual effort of van Rossum with few close collaborators. From 2000 the

3ABC was a teaching language that van Rossum helped develop in the early eighties at Centrum Wiskunde

& Informatica. It was a language aimed at non-professional programmers.
4https://en.wikipedia.org/wiki/Python_(programming_language) accessed November 2016

65

4. HISTORICAL BACKGROUND ON FREE AND OPEN SOURCE SOFTWARE

project gained popularity and several developers joined the project. In 2014, 172 individuals

contributed at least one line of source code to Python project in all its history.

Nowadays, the Python language is widely used in several key areas of computing and

software development. Some of the biggest websites of the World Wide Web (WWW) are

powered by Python, such as youtube.com or reddit.com. Another main area where Python is

very prominent is scientific computing and data processing and analysis. For instance, a big

part of the data coming from the big telescopes on —and around— our planet are processed

using tools written completely or partially in Python.

Finally, it is worth saying that most of the data processing, analysis, and graphical rep-

resentations presented in this thesis are also written Python. The only other programming

language used is the R language which is a programming language that focus on statistical

computing.

66

5

FOSS projects as Cohesive Small
Worlds

As discussed in chapter 3, “Cohesive Small World” is the network model that I propose in

order to theoretically understand the structural dimension of cooperation of FOSS projects.

I argued that the family of networks that fit in the intersection of small world networks and

structural cohesion networks exhibit consistent structural patterns. These patterns, I argue,

provide the scaffolding for the emergence of collaborative communities and enable effective

large scale cooperation.

On the one hand, the generation of trust and congruent values among heterogeneous in-

dividuals are fostered by structurally cohesive groups in the connectivity hierarchy of coop-

eration networks because individuals embedded in these structures are able to compare in-

dependent perspectives on each other through a variety of relations that flow through distinct

sets of intermediaries, which provides multiple independent sources of information about each

other. Thus, the perception of an individual embedded in such structures of the other mem-

bers of the group to whom she is not directly linked is filtered by the perception of a variety

of others whom she trusts because is directly linked to them. This mediated perception of

the group generates trust at a global scale. On the other hand, the existence of dense local

clusters connected between them by relative short paths allows successful cooperation among

heterogeneous individuals with common interests and, at the same time, fosters the flow of in-

formation between these clusters preventing the local clusters to be trapped in echo chambers

of like minded collaborators.

This chapter focus on the empirical analysis of the network structure of two mature and

well established FOSS projects: the CPython reference implementation of the Python pro-

gramming language and the Debian Operating System. These two projects, as outlined in the

previous chapter, are quite different despite being both successful FOSS projects. The Debian

project has approximately ten times more participants than Python. Debian, being a complete

Operating system, has many parts which are only lightly related between them because it con-

tains programs that do very different tasks (eg the developers working on packaging software

for music editing do not need to pay close attention to what debian developers focused on

packaging word processors do). On the other hand, the Python programming language is a

much more integrated software project, and thus developers working on different parts of the

67

5. FOSS PROJECTS AS COHESIVE SMALL WORLDS

language implementation have to play attention, and work very closely, with other developers.

This has a strong impact in the structure of the patterns of relations that emerge between

developers in the two projects. The analysis presented here has two parts: first I will compute

the small world metrics for the two projects, as described in chapter 3, and then I will compute

the structural cohesion metrics as described in the chapter 2. However first it is necessary to

define how I will build the cooperation networks for this two projects as a formalization of the

patterns of cooperation between the individuals in these projects.

5.1 Modeling patterns of cooperation as networks

My modeling strategy to capture the patterns of relations among developers in these two

projects is to focus on the actual contributions of each developer to the project. I model the

cooperation patterns between individuals as affiliation networks (Wasserman and Faust, 1994,

chapter 8). This kind of networks contain two types of nodes: N actors each of which belongs

to one or more groups M . Such networks are bipartite or 2-mode because they contain two

types of nodes and there are no edges between nodes of same type.

The two sets of nodes in the networks analyzed here are, on the one hand, human devel-

opers and, on the other hand, entities that conform the product that is released by the FOSS

project. In the case of Debian, these entities are software packages, and in the case of Python,

they are source code files. Note that the collaboration network is based on individual contri-

bution but it not only captures the total amount of contribution that a given individual does,

but also to which part of the project the contributions are focused, and who else in the project

is also working on the same entities. This is why I name these bipartite graphs collaboration

or cooperation networks.

One feature of most large software projects is modularity, that could be defined as the divi-

sion of a software project into semi-independent parts, designed to work together but that can

be developed relatively independently. In the case of an operating system, such as the Debian

project, modularity is more prominent than in other software projects, such as Python. An op-

erating system comprises a comprehensive set of software packages with varying importance,

from those responsible for interacting with the hardware to others that provide certain features

that are only useful in very specific and specialized configurations. On the other hand, an im-

plementation of a programming language, such as Python, is also modular but their parts are

much more closely related and have to be tightly integrated in order to function as a coherent

whole.

This modeling approach captures mostly the informal patterns of relations that individuals

establish when contributing to the project. FOSS projects have a wide range of formal organi-

zational forms, and in this respect, they can be quite different. The definition of the leadership

position in the two projects in which this thesis is focused nicely capture these differences in

formal organization: Debian has a very developed formal bureaucracy, the project elects its

leader each year through a secret vote of all its members after a electoral campaign where the

candidates discuss among them and try to gain supports; Python instead has its original author

—Guido van Rossum— in a permanent position of leadership, the people in the project refer

to him, and his position of leadership, as “Benevolent Dictator For Life” (BDFL).

68

5.1. Modeling patterns of cooperation as networks

Despite these differences in the formal organization, if the focus is placed on the patterns

of relations among developers in the productive process, what I call the cooperation network,

we can analyze the contribution dynamics, analyze hierarchical positions defined by these

patterns, assess the pace of renewal in these positions, and determine the impact of being in a

concrete hierarchical position in the median active life of a developer in the project.

For the case of the Debian project, I define that each package of source code is a module

of the system or, in terms of network affiliation, a group or team. The main data source is

the Ultimate Debian Database (UDD)1 (Nussbaum and Zacchiroli, 2010). The UDD contains

information related to the work of each individual in the project which allow me to build the

developers-packages affiliation network. One developer is linked to every package she has

uploaded in the archive in a period of one year. Therefore, the result is a 2-mode network with

developers —the actors— and packages —the groups— as the two types of nodes.

For the case of the Python project, I define that each source code file that forms the ref-

erence implementation of the programming language is a module of the system or, in terms

of network affiliation, a group or team. Thus, contributions are lines of source code added or

deleted from one of the source code files of Python’s code base. The main data source is the

Python source code repository 2, which is under version control. That means that each change

to any source code file is recorded and attributed to a person.

These cooperation relations are only part of the whole patterns of cooperative relations

established among developers in both projects. I cannot obtain more accurate data of the

frequent interactions between developers related to the production process that take place in a

large variety of on-line or face-to-face settings. However, the subset of cooperation relations

captured by this approach are significative and serve my purpose to analyze the global patterns

of relations among direct producers because the result of the productive process is, in fact, the

archive of packages that form the Debian operating system or the set of source code files that

form the implementation of the Python programming language. Therefore, I base the analysis

of cooperation on the registered contribution of each developer to the final product of the

productive process delivered to end users.

Moreover, two important advantages of this approach are, on the one hand, that there

is public data on all uploads —in the case of Debian— or all the modifications of source

code files —for the Python project—, thus I do not need to worry about sample bias because

there is accurate data of all the work performed in the period under analysis. On the other

hand, having a strict definition of what cooperation means allows me to analyze the evolution

of cooperation patterns throughout the history of the two projects. Therefore, I can make

meaningful comparisons between years in the same project, and between projects.

Null models

Both kinds of analysis presented in this chapter have in common the use of null models. In

empirical analysis of networks we need to be able to compare the statistical measures obtained

from the actual networks with a suitable null model in order to assert that what we observe is

1http://udd.debian.org/ [accessed November 2016]
2https://hg.python.org/cpython [accessed November 2016]

69

5. FOSS PROJECTS AS COHESIVE SMALL WORLDS

not the result of pure chance. That is, we have to make sure that the metrics observed in the

actual networks are significantly different to the patterns of relations that we might expect if

the relation between developers and packages, or developers and files in the case of Python,

were produced uniformly at random.

To this end, the canonical approach is to compare the measures of actual networks with

measures taken from random networks that maintain some constraints of the original network,

such as the degree distribution. Newman (2003); Newman, Strogatz, and Watts (2001) pro-

vided a configuration model in order to generate random graphs with arbitrary degree distribu-

tions. In the analysis presented here I have used the configuration model for 2-mode networks

to generate 100 random null models for each year. The configuration model assigns at random

developers to packages, or developers to source code files, maintaining the concrete skewed

distribution of packages by developer and files by developer observed in the actual networks.

In order to compute the small world metrics reported in the next section, I’ve used the

mean of the relevant statistics from ten random networks selected uniformly at random from a

pool of one hundred random networks —generated using the configuration models described

above. I did some test increasing one order of magnitude these figures —that is, selecting one

hundred random networks from a pool of one thousand— and the results were the same up to

the second decimal of the relevant statistics.

For the case of structural cohesion null models, it’s not possible to use the mean because

what we have to compute is the whole connectivity structure, and it’s graphical representation

requires to use only one network. Thus I’ve used only one random configuration model net-

work, selected uniformly at random from a pool of one hundred random networks, as a null

model for the structural cohesion analysis.

5.2 Small World Metrics

As I discussed in chapter 3, a network fits the small world model if it is more locally clustered

(CC) than its random network counterpart but has approximately the same average distance

(L) between nodes. In unipartite or 1-mode networks, CC is the mean probability that two

nodes that are neighbors of the same other node will themselves be neighbors. Thus, this

measure is computed as the ratio of triangles —a fully connected graph of 3 nodes— over

two-stars —three nodes connected by two edges—. But, in bipartite or 2-mode networks

there can be no triangles because, by definition, edges can only link nodes of different type.

Following Robins and Alexander (2004), Lind et al. (2005) and Latapy et al. (2008), local

cohesion in 2-mode networks can be measured with the notion of cluster coefficient based on

squares (CC4). CC4 is the ratio between the number of squares (C4) —composed by two

nodes of each type linked by four edges— over the number of three-paths (L3) —composed

by two nodes of each type linked by three edges— (See appendix A for a formal definition of

CC4). Like CC, CC4 applied to bipartite networks is a measurement of local cohesion.

The Small World Index (Q) is a summary indicator of the smallworldiness of a network

and accounts for both the relation of the clustering coefficients of actual networks compared

to their random counterparts, and the relation of average path length (a global measure of the

average distance between nodes in a network) of actual networks compared to their random

70

5.2. Small World Metrics

counterparts. Networks with the Small World Index (Q) bigger than 1 are considered small

world networks (see appendix A for details). I compute the Small World Index using the

following formulas:

Q =
CCratio

Lratio

(5.1)

Where:

CCratio =
CCactual

CCrandom

Lratio =
Lactual

Lrandom

(5.2)

In the tables below, CCactual is column column 6, CCrandom is column 7, Lactual or average

path length (APL) is column 8, Lrandom is column 9, and the Small World Index Q is column

10.

In the first place I compute small world metrics for Debian networks. The results are

shown in table 5.1.

Years Nodes Developers Packages Edges CC random CC APL random APL SWI (Q)

1999 3,259 392 2,867 3,253 0.128 0.002 9.4 8.6 73.8

2000 3,593 524 3,069 3,501 0.134 0.001 9.4 8.9 97.0

2001 5,943 777 5,166 6,241 0.049 0.002 8.4 7.8 28.1

2002 6,857 858 5,999 7,215 0.081 0.001 9.2 7.8 47.6

2003 7,276 914 6,362 7,892 0.101 0.001 9.1 7.6 57.9

2004 7,984 995 6,989 9,543 0.158 0.002 8.0 6.5 52.6

2005 8,328 1,048 7,280 10,373 0.166 0.003 7.5 6.2 43.5

2006 9,599 1,162 8,437 13,081 0.171 0.005 6.7 5.6 30.4

2007 9,471 1,181 8,290 13,023 0.148 0.005 6.8 5.6 26.2

2008 10,662 1,269 9,393 14,531 0.187 0.005 7.2 5.6 31.8

2009 11,336 1,343 9,993 15,842 0.227 0.006 7.0 5.3 28.6

2010 10,515 1,387 9,128 14,063 0.277 0.005 7.7 5.5 40.0

2011 12,362 1,430 10,932 16,265 0.143 0.005 7.5 5.5 21.4

2012 11,904 1,435 10,469 15,356 0.190 0.004 7.6 5.6 31.4

Table 5.1: Small world metrics for debian networks.

As we can see, the Debian project cooperation networks for all years analyzed are indeed

small world networks. Their Small World Index (Q) is quite bigger than 1, ranging from 21.4

in 2011 to 97 in year 2000. This large value of Q is driven by the fact that the clustering coeffi-

cient —the measure of local cohesion— of the observed networks is approximately a hundred

times higher than in their random counterparts. However the average distance between nodes

in the actual networks is slightly higher than the distance in their random counterparts, which

reduces the value of the small world index. Therefore I can conclude that Debian cooperation

networks fit nicely the small world model.

71

5. FOSS PROJECTS AS COHESIVE SMALL WORLDS

Note that the Small World Index (Q) is quite stable compared with the huge increment of

the number of developers involved in the Debian project and the number of software packages

uploaded to the Debian repository. The number of developers grows quickly the first years

under analysis, but tends to stabilize in the 2010s. There where 392 active developers in 1999

who uploaded 2,867 software packages that year; in 2012 there were 1,435 active developers

who uploaded 10,469 packages. That is a bit more than a three fold increment.

The high value of the Small World Index in the Debian project compared to its value in the

Python project —which I discuss below— is because Debian as an Operating System is more

modular than Python as a programming language. Thus it’s much more common in Debian to

have subgroups of developers that work only in a small set of packages independently of other

subgroups of developers.

For the Python project, the results for the small world metrics are presented in table 5.2.

Years Nodes Developers Files Edges CC random CC APL random APL SWI (Q)

1999 1,146 9 1,137 1,236 0.102 0.039 3.1 3.5 3.0

2000 2,172 31 2,141 3,720 0.214 0.135 3.3 3.5 1.7

2001 2,511 33 2,478 4,507 0.205 0.129 3.4 3.6 1.7

2002 2,317 38 2,279 4,502 0.204 0.129 3.6 3.6 1.6

2003 1,805 42 1,763 3,192 0.153 0.112 3.5 3.6 1.4

2004 1,850 49 1,801 3,163 0.113 0.093 3.4 3.6 1.3

2005 1,007 44 963 1,759 0.129 0.079 3.7 3.7 1.7

2006 2,632 52 2,580 6,794 0.235 0.156 2.8 3.2 1.7

2007 3,359 51 3,308 7,790 0.223 0.177 2.9 3.3 1.4

2008 2,951 59 2,892 7,833 0.231 0.175 3.0 3.3 1.5

2009 2,219 58 2,161 4,708 0.228 0.142 3.1 3.4 1.7

2010 2,930 63 2,867 6,504 0.175 0.128 3.4 3.5 1.4

2011 2,174 63 2,111 4,459 0.145 0.114 3.5 3.6 1.3

2012 2,444 65 2,379 4,843 0.124 0.087 3.7 3.8 1.4

2013 2,285 63 2,222 4,743 0.147 0.099 3.6 3.7 1.5

2014 2,134 62 2,072 4,149 0.138 0.095 3.6 3.7 1.5

Table 5.2: Small world metrics for python networks.

In the case of the Python project, the Small World Index (Q) is still greater than one in all

years analyzed, ranging from 3 in 1999 to 1.3 in 2004 and 2011. The value of Q in this case is

driven by the small average distance between nodes in the cooperation networks. Most years

Python networks have an average path length L slightly smaller than their random networks

counterparts, while their clustering coefficient CC is bigger than their null models, but not by

much. I can still confidently conclude that the Python project cooperation networks also fit

the small world model.

In this case, the Small World Index (Q) is remarkably stable during all years under analy-

sis. In 1999, when only 9 developers edited 1,137 source code files, the value of Q was 3. The

following years its value stabilized around 1.5 despite the fact that the number of developers

participating actively in the project increased steadily until reaching approximately 60 devel-

72

5.3. Structural Cohesion Analysis

opers in 2010, and maintaining this number from 2010 to 2014. Thus on the period analyzed

the developers actively editing source code files in the project multiplied by seven.

The low value of the Small World Index (Q) in the Python project, compared with the

values of Q in the Debian project, can be attributed to the lower modularity of Python as

a programming language compared with the inherent modularity of the Debian project as

an operating system. The need of tight integration between parts of the same programming

language make more difficult for subgroups of developers to work in subsets of source code

files independently of other developers.

5.3 Structural Cohesion Analysis

As discussed in chapter 2 my approach to the analysis of structural cohesion of cooperation

networks is based on the work of White and Harary (2001) and Moody and White (2003). The

cohesive structure of a network can be conceptualized as increasingly cohesive groups nested

inside each other. A common structural pattern in large networks is an hierarchical nesting of

increasingly cohesive groups at low connectivity levels and non-overlapping highly cohesive

groups at higher connectivity levels (Moody and White, 2003, 112). Those highly cohesive

groups play a key role in the diffusion of the consequences of social interactions among actors

in networks (White and Harary, 2001, 355-356). It is usually assumed that the transmission

through the network of knowledge, influence and resources generated by social interactions

is limited to people 2 or 3 steps away from the initiator of such interactions. In graph theo-

retic terms, this means that social interactions have a high rate of decay. However, strongly

cohesive blocks allow repetition of information and reinforcement of influence because they

are characterized by multiple independent pathways that compensate the decay effects of the

transmission of knowledge, influence and resources.

This key feature of cohesive groups provides a plausible social mechanism for the emer-

gence and development of trust in collaborative communities. Actors in strongly cohesive

groups are able to compare independent perspectives on each other through a variety of paths

that flow through distinct sets of intermediaries, which provides multiple independent sources

of information about other’s characteristics or identity (White and Harary, 2001, 320). Thus,

the perception of an individual embedded in such structures of the other members of the group

to whom she is not directly linked is filtered by the perception of a variety of others whom

she trusts because is directly linked to them. This mediated perception of the group generates

trust at a global scale, which according to Adler and Heckscher (2006) is the key mechanism

for the development of collaborative communities, as discussed in chapter 3.

The analysis presented in this section are only possible thanks to the heuristics that I de-

veloped in order to be able to deal with networks of tens of thousands of nodes and edges as

described at length in chapter 2 and appendix B.

Table 5.3 presents the first step of the analysis for the Python cooperation networks.

73

5. FOSS PROJECTS AS COHESIVE SMALL WORLDS

Years Nodes GC Random GC GBC Random GBC maximum k Random max k

1999 1146 66.0% 100.0% 6.7% 6.5% 3 (1.0%) 2 (6.5%)

2000 2172 96.5% 100.0% 33.4% 31.4% 8 (1.2%) 5 (3.1%)

2001 2511 97.3% 99.8% 34.1% 33.0% 9 (1.2%) 6 (2.4%)

2002 2317 100.0% 99.8% 38.1% 36.9% 9 (2.6%) 7 (1.9%)

2003 1805 100.0% 99.2% 34.8% 33.1% 7 (3.3%) 6 (2.4%)

2004 1850 99.8% 100.0% 39.7% 37.1% 7 (1.8%) 5 (2.5%)

2005 1007 99.8% 100.0% 45.7% 44.2% 5 (5.8%) 4 (7.6%)

2006 2632 100.0% 100.0% 74.2% 69.8% 9 (1.5%) 6 (3.9%)

2007 3359 100.0% 100.0% 58.6% 55.2% 9 (2.0%) 6 (2.2%)

2008 2951 100.0% 99.9% 64.5% 61.7% 10 (2.2%) 7 (2.5%)

2009 2219 100.0% 99.9% 51.0% 48.5% 7 (2.8%) 5 (5.6%)

2010 2930 100.0% 99.9% 48.7% 47.0% 9 (2.7%) 7 (2.4%)

2011 2174 100.0% 99.8% 47.7% 45.9% 8 (2.9%) 7 (1.7%)

2012 2444 99.8% 99.8% 41.1% 40.3% 8 (3.4%) 7 (3.4%)

2013 2285 99.9% 99.9% 51.6% 49.8% 7 (4.2%) 6 (4.0%)

2014 2134 100.0% 99.8% 44.6% 43.4% 7 (2.6%) 6 (3.1%)

Table 5.3: Structural Cohesion metrics for python networks.

This table contains the total number of nodes of the cooperation network for each year

analyzed on the column named “Nodes”. The column labeled “GC” contains the percentage

of the total nodes that are part of the giant component of the cooperation network, and the

column labeled “GC random” is this same percentage but for a random configuration model

network which I use as a null model. This metric is important because the starting point of the

social cohesion in a network is a state where every actor can reach every other actor through

at least one relational path. The formalization of this state in a concrete network is the size of

the largest connected component which is what these columns report.

The column labeled “GBC” contains the percentage of nodes that are part of the giant

bicomponent of the cooperation network, and the column labeled “GBC random” is the same

percentage for their random network counterpart. Moody and White (2003) argue that the

removal of a few key nodes can affect the flow of knowledge, information and resources in a

connected component because it only has at least one relational path between any two nodes.

In network terms, a graph is k-connected and is called a k-component if you need to remove

at least k nodes to break it into more components. A 2-component, or bicomponent is a

component that requires at least 2 nodes to be removed to break down connectivity, and thus

the cohesion of this group doesn’t depend in only one node. Therefore Moody and White

(2003) convincingly argue that a biconnected component provides a baseline threshold for

strong structural cohesion. This is what these columns report.

Regarding the comparison of both giant component and giant bicomponent with their

counterparts in random networks, as Moody (2004, 229-230) points out, the random model is

an upper bound of component size because under random mixing conditions the components

at low levels of connectivity —that is k = 1 and k = 2— tend to cover the entire network,

74

5.3. Structural Cohesion Analysis

given a minimum density threshold. Therefore, the meaningful comparison consist in how

much closer to the random configuration model the actual networks get.

Finally the column “maximum k” reports the k value of the most cohesive k-component

found in the cooperation network, and in parenthesis there is the percentage of nodes that are

part of this k-component observed in the actual cooperation network. The column labeled

“random max k” contain the same metrics for their random network counterparts.

For the case of the Python project, as reported in table 5.3, we can see that in all years but

1999 —when only 9 developers were modifying source code files— the percentage of nodes

in the giant component of the actual cooperation network is practically the same than in their

random counterpart. Thus, at this level of connectivity —k = 1— there is no significative

difference between the null model and the actual network. This is important because as stated

above, at low connectivity levels, the random null model is an upper bound.

For the case of the giant bicomponent —that is for the largest subgroup with connectivity

level k = 2— in Python cooperation networks are slightly higher than their random coun-

terparts in all years under analysis. The year in which the giant bicomponent of the actual

network is much higher than its random counterpart is 2006, where 74.2% of nodes in the

actual network were part of the giant bicomponent but only 69.8% of nodes in its random

counterpart. This year also marks an inflection point for the size of the giant bicomponent in

Python cooperation networks, in previous years its size was around the lower thirties percent,

after that high point in history it decreases again but it does not go below the 40% mark.

Finally the last two columns of table 5.3 clearly show that the actual cooperation networks

have higher connectivity levels at the top of the connectivity hierarchy than their random

counterparts. From 2000 to 2010 —excluding again 1999— the difference is between two

and three hierarchy levels but in the last years. For instance, in 2008 the actual cooperation

network has a subgroup with 2.2% percent of nodes that forms a 10-component, which means

that we need to remove 10 nodes from that group in order to disconnect it —or equivalently,

we have to remove 10 nodes to destroy all relational paths between any two nodes in that

group. The random network used as a null model for that year has only one subgroup that has

connectivity 7.

These high connectivity k-components only have a very small percentage of all the nodes

in the cooperation network (between 1 and 5.8% of all nodes), but as I will show in the next

chapter, they play a key role in terms of their contribution to the project measured in the

number of source code lines added to the files that form the code base of the Python language.

Also, at a theoretical level, these subgroups with high connectivity play a key role, on the one

hand, in generating trust and congruent values among the individual developers of the project,

and on the other hand, in compensating the decay effects of the transmission of knowledge,

influence and resources through social interactions.

As discussed in chapter 2, it’s useful to visualize the k-component hierarchy of the co-

operation networks in order to gain a better understanding of their structure and to be able

to easily compare between the actual networks and their random counterparts. Figure 5.1

shows Python cooperation networks for years 2000, 2004 and 2013 along with their random

counterparts using the novel visualization technique that I presented in chapter 2 and on the

publication (Torrents and Ferraro, 2015).

Using this novel visualization technique it’s easy to see the differences in the hierarchy

75

5. FOSS PROJECTS AS COHESIVE SMALL WORLDS

(a) Actual Python network 2000 (b) Null model Python network 2000

(c) Actual Python network 2004 (d) Null model Python network 2004

(e) Actual Python network 2013 (f) Null model Python network 2013

Figure 5.1: Python average connectivity three-dimensional scatter plots for actual networks

and their random null models counterparts. X and Y are the positions determined by the

Kamada-Kawai layout algorithm. The vertical dimension is average connectivity. Each mark

is a node of the network as two-mode networks they contain both programs (triangles) and

developers (circles).

5.3. Structural Cohesion Analysis

structure between the actual cooperation networks and their random counterparts. Actual

networks not only have a higher connectivity levels at the top but their hierarchical structure of

connectivity levels is more steep than in their random counterparts, which tend to have nodes

more evenly distributed between connectivity levels and thus tend to be flatter connectivity

hierarchies precisely because edges in random network are also more evenly distributed among

nodes than in their actual counterparts.

After examining the tables and the figures for the Python cooperation networks I can con-

clude that the cooperation networks of the Python project fit nicely with the structural cohesion

model. And, as explained above, also fit well the small world model. This allows to assess

that they indeed fit the model what I named the Cohesive Small World.

Years Nodes GC Random GC GBC Random GBC maximum k Random max k

1999 3,259 66.6% 83.4% 9.4% 11.4% 3 (0.2%) 2 (11.4%)

2000 3,593 52.5% 77.8% 7.0% 10.7% 3 (0.2%) 2 (10.7%)

2001 5,943 71.6% 86.4% 13.9% 17.5% 3 (0.1%) 2 (17.5%)

2002 6,857 72.4% 88.1% 12.7% 17.0% 4 (0.2%) 2 (17.0%)

2003 7,276 75.6% 89.5% 14.8% 20.2% 5 (0.2%) 2 (20.2%)

2004 7,984 78.4% 94.4% 22.1% 27.7% 5 (0.2%) 2 (27.7%)

2005 8,328 83.8% 94.4% 26.1% 31.3% 4 (0.5%) 3 (4.5%)

2006 9,599 84.2% 96.7% 33.7% 39.0% 4 (0.6%) 3 (8.4%)

2007 9,471 86.5% 96.1% 35.6% 40.7% 4 (0.2%) 3 (8.6%)

2008 10,662 87.2% 96.4% 34.3% 40.3% 4 (0.6%) 3 (7.5%)

2009 11,336 89.4% 96.1% 35.7% 42.3% 5 (0.4%) 3 (8.2%)

2010 10,515 86.9% 95.5% 32.7% 39.8% 5 (0.2%) 3 (5.1%)

2011 12,362 87.7% 95.0% 30.6% 36.0% 5 (0.3%) 3 (5.3%)

2012 11,904 87.1% 95.0% 31.0% 36.7% 4 (0.1%) 3 (2.3%)

Table 5.4: Structural Cohesion metrics for debian networks.

Regarding the Debian project, table 5.4, reports the structural cohesion analysis of their

connectivity structure. As we can see the percentage of nodes of cooperation networks that

form the giant component is smaller than the percentage in their random counterparts in all

years under analysis. As explained above, for low connectivity levels the size for the giant

components and bicomponents are an upper bound for the actual networks (Moody, 2004). In

that sense, Python cooperation networks examined above are exceptional in that they equal or

even surpass their random counterparts for low connectivity levels.

In the case of Debian networks we see an steady increase of the relative size of the giant

component from 1999 to 2005, where the percentage stabilizes around eighty percent of the

total nodes. However their random network counterparts grow similarly but there are approx-

imately fifteen percent more nodes in the random giant components than in actual networks,

stabilizing around 95% of the total nodes after 2005. For the case of giant bicomponents (col-

umn “GBC”), we see a similar picture than with the giant components: an steady increment of

the relative size of bicomponents until 2006, where their relative size stabilizes around 30%

77

5. FOSS PROJECTS AS COHESIVE SMALL WORLDS

of the nodes of the network with a peak of 35.7% in 2009. During all the period analyzed

the random configuration model networks have a relative size of their giant bicomponent ap-

proximately 7% higher than their actual counterparts, also peaking in 2009 with 42.3% of the

nodes.

For the higher connectivity levels, reported in the last two columns of the table, we can

see that the actual cooperation networks have higher connectivity levels not present in the

random configuration models used as null models. The difference in connectivity levels tends

to increase in the later part of the period analyzed, where actual cooperation networks have

5-components —that is subgroups from which we have to remove five nodes in order to dis-

connect them— while random networks in all period analyzed have only 3-components as

their higher connectivity level.

The number of nodes in the high connectivity subgroups in the actual cooperation networks

is very low: less than 1% of all nodes. Note however that because of the total number of nodes

in the Debian cooperation networks is quite big these subgroups are formed between 20 and

60 nodes.

In order to gain a better understanding of the shape of the hierarchical structure of these

cooperation networks, and to compare them to their random counterparts we have to look at

figure 5.2 where three dimensional scatter plots are shown for Debian cooperation networks

for years 2000, 2004, and 2011, along with their random counterparts. Similarly to the Python

cooperation networks, actual networks have a more steep connectivity hierarchy than their

random counterparts because, on the one hand, they have nodes in higher connectivity levels

that are not present in the random configuration models and, on the other hand, nodes in

actual cooperation networks are less evenly distributed between connectivity levels. Thus

I can conclude that Debian cooperation networks also correctly fit the structural cohesion

model. And therefore they also conform to the model that I named Cohesive Small World.

The analysis presented in this chapter shows that the cooperation networks of both De-

bian and Python projects can be modeled using the proposed Cohesive Small World model.

It is interesting to note that they also show significative differences because Debian coopera-

tion networks lean more towards the small world end of the model, while Python cooperation

networks lean more towards the structural cohesion end of the model. As discussed above,

their difference in terms of modularity of the product that they are building —an Operating

System versus a Programming language— impacts their respective production processes. De-

bian’s subgroups tend to work more independently from each other than Python’s subgroups,

as shown by the fact that Debian cooperation networks exhibit a higher degree of smallworldi-

ness; while Python’s networks are more structurally cohesive as shown by their sharper and

steep connectivity hierarchy.

The next step in my analysis is to analyze the contribution levels of developers in both

projects in the different levels of the connectivity hierarchy in order to a assess the actual

impact of this hierarchy of the respective cooperation networks in the production process of

both projects. This is the focus of the next chapter.

78

5.3. Structural Cohesion Analysis

(a) Actual Debian network 2000 (b) Null model Debian network 2000

(c) Actual Debian network 2004 (d) Null model Debian network 2004

(e) Actual Debian network 2011 (f) Null model Debian network 2011

Figure 5.2: Debian average connectivity three-dimensional scatter plots for actual networks

and their random null models counterparts. X and Y are the positions determined by the

Kamada-Kawai layout algorithm. The vertical dimension is average connectivity. Each mark

is a node of the network as two-mode networks they contain both programs (triangles) and

developers (circles).

6

Connectivity Hierarchy and Individual
Contributions

6.1 Cooperation networks’ connectivity hierarchies as open

elites

The analysis of the hierarchical structure of organizations has been a central topic on orga-

nizational research in the last decades. This analysis has been mainly static in the sense that

the focus of interest has been, among others, the distinctions between formal hierarchies and

informal patterns of relations (Krackhardt and Hanson, 1993; McFarland, 2001), the compar-

ative analysis of the shape of the hierarchy (Blau and Scott, 1962; Blau, 1964), the impact of

different kinds of hierarchical structures in the outcomes of the organizations’ activities, the

potential contradictions among the internal hierarchical structure of organization and its goals

towards a more egalitarian society (Michels, 1915; Selznick, 1949), to cite only a few key

issues.

Despite the huge amount of work devoted to the analysis of hierarchy in organizations,

the dynamic dimension of the hierarchy has received a lot less attention. The work on the

dynamic dimension has focused on the evolution of hierarchical structures of organizations

through time (Blau, 1969). There is however another possible definition of dynamic dimension

in the analysis of hierarchy in organizations: the ratio of renewal of the individuals in the

positions defined by that hierarchy. This important element of the dynamic dimension of

hierarchy has been partially approached from the perspective of vacancy chains (White, 1970;

Stewman and Konda, 1983). However this approach has focused mostly on the career paths

of individuals inside organizations instead of focusing on the pace of renewal of individuals

in the hierarchical structure of organizations.

My approach to analyze the structure and impact on individual contributions of connec-

tivity hierarchies in cooperation networks follows the concept of open elite, first suggested by

John Padgett in his statistical analysis of marriage patterns, family structure and elite repro-

duction in Florence between 1282 and 1494 (Padgett, 2010). In this work, Padgett suggests

that despite a tendency to maintain an elite structure through marriages, the existence of three

contending dimension of status —age of lineage, wealth and, political faction— led higher-

81

6. CONNECTIVITY HIERARCHY AND INDIVIDUAL CONTRIBUTIONS

status families to reach out and marry middle-tier ones, thus contributing unintentionally to

social mobility. This approach leads to a “reconceptualization of the concept of elite, more as

a fluidly reproduced ideal than as a stable demographic reality” (Padgett, 2010, 360).

This reconceptualization was further developed in a study of the emergence of commer-

cial biotechnology in the United States, where Powell et al. (2005) identified an “open elite”

network structure among dedicated biotech firms, pharmaceutical companies, venture capi-

talists, government agencies and universities which “allowed for extensive crosstalk among a

diverse set of organizations, melding practices and resources from multiple sources. Precisely

because these organizations did not follow a common set of evaluative criteria, its heteroge-

neous, multiple affiliations made responsiveness to challenges possible.” Powell et al. (2005,

467).

I propose that hierarchical structures can be classified in a continuum, the two extreme

points of which are, on the one hand, a static hierarchy —where when an individual is ap-

pointed in a position of the hierarchy, this position is for life— and, on the other hand, a

dynamic hierarchy —where the individuals occupying positions defined by the hierarchy have

a very high pace of renewal. Notice that, in this context, the hierarchy can refer to both

the formal and informal patterns of relations. An example of static hierarchy is the catholic

church, where an appointment —even far from the top level— will typically last for life. On

the other hand, dynamic hierarchies are a lot less common, especially before the last years of

the twentieth century.

Since then we have witnessed the emergence of new organizational forms, mainly around

Free and Open Source Software projects (FOSS). I propose that one of the central character-

istics of these new organizational forms is precisely their high ratio of turnover in key hier-

archical positions, both in the formal and informal internal organization. I do think that this

dynamic dimension has not been taken into account in the analysis of those new organizational

forms, and only by considering and analyzing it we can deepen our understanding, not only

of the new emerging organizational forms, but also further our understanding of organizations

and the challenges that they face.

In this chapter, I will start from this reconceptualization of an open elite in a dynamic hi-

erarchy, and suggest that in FOSS projects there is a structural elite, identified as subgroups in

the connectivity structure of their cooperation network that guarantee continuity and cohesion,

but that these positions experience high membership turnover, and thus that this elite can be

characterized as an open elite.

The dynamism of hierarchies in FOSS cooperation networks

Free and Open Source Software (FOSS) communities have attracted a lot of attention from

researchers of different fields since the late nineties of the past century. The first academic

accounts of this phenomenon were mainly descriptive; their main focus was to just describe

the organization of FOSS communities, the individual motivations of the people that form

these communities, and the quality of the products that they produced (Benkler, Shaw, and

Hill, Benkler et al.). Most of the interest was derived from the fact that FOSS communities do

not conform to the accounts of collective dynamics and individual motivations established by

the dominant neoclassical economic theories.

82

6.1. Cooperation networks’ connectivity hierarchies as open elites

Academic efforts took mainly two directions. On the one hand, some authors tried to rec-

oncile the dynamics of FOSS communities with neoclassical economic accounts. This effort

was mainly focused on the individual motivations of the participants in those communities.

They tried to explain these motivations in terms of rational self-interested individuals, as pre-

scribed by dominant economic theories. On the other hand, other authors saw the emergence

of FOSS communities as a new organizational form that provided a more democratic way of

enabling collective production without the constrains imposed by the markets and/or bureau-

cratic organizational forms (Benkler, 2002, 2006; Castells, 2013).

The later accounts of FOSS communities were initially uncritically celebratory of the phe-

nomenon. They were heavily influenced by practitioners and advocates of the FOSS phe-

nomenon which emphasized the technical superiority of the products developed by FOSS

communities, while maintaining an ethical stand that valued more cooperation and reciprocity

than competition and self-interest. One of the most influential early accounts from practition-

ers was Raymond (1999) that proposed, among other things, that the technical superiority of

FOSS software products was due to the “Linus law”, which states that “given enough eyeballs,

all bugs are shallow”, suggesting that given a large enough developer and user community

with access to the source code, all software errors (ie “bugs”) will be detected quickly and the

solution will be obvious at least to someone.

Thus “Linus law” suggests that FOSS communities are composed by a large set of in-

dividuals loosely organized with a very flat or nonexistent hierarchy among them, and that

all individuals might contribute more or less the same: a pair of eyes that should look at the

source code in order to improve it. This somewhat naive account of the dynamics of FOSS

production process was accepted uncritically by many academics that were sympathetic with

the arguments of the FOSS practitioners. Some critical voices, coming mostly from Computer

Science, challenged this claim with sound empirical arguments; for instance Glass (2002) cor-

rectly noted that if “Linus Law” was right then the number of bugs found in a software project

should increase linearly with the number of people looking at their source code. No such

thing have been proved empirically. Also, “Linus Law” not only treats each pair of eyes (ie

individuals) as equally important, it also implicitly assumes that all bugs are similar, which is

very implausible.

Other early empirical research, coming mostly from Computer Science, has pointed out

that even in big, mature and widely used FOSS projects, only few of the participants account

for the lion’s share of the work done. For instance, Mockus et al. (2002) show that less that

20 developers of the Apache project1 contributed more than 80% of the code base. This core

of developers is embedded in a larger set of participants, that mainly help reporting and fixing

errors, answering questions about the software in public forums, and writing documentation.

Later empirical research has confirmed that the distribution of contributions in FOSS projects

is right-skewed and heavy tailed, meaning that most participants make very small contribu-

tions, and only few individuals make almost all relevant contributions.

Recent empirical research on peer production projects (concretely user edited wikis) has

also shown that these projects exhibit deep contribution inequalities (Shaw and Hill, 2014).

1Apache is one of the most successful FOSS projects, it’s flagship product is the Apache web server which

powers more than 50% of the web sites that form the WWW.

83

6. CONNECTIVITY HIERARCHY AND INDIVIDUAL CONTRIBUTIONS

The authors suggest that these projects may conform to Michels (1915) “iron law of oligarchy”

which states that organizations tend towards oligarchy as they grow, even if democracy and

participation are part of the core goals of the organization. Therefore, there is ample empir-

ical evidence that confirms that there is an important differentiation of roles and functions

among participants on FOSS communities. This fact does not fit well with the picture of a flat

hierarchy of peers portrayed by early accounts of the phenomenon.

I do think that the narrative of a flat hierarchy of peers was so successful because the formal

organization of most FOSS projects is usually quite fuzzy, and very different of the formal

structure of other kinds of organizations. However, the informal structure emerging from the

patterns of cooperation among individuals in a FOSS project is quite hierarchical because

reflects the fact that only few individuals are responsible for most contributions to the project.

I propose that the way to advance our theoretical understanding of the FOSS phenomenon

is by analyzing their social structure. The social structure of a community are the patterns

of relations established among individual participants in the process of building the software

packages (or any other product, such as on on-line encyclopedia) that they release. The public

nature of FOSS communities implies that most of the data generated in the production process

is available, and thus an important source of empirical data that we can use to test competing

theoretical accounts of the phenomenon.

In this chapter I show that the developers that contribute the most to the projects analyzed

are in the higher levels of the connectivity structure of the project’s cooperation networks.

Moreover, by analyzing the composition of individuals on these key topological positions I’m

able to assess to which extend there is turn over of individuals at the top of the connectivity

structure. My analysis shows that the ratio of renewal of individuals at this structural posi-

tion is quite fast, which characterizes FOSS communities as dynamic hierarchies and open

elites. Thus, if we analyze cross-sectionally (ie in a concrete point of time) a FOSS project,

a very small fraction of the participants are the ones that actually do the lion’s share of con-

tributions, as previous empirical research has shown. However if we analyze the evolution of

contributions longitudinally, we find that the persons that contribute the most change through

time. This continuous renewal of the people that does most of the work —what I call dynamic

hierarchy— is a key mechanism to explain how FOSS projects, which are mostly voluntary

based, geographically distributed, and mostly operated from the Internet, can thrive and evolve

to a point where they are key pieces of the infrastructure that enables the Internet and other

essential Information technologies.

The focus on the rotation of individuals at the top levels of the connectivity structure brings

us to the issue of the robustness of the FOSS communities. From a pure network perspective, it

is usual to analyze robustness by removing nodes and measuring how this affects the size of the

giant connected component in the network (Albert et al., 2000). Nodes are removed following

different mechanisms; either at random —to simulate failure— or removing nodes according

to their degree —to simulate a deliberate attack. However these mechanisms are best suited

for analyzing the robustness of physical networks, such as the Internet. They clearly fall short

for analyzing the robustness of FOSS communities, because not random failures nor targeted

attacks are the main mechanisms through which the persons that work on FOSS communities

turn over.

My approach here is to analyze the median active life of developers in a FOSS project as a

84

6.2. Methods

better way of assessing the robustness of a FOSS community. I also apply the well established

survival analysis techniques (Miller Jr, 2011) in order to describe and model the flux of people

throughout the history of a FOSS community. I found that the position of an individual in the

connectivity structure of the collaboration network also impacts significantly in the median

active life of a developer in the project.

6.2 Methods

In this chapter I analyze the role of the connectivity structure of the cooperation networks

in shaping individual contributions to Debian and Python projects. I focus on the structural

positions in which the most active contributors are, and the median active life of individual

contributions on the project. My main empirical interest is about the volume of contribution

of each individual to the project, and the role of contributions —as independent variable— in

relevant elements of a FOSS project, such as the median active life of individual contributors

to the project.

My modeling strategy to capture the patterns of relations among developers in these two

projects is to focus on the actual contributions of each developer to the project. Following

the approach in the previous chapter, I model cooperation networks as bipartite graphs, where

the two sets of nodes are, on the one hand, human developers and, on the other hand, entities

that conform the product that is released by the FOSS project. In the case of Debian, these

entities are software packages, and in the case of Python, they are source code files. Note that

the cooperation network is based on individual contribution but it not only captures the total

amount of contribution that a given individual does, but also to which part of the project the

contributions are focused, and who else in the project is also working on the same entities.

This is why I name these bipartite graphs cooperation networks.

This modeling approach captures mostly the informal patterns of relations that individuals

establish when contributing to the project. FOSS projects have a wide range of formal organi-

zational forms, and in this respect, they can be quite different. The definition of the leadership

position in the two projects in which I focus this thesis nicely capture these differences in

formal organization: Debian has a very developed formal bureaucracy, the project elects its

leader each year through a secret vote of all its members after a electoral campaign where the

candidates discuss among them and try to gain supports; Python instead has its original author

—Guido van Rossum— in a permanent position of leadership, the people in the project refer

to him, and his position of leadership, as “Benevolent Dictator For Life” (BDFL). Decisions

in the Python project are usually made by consensus, but when consensus in not reached after

collective deliberation, the leader of the project makes the decision.

Despite these differences in the formal organization, if we focus on the patterns of relations

among developers in the productive process, what I call the cooperation network, we can

analyze the contribution dynamics, analyze hierarchical positions defined by these patterns,

assess the pace of renewal in these positions, and determine the impact in the median active

life of a developer of being in a concrete hierarchical position.

One of the challenges that I faced, that is both theoretical and methodological, is how to

define cohesive groups in cooperation networks. There are many ways of defining a cohesive

85

6. CONNECTIVITY HIERARCHY AND INDIVIDUAL CONTRIBUTIONS

group given a cooperation network. My aim was to define groups in cooperation networks in a

way that is theoretically sound from a sociological point of view. Network science is nowadays

quite interdisciplinary, and a lot of physicist have recently proposed a bunch of techniques,

under the label of community detection algorithms (Fortunato, 2010), that determine groups

in networks based on the patterns of relations among the entities of the network.

However, these techniques are suboptimal from a sociological theory point of view be-

cause the four key elements that a sociologically sound group classification should have are

not present in most, if not all, most used community detection algorithms, as discussed in

chapter 2 (and published at (Torrents and Ferraro, 2015)). The four key dimensions are: ro-

bustness (the groups should not depend on only one or few individuals to be a group), overlap

(persons usually are part of more than one cohesive group), positional dimension (some ac-

tors, because of their position in the global patterns of relations, obtain preferential access to

information or resources that flow through the network), and hierarchy (cooperation networks

have hierarchical structure in the sense that highly cohesive subgroups are nested inside less

cohesive ones).

As discussed in previous chapters, I model cooperation networks using the proposed Cohe-

sive Small World model, which is partially based on the structural cohesion model, developed

by White, Moody and Harary (White and Harary, 2001; Moody and White, 2003). This model

is based on the graph theoretic measure of node connectivity, and defines cohesive groups as

k-components, that is, groups of nodes in which k nodes have to be removed in order to dis-

connect the group. K-components form the connectivity structure of the network, and aptly

capture the central elements of a sociological definition of cohesive group (Torrents and Fer-

raro, 2015) as discussed at length in chapter 2.

However, there are some important practical difficulties related to the computation of the

measures that characterize the structural cohesion model. Their time complexity is super

quadratic, approximately of the order of the forth power of the size of the input network. This

makes non practical the exact computation of the k-component structure in networks bigger

than several hundreds of nodes. I use here some useful heuristics that allow to approximately

compute the connectivity structure of large sparse networks in a reasonable time frame, as I

have shown in chapter 2.

Once I built the cooperation networks for the two projects, and determined their connec-

tivity structure, I perform a descriptive analysis of the percentage of total contributions by

connectivity level. This simple descriptive analysis shows that there is a strong correlation

between the position of a developer in the connectivity structure of the cooperation network

and her total amount of contribution to the project.

I then deepen the analysis by modeling individual contributions to the project using differ-

ent regression models in order to asses the relation of the structural positions that individuals

occupy with their level of contribution to the project. For the case of the Debian project, con-

tributions are uploads of packages to the central repository of the project, thus contributions in

this context have to be modeled as a discrete variable. For this case I used a negative binomial

regression model to deal with the over-dispersed count data from the values of the discrete

contributions variable.

For the case of the Python project, contributions are lines of source code added or deleted

from one of the source code files of Python’s code base. I modeled contributions using a panel

86

6.3. Regression modeling and mobility analysis

regression with individual fixed effects. This design allows us to account for unobserved

variability among the individual developers, such as cultural background or coding expertise,

and disentangle if the position of a developer in the connectivity hierarchy has an effect in her

level of contribution to the project.

Finally, I’m also interested in the impact of the position than an individual occupies in the

cooperation network with her long term involvement with the project. To that end I applied

Cox proportional-hazards regression for survival data to both Debian and Python projects.

In its origin, survival analysis, was focused on modeling lifespans of individuals and is still

widely used in medicine. However, this kind of analysis can also be used to model any kind

of duration. I model the active life of a developer in a FOSS project as the period that this

developer is doing at least one contribution. I consider a developer “dead” when she no longer

contributes.

6.3 Regression modeling and mobility analysis

Modeling individual contributions

As discussed in the previous section, the empirical work on FOSS communities has already

established that it is only a small fraction of all participants in a project who are responsible

for most contributions. As a first step for the analysis, I analyze the topological position of

the individuals that contribute the most in the patterns of relations —the social structure—

among individuals in that project. Following the proposed cohesive small world model (see

chapter 3), and one of its foundaments: the structural cohesion model (Moody and White,

2003) (see chapter 2), I found that these individuals are part of the top connectivity levels of

the cooperation network, that is, they are members of k-components of high k which represent

cohesive subgroups nested inside each other in the network that emerges from the patterns of

relation among developers in the productive process.

Figure 6.1a displays the evolution of the percentage of developers by connectivity level

in the period under analysis for the Debian project. The green surface represents the devel-

opers in the top connectivity levels, that is developers that are part of a k-component with k

greater or equal than 3. The orange surface represents developers in bicomponents, that is

k-components with k = 2. Note that all developers in the top connectivity levels are also

part of the bicomponents. In the period under analysis, there is a significant increment of the

hierarchy of connectivity levels, as I have shown in the previous chapter, which peaks in 2007

with 17% of the developers in connectivity levels with k ≥ 3. The percentage of developers

in bicomponents, goes from 26% in 2002 to 50% in 2005 and peaks at almost 54% of devel-

opers at 2006 and 2008. From 2005 to the end of the period under analysis the percentage

stabilizes between 45% and 54%. The percentage of developers in higher connectivity levels

also experiments an important increment, it goes from less than 1% in 1999 and 2000 to 8%

in 2011, and peaks around 16% in 2007.

Figure 6.1b displays the percentage of contributions by developers by connectivity level.

We can see that, although there are few developers in high connectivity levels, they are respon-

sible for a big fraction of the total contribution in terms of packages uploaded to the Debian

87

6. CONNECTIVITY HIERARCHY AND INDIVIDUAL CONTRIBUTIONS

2000
2002

2004
2006

2008
2010

0

20

40

60

80

100

P
er

ce
n
ta

g
e

o
f

d
ev

el
o
p
er

s

Developer percentage by connectivity level

k >= 3 bicomponent (k = 2)

(a) Evolution of the percentage of developers by con-

nectivity level for the Debian project.

2000
2002

2004
2006

2008
2010

0

20

40

60

80

100

C
o
n
tr

ib
u
ti

o
n

p
er

ce
n
ta

g
e

o
f

d
ev

el
o
p
er

s

Developer contribution by connectivity level

k >= 3 bicomponent (k = 2)

(b) Evolution of the percentage of contributions by de-

velopers by connectivity levels for the Debian project.

Figure 6.1: Evolution of the percentage of developers in each connectivity level (left) and

evolution of the percentage of contributions by developers by connectivity levels (right) for

the Debian project. The green surface represents the developers in the top connectivity levels,

that is developers that are part of a k-component with k greater or equal than 3. The orange

surface represents developers in bicomponents, that is k-components with k = 2.

archive. For instance, in 2004 the developers in the top connectivity levels were less than 10%

of all developers, but they contributed 46% of all uploads to the Debian repository that year.

That same year, 45% of the developers were embedded in a bicomponent and contributed 72%

of all uploads. In 2009, 12.5% of the developers that were part of the top connectivity levels

were responsible for 71% of all contributions, while developers in k-components with k ≥ 2
contributed 85% of all uploads while being only 50% of all developers that uploaded at least

one package to the Debian archive that year.

Therefore, it is clear that there is a strong correlation between the connectivity level of a

developer and her contribution to the project. To further the analysis, I modeled the contribu-

tions —which in this case are uploads of new versions of packages to the Debian archive—

using a negative binomial regression. Which is well suited for the count nature of the depen-

dent variable (# of uploads) and its over dispersion. I cannot use a zero inflated model in this

case because by design there is no zeros in the dataset as I only considered developers that

have at least uploaded one package. This regression model is not for all the period analyzed

on the previous analysis (1999-2012) because the scale of the Debian system —in terms of

the number of packages— has grown too much in this period and thus the later years would

have been over-represented. I opted for analyzing the development time of a complete ver-

sion of the Debian system. Concretely I analyzed the period from 2011-02-06 to 2013-05-04

corresponding to the development cycle of the Debian release 7.0 codename Wheezy.

I controlled the contributions of each developer, on the one hand, by several key variables

related to the technical side of the production process, such as the size (log(Package size)) and

the dependencies of each package (# of package dependencies), the bugs reported for each

package (# of bugs reported), or the time that the developer has been active in the project

88

6.3. Regression modeling and mobility analysis

(Developer tenure (years)). And, on the other hand, I also controlled for centrality measures

including degree centrality (Degree centrality) and closeness (Closeness), and a local cohesion

metric (Square Clustering). As can be seen in table 6.1, the connectivity level in which a

developer is embedded (k-component number) has a positive and significative impact on her

contributions to the project.

Table 6.1: Negative binomial model for Debian uploads

Dependent variable:

Number of uploads by developer

(1) (2) (3) (4)

Intercept −0.647∗ −0.545∗∗ −0.837∗∗∗ −1.453∗∗∗

(0.262) (0.199) (0.200) (0.191)
log(Package size) 0.309∗∗∗ 0.229∗∗∗ 0.240∗∗∗ 0.203∗∗∗

(0.021) (0.016) (0.016) (0.015)
of bugs reported −0.007∗∗∗ 0.002 0.002 0.001

(0.002) (0.001) (0.001) (0.001)
of package dependencies −0.020∗∗ −0.016∗∗ −0.017∗∗ −0.021∗∗∗

(0.008) (0.006) (0.006) (0.005)
Developer tenure (years) 0.105∗∗∗ 0.071∗∗∗ 0.077∗∗∗ 0.083∗∗∗

(0.008) (0.006) (0.006) (0.006)
Degree centrality 47.333∗∗∗ 47.318∗∗∗ 27.174∗∗∗

(0.695) (0.691) (0.742)
Closeness −0.304 −0.142 0.651∗∗∗

(0.179) (0.180) (0.175)
Square clustering 0.421∗∗∗ 0.055

(0.077) (0.077)
k-component number 0.690∗∗∗

(0.032)

Observations 1,750 1,750 1,750 1,750

Log Likelihood -8,235.163 -7,541.388 -7,528.735 -7,393.372

Akaike Inf. Crit. 16,480.330 15,096.770 15,073.470 14,804.740

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Tables C.1 and C.2 on appendix C show the descriptive statistics and the correlation ma-

trix of the variables used in this model. In terms of the importance of the variables in the

model, the independent variable k-number (the value k of the connectivity level in which the

developer is embedded in the connectivity hierarchy) is the second most important only after

degree centrality. I measure variable importance here as normalized magnitude by dividing

the coefficient in the model by its standard deviation.

The fact that the quantification of contributions in the Debian project is a discrete variable

—number of package uploads to the Debian repository— restricts the options of regression

89

6. CONNECTIVITY HIERARCHY AND INDIVIDUAL CONTRIBUTIONS

modeling available. The over dispersed negative binomial regression is clear in that the con-

nectivity level in the cooperation network has a positive and significant impact on the level

of contribution of each developer. However it does not allow to take into account unobserved

individual differences among developers that might explain their level of contribution.

Another source of concern with this model it’s the potential endogeneity of the relation

between the dependent variable and the network metrics, which include the independent vari-

able. Given that the cooperation network is build precisely based on uploads to the Debian

archive, which is the dependent variable in this model. I will refine the analysis to deal with

endogeneity problems using data from the Python project.

As discussed above, the data from Python project allows us to measure contributions as

lines of source code added by each developer. This variable can be safely considered contin-

uous and therefore I can model it as a panel regression with individual and time fixed effects.

This modeling approach, on one hand, solves the problem of unobserved differences between

developers that might have an effect of the volume of their contributions, and on the other

hand, also allows to account for changes in system through time that I was not able to model

in the negative binomial regression of table 6.1.

Let’s first take a look at the descriptive data on percentage of contributions by the top

connectivity level (the developers that are in the k-component with the highest k) in the Python

project. Figure 6.2a displays the evolution of percentage of developers that are at the top

connectivity level throughout the history of Python project. The orange surface shows the

percentage of developers that are included in the giant bicomponent, and the green surface

represents the percentage of developers in the top connectivity level, that is the k-component

of maximum k in the cooperation network of that year.

We can see that around 40% of the developers that have contributed some code are in

the top level of the connectivity hierarchy, and this percentage is quite stable through time.

Note that the actual k value of the top level varies in time, depending on how the patterns of

relations among developers and source code files have evolved each concrete year. The node

connectivity of the k-component in the top of the connectivity hierarchy is almost all years

between 7 and 10, with a minimum of 6 in 2005, as I have shown in the previous chapter.

Figure 6.2b shows the evolution of the contributions of the developers by connectivity

level, measured in terms of lines of source code added to the project. Note that k-components

are nested inside each other, like Russian dolls, thus the contributions of developers in the

giant biconnected components also include the contributions of the developers in the top con-

nectivity level. As we can see, developers in the giant biconnected component are the authors

of almost all contributions, but they are also between 80% and 97% of all developers.

However developers in the top connectivity level are only between 40% and 55% of all de-

velopers on the project, but they are the authors, the latter years of the period under analysis,

of around 90% of the source code contributions. Some years their percentage of contributions

is lower (a bit less than 60%) but this is mostly before 2001, when the community was much

smaller than in the following years, or in 2005. Therefore only a small fraction of the devel-

opers are responsible of the lion’s share of the work done in the project. Note however that

the contributions to source code files, what is measured here as contributions, does not include

all the work done that is important to the project, such as managing the infrastructure for dis-

tributing Python, helping users in the mailing list, maintaining the websites of the project, etc

90

6.3. Regression modeling and mobility analysis

2000
2002

2004
2006

2008
2010

2012
0

20

40

60

80

100

P
er

ce
n
ta

g
e

o
f

d
ev

el
o
p
er

s

Developer percentage by connectivity level

top connectivity level bicomponent (k = 2)

(a) Evolution of the percentage of developers by con-

nectivity level for the Python project.

2000
2002

2004
2006

2008
2010

2012
0

20

40

60

80

100

C
o
n
tr

ib
u
ti

o
n

p
er

ce
n
ta

g
e

o
f

d
ev

el
o
p
er

s

Developer contribution by connectivity level

top connectivity level bicomponent (k = 2)

(b) Evolution of the percentage of contributions by de-

velopers by connectivity levels for the Python project.

Figure 6.2: Evolution of the percentage of developers by connectivity level (left) and evolution

of the percentage of contributions by developers by connectivity levels (right) in the Python

project. The green surface represents the developers in the top connectivity level, that is

developers that are part of a k-component with maximum k. The orange surface represents

developers in bicomponents, that is k-components with k = 2.

...

For modeling individual contributions to the Python project, I used a panel regression with

individual and year fixed effects. This design allows us to account for unobserved variability

among the individual developers, such as cultural background or coding expertise, and disen-

tangle if the position of a developer in the connectivity hierarchy has an effect in her level of

contribution to the project. As we can see in the table, being in the top connectivity level has

a positive and significant impact in the level of contribution of each developer. Note also that

considering the k-number of the developer (ie, the level k of the highest k-component in which

the developer is embedded) adds explanation power on the model and suggest that the impact

of the connectivity hierarchy on the productivity of developers operates at all connectivity

levels, not only at the top.

The model also includes control variables for the centrality of each developer in the co-

operation network (Degree centrality and Closeness), the number of direct collaborators of

each developer (collaborators), the tenure of each developer (measured as the number of years

since their first contribution) and the value of square clustering which is a measure of local

cohesion. Tables C.3 and C.4 on appendix C show the descriptive statistics and the correlation

matrix of the variables used in this model.

This regression modeling of Python contributions by connectivity level complements and

confirms the negative binomial regression results applied to the Debian project. The k-components

of the cooperation network define groups of developers that are the core of the project and are

responsible for most of the contributions, both in Debian and in Python project. These groups

are central in a structural sense as they are at the top of the connectivity hierarchy that emerges

from the patterns of cooperation among individual developers. The models presented thus far

91

6. CONNECTIVITY HIERARCHY AND INDIVIDUAL CONTRIBUTIONS

Table 6.2: Contributions Fixed Effects Panel Regression Results

Dependent variable:

Lines of Source Code

(1) (2) (3) (4)

Degree Centrality 7.053∗∗∗ 7.040∗∗∗ 5.779∗∗∗ 5.997∗∗∗

(0.887) (0.891) (0.797) (0.642)
Collaborators 0.086∗∗∗ 0.086∗∗∗ 0.072∗∗∗ 0.038∗∗∗

(0.006) (0.006) (0.006) (0.006)
Tenure (years) −0.260∗∗∗ −0.262∗∗∗ −0.199∗∗∗ −0.131∗∗∗

(0.030) (0.030) (0.029) (0.032)
Closeness −0.709 −0.725 0.140 −0.465

(0.809) (0.815) (0.828) (0.973)
Square clustering −0.092 0.211 0.580

(0.364) (0.336) (0.299)
Top connectivity level 1.202∗∗∗ 0.579∗∗

(0.186) (0.177)
k-component number 0.330∗∗∗

(0.047)

Observations 816 816 816 816

Adjusted R2 0.388 0.387 0.420 0.464

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

point out that these developers are also the ones responsible for the lion’s share of the contri-

butions, and thus the hierarchical structure of the cooperation network shapes the volume of

contribution of individual developers.

However the fixed effects panel regression also has a potential problem of endogeneity

as the cooperation network form which I computed the connectivity hierarchy is based on

individual contributions and this was the dependent variable in both this regression model

and the negative binomial model I explored before for the case of the Debian project. Note

that despite this potential problem, if we look at the correlation tables for these models at

appendix C, we can see that the correlations between the independent and dependent variables

is not high enough —0.488 for the negative binomial and 0.211 for the fixed effects panel

regression— to create collinearity problems in the models.

To deal with this potential endogeneity problem I now use a new dependent variable that

captures contributions to the Python project but that is not directly related with the number

of lines of source code contributed by each developer. This new variables is the number of

PEPs (Python Enhancement Proposals) approved. PEPs2 are design documents providing in-

formation to the Python community, or describing a new feature for Python or its processes or

2https://www.python.org/dev/peps/ accessed November 2016

92

6.3. Regression modeling and mobility analysis

Table 6.3: Zero Inflated negative binomial model for PEPs

Dependent variable:

Total number of accepted PEPs authored

(1) (2) (3) (4)

log(# of lines of code authored) 0.070 0.011 0.026 0.009
(0.037) (0.038) (0.043) (0.042)

Degree Centrality 1.507∗ 1.135 1.655∗ 1.151
(0.728) (0.662) (0.724) (0.673)

Tenure (years) 0.177∗∗∗ 0.180∗∗∗ 0.176∗∗∗ 0.180∗∗∗

(0.012) (0.011) (0.012) (0.011)
Collaborators 0.018∗ 0.011 0.011 0.011

(0.008) (0.007) (0.008) (0.008)
Closeness −5.688∗ −4.661∗ −5.433∗ −4.659∗

(2.574) (2.240) (2.540) (2.240)
Square clustering −0.416 −0.108 −0.239 −0.103

(0.266) (0.268) (0.278) (0.274)
Top connectivity level 0.683∗∗∗ 0.675∗∗∗

(0.163) (0.181)
k-component number 0.093∗ 0.006

(0.047) (0.051)
Constant 0.878 0.589 0.611 0.579

(0.921) (0.835) (0.921) (0.842)

Year dummies: Yes Yes Yes Yes

Observations 773 773 773 773

Log Likelihood -1,083.697 -1,073.610 -1,081.423 -1,073.576

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

environment. The PEP provide a concise technical specification of the feature and a rationale

for the feature. PEPs are the primary mechanisms for proposing major new features, for col-

lecting community input on an issue, and for documenting the design decisions that have gone

into Python. The PEP author is responsible for building consensus within the community and

documenting dissenting opinions.

Thus, PEPs are a key mechanism of innovation and evolution of the Python project, and

the developers that successfully propose a PEP are the ones designing the technical future of

the Python project, and thus we can consider them to be in a leadership position. By using

the number of accepted PEPs for each developer as a dependent variable in the regression

modeling I sort out the endogeneity problem of the plain number of lines of source code

added to the project. For modeling PEPs contributions I used a zero inflated negative binomial

model for count data, as the number of PEPs each developer authored is a discrete variable.

93

6. CONNECTIVITY HIERARCHY AND INDIVIDUAL CONTRIBUTIONS

The fact that many developers did not author any PEP requires us to use the zero inflated

version of the negative binomial model.

I tested the model assumptions and compared it with alternative models such as a Poisson

model, a plain negative binomial, and Hurdle model and found that the zero inflated negative

binomial model is the one that better fits the number of accepted PEPs as a dependent variable.

A good way to test the fit of the model is to see the number of zero observations that each

model predicts. Zero observations are developers that either have not proposed any PEP or

the PEPs that they proposed have not been accepted for each year (thus actual observations

are pairs developer – year). The actual number of zeros in the Python PEP dataset is 449:

the Poisson model predicts 322 zeros, the plain negative binomial predicts 434, and the zero

inflated negative binomial model predicts 450 zeros, which is very close to the actual number

of observed zeros.

Table 6.3 presents the results of the zero inflated negative binomial model. Tables C.5 and

C.6 on appendix C show the descriptive statistics and the correlation matrix of the variables

used in this model. This model shows that there is a positive and statistically significant effect

of being part of the top connectivity level on the number of accepted PEPs authored by each

developer. In this case however, if I include both being at the top to the connectivity hier-

archy and the k-component number, only the former is significative. This model also shows

that tenure in the project (the number of years since a developer made her first contribution

to Python) has also a positive and statistically significant effect on the number of accepted

PEPs authored. The tenure variable is the one that has a stronger impact on the dependent

variable, but the second strongest is the variable that reflects if a developer is at the top of the

connectivity hierarchy in the cooperation network. Note that I also included the individual

developer contribution in terms of lines of source coded added as a control variable, which is

not significative in this model.

Given that PEPs are not source code contributions, there is no potential endogeneity in this

model, and I can assert that the connectivity hierarchy that emerges from the patterns of rela-

tions established by developers while contributing to the project —the cooperation network—

shapes the contribution dynamics of individuals in the project. Also PEPs define the evolution

of the Python language, thus the people that write them are effectively leading its develop-

ment and evolution. This demonstrates that cooperation has an important structural dimension

which cannot be neglected if we want to understand the mechanisms that shape individual

contributions to the project.

Developer mobility in the connectivity hierarchy through time

The next step is to determine if the developers on the top connectivity level are always the same

people, or if there is rotation and turn over. Table 6.4 shows, for each year under analysis,

the number of developers in the top connectivity level of the cooperation network and the

percentage that they represent of the total number of developers, the number of new developers

that enter the top connectivity level and the percentage that they represent of the developers in

the top connectivity level, the number of developers that get out of the top connectivity level

and the percentage that they represent, and the number of developers that get back in the top

94

6.3. Regression modeling and mobility analysis

connectivity level; that is, developers that have been in the top connectivity level other years

than the previous year and they get back in it.

Table 6.4: Developer mobility in the top connectivity level for the Python project.

Years Top Developers New Developers Developers Out Developers back

1999 3 (33.3%) 3 (100.0%) 0 (0.0%) 0 (0.0%)

2000 11 (35.5%) 8 (72.7%) 1 (9.1%) 0 (0.0%)

2001 13 (39.4%) 4 (30.8%) 1 (7.7%) 0 (0.0%)

2002 19 (50.0%) 8 (42.1%) 1 (5.3%) 0 (0.0%)

2003 19 (45.2%) 3 (15.8%) 5 (26.3%) 0 (0.0%)

2004 14 (28.6%) 3 (21.4%) 1 (7.1%) 0 (0.0%)

2005 19 (43.2%) 1 (5.3%) 4 (21.1%) 5 (26.3%)

2006 12 (23.1%) 0 (0.0%) 4 (33.3%) 1 (8.3%)

2007 20 (39.2%) 10 (50.0%) 7 (35.0%) 3 (15.0%)

2008 21 (35.6%) 6 (28.6%) 6 (28.6%) 3 (14.3%)

2009 22 (37.9%) 9 (40.9%) 3 (13.6%) 1 (4.5%)

2010 28 (44.4%) 9 (32.1%) 7 (25.0%) 2 (7.1%)

2011 25 (39.7%) 7 (28.0%) 2 (8.0%) 1 (4.0%)

2012 32 (49.2%) 8 (25.0%) 12 (37.5%) 4 (12.5%)

2013 33 (52.4%) 8 (24.2%) 16 (48.5%) 5 (15.2%)

2014 20 (32.3%) 3 (15.0%) 0 (0.0%) 0 (0.0%)

As we can see, there is a constant flow of developers in and out of the top connectivity level

throughout the history of Python project, especially when the community is consolidated after

year 2000. Some years, such as 2000, 2002, 2007, and 2009, more than 40% of the developers

on the top connectivity level are developers that have never been in that position before. If I

also consider the developers that came back to the top connectivity level after being outside

for more than one year as new developers, many other years see a significative renewal of the

developers in the top position of the connectivity hierarchy.

The constant flow in and out of the top level of the connectivity hierarchy of the coop-

eration network is a key element to understand the dynamics of individual contributions to

the project because even though a very big part of the contributions come from a small set of

developers (the ones in the top connectivity level), these developers are not the same people

throughout the history of the project. This fact sheds light over the findings of recent empir-

ical analysis of contributions from collaborative communities (Shaw and Hill, 2014), where

the authors find that only a small fraction of participants are the ones that contribute most of

its contents, and they thus propose that some form of the “iron law of oligarchy” might be

in play. They however do not analyze longitudinally if these people are the same throughout

the history of the project. I suspect that they might not be the same people, and thus that a

constant renewal of the people that contribute the most, such the one described here for the

Python project, might also be in play in those projects.

95

6. CONNECTIVITY HIERARCHY AND INDIVIDUAL CONTRIBUTIONS

I argue that the constant flow in and out of the top level of the connectivity hierarchy

of the cooperation network is what defines this hierarchy as an open elite, where the posi-

tions defined by it —the connectivity subgroups in the cooperation network in this concrete

analysis— have a very high rate of turn over and renewal. Thus, in a community where most

of their participants do not obtain their means of subsistence from the work that they do in the

community, the rapid turn over of individuals that contribute the most is a key mechanism for

ensuring the long term viability of the project beyond its original founders. Thus, this is a key

mechanism that explains how large scale cooperation works, at least in FOSS projects.

A nice way to visualize the constant flow of developers to the top connectivity level is

figure 6.3, which shows a Sankey diagram where each piece of the diagram represents the

number of developers in the top connectivity level for a given year; the arrows that come from

the top represent the number of developers who in year y − 1 were not at the top connectiv-

ity level but are in the top level at year y, the arrows on the bottom represent the number of

developers that are in the top connectivity level at year y but not anymore in year y + 1. The

horizontal arrow represents the number of developers that at year y are in the top connectivity

level, and continue to be there at year y + 1. Note that in this figure I do not draw the devel-

opers that came back to the top connectivity level after being part of it other years than the

immediately previous years (these numbers are reported in table 6.4).

96

6.3. Regression modeling and mobility analysis

3
3

8

0

1
1

4

2

1
3

8

2

1
9

3

3

1
9

3

8

1
4

6

1

1
9

1

8

1
21
3

5

2
0

9

8

2
1

1
0

9

2
2

1
1

5

2
8

8

1
1

2
5

1
2

5

3
2

1
3

1
2

3
3

3

1
6

2
0

P
y

th
o

n
d

ev
el

o
p

er
m

o
b

il
it

y
in

th
e

to
p

co
n

n
ec

ti
v

it
y

le
v
el

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

F
ig

u
re

6
.3

:
S

an
k
ey

d
ia

g
ra

m
o

f
P

y
th

o
n

d
ev

el
o

p
er

m
o

b
il

it
y

in
th

e
to

p
co

n
n

ec
ti

v
it

y
le

v
el

.
T

h
e

n
u

m
b

er
s

at
th

e
to

p
ar

e
th

e
n

u
m

b
er

o
f

n
ew

d
ev

el
o

p
er

s
en

te
ri

n
g

th
e

to
p

co
n

n
ec

ti
v

it
y

le
v
el

,
n

u
m

b
er

s
in

si
d

e
ar

e
th

e
n

u
m

b
er

o
f

d
ev

el
o

p
er

s
at

th
e

to
p

co
n

n
ec

ti
v

it
y

le
v
el

,n
u

m
b

er

b
el

o
w

ar
e

th
e

n
u

m
b

er
o

f
d

ev
el

o
p

er
s

le
av

in
g

th
e

to
p

co
n

n
ec

ti
v

it
y

le
v
el

.

97

6. CONNECTIVITY HIERARCHY AND INDIVIDUAL CONTRIBUTIONS

Modeling robustness as median active life of individuals in the project

In the network literature, robustness of networks is usually measured with simulations of fail-

ures (removing nodes at random) and attacks (removing nodes incrementally starting for the

ones with higher degree) (Albert et al., 2000). However this is not a good way to model the

evolution of participation in a FOSS project.

I use here the survival analysis approach (Miller Jr, 2011), that according to my knowledge,

is the first time that is applied to model the turn over in FOSS communities. In its origin,

survival analysis, was focused on modeling lifespans of individuals and is still widely used in

medicine. However, this kind of analysis can also be used to model any kind of duration. Thus

I model the active life of a developer in the Python project as the period that this developer

is contributing at least one line of source code. I consider a developer “dead” when she no

longer contributes to the project.

To estimate the survival function from the empirical data we used the Kaplan-Meier esti-

mator (Kaplan and Meier, 1958) defined as:

Ŝ(t) =
∏

ti<t

ni − di

ni

where di are the number of “death events” at time t and ni is the number of subjects at risk

of death at time t. If I compute the Kaplan-Meier estimator for all developers (figure 6.4a) we

can see that the median survival time of a developer on the community, defined as the point in

time where on average half of the population has abandoned the community, is 6 years. But if

I consider separately the developers in the top level of the connectivity hierarchy (figure 6.4b),

their median survival time is 12 years; but only 3 years for the developers that are not on the

top of the connectivity hierarchy.

Although it is clear that the two survival functions depicted in figure 6.4b are different, I

performed the log rank test, a common statistical test in survival analysis that compares two

event series’ generators. The test confirms that that the two series have different generator

mechanisms and are significantly different. The Kaplan-Meier estimator analysis and plots

are performed using the lifelines python package (Davidson-Pilon, 2016).

Finally, given that we observe an important flow of new developers towards the top levels

of the connectivity hierarchy; and also having established that the contributions of the develop-

ers in these top levels is significantly higher than other developers, it is interesting to analyze

the personal trajectories of developers in the project. I model the active life of developers in

the Python project using a Cox proportional hazards model with time-dependent covariates

and right-censoring (Fox, 2002, appendix on survival analysis).

98

6.3. Regression modeling and mobility analysis

(a) Survival Function for all developers (b) Survival Function for developers in the top connec-

tivity level

Figure 6.4: Estimation of the survival function using the Kaplan-Meier estimate. The median

survival time of a developer in the community, defined as the point in time where on average

half of the population has abandoned the community, is 6 years if I consider all developers

(left). But if I consider separately the developers in the top level of the connectivity hierarchy

(right), their median survival time is 12 years; but only 3 years for the developers that are not

on the top of the connectivity hierarchy.

I’m interested in assessing the impact of being in the higher levels of the connectivity

structure in terms of the expected active life of a developer in the project. The covariates in

the model are: the number of accepted PEPs authored by each developer, the contributions of

each developer to the Python project, measured as number of source code lines, the number

of collaborators (ie second order neighbors in network terms) that each developer has in the

cooperation network, the degree centrality and closeness of each developer in the cooperation

network, the highest k of a k-component in which the developer is embedded, and the Top

connectivity level dummy variable that equals to 1 if the developer is in the k-component of

highest k in the cooperation network for that time period, and 0 otherwise.

In order to fit the model, I divided the data in “strata” based on the value of “tenure”

covariate which reflects the time a developer has been active in the project measured in years.

Each stratum is permitted to have a different baseline hazard function, while the coefficients of

the remaining covariates are assumed to be constant across strata. Stratification is most natural

when a covariate takes on only a few distinct values, and when the effect of the stratifying

variable is not of direct interest.

Finally the estimations of the variance and standard errors of the coefficients of the co-

variates of interest are robust, and clustered for each developer. This is necessary because in

a proportional hazards model with time-dependent covariates, each individual has more than

one row in the database. Concretely, each individual has a row for each period of one year in

which he or she has been an active contributor to the source code of the Python project. Tables

C.7 and C.8 on appendix C show the descriptive statistics and the correlation matrix of the

variables used in this model.

99

6. CONNECTIVITY HIERARCHY AND INDIVIDUAL CONTRIBUTIONS

Table 6.5: Survival Analysis: Cox proportional hazards regression model

Dependent variable:

Time active in the project

(1) (2) (3) (4)

Total accepted PEPs −0.118 −0.105 −0.113 −0.103
(0.111) (0.114) (0.118) (0.118)

Contributions −0.00003 −0.00002 −0.00003 −0.00002
(0.00003) (0.00003) (0.00003) (0.00003)

Collaborators −0.015 0.005 −0.012 0.004
(0.008) (0.010) (0.008) (0.009)

Degree Centrality −50.770∗∗ −13.886 −25.344 −6.944
(15.834) (12.770) (15.175) (12.282)

Closeness 7.894 0.930 5.212 1.015
(5.052) (4.741) (4.562) (4.353)

k-component number −0.376∗∗∗ −0.295∗∗

(0.097) (0.101)
Top connectivity level −1.885∗∗ −1.467∗

(0.617) (0.657)

Observations 754 754 754 754

R2 0.118 0.135 0.132 0.142

Max. Possible R2 0.396 0.396 0.396 0.396

Log Likelihood -142.808 -135.379 -136.915 -132.501

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

As we can see in table 6.5, the effect of being part of the top connectivity level is significant

and negative with a coefficient of -1.467, meaning that it decreases the yearly hazard of leaving

the project by a factor of eb = e−1.467 = 0.23, that is, 77%. This interpretation holds assuming

that all other covariates remain constant. The coefficient for k-number —the highest k of a

k-component in which the developer is embedded— is also significative and negative with a

coefficient of -0.295, which means that an increment of one connectivity level decreases the

yearly hazard of leaving the project by a factor of eb = e−0.295 = 0.74, that is, 26%.

It is relevant that both measures of cohesion are significative and negative when included

in the same model, although the k-component number it’s significative at p < 0.01 and being

part of the top component at p < 0.05. When these two variables are included in the model

none of the control variables is significative. I can conclude that not only being at the top

connectivity level has a relevant impact on the active life of a developer in a project, but

also smaller increments in cohesion of the groups in which a developer is embedded have a

significant impact on their active life in the project.

100

6.4. Summary

6.4 Summary

In this chapter I explored the dynamic dimension of the connectivity hierarchies that emerge on

the cooperation networks of the Python and Debian projects. I defined cooperation networks

as the patterns of relations among developers established while contributing to the project. The

dynamic analysis, in this case, is not only a longitudinal account of the changes in the hierar-

chy through time, but also the analysis of the pace of renewal of individuals in the positions

defined by the hierarchy. I propose that organizations —and not only FOSS projects— can be

classified in a continuum depending on the pace of renewal of the individuals that occupy top

positions in the hierarchy.

I showed that the cohesive small world model (see chapter 3), which is partially grounded

on the structural cohesion model (White and Harary, 2001; Moody and White, 2003) is a solid

theoretical framework to define cohesive groups —k-components— in cooperation networks.

The nested structure of k-components nicely captures the hierarchy in the patterns of relations

that individual contributors establish when working together. This hierarchy, on the one hand,

reflects the empirically well established fact that in FOSS projects only a small fraction of the

developers account for most of the contributions. And, on the other hand, refutes the naive

views of early academic accounts that characterized FOSS projects as a flat hierarchy of peers

in which every individual does more or less the same.

I also showed that the position of individual developers in the connectivity hierarchy of

the cooperation networks impacts significantly, on the one hand, on the volume of contribu-

tions that an individual does to the project. And, on the other hand, the median active life of

developers in the project. I argue that the latter is a better way to analyze robustness of FOSS

projects than the classical random and targeted attacks that has been used to asses robustness

in other kinds of networks.

My main conclusion is that the connectivity structure of collaborative communities’ coop-

eration networks can be characterized as a open elite, where the top levels of this hierarchy

are filled with new individuals at a high pace. This feature is key for understanding the mech-

anisms and dynamics that make FOSS communities able to develop long term projects, with

high individual turnover, and yet achieve high impact and coherent results. Thus, the renewal

of individuals at the top levels of the connectivity hierarchy of cooperation networks is a key

mechanism for enabling large scale cooperation. Therefore I can conclude that cooperation

in FOSS communities has a structural dimension because membership in cohesive groups

that emerge from the cooperation networks —the repeated patterns of relations that the direct

producers establish in the production process— has an important and statistically significa-

tive impact on both the volume of individual contributions, and on the median active life of

developers in the projects under analysis.

101

Part IV

Conclusion and Future Work

7

Conclusion and Future Work

The main objective of this thesis was to develop a theoretical framework in order to further

our understanding on how large scale cooperation works in knowledge intensive production

processes in the context of new organizational forms, such as FOSS projects. The central ap-

proach that guided this theory building effort on large scale cooperation is to focus on meso

level social processes in order to bridge the gap between that most common approaches to

cooperation in the literature: a more classical macro level approach focused on collective

visions, shared values, and authority forms; and a micro level approach focused on the dy-

namics of individual dyadic cooperative interactions. This meso level approach is focused

on the structural dimension of cooperation in the actual production processes, that is, the fo-

cus is on the patterns of relations that direct producers establish between them in knowledge

intensive production processes.

Focusing on these patterns of relations, I proposed that the subgroups of individuals that

are formed in cooperation networks —groups of producers that are more densely connected

between them than with the rest of the network— are a key element to understand and explain

how coordination problems are managed in large scale cooperation in knowledge intensive

production processes with high individual turn over. The formation and dissolution of these

subgroups, their high level of turnover in their individual composition, their role in shaping

individual contributions to the whole production process, and their role in maintaining individ-

uals attached to the project, are some of the elements explored in this thesis that enabled me to

build a theoretical framework that bridges the gap between macro and micro levels theoretical

approaches to cooperation.

I centered the development of this new theoretical framework on what I named the Co-

hesive Small World model. A network model grounded on two well established theoretical

network models: the Small World model (Watts and Strogatz, 1998) and the Structural Co-

hesion model (White and Harary, 2001; Moody and White, 2003). These two models are not

mutually exclusive. The family of networks that fit in the intersection of both models —what

I call Cohesive Small Worlds— exhibit consistent topological patterns, that is, they have com-

mon structural patterns. These patterns, I argue, provide the scaffolding for the emergence

of collaborative communities (Adler and Heckscher, 2006) and enable effective large scale

cooperation.

105

7. CONCLUSION AND FUTURE WORK

On the one hand, the generation of trust and congruent values among heterogeneous in-

dividuals are fostered by structurally cohesive groups in the connectivity hierarchy of coop-

eration networks because individuals embedded in these structures are able to compare inde-

pendent perspectives on each other through a variety of paths that flow through distinct sets

of intermediaries, which provides multiple independent sources of information about each

other. Thus, the perception of an individual embedded in such structures of the other mem-

bers of the group to whom she is not directly linked is filtered by the perception of a variety

of others whom she trusts because is directly linked to them. This mediated perception of

the group generates trust at a global scale. On the other hand, the existence of dense local

clusters connected between them by relative short paths allows successful cooperation among

heterogeneous individuals with common interests and, at the same time, fosters the flow of in-

formation between these clusters preventing the local clusters to be trapped in echo chambers

of like minded collaborators.

The structural approach to cooperation, and to any social process, is for me synonym of

a network approach because, at its core, the network approach is a relational approach that

allows a quantitative rigorous way to model patterns of relation among individuals, that is, to

model social structures. And thus enables our theories and accounts of social processes to go

beyond the reductionist approach to understand social interactions as pure dyadic and atomic

interactions between individuals without losing the quantitative rigor usually associated with

the methodological individualism approach to social interactions.

An important part of the research effort developed for this thesis has focused on the prob-

lem of how to determine cohesive subgroups in social networks as prescribed by the structural

cohesion model. The problem is not new, and a lot of work has been done in this direction,

but as usual in the social sciences, the methods available to researches are far behind the theo-

retical insights when we want to exploit the increasing availability of data that should support

the empirical work associated with the theories that we develop.

I extended theoretically the structural cohesion model by considering not only plain node

connectivity, which is the minimum number of nodes that must be removed in order to discon-

nect a network, but also the average node connectivity of networks and its cohesive groups,

which is the number of nodes that, on average, must be removed to disconnect an arbitrary

pair of nodes in the network. Taking into account average connectivity allows a more gran-

ular conception of structural cohesion, and I show in the empirical analysis of cooperation

networks how this approach leads to useful implications in empirical research.

I also developed heuristics to compute the k-components structure, along with the average

node connectivity for each k-component, based on the fast approximation to compute node

independent paths (White and Newman, 2001). These heuristics allow for the computing of

the approximate value of group cohesion for moderately large networks, along with all the

hierarchical structure of connectivity levels, in a reasonable time frame. I showed that these

heuristics can be applied to networks at least one order of magnitude bigger than the ones

manageable by the exact algorithm proposed by Moody and White (2003). To ensure repro-

ducibility and facilitate diffusion of these heuristics I contributed an implementation of these

heuristics to a popular Python software package for the analysis of complex networks: Net-

workX (Hagberg et al., 2008). See appendix D for the documentation and source code at

NetworkX github repository. I believe that providing detailed implementation is critical to en-

106

sure reproducibility, but often these details are black-boxed, some times because of proprietary

software restrictions or authors’ reluctance to share their work.

All these methodological efforts have paid out in theoretical terms, as I was able to test

empirically the new network model that I proposed to further our understanding of how large

scale cooperation works in the context of Collaborative Communities. The model that I named

“Cohesive Small World” is a good fit to describe the cooperation networks —that is, the pat-

terns of relations between direct producers— of the two big and mature FOSS projects that I

have analyzed in the empirical part of this thesis: the CPython reference implementation of

the Python programming language, and the Debian operating system.

The analysis presented in chapter 5 shows that the cooperation networks of both Debian

and Python projects can be modeled using the proposed Cohesive Small World model. It is

interesting to note that they also show significative differences because Debian cooperation

networks lean more to the Small World end of the model, while Python cooperation networks

lean more towards the Structural Cohesion end of the model. The difference in terms of

modularity of the product that they are building —an Operating System versus a Programming

language— impacts their respective production processes. Debian’s subgroups tend to work

more independently from each other than Python’s subgroups, as shown by the fact that Debian

cooperation networks exhibit a higher degree of smallworldiness; while Python’s networks are

more structurally cohesive as shown by their sharper and steep connectivity hierarchy.

It’s necessary to note that the structural analysis presented in this thesis does not cover

all the important elements needed for an in depth analysis of what enables successful coop-

eration in general. Things like the individual characteristics of the people that cooperate, the

complementarity of their skills in relation to the task at hand, the emergence of leadership in

the context of teams, are indeed also important for enabling successful cooperation. But the

point that I tried to make in this thesis is that the structural dimension of cooperation is at least

equally important and has been a lot less explored by theoretical accounts of cooperation.

To further the empirical analysis of this thesis, in chapter 6 I explored the dynamic dimen-

sion of the connectivity hierarchies that emerge on the cooperation networks of the Python and

Debian projects. I defined cooperation networks as the patterns of relations among developers

established while contributing to the project. The dynamic analysis, in this case, is not only

a longitudinal account of the changes in the connectivity hierarchy through time, but also the

analysis of the pace of renewal of individuals in the positions defined by this hierarchy.

I show that the Cohesive Small World model is a solid theoretical framework to define co-

hesive groups in cooperation networks. The nested structure of k-components nicely captures

the hierarchy in the patterns of relations that individual contributors establish when working

together. This hierarchy, on the one hand, reflects the empirically well established fact that in

FOSS projects only a small fraction of the developers account for most of the contributions.

And, on the other hand, refutes the naive views of early academic accounts that characterized

FOSS projects as a flat hierarchy of peers in which every individual does more or less the

same.

I also show that the position of individual developers in the connectivity hierarchy of the

cooperation networks impacts significantly, on the one hand, on the volume of contributions

that an individual does to the project. And, on the other hand, the median active life of an

individual in the project. I argue that the latter is a better way to analyze robustness of FOSS

107

7. CONCLUSION AND FUTURE WORK

projects than the classical random and targeted attacks that has been used to asses robustness in

other kinds of networks and that it’s the standard approach to assess robustness in the network

literature (Albert et al., 2000).

I argue that the connectivity structure of collaborative communities’ cooperation networks

can be characterized as an open elite, where the top levels of this hierarchy are filled with

new individuals at a high pace. This feature is key for understanding the mechanisms and

dynamics that make FOSS communities able to develop long term projects, with high indi-

vidual turnover, and yet achieve high impact and coherent results as a result of large scale

cooperation. Therefore, I can conclude that cooperation in FOSS communities has a struc-

tural dimension because membership in cohesive groups that emerge from the cooperation

networks —the repeated patterns of relations that the direct producers establish in the pro-

duction process— has an important and statistically significative impact on both the volume

of individual contributions, and on the median active life of developers in the projects under

analysis.

It is worth noting that the high rate of turn over in the top positions of the connectivity

hierarchy of cooperation networks —which I argue is a key meso level mechanism for enabling

large scale cooperation— is only possible assuming that the knowledge necessary to perform

the tasks in the FOSS project is highly socialized. As I pointed out in the introduction, the

concept of socialization of the production used by Marx refers to the process of replacing

tacit knowledge generated by small groups in local contexts by knowledge that is explicitly

codified and disseminated at a global level. In Marx’s own words “only socialized labour [...]

is capable of applying the general products of human development, such as mathematics, to

the immediate process of production” (Marx, 1990, 1024). Therefore large scale cooperation

is only possible in highly socialized production processes.

It is easier to analyze this kind of highly socialized production processes in FOSS projects

than in capitalist corporations because the latter have to balance the need of enhancing large

scale cooperation through knowledge socialization with the pressures of the profit imperative.

In Marxian terms we could say that in FOSS projects there is no contradiction between the

progressive socialization of the production and the private appropriation of the result of the

production process typical of capitalist production relations. This is because the result of the

production process in FOSS projects is Free Software, which as a common good is in many

senses is quite similar to mathematics, and thus can be considered a general product of human

development, as Marx puts it in the previous quote.

The empirical analysis presented in this thesis also sheds light over the findings of re-

cent empirical analysis of individual contributions in Collaborative Communities (Shaw and

Hill, 2014), where the authors find that only a small fraction of participants are the ones that

contribute most of its contents, and they thus propose that some form of the “iron law of oli-

garchy” (Michels, 1915) might be in play. They however do not analyze longitudinally if these

people are the same throughout the history of the project. I suspect that they might not be the

same people, and thus that a constant renewal of the people that contribute the most, such the

one described here for the Python project, might also be in play in those projects.

However, it is not clear that the theoretical model that I proposed fits all cooperation net-

works of Collaborative Communities, or even cooperation networks of all FOSS projects.

Because the empirical analysis presented in this thesis was a case study of two successful

108

projects aimed to develop a theoretical framework, I cannot determine if other FOSS projects

also fit nicely in it. Thus what I presented is more an existence proof than a empirical test of

my proposed theoretical model.

The next steps in my research agenda will be to expand the kind of empirical analysis that

I presented in this thesis to include both successful and unsuccessful large scale cooperation

production process in order to assess up to which point the Cohesive Small World model can

explain the achievements and continuity in time of FOSS projects and other Collaborative

Communities.

Thus, it is necessary to include in the empirical analysis of the Cohesive Small World

model other knowledge intensive production processes beyond FOSS projects in order to make

sure that this model is a solid theoretical framework to explain and understand how large scale

cooperation works in knowledge intensive production processes.

I’m especially interested in analyzing cooperation among scientists, but I feel that the

Cohesive Small World model can also be useful to analyze any kind of large scale knowledge

intensive production process with a high degree of cooperation, such as the ones that are

developed inside big capitalist corporations, and on state sponsored large scale scientific and

technical endeavors, such as Space exploration.

109

Part V

Appendices

A

Small worlds and affiliation networks

In order to assert that an actual network is a small-world network we should compare it against

a null model. This null model is a random network with the same number of nodes and edges,

but the edges assigned uniformly at random between the nodes. A small world network should

be more highly clustered than its random counterpart and it should have similar short average

path length. Building in this definition of smallwordiness, we can define the small world

index (Q) as the division of the CCratio by the Lratio (Watts, 1999a; Davis et al., 2003; Uzzi

and Spiro, 2005; Uzzi et al., 2007). If Q > 1 we can assert that the actual network under

analysis is a small world network.

Q =
CCratio

Lratio

(A.1)

Where:

CCratio =
CCactual

CCrandom

Lratio =
Lactual

Lrandom

(A.2)

Affiliation networks contain two types of nodes: N actors each of which belongs to one

or more groups M . Such networks are bipartite or 2-mode because they contain two types of

nodes and there are no edges between nodes of same type. We can obtain an unipartite or 1-

mode network —with only one type of nodes— projecting the bipartite network on the actors’

side or on the groups’ side. This projection assumes that the actors are connected if they

belong to the same group and that groups are connected if they share some actor, respectively.

Their statistical properties differ from unipartite networks. As Uzzi et al. (2007, 83) point

out, affiliation networks, on the one hand, have higher clustering than unipartite networks

because each actor’s membership in a team makes them a fully connected clique in the one-

mode projection, therefore an important part of the clustering is not due to “the friends of an

actor are friends themselves” but to team topography. On the other hand, affiliation networks

tend to have shorter average path lengths as the number of overlapping members between

teams increase.

113

A. SMALL WORLDS AND AFFILIATION NETWORKS

Although a common practice, it is well documented in the literature that there is an im-

portant lost of information when we perform a 1-mode projection from a 2-mode network

(Wasserman and Faust, 1994, 324-325). Our approach to analyze the structure of the produc-

tion process of the FOSS projects is to focus on the topology and the connectivity of 2-mode

networks. Robins and Alexander (2004) redefined clustering coefficient in order to analyze

2-mode networks of directors and firms. Their approach is based in the analysis of network

configurations or motifs.

Figure A.1: Relevant motifs in two mode network in order to calculate CC4 (Robins and

Alexander, 2004, 78)

Figure A.1 depicts the two relevant motifs or configurations in order to compute the bi-

partite clustering coefficient (CC4). Three-paths (L3) are composed by four nodes —two

of each type in the 2-mode network— linked by three edges. Robins and Alexander argue

that the number of L3 in 2-mode network is information lost in the 1-mode projection, they

stress their importance: “three-paths are important to connectivity, potentially providing short

geodesics between directors and companies of which they are not members. Long paths across

the network of course must comprise several of these short three-paths, so we argue that the

three-paths are precursors of global connectivity” (Robins and Alexander, 2004, 77-78).

Squares (C4) are composed by four nodes —two of each type— linked by four edges.

Squares are the simplest form of cycle in 2-mode networks and provide redundancy: when we

perform the 1-mode projection, those four edges are represented by only one edge between the

two nodes of the same type1. Robins and Alexander (2004, 79) propose compute the bipartite

clustering coefficient as depicted in equation A.3.

CC4 =
4× C4

L3
(A.3)

Robins and Alexander (2004, 79) argue that “high bipartite clustering indicates localized

closeness and redundancy, just as is the case with triangles in 1-mode networks. [..] If the

bipartite clustering coefficient is high, then many L3 patterns are redundant. They do not

provide new paths of connectivity across the bipartite graph. So for two bipartite graphs of

similar size, the graph with the higher bipartite clustering ratio will show lower levels of

connectivity”.

1If the projection is weighted the value of the edge will be 2, acknowledging that the two nodes are linked to

two groups in the 2-mode network.

114

B

Cohesive Subgroups: Illustration,
Implementation and Accuracy

B.1 Illustration of the heuristics

In order to illustrate how the proposed heuristics works, we will use a convenient synthetic

network with 99 nodes and 200 edges where κ �= δ. This network is based on a two dimen-

sional grid of 5 by 5 nodes. In each corner of the grid we attach a Petersen graph (P), linked

by two edges to the grid. Thus the only four nodes of the grid with degree 2 are linked to a

Petersen graph. All nodes of the grid are therefore part of a 3-core. Each P is linked to two

complete graphs with 5 nodes (K5); in two cases those two K5 overlap in only one node and

in the other two cases, they overlap in two nodes. The Petersen graph is linked by three edges

to one of the K5, thus making one of each K5 part of a tricomponent along with P . In the case

of the two K5 that overlap only on one node, the outer K5 has also one edge linking one of

its nodes with one node of P nodes, in order to make the whole graph biconnected (see figure

B.1). Petersen graphs have node connectivity 3 and complete graphs with 5 nodes have node

connectivity 4. Notice that the whole example graph is biconnected and a 3-core, but it has

three levels of node connectivity: 2 for the grid, 3 for the Petersen graphs (P) and 4 for the

complete graphs of 5 nodes (K5).

115

B. COHESIVE SUBGROUPS: ILLUSTRATION, IMPLEMENTATION AND ACCURACY

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3
3

3
3

3

3

3

3

3

3
3

3
3

3
3

3

3

3

3

3

33
3

3

33
3

33
3

3

33

3
3

4

4

44

4

4

4

4 4

4

4

4 4

4

4

4
4

4

(a) Nodes colored by component number according to

our algorithm. Note the error when two K5 overlap in

two nodes

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3
3

3
3

3

3

3

3

3

3

3

3

33
3

3

33
3

4

4

44

4

4

4

4 4

4

4

4 4

4

4

4
4

4

4
4

4
4

4
4

4

4

44
4

4

44

4
4

(b) Nodes colored by component number according to

Moody & White algorithm.

Figure B.1: Synthetic graph composed of a two dimensional grid of 25 nodes, four Petersen

graphs (P) with ten nodes each (with κ = 3) linked by two edges to the grid, and eight

complete graphs K5 (with κ = 4) linked by three edges to each Petersen graph. In two cases

K5 overlap in 1 node and in the other two cases they overlap in 2 nodes. The whole graph

is biconnected and also a tricore. Notice that our algorithm fails to classify the two K5 that

overlap in two nodes as 4-components. See text and figure figure B.3 for details.

116

B.1. Illustration of the heuristics

1
1

1

1

4

4

4

4

4

4

4

4

4

4

4 4
4

4

14
14

1414

14

14

14

14

14 14

14

14

14

14

14

14
14

14
14

14

14 14 14

14
14 1414

14
14

14 1414

14
14

14
14

14
14

14

14
1414

14
1414

14

14

14

14
14

14

12

12

12

12 12

1212
12

12
12
12

12

12 12
12

12
12

12

12

12 1212
12
12

12

12

12

12
12
12

(a) Auxiliary graph H for k = 3 computed using
White & Newman’s approximation algorithm for lo-
cal node connectivity.

1
1

1

1

20
20

2020

20

20

20

20

20 20

20

20

20

20

20

20
20

20
20

20

20 14 14

14
14 1414

14
14

14 1414

14
14

14
14

14
14

14

14
1414

14
1414

14

14

14

14
14

14

14

14

14

14 14

1414
14

14
14
14

14

14 14
14

14
14

14

14

14 1414
14
14

14

14

14

14
14
14

4

4

4

4

4

4

4

4

4

4

4 4
4

4

(b) Auxiliary graph H for k = 3 computed using
flow-based connectivity algorithm for local node con-
nectivity.

12
12

12

12
12

12
12

12

1212
1212

12
12

12

12 12
12

12
12

1212

12

12

12
12

12
12

12

12

4

4 4

4

4

4

4 4

4

4

4
4

4 4

44

4

4

44

14

141414
14 1414

14

14 14

14

14
14

14

14

14
14

14 14

14
14

14 14

1414
14 14

14

14

1414

14 1414
14

14

14

14
1414

14 1414
14

14
14

14

14 14
1414

1 1

1 1

1 1

1 1

(c) All subgraphs Hcandidate from H3 computed us-
ing White & Newman’s approximation algorithm for
local node connectivity.

20

202020
20 2020

20

20 20

20

20
20

20

20

20
20

20 20

20
20

4

4 4

4

4

4

4 4

4

4

4
4

4 4

44

4

4

44

14
14

14

14
14

14
14

14

1414
1414

14
14

14

14 14
14

14
14

1414

14

14

14
14

14
14

14

14

14 14

1414
14 14

14

14

1414

14 1414
14

14

14

14
1414

14 1414
14

14
14

14

14 14
1414

1 1

1 1

1 1

1 1

(d) All subgraphs Hcandidate from H3 computed us-
ing flow-based connectivity algorithm for local node
connectivity.

3

3
3

3

3

3

3
3

3 3

3

3
3

3

3
3

3
3

3

3
3

3

3
3

3

3

3
33

3

3

3 3

3

3
3

3 3 3

3

4

4

4

4

4

4

4

4
4

4

4
4

4

4
4

4

4

4

4

4

4
4

44

4

4

4

4
4

4
4

4

4

4

44 4
4

4 4

(e) Detected tri-components using the heuristics with
the relaxation criteria of density ≥ 0.95 in Hcandidate.

Figure B.2: Auxiliary graph H3 for k = 3. Note that when using White and Newman’s
approximation algorithm for local node connectivity (subfigure a), some node independent
paths are not detected: the P subgraphs linked to the two K5 that overlap in two nodes should
have core number 14 (blue) as in subfigure b, but they have core number 12. Thus to correctly
detect all tricomponents we have to set a relaxation criteria for Hcandidate, in this example
setting density at 0.95 or allowing a variation of 2 in the degree of all nodes of Hcandidate,
allows the algorithm to correctly detect all tricomponents.

B. COHESIVE SUBGROUPS: ILLUSTRATION, IMPLEMENTATION AND ACCURACY

4

4

4 4

4

44

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4
4

4

4

4

4

(a) Auxiliary graph H for k = 4 computed using

White and Newman’s approximation.

4
4

4

4

4

4

4

4
4

4

4

4

4

4
4

4

4

4

4

4

(b) Detected 4-components using our heuristics. Note

that there should be four more K5, the ones that over-

lap in two nodes are not detected as 4-components.

See text for an explanation.

Figure B.3: Auxiliary graph H4 for k = 4. In this case both White and Newman’s approxi-

mation algorithm, and the exact flow-based algorithm for local node connectivity yield equal

results. Note that there should be four more K5 in subfigure b, the ones that overlap in two

nodes are not detected as 4-components. This is because, as can be seen in subfigure a, the

nodes in these Hcandidate subgraphs have all the same core number, but their density is 0.67

and the difference in degree is 3. Thus, in order to detect them we would have to relax the

clique criteria for Hcandidate too much, and even then we would classify both K5 as a single

4-component, which is obviously wrong.

As discussed above, a k-core is a maximal subgraph that contains nodes of degree k or

more. The core number of a node is the largest value k of a k-core containing that node.

On the other hand, a k-component is a maximal subgraph that cannot be disconnected by

removing less than k nodes. The component number of a node is the largest value k of a

k-component containing that node.

The graph of figure B.1 is a biconnected 3-core, which means that it is a graph with min-

imum degree = 3 that cannot be disconnected by removing less than 2 nodes. Our algorithm

starts by considering the whole graph the step 2, but in k-core subgraphs with more than one

bicomponent, the following steps are performed for each bicomponent of the k-core. We will

only compute up until k = 4 because the largest core number of a node in G is 4.

For k = 3 we create an auxiliary graph with all biconnected nodes with core number ≥ 3
(see figure B.2). In this case all nodes have a core number greater than or equal to 3. Thus the

auxiliary graph H for k = 3 contains all 99 nodes. We then link two nodes in H3 if we can find

k or more node independent paths between them. As we can see, the result are five connected

components, four of which correspond to each Petersen graph plus the two K5, while the last

one corresponds to the nodes that form the grid. The later has 4 nodes that are linked by 3

node independent paths to only one node, these four nodes are the four corner nodes of the

grid.

Notice that when using White and Newman’s approximation algorithm for local node con-

nectivity (subfigure B.2a), some node independent paths that actually exist are not detected:

118

B.1. Illustration of the heuristics

the P subgraphs linked to the two K5 that overlap in two nodes should have a core number of

14 (blue) because there are 3 node independent paths linking each pair of different nodes in the

subgraph formed by the P and the K5 to which it is linked through three edges, as in subfigure

B.2b, which was computed using the exact flow-based algorithm for local node connectivity.

Notice also that the grid has core number 14 in B.2a but actually should be core number 20 as

shown in B.2b. This illustrates the importance of computing biconnected components of H

(step 3.c) before building the subgraphs Hcandidate (step 3.d).

Figures B.2c and B.2d depict Hcandidate subgraphs, the former using White and Newman’s

approximation algorithm and the latter using an exact flow-based algorithm for local node con-

nectivity. The subgraphs Hcandidate are composed by nodes that are in the same biconnected

component of H and have exactly the same core number. Notice that in figure B.2c the P

graphs linked to the two K5 that overlap in two nodes have core number < n−1 (the magenta

clusters), thus they are not complete (density=0.96) and the degree of their nodes is not homo-

geneous: two nodes have degree 12, four have degree 13, and nine have degree 14. Therefore,

if we enforce the clique criteria for Hcandidate we would not detect all tricomponents because,

following the algorithm, we would have to start removing nodes with the lowest degree and

check if at some point we find a complete subgraph. In order to correctly detect all tricompo-

nents in this illustrative example, we have to first establish a relaxation for the clique criteria

for Hcandidate. In this case, setting density at 0.95 or allowing a variation of 2 in the degree of

all nodes of Hcandidate, allows the algorithm to correctly detect all tricomponents as shown in

figure B.2e.

For k = 4, the auxiliary graph H4 is composed of 4 connected components which cor-

respond to the pairs of K5 that share one node and the pairs of K5 that share 2 nodes (see

figure B.3a). In terms of biconnectivity, there are six bicomponents, with the two K5 that

overlap in two nodes as a single bicomponent. Inside these six bicomponents there are eight

4-components, but only four of them were detected (see figure B.3b). This is because when we

build the Hcandidate subgraphs with all nodes in each biconnected component of H4 that have

exactly the same core number, in the case of the two K5 that overlap in two nodes, all their

nodes have the same core number (4), but their density is 0.67 and the difference in degree

is 3. Thus, in order to detect them we would have to relax the clique criteria for Hcandidate

too much, and even then, we would classify both K5 overlapping in two nodes as a single

4-component, which is obviously wrong because they have node connectivity 2.

Note that this kind of false negative only happens when two k-components of the same

level of connectivity and the same order overlap. If instead of two K5 they were k-components

with different order but the same connectivity, our algorithm would be able to separate them

because they would have a different core number and thus they would be part of a different

Hcandidate subgraph.

119

B. COHESIVE SUBGROUPS: ILLUSTRATION, IMPLEMENTATION AND ACCURACY

B.2 Performance analysis

The heuristics presented here are implemented on top of NetworkX (Hagberg et al., 2008),

a library for the analysis of complex networks, using the Python programming language

(Van Rossum, 1995). We have chosen Python because it is a language with high readabil-

ity and flexibility that allows you to easily apply the well know principle of writing software

for people to read and, only incidentally, for machines to execute (Abelson et al., 1985). To

ensure reproducibility and accessibility we have used only free software to build and run all

analyses presented in this paper.

The implementation of the heuristics presented here is not trivial; a careful implementation

is needed to ensure that it has a reasonable memory footprint and that it runs in a reasonable

time. Appendix C contains a detailed discussion of the implementation details and appendix

D contains the python code of a simplified implementation for illustrative purposes.

10
2

10
3

10
4

10
5

Number of nodes

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
 (

s
e
c
o
n
d
s
)

Performance of connectivity algorithms

Approximation on Erdös Rényi

Approximation on power law

Exact on Erdös Rényi

Exact on power law

Flow based on Erdös Rényi

Flow based on power law

(a) Performance of connectivity algorithms when

adding nodes maintaining constant the average degree

(Erdös-Rènyi) or the exponent of the power law gov-

erning the degree distribution (α = 2). Logarithmic

scale.

10
3

10
4

10
5

Number of edges (nodes = 1000)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
 (

s
e
c
o
n
d
s
)

Approximation algorithm

10
2

10
3

10
4

Number of edges (nodes = 100)

10
-1

10
0

10
1

10
2

10
3

10
4

10
5 Exact algorithm

(b) Performance of the heuristics when adding edges

and maintaining nodes constant (1000 nodes). Inset:

performance of the exact algorithm with one order of

magnitude fewer nodes (100 nodes). Both in logarith-

mic scale.

Figure B.4: Log-log plots for comparing between the heuristics and the exact algorithm to

compute k-component structure. In this comparison, the heuristics do not compute the aver-

age node connectivity, only plain node connectivity, which is what is calculated by the exact

algorithm. We have also implemented the exact algorithm in order to be able to compare both

algorithms using the same language and infrastructure. All figures presented here were ob-

tained running PyPy (Bolz et al., 2009). Using the heuristics proposed in this paper, we are

able to handle networks almost one order of magnitude bigger than with the exact algorithm.

Figure B.4 presents the performance of the heuristics (green) compared with two variants

of the exact algorithm: the Moody & White algorithm based on k-cutsets (red) and our al-

gorithm using exact flow-based node connectivity for building the auxiliary graph. The tests

were performed, on the one hand, on random graphs with fixed average degree (Erdös-Renyi

model) and fixed power law exponent (Power law model) of several different orders. And, on

the other hand, for graphs with a fixed number of nodes (1000 for the heuristics and 100 for

120

B.2. Performance analysis

the exact) where we increase the number of edges. Random networks built using the Erdös-

Renyi model have a flat hierarchical structure because edges are evenly distributed across all

nodes of the network. The Erdös-Renyi graphs used in this benchmark have a big tricom-

ponent and no higher connectivity levels. Random networks built using a power law based

degree distribution have a steep hierarchical structure, the networks used in the benchmark

have hierarchy levels of up to 20. Both the heuristics and the exact algorithms perform better

in sparse networks with a steep hierarchical structure.

As we can see in figure B.4 the heuristics runs in polynomial time. It is fast enough to be

practically applicable to networks with a few tens of thousands of nodes and edges. This is one

order of magnitude better than the exact algorithm proposed by Moody and White (2003), and

also an order of magnitude faster than using flow-based algorithms for building the auxiliary

graph. Notice that the k-cutset based algorithm proposed by Moody & White (or at least

our implementation) is faster than the exact flow-based local node connectivity variant of our

algorithm.

The implementation that we provide in this paper only considers the exact solution for

biconnected components. The heuristics presented here uses biconnectivity, but can be im-

proved by using a triconnectivity algorithm. It would be: a) faster because there is a linear

algorithm to compute triconnected components (Hopcroft and Tarjan, 1974; Gutwenger and

Mutzel, 2001); and, b) more accurate, because we compute the exact solution up to k = 3.

But, as far as we know, there is no publicly available implementation of triconnected compo-

nents. An optimal implementation of the heuristics presented here would have to incorporate

the triconnectivity algorithm to improve its accuracy and to allow it to run in reasonable time

on somewhat larger networks.

121

B. COHESIVE SUBGROUPS: ILLUSTRATION, IMPLEMENTATION AND ACCURACY

B.3 Implementation details

The implementation of the heuristics proposed here was done by the first author listed on the

NetworkX python library (Hagberg et al., 2008), a Python package for the study of the struc-

ture and dynamics of complex networks. Other parts of the powerful Python (Van Rossum,

1995) scientific computing stack (Jones et al., 2001; Pérez and Granger, 2007; Hunter, 2007)

were also essential. The main requirement was that the whole software stack must be free

software in order to avoid the black box effect of software solutions that do not release their

source code. We believe that this is a necessary condition for ensuring the reproducibility of

scientific research. Appendix B contains python code for the main part of the algorithm.

The implementation of the heuristics is not trivial. There are a few questions that need to be

addressed in order to obtain a performance —both in terms of computation time and memory

consumption— that will allow for these heuristics to be applied to large networks. The authors

are in-debted to Aric Hagberg and Dan Schult (developers of the NetworkX package) for their

help in this implementation.

The second step of the heuristics (compute the biconnected components of the input graph

and use them as a baseline for k-components with k > 2) is faster than using the logic of the

heuristics for k = 2. Biconnected components computation runs in linear time in respect to

the number of nodes and edges (Tarjan, 1972). Besides in large networks, bicomponents are

formed by an important part of the nodes of the network. Thus if we use the approximation

logic to compute them, the memory footprint for large networks is too large to be practical.

The implementation provided with this paper only computes the exact solution for bicompo-

nents but there is also a linear algorithm to compute triconnected components (Hopcroft and

Tarjan, 1974; Gutwenger and Mutzel, 2001). The heuristics would be even faster if we ap-

plied the approach used for bicomponents to that of tricomponents. But the implementation

of triconnectivity is quite challenging and, to our knowledge, there is no implementation of

triconnected components in free network analysis software packages.

The auxiliary graph H is usually very dense in real world networks because a large part

of nodes that are in a biconnected part of a k-core are actually part of a k-component. The

memory footprint of creating this dense auxiliary graph prevents a naive implementation of

the heuristics in order to be practical for large networks. Our solution for this problem is to

use a complement graph data structure that only stores information on the edges that are not

present in the actual auxiliary graph. When applying algorithms to this complement graph data

structure, it behaves as if it were the dense version. This is the only way to have a memory

footprint that will allow for the application of the heuristics presented in this paper to large

networks.

122

B.4. Python code

B.4 Python code

We provide a git repository with all the data, code, results, and other materials related to this

paper at https://github.com/jtorrents/structural_cohesion.

We also contributed our implementation of the exact algorithm for finding k-components,

and the heuristics that we propose here, to NetworkX a free software Python package for the

analysis of complex networks. The relevant code and documentation can be found at:

• Kanevsky’s algorithm for finding all minimum-size node cut-sets:

docs: http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.connectivity.kcutsets.all_node_cuts.html

code: https://github.com/networkx/networkx/blob/master/networkx/algorithms/connectivity/kcutsets.py

• Moody and White exact algorithm:

docs: http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.connectivity.kcomponents.k_components.html

code: https://github.com/networkx/networkx/blob/master/networkx/algorithms/connectivity/kcomponents.py

• White and Newman approximation for node connectivity:

docs: http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.approximation.connectivity.node_connectivity.html

code: https://github.com/networkx/networkx/blob/master/networkx/algorithms/approximation/connectivity.py

• Our heuristics for computing k-components:

docs: http://networkx.readthedocs.org/en/latest/reference/generated/networkx.algorithms.approximation.kcomponents.k_components.html

code: https://github.com/networkx/networkx/blob/master/networkx/algorithms/approximation/kcomponents.py

We also add here a simplified implementation of the heuristics for illustrative purposes.

123

B. COHESIVE SUBGROUPS: ILLUSTRATION, IMPLEMENTATION AND ACCURACY

1 # Standard py thon l i b r a r i e s
2 import i t e r t o o l s
3 import c o l l e c t i o n s
4 # NetworkX l i b r a r y f o r ne twork a n a l y s i s
5 import networkx as nx
6 # Ant iGraph data s t r u c t u r e
7 # s e e h t t p s : / / g i t h u b . com / ne tworkx / ne tworkx / b lob / mas t er / examples / s u b c l a s s / a n t i g r a p h . py
8

9 d ef k_components (G, a v e r a g e =True , e x a c t = F a l se , m i n _ d e n s i t y = 0 . 9 5) :
10 # D i c t i o n a r y w i t h c o n n e c t i v i t y l e v e l (k) as k e y s and a l i s t o f
11 # s e t s o f nodes t h a t form a k−component as v a l u e s
12 k_components = c o l l e c t i o n s . d e f a u l t d i c t (l i s t)
13 # make a few f u n c t i o n s l o c a l f o r speed
14 n o d e _ c o n n e c t i v i t y = l o c a l _ n o d e _ c o n n e c t i v i t y
15 k_core = nx . k_core
16 core_number = nx . core_number
17 b i c o n n e c t e d _ c o m p o n e n t s = nx . b i c o n n e c t e d _ c o m p o n e n t s
18 d e n s i t y = nx . d e n s i t y
19 c o m b i n a t i o n s = i t e r t o o l s . c o m b i n a t i o n s
20 # E xac t s o l u t i o n f o r k = { 1 , 2 }
21 # There i s a l i n e a r t i m e a l g o r i t h m f o r t r i c o n n e c t i v i t y , i f we had an
22 # i m p l e m e n t a t i o n a v a i l a b l e we c o u l d s t a r t f rom k = 4 .
23 f o r component in nx . connec t ed_co mp on e n t s (G) :
24 # i s o l a t e d nodes have c o n n e c t i v i t y 0
25 comp = s e t (component)
26 i f l e n (comp) > 1 :
27 k_components [1] . append (comp)
28 f o r bicomponen t in nx . b i c o n n e c t e d _ c o m p o n e n t s (G) :
29 # a v o i d c o n s i d e r i n g dyads as b i componen t s
30 bicomp = s e t (b i componen t)
31 i f l e n (bicomp) > 2 :
32 k_components [2] . append (bicomp)
33 # There i s no k−component o f k > maximum core number
34 # \ kappa (G) <= \ lambda (G) <= \ d e l t a (G)
35 g_cnumber = core_number (G)
36 max_core = max (g_cnumber . v a l u e s ())
37 f o r k in range (3 , max_core + 1) :
38 C = k_core (G, k , core_number =g_cnumber)
39 f o r nodes in b i c o n n e c t e d _ c o m p o n e n t s (C) :
40 # B u i l d a subgraph SG i n d u c e d by t h e nodes t h a t are p a r t o f
41 # each b i c o n n e c t e d component o f t h e k−core subgraph C .
42 i f l e n (nodes) < k :
43 con t i n u e
44 SG = G. subgraph (nodes)
45 # B u i l d a u x i l i a r y graph
46 H = _Ant iGraph ()
47 H. add_nodes_from (SG . nodes ())
48 f o r u , v in c o m b i n a t i o n s (SG, 2) :
49 K = n o d e _ c o n n e c t i v i t y (SG , u , v , c u t o f f =k)
50 i f k > K:
51 H. add_edge (u , v)
52 f o r h_nodes in b i c o n n e c t e d _ c o m p o n e n t s (H) :
53 i f l e n (h_nodes) <= k :
54 con t i n u e
55 SH = H. subgraph (h_nodes)
56 f o r Gc in _ c l i q u e s _ h e u r i s t i c (SG, SH , k , m i n _ d e n s i t y) :
57 f o r k_nodes in b i c o n n e c t e d _ c o m p o n e n t s (Gc) :
58 Gk = nx . k_core (SG . subgraph (k_nodes) , k)
59 i f l e n (Gk) <= k :
60 con t i n u e
61 k_components [k] . append (s e t (Gk))
62 re tu rn k_components
63

124

B.4. Python code

64

65 d ef _ c l i q u e s _ h e u r i s t i c (G, H, k , m i n _ d e n s i t y) :
66 h_cnumber = nx . core_number (H)
67 f o r i , c _ v a l u e in enumerate (s o r t e d (s e t (h_cnumber . v a l u e s ()) , r e v e r s e =True)) :
68 cands = s e t (n f o r n , c in h_cnumber . i t e m s () i f c == c _ v a l u e)
69 # S k i p c h e c k i n g f o r o v e r l a p f o r t h e h i g h e s t core v a l u e
70 i f i == 0 :
71 o v e r l a p = F a l s e
72 e l s e :
73 o v e r l a p = s e t . i n t e r s e c t i o n (∗ [
74 s e t (x f o r x in H[n] i f x not in cands)
75 f o r n in cands])
76 i f o v e r l a p and l e n (o v e r l a p) < k :
77 SH = H. subgraph (cands | o v e r l a p)
78 e l s e :
79 SH = H. subgraph (cands)
80 sh_cnumber = nx . core_number (SH)
81 SG = nx . k_core (G. subgraph (SH) , k)
82 whi l e not (_same (sh_cnumber) and nx . d e n s i t y (SH) >= m i n _ d e n s i t y) :
83 SH = H. subgraph (SG)
84 i f l e n (SH) <= k :
85 break
86 sh_cnumber = nx . core_number (SH)
87 sh_deg = d i c t (SH . d e g r e e ())
88 min_deg = min (sh_deg . v a l u e s ())
89 SH . remove_nodes_from (n f o r n , d in sh_deg . i t e m s () i f d == min_deg)
90 SG = nx . k_core (G . subgraph (SH) , k)
91 e l s e :
92 y i e l d SG

125

B. COHESIVE SUBGROUPS: ILLUSTRATION, IMPLEMENTATION AND ACCURACY

B.5 Accuracy and limitations of the heuristics

Figure B.5 shows the accuracy of connectivity structure detected by the heuristics for all em-

pirical networks. In the subfigures, green bars are k-components with node connectivity ≥ k

and red bars represent k-components with node connectivity < k. Note that, once we have

an approximate structure of k-components, we can check —in a reasonable time frame— if

the resulting k-components actually have node connectivity k using flow based connectivity

algorithms (Brandes and Erlebach, 2005, chapter 7). For the candidate k-components that

turned out to have node connectivity lower than k, we used the exact algorithm proposed by

Moody and White (2003) to find out the order and size of the actual k-components inside the

candidate k-component detected using our heuristics.

The output of our heuristics is an approximation to k-components based on computing

extra-cohesive blocks for each biconnected component of all core levels of the network. Recall

that in k-components all k node independent paths go through nodes that belong to the k-

component, but in extra-cohesive blocks some of the node independent paths may go through

external nodes. Thus, there is no guarantee that the extra-cohesive blocks, even those that

also form a k-core subgraph in G, have node connectivity κ = k. This is a source of false

positives for the approximation of the k-component structure of a network. However, the

results shown in figure B.5 suggest that the heuristics yield a good approximation for the

actual —k-component based— cohesion structure of empirical networks.

If we consider all components of all sizes, as in figure B.5, only a few of the extra-cohesive

blocks detected by the heuristics have node connectivity of less than k, ranging from 6.5% (a

single component) in the case of Debian to 1.2% of the components in the case of two-mode

Nuclear Theory network. However, the extra-cohesive blocks that do not have the sufficient

connectivity to be considered a k-component are, in the empirical networks analyzed, big

components of levels {3,4}. This is because, in such big- and low-level components, a few

node independent paths going through nodes that are part of the biconnected component of

a k-core but not part of the k-component can yield false positives by including nodes that

shouldn’t be part of the k-component.

However, these false positives are actually part of an extra-cohesive block, which main-

tains most of those properties —in terms of robustness, hierarchy and overlap— which make

k-component such a good measure of structural cohesion. This relaxed definition of connec-

tivity might be sufficient in many cases; for instance, if we are interested in comparing the

structural cohesion of a large network with a suitable null model, we may not need the exact

k-component structure because we can meaningfully compare the relaxed connectivity struc-

ture of the actual network with its random counterparts. However, imagine we are interested

in the exact k-component structure of a particular network because, say, we want to statisti-

cally analyze the impact of the connectivity level with the performance of different actors in a

network. In this case, we would need to apply some cutting procedure on the extra-cohesive

blocks that actually have a node connectivity of less than k.

It is more difficult to assess the impact of false negatives —that is, nodes that should be

part of a k-component but are excluded— because computing exact k-components for big

networks is not practical, and thus we cannot compare. False negatives are derived from the

underestimation of local node connectivity of the White and Newman (2001) algorithm, which

126

B.5. Accuracy and limitations of the heuristics

3 4 5
Connectivity level k

0

1

2

3

4

5

6

7

8

9

N
u
m

b
e
r

o
f

c
o
m

p
o
n
e
n
ts

1 k-components
with κ<k of 16

Correct

Components with κ<k

(a) Bipartite network formed by developers and

packages over 2 years of collaboration (from 2007

to 2009) on the release codenamed Lenny of the De-

bian operating system
3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

Connectivity level k

0.0

0.5

1.0

1.5

2.0

N
u
m

b
e
r

o
f

c
o
m

p
o
n
e
n
ts

0 k-components
with κ<k of 13

Correct

Components with κ<k

(b) Unipartite network formed by developers over

2 years of collaboration (from 2007 to 2009) on the

release codenamed Lenny of the Debian operating

system

3 4 5 6 7
Connectivity level k

0

50

100

150

200

250

N
u
m

b
e
r

o
f

c
o
m

p
o
n
e
n
ts

4 k-components
with κ<k of 318

Correct

Components with κ<k

(c) Bipartite network formed by scientists and

preprints during a five-year period (2006-2010) in

the high energy physics (theory) section of arXiv.org

3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

Connectivity level k

0

50

100

150

200

250

300

350

N
u
m

b
e
r

o
f

c
o
m

p
o
n
e
n
ts

10 k-components
with κ<k of 607

Correct

Components with κ<k

(d) Unipartite network formed by scientists during a

five-year period (2006-2010) in the high energy physics

(theory) section of arXiv.org

3 4 5 6 7 8
Connectivity level k

0

20

40

60

80

100

120

N
u
m

b
e
r

o
f

c
o
m

p
o
n
e
n
ts

4 k-components
with κ<k of 203

Correct

Components with κ<k

(e) Bipartite network formed by scientists and

preprints during a five-year period (2006-2010) in

the nuclear physics (theory) section of arXiv.org

3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

Connectivity level k

0

50

100

150

200

250

N
u
m

b
e
r

o
f

c
o
m

p
o
n
e
n
ts

11 k-components
with κ<k of 749

Correct

Components with κ<k

(f) Unipartite network formed by scientists during a five-

year period (2006-2010) in the nuclear theory section of

arXiv.org

Figure B.5: Accuracy barplots. Green bars are k-components with node connectivity ≥ k and

red bars represent k-components with node connectivity < k.

127

B. COHESIVE SUBGROUPS: ILLUSTRATION, IMPLEMENTATION AND ACCURACY

provides a strict lower bound for the local node connectivity. Thus, by using it we can miss

an edge in the auxiliary graph H that should be there. Therefore, a node belonging to a k-

component could be excluded by the algorithm. Recall that in order to address this problem,

we relaxed the clique criteria by setting a density threshold of 0.95 in Hcandidate. Whilst this

value has worked well in our analysis but careful experimentation should be performed to set

this parameter in other types of networks.

128

C

Support Tables for Regression Models

C.1 Negative Binomial Regression support tables

Table C.1: Descriptive statistics for negative binomial regression for Debian

Observations Mean Std. Dev. Minimum Maximum

(1) # of uploads 1,754 57.70 148.27 1 2,793

(2) Package Size 1,750 13.52 1.83 7.88 18.57

(3) # bugs reported 1,754 7.60 18.66 0 519.25

(4) # of package despendencies 1,754 6.44 4.87 0 52

(5) Developer tenure (years) 1,754 5.02 4.34 0 14

(6) Degree centrality 1,754 0.01 0.04 0 1

(7) Closeness 1,754 0.14 0.15 0.04 0.58

(8) Square clustering 1,754 0.19 0.33 0 1

(9) k-component number 1,754 1.77 0.91 1 6

129

C. SUPPORT TABLES FOR REGRESSION MODELS

Table C.2: Correlation matrix for negative binomial regression for Debian

1 2 3 4 5 6 7 8

(1) # of uploads – – – – – – – –

(2) Package Size 0.138 – – – – – – –

(3) # bugs reported 0.000 0.204 – – – – – –

(4) # of package despendencies 0.046 0.416 0.223 – – – – –

(5) Developer tenure (years) 0.161 0.148 0.114 -0.018 – – – –

(6) Degree centrality 0.865 0.074 -0.029 0.012 0.096 – – –

(7) Closeness -0.034 -0.027 -0.024 -0.092 0.401 -0.047 – –

(8) Square clustering -0.006 -0.027 -0.062 -0.022 -0.164 0.020 -0.209 –

(9) k-component number 0.488 0.204 0.031 0.108 0.047 0.479 -0.259 0.309

C.2 Contributions Panel Regression support tables

Table C.3: Descriptive statistics for contributions panel regression for Python.

Observations Mean Std. Dev. Minimum Maximum

(1) # of lines of code authored 816 20816.20 69885.12 4 1,362,829

(2) Degree Centrality 816 0.07 0.15 0 1

(3) Tenure (years) 816 4.80 3.91 1 23

(4) Collaborators 816 34.02 19.28 0 61

(5) Closeness 816 0.31 0.11 0.11 1

(6) Square clustering 816 0.30 0.27 0 1

(7) Top connectivity level 816 0.41 0.49 0 1

(8) k-component number 816 5.43 2.63 1 10

130

C.3. Accepted PEPs zero inflated negative binomial support tables

Table C.4: Correlation matrix for contributions panel regression for Python.

1 2 3 4 5 6 7

(1) # of lines of code authored – – – – – – –

(2) Degree Centrality 0.563 – – – – – –

(3) Tenure (years) 0.048 0.050 – – – – –

(4) Collaborators 0.107 0.005 0.210 – – – –

(5) Closeness 0.287 0.459 -0.016 -0.033 – – –

(6) Square clustering -0.053 -0.006 -0.091 -0.227 0.046 – –

(7) Top connectivity level 0.269 0.446 0.014 0.347 0.120 -0.192 –

(8) k-component number 0.211 0.236 0.059 0.636 0.158 -0.262 0.653

C.3 Accepted PEPs zero inflated negative binomial support

tables

Table C.5: Descriptive statistics for accepted PEPs from Python developers.

Observations Mean Std. Dev. Minimum Maximum

(1) Total accepted PEPs 816 1.64 3.83 0 28

(2) # of lines of code authored 816 20816.20 69885.12 4 1,362,829

(3) Degree Centrality 816 0.07 0.15 0 1

(4) Tenure (years) 816 4.80 3.91 1 23

(5) Collaborators 816 34.02 19.28 0 61

(6) Closeness 816 0.31 0.11 0.11 1

(7) Square clustering 816 0.30 0.27 0 1

(8) Top connectivity level 816 0.41 0.49 0 1

(9) k-component number 816 5.43 2.63 1 10

131

C. SUPPORT TABLES FOR REGRESSION MODELS

Table C.6: Correlation matrix for accepted PEPs from Python developers.

1 2 3 4 5 6 7 8

(1) Total accepted PEPs – – – – – – – –

(2) # of lines of code authored 0.064 – – – – – – –

(3) Degree Centrality 0.087 0.563 – – – – – –

(4) Tenure (years) 0.592 0.048 0.050 – – – – –

(5) Collaborators 0.199 0.107 0.005 0.210 – – – –

(6) Closeness 0.019 0.287 0.459 -0.016 -0.033 – – –

(7) Square clustering -0.084 -0.053 -0.006 -0.091 -0.227 0.046 – –

(8) Top connectivity level 0.143 0.269 0.446 0.014 0.347 0.120 -0.192 –

(9) k-component number 0.177 0.211 0.236 0.059 0.636 0.158 -0.262 0.653

C.4 Survival Regression support tables

Table C.7: Descriptive statistics for survival regression for the Python project.

Observations Mean Std. Dev. Minimum Maximum

(1) Total accepted PEPs 754 1.58 3.72 0 27

(2) # of lines of code authored 754 21643.42 72362.51 4 1,362,829

(3) Tenure (years) 754 4.71 3.86 1 23

(4) Degree centrality 754 0.07 0.15 0 1

(5) Collaborators 754 32.84 19.12 0 61

(6) Closeness 754 0.10 0.22 0 1

(7) Square clustering 754 0.30 0.27 0 1

(8) k-component number 754 5.46 2.68 1 10

(9) Top connectivity level 754 0.42 0.49 0 1

132

C.4. Survival Regression support tables

Table C.8: Correlation matrix for survival regression for the Python project.

1 2 3 4 5 6 7 8

(1) Total accepted PEPs – – – – – – – –

(2) # of lines of code authored 0.069 – – – – – – –

(3) Tenure (years) 0.589 0.060 – – – – – –

(4) Degree centrality 0.095 0.561 0.082 – – – – –

(5) Collaborators 0.196 0.118 0.196 0.013 – – – –

(6) Closeness 0.097 0.535 0.101 0.852 0.134 – – –

(7) Square clustering -0.082 -0.051 -0.099 0.003 -0.247 -0.104 – –

(8) k-component number 0.182 0.208 0.063 0.228 0.665 0.221 -0.251 –

(9) Top connectivity level 0.149 0.270 0.033 0.444 0.368 0.459 -0.178 0.651

133

D

Publications derived from my work on
this thesis

Brief overview of the outcomes published from this thesis.

D.1 Algorithms and heuristics for graph connectivity as

Free Software

The implementation of node and edge connectivity algorithms, and the design and implemen-

tation of heuristics for approximation to node connectivity and k-component structure that I

developed during these years, have turned out to be a central part of my thesis. All these

implementations are now part of the official NetworkX (Hagberg et al., 2008), a popular free

Python package for the creation, manipulation, and study of the structure, dynamics, and func-

tions of complex networks. They were published in NetworkX version 1.10, released August,

2nd 2015.

The algorithms and heuristics that I developed as part of my thesis that are now included

in NetworkX are:

Exact node and edge connectivity Maximum flow based implementation of node and edge

connectivity:

• http://networkx.readthedocs.io/en/stable/reference/generated/networkx.algorithms.connectivity.connectivity.node_connectivity.html

• http://networkx.readthedocs.io/en/stable/reference/generated/networkx.algorithms.connectivity.connectivity.edge_connectivity.html

Exact all minimum size k-cutsets Kanevsky’s algorithm for finding all minimum-size node

cut-sets of an undirected graph G (Kanevsky, 1993):

• http://networkx.readthedocs.io/en/stable/reference/generated/networkx.algorithms.connectivity.kcutsets.all_node_cuts.html

Exact k-component structure Moody and White exact algorithm for k-components (Moody

and White, 2003):

• http://networkx.readthedocs.io/en/stable/reference/generated/networkx.algorithms.connectivity.kcomponents.k_components.html

135

D. PUBLICATIONS DERIVED FROM MY WORK ON THIS THESIS

Approximation for node connectivity White and Newman fast approximation algorithm for

finding node independent paths (White and Newman, 2001):

• http://networkx.readthedocs.io/en/stable/reference/generated/networkx.algorithms.approximation.connectivity.node_connectivity.html

Approximation for k-components The heuristics that I developed for a fast approximation

to the k-component structure (Torrents and Ferraro, 2015; Torrents, 2015).

• http://networkx.readthedocs.io/en/stable/reference/generated/networkx.algorithms.approximation.kcomponents.k_components.html

My work on this front has taken quite more time and energy than initially planed, as now

I’m also the maintainer of part of NetworkX and have to fix the problems that users find when

using the software. So far I had to deal with several problems that arose from use cases that

were far from my use in the thesis. Having people using the software for other purposes than

analyzing collaboration networks provided an opportunity to improve the implementation of

several parts of these algorithms making them more robust and generally applicable to many

kinds of problems.

It is usually not considered academic work to develop software tools that implement the

analysis on which empirical research is build. This is, I think, a bad practice, and something

that is slowly changing. An essential element of scientific research is reproducibility, and the

only way to incorporate reproducibility in the empirical analysis is not only to publish the data

on which the analysis is based, but also to have tools that actually implement the analysis that

can be audited, modified and shared freely (Ince et al., 2012).

D.2 Conference presentation and paper at the 14th Python

in Science Conference (SciPy2015)

My work on the free software package NetworkX has allowed me to be selected as a sponsored

student at the Python in Science Conference that is held every year at the University of Texas at

Austin for several years: 2011, 2012, and 2015. These last year, July 2015, I presented a con-

ference communication, and published a paper in the conference proceedings (Torrents, 2015).

There is a video of the presentation, along with the full text pdf of the paper, in the official web

site of the proceedings: http://conference.scipy.org/proceedings/scipy2015/jordi_torrents.html.

I also attach the accepted paper in the conference cited above as a companion of this report,

the title of the paper is: “Structural Cohesion: Visualization and Heuristics for Fast Compu-

tation with NetworkX and matplotlib”. The peer review process of this paper has been quite

challenging as it was reviewed by scientists not familiar with the social sciences. The Scipy

proceedings have as intended audience scientists from any discipline that uses computation as

a central part of their research. Thus the papers and the presentations in the scipy conference

have to be accessible to scientists not familiar with the discipline of the author of the paper.

Most scientists that attend the scipy conference are from the Natural sciences disciplines,

and the reviewers of my proceedings paper had also this background. This made adapting the

paper to the intended audience quite hard and time consuming, as I had to rewrite many parts

136

D.3. Paper at Journal for Social Structure (JoSS)

of my original submission (which was already adapted from my work on the thesis) to meet

the criteria of the reviewers.

I think that this work has been beneficial because it made my contribution more accessible

to the audience of a scientific computing conference, which is highly interdisciplinary. The

presentation was also a challenge for me as I had to deliver it in a very big room filled with

hundred of scientists from other disciplines. I received positive feedback from the attendees to

my presentation, and in the following months I received several emails from different people

that attended the conference, or read the paper in the proceedings, asking for clarifications or

related material to my work. Thus, I think that all the time and energy spend in making my

research accessible for a wider interdisciplinary audience has been worth.

D.3 Paper at Journal for Social Structure (JoSS)

In December 2015 it was published a more sociological motivated version of the methodolog-

ical work for my thesis at the Journal of Social Structure (JoSS), an electronic journal of the

International Network for Social Network Analysis (INSNA) hosted by the library of Carnegie

Mellon University. The current editor is James Moody (Professor of Sociology at Duke Uni-

versity). The title of the paper is “Structural Cohesion:Visualization and Heuristics for Fast

Computation” (Torrents and Ferraro, 2015). This paper is also attached as a companion of this

report.

Publishing this paper has also required more time and energy that initially planned. I

submitted the first version of this paper to another journal, Social Networks, in late 2012.

After two revisions the paper was finally rejected by the editor, despite the positive reviews of

two of the three reviewers involved in the process. All this process took two years, and despite

the rejection, the comments of the reviewers at Social Networks helped greatly to improve the

paper.

Early 2015 I submitted the paper to the Journal of Social Structure, the paper was accepted

after one round of review conditional on some minor modifications, which also improved

the paper further, and took more time than expected. The paper was finally published on

December 2015. The initial version of the paper, as submitted to Social Networks in late 2012

was significantly longer than the version finally published at JoSS.

I argue that these groups are a key element of the structural dimension of cooperation.

That is, the kind of patterns of relations between the individual producers in a collabora-

tion network, and their evolution through time, that foster the development of cooperation in

knowledge intensive tasks, and allow projects such as Debian or Python to produce world class

technological artifacts, such as an operating system or a programming language, by organizing

voluntary work of hundreds of individuals that communicate mostly through the Internet.

137

Bibliography

Abelson, H., G. Sussman, J. Sussman, and A. Perlis (1985). Structure and interpretation of

computer programs, Volume 2. MIT Press Cambridge, MA.

Adler, P. (2001). Market, hierarchy, and trust: The knowledge economy and the future of

capitalism. Organization Science, 215–234.

Adler, P. (2007). The future of critical management studies: A paleo-marxist critique of labour

process theory. Organization Studies 28(9), 1313.

Adler, P. and C. Heckscher (2006). The Firm as a Collaborative Community: Reconstructing

Trust in the Knowledge Economy. Oxford University Press, Oxford, UK.

Adler, P., S. Kwon, and C. Heckscher (2008). Professional work: The emergence of collabo-

rative community. Organization Science 19(2).

Adler, P. S. (2015). Community and innovation: from tönnies to marx. Organization Stud-

ies 36(4), 445–471.

Ahmed, A., V. Batagelj, X. Fu, S.-H. Hong, D. Merrick, and A. Mrvar (2007). Visualisation

and analysis of the internet movie database. In Visualization, 2007. APVIS’07. 2007 6th

International Asia-Pacific Symposium on, pp. 17–24. IEEE.

Albert, R., H. Jeong, and A. Barabási (2000). Error and attack tolerance of complex networks.

Nature 406(6794), 378–382.

Arrow, K. (1962). Economic Welfare and the Allocation of Resources for Invention. The Rate

and Direction of Inventive Activity, 609–626.

Axelrod, R. (1997). The complexity of cooperation: Agent-based models of competition and

collaboration. Princeton Univ Pr.

Axelrod, R. and W. Hamilton (1981). The evolution of cooperation. Science 211(4489),

1390–1396.

139

BIBLIOGRAPHY

Bagozzi, R. P. and U. M. Dholakia (2006). Open source software user communities: A study

of participation in linux user groups. Management science 52(7), 1099–1115.

Batagelj, V. and M. Zaveršnik (2007). Short cycle connectivity. Discrete mathematics 307(3),

310–318.

Batagelj, V. and M. Zaveršnik (2011). Fast algorithms for determining (generalized) core

groups in social networks. Advances in Data Analysis and Classification 5(2), 129–145.

Beineke, L., O. Oellermann, and R. Pippert (2002). The average connectivity of a graph.

Discrete mathematics 252(1-3), 31–45.

Benkler, Y. (2002). Coase’s penguin, or, linux and the nature of the firm. The Yale Law

Journal.

Benkler, Y. (2006). The Wealth of Networks. Yale University Press.

Benkler, Y., A. Shaw, and B. M. Hill. Peer production: A modality of collective intelligence.

Blau, P. M. (1964). Exchange and power in social life. Transaction Publishers.

Blau, P. M. (1969). The dynamics of bureaucracy: A study of interpersonal relations in two

government agencies. University of Chicago Press.

Blau, P. M. and W. R. Scott (1962). Formal organizations: a comparative approach.

Bolz, C., A. Cuni, M. Fijalkowski, and A. Rigo (2009). Tracing the meta-level: Pypy’s tracing

jit compiler. In Proceedings of the 4th workshop on the Implementation, Compilation,

Optimization of Object-Oriented Languages and Programming Systems, pp. 18–25. ACM.

Borgatti, S. and M. Everett (2000). Models of core/periphery structures. Social net-

works 21(4), 375–395.

Borgatti, S., M. Everett, and P. Shirey (1990). Ls sets, lambda sets and other cohesive subsets.

Social Networks 12(4), 337–357.

Brandes, U. and T. Erlebach (2005). Network analysis: methodological foundations, Volume

3418. Springer Verlag.

Brynjolfsson, E., T. Malone, V. Gurbaxani, and A. Kambil (1994). Does information technol-

ogy lead to smaller firms? Management Science 40(12), 1628–1644.

Castells, M. (2013). Networks of outrage and hope: Social movements in the internet age.

John Wiley & Sons.

Coase, R. (1937). The nature of the firm. Economica 4(16), 386–405.

Coleman, G. (2004). The political agnosticism of free and open source software and the

inadvertent politics of contrast. Anthropological Quarterly 77(3), 507–519.

140

Bibliography

Coleman, G. (2005). Three Ethical Moments in Debian. Social Science Research Net-

work 805287.

Coleman, J. (1988). Social Capital in the Creation of Human Capital. American Journal of

Sociology, 95–120.

Csárdi, G. and T. Nepusz (2006). The igraph software package for complex network research.

Davidson-Pilon (2016).Lifelines.https://github.com/camdavidsonpilon/lifelines.

Davis, G., M. Yoo, and W. Baker (2003). The small world of the American corporate elite,

1982-2001. Strategic organization 1(3), 301.

de Solla Price, D. (1986). Little science, big science... and beyond. Columbia University Press

New York.

Dodds, P., D. Watts, and C. Sabel (2003). Information exchange and the robustness of organi-

zational networks. Proceedings of the National Academy of Sciences 100(21), 12516.

Doreian, P. and T. Fararo (1998). The problem of solidarity: theories and models. Routledge.

Durkheim, E. ([1893] 2008). The division of labor in society. Free Press.

Easley, D. and J. Kleinberg (2010). Networks, crowds, and markets: Reasoning about a highly

connected world. Cambridge University Press.

Eguíluz, V., M. Zimmermann, C. Cela-Conde, and M. Miguel (2005). Cooperation and the

Emergence of Role Differentiation in the Dynamics of Social Networks 1. American journal

of sociology 110(4), 977–1008.

Ellson, J., E. Gansner, L. Koutsofios, S. North, and G. Woodhull (2002). Graphviz—open

source graph drawing tools. In Graph Drawing, pp. 594–597. Springer.

Feller, J. and B. Fitzgerald (2000). A framework analysis of the open source software develop-

ment paradigm. In Proceedings of the twenty first international conference on Information

systems, pp. 69. Association for Information Systems.

Ferraro, F. and S. O’Mahony (2010). Managing the boundaries of an ’open’ project. In The

Emergence of Organizations and Markets. Padgett, John and Walter Powell.

Fortunato, S. (2010). Community detection in graphs. Physics Reports 486(3-5), 75–174.

Fox, J. (2002). An R and S-Plus companion to applied regression. Sage.

Freeman, L. (1992). The sociological concept of “group”: An empirical test of two models.

American Journal of Sociology, 152–166.

Ghosh, R. et al. (2006). Final report. Study on the economic impact of open source software

on innovation and the competitiveness of the information and communication technologies

(ict) sector in the EU. Technical report, Technical report, UNU-MERIT, NL.

141

BIBLIOGRAPHY

Glass, R. L. (2002). Facts and fallacies of software engineering. Addison-Wesley Profes-

sional.

Godfrey, M. and Q. Tu (2000). Evolution in open source software: A case study. In 16th IEEE

International Conference on Software Maintenance (ICSM’00). Citeseer.

Goyal, S., M. Van Der Leij, and J. Moraga-González (2006). Economics: an emerging small

world. Journal of Political Economy 114(2).

Grannis, R. (2009). Paths and semipaths: reconceptualizing structural cohesion in terms of

directed relations. Sociological Methodology 39(1), 117–150.

Granovetter, M. (1985). Economic action and social structure: the problem of embeddedness.

American Journal of Sociology 91(3), 481.

Guimerà, R., B. Uzzi, J. Spiro, and L. Amaral (2005). Team assembly mechanisms determine

collaboration network structure and team performance. Science 308(5722), 697–702.

Gutwenger, C. and P. Mutzel (2001). A linear time implementation of spqr-trees. In Graph

Drawing, pp. 77–90. Springer.

Hagberg, A., D. Schult, and P. Swart (2008, August). Exploring network structure, dynamics,

and function using NetworkX. In Proceedings of the 7th Python in Science Conference

(SciPy2008), Pasadena, CA USA, pp. 11–15.

Harary, F. (1969). Graph Theory. Addison-Wesley.

Hargrave, T. and A. Van de Ven (2006). A collective action model of institutional innovation.

Academy of Management Review 31(4), 864.

Hars, A. and S. Ou (2002). Working for free? Motivations for participating in open-source

projects. International Journal of Electronic Commerce 6(3), 25–39.

Hertel, G., S. Niedner, and S. Herrmann (2003). Motivation of software developers in Open

Source projects: an Internet-based survey of contributors to the Linux kernel. Research

Policy 32(7), 1159–1177.

Hippel, E. (2001). Innovation by user communities: Learning from open-source software.

MIT Sloan Management Review 42(4), 82.

Hopcroft, J. and R. Tarjan (1974). Dividing a graph into triconnected components.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing In Science &

Engineering 9(3), 90–95.

Ince, D., L. Hatton, and J. Graham-Cumming (2012). The case for open computer programs.

Nature 482(7386), 485–488.

Johnson, A. and W. Whyte (1977). The Mondragon system of worker production cooperatives.

Industrial and Labor Relations Review 31(1), 18–30.

142

Bibliography

Jones, B., S. Wuchty, and B. Uzzi (2008). Multi-university research teams: shifting impact,

geography, and stratification in science. science 322(5905), 1259.

Jones, E., T. Oliphant, P. Peterson, et al. (2001). SciPy: Open source scientific tools for

Python.

Kamada, T. and S. Kawai (1989). An algorithm for drawing general undirected graphs. Infor-

mation processing letters 31(1), 7–15.

Kanevsky, A. (1993). Finding all minimum-size separating vertex sets in a graph. Net-

works 23(6), 533–541.

Kaplan, E. L. and P. Meier (1958). Nonparametric estimation from incomplete observations.

Journal of the American statistical association 53(282), 457–481.

Koch, S. and G. Schneider (2002). Effort, co-operation and co-ordination in an open source

software project: GNOME. Information Systems Journal 12(1), 27–42.

Kogut, B. and A. Metiu (2001). Open-source software development and distributed innova-

tion. Oxford Review of Economic Policy 17(2), 248.

Krackhardt, D. and J. R. Hanson (1993). Informal networks: The company behind the chart.

Harvard business review 71(4), 104–11.

Krafft, M. (2005). The Debian System: Concepts and Techniques. Open Source Press.

Lakhani, K. and E. Von Hippel (2003). How open source software works:“free” user-to-user

assistance. Research policy 32(6), 923–943.

Latapy, M., C. Magnien, and N. Vecchio (2008). Basic notions for the analysis of large two-

mode networks. Social Networks 30(1), 31–48.

Lawler, E. (1973). Cutsets and partitions of hypergraphs. Networks 3(3), 275–285.

Lerner, J. and J. Tirole (2002). Some simple economics of open source. The journal of

industrial economics 50(2), 197–234.

Lerner, J. and J. Tirole (2005). The scope of open source licensing. Journal of Law, Eco-

nomics, and Organization 21(1), 20.

Lind, P., M. Gonzalez, and H. Herrmann (2005). Cycles and clustering in bipartite networks.

Physical Review E 72(5), 56127.

Ljungberg, J. (2000). Open source movements as a model for organising. European Journal

of Information Systems 9(4), 208–216.

Luccio, F. and M. Sami (1969). On the decomposition of networks in minimally intercon-

nected subnetworks. Circuit Theory, IEEE Transactions on 16(2), 184–188.

143

BIBLIOGRAPHY

Luce, R. and A. Perry (1949). A method of matrix analysis of group structure. Psychome-

trika 14(2), 95–116.

Lutz, M. (1996). Programming python, Volume 8. O’Reilly.

MacCormack, A., J. Rusnak, and C. Baldwin (2006). Exploring the structure of complex

software designs: An empirical study of open source and proprietary code. Management

Science 52(7), 1015.

Mani, D. and J. Moody (2014). Moving beyond stylized economic network models: The

hybrid world of the indian firm ownership network. American Journal of Sociology 119(6),

pp. 1629–1669.

Marx, K. (1990). Capital: a critique of political economy. Volume 1. Penguin Books in

association with New Left Review.

McFarland, D. A. (2001). Student resistance: How the formal and informal organization of

classrooms facilitate everyday forms of student defiance1. American Journal of Sociol-

ogy 107(3), 612–678.

Merton, R. K. (1979). The sociology of science: Theoretical and empirical investigations.

University of Chicago Press.

Michels, R. (1915). Political parties: A sociological study of the oligarchical tendencies of

modern democracy. Hearst’s International Library Company.

Miller Jr, R. G. (2011). Survival analysis, Volume 66. John Wiley & Sons.

Mockus, A., R. Fielding, and J. Herbsleb (2002). Two Case Studies of Open Source Soft-

ware Development: Apache and Mozilla. ACM Transactions on Software Engineering and

Methodology 11(3), 309–346.

Moglen, E. (1999). Anarchism triumphant: Free software and the death of copyright. First

Monday 4(8).

Mokken, R. (1979). Cliques, clubs and clans. Quality & Quantity 13(2), 161–173.

Moody, J. (2004). The structure of a social science collaboration network: Disciplinary cohe-

sion from 1963 to 1999. American Sociological Review 69(2), 213–238.

Moody, J., D. McFarland, and S. Bender-deMoll (2005). Dynamic network visualization.

American Journal of Sociology 110(4), 1206–1241.

Moody, J. and D. White (2003). Social cohesion and embeddedness: A hierarchical concep-

tion of social groups. American Sociological Review 68(1), 103–28.

Murdock, I. (1994). The Debian manifesto.

Newman, M. (2003). The structure and function of complex networks. SIAM Review 45, 167.

144

Bibliography

Newman, M. (2010). Networks: an introduction. Oxford university press.

Newman, M., A. Barabási, and D. Watts (2006). The structure and dynamics of networks.

Princeton University Press.

Newman, M., S. Strogatz, and D. Watts (2001). Random graphs with arbitrary degree distri-

butions and their applications. Physical Review E 64(2), 26118.

Nussbaum, L. and S. Zacchiroli (2010). The ultimate debian database: Consolidating bazaar

metadata for quality assurance and data mining. In 7th IEEE Working Conference on Mining

Software Repositories (MSR’2010).

O’Mahony, S. (2003). Guarding the commons: how community managed software projects

protect their work. Research Policy 32(7), 1179–1198.

O’Mahony, S. and F. Ferraro (2007a). The emergence of governance in an open source com-

munity. The Academy of Management Journal 50(5), 1079–1106.

O’Mahony, S. and F. Ferraro (2007b). The Emergence of Governance in an Open Source

Community. The Academy of Management Journal (AMJ) 50(5), 1079–1106.

Opsahl, T. (2011). Triadic closure in two-mode networks: Redefining the global and local

clustering coefficients. Social Networks 34.

Ostrom, E. (1999). Coping with tragedies of the commons. Annual review of political sci-

ence 2(1), 493–535.

Ouchi, W. (1980). Markets, bureaucracies, and clans. Administrative science quarterly 25(1),

129–141.

O’Mahony, S. and K. R. Lakhani (2011). Organizations in the shadow of communities. Re-

search in the Sociology of Organizations 33, 3–36.

Padgett, J. F. (2010). Open elite? social mobility, marriage, and family in florence, 1282–

1494*. Renaissance quarterly 63(2), 357–411.

Palla, G., I. Derényi, I. Farkas, and T. Vicsek (2005). Uncovering the overlapping community

structure of complex networks in nature and society. Nature 435(7043), 814–818.

Pérez, F. and B. E. Granger (2007, May). IPython: a System for Interactive Scientific Com-

puting. Comput. Sci. Eng. 9(3), 21–29.

Powell, W. (1990). Neither market nor hierarchy: Network forms of organization. Research

in Organizational Behavior 12, 295–336.

Powell, W., D. White, K. Koput, and J. Owen-Smith (2005). Network dynamics and field

evolution: The growth of interorganizational collaboration in the life sciences. American

journal of sociology 110(4), 1132–1205.

145

BIBLIOGRAPHY

Raymond, E. S. (1999). The Cathedral & the Bazaar: Musings on Linux and Open Source by

an Accidental Revolutionary. O’Reilly & Associates, Inc.

Ritchie, D. M. (1993). The development of the c language. ACM SIGPLAN Notices 28(3),

201–208.

Roberts, J., I. Hann, and S. Slaughter (2006). Understanding the motivations, participation,

and performance of open source software developers: A longitudinal study of the apache

projects. Management Science 52(7), 984.

Robins, G. and M. Alexander (2004). Small worlds among interlocking directors: Network

structure and distance in bipartite graphs. Computational & Mathematical Organization

Theory 10(1), 69–94.

Roca, M. (2007). Software libre: empresa y administración en España y Cataluña. Edicions

UOC.

Rothschild, J. and J. Whitt (1989). The Cooperative Workplace: Potentials and Dilemmas of

Organisational Democracy and Participation. Cambridge University Press.

Rothschild-Whitt, J. (1979). The collectivist organization: An alternative to rational-

bureaucratic models. American Sociological Review, 509–527.

Satow, R. (1975). Value-rational authority and professional organizations: Weber’s missing

type. Administrative Science Quarterly, 526–531.

Scott, J. and P. J. Carrington (2011). The SAGE handbook of social network analysis. SAGE

publications.

Seidman, S. (1983a). Ls sets as cohesive subsets of graphs and hypergraphs. Mathematical

Social Sciences 6(1), 87–91.

Seidman, S. (1983b). Network structure and minimum degree. Social networks 5(3), 269–287.

Seidman, S. and B. Foster (1978). A graph-theoretic generalization of the clique concept.

Journal of Mathematical sociology 6(1), 139–154.

Selznick, P. (1949). TVA and the grass roots: A study of politics and organization, Volume 3.

University of California Press.

Shaw, A. and B. M. Hill (2014). Laboratories of oligarchy? how the iron law extends to peer

production. Journal of Communication 64(2), 215–238.

Shwed, U. and P. Bearman (2010). The temporal structure of scientific consensus formation.

American sociological review 75(6), 817–840.

Simon, H. A. (1962). The architecture of complexity. Proceedings of the American philo-

sophical society 106(6), 467–482.

146

Bibliography

Stallman, R. M. (1985). The GNU manifesto.

Stallman, R. M. (1998). The GNU Project. GNU project.

Stallman, R. M. (2002a). What is free software? Free Society: Selected Essays of , 3–9.

Stallman, R. M. (2002b). Why open source misses the point of free software. Free Society:

Selected Essays of , 75–83.

Stewman, S. and S. L. Konda (1983). Careers and organizational labor markets: Demographic

models of organizational behavior. American Journal of Sociology, 637–685.

Stiglitz, J. (1996). Whither socialism? The MIT Press.

Tanenbaum, A. and A. Woodhull (1996). Operating systems: design and implementation.

Prentice Hall.

Tarjan, R. (1972). Depth-first search and linear graph algorithms. In Switching and Automata

Theory, 1971., 12th Annual Symposium on, pp. 114–121. IEEE.

Thompson, J. (2003). Organizations in action: Social science bases of administrative theory.

Transaction Pub.

Torrents, J. (2015, July). Structural cohesion: Visualization and heuristics for fast computation

with networkx and matplotlib. In Proceedings of the 14th Python in Science Conference

(SciPy2015), Austin, TX USA, pp. 70–80.

Torrents, J. and F. Ferraro (2015). Structural cohesion: Visualization and heuristics for fast

computation. Journal of Social Structure 16(8).

Tönnies, F. (1974). Community and association:(Gemeinschaft und Gesellschaft). Taylor &

Francis.

Uzzi, B., L. Amaral, and F. Reed-Tsochas (2007). Small-world networks and management

science research: a review. European Management Review 4(2), 77–91.

Uzzi, B. and J. Spiro (2005). Collaboration and Creativity: The Small World Problem. Amer-

ican Journal of Sociology 111(2), 447–504.

Van Rossum, G. (1995). Python reference manual. Centrum voor Wiskunde en Informatica.

Vedres, B. and D. Stark (2010). Structural folds: Generative disruption in overlapping groups.

American Journal of Sociology 115(4), pp. 1150–1190.

Von Hippel, E. and G. Von Krogh (2003). Open source software and the" private-collective"

innovation model: Issues for organization science. Organization Science, 209–223.

Von Krogh, G., S. Spaeth, and K. Lakhani (2003). Community, joining, and specialization in

open source software innovation: a case study. Research Policy 32(7), 1217–1241.

147

BIBLIOGRAPHY

Wasserman, S. and K. Faust (1994). Social network analysis: Methods and applications.

Cambridge University Press.

Watts, D. (1999a). Networks, Dynamics, and the Small-World Phenomenon. American Jour-

nal of Sociology 105(2), 493–527.

Watts, D. (1999b). Small Worlds: The Dynamics of Networks Between Order and Random-

ness. Princeton University Press.

Watts, D. and S. Strogatz (1998). Collective dynamics of ‘small-world’ networks. Na-

ture 393(6684), 409–10.

Weber, S. (2004). The Success of Open Source. Harvard University Press.

West, J. (2003). How open is open enough? Melding proprietary and open source platform

strategies. Research Policy 32(7), 1259–1285.

West, J. and S. O’Mahony (2008). The role of participation architecture in growing sponsored

open source communities. Industry & Innovation 15(2), 145–168.

White, D. and F. Harary (2001). The cohesiveness of blocks in social networks: Node con-

nectivity and conditional density. Sociological Methodology, 305–359.

White, D. and M. Newman (2001). Fast approximation algorithms for finding node-

independent paths in networks. Santa Fe Institute Working Papers Series.

White, D., J. Owen-Smith, J. Moody, and W. Powell (2004). Networks, fields and organiza-

tions: micro-dynamics, scale and cohesive embeddings. Computational & Mathematical

Organization Theory 10(1), 95–117.

White, H. C. (1970). Chains of opportunity: System models of mobility in organizations.

Harvard University Press Cambridge, MA.

Wilier, D. (1967). Max Weber’s missing authority type. Sociological Inquiry 37, 231–239.

Williamson, O. (1975). Markets and Hierarchies, Analysis and Antitrust Implications: A

Study in the Economics of Internal Organization. Free Press.

Wuchty, S., B. Jones, and B. Uzzi (2007). The increasing dominance of teams in production

of knowledge. Science 316(5827), 1036.

148

	JTV_COVER
	thesis

