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Abstract

“Given a field k and a finite group G, is there a Galois field extension K|k such

that its Galois group is isomorphic to G?” Such an innocent question and yet

it remains unsolved: this is what is known as the Inverse Galois Problem. In

the present Bachelor thesis we show that this question has a positive answer if

the field is Q and the group is either Sn or An, following the strategy devised by

David Hilbert in his paper Über die Irreduzibilität ganzer rationaler Funktionen

mit ganzzahligen Koeffizienten (1892). We start with two basic examples and an

exposition of relevant results from algebraic number theory, and then move on to

proving Hilbert’s Irreducibility Theorem. As a consequence, we prove that the

symmetric group Sn and the alternating group An are realisable as Galois groups

over the field of rational numbers Q.
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1 Introduction

1.1 The Inverse Galois Problem

Almost two hundred years ago Évariste Galois wrote down his revolutionary ideas

about the resolution of algebraic equations. These ideas developed into what we

nowadays call Galois theory, which provides a way to reformulate certain problems

from field theory in terms of group theory. The Inverse Galois Problem arises when

we wonder if it is possible to go in the opposite direction: if we fix a base field k

and a finite group G, is it possible to find a Galois field extension of k having G as

its Galois group? The answer to this question and the difficulty to find it depends

greatly on k and G.

Setting k = Q leads to the classical formulation of the problem. One of the first

mathematicians to ever explicitly work in that direction was David Hilbert. In

a paper from 1892 titled Über die Irreduzibilität ganzer rationaler Funktionen mit

ganzzahligen Koeffizienten [5] he proved that the Inverse Galois Problem has a

positive answer for Sn and An over Q. He constructed polynomials over a purely

transcendental extension of Q realising the desired groups, and then showed that

this construction could be brought back down to the rational field. The mathe-

matical language from his paper was updated and brought closer to the realm of

algebra in two papers from the late 1970s and mid 1980s: a paper from Enric Nart

and Núria Vila on the construction of the polynomials realising Sn and An [12], and

a paper from Núria Vila on Hilbert’s irreducibility theorem [19]. After Hilbert’s

paper came many other important results, such as the realisation of all solvable

groups over Q done by Shafarevich in the 1950s. Many new techniques have been

developed since, giving new insight to the problem, but the Inverse Galois Problem

as a whole remains still unsolved.

1.2 Structure of the thesis

The main goal of this thesis is to understand the results found by Hilbert, through

the study of the chapter on hilbertian fields from Helmut Völkein’s Groups as Galois

groups [20] and the aforementioned papers from Vila and Nart.

In chapter 2 we present two basic examples, namely, we show which groups can
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be found as Galois groups of irreducible polynomials of degree 3 and 4. By doing

so, we wish to familiarise the reader with the topic at hand and introduce them

to a useful technique relating the discriminant of a polynomial and the alternating

group.

Chapter 3 is a compilation of diverse results that we have had to study in order to

have the necessary background knowledge for the next chapters. These preliminaries

range from hilbertian fields to ramification of prime ideals in Dedekind domains and

Hensel’s lemma. We are aware that these topics are not treated in full depth, but

the reader should keep in mind that results and definitions included in chapter 2

are seen as tools that shall be needed later, and do not lie at the focus of this

thesis. That is why theorems, propositions, and lemmas are stated without proof.

We refer the interested reader back to the multiple references in each section and

at the bibliography.

In chapter 4 we prove Hilbert’s irreducibility theorem. We do so by first proving

some auxiliary results and then giving the main proof. This allows for a more

structured exposition and is intended to make the proof easier to follow.

Finally, chapter 5 offers a thorough revision of the paper �Sobre l’existència d’equacions

que realitzen Sn i An com a grups de Galois d’un cos de números�[12], with extended

proofs and commentary.

1.3 Notation

– In general, lowercase letters like a, b, c denote numbers or specific values, and

uppercase letters like T,X, Y are used for polynomial indeterminates and

transcendental elements. Lowercase letters like s, t, x, y, z can denote function

variables, numbers, indeterminates, etc. depending on the context.

– Rings are commutative with unit element and fields have characteristic 0.

– Given a polynomial f with coefficients in a field k, and given a splitting field

K of f over k, Gal(f |k) denotes the Galois group of f over k. Similarly,

Gal(K|k) denotes the Galois group of the field extension K|k. These are

obviously the same group.

– By ’for almost all’ we mean ’for all but finitely many’.
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2 Groups of degree 3 and 4

From Galois theory we know that the Galois group of an irreducible polynomial

can be seen as a transitive subgroup of the symmetric group Sn, where n is the

degree of the polynomial. Thus, given an irreducible polynomial of degree n there

are only finitely many possibilities for its Galois group. In this section we consider

irreducible polynomials of degree 3 and 4 over a field and give conditions to uniquely

determine their Galois groups. We shall give general results for polynomials over

any field K of characteristic 0; in particular, these apply in the case where K = Q.

References for this chapter are [7] and [21].

Definition 2.1. Let K be a field, f(X) ∈ K[X] a monic polynomial of degree n,

and let α1, . . . , αn be the roots of f in an algebraic closure of K. The discriminant

of f is

4(f) =
∏
i<j

(αi − αj)2.

Note that 4(f) = 0 if, and only if, αi = αj for some i 6= j. In characteristic 0 every

irreducible polynomial of degree n has n distinct roots, so in our context all irre-

ducible polynomials will have nonzero discriminant. Besides, the action of Gal(f |K)

on the roots fixes 4(f) because the discriminant is a symmetric polynomial on the

αi’s, so 4(f) ∈ K.

Lemma 2.2. Let f be an irreducible polynomial of degree n over a field K. Then

Gal(f |K) is a subgroup of An if, and only if, 4(f) is a square in K.

Proof. Let τ ∈ Gal(f |K). Then,

τ
(√
4(f)

)
= τ

(∏
i<j

(αi − αj)
)

=
∏
i<j

(ατ(i) − ατ(j)) = sign(τ)
∏
i<j

(αi − αj)

Hence,

τ
(√
4(f)

)
=
√
4(f) ⇔ sign(τ) = 1 ⇔ τ ∈ An,

which means that

Gal(f |K) ⊆ An ⇔ Gal(f |K) fixes
√
4(f) ⇔

√
4(f) ∈ K ⇔ 4(f) ∈ K∗2

as we wanted to see. �
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2.1 Groups of order 3

Let K be a field and let f(X) = X3 + aX2 + bX + c ∈ K[X].

Proposition 2.3. Suppose f(X) is irreducible over K. Then:

Gal(f |K) ∼=

S3 if 4(f) /∈ K∗2

A3 = C3 if 4(f) ∈ K∗2.

Proof. We have that {e}, A3 and S3 are exactly the transitive subgroups of S3.

These are thus the options for Gal(f |K) viewed as a group of permutations acting

on the subindices of the roots α1, α2, α3 of f(X). But if Gal(f |K) ∼= {e}, then

α1, α2, α3 ∈ K and f(X) wouldn’t be irreducible. So the only two cases left to

consider are S3 and A3. Now the result is immediate by Lemma 2.2.: if4(f) ∈ K∗2,

then Gal(f |K) ∼= A3; if 4(f) /∈ K∗2, then Gal(f |K) ∼= S3 . �

2.2 Groups of order 4

Again, let K be a field and let f(X) = X4 + aX3 + bX2 + cX + d ∈ K[X].

Definition 2.4. Let α1, . . . , α4 be the roots of f in an algebraic closure of K. The

cubic resolvent of f is the polynomial

g(Y ) = (Y − (α1α2 + α3α4))(Y − (α1α3 + α2α4))(Y − (α1α4 + α2α3)).

Since the coefficients of g are symmetric polynomials in α1, . . . , α4, they lie in K

and thus g(Y ) ∈ K[X]. A direct calculation shows that 4(g) = 4(f).

The transitive subroups of S4 are the trivial group {e}, the Klein group V4, the

cyclic group C4, the dihedral group D4, the alternating group A4, and S4 itself.

Proposition 2.5. Suppose f is irreducible over K. Let g be its cubic resolvent and

let Kg the corresponding splitting field, set m = [Kg : K]. Then m ∈ {1, 2, 3, 6} and
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Gal(f |K) ∼=



S4 if m = 6

A4 if m = 3

V4 if m = 1

D4 or C4 if m = 2.

Proof. Once again, we do not need to consider the case Gal(f |K) ∼= {e} because

we are assuming that the roots of f do not lie in K.

Clearly m | 3! because Gal(g|K) ⊆ S3 and #S3 = 3! = 6. It is also evident

that Kf = K(α1, α2, α3, α4) is a field extension of Kg = K(β1, β2, β3), where β1 =

α1α2 + α3α4, β2 = α1α3 + α2α4, and β3 = α1α4 + α2α3 are the roots of g.

If m = 6, then Gal(g|K) ∼= S3 and by Lemma 2.2. we get 4(g) /∈ K∗2. Since

4(f) = 4(g), we have 4(f) /∈ K∗2 as well, and so Gal(f |K) * A4. But m | [Kf :

K], so the only option left is Gal(f |K) ∼= S4.

If m = 3, now Gal(g|K) ∼= A3. This implies 4(f) = 4(g) ∈ K∗2 and Gal(f |K) is

a subgroup of A4, but since m | [Kf : K], the isomorphism Gal(f |K) ∼= A4 is the

only possibility (the orders of the other groups are not divisible by 3).

We prove the remaining cases by contrapositive. Suppose Gal(f |K) � V4. Then it

has to be D4 or C4 and contains a 4-cycle. In that case there is a pair (i, j) such

that βi and βj are swapped by said cycle, which means that Kg 6= K. Hence m > 1.

Finally, suppose Gal(f |K) ∼= V4 (i.e. � C4, � D4). Now all βi’s are fixed by the

elements of the Galois group and thus [Kg : K] = 1. �
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3 Preliminary results

In this chapter we shall make a summary of the necessary definitions and results

needed to prove the main theorems of chapters 4 and 5. If we aim to see that Q is

hilbertian, it is clear that we first need to know what a hilbertian field is, that is the

purpose of section 3.1. In section 3.2. we define Dedekind domains and algebraic

number fields. Section 3.3. presents the basic facts from ramification theory in the

context of algebraic number fields. And finally, in Section 3.4. we make a minimal

introduction to complete fields, just enough to state Hensel’s Lemma.

3.1 Hilbertian fields

First, we recall the notion of a purely transcendental extension of a field and then

define hilbertian fields. See [21] for the part on transcendental extensions and [20]

for further treatment on hilbertian fields.

Definition 3.1. LetK be a field, L an extension field ofK and let x, x1, . . . , xm ∈ L.

We say x is algebraically dependent on x1, . . . , xm over K if x is algebraic over

K(x1, . . . , xm). In other words, if there exist p0, . . . , pr ∈ K(x1, . . . , xm) such that

pi 6= 0 for some i = 0, . . . , r and x satisfies an algebraic equation of the form

prx
r + pr−1x

r−1 + · · ·+ p1x+ p0 = 0 .

We say that x1, . . . , xm are algebraically independent if none of them is alge-

braically dependent on the others. We also call the elements x1, . . . , xm indepen-

dent transcendentals over K.

If x1, . . . , xm are independent transcendentals and X1, . . . , Xm are indeterminates

over a field K, then there is a one-to-one correspondence between a polynomial

g(X1, . . . , Xm) ∈ K[X1, . . . , Xm] and a polynomial expression g(x1, . . . , xm) with

coefficients inK. ThereforeK[X1, . . . , Xm] ∼= K[x1, . . . , xm] and it follows that their

fields of fractions are isomorphic too, K(X1, . . . , Xm) ∼= K(x1, . . . , xm). Hence, the

independent transcendentals x1, . . . , xm and the indeterminates X1, . . . , Xm have

the same algebraic properties with respect to the field K.

Definition 3.2. Given a field K, we say a field extension L is purely transcen-

dental if L = K(X1, . . . , Xm), where X1, . . . , Xm are algebraically independent.
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Proposition 3.3. Let X1, . . . , Xm be algebraically independent over a field K and

let K̄ be an algebraic closure of K. Set X = (X1, . . . , Xm) .

1. If K ′|K is finite Galois, then K ′(X)|K(X) is also finite Galois and the re-

striction map Gal(K ′(X)|K(X)) −→ Gal(K ′|K) is an isomorphism. In par-

ticular, every field between K ′(X) and K(X) is of the form K ′′(X), and

[K ′′(X) : K(X)] = [K ′′ : K].

2. Let f(X, Y ) ∈ K(X)[Y ] be irreducible over K(X) and let L = K(X)[Y ]/(f)

be the corresponding field extension of K(X). Then K is algebraically closed

in L if, and only if, f is irreducible over K(X). In that case, f(X, Y ) is

irreducible over K ′(X) for every field extension K ′|K such that X1, . . . , Xm, Y

are independent transcendentals over L.

Definition 3.4. A field K is called hilbertian if it satisfies any of the following

equivalent conditions:

1. For each irreducible polynomial f(X, Y ) ∈ K[X, Y ] with degree > 1 in Y ,

there exist infinitely many b ∈ K such that the specialised polynomial f(b, Y )

is also irreducible in K[Y ].

2. Given a finite extension L|K and g1(X, Y ), . . . , gm(X, Y ) ∈ L[X, Y ] irre-

ducible polynomials over L(X) as polynomials in Y , there exist infinitely

many b ∈ K such that the specialised polynomials g1(b, Y ), . . . , gm(b, Y ) are

irreducible in L[Y ].

3. For any p1(X, Y ), . . . , pr(X, Y ) ∈ K[X, Y ], irreducible and of degree > 2 as

polynomials in Y over K(X), there exist infinitely many b ∈ K such that the

specialised polynomials p1(b, Y ), . . . , pr(b, Y ) are irreducible in K[Y ].

Observation 3.5. If K is hilbertian, every finitely generated extension of K is

hilbertian as well.

3.2 Dedekind domains and algebraic number fields

We define the concept of Dedekind domain and show how it relates to algebraic

number fields. For further reference see [1] and [14].
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Definition 3.6. A Dedekind domain is a domain in which every nonzero ideal

can be expressed uniquely as a product of prime ideals.

Observation 3.7. There are actually other three equivalent definitions of a Dedekind

domain, which can be easily found in the literature (cf. for instance [14]). One of

said definitions explicits an interesting property of Dedekind domains, namely, ev-

ery nonzero prime ideal of a Dedekind domain is maximal. Therefore, if A is a

Dedekind domain and p is a prime ideal of A, then the quotient ring A/p is a field.

Definition 3.8. Let B be a ring, A a subring of B. An element x ∈ B is an integer

over A if x is a root of a monic polynomial with coefficients in A, that is, if there

exist a0, ..., an−1 ∈ A, n > 0, such that xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0.

If every x ∈ B is an integer over A, B is said to be integral over A, and that B|A
is an integral extension.

If every x ∈ B which is an integer over A actually lies in A, we say that A is

integrally closed in B. If A is a domain, we say that it is an integrally closed

domain if it is integrally closed in its field of fractions.

Proposition 3.9. Let A ⊆ B ⊆ C be rings. If C is integral over B and B is

integral over A, then C is integral over A.

Proposition 3.10. Let B be a ring, A ⊆ B a subring. Let A′ be the set of x ∈ B
which are integral over A. Then A′ is a subring of B, integrally closed in B and

integral over A.

Definition 3.11. The ring A′ from the previous proposition is called the integral

closure of A in B.

Suppose that K is an algebraic number field, i.e. a finite algebraic extension of

Q. Then we say that an algebraic number in K is an algebraic integer if it is a

root of a monic polynomial with coefficients in Z. The ring of integers of K is

the integral closure of Z in K. In particular, the elements of Z are called rational

integers because Z is the integral closure of Z in Q.

Proposition 3.12. Let A be a Dedekind domain, K its field of fractions, L|K a

finite field extension, and B the integral closure of A in L. Then B is a Dedekind

domain.

And since Z is a Dedekind domain, we have the following result:

Corollary 3.13. The ring of integers of an algebraic number field is a Dedekind

domain.
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3.3 Ramification of prime ideals

In this section we introduce basic concepts and propositions from algebraic number

theory. Results and their proofs can be found in [14], other consulted references are

[10] and [13].

Let A be the ring of integers of an algebraic number field K. Let L be a finite field

extension of K of degree [L : K] = n and let B be its ring of integers. If p is a

nonzero prime ideal of A, the extended ideal pB can be written uniquely as

pB = Pe1
1 · · ·Peg

g ,

where Pi are prime ideals of B. If P = Pi for some i, we say that P lies over p

or that P divides p, and write P|p. Note that P ∩ A = p. The quotient B/P is a

field containing A/p.

Definition 3.14. A prime ideal P of B is called ramified in L|K if it has exponent

e > 1 in the factorisation of pB (p = P ∩ A). Moreover, we say P is totally

ramified in L|K if pB = Pn. Similarly, P is called unramified in L|K if it has

exponent e = 1 and the residue field extension B/P|A/p is separable.

We say that a prime ideal p of A is unramified in L|K if each prime factor Pi of

p in B is unramified in L|K. Otherwise we say it is ramified.

The field extension L|K is called unramified if all prime ideals of A are unramified.

Definition 3.15. In the context above,

– for each 1 6 i 6 g, the exponent ei is called the ramification index of Pi

over p;

– for each 1 6 i 6 g, the degree of the residue field extension, fi := [B/Pi : A/p],

is called the inertia degree of Pi over p.

– the number g is called the decomposition number of p in L|K.

Proposition 3.16. Let K be an algebraic number field with ring of integers A, and

let L be a finite field extension of K of degree n with ring of integers B. Moreover,

let p be a prime ideal of A which factors in B as pB = Pe1
1 · · ·P

eg
g and, for each i,

let fi = [B/Pi : A/p]. Then
g∑
i=1

eifi = n .

9



The result above can be proved more generally for separable field extensions, but

since we are working with algebraic number fields, which are perfect because they

have characteristic 0, every extension of algebraic number fields is separable and so

the result always applies.

For the rest of this section let us further assume that L|K is a Galois extension and

set G = Gal(L|K).

Proposition 3.17. Let p be a nonzero prime ideal of A. Then G acts transitively

on {P1, . . . ,Pg}, the set of primes of B above p.

Corollary 3.18. If L|K is Galois, one has that e = e1 = · · · = eg and f = f1 =

· · · = fg, and so the identity in Proposition 3.16. becomes

efg = n .

Now, fix a prime P over p and set L̄ := B/P and K̄ := A/p.

Definition 3.19. The decomposition group of P in L|K is the stabiliser of P

by G, DP = {σ ∈ G|σ(P) = P}. The subfield of L fixed by DP is called the

decomposition field of P in L|K and we shall denote it by LDP .

The decomposition group DP acts on the residue field L̄ as follows; σ(x mod P) =

σ(x) mod P. This action is indeed well defined, because x ≡ y (mod P) implies

σ(x) ≡ σ(y) (mod σ(P)) and for all σ ∈ DP one has σ(P) = P.

Definition 3.20. The kernel of the homomorphism DP −→ Aut(L̄|K̄), that is, the

normal subgroup IP = {σ ∈ DP | σ(x) ≡ x (mod P)}, is known as the inertia

group of P in L|K. The subfield of L fixed by IP is called the inertia field of P

in L|K and is denoted by LIP .

Proposition 3.21. The residue field extension L̄|K̄ is normal, and the homomor-

phism DP −→ Gal(L̄|K̄) defines an isomorphism between DP/IP and Gal(L̄|K̄).

Proposition 3.22. The tower of field extensions L|LIP |LDP |K has extension de-

grees [L : LIP ] = e, [LIP : LDP ] = f , [LDP : K] = g.

Observation 3.23. The inertia field will play an important role in this thesis, so

we need to do a further remark about it. For a much more detailed presentation

see [14]. We have a prime ideal P in B and consider its inertia group IP and inertia
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field LIP . Then the ideal P∩LIP is unramified in LIP|K, and P is ramified in any

field extension of K between LIP and L.

To finish this section, we consider the relationship between the discriminant and

the ramification of prime ideals in the particular case of a monogenic field. Once

again, consult [14] for a more general and comprehensive treatment of discriminants

and ramification. Here we shall only state the particular results that will be needed

later.

Observation 3.24. We know what the discriminant of a polynomial is (Definition

2.1.), but the notion of discriminant can in fact be extended to a more general

context. For instance, let K be an algebraic field, A its ring of integers, and L a

finite extension of K. One can define δL|K , the relative discriminant of L|K,

which is an ideal of A. Turns out that, in the case where L is a monogenic field

extension of K, i.e. L = K(θ) for some θ ∈ L, and if f is the minimal polynomial

of θ in K, then δL|K = (4(f)).

Lastly, we state two important results which nail down the relationship between

discriminant and ramification:

Proposition 3.25. Let p be a nonzero prime ideal of A. Then p is ramified in L|K
if, and only if, p divides δL|K. In particular, there are only finitely many prime

ideals of A which are ramified in L|K.

Proposition 3.26. Let K ⊆ L ⊆ N be algebraic number fields such that N is the

smallest field containing L for which N |K is Galois, and let p be a nonzero prime

ideal of A, the ring of integers of K. Then p is ramified in L|K if, and only if, p is

ramified in N |L.

3.4 Hensel’s Lemma

In this section we introduce the concept of a complete field with respect to a valu-

ation and state Hensel’s lemma. We follow [2] and [13].

Definition 3.27. Let K be a field. A discrete valuation on K is a function

ν : K −→ Z ∪ {∞} satisfying

(i) ν(x) =∞⇔ x = 0,

11



(ii) for all x, y ∈ K, ν(x+ y) > min{ν(x), ν(y)},

(iii) the restriction of ν to K∗ is a homomorphism onto Z.

The ring Aν = {x ∈ K|ν(x) > 0} is called the valuation ring of ν, and the subset

pν = {x ∈ K|ν(x) > 0} of Aν is an ideal, called the valuation ideal of ν.

In the case where A is a Dedekind domain with field of fractions K (for example, if

A is the ring of integers of an algebraic number field K) and if p is a nonzero prime

ideal of A, one can define a discrete valuation on K as follows: for x ∈ K we set

ν(x) = ep, where ep is the exponent of p in the unique factorisation of the principal

fractional ideal xA, and ν(0) = ∞. We call this discrete valuation on K a p-adic

valuation. Conversely, if K is the field of fractions of a Dedekind domain A and

ν is a discrete valuation on K such that A ⊆ Aν , then ν is a p-adic valuation for

some prime ideal p of A.

We now introduce the concept absolute value and see how discrete valuations can

be used to define absolute values.

Definition 3.28. An absolute value on a field K is a function | · | : K −→ R
satisfying

(i) |x| > 0 for all x ∈ K and |x| = 0⇔ x = 0,

(ii) |xy| = |x||y|,

(iii) |x+ y| 6 |x|+ |y| (triangle inequality).

Our interest lies in the following relation between absolute values and discrete val-

uations: if K is a field with a discrete valuation ν, then we can define an absolute

value setting |x| = C−ν(x) for some C ∈ R, C > 1. In the case where K is the field

of fractions of a Dedekind domain and ν is a p-adic valuation for some prime ideal

p in A, we say | · | is a p-adic absolute value.

Definition 3.29. Let K be a field with an absolute value | · |. We say that a

sequence (xn)n∈N of elements of K is a Cauchy sequence if

∀ε > 0, ∃N ∈ N; ∀m,n > N, |xm − xn| < ε .
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The field K is said to be complete with respect to | · | if the limit of every Cauchy

sequence lies in K. Given a field K with an absolute value | · | and a field K̂ with

absolute value || · ||, and if || · || extends | · | in the sense that |x| = ||x|| for all x ∈ K,

then we say that K̂ is the completion of K if K̂ is complete and is the closure of

K in K̂ for || · ||.

The following shows we can really refer to K̂ as the completion of K:

Proposition 3.30. Every field K with an absolute value has a completion, and this

completion is unique up to isomorphism of fields with an absolute value.

With all this notation, we can finally state

Proposition 3.31. (Hensel’s Lemma) Let A be a discrete valuation ring with

maximal ideal p, and suppose its field of fractions K is complete with respect to the

p-adic absolute value. Let f(X) ∈ A[X] be a primitive polynomial and let f̄(X) ∈
A/p[X] be its reduction mod p. Suppose there exist relatively prime polynomials

ḡ(X), h̄(X) ∈ A/p[X] such that

f̄(X) ≡ ḡ(X)h̄(X) (mod p) .

Then f(X) factors in A[X] as

f(X) = g(X)h(X)

where g(X), h(X) ∈ A[X], deg(g) = deg(ḡ) and

g(X) ≡ ḡ(X) (mod p) and h(X) ≡ h̄(X) (mod p) .

13



4 Hilbert’s irreducibility theorem

In this section we prove Hilbert’s irreducibility theorem, i.e. Q is a hilbertian field.

Theorems and proofs are taken mainly from [20]. See [19] for a more succinct proof

of the main theorem.

Before actually proving Hilbert’s irreducibility theorem, we shall see some previous

results in order to make the final proof much simpler and easy to follow.

Definition 4.1. A set Ω ⊂ N is sparse if there exists δ ∈ R, 0 < δ < 1, such that

|Ω ∩ {1, . . . , N}| 6 N δ

for almost all N ∈ N.

Lemma 4.2. Every finite set is sparse. More generally, a finite union of sparse

sets is sparse.

Proof. Let Ω = {a1, ..., an} be a finite set, we can assume an = max16i6n ai. Then

|Ω| 6 an and so |Ω ∩ {1, . . . , N}| 6 an always holds. Let N0 = an + 1 > an and

note that logN0
an < 1. For every N > N0 we have logN an 6 logN0

an, therefore

|Ω∩{1, . . . , N}| 6 an = N logN an 6 N logN0
an . This proves the first statement of the

lemma.

To see the second statement, let m ∈ N and Θ =
⋃m
i=1 Θi, where Θi are sparse

sets for all i = 1, . . . ,m, that is, for every i there exists 0 < δi < 1 such that

|Θi ∩ {1, . . . , N}| 6 N δi for almost all N . Set δ0 := max16i6m δi. Now,

|Θ ∩ {1, . . . , N}| = |
( m⋃
i=1

Θi

)
∩ {1, . . . , N}|

= |
m⋃
i=1

(
Θi ∩ {1, . . . , N}

)
|

=
m∑
i=1

|Θi ∩ {1, . . . , N}|

=
m∑
i=1

N δi

6 mN δ0 = N logN m+δ0 .
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This time let N0 ∈ N be large enough, so that logN0
m < 1 − δ0. Then, for all

N > N0,

|Θ ∩ {1, . . . , N}| 6 N logN m+δ0 6 N logN0
m+δ0 ,

where logN0
m+ δ0 < 1. Thus, Θ is a sparse set. �

The following lemma states a property that will be needed to prove the next propo-

sition.

Lemma 4.3. Let s0 < · · · < sm ∈ R, m > 1; let χ(s) be a real-valued function

defined for s0 6 s 6 sm and m times continuously differentiable; and let Vm be the

Vandermonde determinant

Vm =

∣∣∣∣∣∣∣∣∣∣∣

1 s0 s2
0 · · · sm0

1 s1 s2
1 · · · sm1

...
...

...
. . .

...

1 sm s2
m · · · smm

∣∣∣∣∣∣∣∣∣∣∣
=

∏
06j<i6m

(si − sj)

Then there exists ξ ∈ R with s0 6 ξ 6 sm such that

χ(m)(ξ)

m!
=

1

Vm

∣∣∣∣∣∣∣∣∣∣∣

1 s0 s2
0 · · · sm−1

0 χ(s0)

1 s1 s2
1 · · · sm−1

1 χ(s1)
...

...
...

. . .
...

...

1 sm s2
m · · · sm−1

m χ(sm)

∣∣∣∣∣∣∣∣∣∣∣
.

Proof. First we define the function

F (s) =

∣∣∣∣∣∣∣∣∣∣∣

1 s0 s2
0 · · · sm−1

0 χ(s0)

1 s1 s2
1 · · · sm−1

1 χ(s1)
...

...
...

. . .
...

...

1 s s2 · · · sm−1 χ(s)

∣∣∣∣∣∣∣∣∣∣∣
and set

c =
F (sm)

(sm − s0) · · · (sm − sm−1)
.

We then define another function

G(s) = F (s)− c(s− s0) · · · (s− sm−1)
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such thatG(s) = 0 at them+1 points s = s0, . . . , sm. Thus, G(m)(s) = F (m)(s)−m!c

equals to zero at least at one point ξ between s0 and sm and we get

F (m)(ξ) = m!c .

Besides, if we expand the determinant that defines F (s) we obtain

F (s) =
m−1∑
i=0

cis
i + Vm−1χ(s) ,

where ci are constants which depend on s0, . . . , sm and Vm−1 is the Vandermonde

determinant of s0, . . . , sm−1. This way,

F (m)(ξ) = Vm−1χ
(m)(ξ) ,

and if we compare the two expressions for F (m)(ξ) we get

χ(m)(ξ)

m!
=

c

Vm−1

=
F (sm)

(sm − s0) · · · (sm − sm−1)Vm−1

=
F (sm)

Vm

as desired. �

Proposition 4.4. Let

ψ(t) =
∞∑
i=n

ait
i

be a Laurent series with complex coefficients, i.e. n ∈ Z and ai ∈ C for all i,

converging for all t 6= 0 in a neighbourhood U of 0 in C. If ψ is not a Laurent

polynomial (that is, if it has infinitely many nonzero terms), then the set B(ψ) :=

{b ∈ N | ψ(1
b
) ∈ Z} is sparse.

Proof. Assume that B(ψ) is infinite (otherwise by Lemma 4.2. it would trivially

be sparse). We first prove three claims. To begin with, let us see that (1) all

coefficients ai lie in R. Consider the Laurent series

ψ̄(t) =
∞∑
i=n

āit
i ,

obtained by replacing each coefficient ai with its complex conjugate āi. This series

has the same radius of convergence as ψ, because
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Rψ =
1

lim sup
n→∞

n
√
|an|

=
1

lim sup
n→∞

n
√
|ān|

= Rψ̄ .

Furthermore, ψ̄(1
b
) = ψ(1

b
) for all b ∈ B(ψ) because ψ(1

b
) ∈ Z and thus Im

(
ψ(1

b
)
)

=

0 = −Im
(
ψ̄(1

b
)
)
. Since we assumed B(ψ) to be infinite, it follows that ψ̄ = ψ.

Hence, all coefficients ai must be real.

Then

χ(s) := ψ(s−1) =
∞∑
i=n

ais
−i

is a real valued function, defined for large values of s. Note that the condition in

B(ψ) can also be expressed in terms of χ: B(ψ) = {b ∈ N | χ(b) ∈ Z}.

Secondly, we claim that (2) there exist λ > 0 and m, S ∈ N such that, if s0, . . . , sm ∈
N with χ(s0), . . . , χ(sm) ∈ Z and S < s0 < · · · < sm, then

sm − s0 > sλ0 .

To see this, let m large enough, so that the series

χ(m)(s) :=
∞∑
i=r

dis
−i

has only negative powers of s, i.e. r > 0. We have di ∈ R for all i, and we can

assume dr 6= 0 because χ is not a Laurent polynomial and has therefore infinitely

many nonzero coefficients. Then

lim
s→∞

srχ(m)(s) = lim
s→∞

sr
∞∑
i=r

dis
−i

= lim
s→∞

sr
(
dr
sr

+
dr+1

sr+1
+ · · ·

)
= lim

s→∞

(
dr +

dr+1

s
+ · · ·

)
= dr .

Hence there exists S ∈ N such that, for s > S,

0 < |srχ(m)(s)| < |2dr|
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and so

0 <
sr

|2dr|
<

1

|χ(m)(s)|
.

Now assume s0, . . . , sm ∈ N to be as desired, i.e. S < s0 < · · · < sm, and take ξ

satisfying Lemma 4.3., that is, s0 < ξ < sm and

χ(m)(ξ)

m!
=

1

Vm

∣∣∣∣∣∣∣∣∣∣∣

1 s0 s2
0 · · · sm−1

0 χ(s0)

1 s1 s2
1 · · · sm−1

1 χ(s1)
...

...
...

. . .
...

...

1 sm s2
m · · · sm−1

m χ(sm)

∣∣∣∣∣∣∣∣∣∣∣
Then

0 6= Vmχ
(m)(ξ)

m!
∈ Z ,

so its absolute value is > 1 and therefore

Vm >
m!

|χ(m)(ξ)|
>

1

|χ(m)(ξ)|
.

Besides, one has

Vm =
∏

06j<i6m

(si − sj) 6
∏

06j<i6m

(sm − s0) = (sm − s0)
∑m+1
k=1 = (sm − s0)

(m+1)(m+2)
2 .

Combining both inequalities we obtain

(sm − s0)
(m+1)(m+2)

2 > Vm >
1

|χ(m)(ξ)|
>

ξr

|2dr|
>

sr0
|2dr|

and so

sm − s0 >

(
sr0
|2dr|

) 2
(m+1)(m+2)

=

(
1

|2dr|

) 2
(m+1)(m+2)

s
2r

(m+1)(m+2)

0 .

Thus, there is always a 0 < λ < 2r
(m+1)(m+2)

that satisfies the claim.

Next, (3) let b1 < b2 < b3 < · · · be a sequence of positive integers with bi+1− bi > bδi

for some δ > 0 and for every i ∈ N. We want to see that the set B = {b1, b2, . . . }
is sparse. For each N ∈ N let Ñ = #{b ∈ B|

√
N < b 6 N} and let bi1 < · · · < biÑ

be the Ñ consecutive elements of B satisfying 1 6
√
N 6 bi1 < · · · < biÑ 6 N and

therefore biÑ − bi1 6 N − 1.
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Then

N > biÑ − bi1
> (biÑ − biÑ−1

) + (biÑ−1
− biÑ−2

) + · · ·+ (bi2 − bi1)

> bδiÑ−1
+ bδiÑ−2

+ · · ·+ bδi1

> (Ñ − 1)bδi1

> (Ñ − 1)
√
N
δ

Hence,

Ñ 6 N1− δ
2 + 1

and so

|B ∩ {1, . . . , N}| 6
√
N + Ñ 6

√
N +N1− δ

2 + 1 ,

which implies that B is a sparse set.

Let us finally see that B(ψ) = {b ∈ N| χ(b) ∈ Z} is sparse. Take S, m ∈ N as in

our second claim. Consider B′ = B(ψ) \ {s 6 S}, and assume

S < b0 < b1 < · · · < bm < bm+1 < · · · < b2m < · · ·

where bi are the elements of B′. Take the first m + 1 elements and apply claim

(2): bm − b0 > bδ0. This also applies for bm+1 − b1 > bδ1, and in fact one has that

btm+i− b(t−1)m+i > bδ(t−1)m+i for every t ∈ Z+ and i = 0, . . . ,m− 1. Thus, we define

the m sets

Bi := {bi, bm+i, b2m+i, . . . }

and each of these sets satisfies the condition from our third claim, which shows that

each Bi is sparse. Since the equality B′ =
⋃m−1
i=0 Bi holds, the set B(ψ) is sparse as

well. �

We want to see that Q is hilbertian by using condition (3) in Definition 3.4. In

order to do so, we first need a couple of technical results concerning specialised

polynomials and their roots.

Lemma 4.5. Let K be a field and f(X, Y ) ∈ K[X, Y ] separable as a polynomial in

Y over K. Then the specialised polynomial f(b, Y ) ∈ K[Y ] is separable for almost

all b ∈ K.
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Proof. We may assume f is monic in Y . Its discriminant D(X) is a polynomial in

X which lies in K[X] and is not identically zero because f is separable in Y . For

each b ∈ K the specialised polynomial f(b, Y ) ∈ K[Y ] has discriminant D(b), so

f(b, Y ) is separable for all b ∈ K which are not roots of D(X). �

Proposition 4.6. Let p(X, Y ) ∈ Q[X][Y ] be an irreducible polynomial over Q(X),

of degree r > 1 in Y . Then for almost all x0 ∈ Z the following holds:

(i) There exist ε > 0 and holomorphic functions α1(t), . . . , αr(t) defined for t ∈ C,

|t| < ε, such that α1(t), . . . , αr(t) are the roots of the polynomial p(x0 + t, Y ) ∈
Q[Y ].

(ii) If, for some i, αi(t) is a rational function with complex coefficients, then there

are only finitely many q ∈ Q with αi(q) ∈ Q.

(iii) The set B(p, x0) := {b ∈ N | p(x0 + 1
b
, c) = 0 for some c ∈ Q} is sparse.

Proof. By Lemma 4.5. the specialised polynomial p(x0, Y ) is separable for almost

all x0 ∈ Q, thus for almost all x0 ∈ Z. Consider only such integer x0 for the rest of

the proof.

Claim (i) follows directly from this result from complex analysis ([20, Chapter 1,

Theorem 1.18]):

Lemma 4.7. Let f(X, Y ) ∈ C[X, Y ] be a polynomial of degree n > 1 in Y . Let

c0 ∈ C such that the specialised polynomial f(c0, Y ) ∈ C[Y ] is separable of degree n.

Then there exist holomorphic functions α1(t), . . . , αn(t), defined in a neighbourhood

U of c0, such that for each c ∈ C the roots of the polynomial f(c, Y ) are exactly

α1(c), . . . , αn(c) (αi(c) 6= αj(c) for i 6= j).

To see (ii), assume α(t) := αi(t) is a rational function with coefficients in C. Then

p(x0 + t, α(t)) ≡ 0 (as a function in t) and so p(x0 +X,α(X)) = 0 in C(X), where

X is transcendental over C. Thus, α(X) ∈ C(X) is a root of a polynomial with

coefficients in Q(X), so it is algebraic over Q(X) and also over Q̄(X). But Proposi-

tion 3.3. tells us that any irreducible polynomial over Q̄(X) is also irreducible over

C(X), so Q̄(X) is algebraically closed in C(X). Hence, it must be α(X) ∈ Q̄(X).

Now, for each σ ∈ Gal(Q̄|Q), let σ act on α by applying σ to the coefficients of

the rational function α, set ασ := σ(α). Then, for all q ∈ Q such that α(q) ∈ Q,
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we have ασ(q) = σ(α(q)) = α(q) because σ fixes the elements of Q. If we suppose

there are infinitely many such q ∈ Q, we get ασ = α for each σ ∈ Gal(Q̄|Q). But

by Artin’s theorem Q̄Gal(Q̄|Q) = Q, so it follows that α has coefficients in Q. In that

case α(X−x0) would be a root of p(X, Y ) over Q(X), contradicting the hypothesis

that p(X, Y ) is irreducible over Q(X). Therefore there can only be finitely many

q ∈ Q such that α(q) ∈ Q.

For (iii): assume p(X, Y ) ∈ Z[X][Y ]:

p(X, Y ) =
r∑
i=0

pi(X)Y i

with pi ∈ Z[X]. One can take R large enough that

XRp

(
x0 +

1

X
, Y

)
=

r∑
i=0

XRpi

(
x0 +

1

X

)
Y i

is still an element of Z[X][Y ]. Let p̃i(X) denote the coefficient of Y i in the above

expression; set h(X) := p̃R(X) and define a new polynomial

p̃(X,T ) = T r +
r−1∑
i=0

p̃i(X)h(X)r−i−1T i ∈ Z[X,T ] ,

monic in T . Now take b ∈ B(p, x0) and a suitable c, that is, b ∈ N and c ∈ Q such

that p(x0 + 1
b
, c) = 0. Then p̃(b, h(b)c) = 0 and it follows that h(b)c ∈ Q is integral

over Z because p̃(b, T ) ∈ Z[T ] is monic. Thus, h(b)c ∈ Z. Moreover, if there is

ε > 0 such that |1
b
| < ε, by (i) we have c = αi(

1
b
) for some i = 1, . . . , r. Hence

h(b)αi(
1
b
) ∈ Z.

Finally, set ψi(t) = h(1
t
)αi(t), i = 1, . . . , r, defined for 0 < |t| < ε. According to

the reasoning we just saw, if b ∈ B(p, x0) with 1
b
< ε then ψi(

1
b
) = h(b)αi(

1
b
) ∈ Z

for some i = 1, . . . , r. It follows that, up to a finite number of elements, the set

B(p, x0) lies in ∪ri=1B(ψi) (using the notation from Proposition 4.4.) If ψi is not a

rational function, then by Proposition 4.4. we have that B(ψi) is sparse. And if ψi

is a rational function, then αi is a rational function as well and by (ii) there are

only finitely many q ∈ Q for which αi(q) ∈ Q. Thus, B(ψi) is finite. By Lemma

4.2. we obtain that B(p, x0) is sparse. �

We finally have all the tools we need to prove the main theorem:
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Theorem 4.8. (Hilbert’s Irreducibility Theorem) The field Q is hilbertian.

Proof. We will see the claim using condition (3) in Definition 3.4. Let p1(X, Y ),

. . . , pt(X, Y ) ∈ Q[X][Y ] be polynomials, irreducible and of degree > 1 as polyno-

mials in Y over Q[X]. Take x0 ∈ Z as in Proposition 4.6. and so that it works

for all pi, i = 1, . . . , t. Let S be the set of b ∈ N such that none of the specialised

polynomials pi(x0 + 1
b
, Y ) ∈ Q[Y ] has a root in Q. Our goal is to see that S is

infinite.

Set B = N \ S. Then, with the notation from Proposition 4.6., B = ∪ti=1B(pi, x0).

But by Proposition 4.6. we know that B(pi, x0) is sparse for all i = 1, . . . , t. Hence,

by Lemma 4.2., B itself is sparse and so its complement S is infinite: Q is hilbertian.

�
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5 Sn and An as Galois groups over Q

In this chapter, we see that Sn and An are realisable as Galois groups over Q. We

develop the arguments in [12], which follows the ideas in [5]. Prior to that, we

introduce the concept of resultant of a polynomial in one variable, because it will

be needed later during the argumentation. We state some of its properties and show

how it relates to the discriminant. See [3] and [4] for further reference.

Definition 5.1. Let K be a field, and let f(X), g(X) ∈ K[X] be polynomials,

f(X) = am(X − x1) · · · (X − xm) g(X) = bn(X − y1) · · · (X − yn)

with m,n > 0. We define the resultant of f and g as

Res(f, g) = anmb
m
n

m∏
i=1

n∏
j=1

(xi − yj) .

It is clear that Res(f, g) vanishes if, and only if, f and g have a root in common.

Some of the properties of the resultant are:

1. Res(f, g) = (−1)mnRes(g, f).

2. If m = 0, i.e. if f(X) = a0 is constant, then Res(f, g) = an0 .

3. If h(X) ∈ K[X], Res(hf, g) = Res(h, g)Res(f, g).

4. Since g(X) = bn
∏n

i=1(X − yi), it follows that Res(f, g) = anm
∏m

i=1 g(xi).

Given a polynomial f(X) ∈ K[X] as above, its derivative f ′(X) ∈ K[X] is obviously

also a polynomial. Setting

f ′(X) =
m∑
i=1

am(X − x1) · · · ̂(X − xi) · · · (X − xm)

and using property 4, we get:

Res(f, f ′) = am−1
m

m∏
i=1

f ′(xi) = am−1
m

m∏
i=1

(
am
∏
j 6=i

(xi − xj)
)

= a2m−1
m

m∏
i=1

∏
j 6=i

(xi − xj)
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Observation 5.2. If we now assume f(X) to be monic, according to Definition

2.1. we get

Res(f, f ′) =
m∏
i=1

∏
j 6=i

(xi − xj) =
∏
i<j

(xi − xj)2 = 4(f) .

After this short digression, we come back to our main concern: proving that Sn and

An are realisable as Galois groups over Q. We start by proving that, if one considers

the Galois group G of a polynomial with coefficients in a purely transcendental

field extension of an algebraic number field, and then specialises the independent

transcendentals to elements of Z, then the Galois group of the specialised polynomial

is isomorphic to G. This result assures that if we work over a purely algebraic

extension Q(T ) and find a solution to our problem there, we will have infinitely

many ways to go back down to Q and still have a positive answer.

Theorem 5.3. Let k be an algebraic number field, K = k(T1, . . . , Tr) a purely

transcendental extension of k, r 6 1, F = F (T1, . . . , Tr, X) ∈ K[X] a polynomial.

There exist infinitely many r-tuples t = (t1, . . . , tr) ∈ Zr such that the specialised

polynomial Ft(X) := F (t1, . . . , tr, X) ∈ k[X] satisfies Gal(F |K) ∼= Gal(Ft|k).

Proof. Let A = k[T1, . . . , Tr] be the ring of integers of K, L the splitting field of F

over K, B the integral closure of A in L. Since L|K is finite and separable, there

exists b ∈ B such that L = K(b); let H(X) ∈ A[X] be the minimal polynomial of b

over K and let t = (t1, . . . , tr) be one of the infinitely many r-tuples such that the

specialised polynomial Ht(X) ∈ k[X] is irreducible (Theorem 4.8.).

Now consider the ideal p = (T1−t1, . . . , Tr−tr), which is prime because the quotient

A/p ∼= k is a field and thus a domain. Let e, f and g be the ramification index,

the inertia degree and the decomposition number, respectively, of pB. Let P be

a prime ideal of B over p, let DP and IP be the corresponding decomposition

group and inertia group, and L̄ = B/P and K̄ = A/p the respective residue

fields. K̄ has characteristic 0 because it is isomorphic to k; therefore the field

extension L̄|K̄ is separable. Hence, L̄|K̄ is Galois and by Proposition 3.21. we have

Gal(L̄|K̄) ∼= DP/IP.

Besides, the polynomial H is irreducible mod p because H ≡ Ht (mod p) and Ht

is irreducible. This implies f > n, where n = [L : K] = deg(H). However, the
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equality efg = n holds (Corollary 3.18.), so it must be f = n and e = g = 1.

Thus, by Artin’s theorem and Proposition 3.22., DP = Gal(L|K) and IP = {id}.
Consequently DP/IP ∼= DP and we get

Gal(F |K) = Gal(L|K) ∼= Gal(L̄|K̄) = Gal(Ft|K)

as desired. �

Our goal from now on is clear: we want to find polynomials with coefficients in

some purely transcendental extension K of Q, so that we can specialise them and

have polynomials with coefficients in Q with the desired Galois group, namely Sn

and An.

5.1 The group Sn

In this section we follow [16].

Definition 5.4. Let n > 2, A = Z[Tn, x1, . . . , xn] the ring of polynomials in n + 1

indeterminates with coefficients in Z, K = Q(Tn, x1, . . . , xn) its field of fractions.

The general polynomial of degree n is the polynomial

F (X) = Tn(X − x1)(X − x2) · · · (X − xn) ∈ A[X].

By developing the product, F (X) can be written as

F (X) = TnX
n + Tn−1X

n−1 + · · ·+ T1X
1 + T0 ∈ A[X],

whose coefficients are

Ti := (−1)n−iTnsn−i(x1, . . . , xn)

for every i ∈ {0, ..., n− 1}, where the si(x1, . . . , xn) are the elementary symmetrical

polynomials in x1, . . . , xn. The group Sn acts trivially onK by permuting x1, . . . , xn,

so the elements of Sn can be seen as automorphisms of K. Therefore, by Artin’s

theorem the field extensionK|KSn is finite and Galois, and Gal(K|KSn) ∼= Sn. Now,

any element of Sn acting on K fixes not only Q and Tn, but also s1, . . . , sn, so it fixes

T0, . . . , Tn−1 as well. Thus KSn = Q(T0, . . . , Tn), and we get F (X) ∈ Q(T0, . . . , Tn).
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Now, F is irreducible in Q(T0, . . . , Tn), its splitting field is K = Q(Tn, x1, . . . , xn),

and Gal(K|Q(T0, . . . , Tn)) = Sn. By Hilbert’s Irreducibility Theorem there exist

infinitely many (n + 1)-tuples t = (t0, . . . , tn) so that the specialised polynomial

Ft(X) ∈ Q[X] is also irreducible and has Galois group isomorphic to Sn (Theorem

5.3.).

Note that an analogous reasoning can be used over an arbitrary number field k:

indeed, letting F have coefficients in the ring of integers of k delivers the same

result. That proves the following result as a corollary of Theorem 4.8. and Theorem

5.3.

Corollary 5.5. There exist infinitely many Galois extensions over any number field

with Galois group isomorphic to Sn. In particular, Sn is realisable as a Galois group

over Q. �

5.2 The group An

Our next goal is to find polynomials realising An over a purely transcendental

extension of a given number field k. Here we go back to following [12].

We are looking for a polynomial F ∈ Q(T )[X] (and so F ∈ k(T )[X] for any algebraic

number field k) satisfying two conditions:

(1) 4(F ) ∈ Q(T )∗2, and

(2) Gal(F |C(T )) = An.

These two conditions ensure that F has Galois group over k(T ) isomorphic to An:

on the one hand, the first condition implies Gal(F |k(T )) ⊆ An by Lemma 2.2.; on

the other hand, since Gal(F |C(T )) ⊂ Gal(F |k(T )) because any automorphism that

fixes C(T ) must fix k(T ) as well, the second condition implies An ⊂ Gal(F |k(T )).

The construction of said polynomial depends on the parity of n, so we shall develop

each case separately.
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5.2.1 Case n even

The case n = 2 has already been covered because A2
∼= C2

∼= S2 and therefore the

general quadratic polynomial solves the problem.

For n > 2, let r = (n− 2)/2 and let a1, . . . , ar be positive integers such that ai 6= aj

if, and only if, i 6= j. Let f = f(X) be the only polynomial such that

f ′(X) = nX(X − a1)2 · · · (X − ar)2 and f(0) = 0 .

The derivative f ′(X) is positive for any X > 0, which means that f is monotonically

increasing when viewed as a polynomial function. Therefore, f(ai) 6= 0 for every

i = 1, . . . , r (implying 0 is a double root of f and all its other roots are simple) and

f(ai) 6= f(aj) if i 6= j.

We then define the polynomial

F = F (T,X) = T 2 + f(X) ∈ Q(T )[X] ,

so that F ′ = f ′ (with respect to X). Using the property stated in Observation 5.2.

and property 4 of the resultant, we get

4(F ) = Res(F, F ′) = Res(F, f ′) = nnF (0)
r∏
i=1

F (ai)
2 = nnT 2

r∏
i=0

(T 2 + f(ai))
2 .

Hence 4(F ) ∈ Q(T )∗2 and the polynomial F satisfies condition (1). Moving on to

seeing the second condition, we give a lemma that characterises An in terms of the

permutations that generate it.

Lemma 5.6. Let G be a transitive subgroup of An. If G is generated by 3-cycles,

then G = An.

Proof. Remember that a group G acting on the set X = {1, . . . , n} is a transitive

subgroup of An if every permutation of G is even and for every i, j ∈ X there exists

σ ∈ G such that σ(i) = j. Remember also that An is a transitive group itself. If

Y ⊆ X, let A(Y ) denote the subgroup of An of permutations which fix X \ Y and

note that A(X) = An.

If (a b c) is one of the generators of G, then A({a, b, c}) = 〈(a b c)〉 ⊆ G. That
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means that there exists a subset Y ⊆ X containing at least 3 elements such that

A(Y ) ⊆ G. If Y = X, A(Y ) = A(X) = An ⊆ G and the lemma is proved. If

Y ( X, there is at least one 3-cycle in G that permutes some element of Y with

another element of X \ Y , because otherwise the action of G would leave Y and

X \ Y invariant, contradicting the transitivity of G. Accordingly, let (i j k) ∈ G
and assume, for example, i ∈ Y , j /∈ Y . Now let r, s ∈ Y , r, s different from i, k.

We have (i r s), (i s r) ∈ A(Y ) ⊆ G and:

(i r s)(i j k)(i s r) = (j k r) .

Thus, (j k r) ∈ G for each r ∈ Y \ {k} and it follows that A(Y ∪ {j, k}) ⊆ G. But

X is a finite set, so by iterating this process finitely many times we reach Y = X

and therefore G = A(X) = An. �

We have finally reached the peak of our argumentation. In the next proposition we

shall see that the inertia groups of certain prime ideals are generated by 3-cycles.

This result, combined with the lemma we just proved, will allow us to show later

that indeed Gal(F |C(T )) = An, where F (T,X) = T 2 + f(X) ∈ Q(T )[X].

Let A = C[T ], K = C(T ) its field of fractions, and G = Gal(F |K) ⊆ Gal(F |k(T )) ⊆
An. Let L be the splitting field of F in an algebraic closure K̄ of K, and let B be

the integral closure of A in L.

Since C is a field, A is a principal ideal domain and so it is a Dedekind domain;

hence, B is a Dedekind domain as well. The extension L|K is Galois because L is

the splitting field of F and we are working in characteristic 0.

Proposition 5.7. The inertia groups of the prime ideals of B in the field extension

L|K are either trivial or generated by one 3-cycle.

Proof. Let

p0 =
(
T
)
, pj =

(
T +

√
−f(aj)

)
, pj+r =

(
T −

√
−f(aj)

)
for j = 1, . . . , r

be 2r + 1 prime ideals in A.

Let b ∈ L be a root of F and consider the field extension K(b) of K. Let A′ be the

ring of integers of K(b). Since K(b) is generated by one element and the minimal
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polynomial of b is F , according to Observation 3.24. we have that δK(b)|K is the

principal ideal (4(F )). Besides, the prime ideals pi, i = 0, 1, . . . , 2r, are the only

ones in A that divide (4(F )) = δK(b)|K . Therefore, by Proposition 3.25. these are

the only prime ideals that are ramified in K(b) and thus by Proposition 3.26. the

ideals pi, i = 0, 1, . . . , 2r, are the only prime ideals that are ramified in L. Therefore

we can focus our study on these specific ideals, because the inertia group of any

other ideal in L|K will be trivial.

Moreover, for each prime ideal pi of A the residue field A/pi is isomorphic to C.

But the complex field is algebraically closed, so all algebraic extensions of C are

trivial. Therefore all residue degrees are equal to 1.

Let us see how F decomposes in each of the residue fields A/pi. For i = 0, the

image of F in A/p0 is f . This polynomial has 0 as a root of multiplicity 2, since it

is also a root of f ′, and n − 2 simple roots. For i 6= 0, the image of F in A/pi is

f − f(ai), which has ai as a root of multiplicity 3 (because ai is a double root of

f ′), and n− 3 simple roots.

Hensel’s Lemma (Proposition 3.31.) allows us to lift these decompositions to Kpi ,

the completion of K for the respective pi-adic absolute value. Thus we get the

following: if i = 0, then

F = G0 · · ·Gn−2 ,

where deg(G0) = 2 and deg(Gj) = 1 for j > 0; if i 6= 0, then

F = Hi,0 · · ·Hi,n−3 ,

with deg(Hi,0) = 3 and deg(Hi,j) = 1 for j > 0.

Let p be one of the ideals pi, i = 0, 1, . . . , 2r, and let P a prime ideal of B over p.

Let b1, . . . , bn be the roots of F in an algebraic closure of K. Then, by [15, ch. 2,

sec. 3, corol. 1],

LP
∼= LKp

∼= Kp(b1, . . . , bn)

According to our previous reasoning, one has bi ∈ K for i > 4 and so we get

LP
∼= Kp(b1, b2, b3). Thus, the inertia group IP lies in S3. But we already saw that

IP ⊆ Gal(F |C(T )) ⊆ An, so in fact we have IP ⊆ A3. Since the alternating group

is generated by 3-cycles, IP must be generated by 3-cycles as well. If the prime

ideal considered is p0, the reasoning is analogue to that which we just saw, the only
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difference now being that LP
∼= Kp(b1, b2). In that case, since the only possible

non-trivial permutation of the roots would be a transposition and these do not lie

in An, the only option left is for IP to be the trivial group. �

Finally, we define I to be the subgroup of G generated by all the inertia groups and

set N := LI , which is then the largest unramified subextension of L|K. Applying

the Hurwitz genus formula for N and K [9, ch.I, sec.6],

2gN − 2 = [N : K](2gK − 2) +
∑
P

(e− 1) ,

where gN and gK are the genera of N and K, respectively, P runs through all prime

ideals of N , and eP denotes the ramification index of P. We know that K = C(T )

has genus 0 and eP = 1 for all P because N |K is unramified. Thus, we obtain a

simplified expression:

gN − 1 = −[N : K]

where gN > 0 and [N : K] > 1. Hence, the only values that satisfy the equality

are gM = 0 and [N : K] = 1. This implies that actually N = K, i.e. there exist

no unramified extensions of K, and we get I = G. Therefore, G is generated by

3-cycles.

Besides, seeing F = T 2 + f = T 2 − (−f) as a polynomial in T , F ∈ C[X][T ], it

becomes clear that it is irreducible because −f is not a square in C[X]. Thus, G

is transitive and by Lemma 5.6. we get the desired result: G = An. This proves

that F really is the polynomial we needed, because it satisfies conditions (1) and

(2) and so Gal(F |k(T )) = An.

5.2.2 Case n odd

We just proved the existence of a polynomial satisfying our conditions in the case

it has even degree. We shall do a similar construction now for a polynomial with

odd degree.

This time set r = (n − 1)/2 and let a1, . . . , ar be strictly positive integers with

ai 6= aj for i 6= j. Set

a = − 1

2
∑r

i=1
1
ai

∈ Q
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and define the polynomial

g(X) = (n− 1)(X − a)
r∏
i=1

(X − ai)2 ∈ Q(X) .

Because of how we defined a, the coefficient of X is 0. This condition is necessary

and sufficient for the existence of a polynomial f(X) ∈ Q(X) such that g = Xf ′−f .

Note that f = Xf ′ − g and g′ = Xf ′′.

Given this polynomial f we define a polynomial F = F (T,X) ∈ Q(T )[X],

F = f + (T 2 − f ′(a))X = Xf ′ − g + (T 2 − f ′(a))X = −g + (T 2 + f ′ − f ′(a))X ,

for which

F ′ = −g′ +Xf ′′ + (T 2 + f ′ − f ′(a)) = T 2 + f ′ − f ′(a) .

That means F can be rewritten as F = −g + XF ′, so by Observation 5.2. and

using the properties right after Definition 5.1. one has

4(F ) = Res(F, F ′)

= Res(−g +XF ′, F ′)

= Res((−1)(g −XF ′), F ′)

= (−1)n−1Res(g −XF ′, F ′)

= Res(g, F ′)

= (n− 1)n−1F ′(a)
r∏
i=1

F ′(ai)

= (n− 1)n−1T 2

r∏
i=1

(
T 2 + f ′(ai)− f ′(a)

)2
.

This is a square in Q(T ) because n− 1 is even, so F satisfies condition (1). To see

F satisfies condition (2) as well, we take prime ideals in A

p0 =
(
T
)
, pj =

(
T +

√
−f ′(aj) + f ′(a)

)
, pj+r =

(
T −

√
−f ′(aj) + f ′(a)

)
for j = 1, . . . , r, and from there on we can proceed exactly as in the case n even,

using Proposition 5.7. Indeed, the image of F in A/p0 is −g+ (f ′− f ′(a))X, which
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has a as a double root and n − 2 simple roots (because g(0) 6= 0 and f ′ − f ′(a)

vanishes only at a), and for i 6= 0 the image of F in A/pi is −g+(f ′−f ′(ai))X, which

has ai as a triple root and n− 3 simple roots. For the reasoning after Proposition

5.7., note that considering F as an element of C[X][T ] makes it clear that it is

irreducible.

Hence, we have proved the next theorem.

Theorem 5.8. For every n ∈ N one can construct polynomials of degree n with

Galois group over Q(T ) isomorphic to An. �

So, just like with Sn, we get the following result as a corollary from Theorem 4.8.

and Theorem 5.3.

Corollary 5.9. There exist infinitely many Galois extensions over any number field

with Galois group isomorphic to An. In particular, An is realisable as a Galois group

over Q. �
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6 Conclusions

Having reached this point, it is time to reflect on what we have achieved and its

implications. Throughout this thesis we have become acquainted with many new

mathematical concepts and techniques from abstract algebra and algebraic number

theory, which have provided us with the necessary knowledge to successfully reach

our initial goal. Even further: not only have we proved that Sn and An are indeed

realisable as Galois groups over Q(T ) and thus over the rational field, but we have

found general results for any algebraic number field.

The aim to solve the Inverse Galois Problem brings together many areas of math-

ematics such as number theory, group theory, topology, algebraic geometry and

complex analysis. Each of these fields comes with its own perspective on the topic

and its own set of tools, and the variety of techniques offers a very diverse and

fruitful approach to the problem. Consequently, the research needed for this thesis

suggests that mathematics is much more than the sum of isolated areas of knowl-

edge. We suspect there is no such thing as ‘pure algebra’, ‘pure analysis’, ‘pure

number theory’, ‘pure topology’... Boundaries between different disciplines are not

clearly defined and it is precisely the intertwinement of mathematical ideas what

allows for progress and discovery.
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Birkhäuser, 1994. (Mathematics: Theory & Applications).
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[18] Vila, Núria. �On the Inverse Problem of Galois Theory�. Publicacions
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