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Introduction

The weak and strong Lefschetz properties on graded artinian algebras have been an object
of study along the last few decades. Precisely, let be A a graded artinian algebra. We say
that A has the Strong Lefschetz property (SLP) if the multiplication by a dth power of a
general linear form have maximal rank (i.e. ×Ld : Ai → Ai+d is injective or surjective
for every i). We say that A has the Weak Lefschetz property (WLP) if occurs the same
with d = 1. These properties have connections among different areas such as algebraic
geometry, commutative algebra and combinatorics. Sometimes quite surprising, these
connections give new approaches and relate problems, a priori, very distant.

It is worth to mention that the study of the Lefschetz properties started with a work
due to R. Stanley in 1980 [13] and then continued by J. Watanabe in 1987 [16], which
connected them to the Sperner theory in combinatorics. Later there have been discovered
more connections between the Lefschetz properties and vector bundles, line arrangements
on the plane and the Fröberg conjecture (see [10], [11]). The study of these subjects require
several tools out of reach for an undergraduate student.

The aim of this work is to study and contribute to another connection given by E.
Mezzetti, R. M. Miró-Roig and G. Ottaviani in [9] which relates the failure of the weak
Lefschetz property of artinian ideals to the existence of projective varieties satisfying at
least one the Laplace equation. We first start introducing the notation that we will use
and the two concepts that we need to state this connection via Macaulay-Matlis duality.
Then, in the next chapter we define properly the Lefschetz properties and give several
examples and results describing them. At the final of this second chapter, we will focus
our attention on artinian ideals I ⊂ k[x0, . . . , xn] = R generated by forms of the same
degree d, and the artinian graded algebra A = R/I. While A is expected to have the WLP,
there are few cases in which A does not hold the WLP in a certain degree (i.e. there is
i ≥ 1 such that ×L : Ai → Ai+1 is neither injective nor surjective for any linear form L).

Notice that, since for i ≤ d− 1 there is no difference between Ai and Ri, the first pos-
sible degree where A can fail the WLP is at degree d− 1. Using Macaulay-Matlis duality,
we can relate these artinian ideals I failing the WLP in degree d− 1, with suitable projec-
tions of the Veronese variety V(n, d) satisfying one Laplace equation of order d− 1. The
study and classification of rational varieties satisfying one Laplace equation of order s is
a long-standing problem in mathematics. Hence, this result shows once more how the
Lefschetz properties can be useful to study problems, a priori, far away one each other.
We name the ideals generated by forms of degree d and failing the WLP in degree d− 1
Togliatti systems (see Definition 2.1.6). The name is in honor to E. Togliatti who proved
that in k[x, y, z], the only smooth monomial Togliatti system of cubics is (x3, y3, z3, xyz) or,
equivalently, there is only one rational surface in P5 parametrized by cubics and satisfy-
ing a Laplace equation. It is the rational surface obtained projecting the third Veronese
embedding V(2, 3) in P2 from four points (see [14], [15]).

Once introduced what are Togliatti systems and their geometric significance, in chapter
3 we focus on the study and classification of minimal (smooth) monomial Togliatti systems
(see 3.0.1. In this case, we can view the monomials generating I as integer points in the
lattice Zn+1 and we can associate to them a toric variety following [4]. This approach
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allows us to apply combinatoric techniques and make the study much more easier. We
also present a smoothness criterion due to Perkinson to see whether this toric variety is
smooth by solely observing the relation with the points and the lattice.

Next we recall the classification of minimal smooth monomial Togliatti systems of
quadrics and cubics, as given in [7]. This classification uses graph theory and other com-
binatoric tools in its proof, and cannot be easily generalized to classify all minimal smooth
monomial Togliatti systems of degree d ≥ 4. The classification of smooth minimal Togli-
atti systems of degree d ≥ 4 seems out of reach. Therefore, in order to achieve new results
on the problem of classifying minimal smooth monomial Togliatti systems of arbitrary
degree d ≥ 4, we have to change the strategy and find other invariants, as the number of
generators of a minimal (smooth) monomial Togliatti system.

Continuing in the third chapter, we study minimal(smooth) monomial Togliatti sys-
tems I from this new perspective, following [8]. First of all give upper and lower bounds
on the number of generators µ(I). Actually, we get that, if I is a minimal monomial Togli-
atti system in k[x0, . . . , xn] of forms of degree d ≥ 4, then 2n + 1 ≤ µ(I) ≤ (n+d−1

n ) where
n ≥ 2 and d ≥ 4. The second step it to classify all smooth Togliatti systems which reach
the lower bound or exceed it by one and we obtain that, except a few cases when n = 2,
they have a very particular form. Finally, we study whether there exist minimal (smooth)
monomial Togliatti systems in the range comprised between the lower and upper bound.
We obtain in particular that there is no minimal smooth monomial Togliatti system in
n + 1 variables with 2n + 3 generators for n ≥ 3 and d ≥ 4, but what happens when
n = 2?

The last chapter give new results on this topic and answer this last question. Actually,
we have classified all minimal monomial Togliatti systems in ⊂ k[x, y, z] with µ(I) = 7.
Finally, joining the results of third chapter and these new results, we give a complete
classification of minimal smooth monomial Togliatti systems in k[x0, . . . , xn] generated by
2n + 3 monomials of degree d ≥ 4. We want to point out that all results of this chapter are
new and they will be published as part of the results in [12].
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Chapter 1

Preliminaries

1.1 Notation

Let k be an algebraically closed field of characteristic 0. For n ≥ 2, let R be the polynomial
ring k[x0, . . . , xn] with its standard graduation R =

⊕
d≥0 Rd. We note nd = (n+d

d ) =

dimk Rd and Pn = P(kn+1) the n−dimensional projective space. For every homogeneous
ideal I ⊂ R, V(I) ⊂ Pn stands for the projective variety associated to I, i.e. V(I) = {a ∈
Pn|∀F ∈ I, F(a) = 0}. We say I ⊂ R is an artinian ideal if V(I) = ∅. If F1, . . . , Fr are
homogeneous polynomials in R, (F1, . . . , Fr) ⊂ R stands for the ideal generated by these
forms, while 〈F1, . . . , Fr〉 stands for the correspondent k−vector space.

Finally, we define the Veronese map to be vn,d : Pn → Pnd−1 sending (t0 : · · · : tn)

to (ta0
0 · · · t

an
n )a0+···+an=d. The image V(n, d) := vn,d(P

n) ⊂ Pnd−1 is a projective variety,
which is called the Veronese variety.

1.2 Laplace equations

Definition 1.2.1: Let X ⊂ PN be a rational variety of dimension n with parametrization

Ψ : Pn 99K X s.t. (t0 : . . . : tn) 7→ (F0(t0, . . . , tn) : . . . : FN(t0, . . . , tn))

We call sth osculating vector space on x = Ψ(t0 : . . . : tn) the vector space

T(s)
x X :=

〈
∂kΨ

∂
k0
t0
···∂kn

tn

(t0 : . . . : tn)|k0 + · · ·+ kn = s

〉

Finally, we call sth osculating projective space on x ∈ X the projectivization of the

vector space above: T
(s)
x X := P

(
T(s)

x X
)

Remark 1.2.2: Since we have ns − 1 vectors (k0, . . . , kn) which satisfy k0 + · · · + kn = s
the dimension in a general point x ∈ X of T(s)

x X is, at most, ns − 1 (we call it expected di-
mension). However, if there are linear dependencies among partial derivatives of order s,

1
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this bound is not reached and we are given a linear equation involving partial derivatives
of order s of Ψ.

Definition 1.2.3: Let X ⊂ PN be a rational projective variety of dimension n. We say that
X satisfy δ Laplace equations of order s if, and only if

(1) for all smooth point x ∈ X we have dim T(s)
x X < ns and

(2) for general x ∈ X, dim T(s)
x X = ns − 1− δ.

Remark 1.2.4: If N < ns − 1, then T(s)
x X is spanned by more vectors than the ambiance

space. So, X must satisfy at least one Laplace equation of order s.

1.3 Macaulay inverse system

Let R = k[x0, . . . , xn] and D = k[y0, . . . , xn]. We define an action of R over D:

Ri ×Dj → Dj−i such that (F, G) 7→ F · G := F
(

∂
∂y0

, . . . , ∂
∂yn

)
G

which structures D as a graded R−module.

Definition 1.3.1: With notations above, let I ⊂ R be a homogeneous ideal. The Macaulay
inverse system of I is I−1 := {D ∈ D|∀F ∈ I, F ·D = 0}, which is a graded R−submodule
of D.

Remark 1.3.2: If I is a homogeneous ideal generated by monomials of degree d, then[
I−1]

d is generated by all the monomials of degree d which are not generators of I.

Recall that if I is a homogeneous ideal of R, then R/I is a graded module where
(R/I)d = Rd/(I ∩ Rd).

Lemma 1.3.3: Let I ⊂ R be a homogeneous ideal. Then, for every i ∈ Z, dimk(R/I)i =

dimk(I−1)i.

Finally we have the Macaulay-Matlis duality

Proposition 1.3.4: There is a bijection

ϕ : {homogeneous ideals of R} ↔ {graded R− submodules of S}
I 7→ I−1

AnnR(M) ← [ M

For more details on this subject see [9].



Chapter 2

Lefschetz properties

The main purpose of this chapter is to provide the definitions, examples and basic results
on the weak Lefschetz property of artinian homogeneous ideals I ⊂ R = k[x0, . . . , xn] and
see how they are codified in the Hilbert function of I.

Let us start considering the following statement, which was firstly proved by R. Stanley
[13] in 1980 and which has motivated the so called Lefschetz properties:

Proposition 2.0.1: Let I = (xa0
0 , . . . , xan

n ) be an artinian monomial complete intersection. Let
L ∈ R1 be a general linear form. Then, for any positive integers d and i, the homomorphism
×Ld : [R/I]i → [R/I]i+d (induced by multiplication by Ld) has maximal rank.

Definition 2.0.2: Let I ⊂ R be an artinian ideal and let us consider A = R/I with the

standard graduation A =
r⊕

i=0

Ai. Let L ∈ R1 be a general linear form. Then:

(1) A has the Strong Lefschetz Property (SLP) if, for all positive integer d and for all
1 ≤ i ≤ r− d, the homomorphism ×Ld : [A]i → [A]i+d has maximal rank.

(2) A has the Weak Lefschetz Property (WLP) if, for all 1 ≤ i ≤ r − 1, the homomor-
phism ×L : [A]i → [A]i+1 has maximal rank.

Notation 2.0.3: (1) By abuse of notation we say that the ideal I has the SLP (resp. WLP).
(2) In the case above, the linear form L is called a Strong Lefschetz element (resp. Weak
Lefschetz element or simply Lefschetz element) of R/I.
(3) If for a general form L ∈ [R/I]1 there is d ≥ 1 and 1 ≤ i ≤ r− d such that the map ×Ld

has not maximal rank, we say that R/I fails the SLP (resp. the WLP if d = 1) in degrees
(d, i) (resp. in degree i).

We will now establish the failure of SLP (resp. WLP) by only comparing two Hilbert
functions.

Lemma 2.0.4: Let I ⊂ R be an artinian ideal and let L ∈ R1 be a general linear form. Then, for
each integer d ≥ 1 and for all 1 ≤ i ≤ r− d we have the following exact sequence:

3



4 Lefschetz properties

[R/I]i → [R/I]i+d →
[

R/(I + (Ld))
]

i+d
→ 0.

Moreover, I fails the SLP in degrees (d, i) if, and only if one of these two cases holds:
(1) dimk [R/I] i ≤ dimk [R/I]i+d and

dimk

[
R/(I + (Ld))

]
i+d

> dimk [R/I]i+d − dimk [R/I]i+d.

In this case we can say that SLP fails in degrees (d, i) because of injectivity.
(2) dimk [R/I] i ≥ dimk [R/I]i+d and

dimk

[
R/(I + (Ld))

]
i+d

> 0.

In this case we can say that SLP fails in degrees (d, i) because of surjectivity.

Remark 2.0.5: (1) Recall that if I ⊂ R is an ideal, HF(R/I, i) = dimk [R/I]i. Then, with
the notations above, I fails the SLP in degrees (d, i) if, and only if,

HF(R/(I + (Ld)), i + d) > max {0, HF(R/I, i)− HF(R/I, i + d)}.
(2) This Lemma gives us a tool to see whether an ideal I ⊂ R fails the SLP (resp. the WLP)
in degrees (d, i), but to use it, it is necessary to know which are the appropriate degrees
(d, i) to look at. Examples below show some ideals failing the WLP. The first three have
been tested with the computer implementing the Lemma 2.0.4 to Macaulay2 [3].

Remark 2.0.6: It is clear that having the SLP implies having the WLP, however, the con-
verse is not true. For instance, using Lemma 2.0.4 one can see that I = (x2

0, x3
1, x5

2, x0x1,
x0x2

2, x1x3
2, x2

1x2
2) has the WLP but fails the SLP in degrees (2, 1) and also that I = (x3

0, x3
1, x3

2,
(x0 + x1 + x2)

3) has the WLP but fails the SLP in degrees (3, 1).

Example 2.0.7: (1) I = (x3, y3, z3, xyz) fails the WLP in degree 2.
(2) I = (x4, y4, z4, t4, xyzt) fails the WLP in degree 5.
(3) I = (x5, y5, z5, t5, w5, xyztw) fails the WLP in degree 8 and in degree 9.
(4) By [6] (Theorem 4.3), the ideals I = (xn+1

0 , . . . , xn+1
n , x0 . . . xn) fail the WLP in degree

(n+1
2 )− 1.

Remark 2.0.8: Notice that the first ideal fails the WLP in the first non trivial place while
the others fail later. This particularity will be studied in the following in more detail.

2.1 The Weak Lefschetz Property

In this section, we will focus our attention on artinian ideals I ⊂ R generated by r forms of
a fixed degree d and failing the WLP in the first non trivial place. In this case, [R/I]i = Ri
for all 0 ≤ i ≤ d− 1. Hence, the first non trivial place where I can fail the WLP is from
degree d− 1 to d.

If we restrict sufficiently the number of generators of I to get dimk [R/I]d > dimk Rd−1
(for instance, r ≤ (n−1+d

n−1 )) the WLP can only fail in degree d − 1 because of injectivity.
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Moreover, we have the next useful lemma:

Lemma 2.1.1: Let I = (F1, . . . , Fr) ⊂ R be an artinian ideal generated by r ≤ (n−1+d
n−1 ) forms of

degree d. Let L be a linear form, set R = R/(L) and let I (resp. Fi) be the image of I (resp. Fi) in
R. Then I fails the WLP in degree d− 1 if, and only if F1, . . . , Fr are k−linearly dependent.

Proof: First notice that
(1) For 1 ≤ i ≤ r, deg(Fi) = d⇒ [R/I]d−1

∼= Rd.

(2) dimk Rd = (n+d
d )− (n+d−1

d−1 ) = (n+d)!−d(n+d−1)!
n!d! = n(n+d−1)!

n!d! = (n+d−1
n−1 ).

(3) I = (F1, . . . , Fr) and deg(Fi) = d⇒ dimk [R/I]d = (n+d
d )− r.

And let us write ϕ : [R/I]d−1 → [R/I]d the multiplication map in degree d− 1. Now,
using remarks above and since r ≤ (n+d−1

d ) by hypothesis, we have that

(n+d
d ) = (n+d−1

d−1 ) + (n+d−1
d ) ≥ (n+d−1

d−1 ) + r ⇒ dimk [R/I]d ≥ dimk [R/I]d−1.

Thus, we have proved that ϕ is not surjective in degree d− 1 unless r = (n+d−1
d ) (in such

case, ϕ is surjective if, and only if it is injective). Hence, ϕ does not have maximal rank
if, and only if is not injective if, and only if dimk(Ker ϕ) > 0 if, and only if dimk(Im ϕ) =

dimk [R/I]d−1 − dimk(Ker ϕ)d−1 < (n+d−1
d−1 ).

On the other hand, Coker ϕ = [R/I]d / Im ϕ = [R/I]d /L [R/I]d−1
∼= (R/(I, L))d ⇒

dimk(R/(I, L))d = dimk [R/I]d − dimk(Im ϕ) and replacing dimk(Im ϕ) = (n+d
d ) − r −

dimk(R/(I, L))d we get ϕ is not injective ⇔ (n+d
d ) − r − dimk(R/(I, L))d < (n+d−1

d−1 ) ⇔
dimk(R/(I, L))d > (n+d

d )− (n+d−1
d−1 )− r.

Using that dimk R/(I, L) = dimk R− dimk I because R/(I, L) ∼= (R/(L))/(I/(L)) we
get ϕ is not injective⇔ dimk R− dimk I > (n+d

d )− (n+d−1
d−1 )− r ⇔ dimk〈F1, . . . , Fr〉 < r.

Hence, ϕ is not injective if, and only if {F1, . . . , Fr} are k−linearly dependent. �

Remark 2.1.2: Suppose that I = (F1, . . . , Fr) with deg(Fi) = d for 1 ≤ i ≤ r ≤ (n+d−1
d )

fails the WLP in degree d− 1. This is equivalent that F1, . . . , Fr are k−linearly dependent
in R/(L) for a general L ∈ R1. Then, for any r ≤ t ≤ (n+d−1

d ) and also any {Fr+1, . . . , Ft} ⊂
Rd we have that the enlarged ideal J = (F1, . . . , Fr, Fr+1, . . . , Ft) also fails the WLP.

This easy observation allows us to study only those ideals I = (F1, . . . , Fr) ⊂ R failing
the WLP because of injectivity such that for any 1 ≤ s ≤ r− 1, the ideals I = (Fi1 , . . . , Fis)

have the WLP in degree d− 1.

Remark 2.1.3: As we have said above, Lemma 2.1.1 is useless if r > (n+d−1
n−1 ). In that case,

I fails the WLP in degree d− 1 because of surjectivity. Although we will not study this
case here, we will give a example: I = (x3

0, x3
1, x3

2, x2
0x1, x2

0x2) is generated by 5 > 4 = (2+2
1 )

and we cannot apply Lemma 2.1.1 but by Lemma 2.0.4 we can see it fails the WLP in
degree d− 1 = 2 because of surjectivity.

The next step will be to relate the failure of the WLP on this type of ideals to suitable
projections of the Veronese variety V(n, d) satisfying at least one equation of Laplace of
order d− 1. Let us start with a definition:
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Definition 2.1.4: Let I = (F1, . . . , Fr) ⊂ R be an artinian ideal generated by r forms of
degree d. Let I−1 ⊂ D be its inverse Macaulay system (as seen in Section 1.3). Then, we
consider

ϕ[I−1]d
: Pn 99K Pnd−r−1 is the rational map associated to

[
I−1]

d

ϕId : Pn → Pr−1 is the morphism (I is artinian) associated to Id
We define

(1) Xn,[I−1]d
:= Im(ϕ[I−1]d

), which is the projection of V(n, d) from 〈F1, . . . , Fr〉
(2) Xn,Id := Im

(
ϕId

)
, which is the projection of V(n, d) from 〈

[
I−1]

d〉.

Next proposition, gives us the relation we were searching:

Proposition 2.1.5 ([9]; Theorem 3.2): Let I ⊂ R be an artinian ideal generated by r forms
F1, . . . , Fr of degree d. If r ≤ (n+d−1

n−1 ), then the following conditions are equivalent:

(1) the ideal I fails the WLP in degree d− 1.

(2) the forms F1, . . . , Fr become k−linearly dependent on a general hyperplane H ⊂ Pn.

(3) the n dimensional variety Xn,[I−1]d
satisfies at least one Laplace equation of order d− 1.

The above result has motivated the following definition:

Definition 2.1.6: With the notations above, we will say that I−1 (or I) defines a Togliatti
system if it satisfies the three equivalent conditions in Proposition 2.1.5.

The name is in honor to E. Togliatti who proved that the only smooth Togliatti system
of cubics is I = (x3

0, x3
1, x3

2, x0x1x2) (see for instance, [7],[8],[9],[2],[14] or [15]).

Remark 2.1.7: Let us notice that being I not a Togliatti system does not imply that I has
the WLP. As showed in example 2.0.7 (4), I can hold the WLP in the first non trivial place
but fail it later. Hence it is important to remark that Togliatti systems are those ideals
satisfying hypothesis of 2.1.5 such that fail the WLP in the first non trivial place because
of injectivity.

The Example 2.0.7 (1) gives us a Togliatti system generated by monomials. These
types of Togliatti systems will be the object of the study in the next chapters because we
can associate to them a toric variety and apply combinatorial tools. However, there are
also Togliatti systems generated by other forms than monomials.

Example 2.1.8: Let n ≥ 3 and d ≥ 3. Let L ∈ R1 be a linear form, F1, . . . , Ft ∈ Rd−1
be general forms of degree d − 1, and G1, . . . , Gn ∈ Rd general forms of degree d. If
(n+d−2

n−1 ) + 1 ≤ t ≤ (n+d−1
n−1 ) − n, then I is artinian and fails the WLP in degree d − 1.

Indeed: since t ≥ (n+d−2
n−1 ) + 1, when we restrict {LFi} to a general hyperplane, they

become k−linearly dependent. On the other hand I is generated by r = t + n ≤ (n+d−1
n−1 )

forms of degree d and, hence we can apply Proposition 2.1.5 and conclude that I is a
Togliatti system.



Chapter 3

Monomial Togliatti systems

In this chapter we will restrict the study to Togliatti systems generated by monomials.

Definition 3.0.1: Let I = (F1, . . . , Fr) ⊂ R be an artinian ideal generated by r ≤ (n+d−1
n−1 )

forms of degree d. Let us assume that I is a Togliatti system (i.e. it fails WLP in degree
d− 1). We say

(1) I is a minimal Togliatti system if for any 1 ≤ s ≤ r and {Fi1 , . . . , Fis} ⊂ {F1, . . . , Fr}
we have that I′ = (Fi1 , . . . , Fis) is not a Togliatti system.

(2) I is a monomial Togliatti system if I can be generated by monomials.

(3) I is a smooth Togliatti system if Xn,[I−1]d
is a smooth variety.

Remark 3.0.2: We cannot forget the assumption of I being artinian. Indeed, I = (x4
0, x4

1,
x4

2, x4
3) + x3

0(x1, x2, x3) ⊂ k[x0, x1, x2, x3] is a minimal monomial Togliatti system. If we
consider J = (x4

0, x4
1, x4

2) + x3
0(x1, x2), then we can say that J ⊂ I and that J is also a

minimal monomial Togliatti system. We have committed an abuse of notation:
When we say J ⊂ I we are seeing J as an ideal of k[x0, x1, x2, x3], but in this case J is not

a Togliatti system because it is not artinian ((0 : 0 : 0 : 1) ∈ V(J)). Therefore, when we are
saying that J is a monomial Togliatti system we are referring J as an ideal of k[x0, x1, x2]

and, since I * k[x0, x1, x2] there is no sense in saying J ⊂ I.

In order to make the study easier, in the next section we will give some tools to test
the WLP of monomial ideals and the smoothness of the associated varieties. Then we will
apply these tools to classify smooth monomial Togliatti systems generated by quadrics
and cubics. The classification of smooth monomial Togliatti systems of forms of degree
d ≥ 4 is still open. We will discuss it.

3.1 Preliminaries

We start with a very useful result for testing the WLP in the monomial case.

7
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Proposition 3.1.1: Let I ⊂ R be an artinian monomial ideal. Then R/I has the WLP if, and
only if x0 + · · ·+ xn is a Lefschetz element for R/I.

Proof: Take I = (m1, . . . , mr) with mi = x
j(i,0)
0 · · · xj(i,n)

n ∈ R for i = 1, . . . , r. By definition,
I has the WLP if, and only if there is a general linear form L ∈ R1 such that for every
d ∈ Z, the map ×L : (R/I)d → (R/I)d+1 either is surjective or injective, and we call L a
Lefschetz element. By Lemma 2.0.4 we know that L is a Lefschetz element if R/(I + (L))
and R/(I + (x0 + · · ·+ xn)) have the same Hilbert function.

We write L = a0x0 + · · ·+ an−1xn−1 + xn with a0 · · · an−1 6= 0 by generality of L. Now,

let J := (m1, . . . , mr) ⊂ S := k[x0, . . . , xn−1] where mi := x
j(i,0)
0 · · · xj(i,n−1)

n−1 (a0x0 + · · · +
an−1xn−1)

j(i,n) for i = 1, . . . , r. Thus, we have R/(I + (L)) ∼= S/J (?). Since a0 · · · an−1 6= 0,
we can replace each mi by ni = (a0x0)

j(i,0) · · · (an−1xn−1)
j(i,n−1)(−a0x0− · · · − an−1xn−1)

j(i,n)

for i = 1, . . . , r without changing the ideal. Furthermore, by the isomorphism yi
·′7→ aixi

between S and S′ := k[y0, . . . , yn] we have S/J ∼= S′/J′.

Finally, we have J′ = (n1
′, . . . , nr

′) with ni
′ = y

j(i,0)
0 · · · yj(i,n−1)

n−1 (−y0− · · · − yn−1)
j(i,n) . So,

by means of the analogous isomorphism we used in (?) we have S′/J′ ∼= R/(I + (x0 +

· · ·+ xn)). Therefore, we have seen that R/(I + (L)) and R/(I + (x0 + · · ·+ xn)) have the
same Hilbert functions, and so we have finished the proof. �

Now we study one example of monomial Togliatti system of degree 3 in Pn.

Example 3.1.2: Let n ≥ 2 and I−1 := {x2
i xj}0≤i 6=j≤n ⊂ k[x0, . . . , xn]. By simply counting

there are n(n + 1) monomials so dim I−1 = n(n + 1)− 1.
We also let ϕ[I−1]d

be the rational map associated with I−1, which is not defined in

n + 1 points. As we saw in Definition 2.1.4, the closure of its image X := Im(ϕ[I−1]d
) is

projectively equivalent to the projection of the Veronese variety V(n, 3) from the linear
subspace I := 〈{x3

i }0≤i≤n ∪ {xixjxk}0≤i<j<k≤n〉.
We want to check that X satisfies a Laplace equation of order 2, and hence I will be a

Togliatti system of cubics. Observe that (n+3
3 )− n(n + 1) ≤ (n+3−1

n−1 ) if, and only if n ≥ 2.
Thus, by Propositions 2.1.5 and 3.1.1 X satisfies a Laplace equation of order 2 if, and only if
the cubics {x3

i }0≤i≤n ∪ {xixjxk}0≤i<j<k≤n become k−linearly dependent when we restrict
them to the hyperplane x0 + · · ·+ xn = 0, which it is easy to check.

When we are dealing with monomial ideals I, I−1 is also a monomial ideal and the
variety X := Im ϕn,I−1

d
is a toric variety. In the following we will define, construct and

study these varieties.

3.1.1 Toric varieties

Let {m0, . . . , mN} ⊂ k[x0, . . . , xn] a set of monomials of degree d. Each of them can be
remembered as a (n + 1)−uple of nonnegative integers (its exponents). That is:

mi = xωi
0

0 · · · x
ωi

n
n ⇒ mi ↔ ω(i) := (ωi

0, . . . , ωi
n) ∈ Zn+1.
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Therefore A := {ω(0), . . . , ω(N)} is a finite subset of Zn+1. For any x = (x0, . . . , xn) ∈
(k?)n+1 and ω = (ω0, . . . , ωn) ∈ Zn+1 we set xω := xω0

0 · · · x
ωn
n . Define

X0
A := {(xω(0)

: · · · : xωN
)|x = (x0, . . . , xn) ∈ (k?)n+1} ⊂ PN .

Its closure defines a projective variety XA := X0
A. We will see that X0

A is a Toric variety.

Definition 3.1.3: A toric variety is a pair (X, α) where
(1) X is a quasi-projective variety, and
(2) α : (k?)n × X → X is an action with a dense orbit, i.e. there is x ∈ X such that

Oα(x) = {a · x|a ∈ (k?)n} = X.

Proposition 3.1.4: Let A = {ω(0), . . . , ω(N)} be a finite subset of Zn+1. Then X0
A is a toric

variety.

Proof: Let be α : (k?)n+1×PN → PN such that x · (z0 : · · · : zN) = (xω(0)
z0 : · · · : xω(N)

zN).
By definition X0

A = {(xω(0)
: · · · : xω(N)

)|x ∈ (k?)n+1} = Oα((1 : · · · : 1)). Then X0
A =

Oα((1 : · · · : 1)) is a toric variety together with α : (k?)n+1 × X0
A → X0

A. �

Notation 3.1.5: By abuse of notation, when talking about toric varieties of the kind XA
we will omit the action α.

The following results and definitions will describe the properties of these varieties. We
fix a finite subset A = {ω(0), . . . , ω(N)} of Zn+1 and XA the toric variety associate to it.

Definition 3.1.6: We call the affine sublattice generated by A the set

A f fZ(A) :=

{
∑

ω∈A
nωω|∀ω ∈ A, nω ∈ Z; ∑ ω ∈ Anω = 1

}
⊂ Zn+1.

We call polytope generated by A the set

PA := {∑ω∈A aωω|∀ω ∈ A, aω ∈ R+; ∑ω∈A aω = 1} ⊂ Rn+1.
and the dimension of PA to be the dimension of the smallest affine space containing PA.

We want to give a criterion to know whether a toric variety of the type XA is smooth.
To do it we need to fix some notation:

Let S be the subsemigroup of Zn+1 generated by A and 0. Pick up a face of PA, F,
and let us define LinR(F) as the vector R−subspace spanned by F in Rn+1. Observe that
dimR LinR(F) = dim F + 1. Indeed, by definition of polytope dimension, F is contained in
an affine subvariety of dimension dim F, let us name it V. As long as F does not contain
0 ∈ Rn+1, we have LinR(F) = V ∨ 0 and dimR LinR(F) = dim(F) + 1.

Consider now the quotient Zn+1/F := Zn+1/(Zn+1 ∩ LinR(F)) which is a quotient of
free abelian groups, and hence it is a free abelian group. Let us define S/F as the image
of S in Zn+1/F. Since S is a subsemigroup of Zn+1, S/F is a subsemigroup of Zn+1/F.
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Finally we define LinZ(A ∩ F) as the abelian subgroup generated by A ∩ F in Zn+1.
Observe that LinZ(A∩ F) is a subgroup of Zn+1 ∩LinR(F), in particular we have an index

i(F, A) := [Zn+1 ∩ LinR(F) : LinZ(A ∩ F)].

Proposition 3.1.7: Let A ⊂ Zn+1 be a finite set generating Zn+1 as an affine lattice and let PA
the polytope generated by A. Then, XA is smooth if, and only if for each non-empty face F of PA
the following conditions hold:

a) The semigroup S/F is free.

b) The index i(F, A) = 1.

To see whether these conditions hold we can understand them by means of the poly-
tope PA and its relation to the lattice Zn+1. In particular it can be proved

Proposition 3.1.8: In the context of proposition 3.1.7, conditions a) and b) are respectively equiv-
alent to

a’) For every vertex v of PA let us consider v1, . . . , vk the first integral points on the edges going
from v. Then {vi − v}1≤i≤k spans Zn+1.

b’) For every non empty face F of PA, A f fR(F) ∩Zn+1 = A f fZ(A ∩ F).

Also, when n = 2, condition b’) is equivalent to b”) For every edge F of PA, F ∩Z3 ⊂ A.

Example 3.1.9: Consider I−1 = {x2
i xj}0≤i 6=j≤3 and the corresponding Togliatti system

I = {x3
i }

n
i=0 ∪ {xixjxk}0≤i<j<k≤n (see Example 3.1.2). The smoothness criterion tells us

that X = Im(ϕ[I−1]d
) is smooth.

The next proposition will be a very important tool to see whether a toric variety XA
satisfies one Laplace equation of order two:

Proposition 3.1.10: Let A ⊂ Zn+1 be a finite subset, and let XA ⊂ Pn be the toric variety
associated with A. Then Ψ : Pn → XA s.t. (t0 : · · · : tn) 7→ (tm0 : · · · : tmN ) is a parametrization
where:

(1) mi = (mi0, · · · , min) ∈ A

(2) t = (t0, . . . , tn)⇒ tmi = tmi0
0 · · · tmin

n

If there is a hypersurface of degree d in Pn which contains all points of A, then XA satisfies one
Laplace equation of order d.

Proof: Let l = (l0, . . . , ln) and a = (a0, . . . , an) be two (n + 1)−uples of nonnegative
integers. Then we consider

∂tl

∂ta =
1
a!

∂|a|tl

∂ta0 · · · ∂tan
=

(
l0
a0

)
· · ·
(

ln
an

)
tl−a
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We can group all dth order partial derivatives of Ψ at a general point in a matrix:

Hd(Ψ)(t) =



∂dtm0

∂td
0
(t) ∂dtm1

∂td
0
(t) · · · ∂dtmn

∂td
0
(t)

∂dtm0

∂td−1
0 t1

(t) ∂dtm1

∂td−1
0 t1

(t) · · · ∂dtmn

∂td−1
0 t1

(t)
...

... · · ·
...

∂dtm0
∂ta (t) ∂dtm1

∂ta (t) · · · ∂dtmn

∂ta (t)
...

... · · ·
...

∂dtm0

∂td
n
(t) ∂dtm1

∂td
n
(t) · · · ∂dtmn

∂td
n
(t)


Observe that dimk P

(
T(d)

Ψ(t)XA

)
= rg H(Ψ)(t) − 1. Then, XA satisfies one Laplace

equation of order d if, and only if for general t ∈ Pn there is a k−linear dependence
among all columns of H(Ψ)(t). As t is general, we can assume t = (1 : · · · : 1), and using
the partial derivative expression above, each column of Hd(Ψ)(1 : · · · : 1) can be written
as [(

mi0
a0

)
· · ·
(

min
an

)]
a∈Zn+1 s.t. |a|=d

Then a null linear combination of these columns corresponds to a hypersurface of
degree d going through every point of A. �

Let us notice that if all monomials corresponding to the set A have the same degree d,
we can see them as a subset of d∆n where ∆n is the standard simplex with n + 1 vertices.
The next figure shows visually how to represent all monomials of degree 4 in 3 variables:

x4
0

x3
0x1 x3

0x2
x2

0x2
1 x2

0x1x2 x2
0x2

2
x0x3

1 x0x2
1x2 x0x1x2

2 x0x2
2

x4
1 x3

1x2 x2
1x2

2 x1x3
2 x4

2

For simplicity we will consider the monomials as dots:

•
• •

• • •
• • • •

• • • • •

Therefore, when considering a monomial artinian ideal I of k[x0, . . . , xn] generated
by forms of degree d, and its inverse system (also a monomial ideal) we can consider
AI ⊂ d∆n consisting in all integer points of d∆n minus the points corresponding to the
minimal generators of I. Since I is artinian and monomial, AI is d∆n minus the n + 1
vertices and other points. Let us see a visual example:
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If I = (x3
0, x3

1, x3
2, x0x1x2) ⊂ k[x0, x1, x2], then

AI =

◦
• •

• ◦ •
◦ • • ◦

Where the empty circles represent the removed monomials from 3∆2. Let us also
notice that this visual representation allows us to see easily how is PAI which we will
write shortly as PI .

Finally, let us consider a corollary of Proposition 3.1.10:

Proposition 3.1.11: Let I ⊂ R be an artinian monomial ideal generated by r ≤ (n+d−1
n−1 ) forms

of degree d. Then I is a (monomial) Togliatti system if, and only if there exists a hypersurface of
degree d− 1 passing through all points of AI .

Moreover, I is a minimal monomial Togliatti system if, and only if such a hypersurface F does
not contain any point of d∆n except, eventually, some vertex.

With these tools we address the problem of classifying all smooth monomial Togli-
atti systems of forms of degree d (equivalently, the classification of projections of V(n, d)
satisfying at least one Laplace equation of order d− 1).

3.2 Quadratic case

In this subsection we classify all monomial smooth Togliatti systems of quadrics in R =

k[x0, . . . , xn] following [7]. To do this, we will use combinatorial techniques and graph
theory.

Notation 3.2.1: Let I ⊂ R be an ideal. We associate a graph G with vertex set V =

{v0, . . . , vn} and edges E(G) = {(vi, vj)|xixj ∈ I}.

The main result we want to prove is

Proposition 3.2.2: Let I be a minimal smooth monomial Togliatti system of quadrics in R =

k[x0, . . . , xn] with n ≥ 3. Then, there are n− 1 ≥ a1 ≥ a2 ≥ 2 such that n + 1 = a1 + a2 and,
up to permutation of the coordinates, we have

I = (x0, . . . , xa1−1)
2 + (xa1 , . . . , xn)2.

Proof: First we check that (x0, . . . , xa1−1)
2 + (xa1 , . . . , xn)2 are minimal smooth Togliatti

system for all a1, a2 in the hypothesis.
Now we fix a minimal smooth Togliatti system of quadrics S and let P be its inverse

system. Then, we consider the graph G associated to P. We may regard P as a subset of
integral points of 2∆, where ∆ is the standard simplex with n + 1 vertices. Observe that
there is a correspondence between edges of G and vertices of P.
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By Proposition 2.1.5, Xn,P satisfies at least one Laplace equation of degree one. Then,
its tangent space at a general point has dimension less than the expected one (which is
n + 1). Finally, Proposition 3.1.11 implies that the set of points P lies in a hyperplane.

To continue with the proof we need some lemmas describing the graph G.

Lemma 3.2.2.1: Each path (vj, vk, vl , vs) in G is a part of a four cycle (i.e. (vs, vj) is an edge).

Proof: We can rewrite the hypothesis of the lemma as p1 := xjxk, p2 := xkxl and p3 := xl xs
are points of P. It is clear that p4 := xsxj is coplanar with p1, p2 and p3. On the other hand,
as we said before, the points of P lie in a hyperplane which contains all linear subvarieties
spanned by subsets of P. Then p4 must lie in the same hyperplane and consequently
p4 ∈ P. �

Lemma 3.2.2.2: Each connected component of G is either a complete or a complete bipartite graph.

Proof: Let C be a connected component of G with more than one vertex. If C does not
contain odd cycles, then C is bipartite. Therefore, the minimal path joining two vertices of
different parts must be of odd length, and by Lemma 3.2.2.1 must be of length one. Thus
C is a complete bipartite graph.

On the other hand suppose that C contains an odd cycle. By Lemma 3.2.2.1 the shortest
odd cycle of C is a triangle. Let us now consider C′ be the largest complete subgraph of
C, and let v be a vertex of C − C′. Since C is connected, v must be joined to C′ with at
least one edge e = (v, v0). Since C′ is at least a triangle it has at least three vertices and we
can choose 3−paths ending at v0: (vi, vk, v0). Then we can apply Lemma 3.2.2.1 and there
must be another edge connecting v with vi. As long as C′ is complete and we can change
vi for any vertex of C′, v must be joined with every vertex of C′. Thus, v is a vertex of C′

and C = C′ is a complete graph.
Finally, if C is one isolated vertex, P is smooth if, and only if n = 3. But if n = 3 and G

has an isolated vertex, P has at most 3 points which contradicts the cardinality assumption
of |S| ≤ (n+2−1

n−1 ). for Togliatti systems of quadrics. �

Now we have all ingredients for the proof, and we start supposing that none of the
components of G is bipartite. By the previous lemma, G is a disjoint union of r + 1
complete graphs and then we can write

P = {x0x1, x0x2, . . . , xj1−2xj1−1} ∪ {xj1 xj1+1, . . . , xj2−2xj2−1} ∪ · · · ∪ {xjr xjr+1, . . . , xn−1xn}

That set of points does not fit in a single hyperplane. Indeed, the set of hyperplanes
such that every hyperplane contains all points in r first sets above does not intersect with
the set of hyperplane such that every hyperplane contains all points in the last set above.

On the other hand, if two components of G were bipartite graphs, then we could write
I = I1 + I2 + J were Ij would be ideals of the same type as in the text in the proposition. As
we have seen these ideals are minimal smooth monomial Togliatti systems, then I would
not be minimal.

Hence, we can assume that exactly one component is a bipartite graph and none of
the components is an isolated vertex. If G is connected I must be as in the proposition.
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Otherwise, by the minimality and the smoothness, we can assume that G has exactly two
components: a triangle and a complete bipartite graph with one part consisting in a single
vertex. However, this implies that |P| = 3 + (n− 3) = n < n + 1 and does not satisfy the
cardinality assumption.

3.3 Cubic case

As we have mentioned above, in three variables there is only one monomial Togliatti
system of cubics: I = (x3, y3, z3, xyz). Now, we want to classify all monomial Togliatti
systems of cubics in n + 1 variables.

3.3.1 Four variables

Next proposition classifies all monomial Togliatti systems of cubics in k[x0, x1, x2, x3]. It
can be proved using Macaulay2.

Proposition 3.3.1 ([9]; Theorem 4.11): Let I ⊂ k[x0, x1, x2, x3] be a monomial artinian ideal
of degree 3. Let X = XI−1 the variety associated to I−1. If X is a smooth threefold satisfying a
Laplace equation of degree 2, then (up to a permutation of the coordinates) we have the following
three options:

(1) I−1 = (x2
0x1, x2

0x2, x2
0x3, x0x2

1, x0x2
2, x0x2

3, x2
1x2, x2

1x3, x1x2
2, x1x2

3, x2
2x3, x2x2

3)

(2) I−1 = (x0x1x2, x0x1x3, x2
0x2, x2

0x3, x0x2
2, x0x2

3, x2
1x2, x2

1x3, x1x2
2, x1x2

3, x2
2x3, x2x2

3)

(3) I−1 = (x0x1x2, x0x1x3, x0x2x3, x1x2x3, x2
0x2, x0x2

2, x2
0x3, x0x2

3, x2
1x2, x1x2

2, x2
1x3, x1x2

3)

Moreover, if we delete smoothness hypothesis we have the further cases

(1) I−1 = (x0x2x3, x1x2x3, x2
0x2, x2

0x3, x0x2
3, x2

1x2, x2
1x3, x1x2

2, x2
2x3, x2x2

3)

(2) A projection of case ii removing one or both of the monomials x0x1x2, x0x1x3 or a projec-
tion of case iii removing a subset of the monomials (x0x1x2, x0x1x3, x0x2x3, x1x2x3) or a
projection of case iv removing one or both of the monomials (x0x2x3, x1x2x3).

3.3.2 General case

We will study the general case also following [7]. We begin with a family of examples of
smooth Togliatti systems of cubics.

Example 3.3.2: Let us consider a partition of n + 1 = a1 + . . . + as, with n + 1 ≥ a1 ≥
· · · ≥ as ≥ 1 and the ideal S = (x0, . . . , xa1−1)

3 + · · ·+ (xn+1−as , . . . , xn)3 + J, where J =(
xixjxk|i < j < k; ∀1 ≤ λ ≤ s, # ({i, j, k} ∩ Iλ) ≤ 1

)
with Iλ={∑α≤λ−1 aα, . . . , ∑α≤λ aα− 1}.

Then S is a minimal monomial Togliatti system of cubics.
Proof: First of all let us observe that J is generated by ∑0≤i<j<k≤s aiajak monomials, and
consequently S is generated by
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µa1,...,as =
s

∑
k=1

(
ak + 2

3

)
+ ∑

0≤i<j<k≤s
aiajak monomials

Also we can observe that its inverse system is P = (x2
i xj, xix2

j |i < j; ∀1 ≤ λ ≤
s, # ({i, j} ∩ Iλ) ≤ 1) +(xixjxk|i < j; ∀1 ≤ λ ≤ s, {i, j} ⊂ Iλ, k /∈ Iλ)

The quadric Q = 2 ∑
0≤i≤n

x2
i − 5 ∑

0≤i<j≤n
xixj + 9

(
∑

0≤i<j≤a1−1
xixj + · · ·+ ∑

n+1−as≤i<j≤n
xixj

)
go through every integral point of P and every other quadric Q′ going through every
integral point of P, Q′ is projectively equivalent to Q. In fact,

Let Q′ =
n

∑
i=0

µix2
i + ∑

0≤i<j≤n
µijxixj be a quadric going through all integral points of P.

As we can see above, P is a union of two sets of points. These two sets will restrict the
values of µi and µij and that will give us the proof. From every point of the form x2

i xj and
xix2

j such that i < j and ∀1 ≤ λ ≤ s, # ({i, j} ∩ Iλ) ≤ 1 we are given two equations:

{
4µi + µj + 2µij = 0
µi + 4µj + 2µij = 0

and we get µi = µj = −
2µij

5

Finally, from every point of the second set, i.e. xixjxk such that i < j, and ∀1 ≤ λ ≤
s, {i, j} ⊂ Iλ and k /∈ Iλ we are given the equation µi + µj + µk + µij + µik + µjk = 0.

Since {i, k} and {j, k} satisfy the first set condition we get µi = µk = µj = −
2µik

5 = − 2µjk
5 .

Replacing it in the above equation we have µij = 2µi = −
4µik

5
. In short we have that:{

µij = − 5
2 µi, i < j; ∀1 ≤ λ ≤ s, # ({i, j} ∩ Iλ) ≤ 1

µij = 2µi, i < j; {i, j} ⊂ Iλ

Therefore, we can write

Q′ = ∑
0≤i≤n

µix2
i −

5
2 ∑

0≤i<j≤n |
#({i,j}∩Iλ)≤1

µixixj + 2 ∑
0≤i<j≤a1−1

µixixj + · · ·+ 2 ∑
n+1−as≤i<j≤n

µixixj =

= ∑
0≤i≤n

µix2
i −

5
2 ∑

0≤i<j≤n
µixixj +

9
2 ∑

0≤i<j≤a1−1
µixixj + · · ·+

9
2 ∑

n+1−as≤i<j≤n
µixixj

which is projectively equivalent (by a change of variables) to Q. Using proposition 3.1.11,
this fact proves that S is a minimal Togliatti system. �

Actually, it can be proved that the systems presented in this example are all the smooth
Togliatti systems of cubics:

Proposition 3.3.3 ([7]; Theorem 3.4): Let P be a minimal smooth monomial Togliatti system of
cubics, and let S be its inverse system. Then, up to permutation of coordinates, either P or S is one
of the examples above for some partition of n + 1.
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3.4 Number of generators of monomial Togliatti systems

In the previous sections we classified all smooth monomial Togliatti systems of cubics
and quadrics. The classification of smooth monomial Togliatti systems of forms of degree
d ≥ 4 seems out of reach. In this section we study monomial Togliatti systems of forms
of arbitrary degree. The results of [8], though not classify all monomial Togliatti systems,
give us upper and lower bounds on their number of generators.

First of all, let us fix some notation:

Definition 3.4.1: For every n, d ∈ N, we denote by T (n, d) the set of all minimal mono-
mial Togliatti systems, and by T s(n, d) the set of all minimal smooth monomial Togliatti
systems. Furthermore, we write

(1) µ(n, d) = min{µ(I)|I ∈ T (n, d)}

(2) µs(n, d) = min{µ(I)|I ∈ T s(n, d)}

(3) ρ(n, d) = max{µ(I)|I ∈ T (n, d)}

(4) ρs(n, d) = max{µ(I)|I ∈ T s(n, d)}

where µ(I) stands for the minimal number of generators of an ideal I ⊂ k[x0, . . . , xn].

Since every monomial artinian ideal I ⊂ k[x0, . . . , xn] generated by forms of degree d
contains the ideal (xd

0 , . . . , xd
n), and such ideal has the WLP (Proposition 2.0.1), we have

n + 2 ≤ µ(n, d) ≤ µs(n, d) ≤ ρ(n, d) ≤ ρ(n, d) ≤ (n+d−1
n−1 )

We can analyze the cases d = 2, 3 using the results we have shown before:

Proposition 3.4.2: Using the above notation. For d = 2 it holds:

(1) T s(2, 2) = ∅

(2) For n ≥ 3, we have µs(n, 2) =
{

λ2 + 2λ + 1 if n = 2λ

λ2 + 3λ + 2 if n = 2λ + 1

(3) For n ≥ 3, ρs(n, 2) = (n
2) + 3.

For d = 3, we have:

(1) µs(2, 3) = ρs(2, 3) = 4.

(2) µs(3, 3) = ρs(3, 3) = 8.

(3) 13 = µs(4, 3) < ρs(4, 3) = 15.

(4) For all n ≥ 4, we have

ρs(n, 3) = (n+1
3 ) + n + 1 and µs(n, 3) =

{
(λ+2

3 ) + 2(λ+3
3 ) if n = 2λ

2(λ+3
3 ) if n = 2λ + 1

The goal of this section is to find bounds for the general case when n ≥ 2 and d ≥ 4
and to classify monomial Togliatti systems reaching the lower bounds or close to them.
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3.4.1 Lower bounds

First of all we introduce a type of Togliatti systems that we will often find along this part.

Definition 3.4.3: A Togliatti system I ⊂ k[x0, . . . , xn] of forms of degree d is said to be
trivial if there exists a form F of degree d− 1 such that (x0F, . . . , xnF) ⊂ I.

Remark 3.4.4: (1) If we restrict Fx0, . . . , Fxn to the hyperplane x0 + · · · + xn = 0 they
become (trivially) dependent.
(2) If d = 3, and F is a monomial, then Xn,[I−1]d

is not smooth (see Proposition 3.4.7).

In the next proposition we will give a lower bound and we will see that the Togliatti
systems which reach the bound are mainly the trivial ones.

Proposition 3.4.5: For any integers n ≥ 2 and d ≥ 4 we have µs(n, d) = µ(n, d) = 2n + 1.
Furthermore, all minimal monomial Togliatti systems of forms of degree d ≥ 4 with µ(I) = 2n + 1
are trivial unless one of the following cases holds:

(1) (n, d) = (2, 5) and, up to a permutation of the coordinates, I = (x5
0, x5

1, x5
2, x3

0x1x2, x0x2
1x2

2).

(2) (n, d) = (2, 4) and, up to a permutation of the coordinates, I = (x4
0, x4

1, x4
2, x0x1x2

2, x2
0x2

1).

Proof: First of all we will see that µ(n, d) ≥ 2n + 1, which is equivalent to see that
any monomial artinian ideal I = (xd

0 , . . . , xd
n, m1, . . . , mn−1) has the WLP. We write mi =

xai
0

0 · · · x
ai

n
n with ai

0 + · · ·+ ai
n = d for 1 ≤ i ≤ n− 1. By Proposition 3.1.11 it is enough to

see that there is no hypersurface of degree d− 1 containing all points of AI (where AI is
as subsection 3.1.1). To show this we will slice the set AI into the following d + 1 sets:

For 0 ≤ i ≤ d we define Hi := {(a0, a1, . . . , an) ∈ Zn+1|a0 = i}, and Ai
I := AI ∩ Hi.

We have that AI = ∪d
i=0 Ai

I and Ad
I = {xd

0}. Next figures give a visualization of these
sets choosing, for example I = (x5

0, x5
1, x5

2, x3
0x1x2, x0x2

1x2
2)

AI =

◦
• •

• ◦ •
• • • •

• • ◦ • •
◦ • • • • ◦

⇒ A3
I =

◦
◦ ◦

• ◦ •
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

A2
I =

◦
◦ ◦

◦ ◦ ◦
• • • •

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

and A1
I =

◦
◦ ◦

◦ ◦ ◦
◦ ◦ ◦ ◦

• • ◦ • •
◦ ◦ ◦ ◦ ◦ ◦
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Now we will proceed the proof by induction on n, starting with the case n = 2:

In this case we have I = (xd
0 , xd

1 , xd
2 , xa1

0
0 xa1

1
1 xa1

2
2 ) with a1

0 + a1
1 + a1

2 = d ≥ 4. Hence we can
assume without loss of generality that a1

0 ≥ 2. Let us assume that there is a plane curve
Fd−1 of degree d− 1 containing all points of AI and we will get a contradiction.

Since a1
0 ≥ 2 there are exactly d− 1 points in A0

I and d points in A1
I . Now, since Fd−1 is

a curve of degree d− 1 containing all d points of A1
I there must be a linear form L1 such

that Fd−1 = L1Fd−2. Since Fd−2 has degree d− 2 and contains all d− 1 points of A0
I there

is also a linear form L0 such that Fd−2 = L0Fd−3. We have now that Fd−1 = L0L1Fd−3 with
Fd−3 of degree d− 3.

In case that a1
0 = 2, A2

I has exactly d− 2 points. Otherwise, if a1
0 > 2, A2

I has exactly
d− 1 points. In both cases A2

I contains more points than the degree of Fd−3. Since Fd−3
contains all points of A2

I we have that Fd−3 = L2Fd−4, and by the minimality of I, a1
0 > 0.

Repeating the argument, we get that Fd−1 = L0L1 · · · Ld−2, so Fd−1 does not contain
the points of Ad−1

I which is non empty and it contradicts the existence of a plane curve of
degree d− 1 containing the integral points of AI .

Let now n ≥ 3 and assume, inductively that the claim is true for n− 1. We want to
prove that there is no hypersurface of degree d − 1 containing all integral points of AI ,
where

I = (xd
0 , . . . , xd

n, m1, . . . , mn−1) and mi = xai
0

0 · · · x
ai

n
n with

n

∑
k=0

ai
k = d ≥ 4, 1 ≤ i ≤ n− 1.

By reenumerating if necessary, we can assume that a1
0 ≥ a1

1 ≥ · · · ≥ a1
n ≥ 0, and also

that a1
0 ≥ a2

0 ≥ 0. Therefore, a1
0 > 0, and we can see A0

I as the integer points of d∆n−1
minus the n vertices and, at most, minus n− 2 vertices more. By inductive assumption,
there is no hypersurface of degree d− 1 in Pn−1 containing all points of A0

I . Hence, Fd−1
factorizes as Fd−1 = L0Fd−2 where Fd−2 is a hypersurface of degree d− 2 containing all
points of AI r A0

I .
Now, suppose that a1

0 = . . . = an−1
0 = 1, then A2

I = (d − 2)∆n−1, . . . , Ad−1
I = ∆n−1.

Since there is no hypersurface of degree d − j in Pn−1 containing all integer points of
(d− j)∆n−1 for j = 2, . . . , d− 1, Fd−2 factorizes as L2 · · · Ld−1. This gives a contradiction
because Fd−1 does not contain any point of A1

I which is non empty.
Otherwise, suppose that a1

0 ≥ 2. Then, A1
I is equal to (d − 1)∆n−1 minus at most

n− 2 points. By inductive assumption, there is no hypersurface of degree d− 2 in Pn−2

containing all points of A1
I . Therefore, Fd−2 = Fd−3L1, and we repeat the argument until

we find that Fd−1 = L0 · · · Ld−2 which gives us a contradiction.

Once seen that µ(I) ≥ 2n + 1 for every I ∈ T (n, d) we will classify all monomial
Togliatti systems in T (n, d) such that they are generated by exactly 2n + 1 monomials.

We will start with the case n = 2. Let us take I = (xd
0 , xd

1 , xd
2 , m1, m2) ∈ T (2, d), where

mi = xai
0

0 xai
1

1 xai
2

2 and ai
0 + ai

1 + ai
2 = d. Let us suppose that there exists 0 ≤ i ≤ 2 such that

a1
i , a2

i ≥ 2. We can suppose without loss of generality, that i = 0. Then, the plane curve
Fd−1 containing all points of AI factorizes as Fd−1 = L0L1Fd−3. Now,
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#(Fd−3 ∩ H2) =


d− 1, a1

0, a2
0 > 2

d− 2, a1
0 > a2

0 = 2
d− 3, a1

0 = a2
0 = 2

In the first case we get Fd−3 = L2Fd−4. In the second case we obtain a contradiction with
minimality. The last case is possible, a priori. Hence, a1

0 = a2
0 = s ≥ 2, and using above

argument we can see that Fd−1 = L0L1 · · · Ls−1Fd−s−1. Now we can see that #(Fd−s−1 ∩
Hs+1) = d− s > d− s− 1. Therefore we have the factorization Fd−s−1 = Ls+1Fd−s−2. Ap-
plying this argument recursively we obtain that Fd−1 = L0L1 . . . Ls−1Ls+1 · · · Ld−1. Using
the minimality of I we obtain that this is only possible when s = d− 1 and, therefore I is
trivial.

Now, let us assume that for any 0 ≤ i ≤ 2, there is 1 ≤ j ≤ 2 such that aj
i ≤ 1. Since

there are 3 variables and 2 monomials, by reenumerating the indices we can assume that
a1

0, a1
1, a2

2 ≤ 1. Therefore it must be:

m1 ∈ {x0x1xd−2
2 , x0xd−1

2 , x1xd−1
2 } and m2 ∈ {xα

0 xd−1−α
1 , xα

0 xd−α
1 |0 ≤ α ≤ d− 1}

When replacing x0 by x1 + x2 in the above possible monomials, then xd
0 , xd

1 , xd
2 , m1, m2

remain linearly independent except when

(1) d = 4 and (m1, m2) = (x2
0x1x2, x2

0x2
1)

(2) d = 5 and (m1, m2) = (x0x1x3
2, x2

0x2
1x2)

Let us now suppose that n ≥ 3 and d ≥ 4. Let I = (xd
0 , . . . , xd

n, m1, . . . , mn) be a

minimal Togliatti system where mi = xai
0

0 · · · x
ai

n
n and ∑n

j=0 ai
j = d ≥ 4. Since we have

n + 1 variables and n monomials, there must be a variable xj appearing in more than two
monomials. We can assume without loss of generality that j = 0 and a1

0, a2
0 ≥ 1. Let us

now consider the hypersurface Fd−1 of degree d − 1 containing all integral points of AI
given by Proposition 3.1.11. Let us consider its restriction Gd−1 to the hyperplane H0.
Gd−1 vanishes to all points of A0

I which is equal to d∆n−1 minus the n vertices and at most
n− 2 other points. Let us consider now I′ the ideal generated by those n vertices and the
monomials not containing x0 among {mi}.

If Gd−1 is not a hyperplane, we have a hypersurface in n variables containing AI′ .
Therefore I′ would be a minimal Togliatti system with µ(I′) ≤ 2n− 2 = 2(n− 1). In the
first part of the proof we have seen this cannot happen. Hence Gd−1 is a hyperplane and
Fd−1 = L0Fd−2. Since I is minimal, we have that a1

0 ≥ a2
0 ≥ · · · ≥ an

0 ≥ 1.
Since I is a Togliatti system, when we restrict xd

0 , . . . , xd
n, m1, . . . , mn to x0 + · · ·+ xn = 0

they become linearly dependent. In such a linear combination, the coefficient of (x0 + . . .+
xn−1)

d must be null because, for example, the monomial xd−1
1 x2 cannot be canceled by any

of the other monomials. Then, the coefficients of the monomials xd
1 , . . . , xd

n−1 must be zero
in this linear combination. Therefore, we can divide the monomials mi by x0 and obtain
new monomials m′i of degree d− 1. These new monomials, together with xd−1

0 , . . . , xd−1
n

must form a new Togliatti system. We can repeat this procedure until d = 4 and obtain
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that mi = Mm′i where m′i is a monomial of degree 4 and I′ = (x4
0, . . . , x4

n, m′1, . . . , m′n) is a
minimal Togliatti system.

We can use the same argumentation as above to show that these monomials m′i all
contain xj. Then, if F′3 is the hypercubic containing AI′ , it must factorize as F′3 = L′0F′2 with
F′2 containing AI′ r A0

I′ . With only n points we can remove, the only possibility is that
these points are next to x4

j , and then (m′1, . . . , m′n) = x3
j (x0, . . . , xn).

Finally, since µ(I) = 2n + 1, M = xd−4
0 and j = 0. Hence, I = (xd

0 , . . . , xd
n) +

xd−1
0 (x1, . . . , xn). �

Arguing as above we can classify all smooth minimal Togliatti systems which are gen-
erated by 2n + 2 monomials and we get

Proposition 3.4.6 ([8]; Theorem 3.17): Let I ⊂ k[x0, . . . , xn] be a smooth minimal monomial
Togliatti system of forms of degree d ≥ 4 with µ(I) = 2n + 2. Then I is trivial unless n = 2 and,
up to a permutations of the variables, one of the following cases hold:
(1) d = 5 and

(a) I = (x5
0, x5

1, x5
2) + x0x1x2(x0, x1)

2

(b) I = (x5
0, x5

1, x5
2) + x0x1x2(x2

0, x2
1, x2

2)

(c) I = (x5
0, x5

1, x5
2) + x0x1x2(x0x1, x0x2, x1x2)

(2) d = 7 and

(a) I = (x7
0, x7

1, x7
2) + x0x1x2(x2

0x2
1, x2

0x2
2, x2

1x2
2)

(b) I = (x7
0, x7

1, x7
2) + x0x1x2(x4

0, x4
1, x4

2)

(c) I = (x7
0, x7

1, x7
2) + x0x1x2(x2

0x2
1, x0x1x2

2, x4
2)

The next proposition finishes the classification of smooth monomial Togliatti systems
I with 2n + 1 ≤ µ(I) ≤ 2n + 2.

Proposition 3.4.7: Let I = (xd
0 , . . . , xd

n) + m(x0, . . . , xn) be a trivial Togliatti system of degree
d where m is a monomial of degree d− 1. Then I is smooth if, and only if (up to permutation of
variables) one of the following cases hold:

(1) d = 2 and n = 2 or n = 3.

(2) d = 3, n = 2 and m = x2
0. In this case 5 = µ(I) > ρ(2, 3) = 4, but we consider it to have

a complete picture.

(3) d ≥ 4, n = 2 and m = xd−1
0 or m = xi0

0 xi1
1 xi2

2 with i0 ≥ i1 ≥ i2 > 0.

(4) d ≥ 4, n ≥ 3 and m = xd−1
0 or m = xi0

0 xi1
1 · · · x

in
n with i0 ≥ i1 ≥ · · · ≥ in ≥ 0 and i2 > 0.

Proof: We will study cases d = 2, 3 ≥ 4 separately:
(1) Assume d = 2. We can assume without loss of generality that m = x0. If n = 2, then
X is a point corresponding to x1x2, and it is smooth.
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Suppose now that n ≥ 3, then to get AI we have to remove all points of 2∆n except
those corresponding to the monomials xixj with 0 < i < j ≤ n. Therefore, AI = A0

I and
it is equal to 2∆n−1 minus the n vertices. Hence, there are 2(n− 2) edges emanating from
each vertex of PI . By the smoothness criterion 3.1.8 we have that X is smooth if, and only
if 2(n− 2) = n− 1⇔ n = 3.
(2) Assume d = 3. In this case we can assume m to be x2

0 or x0x1. If n = 2, the first case is
smooth because PI corresponds to a trapezium, and the second case is singular:

If m = x0x1, in order to obtain AI we have to remove all vertices of 3∆2 together
with x2

0x1, x0x2
1 and x0x1x2. Hence x2

0x2 x2
1x2 is an edge of PI which contains

x0x1x2. This contradicts the smoothness criterion 3.1.8.

If n ≥ 3 both cases are singular:
If m = x2

0, then there are more than 2(n− 1) edges emanating from the vertex corre-
sponding to x0x2

1. Since n ≥ 3, then 2(n− 1) > n− 1 and the smoothness criterion 3.1.8
does not hold. Otherwise, if m = x0x1 we can use the same argument than the case n = 2
and get that X is singular.
(3) Assume d ≥ 4 and n = 2. If m = xd−1

0 then PI corresponds to a truncated simplex and
X is smooth. If m = xd−2

0 x1, then it is singular:

In particular we are removing the points corresponding to xd
0 , xd−1

0 x1 and
xd−2

0 x2
1. Also, the points corresponding to xd−1

0 x2 and xd−3
0 x3

1 belongs to AI .

Hence xd−1
0 x2 xd−3

0 x3
1 is an edge of PI and the smoothness criterion 3.1.8 does

no hold.

If m = xd−i
0 xi−1

1 with 3 ≤ i ≤ d− 2, then xd−1
0 x1 and x0xd−1

1 belong to AI . Therefore,

xd−1
0 x1 x0xd−1

1 is an edge of PI which contains xd−i
0 xi−1

1 /∈ AI . Hence, the smoothness
criterion 3.1.8 implies X is not smooth.

Finally, if m = xi0
0 xi1

1 xi2
2 with i0 ≥ i1 ≥ i2 > 0, then X is smooth because PI is a truncated

simplex and all points different from vertices removed are located in the interior of PI .
(4) Assume d ≥ 4 and n ≥ 3. If m = xd−1

0 , the system is smooth because PI is a truncated
simplex with all integer points belonging to AI . If m = xd−i

0 xi−1
1 with i ≥ 3 X is singular

because PI has a 2−face where we can apply the same argument as in the case n = 2.
Finally, if m contains at least 3 different variables, then X is smooth: PI is a truncated

simplex such that all integer points on its edges belong to AI , and on each k−face F (k ≥ 2)
if p ∈ F r AI then p ∈ F̊ �

Remark 3.4.8: Without the smoothness hypothesis there are more monomial Togliatti
systems I with µ(I) = 2n + 2. For instance, I = (x5

0, x5
1, x5

2, x0x4
1, x0x2

1x2
2, x0x4

2) ∈ T (2, 5)r
T s(2, 5) and µ(I) = 6.

3.4.2 Study in the range

In this subsection we will study whether there exists, for each µ(n, d) ≤ r ≤ ρ(n, d) (resp.
µs(n, d) ≤ r ≤ ρs(n, d)), any I ∈ T (n, d) (resp. T s(n, d)) with µ(I) = r . The case n = 2 is
easily solved as next proposition shows:
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Proposition 3.4.9: If n = 2 then for any d ≥ 4 we have:

(1) µs(2, d) = µ(2, d) = 5.

(2) ρs(2, d) = ρ(2, d) = d + 1.

(3) For any 5 ≤ r ≤ d + 1, there exists I ∈ T s(2, d) such that µ(I) = r.

Proof: (1) It follows from Proposition 3.4.5.
(2) By definition of Togliatti system we have that ρ(2, d) ≤ d + 1. The existence of

I ∈ T s(2, d) such that µ(I) = d + 1 will follow (3) (by choosing r = d + 1).
(3) Let us consider the ideals

I5 := (xd
0 , xd

1 , xd
2) + xd−1

0 (x1, x2)

For 6 ≤ r ≤ d + 1 Ir := (xd
0 , xd

1 , xd
2) + xd−r+3

0 x1x2
[
(x0, x1)

r−5 + (x2)
r−5]

The first ideal is a smooth monomial Togliatti system as seen in Proposition 3.4.7. For
r = 6 Ir = (xd

0 , xd
1 , xd

2) + xd−3
0 x1x2(x0, x1, x2) is also a smooth monomial Togliatti system

again by Proposition 3.4.7.
Let us consider Li, L′i and L′′i the linear forms in k[x0, x1, x2] corresponding to the

affine hyperplanes {a0 = i}, {a1 = i} and {a2 = i} respectively, where 0 ≤ i ≤ d
and (a0, a1, a2) are the coordinates in Z3. With this notation, for each 7 ≤ r ≤ d + 1,
Fd−1 = L0 · · · Ld−r+2L′′0 L′′2 · · · L′′r−5L′0 is a hypersurface of degree d− 1 containing all points
of AIr . Finally, this system is smooth because PIr is a truncated simplex and every integer
point in its edges belongs to AIr �

However, we cannot generalize this proposition to the case n ≥ 3. In that case we will
see that there is no I ∈ T s(n, d) with µ(I) = 2n + 3. We will study this separating the
cases d = 3 and d ≥ 4, but before we will prove a useful lemma:

Lemma 3.4.10: Let I = (xd
0 , . . . , xd

n, m1, . . . , mh) ∈ T (n, d) with h ≥ n, d ≥ 3 and mi =

xai
0

0 · · · x
ai

n
n for i = 1, . . . , h. We can assume that a1

0 ≥ · · · ≥ ah
0.

If ah−n+2
0 > 0, then ai

0 > 0 for i = 1, . . . , h.

Proof: Since I is a Togliatti system there is a form Fd−1 of degree d − 1 in Pn which
contains all points of AI . By the hypothesis assumption, A0

I is equal to d∆n−1 minus the
n vertices and at most h− (h− n + 2) = n− 2 other points.

Let us consider the ideal I′ generated by xd
1 , . . . , xd

n and {mi|h− n + 3 ≤ i ≤ h, ai
0 = 0}.

Note that AI′ ⊂ d∆n−1. If the restriction of Fd−1 to the hyperplane H0 is F(0, x1, . . . , xn) 6=
0, then we have a hypersurface of degree d − 1, Gd−1 := Fd−1|H0

in Pn−1 such that it
contains all points of AI′ . Then I′ is a Togliatti system in n variables, generated at most
by n + n − 2 = 2(n − 1) monomials, this is a contradiction by Proposition 3.4.5. Hence
Gd−1 = 0 and Fd−1 factorizes as Fd−1 = L0Fd−2.

Since L0 contains all integer points of d∆n ∩ H0 and I is a minimal Togliatti system, by
Proposition 3.1.11 we conclude that A0

I = ∅ and then ai
0 > 0, ∀1 ≤ i ≤ h. �
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Lemma 3.4.11: Assume n ≥ 4 and let I be a minimal Togliatti system of cubics. Then µ(I) ≥
2n + 1 and one of the following holds: (1) µ(I) = 2n + 1 if, and only if (up to permutation of
coordinates) I = (x3

0, . . . , x3
n) + x2

0(x1, . . . , xn).
(2) µ(I) = 2n + 2 if, and only if (up to permutation of coordinates) I = (x3

0, . . . , x3
n) +

xixj(x0, . . . , xn), with i 6= j.
(3) µ(I) 6= 2n + 3.

Proof: Let us notice that we cannot use Proposition 3.4.5 because d < 4.
We will start proving that there is no monomial ideal I generated by 2n cubics failing

the WLP from degree 2 to 3. We proceed by induction and with Macaulay2 we see that
µ(I) ≥ 9 for any I ∈ T (4, 3). Assume now that n ≥ 5 and the result is true for n − 1.

Let us consider I = (x3
0, . . . , x3

n, m1, . . . , mn−1) with mi = xai
0

0 · · · x
ai

n
n and ai

0 + · · ·+ ai
n = 3.

We will suppose that there is a hyperquadric F2 containing all points of AI . Without loss
of generality we can suppose that a1

0 > 0, and then A0
I is equal to 3∆n−1 minus the n

vertices and at most n− 2 other points. By induction hypothesis, the restriction of F2 to
the hyperplane H0 must be of degree one, and therefore F2 = L0F1 with F1 a hyperplane
containing all points of AI r A0

I . This is impossible, since at least one point of 3∆n ∩ H2
belongs to AI .

Suppose now that µ(I) = 2n + 1. With Macaulay2 we can see that for n = 4 I as
(1). Let us assume that n ≥ 5 and that the proposition is true for n − 1. We can write
I = (x3

0, . . . , x3
n, m1, . . . , mn) with the same notation as above and let F2 be a hyperquadric

containing all points of AI . Since at least one variable appears in to different monomials mi
and mj, we can assume without loss of generality that a1

0, a2
0 ≥ 1. Therefore, argumenting

as before it must be F2 = L0F1 with F1 a hyperplane containing all points in AI r A0
I . The

only possibility is that A2
I = ∅ and mi = x2

0xi, and hence I is as (1).

Let us see what happens when µ(I) = 2n + 2. With Macaulay2 we can see that for
n = 4 (2) is verified. Let us assume that n ≥ 5 and that the proposition is true for
n− 1. We can write I = (x3

0, . . . , x3
n, m1, . . . , mn+1) with the same notation as above and

reenumerating the indices if necessary, we can suppose that a1
0 ≥ a2

0 ≥ · · · a
n+1
0 ≥ 0 and

a1
0 > 0. If a3

0 > 0, then by Lemma 3.4.10 an+1
0 > 0. Therefore, F2 = L0F1 with F1 a

hyperplane containing all points of AI r A0
I . The only way to remove n + 1 points from

3∆n r H0 different from the vertices is as follows:

First choose an edge x3
0 x3

i and consider every 2−face of 3∆n emanating from
this edge. There are in total n− 1 of these 2−faces.

Now, the inner integer point of each face, together with the two inner integer
points of the edge we have chosen, they correspond to n + 1 monomials of
degree 3.

Precisely they are: {x2
0xi, x0x2

i } ∪ {x0xixj}j/∈0,i.

This allows us to choose F1 corresponding to the affine hyperplane {ai = 0}.
Now suppose that a3

0 = 0. Then, the restriction of I to the hyperplane {x0 = 0} is
a Togliatti system I in n variables with µ(I) = 2n − 1 = 2(n − 1) + 1 or µ(I) = 2n =
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2(n− 1) + 2. Using the induction hypothesis we get that I is trivial and can be write as
I = (x3

1, . . . , x3
n) + x2

1(x2, . . . , xn) or I = (x3
1, . . . , x3

n) + xixj(x1, . . . , xn) with 1 ≤ i < j ≤ n.
In the first case, applying the smoothness criterion 3.1.8 AI must contain the point x2

1x0
and therefore I contains the trivial Togliatti system (x3

0, . . . , x3
n) + x2

1(x0, x2, . . . , xn) which
contradicts the minimality.

On the other hand, in the second case I = (x3
0, . . . , x3

n) + xixj(x1, . . . , xn) + (m1). Since
m1 contains x0, there is 1 ≤ k ≤ n with k 6= i, j such that x2

i xk and x2
j xk are vertices of PI

such that x2
i xk x2

j xk is an edge of PI . Since the point xixjxk lies over the edge and does not
belong to AI , we get a contradiction with the smoothness criterion 3.1.8.

Finally, let us suppose that µ(I) = 2n + 3. With Macaulay2 we can see it is not possible
for n = 4. Suppose now that n ≥ 5 and let I = (x3

0, . . . , x3
n, m1, . . . , mn+2) with the same

notation as above. As we did before, we can suppose without loss of generality that
a1

0 ≥ · · · ≥ an+1
0 ≥ 0, and a1

0 > 0. If a4
0 > 0, then we can apply Lemma 3.4.10 and get that

an+2
0 > 0. Therefore F1 = L0F1 with F1 a hyperplane passing through all points of AI r A0

I
and no other point of 3∆n apart from the vertices. Since we have to remove n + 2 points
this is impossible.

Otherwise, if a4
0 = 0, we can restrict x3

0, . . . , x3
n, m1, . . . , mn+2 to the hyperplane x0 = 0

and get a new ideal I ⊂ k[x1, . . . , xn] generated by x3
1, . . . , x3

n and those mi such that do not
contain x0. Since a1

0 > 0 we have that µ(I) ≤ 2(n− 1) + 2. Hence we can apply induction
hypothesis and get that I is one of the following cases:

(1) I = (x3
1, . . . , x3

n) + x2
1(x2, . . . , xn)

(2) I = (x3
1, . . . , x3

n) + xixj(x1, . . . , xn) with 1 ≤ i < j ≤ n.

We can apply the argumentation we used just before and see that in any of these cases
we cannot get a smooth Togliatti system I. �

Proposition 3.4.12: Let n ≥ 3 and d ≥ 4. Then, there is no I ∈ T s(n, d) with µ(I) = 2n + 3.

Proof: We can write I = (xd
0 , . . . , xd

n, m1, . . . , mn+1) with the usual notation. Now, we
distinguish two cases:

(1) For all 0 ≤ j ≤ n, #{i|ai
j ≥ 1} ≤ 3, which is equivalent to say that each variable

appears in at most three monomials.
Any monomial contains all the variables. Indeed, if one monomial contained all the

variables, then the other n + 1 monomials would contain two variables each. This cannot
occur as we have seen in the proof of Proposition 3.4.6.

Furthermore, at least two variables appear in three monomials. We can assume with-
out loss of generality that x0 appears in three monomials. Therefore, A0

I is equal to d∆n−1
minus the vertices and n− 1 other points. Let us consider the restriction of the hypersur-
face of degree d− 1, given by Proposition 3.1.11, to the hyperplane H0. Then the removed
n − 1 points and the n vertices of d∆n−1 form a Togliatti system I in n variables with
µ(I) = 2(n− 1) + 1. By Proposition 3.4.5 there are two possibilities:

(a) n = 3 and I is one of the two special Togliatti systems of degree 4 or 5 of Proposition
3.4.5. Any of them gives us a Togliatti system I.
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(b) I = (xd
1 , . . . , xd

n) + xd−1
1 (x2, . . . , xn). Since x1 appears in n− 1 monomials, it can only

be n = 3 or n = 4.

In both cases, we can restrict out attention to the 2−face F := 〈x3
0, x3

1, x3
2〉. If x0xd−1

1 ∈ AI ,
then it is a vertex of PI . On F ∩ PI , there are two edges adjacent to this point. One of them

has to be x0xd−1
1 xd−2

1 x2
2, and this contradicts the smoothness criterion 3.1.8.

(2) There exists 0 ≤ j ≤ n such that #{i|ai
j ≥ 1} ≥ 4. We can assume j = 0 and

a1
0 ≥ a2

0 ≥ a3
0 ≥ a4

0 > 0. Applying Lemma 3.4.10 we get that an+1
0 > 0. Then we can

consider m′i := mi/x0 for 1 ≤ i ≤ n + 2 and as in the proof of Proposition 3.4.6 we get
that m′1, . . . , m′n+2 together with xd−1

0 , . . . , xd−1
n form a Togliatti system I1 of degree d− 1.

There are two possibilities:

(a) at least one of the monomials m′i is the (d − 1)th power of a variable, and then
µ(I1) < 2n + 3.

(b) µ(I1) = µ(I) = 2n + 3.

In the first case, if d > 4, then I1 must be trivial. Hence, I would contain a Togliatti system
and this would contradict the minimality of I. If d = 4 then µ(I1) ≤ 2n + 2.

In the second case, we can apply the above argument. We can do this procedure until
arrive to d = 4. Now we have a Togliatti system I1 of degree d− 1 = 3 with µ(I1) ≤ 2n+ 3.
If n = 3 Macaulay2 gives us the result. Otherwise, we can apply Lemma 3.4.11 and get
that I1 is trivial and therefore I is not minimal. �

To finish this section we will delete the smoothness condition and we will generalize
Proposition 3.4.12

Proposition 3.4.13: For any ≥ 4, we have: (1) For any n ≥ 3, µ(n, d) = 2n + 1.
(2) For any n ≥ 3, ρ(n, d) = (n+d−1

n−1 )

(3) For any integer r with µ(3, d) = 7 ≤ r ≤ (d+2
2 ) = ρ(3, d), there exists I ∈ T (3, d) with

µ(I) = r.

Proof: (1) It follows from Proposition 3.4.5.
(2) By definition we have that ρ(n, d) ≤ (n+d−1

n−1 ). Let us consider I = (xd
0 , . . . , xd

n) +

x1(x1, . . . , xn)d−1 + x2(x2, . . . , xn)d−1 + · · ·+ xn−2(xn−2, xn−1, xn)d−1 + x3
0(xn−1, xn)d−3.

µ(I) = (n+d−1
n−1 ) and by restricting to the hyperplane x0 + · · · + xn = 0 we get that

I ∈ T (n, d).
(3) Now we assume n = 3. We have to prove that for any 7 ≤ r ≤ (d+2

2 ) there exists
I ∈ T (3, d) with µ(I) = r.

r = 7: I = (xd
0 , xd

1 , xd
2 , xd

3) + xd−1
0 (x1, x2, x3).

r = 8: I = (xd
0 , xd

1 , xd
2 , xd

3) + xd−2
0 x1(x0, x1, x2, x3).

r = 9: I = (xd
0 , xd

1 , xd
2 , xd

3) + xd−2
0 (x2

1, x1x2, x2
2, x2x3, x2

3).

It only remains to prove the result for 10 ≤ r ≤ (d+2
2 ). We will proceed by induction

over d ≥ 4. In the case d = 4 we can give an explicit example for 10 ≤ r ≤ 13 thanks to
Macaulay2:



26 Monomial Togliatti systems

r = 10: I = (x0, x1)
4 + (x2, x3)

4.

r = 11: I = (x0, x1)
4 + (x4

2, x3
2x3, x2

2x2
3, x4

3, x0x2x2
3, x1x2x2

3).

r = 12: I = (x0, x1)
4 + (x4

2, x3
2x3, x2x3

3, x4
3, x2

0x2
3, x0x1x2

3, x2
1x2

3).

r = 13: I = (x0, x1)
4 + (x4

2, x3
2x3, x2x3

3, x4
3, x3

0x3, x2
0x1x3, x0x2

1x3, x3
1x3).

For r = 14 we consider I = (x4
0, x4

1, x4
2, x4

3, x2
0x1x2, x2

0x1x3, x2
0x2x3, x0x2

1x2, x0x2
1x3, x0x1x2

2,
x0x2x2

3, x2
1x2x3, x1x2

2x3, x1x2x2
3)

and the case r = 15 is covered by (2).

Let us suppose now that d ≥ 4 and that the result is true for d− 1.
For any 7 ≤ s ≤ (d+1

2 ) let us consider, thanks to induction hypothesis, J ∈ T (3, d− 1)
such that µ(J) = s. Now, we define I = (xd

0 , xd
1 , xd

2) + x3 J. Let us notice that µ(I) = s + 3,
and also that I ∈ T (3, d). Hence, we have proved the result for 10 ≤ r ≤ (d+1

2 ) + 3.
Observe now that I = (xd

0 , xd
1 , xd

2 , xd
3) + x0(x1, x2, x3)

d−1 ∈ T (3, d) and µ(I) = (d+1
2 ) + 4.

Finally let us consider, for any 3 ≤ i ≤ d− 1, the ideal

I = (xd
0 , xd

1 , xd
2 , xd

3) + (xi1
1 xi2

2 xi3
3 |i1 + i2 + i3 = d, 1 ≤ i1 ≤ d− 1) + xi

0(x2, x3)
d−i.

First of all let us observe that µ(Ii) = 4+
(
(d+2

2 )− (d− 1)− 3
)
+ (d− i + 1) = (d+2

2 ) +

3− i. Therefore, when i ranges from i = 3 to i = d− 1 we have µ(Ii) ranges from (d+1
2 ) + 5

to (d+2
2 ). It only remains to prove that Ii ∈ T (3, d). By Proposition 3.1.11 it is enough

to prove that there is a surface Fd−1 passing through all points of AIi . As usual, since
A1

Ii
= (d− 1)∆2, . . . , Ai−1

Ii
= (d− i + 1)∆2, we have the factorization Fd−1 = L1 · · · Li−1Fd−i

where Fd−i is a surface of degree d− i containing all points of AIi r
(
∪i−1

j=1 Aj
Ii

)
.

On one hand, forms of degree d− i in 4 variables are parametrized by a k−vector space
of dimension (d−i+3

3 ). On the other hand, we are imposing some restrictions to Fd−i:
Let us notice that A0

Ii
is a set of d− 1 aligned points. Precisely A0

Ii
= {(0, 0, k, d− k)}d−1

k=1 .
Containing such a set of points imposes d− i + 1 conditions to these forms. In addition,
containing the points of Ai+1

Ii
, . . . , Ad−1

Ii
imposes (d−i+1

2 ), . . . , 3 conditions, respectively. Fi-

nally, to say that Fd−i contains Ai
Ii

imposes (d−i+2
2 )− (d − i + 1) more conditions. If we

sum up, we get in total (d−i+3
3 )− 1 conditions we are imposing. Then there exists at least

one surface of degree d− i satisfying all these restrictions and hence we have found the
surface Fd−1 we were looking for. �



Chapter 4

New results on the classification
of Togliatti systems

All results of this chapter are new and they will appear in [12].
In this chapter we will use the combinatoric machinery that we have shown in the pre-

vious chapter to classify all smooth monomial minimal Togliatti systems I ⊂ k[x0, . . . , xn]

of forms of degree d ≥ 4 with µ(I) = 2n + 3 and n ≥ 2, as well as all monomial minimal
Togliatti systems in three variables generated by 7 monomials. Therefore, our contribu-
tions are a natural continuation of the results in [8] and classify the first case left open
there.

In all this chapter we fix the following notation:

Notation 4.0.1: The ideal T = (x3, y3, z3, xyz) and the following sets of ideals:

A = {(y3, y2z, yz2, z3), (xy2, xz2, y3, z3), (x2y, y3, y2z, z3), (x2z, y3, y2z, z3), (xz2, y3, y2z, z3),
(xz2, y3, y2z, yz2), (x2z, y3, y2z, yz2), (xyz, xz2, y3, yz2), (xy2, xz2, y3, yz2), (xyz, xz2, y3, y2z),
(xy2, xz2, y2z, yz2), (x2z, xy2, y2z, yz2), (x2z, xz2, y3, y2z), (x2z, xz2, y3, yz2), (x2y, xy2, y3, z3),
(x2z, xy2, y3, z3), (x2z, xyz, y3, y2z), (x2z, xyz, y3, yz2), (x2y, xz2, y3, y2z), (x2y, xz2, y3, yz2),
(x2z, xy2, y3, yz2)},

B = {(x3z, xy2z, y4, yz3), (x2yz, xz3, y4, y3z), (x2z2, xy2z, y4, z4), (x2yz, y4, y2z2, z4)}, and

C = {(x3yz, xy2z2, y5, z5), (x2yz2, xy3z, y5, z5)}.

Finally, for any d ≥ 1 integer, let be M(d) :=
{

xaybzc
∣∣∣∣ d− 1 ≥ a, b, c ≥ 0

a + b + c = d

}
.

Now we can state the main theorem:

Theorem 4.0.2: Let I ⊂ k[x, y, z] be a minimal Togliatti system generated by 7 monomials of
degree d ≥ 10. Then, (up to a permutation of the variables) one of the following cases hold

(1) There is m ∈ M(d− 2) such that

27
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either (a) I = (xd, yd, zd) + m(x2, y2, xz, yz) or (b) I = (xd, yd, zd) + m(x2, y2, xy, z2).

(2) There is J ∈ A such that I = (xd, yd, zd) + xd−3 J.

(3) There is m ∈ M(d− 3) such that I = (xd, yd, zd) + mT.

(4) There is J ∈ B such that I = (xd, yd, zd) + xd−4 J.

(5) There is J ∈ C such that I = (xd, yd, zd) + xd−5 J.

Proof: It is easy to check that all of these ideals are minimal Togliatti systems. Let us
prove the reciprocal. As usual, let us write I = (xd, yd, zd, m1, m2, m3, m4) where for 1 ≤
i ≤ 4, mi = xai ybi zci with ai + bi + ci = d. We consider AI ⊂ d∆2 ∩Z3 and we slice AI
with planes in three possible manners:

For 0 ≤ j ≤ 2 and 0 ≤ i ≤ d, we define H j
i := {(t0, t1, t2)|tj = i} and A(i,j)

I := AI ∩ H j
i .

We will divide the proof in two cases:

Case 1: There exist 1 ≤ ia, ib, ic ≤ 4 such that aia , bib , cic ≤ 1.
Case 2: There exists one variable whose square divides all monomials mi.

Case 1: None of the squares of the variables divide the four monomials m1, m2, m3 and
m4. Up to permutation of the variables, we have two possibilities:

Case 1A: I = (xd, yd, zd, xe1 yazd−a−e1 , xbye2 zd−b−e2 , xcyd−c−e3 ze3 , xαyβzd−α−β) with 0 ≤
e1, e2, e3 ≤ 1, d− 2− e1 ≥ a ≥ 2, d− 2− e1 ≥ a ≥ 2, d− 2− e1 ≥ a ≥ 2 and only one of the
exponents α, β, d− α− β is ≤ 1.

Case 1B: I = (xd, yd, zd, xe1 ye2 zd−e1−e2 , xayd−a−e3 ze3 , xαyβzd−α−β, xγyδzd−γ−δ) with 0 ≤
e1, e2, e3 ≤ 1.

In both cases, a straightforward computation shows that when we restrict to x + y + z
the 7 monomials remain k−linearly independents. Therefore, I is not a Togliatti system.

Case 2: Without loss of generality we can suppose that x2 divides each monomial mi. We
can also assume that a1 ≥ a2 ≥ a3 ≥ a4 = s ≥ 2.

First of all we will see that a3 = a4 = s ≥ 2. In fact, since s ≥ 2, Fd−1 is a plane curve of
degree d− 1 containing all d points in A(1,0)

I . So it factorizes as Fd−1 = L0
1Fd−2. Since Fd−2

contains all d− 1 points of A(0,0)
I it factorizes as Fd−1 = L0

0L0
1Fd−3. Repeating the process

we arrive to Fd−1 = L0
0L0

1 · · · L0
s−1Fd−s−1. Suppose a3 > a4 = s. Therefore, A(s,0)

I consist
in d− s points, and Fd−s−1 must contain them. Hence we have Fd−s−1 = L0

s Fd−s−2 which
contradicts the minimality of I (Proposition 3.1.11).

Once seen this, we have that Fd−1 = L0
0 · · · L0

s−1Fd−s−1 where Fd−s−1 is a plane curve

of degree d − s − 1 which contains all integer points of ÃI := AI r
(
∪s−1

k=0 A(k,0)
I

)
. Set

Ã(i,j)
I = ÃI ∩ H j

i . We will distinguish four subcases:
Case 2A: a1 = a2 = a3 = a4 =: s ≥ 2.
Case 2B: u := a1 > a2 = a3 = a4 =: s ≥ 2.
Case 2C: u := a1 = a2 > a3 = a4 =: s ≥ 2.
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Case 2D: u := a1 > v := a2 > a3 = a4 =: s ≥ 2.

Case 2A: We assume that a1 = a2 = a3 = a4 =: s ≥ 2. In this case, it must be Fd−1 =

L0
0 · · · L0

s−1L0
s+1 · · · L0

d−1. Therefore, s = d− 3 and I = (xd, yd, zd) + xd−3(y3, y2z, yz2, z3),
which is of type (3).

Case 2B: We assume that u := a1 > a2 = a3 = a4 =: s ≥ 2. In this case, either u =

s + 1 or u = s + 2. Indeed, if u > s + 2 we have, Fd−s−1 = Ls+1 · · · Lu−1Fd−u with
Fd−u a plane curve of degree d − u which contains in particular A(s,0)

I . By minimality,

#(Fd−u ∩ A(s,0)
I ) = d− s− 2 > d− u (Proposition 3.1.11) and we have Fd−u = Ls

0Fd−u−1,
which is a contradiction. Then, up to permutation of variables, I is as one of the following
cases:

Case b1: u = s + 1 and I = (xd, yd, zd) + xs(xyazd−a−s−1, ybzd−b−s, yczd−c−s, yezd−e−s).
Case b2: u = s+ 2 and I = (xd, yd, zd) + xs(x2yazd−a−s−2, ybzd−b−s, yczd−c−s, yezd−e−s).

Case b1: In this case we are removing three points from H0
s and one from H0

s+1. Up to
permutation of the variables y and z, we can suppose that d− s− 1 ≥ a ≥ b d−s−1

2 c, and
also we can assume that d− s ≥ b > c > e ≥ 0. Let us suppose first that b d−s−1

2 c > e ≥ 0.

In this case #(Fd−s−1 ∩ Ã(0,1)
I ) =

{
d− s e ≥ 1
d− s− 1 e = 0

If e ≥ 1, then #Ã(0,1)
I = d − s and we have the factorization Fd−s−1 = L1

0Fd−s−2. In-
ductively, we have Fd−s−1 = L1

0 · · · L1
e−1Fd−s−e−1 and Fd−s−e−1 contains, in particular, the

integer points of Ã(e,1)
I . Since a > e and b > c > e, we have that #Ã(e,1)

I = d− s− e and
it must be Fd−s−e−1 = L1

e Fd−s−e−2 contradicting the minimality of I. Therefore it must be
e = 0, and m4 = xszd−s with d− s− 1 ≥ c ≥ 1. Let us consider

#(Fd−s−1 ∩ Ã(1,1)
I ) =


d− s a, c ≥ 2
d− s− 1 a = 1, c ≥ 2
d− s− 1 a ≥ 2, c = 1
d− s− 2 a = c = 1

and we will study the four possibili-

ties.
If a, c ≥ 2 then we have the factorization Fd−s−1 = L1

1Fd−s−2. In particular Fd−s−2 is a

plane curve of degree d− s− 2 containing the d− s− 1 points of Ã(0,1)
I , then we have the

factorization Fd−s−2 = L1
0Fd−s−3 which contradicts again the minimality of I. Therefore, if

a ≥ 2, then c = 1.
If a = 1, we have d− 2 ≥ s ≥ d− 3. If s = d− 2, then c = 1 and I = (xd, yd, zd, xd−1y,

xd−2y2, xd−2yz, xd−2z2) which is not a Togliatti system. Otherwise, s = d− 3, then we have
several possibilities:
(i) c ≥ 2 and I = (xd, yd, zd) + xd−3(y3, z3, xyz) + (xd−3y2z) which is not minimal.
(ii) c = 1 and either I = (xd, yd, zd) + xd−3(xyz, y3, z3) + (xd−3yz2) or I = (xd, yd, zd) +

xd−3yz(x, y, z) + (xd−3z3). Both of them are not minimal.
So we can suppose d − s − 1 ≥ a ≥ 2 and s ≤ d − 3. We have seen that e = 0 and

c = 1. We have (m1, m2, m3, m4) = (xs+1yazd−a−s−1, xsybzd−b−s, xsyzd−s−1, xszd−s), with
d− s ≥ b ≥ 2. Let us consider
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#(Fd−s−1 ∩ Ã(0,2)
I ) =


d− s d− s− 1 ≥ b, d− s− 2 ≥ a
d− s− 1 a = d− s− 1, d− s− 1 ≥ b
d− s− 1 b = d− s, d− s− 2 ≥ a
d− s− 2 b = d− s, a = d− s− 1

In the first case, we have the factorization Fd−s−1 = L2
0Fd−s−2. As we have seen before,

this implies that Fd−s−2 = L0
1Fd−s−3 and once more it contradicts the minimality of I.

Now, if a = d− s− 1 and d− s− 1 ≥ b, then it must be b = d− s− 1. Otherwise, we
would have the factorization Fd−s−1 = L2

1Fd−s−2 and it would contradict the minimality of
I. Therefore we have I = (xd, yd, zd) + xs(xyd−s−1, yd−s−1z, yzd−s−1, zd−s) with s ≤ d− 3.
For s = d− 3 it corresponds to a Togliatti system of type (2), while for s ≤ d− 4 is not
Togliatti because when we restrict to x + y + z = 0 the generators, they remain k−linearly
independent.

In the third case, using the same argument, if d− s− 2 ≥ a and b = d− s, then it must
be a = d− s− 2. Hence we have s ≤ d− 4 and I = (xd, yd, zd) + xs(xyd−s−2z, yd−s, yzd−s−1,
zd−s) which is never a Togliatti system.

Finally, in the last case we assume b = d− s and a = d− s− 1. Then s ≤ d− 3 and
I = (xd, yd, zd) + xs(xyd−s−1, yd−s, yzd−s−1, zd−s), which is never a Togliatti system.

To finish with the case b1, we have to see what happens when d− s− 2 ≥ e ≥ b d−s−1
2 c.

In this case s ≤ d− 3. Let us see that a = e. Otherwise, we can suppose a > e (the other
case is symmetric) and we have the factorization Fd−s−1 = L1

0 · · · L1
e−1Fd−s−e−1. Since

a > e and b > c > e, Ã(e,1)
I has d− s− e points and we have the factorization Fd−s−e−1 =

L1
e Fd−s−e−2 which contradicts the minimality of I. Hence a = e and in particular d− s−

1 > a and d− s ≥ b > c > a.
Let us consider ˜̃AI := ÃI r

(
∪a−1

k=0

)
in the same spirit as AI and ÃI . If b = d− s, then

˜̃A(0,2)
I consists in d− s− e different points. Otherwise, d− s− 1 ≥ b, then # ˜̃A(0,2)

I = d−
s + 1− e. In both cases ˜̃A(0,2)

I have more points than the degree of Fd−s−e−1 which passes
through them. Therefore we have the factorization Fd−s−e−1 = L2

0Fd−s−e−2 and, since

Fd−s−e−2 contains all d− s− e− 1 points of ˜̃A(e,1)
I it factorizes as Fd−s−e−2 = L1

e Fd−s−e−3
contradicting the minimality of I.

Case b2: We are removing from d∆2 to get ÃI : three points of H0
s and one from H0

s+2. Up
to permutation of the variables y and z, we can suppose that d− s− 2 ≥ a ≥ b d−s−2

2 c, and
also we can assume that d− s ≥ b > c > e ≥ 0.

Let us suppose first that b d−s−2
2 c > e ≥ 0. In this case we argue as in the case u = s+ 1

to prove that e = 0. As we did above, let us consider #(Fd−s−1 ∩ Ã(1,1)
I ). Using the same

argumentation we can prove that if a, c ≥ 2 we get a contradiction. If a = 1, then either
s = d− 3 or s = d− 4 and we have the following cases:
(i) If s = d− 3, then (m1, m2, m3, m4) can be xd−3(x2y, y3, y2z, z3), xd−3(x2y, y3, yz2, z3) or
xd−3(x2y, y2z, yz2, z3). And all of them become Togliatti systems of type (2).
(ii) If s = d− 4, then (m1, m2, m3, m4) can be xd−4(x2yz, y4, y3z, z4), xd−4(x2yz, y4, y2z2, z4),
xd−4(x2yz, y4, yz3, z4), xd−4(x2yz, y3z, y2z2, z4), xd−4(x2yz, y3z, yz3, z4) or xd−4(x2yz, y2z2,
yz3, z4). The only one of them which becomes a minimal Togliatti system is the second
one and it corresponds to a Togliatti system of type (4).
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Now, we can suppose that e = 0, c = 1 and d− s− 2 ≥ a ≥ 2. In particular, s ≤ d− 4.
As we did before, we can consider now #(Fd−s−1 ∩ Ã(0,2)

I ), and see that if d− s− 1 ≥ b ≥ 2
and d− s− 3 ≥ a ≥ 2, there is a contradiction with the minimality of I. Also as we did
before, if b = d− s (resp. a = d− s− 2) then it must be a = d− s− 3 (resp. b = d− s− 1).
Otherwise we would incur again to a contradiction with the minimality of I. So, we have
three possibilities.
(i) a = d − s − 3 ≥ 2, b = d − s, s ≤ d − 5 and I = (xd, yd, zd) + xs(x2yd−s−3z, yd−s,
yzd−s−1, zd−s).
(ii) a = d − s − 2, b = d − s − 1, s ≤ d − 4 and I = (xd, yd, zd) + xs(x2yd−s−2, yd−s−1z,
yzd−s−1, zd−s).
(iii) a = d− s− 2, b=d− s, s ≤ d− 4 and I=(xd, yd, zd)+ xs(x2yd−s−2, yd−s, yzd−s−1, zd−s).

After restricting to x + y + z = 0, we see that none of them corresponds to a Togliatti
system.

To finish with the case b2, we see what happens when d− s− 2 ≥ e ≥ b d−s−2
2 c. With

the same argument that we use before, we can see that a = e. The difference with the case
u = s + 1 is that in this case we can have m1 and m2 aligned vertically. This condition
can be translated as the case when d − b − s = d − a − s − 2 ⇔ b = a + 2. If this does
not happen (i.e. b > a + 2), then it will contradict the minimality of I. Indeed: let us
suppose that 0 ≤ k := d − b − s < d − a − s − 2. Inductively we have the factorization
Fd−s−e−1 = L2

0 · · · L2
k−1Fd−s−e−k−1. Fd−s−e−k−1 is a plane curve of degree d− s− e− k− 1

which passes through all d − s − e − k points of ˜̃Ak
I . Hence, we have the factorization

Fd−s−e−k−1 = L2
k Fd−s−e−k−2, contradicting the minimality assumption.

Therefore it must be b = a + 2 and, since b > c > a we have c = a + 1. Finally we get:
I = (xd, yd, zd) + xs(x2yazd−a−s−2, ya+2zd−a−2−s, ya+1zd−a−1−s, yazd−a−s) = (xd, yd, zd) +

xsyazd−a−s−2(x2, y2, yz, z2) which is of type (1).

Case 2C: We assume that u := a1 = a2 > a3 = a4 =: s ≥ 2. Arguing as in case 2B we
get u = s + 1 and I = (xd, yd, zd) + xs(xyazd−a−s−1, xybzd−b−s−1, yczd−c−s, yezd−e−s). We
can assume d − s − 1 ≥ a > b ≥ b d−s−1

2 c and d − s ≥ c > e ≥ 0. Let us suppose first
that b d−s−1

2 c > e ≥ 0. Argumenting as in case 2B, it must be e = 0. Let us consider

#(Fd−s−1 ∩ Ã(1,1)
I ) =


d− s b, c ≥ 2 c1
d− s− 1 c = 1, b ≥ 2 c2
d− s− 1 c ≥ 2, b = 1 c3
d− s− 2 c = b = 1 c4

Case c1: We have the factorization Fd−s−1 = L1
1Fd−s−2 and then Fd−s−1 = L1

0L1
1Fd−s−3

which, as usual, contradicts the minimality of I.

Case c3 and c4: Assume b = 1. Since d− s− 2 ≥ b ≥ b d−s−1
2 c it must be s = d− 3. Hence,

a = 2, b = 1, 3 ≥ c ≥ 1 and I have three possibilities: (xd, yd, zd) + xd−3(xy2, xyz, y3, z3),
(xd, yd, zd) + xd−3(xy2, xyz, y2z, z3) and (xd, yd, zd) + xd−3(xy2, xyz, yz2, z3). The first one is
not minimal while the remaining two are of type (2).

Case c2: Assume c = 1 and s ≤ d− 4. Let us consider
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#(Fd−s−1 ∩ Ã(0,2)
I ) =

{
d− s d− s− 2 ≥ a
d− s− 1 a = d− s− 1

In the first possibility, we have the factorization Fd−s−1 = L2
0Fd−s−2 and then the fac-

torization Fd−s−1 = L2
0L1

0Fd−s−3 which contradicts the minimality of I. On the other hand,
a = d − s − 1 and, arguing in the same manner we can see that b = d − s − 2. There-
fore I = (xd, yd, zd) + xs(xyd−s−1, xyd−s−2z, yzd−s−1, zd−s) which is not Togliatti for any
s ≤ d− 4.

To finish case 2C we see what happens when e ≥ b d−s−1
2 c. Arguing as in case 2B we

can see that b = e. Now we have the factorization Fd−s−1 = L0
0 · · · L0

e−1Fd−e−s−1 and we

can consider ˜̃AI as we did in case 2b. Let us consider

#(Fd−e−s−1 ∩ ˜̃A(0,2)
I ) =


d− e− s + 1 d− s− 2 ≥ a, d− s− 1 ≥ c
d− e− s a = d− s− 1, d− s− 1 ≥ c
d− e− s d− s− 2 ≥ a, c = d− s
d− e− s− 1 a = d− s− 1, c = d− s

To second and third cases means to a contradiction with the minimality of I directly.
The last case means to a contradiction as we have seen earlier. Hence, the only viable possi-
bility is the first one and we can apply recursively this argument until get a = b+ 1 and c =
e + 2. Therefore I = (xd, yd, zd) + xs(xyb+1zd−b−s−2, xybzd−b−s−1, yb+2zd−s−b−2, ybzd−s−b)

which is of type (1).

Case 2D: We assume that u := a1 > v := a2 > a3 = a4 =: s ≥ 2. Recall that we
have the factorization Fd−1 = L0

0L0
1 · · · L0

s−1Fd−s−1. If v > s + 1, then #Ã(s+1,0)
I = d − s.

Since Fd−s−1 is a plane curve containing Ã(s+1,0)
I , it factorizes as Fd−s−1 = L0

s+1Fd−s−2 =

L0
s+1L0

s Fd−s−3, which contradicts the minimality of I. Therefore v = s+ 1 and we can write
I = (xd, yd, zd) + xs(xryazd−a−s−r, xybzd−b−s, yczd−c−s, yezd−e−s) where u = s + r with d−
s− 1 ≥ r ≥ 2. As before, we can assume also that d− s− 1 ≥ b ≥ b d−s−1

2 c and d− s ≥ c >
e ≥ 0, and we have that d− s− r ≥ a ≥ 0 and s ≤ d− 3 Let us suppose first that b d−s−1

2 c >

e ≥ 0, and we can consider #(Fd−s−1 ∩ A(0,1)
I ) =


d− s e ≥ 1, a ≥ 1 (d1)
d− s− 1 e = 0, a ≥ 1 (d2)
d− s− 1 e ≥ 1, a = 0 (d3)
d− s− 2 e = a = 0 (d4)

Case d1: In this case it must be a = e. Indeed, if we suppose a > e ≥ 1 (the other case
is symmetric) we have the factorization Fd−s−1 = L1

0 . . . L1
e−1Fd−s−e−1, and #(Fd−s−e−1 ∩

Ã(e,1)
I ) = d− s− e. Then, Fd−s−e−1 = L1

e Fd−s−e−2 which contradicts the minimality of I.

Let us now consider #(Fd−s−e−1 ∩ Ã(e+1,1)
I ) =


d− s− e b ≥ e + 2, c ≥ e + 2 (i)
d− s− e− 1 b = e + 1, c ≥ e + 2 (ii)
d− s− e− 1 b ≥ e + 2, c = e + 1 (iii)
d− s− e− 2 b = c = e + 1 (iv)

Case (i). We have the factorization Fd−s−e−1 = L1
e+1Fd−s−e−2, and since Fd−s−e−2 passes

through all d− s− e− 1 points of Ã(e,1)
I we get a contradiction with the minimality of I.

Case (ii). We assume b = e + 1. Let us consider ˜̃AI as we did before and we can
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examine #(Fd−s−e−1 ∩ ˜̃A(0,2)
I ) =


d− s− e + 1 d− s− 1 ≥ c, 1 ≤ d− s− e− r
d− s− e c = d− s, 1 ≤ d− s− e− r
d− s− e d− s− 1 ≥ c, d− s− e− r = 0
d− s− e− 1 c = d− s, d− s− e− r = 0

In the second and third possibilities we obtain directly a contradiction with the min-
imality of I. In the last possibility we also obtain a contradiction. In fact, if c = d − s
and s + r = d− e, we do not remove any point of H2

1 and we have #(Fd−s−e−1 ∩ ˜̃A(1,2)
I ) =

d− s− e. Then Fd−s−e−1 = L2
1Fd−s−e−2, and this implies Fd−s−e−2 = L2

0Fd−s−e−3, which
contradicts the minimality of I.

Therefore if b = e + 1, it must be d − s − 1 ≥ c ≥ e + 2 and 1 ≤ d − s − e −
r. Iterating this argument we can conclude that either c = e + 2 and r = 2 or c =

e + 3 and r = 3. Therefore, either I = (xd, yd, zd) + xs(x2yezd−s−e−2, xye+1zd−s−e−2,
ye+2zd−s−e−2, yezd−s−e) = (xd, yd, zd) + xsyezd−s−e−2(x2, xy, y2, z2) which is of type (1); or
I = (xd, yd, zd) + xs(x3yezd−s−e−3, xye+1zd−s−e−2, ye+3zd−s−e−3, yezd−s−e) = (xd, yd, zd) +

xsyezd−s−e−3(x3, xyz, y3, z3) which is of type (3).
Case (iii). Arguing as in case (ii) we get that b = e + 2 and r = 2. Therefore,

I = (xd, yd, zd) + xs(x2yezd−s−e−2, xye+2zd−s−e−2, ye+1zd−s−e−1, yezd−s−e) = (xd, yd, zd) +

xsyezd−s−e−2(x2, yx, y2, z2), which is of type (1).
Case (iv). Arguing as in case (ii) we get that r = 2 and I is of type (1).

Case d2: In this case we assume e = 0 and a ≥ 1. We will separate the case b = 1 from
the case b ≥ 2.

Let us assume b = 1 ≥ b d−s−1
2 c which implies s = d − 3 and r = 2. Hence, I

can be (xd, yd, zd) + xd−3(xyz, y3, z3) + (xd−3x2y), (xd, yd, zd) + xd−3(x2y, xyz, y2z, z3) or
(xd, yd, zd) + xd−3(x2y, xyz, yz2, z3). The first one is not minimal and the remaining two
are of type (2).

Now we can assume b ≥ 2. Let us suppose first d− s− r− 1 ≥ 0 (i.e. m1 /∈ H2
0 ) and

we consider

#(Fd−s−1 ∩ Ã(1,1)
I ) =


d− s a ≥ 2, c ≥ 2 (i)
d− s− 1 a = 1, c ≥ 2 (ii)
d− s− 1 a ≥ 2, c = 1 (iii)
d− s− 2 a = c = 1 (iv)

Case (i). We get the factorization Fd−s−1 = L1
1Fd−s−2, and hence the factorization

Fd−s−1 = L1
0L1

1Fd−s−3 which contradicts the minimality of I.
Case (ii). Assume that a = 1 and c ≥ 2. Suppose that d − s − r − 1 > 0 and let us

consider

#(Fd−s−1 ∩ Ã(0,2)
I ) =


d− s d− s− 2 ≥ b, d− s− 1 ≥ c
d− s− 1 b = d− s− 1, d− s− 1 ≥ c
d− s− 1 d− s− 2 ≥ b, c = d− s
d− s− 2 b = d− s− 1, c = d− s

The first possibility means to a contradiction with the minimality of I.
Now let us suppose that d− s− r − 1 > 1. In this case, the second (resp. the third)

possibility can occur if, and only if b = c = d− s− 1 (resp. b = d− s− 2 and c = d− s).
Therefore I can only be as one of the next types:

I = (xd, yd, zd) + xs(xryzd−s−r−1, xyd−s−1, yd−s−1z, zd−s), which does not correspond to



34 New results on the classification of Togliatti systems

a Togliatti system.
I = (xd, yd, zd) + xs(xryzd−s−r−1, xyd−s−2z, yd−s, zd−s), which is a Togliatti system if,

and only if r = 2 and s = d− 5 (resp. of type (5)).
If d− s− r− 1 = 1, then there are no special restrictions for the second and third case.

Therefore I is one of the next types:
I = (xd, yd, zd) + xs(xd−s−2yz, xyd−s−1, yczd−s−c, zd−s), which is a Togliatti system if,

and only if s = d− 4 and c = 3 (of type (4)).
I = (xd, yd, zd) + xs(xd−s−2yz, xybzd−s−b−1, yd−s, zd−s), which is a Togliatti system if,

and only if s = d− 5 and b = 2 (of type (5)).
Finally, the last case gives us I = (xd, yd, zd) + xs(xryzd−s−r−1, xyd−s−1, yd−s, zd−s),

which is a Togliatti system if, and only if r = 2 and s = d− 3.
Now, let us suppose that d− s− r− 1 = 0. Arguing as usual, we can see it cannot be

d− s− 2 ≥ c and d− s− 3 ≥ b. Therefore d− s ≥ c ≥ d− s− 1 or d− s− 1 ≥ b ≥ d− s− 2,
and we have the following possibilities:
b = d − s − 2, d − s − 2 ≥ c and I = (xd, yd, zd) + xs(xd−s−1y, xyd−s−2z, yczd−s−c, zd−s).
Which is a Togliatti system if, and only if s = d− 3 and c = d− s− 2 (of type (3)).
d − s − 3 ≥ b, c = d − s − 1 and I = (xd, yd, zd) + xs(xd−s−1y, xybzd−s−b, yd−s−1z, zd−s).
Which is a Togliatti system if, and only if d− 3 ≥ s ≥ d− 4 and b = d− s− 3 (resp. of
type (3) and (4)).
b = d − s − 2, c = d − s − 1 and I = (xd, yd, zd) + xs(xd−s−1y, xyd−s−2z, yd−s−1z, zd−s).
Which is a Togliatti system if, and only if s = d− 3 (of type (3)).
b = d − s − 1, d − s − 1 ≥ c and I = (xd, yd, zd) + xs(xd−s−1y, xyd−s−1, yczd−s−c, zd−s).
Which is a Togliatti system if, and only if s = d− 3 and d− s− 1 ≥ c ≥ d− s− 2 (of type
(3)).
d− s− 2 ≥ b, c = d− s and I = (xd, yd, zd) + xs(xd−s−1y, xybzd−s−b, yd−s, zd−s). Which is
a Togliatti system if, and only if s = d− 3 and d− s− 2 ≥ b ≥ d− s− 3 (of type (3)).
b = d− s− 1, c = d− s and I = (xd, yd, zd) + xs(xd−s−1y, xyd−s−1, yd−s, zd−s). Which is a
Togliatti system if, and only if s = d− 3.

Case (iii). Assume c = 1 and a ≥ 2, and let us consider as before #(Fd−s−1 ∩ Ã(0,2)
I ). In

this case we obtain that I can only be one of the next types:
I = (xd, yd, zd) + xs(xryd−s−r−1z, xyd−s−1, yzd−s−1, zd−s), which is a Togliatti system if,

and only if r = 2 and d− 3 ≥ s ≥ d− 4 (of type (3)).
I = (xd, yd, zd) + xs(xryd−s−r, xyd−s−2z, yzd−s−1, zd−s), which is a Togliatti system if,

and only if r = 2 and s = d− 3 (of type (3)).
I = (xd, yd, zd) + xs(xryd−s−r, xyd−s−1, yzd−s−1, zd−s). In this case, let us consider

#(Fd−s−1 ∩ Ã(1,2)
I ) = d − s and inductively we obtain Fd−s−1 = L2

1 · · · L1
d−s−2F1. There-

fore it must be s = d− 3 and I is of type (3).
Case (iv). Assume a = c = 1. Let us suppose first that d − s − r − 1 > 0. If

d − s − 2 ≥ b we can factorize Fd−s−1 as Fd−s−1 = L2
0Fd−s−2. As we have seen be-

fore, this contradicts the minimality of I. Therefore, b = d − s − 1 and we can fac-
torize Fd−s−1 = L2

1 · · · Ld−s−r−2Fr+1. Since #(Fr ∩ Ã(0,2)
I ) = d − s − 1 we have r + 1 ≥

d− s− 1 and then d− s− r − 1 ≤ 1. Therefore, d− s− r − 1 = 1 and I = (xd, yd, zd) +

xs(xd−s−2yz, xyd−s−1, yzd−s−1, zd−s). Which is a Togliatti system if, and only if d− 3 ≥ s ≥
d− 4.
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Now, if d − s − r − 1 = 0, then we can use the same argumentation to prove that
d− s− 1 ≥ b ≥ d− s− 2 and then we have two possibilities:
b = d− s− 1 and I = (xd, yd, zd) + xs(xd−s−1y, xyd−s−1, yzd−s−1, zd−s)

b = d− s− 2 and I = (xd, yd, zd) + xs(xd−s−1y, xyd−s−2z, yzd−s−1, zd−s)

Which are Togliatti systems if, and only if s = d− 3 (of type (3)).

Case d3: Let us assume e ≥ 1 and a = 0. Actually, it must be e = 1. Otherwise, e > 1 and
#(Fd−s−1 ∩ Ã(1,1)

I ) = d− s, and we have seen that this cannot happen.
Now, let us suppose d− s− r > 1. Arguing as before we can see that there are three

possibilities:
b = d− s− 1, c = d− s− 1 and I = (xd, yd, zd) + xs(xrzd−s−r, xyd−s−1, yd−s−1z, yzd−s−1).
b = d− s− 2, c = d− s and I = (xd, yd, zd) + xs(xrzd−s−r, xyd−s−2z, yd−s, yzd−s−1).

Which do not correspond to a Togliatti system.
b = d − s − 1, c = d − s. If d − 2 > s + r, then we have the factorization Fd−s−1 =

L2
1 · · · Ld−s−r−1Fr and #(Fr ∩ Ã(0,2)

I ) = d− s− 2 > r, which contradicts the minimality of
I. Hence we have s + r = d− 2 and I = (xd, yd, zd) + xs(xd−s−2z2, xyd−s−1, yd−s, yzd−s−1).

Which are Togliatti system if, and only if s = d− 3 (of type (3)).
To finish, assume d− s− r = 1. Arguing in the same manner, we can see that it cannot

occur d− s− 3 ≥ b and d− s− 2 ≥ c. Therefore we have the following possibilities:
b = d− s− 2, d− s− 2 ≥ c and I = (xd, yd, zd) + xs(xd−s−1z, xyd−s−2z, yczd−s−c, yzd−s−1).
Which is a Togliatti system if, and only if s = d− 3 and c = d− s− 3 (of type (3)).
d− s− 3 ≥ b, c = d− s− 1 and I=(xd, yd, zd)+ xs(xd−s−1z, xybzd−s−b−1, yd−s−1z, yzd−s−1).
Which is a Togliatti system if, and only if s = d− 3 and b = d− s− 3 (of type (3)).
b = d− s− 2, c = d− s− 1 and I = (xd, yd, zd) + xs(xd−s−1z, xyd−s−2z, yd−s−1z, yzd−s−1).
Which is a Togliatti system if, and only if s = d− 3 (of type (3)).
b = d− s− 1, d− s− 1 ≥ c and I = (xd, yd, zd) + xs(xd−s−1z, xyd−s−1, yczd−s−c, yzd−s−1).
Which is a Togliatti system if, and only if s = d− 3 and c = d− s− 1 (of type (3)).
d − s − 2 ≥ b, c = d − s and I = (xd, yd, zd) + xs(xd−s−1z, xybzd−s−b−1, yd−s, yzd−s−1).
Which is a Togliatti system if, and only if s = d− 3 and d− s− 2 ≥ b ≥ d− s− 3 (of type
(3)), or s = d− 4 and b = d− s− 2.
b = d− s− 1, c = d− s and I = (xd, yd, zd) + xs(xd−s−1z, xyd−s−2z, yd−s, yzd−s−1). Which
is a Togliatti system if, and only if s = d− 3.

Case d4: Let us assume e = a = 0. If b ≥ 3 and c ≥ 3, then we have the factorization
Fd−s−1 = L1

1L1
2Fd−s−3 and #(Fd−s−3 ∩ Ã(0,1)

I ) = d− s− 2, which means to a contradiction
with the minimality of I. Hence we distinguish three cases: b = 1, b = 2 and b ≥ 3.

Case (i). We assume b = 1. Since b ≥ b d−s−1
2 c it must be s = d− 3. Therefore I has

three possibilities: (xd, yd, zd)+ xd−3(xyz, y3, z3)+ (xd−1z), (xd, yd, zd)+ xd−3(x2z, xyz, y2z,
z3) and (xd, yd, zd) + xd−3(x2z, xyz, yz2, z3). The first one is not minimal while the remain-
ing two are of type (1).

Case (ii). We assume b = 2. Since b ≥ b d−s−1
2 c it must be d− 3 ≥ s ≥ d− 5.

If s = d− 3, I has three possibilities: (xd, yd, zd) + xd−3(x2z, xy2, y3, z3), (xd, yd, zd) +

xd−3(x2z, xy2, y2z, z3) and (xd, yd, zd) + xd−3(x2z, xy2, yz2, z3). All of them are of type (2).
If s = d− 4, I has eight possibilities: (xd, yd, zd) + xd−4(x3z, xy2z, y4, z4), (xd, yd, zd) +

xd−4(x3z, xy2z, y3z, z4), (xd, yd, zd) + xd−4(x3z, xy2z, y2z2, z4), (xd, yd, zd) + xd−4(x3z, xy2z,
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yz3, z4), (xd, yd, zd) + xd−4(x2z2, xy2z, y4, z4), (xd, yd, zd) + xd−4(x2z2, xy2z, y3z, z4), (xd, yd,
zd) + xd−4(x2z2, xy2z, y2z2, z4), (xd, yd, zd) + xd−4(x2z2, xy2z, yz3, z4). And only the fifth
one is a minimal Togliatti system, and it is of type (4).

Finally, if s = d− 5, I has 15 possibilities, but any of them is a minimal Togliatti system.
Case (iii). We assume b ≥ 3. Then, either c = 1 or c = 2.
Case c = 1. We will see that it must be b = d − s − 1. Suppose that d − s − 2 ≥

b ≥ 3, then #(Fd−s−1 ∩ Ã(0,2)
I ) = d− s and we have the factorization Fd−s−1 = L2

0Fd−s−2.
First we will see that this implies that m1 and m2 are aligned vertically (i.e. d− s− b−
1 = d − s − r ⇔ b = r − 1). We can suppose that d − s − b − 1 ≤ d − s − r, and then
b ≥ r − 1 (the other case is symmetric). Inductively we obtain that Fd−s−1 factorizes as
Fd−s−1 = L2

0L2
1 · · · L2

d−s−b−2Fb. If b > r− 1, then #Ã(d−s−b−1,2)
I = b + 1 and it would mean

to a contradiction with the minimality of I. Hence, b = r − 1 and we can obtain the
factorization Fd−s−1 = L2

0L2
1 · · · L2

d−s−b−2L2
d−s−b · · · Ld−s−2F1. Since #Ã(d−s−b−1,2)

I = b ≥ 3
we have a contradiction with the minimality again.

Once we have seen that b = d− s− 1, using the usual argumentation we see that d−
s− r = 1 ⇔ r = d− s− 1. Therefore I = (xd, yd, zd) + xs(xd−s−1z, xyd−s−1, yzd−s−1, zd−s)

with s ≤ d− 3, which is Togliatti if, and only if s = d− 3 and it is of type (3).
Case c = 2. Since #Ã(1,1)

I = d− s we have the factorization Fd−s−1 = L1
1Fd−s−2. If d−

s− 2 ≥ b ≥ 3, then # ˜̃A(0,2)
I = d− s− 1 and Fd−s−1 would factorize as Fd−s−1 = L1

1L2
0Fd−s−3.

This contradicts the minimality of I because # ˜̃A(0,1)
I = d − s − 2 which would force the

factorization Fd−s−1 = L1
1L2

0L1
0Fd−s−4. Therefore b = d− s− 1 and by minimality again we

can see that d− s− r = 1. Hence, I = (xd, yd, zd) + xs(xd−s−1z, xyd−s−1, y2zd−s−2, zd−s),
which is Togliatti if, and only if s = d− 3 and in this case it is of type (3)

To finish case 2D we see what happens when d− s ≥ c > e ≥ b d−s−1
2 c. We can see

using the minimality that either a ≥ b = e, b ≥ a = e or e ≥ a = b.
Arguing as before we can see that in the first possibility m1 and m3 must be verti-

cally aligned and in particular c = e + 2, a = e and r = 2. Therefore I = (xd, yd, zd) +

xs(x2yezd−s−e−2, xyezd−s−e−1, ye+2zd−s−e−2, yezd−s−e) = (xd, yd, zd) + xsyezd−s−e−2(x2, xy,
y2, z2) which is of type (1).

In the second possibility, we assume b ≥ a = e. If b, c ≥ e + 1, then we have the
factorization Fd−s−e−1 = L1

e+1Fd−s−e−2 and, since # ˜̃A(e,1)
I = d− s− e− 1 we get Fd−s−e−1 =

L1
e L1

e+1Fd−s−e−3 which contradicts the minimality. Now, suppose b = e + 1 and c ≥ e + 2
(resp. b ≥ e + 2 and c = e + 1). As we have seen earlier, m1 and m3 (resp. m2) must be
aligned. Therefore, we can see using the minimality assumption that r = 2 and c = e + 2
(resp. r = 2 and b = e + 2). In both cases I is of type (1).

Finally, let us assume that e ≥ a = b. If e ≥ a + 2, then we will get a contradiction with
the minimality of I. Hence either e = a or e = a + 1. If e = a we can see that it has to be
c = a + 2 and r = 2. Therefore I is of type (1). Otherwise e = a + 1 and we can see that
c = a + 2 and r = 2. �
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For any integer d ≥ 3 set M0(d) = {xa
0xb

1xc
2|a + b + c = d and a, b, c ≥ 1}.

Theorem 4.0.3: Let I ⊂ k[x0, . . . , xn] be a smooth minimal monomial Togliatti system of forms
of degree d ≥ 10. Assume that µ(I) = 2n + 3. Then n = 2 and, up to permutation of the
coordinates, one of the following cases holds:

(1) I = (xd
0 , xd

1 , xd
2) + m(x2

0, x2
1, x0x2, x1x2) with m ∈ M0(d− 2).

(2) I = (xd
0 , xd

1 , xd
2) + m(x2

0, x2
1, x0x1, x2

2) with m ∈ M0(d− 2).

(3) I = (xd
0 , xd

1 , xd
2) + m(x3

0, x3
1, x3

2, x0x1, x2) with m ∈ M0(d− 3).

Proof: By [8]; Proposition 4.1, for n ≥ 3 and d ≥ 4 there are no smooth minimal monomials
Togliatti systems I ⊂ k[x0, . . . , xn] of forms of degree d with µ(I) = 2n + 3. So, n = 2.
For n = 2, the results follows from Theorem 4.0.2 together with the smoothness criterion
(Proposition 3.1.8). �

Remark 4.0.4: For 6 ≤ d ≤ 9 there are other examples of minimal monomial Togliatti
systems I = (xd, yd, zd) + J ⊂ k[x, y, z] than those given in Theorem 4.0.2. This additional
J’s were computed with the help of Macaulay2 and we give the full list of these extra
possible J′s:

d = 6 : (x5y, x3z3, x2y3z, y5z), (x5z, x3y3, x2y2z2, y5z), (x3z3, x2y4, x2y2z2, y5z), (x5z, x3y3,
xyz4, y5z), (x4z2, x3y3, x2y2z2, y4z2), (x3z3, x2y4, x2y2z2, y4z2), (x4z2, x3y3, xyz4, y4z2), (x3y3,
x3z3, x2y2z2, y3z3), xy(x4, x2y2, xyz2, y4), xy(x3z, x2y2, xyz2, y3z), xy(x2y2, x2z2, xyz2, y2z2),
xy(x2y2, x2z2, xz3, y2z2), xy(x4, xz3, y4, y2z2), xy(x4, x2y2, y4, z4), xy(x4, xyz2, y4, z4), xy(x3z,
x2y2, y3z, z4), xz(x3z, x2z2, xyz2, y4)xz(x2yz, x2z2, xyz2, y4), xz(x3z, xy2z, xyz2, y4), xz(x3z,
x2yz, xz3, y4), xz(x3z, x2z2, xz3, y4), xz(x3z, xy2z, xz3, y4), xz(x2y2, x2z2, xy3, y3z), xz(x2y2,
x2z2, xy2z, y3z), xz(x2z2, xy3, xy2z, y3z), xz(x2y2, x2z2, xy3, y4), xz(x2y2, x2z2, y4, y3z),
xz(x2y2, x2z2, y4, y2z2), xz(x3z, x2yz, xy2z, y4), xz(x3z, x2yz, xyz2, y4), x(xy4, xyz3, xz4, y3z2),
x(x4z, x2y3, xy2z2, y5), x(x4z, xyz3, y5, y3z2), x(x2z3, xy4, xy2z2, y5), x(x4z, x2yz2, y5, y2z3),
x(x2z3, xy4, xyz3, y3z2), x(x4z, x2z3, xy3z, y5), x(x4z, x2y3, y5, yz4), x(x3z2, x2y3, xz4, y3z2),
x(x4z, xy2z2, y5, yz4), x(x2z3, xy4, xz4, y3z2), x(x2y3, x2z3, y4z, yz4), x(x4y, x2z3, xy3z, y5),
x(x2yz2, xy3z, y5, z5)

d = 7 : xy(x2z3, xy4, xy2z2, y5), xy(x5, x2y2z, xyz3, y5), xy(x4y, x3y2, xz4, y3z2), xy(x3y2,
x2y3, x2z3, y2z3), xy(x5, x2y2z, y5, z5), xy(x4z, xy4, y5, z5), xy(x5, xyz3, y5, z5), xz(x3z2, x2z3,
xy3z, y5), xz(x4z, x2yz2, xz4, y5), xz(x4z, xy3z, xz4, y5), x(x5z, x2y3z, xy2z3, y6), x(xy5, xy2z3,
xz5, y4z2), x(x5z, x4y2, x2y2z2, y3z3), x(x4y2, x4z2, x2y2z2, y3z3), x(x3y3, x3z3, x2y2z2, y3z3),
x(x4yz, x2y4, x2z4, y3z3), x(x2y4, x2y2z2, x2z4, y3z3), x(x4yz, xy5, xz5, y3z3), x(x2y2z2, xy5,
xz5, y3z3), x(x5z, x2y3z, y6, yz5), x(x5z, xy2z3, y6, yz5), x(x5z, x4y2, y5z, yz5), x(x4y2, x4z2,
y5z, yz5), x(x3y3, x3z3, y5z, yz5), x(x4yz, x2y2z2, y6, z6), x(x4yz, y6, y3z3, z6), x(x2y2z2, y6,
y3z3, z6), xyz(x2y2, x2z2, xy3, y4), xyz(x3z, x2yz, xy2z, y4), xyz(x4, x2y2, xyz2, y4), xyz(x3z,
x2yz, xyz2, y4), xyz(x3z, x2z2, xyz2, y4), xyz(x2yz, x2z2, xyz2, y4), xyz(x3z, xy2z, xyz2, y4),
xyz(x3z, x2yz, xz3, y4), xyz(x3z, x2z2, xz3, y4), xyz(x3y, xy3, xz3, y4), xyz(x3z, xy2z, xz3, y4),
xyz(x2y2, x2z2, xy3, y3z), xyz(x2y2, x2z2, xy2z, y3z), xyz(x2z2, xy3, xy2z, y3z), xyz(x3z, x2y2,
xyz2, y3z), xyz(x3y, x2z2, xyz2, y3z), xyz(x2y2, x2z2, y4, y3z), xyz(x4, xy3, xz3, y2z2), xyz(x4,
xz3, y4, yz3).
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d = 8 : xy(x4z2, x3y3, xyz4, y4z2), xz(x3z3, x2y2z2, xy4z, y6)

d = 9 : xyz(x3z3, x2y2z2, xy4z, y6), xyz(x3y3, x3z3, x2y2z2, y3z3), xyz(x6, x2y2z2, y6, z6).



Appendix A

Scripts of Macaulay2

The first script is the implementation of Lemma 2.0.4:

--Does I fail the SLP because of multiplication of l^d

--from degree m to degree m-1?

DoesFailLefschetzDegrees=(I,l,d,m)->(

M=max(hilbertFunction(m+d,I)-hilbertFunction(m,I),0);

if hilbertFunction(m+d,I+ideal(l^d))>M then 1 else 0

)

The next script is the set of functions that can be used to find all Monomial Togliatti
systems of degree d in n variables up to permutation.

NotInPermIdeal=(J,I,n)->(

Perm=permutations(toList(x_0..x_n));

NumPerm=length(Perm);

LengthJ=length J;

if LengthJ==0 then 1 else(

Ban=1;

k0=LengthJ-1;

while ((k0>-1)and(Ban==1)) do(

l0=0;

Ban1=1;

while((l0<NumPerm)and(Ban1==1)) do(

RepList={};

for j0 from 0 to n do(

RepList = append(RepList,x_j0=>Perm_l0_j0);

);

Aux=sub(I,RepList);

if (isSubset(J_k0, Aux)) then (Ban1=0);

l0=l0+1;

if Ban1==0 then Ban=0;

);
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k0=k0-1;

);

if Ban==1 then 1 else 0;

);

)

MonomialList=(n,deg)->(

rrd={};

MM=basis (deg, R);

N=numcols MM-1;

for k from 0 to N do(rrd=append(rrd,MM_k_0));

for k from 0 to n do(rrd=delete(x_k^deg,rrd));

rrd

)

MonTogl=(n,deg)->(

R=kk[x_0..x_n];

rrdeg=MonomialList(n,deg);

poli=x_1;

for k from 2 to n do(poli=poli+x_k);

N=binomial(n+deg-1,n-1)-n;

A=ideal(x_0^deg);

for k from 1 to n do(A=A+ideal(x_k^deg));

j=n;

--;

--Optionally add next line:;

--JJ={};

--(See comment below);

--;

J={};

--;

--We can change j<N by j<n+r if we;

--want to restrict $\mu(I)\leq 2n+r$ and add;

--to JJ these $I$ with $\mu(I)=2n+r$;

--(See comment below);

--;

while(j<N) do(

s4=subsets(rrdeg,j);

Lengths4=(length s4);

i=0;

while(i<Lengths4) do(

Ii=ideal(s4_i);

H=A+Ii;

if(numcols (mingens(sub(H,x_0=>poli)))<n+j+1) then (

if NotInPermIdeal(J,H,n)==1 then (
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J=append(J,H);

--;

--To contruct JJ as we said above,;

--introduce the next line:;

-- if(j==n+r) then JJ=append(JJ,i);

--;

);

);

i=i+1;

);

j=j+1;

);

)

--;

--This final function substract the gcd of each $(m_1,...,m_{n+r})$ in JJ;

--;

H={};

i=0;

while(i<length(JJ)) do(

k=JJ_i;

Aux=gcd(s4_k);

Laux={};

j=0;

while(j<length(s4_k)) do(

Laux=append(Laux,s4_k_j/Aux);

j=j+1;

);

H=append(H,Aux);

H=append(H,Laux);

i=i+1;

)

toString(H)
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