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Abstract

Background: Dysregulation of transcriptional programs leads to cell malfunctioning and can have an impact in
cancer development. Our study aims to characterize global differences between transcriptional regulatory programs
of normal and tumor cells of the colon.

Methods: Affymetrix Human Genome U219 expression arrays were used to assess gene expression in 100 samples
of colon tumor and their paired adjacent normal mucosa. Transcriptional networks were reconstructed using
ARACNe algorithm using 1,000 bootstrap replicates consolidated into a consensus network. Networks were
compared regarding topology parameters and identified well-connected clusters. Functional enrichment was performed
with SIGORA method. ENCODE ChIP-Seq data curated in the hmChIP database was used for in silico validation of the most
prominent transcription factors.

Results: The normal network contained 1,177 transcription factors, 5,466 target genes and 61,226 transcriptional
interactions. A large loss of transcriptional interactions in the tumor network was observed (11,585; 81% reduction), which
also contained fewer transcription factors (621; 47% reduction) and target genes (2,190; 60% reduction) than the normal
network. Gene silencing was not a main determinant of this loss of regulatory activity, since the average gene expression
was essentially conserved. Also, 91 transcription factors increased their connectivity in the tumor network. These genes
revealed a tumor-specific emergent transcriptional regulatory program with significant functional enrichment related to
colorectal cancer pathway. In addition, the analysis of clusters again identified subnetworks in the tumors enriched for
cancer related pathways (immune response, Wnt signaling, DNA replication, cell adherence, apoptosis, DNA repair, among
others). Also multiple metabolism pathways show differential clustering between the tumor and normal network.

Conclusions: These findings will allow a better understanding of the transcriptional regulatory programs altered in colon
cancer and could be an invaluable methodology to identify potential hubs with a relevant role in the field of cancer
diagnosis, prognosis and therapy.
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Background
Transcriptional regulation has an essential role for proper
cell functioning. Gene regulatory programs establish and
maintain specific cell states [1], ensure cell homeostasis
and avoid metabolic disorders [2]. Genetic regulatory in-
formation encoded in DNA binding sites, such as en-
hancers and promoters, is interpreted by a network of
transcription factors (TFs) [3]. Epigenetic events like DNA
methylation or histone modifications are regulators of
transcription [4,5] and non-coding RNAs such as siRNAs
and miRNAs are also involved in gene expression regula-
tion at the post-transcriptional level [6].
Identification of global regulatory perturbations that

actively participate in the initiation and maintenance
of the tumor state is one of the major challenges in
cancer biology [7]. Important processes intimately re-
lated to the neoplastic process, such as development
and cell differentiation, are widely mediated by gene
regulation [8]. Dysregulation of signaling pathways has
also been related with tumor growth and cancer pro-
gression [9]. Although specific tumor genetic alterations
are well described and annotated [10], comprehensive
studies are required to obtain more information about the
transcriptional programs involved in tumor development.
Thus, a global analysis of regulatory network perturba-
tions still remains a fundamental challenge for cancer
biology [7].
Recent bioinformatics developments make use of large-

scale gene expression datasets to infer genome-wide gene
regulatory networks (GRN) [11]. Although not as accurate
as methods based on experimental procedures and
usually requiring subsequent validation, this approach
to computationally-infer regulatory networks can be
useful to predict in-vivo functions of specific cell types
[12]. Diverse methodological approaches to infer GRNs
have been proposed, such as regression-based methods,
correlation, information-theoretic approaches and Bayesian
networks [13]. Among all those, the ARACNe algorithm
for the reconstruction of GRNs has been successfully ap-
plied to reverse-engineer large-scale transcriptional net-
works in B-cell leukemia [14,15], neuroblastoma [16], T cell
acute lymphoblastic leukemia [17] and prostate cancer [18].
These methodologies have also been applied to analyze and
compare GRNs of several human tissues [19]. However,
there are a limited number of studies about gene regulatory
network inference in colon cancer cells, and these analyses
were restricted to a small number of genes or used small
sample sizes for the inference [20-23].
The aim of our study is to infer GRNs from transcrip-

tional data obtained for a large sample of stage II colon
tumor cells and paired adjacent pathologically normal
mucosa, as well as to perform a comprehensive analysis
of the changes in the transcriptional regulatory programs
related to the tumor phenotype.
Methods
Patients and samples
One hundred patients with an incident diagnosis of colon
cancer who were visited at the Bellvitge University Hospital
(Barcelona, Spain) between January 1996 and December
2000 were included in the study. Cases were selected to
define a homogenous series of patients with stage II,
microsatellite-stable, pathology confirmed adenocar-
cinoma of the colon. All patients underwent radical
surgery and had no signs of tumor cells when margins
were examined. Fresh samples were collected and fro-
zen by the pathologist from the surgical specimen. Ad-
jacent mucosa was obtained from the proximal margin
and was at least 10 cm distant from the tumor lesion.
The Clinical Research Ethics Committee (CEIC) of the
Bellvitge Hospital approved the study protocol, and all
individuals provided written informed consent to par-
ticipate and for genetic analyses to be done on their
samples. The approval number is PR178/11. Additional
information about the study and patient samples can
be found at http://www.colonomics.org.

Gene expression dataset
Total RNA was isolated from tissue samples of tumor
and normal adjacent mucosa using Exiqon’s miRCURY™
RNA Isolation Kit (Exiqon, Denmark), according to
manufacturer’s protocol. Extracted RNA was quantified
by NanoDrop® ND-1000 Spectrophotometer (Nanodrop
technologies, Wilmington, DE) and stored at −80°C. RNA
quality was assessed with RNA 6000 Nano Assay (Agilent
Technologies, Santa Clara, CA) following manufacturer’s
recommendations and was further confirmed by gel elec-
trophoresis. RNA integrity numbers showed good quality
(mean = 8.1 for tumors, and 7.5 for adjacent normal).
RNA purity was measured with the ratio of absorbance at
260 nm and 280 nm (mean = 1.96, sd = 0.04), with no dif-
ferences among tissue types.
RNA samples were hybridized onto the Affymetrix

Human Genome U219 96-Array Plate platform (Affymetrix,
Santa Clara, CA) following Affymetrix standard procedures.
Annotation of the array was based on hg19 genome version.
A blocked experimental design was implemented to
avoid biases due to potential plate effects (i.e. all plates
contained the same proportion of normal and tumor
samples). After evaluating the quality of the 200 CEL
files using Affymetrix standard quality parameters (e.g.
level of background noise, labeling and hybridization
efficiency, and RNA degradation), 4 arrays (two normal-
tumor pairs) were excluded. Therefore, a final dataset of 196
arrays was used for subsequent analyses. Raw data were nor-
malized together using the Robust Multi-array Average
(RMA) algorithm [24] implemented in the affy package
[25] of the Bioconductor suite (http://bioconductor.org).
All other analyses were done with R 2.15.1 statistical
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computing suite (http://www.R-project.org). A model-
based clustering was applied to the full expression
dataset in order to detect and remove non-expressed
and saturated probe-sets from further analyses.
The complete gene expression dataset was uploaded to

the National Center for Biotechnology Information’s
Gene Expression Omnibus Database with GEO series ac-
cession number GSE44076.

Transcription factor selection
The list of TFs used was built by merging two different
sources of information. The first one was the manually-
curated compilation of human TFs reported by [26].
More specifically, 1,391 TFs classified in Supplementary
Information S3 as ‘a’, ‘b’ or ‘other’ were chosen. In order
to generate a broader set of putative TF genes, the col-
lection of curated TFs was complemented with an add-
itional set of 1,415 genes that were associated with
specific GO terms related to transcription. In particular,
genes associated with GO terms (GO:0045449 - Regulation
of transcription, GO:0030528 - Transcription regulator ac-
tivity and GO:0001071 - Nucleic acid binding transcription
factor activity) were chosen. The GO database release used
was 2011-03-19 accessed from AmiGO version 1.8 [27].
This yielded a set of 2,806 unique TFs, which were repre-
sented by 7,811 Affymetrix probe-sets in the expression
array that was used.

Inference, representation and analysis of transcriptional
regulatory networks
Transcriptional regulatory networks were built using the
ARACNe algorithm [15]. Prior to the ARACNe analysis,
simulations were performed to model the optimal kernel
width that allowed a proper mutual information (MI) es-
timation in our dataset. The null distribution of the MI
was also empirically determined by simulation analysis
in order to be able to further identify those significant
correlations between TFs and their putative target genes.
The significance p-value used as a threshold was 1e-07.
ARACNe2 algorithm was run with DPI tolerance set to
0 to remove potential indirect transcriptional interac-
tions from both networks. Remaining parameters were
used with their default values. For each network, 1000
bootstrap replicates were performed and summarized to
obtain more robust and accurate consensus networks.
Only the giant connected component of both networks
was considered for downstream analyses. Network
visualization, descriptive, simple parameters estimation
and figures were performed with Cytoscape software ver-
sion 2.8.2 [28]. Directed graphs were used to describe net-
works, in which a regulatory relationship between a TF
and a target gene was represented by a directed edge (i.e.
arrow) between these two connected nodes, being the ori-
gin of the edge the TF. Comprehensive network topology
analyses, along with the estimation of complex parame-
ters, were carried out with the Network Analyzer Cytos-
cape plugin [29]. KEGG pathway enrichment analysis was
performed with the SIGORA R package version 0.9.2 and
default parameter values [30]. In the analysis of lost edges,
a gene was considered to become silenced in the tumor if
its average expression level was smaller than 4 and the
log2 fold change between the tumor and the normal ex-
pression values was smaller than -1 (i.e. a 2-fold change
decrease in the tumor). The analysis of network clusters
was performed with the MINE Cytoscape plugin [31].
Only clusters with more than 10 nodes were consid-
ered for detailed analysis. Somatic mutation data were
obtained from the COSMIC database [10] using the fol-
lowing parameters: large intestine (tissue), all (subtissue),
carcinoma (histology), all (subhistology). Only genes with
a mutation frequency greater than 5% were considered for
further analysis.

In-silico network validation
Gene annotation, (e.g. Ensembl gene id, chromosome,
strand, start and end position) was retrieved through
BiomaRt R/Bioconductor package [32]. For each gene,
genomic sequence around the transcription start site +/-
1 kb according to hg18 coordinates was obtained with
the BSgenome R/Bioconductor package version 1.24.0.
The validation analysis was performed using the hmChIP
database, which contains ChIP-Seq and ChIP-on-chip
data from ENCODE experiments that represent more
than 10,000,000 protein-DNA interactions [33]. Only the
interactions of TFs with at least more than 20 target
genes in the normal tissue network were considered for
validation. For each TF, the hmChIP database was quer-
ied providing a list of genomic regions corresponding to
the regulatory sequences of their targets in the normal
tissue network. Results were rank ordered based on the
degree of overlap between the uploaded genomic regions
and the peak lists collected by hmChIP database from
ChIP-Seq and ChIP-on-chip ENCODE datasets. Enrich-
ment ratios and significance p-values for the overlaps
were provided by hmChIP tool. Benjamini and Hochberg
false discovery rates were also reported by the tool to ac-
count for multiple testing.

Results
Massive loss of regulatory activity in tumor cells
A large loss of transcriptional interactions was found in
the tumor regulatory network (Figure 1, Table 1). The
tumor regulatory network contained 47% fewer TFs than
the network of normal cells (621 vs. 1,177), as well as
60% fewer target genes (2,190 vs. 5,466). Most nodes dis-
appeared in the tumor network because their expression
was completely unrelated to other nodes. Furthermore,
the number of direct transcriptional interactions was

http://www.r-project.org/


Figure 1 Normal and tumor regulatory networks. Inference and representation of normal (A) and tumor (B) regulatory networks. Both
networks were inferred using microarray expression data from paired normal and tumor colon tissue obtained from the same set of individuals.
Red nodes correspond to TFs and blue to non-TFs. Notice that a TF may also be the target gene of another TF. A global loss of transcriptional
interactions in the tumor regulatory network is observed.
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reduced by 81% (11,585 in the tumor network vs. 61,226
in adjacent normal cells).
Notably, although the node overlap between both net-

works is large (81% of the tumor nodes are found in the
normal network), only 19% of the interactions present in
the tumor network are found in the normal network
(Figure 2). To visualize both entire networks with Cytos-
cape [28] or another platform the network representations
can be found online (Additional file 1). Additionally, spe-
cific TFs and their target genes (or vice versa) can ex-
plored in the project website (http://www.colonomics.org/
regulatory-networks).
The vast majority of lost edges (76%) show a large

decrease in MI but relatively small changes in gene
expression (absolute log2 fold change < 1, Figure 3). This
Table 1 Networks descriptive parameters and topological
features

Normal
network

Tumor
network

Ratio Tumor/Normal

Descriptive parameters

Nodes 6,643 2,811 0.42

Transcription factors 1,177 621 0.53

Target genes 5,466 2,190 0.40

Edges 61,226 11,585 0.19

Main topological features

Network diameter 12 17 1.42

Proportion of shortest
paths

14% 4% 0.29

Characteristic path length 4.0 5.0 1.25

Average number of
neighbors

16.9 7.6 0.45

Multi-edge node pairs 5,204 976 0.19
suggests that decreased connectivity in the tumor network
was more related to transcriptional dysregulation than to
gene silencing. Lost edges in the tumor network were clas-
sified into four groups according to their change in MI
and gene expression change (Figure 4). Panels A-C con-
tains examples of loss of interaction by either silencing of
the TF and/or the target. These groups comprise a small
proportion of lost edges (A: 80, 0.2%; B: 1,105, 2.1%; C:
923, 1.7%). Panel D shows a loss of interaction due to a
decrease in the correlation, without evidence of TF or tar-
get silencing. Remarkably, most of the lost edges in the
tumor network (50,882, 96%) belong to pattern D, where
the loss of regulatory activity does not depend on major
changes in average gene expression levels.
Loss of robustness in the tumor network was sug-

gested by the comparison of the topological features of
both networks, as shown in Table 1. Firstly, a larger dis-
tance between nodes in the tumor network was observed
for different parameters, such as an increased network
diameter, the characteristic path length or the decrease
in average shortest paths. Secondly, a lower connectivity
in the tumor network was identified according to the
values of parameters related to neighborhood, such as
the decrease in average number of neighbors and multi-
edge node pairs. Furthermore, a characteristic of the
tumor network not found on the normal was the exist-
ence of a small subset of low connected TFs with a re-
markable contribution to minimal shortest paths (closeness
centrality, see figure in Additional file 2). Although no sig-
nificant functional enrichment was found for this set of
TFs, these genes may have the potential ability to further
disrupt the tumor network by breaking it into multiple dis-
connected components if some of their incoming our out-
going interactions are further lost. For a full set of figures

http://www.colonomics.org/regulatory-networks
http://www.colonomics.org/regulatory-networks


Figure 2 Summary network nodes and edges overlap between
normal and tumor networks. Node (A) and edge (B) overlap
between normal and tumor networks. Blue circles correspond to the
normal network, red circles correspond to the tumor network, and
purple areas correspond to intersections between both networks.
Notice the small edge overlap between both networks (19%) even
though a large part of the nodes (81%) in the tumor network are
present in the normal network.

Figure 3 Changes in mutual information vs. expression
changes. Each dot corresponds to a lost edge in the tumor
network. X-axis represents the difference in mutual information (T-N),
while the y-axis contains the expression difference between tumor
and normal for either the TF or the target gene of that edge. Thus,
every edge is represented by two dots in the plot. The area colored
in red, where most of the dots fall, corresponds to lost interactions
in the tumor (ΔMI < -0.25) in which there is no transcriptional silencing
neither of the TF nor the target gene. The fact that most of the edges
(~96%) fall in that region suggests that genetic or epigenetic silencing
is not involved in this massive loss of transcriptional regulation in
tumor cells.
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of other topological features comparing the networks see
Additional file 2.

Gain of regulatory activity in tumor cells
Although the tumor network shows a large loss of tran-
scriptional interactions, there are also specific TFs that
largely increase their number of target interactions in
the tumor network. A total of 91 TFs with increased activ-
ity (i.e. out-degree) and 235 up-regulated (i.e. in-degree)
target genes were identified in the tumor network. The
analysis of gained edges suggests a stronger role of the
TFs compared to the targets. Specifically, the 91 TFs with
increased activity revealed 2,224 new edges in the tumor
network (24 on average, median = 12) while the 235 up-
regulated targets only comprise 1,292 new transcrip-
tional interactions (5 on average, median = 4). TFs and
target genes that most increase their connectivity in
the tumor network are shown in Table 2 (see complete
lists in Additional file 3). KEGG pathways [34] enrichment
analysis of this set of genes using the SIGORA method [30]
revealed that the Colorectal cancer pathway (map05210)
was significantly overrepresented among these TFs with in-
creased activity (p-value = 8.9e-9). This pathway includes
well-known cancer-related genes such as FOS, TGFB3 and
TGFB1 that increased connectivity in the tumor network.
In order to evaluate if this gain of regulatory activity in
colon tumor cells may be related to somatic mutations we
studied the degree distribution (as indicator of regulatory
activity) for TFs and target genes, classified as frequently
mutated (if present in COSMIC database) or not [10]. We
have found that regulatory activity is independent of muta-
tions for TFs. However, target genes included in COSMIC
database showed a significant larger regulatory control than
other non-mutated genes in tumors (mean in-degree 4.5 in
non mutated and 7.7 in mutated, p = 0.000021). These
differences were not observed in the normal network
(mean in-degree 11.3 in non mutated and 12.6 in mutated,
p = 0.16), indicating that mutated genes tend to loose less
regulation or even increase it, since these differences were
also true for targets that increased connectivity. Examples
of mutated target genes that increase connectivity are
CDH11, CFH, COL3A1, COL6A3 and COL5A2
(complete list in Additional file 4). These genes are



Figure 4 Classification of lost edges. The figure illustrates four examples of loss of correlation in tumor network edges. For each subfigure
(4A-4D) the upper left plot shows the paired expression values of the TF (left) and the target gene (right) across normal samples. Similarly,
the upper right plot contains the expression values across tumor samples. Lower plots show the correlation between the TF (x-axis) and the
target gene (y-axis) expression for the normal samples (left) and the tumor samples (right). Blue dots correspond to expression values in
normal adjacent mucosa samples and red dots correspond to expression values in tumor samples. A) Loss of transcriptional interaction
mediated by silencing of both the TF and the target gene simultaneously. This category comprises 0.2% of lost edges (n = 80). B) Loss of
transcriptional interaction mediated by silencing of the target gene only. This category comprises 2.1% of lost edges (n = 1,105). C) Loss of
transcriptional interaction mediated by silencing of the TF only. This category comprises 1.7% of lost edges (n = 923). D) Loss of transcriptional
interaction with no TF or the target gene silencing. About 96% of lost edges in the tumor network (n = 50,882) fall into this last category.
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mutated with frequency greater than 5% and show in
the tumor network a large increment of regulatory
activity.

In-silico network validation with experimental data
Public ChIP-Seq and ChIP-on-chip datasets mainly from
the ENCODE project [35] and compiled in the hmChIP
database were used [33]. In order to avoid biases derived
from tumor-specific interactions, only TFs from our nor-
mal regulatory network with available datasets from ChIP-
Seq or ChIP-on-chip experiments were initially selected
for validation. TFs with less than 20 targets in the normal
network or showing less than 500 peaks in hmChIP data-
base were filtered out to avoid focusing on tissue-specific
regulations. Finally 16 TFs and their 1,443 putative target
genes were selected for validation. Remarkably, though



Table 2 Nodes with increased activity

TFs that most increase their activity in tumors

Transcription
factor

Targets in
Normal
network

Targets in
Tumor
network

Gained
interactions

Ratio
T/N

SNAI2 1 119 118 119.0

MMP14 10 121 111 12.1

AEBP1 103 186 83 1.8

BASP1 43 123 80 2.9

HCLS1 91 170 79 1.9

TFEC 6 84 78 14.0

DKK3 41 112 71 2.7

COL1A1 62 131 69 2.1

CD86 74 141 67 1.9

MAFB 125 189 64 1.5

NOTCH3 18 82 64 4.6

GLI2 37 100 63 2.7

TGFB1 1 61 60 61

GREM1 14 70 56 5.0

HOPX 46 102 56 2.2

Most up-regulated targets in Tumors

Target gene Targets
in-degree
in Normal

Targets
in-degree
in Tumor

Gained
interactions

Ratio
T/N

NNMT 3 32 29 10.7

CDH11 1 24 23 24.0

RAB31 20 42 22 2.1

MXRA8 3 23 20 7.7

RFTN1 8 28 20 3.5

CFH 3 20 17 6.7

COL3A1 14 31 17 2.2

EMILIN1 12 28 16 2.3

ENTPD1 12 28 16 2.3

MRC2 7 23 16 3.3

STAU1 1 17 16 17.0

AXL 9 24 15 2.7

OLFML2B 10 25 15 2.5

VCAM1 1 15 14 15.0

COL6A3 12 25 13 2.1

The table lists the top 15 TFs and target genes that most increase their activity
in the tumor network, sorted by the number of gained interactions. Only
nodes that appeared in both networks were considered. See complete lists in
Additional file 3.
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the experimental datasets were not restricted to colon tis-
sue, 6 out of the 16 TFs (38%) showed significant overrepre-
sentation (enrichment ratio > 1). One additional TF showed
marginally significant overrepresentation in the experimen-
tal data collected in the hmChIP database, as shown in
Table 3. This result reinforces the robustness of our inferred
networks, which seem to be reasonably capturing transcrip-
tional relationships between TFs and their target genes.

Functional analysis of node clusters
It is known that functionally related genes tend to cluster to-
gether in network-defined biological systems (e.g. protein-
protein interaction, transcriptional, or co-expression
networks). Therefore, we aimed to detect clusters of genes
in both the normal and tumor network to identify tumor-
specific highly interconnected sub-networks, potentially
enriched in relevant biological pathways. The network
cluster analysis revealed 42 clusters in the normal net-
work with more than 10 nodes. These included 953
highly interconnected genes. The tumor network in-
cluded 29 clusters with 871 nodes. The distribution of
nodes among clusters was similar for both networks.
The list of clusters and enriched pathways (identified
by SIGORA method) can be found in Additional file 5.
Although most of the clusters in the tumor network
were enriched in functions already present in the nor-
mal network, some clusters showed tumor-specific sig-
nificant enrichments in functions with a potential role
in tumor development (Table 4). More specifically,
clusters 3 and 19 showed an overrepresentation of im-
mune response pathways (e.g., Chemokine signaling path-
way, Toll-like receptor signaling pathway, Cytokine-cytokine
receptor interaction), and cluster 4 showed enrichment in
Wnt signaling proteins. Other clusters, such as 11 and 18,
also included significant enrichment of potentially relevant
processes such as cell proliferation (e.g. MAPK pathway) or
apoptosis, respectively.

Discussion
In this study we have reverse-engineered the transcrip-
tional regulatory networks of both pathologically normal
and tumor colon cells obtained from the same set of pa-
tients. Using a large-scale gene expression microarray
dataset, the ARACNe algorithm was applied to both tis-
sue types independently. ARACNe gives preference to
identify direct transcriptional regulatory interactions be-
tween TFs and their target genes. When both networks
are compared, the most outstanding feature is the con-
siderable loss of transcriptional interactions found in
tumor cells (81%), with a global significant decrease in
TFs (47%), target genes (60%). The fact that both normal
and tumor samples belong to the same set of individuals,
as well as the carefully performed experimental design
to prevent biases between tissue types, strongly suggests
that these large differences between networks are mainly
due to the tumor phenotype.
Most of the TFs and target genes involved in disrupted

interactions in the tumor network still maintain their ex-
pression levels, while only a minor proportion of lost
edges may be explained by a complete loss of expression



Table 3 In-silico network validation

Transcription factor
(Gene Symbol)

# Targets (In normal network) # Peaks (In hmChIP DB) Enrichment
ratio

p-value FDR

TCF4 408 46,018 1.82 2.0e-07 3.7e-06

NR3C1 246 24,967 0.60 0.12 -

PBX3 186 39,691 0.40 0.0063 0.019

HNF4A 103 32,083 2.71 0.00027 0.0016

TCF12 67 54,191 3.33 2.0e-06 1.8e-05

RBL2 55 16,395 2.33 0.0050 0.018

SUZ12 50 8,742 0.62 0.12 -

ESRRA 42 3,284 1.50 0.37 -

FOXP2 42 44,482 2.00 0.043 0.11

MAX 41 16,467 1.80 0.12 -

CDX2 40 24,460 1.38 0.38 -

SRF 39 35,784 1.91 0.052 0.12

STAT1 35 2,804 3.20 0.00097 0.0044

FOXA1 32 21,540 0.55 0.062 0.12

NFYB 31 4,630 1.20 1 -

RAD21 26 33,302 1.40 0.50 -

Results provided by hmChIP tool containing ChIP-Seq and ChIP-chip ENCODE experiments [33]. TFs are ordered according to the number of target genes in the
normal network. Cells with enrichment ratio in bold highlight significantly overrepresented TFs.
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of one or both interactors. This expression silencing
may be attributed either to genomic (e.g. DNA deletions,
somatic mutations in promoter regions that hinder TF
binding, transcript-truncating alterations, etc.) or epige-
nomic mechanisms (e.g. miRNA-associated transcript
degradation, promoter hypermethylation, alterations in
chromatin activation and repression marks, etc). On the
other hand, disrupted interactions involving TFs and tar-
get genes that maintain expression levels in normal and
tumor cells may be attributed to multiple reasons: pres-
ence or absence of a third-party molecule that could be
acting as a post-translational modulator of the TF activ-
ity (i.e. phosphorylation, acetylation, ubiquitination) [36],
alteration of key co-factors [1], or alterations in pro-
moter regions that could create new TF-binding sites in
target genes [37,38]. The small set of genes involved in
the loss of interactions through TFs or target gene silen-
cing (~4%) is more likely to belong to currently known
altered colon cancer pathways as the Wnt signaling and
others, due to apparent under-expression. However, the
vast majority of lost edges would not be easy to identify
just by exploring the expression values of their TFs or
targets genes. We think new and interesting undescribed
mechanisms for molecular biology of colon cancer might
be related to this gene deregulation without average gene
expression change. A potential limitation may be the
tumor cellular heterogeneity that could also be contrib-
uting to the observed loss of connectivity. While normal
mucosa is a relatively homogeneous tissue among sub-
jects, tumors are more heterogeneous, with diverse
predominant cellular clones (epithelial, stromal and de-
rived from the immune system). This could result in an
apparent global loss of correlation if diverse transcrip-
tional networks were mixed in the tumor.
The network of tumor cells also showed the emer-

gence of a new set of transcriptional interactions that
may have an essential role in tumor development and
the acquisition of new cellular abilities. Recent studies
have demonstrated that the activation of a small regula-
tory module is necessary and sufficient to initiate and
maintain an aberrant phenotypic state in brain tumors
[16]. Therefore, network inference approaches could
prove effectively useful to uncover new modules and the
master regulators that orchestrate malignant transform-
ation. Among the TFs ranked at the top of the list of in-
creased connectivity, our analysis identified colorectal
cancer related genes: two oncogenes (MAFB [39] and
GLI2 [40]), proliferation-related genes (NOTCH3 [41]
and TGFB1 [42]), epithelial-mesenchymal transition
(SNAI2 [43]) and the Wnt signaling genes SFRP4,
TWIST1, SMARCA4 and DKK3, potentially involved in
colorectal cancer angiogenesis [44]. One remarkable
gene with increased activity in the tumor network was
GREM1. This gene encodes a member of the bone mor-
phogenic protein antagonist family and may play a role
in regulating organogenesis, body patterning and tissue
differentiation. Interestingly, GREM1 has been previ-
ously related with a locus strongly associated with in-
creased colorectal cancer risk [45]. Moreover, increased
expression of GREM1 has also been recently found in



Table 4 Emergent network clusters in Tumors

Tumor
cluster*

Number of
genes

Pathway Adjusted
P-value$

1 120 Vascular smooth muscle
contraction

1.1e-09

2 112 GnRH signaling pathway 5.9e-04

2 112 Staphylococcus aureus infection 4.8e-02

3 70 Chemokine signaling pathway 8.1e-08

3 70 Toll-like receptor signaling
pathway

3.1e-07

3 70 Ether lipid metabolism 9.5e-04

4 51 Glycosphingolipid
biosynthesis - ganglio
series

1.6e-03

4 51 Wnt signaling pathway 1.7e-03

4 51 GnRH signaling pathway 1.3e-02

5 70 Adherens junction 1.9e-04

5 70 Chemokine signaling pathway 4.1e-02

7 44 Tight junction 5.6e-05

7 44 Tryptophan metabolism 2.4e-04

7 44 Glycosaminoglycan biosynthesis -
chondroitin sulfate

4.7e-04

8 27 Adherens junction 4.0e-03

9 16 Protein digestion and absorption 4.4e-07

9 16 Adherens junction 5.9e-03

11 16 MAPK signaling pathway 2.1e-15

11 16 Prion diseases 2.4e-03

13 24 Beta-Alanine metabolism 4.4e-04

13 24 NOD-like receptor signaling
pathway

9.8e-03

16 32 Glycosaminoglycan biosynthesis -
chondroitin sulfate

4.5e-08

18 14 Apoptosis 2.2e-06

18 14 Nucleotide excision repair 1.0e-03

19 14 Cytokine-cytokine receptor
interaction

1.4e-02

21 13 Butanoate metabolism 5.6e-05

21 13 Amino sugar and nucleotide
sugar metabolism

3.4e-03

22 12 Glutathione metabolism 3.4e-04

23 18 DNA replication 6.7e-06

25 32 Vascular smooth muscle
contraction

3.7e-06

28 12 DNA replication 9.6e-05

*Only clusters with significant enriched functions in tumors not already
present in normal are shown.
$P-value for functional enrichment derived from SIGORA method.
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colorectal polyps [46], as well as in the dysplasia to carcin-
oma transition in colon tumors [47]. Therefore our results
suggest that GREM1 may be mediating its tumorigenic ef-
fect by the activation of a large transcriptional program.
Furthermore, encouraging results were obtained in the
study of the relationship of somatic mutations in colorec-
tal tumors in the set of relevant genes identified through
our network approach. Though frequent mutation was in-
dependent of regulatory activity for TFs, we observed an
association for target genes, with larger regulatory activity
among mutated genes. Though this was a correlation ana-
lysis using external data from COSMIC database (we do
not know if our tumors were actually mutated), it is sug-
gestive that mutated genes trigger a regulatory control in
the tumor. The presence of mutations combined with the
alteration in their transcriptional regulatory connectivity
postulate these genes as strong candidates to be involved
in the pathogenesis of colon cancer, and even other type
of tumors.
The analysis of network clusters has identified relevant

sub-networks of highly connected genes specific of tu-
mors. The regulatory network of normal cells is large
and compact. Only 42 clusters have been identified with
more than 10 genes. These clusters only account for
14% of the network genes, indicating that there is exten-
sive regulation, but relatively low modularity. The tumor
cell, however, has revealed 29 clusters that include 30%
of their genes. This is consistent with a more modular
organization of the regulatory machinery, which is also
evident from the network representation (Figure 1). The
functional analysis of these clusters has shown signifi-
cant enrichment of known tumor-specific pathways: im-
mune response, Wnt signaling, DNA replication, cell
adherence, apoptosis, DNA repair, among others (Table 4).
Some specific metabolism pathways appear also specific-
ally captured by this analysis of sub-networks, which may
be candidate for intervention: glycosphingolipid biosyn-
thesis, tryptophan metabolism, glycosaminoglycan bio-
synthesis (chondroitin sulfate), beta-alanine metabolism,
butanoate metabolism, glutathione metabolism. Obvi-
ously, all these functions are present in the normal cell,
but they seem enhanced at the transcriptional level in
the tumor, in such a way that a large cluster of related
genes appear as a relevant entity. In this analysis we
have generally focused on the gain of activity in the
tumor network rather than on the lost interactions,
given the massive loss of tumor network interactions
that difficult to detect enriched functions. Despite this
intrinsic limitation, we want to emphasize that the
transcriptional loss found may influence the emer-
gence of new functionality in the tumor cells. This
finding may have a potential impact on the future of
cancer molecular biology at level of further experiments
and their corresponding biological interpretations.
The inference of GRNs has already been successfully ap-

plied to other malignances such as leukemia [14], breast
cancer [48,49] or ovarian tumors [50], with relevant find-
ings regarding breast cancer metastasis prognostic markers
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or prioritization of druggable gene targets for ovarian can-
cer. In colorectal cancer some researchers have also ex-
plored the reconstruction of GRNs, but with limited
approaches to one transcription factor [23] or only tumor
tissue [21,22]. To our knowledge, this is the first study in
colon cancer that has simultaneously inferred networks
for both tumor and adjacent normal cells obtained from
the same set of individuals with a consistent methodology
that makes both networks totally comparable.
We are aware that computational approaches of net-

work reverse-engineering may suffer from intrinsic limi-
tations. Therefore, we attempted a validation of the
network to reinforce the validity of our study. An initial
attempt to in-silico identify expected TF binding sites in
targets was rejected because of the limited number and
relative quality of the available TF positional weight
matrices both in JASPAR [51] and TRANSFAC Public
[52] databases. Other approach to validate the inferred
regulatory networks would be to replicate our results in
another colon cancer dataset. This has not been possible
due to the lack of proper datasets to replicate the find-
ings. The ARACNe’s authors emphasize in their papers
that a hundred samples is the minimum sample size re-
quired to infer transcriptional networks with proper ac-
curacy and they specifically discourage users to apply
their algorithm on small datasets [15,53]. The TCGA
project [54] only provides 23 normal-tumor colon pairs
available and we were unable to find a dataset with a
more than 50 samples available after an exhaustive
search in the most comprehensive public gene expres-
sion databases (GEO and ArrayExpress). Over the last
decade, ChIP-on-chip and especially ChIP-Seq assays
have become gold standard techniques for large-scale
protein-DNA interaction identification. Therefore, ChIP-
Seq and ChIP-on-chip datasets from the ENCODE project
were used to validate interactions inferred by ARACNe.
Since we restricted the potential set of TFs to be validated
to those that had more than 20 interactions in the normal
network and more than 500 experimentally observed
peaks, only a very small part of the network could be
tested. However, the obtained results were encouraging
since 6 of the 16 tested TFs showed a good level of agree-
ment. The large differences between the number of ex-
perimentally detected peaks and the number of inferred
target genes for each one of the TFs may suggest a high
rate of false negative interactions in our inferred networks,
though it is not easy to interpret ChiP data, that provides
may peaks that are not necessarily related to direct tran-
scription interactions [55]. Failure in the validation of
some TFs might also be partially influenced by the failure
of the algorithm to completely remove indirect associa-
tions from the network due to high order interactions. In
this direction, an extension of the ARACNe algorithm
(hARACNe) specifically designed to deal with n-order
interactions has been recently released, showing a signifi-
cant increase in the quality and robustness of the inferred
network [56]. Network deconvolution solutions over
correlation-based networks have also proven to be suc-
cessful for this purpose [57]. Due that the large hetero-
geneity of cell line tissues explored in the ENCODE
project, we positively consider the overall observed level
of agreement (38%), which is in the same range as previ-
ous studies found for other inferred transcriptional net-
works [14].

Conclusion
The inference of direct transcriptional networks at the
whole-genome level has allowed us to detect a predom-
inant loss of transcriptional activity in colon tumor cells,
which has not been described before to the best of our
knowledge. However, some specific TFs and biological
processes related to colon cancer also increased the con-
nectivity and became hubs in the dysregulated tumor
network. These findings will allow a better comprehen-
sion of the transcriptional regulatory programs altered in
colon cancer and could be an invaluable methodology to
identify potential hubs with a relevant role in the field of
cancer diagnosis, prognosis and therapy.
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